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Abstract

Quarks and gluons are confined in a hadron by the strong interaction described by Quantum Chromody-
namics (QCD). However, at high temperature, the quarks and gluons move freely beyond the boundary
of hadrons. Such state is called Quark-Gluon Plasma (QGP) and believed to exist at a few micro second
after the Big Bang of the universe. The ultra relativistic heavy ion collision is unique tool to create the
QGP state on the earth.

Several results indicates a creation of QGP state by the ultra relativistic heavy ion collisions. One of
them is the suppression of high momentum particles (jet quenching) which is observed by the two parti-
cle correlation measurements at the Relativistic Heavy Ion Collider (RHIC) and di-jet measurements at
the Large Hadron Collider (LHC). This modification is caused by the energy loss of the partons in the
QGP.

Jets are produced from the two body scattering of partons with large momentum transfer. In the-
oretical approach, it is indicated that the energy loss of jets in QGP is related to the properties of QGP
particularly gluon density and initial temperature of the QGP. Therefore, jet measurements play a critical
role in probing the QGP matter created in heavy ion collisions through parton energy loss via the obser-
vation of the jet structure modification or jet suppression.

The energy loss of energetic partons also depends on the path length in the QGP matter. For exam-
ple, jet pairs with a large energy asymmetry in the final states can be produced due to the difference of
path-length between leading jet and sub-leading jet. While leading jets escape mostly from the surface
in the medium, recoil jets traverse in the matter with losing its energy in a hot and dense matter. We use
this surface bias to acquire deeper insights into the matter properties longer than that for leading jets.
The stronger the surface bias, the larger the path length in the QGP is for the recoiling jet at the opposite
azimuth. By measuring jets directly rather than measuring inclusive high transverse momentum (pr)
hadrons as is done in the previous study, we can perform a more comprehensive and direct study of jet
interactions in the matter.

In this thesis, we report measurements of neutral pion and charged jet correlations in pp collisions at
/s =7 TeV and in central Pb-Pb collisions at \/sxny = 2.76 TeV from the LHC-ALICE experiment. The
LHC at CERN is the largest energy accelerator in the world. The ALICE detector was built to exploit
the unique physics in nucleus-nucleus interactions at the LHC and are capable of studying jet quenching
effects via jet reconstruction and particle identification.

For the neutral pion identification, we use an electro-magnetic calorimeter (EMCal) in ALICE. In
addition, EMCal is used as a trigger detector to enrich the high pt neutral pion sample. The opening
angle of two photons decayed from the neutral pion become smaller, when the neutral meson energy is
high due to the Lorentz boost. In order to identify 7° at higher py range, we use the cluster splitting
method which identifies a single cluster as a neutral meson via the parameter Ay. This parameter is the
length of long axis of the ellipse with two overlapping showers on the surface of calorimeter. We can
identify 7° from 8 up to 40 GeV/c by using the cluster splitting method.

Jets are reconstructed by using charged particles which are measured by the Inner Tracking System
(ITS) and Time-Projection Chamber (TPC) with jet constituents pt. o, > 0.15 GeV/c, with jet resolution
parameter R = 0.4. Underlying event backgrounds are subtracted by the event-by-event background sub-
traction method which takes into account the event plane dependence of the background coming from
the event anisotropy. The measured pt range of the jets is from 10 to 80 GeV/c.

Azimuthal correlations between trigger 7°’s and reconstructed jets have been measured at /s = 7
TeV pp collisions as a baseline, and at /sy = 2.76 TeV Pb-Pb central 0—10 % collisions to see a mod-
ification of jet in heavy ion collisions. We observe jet-like peaks in near and away side in pp and Pb-Pb



collisions, and the away side peak becomes sharp with increasing pt of the associated jets in pp colli-
sions. This result indicates that the high pt 7° production is strongly associated with a jet production.
Next we take a ratio of per trigger yields Iaa which is ratio between per trigger yield in Pb-Pb and that
in pp. We measure an enhancement for near side jet for jet pr cnjer > 40 GeV/c, and a suppression for all
measured jet pr chjec Tange for away side. Triggering higher pr 7¥ would select near side jets produced
close to the surface in a medium, while the path-length of its away side jets become longer than the near
side jets. In the near and away side widths measurement, we observe an indication of a jet broadening
effect in the near-side with requiring the lower pr of trigger 7° and/or pr leading particle in a jet in
Pb-Pb collisions. This effect decreases with increasing pr of the leading particle in a jet. These results
may suggest a possible jet broadening effect in central Pb-Pb collision at the LHC energy depending on
the path-length of a initial parton in a medium.
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Chapter 1

Introduction

In this chapter, we present theoretical background in jet physics in high energy heavy-ion collisions and
recent results for jet modification as introduction to understand physics motivation of this thesis.

1.1 Quark Gluon Plasma (QGP)

Quarks and gluons are in a hadron at a normal temperature. Quarks and gluons are confined in a hadron
due to a nature of the strong force in Quantum Chromodynamics (QCD). By increasing temperature and
density, a deconfinement of quarks and gluons occurs, and a such state is called “Quark-Gluon Plasma
(QGP)”. In order to create such state, there are two methods, one is to heat up a matter, and the other
is putting a matter under the extremely high density condition. When we create high energy or density
state by using the two methods, hadrons start to overlap each other, and then the quarks and gluons in
hadrons can move freely beyond the boundary of hadrons. Fig.[”T1 shows a schematic view of the QCD
phase diagram that can be reached in high energy heavy-ion collisions by the high energy accelerators. In
nature, matters are composed by proton and neutron at a normal temperature and normal baryon density.
However if we apply heat and pressure to matter, a phase transition from hadronic phase to QGP phase
can happen. Experimentally, we can create a hot QGP by using high energy nuclear collisions, and it is
also believed to create a dense matter QGP at high baryon density at the lower beam energy for example
at AGS energy (,/snN ~ 5 GeV) and a such state can might exist also interior of a neutron star. The
energy density € of an equilibrated ideal gas is given by the following equation,

.,
Szndof%T (1.1.1)

where ny,r is a degree of freedom of the matter, and 7" is a temperature. ng,r = 16 when the state has
only gluons, 37 the state is with two flavors (up and down) and 47.5 with three flavors (up, down, and
strangeness). Fig. T2 shows the energy density divided by T# as function of temperature calculated by
a Lattice QCD at non-zero chemical potential and resonance gas model. According to the most recent
lattice QCD calculation[], there is a cross over phase transition near zero chemical potential at the
critical temperature 7, = 155+9 MeV.

1.2 High energy nucleus-nucleus collision

High energy nucleus-nucleus collision is powerful and unique tool to study a high temperature and energy
density matter in a larger volume compared to those in proton-proton collisions. In this section, we
describe a formation of QGP in a high energy nucleus-nucleus collisions, in particular the collision
geometry, time evolution and particle production.

Table. 21 shows the list of high energy heavy-ion accelerator in the world.
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Fig. 1.1.1: Schematic view of QCD phase diagram as function of temperature and net baryon density[ll]. High
energy nucleus-nucleus collisions such as those at the to RHIC and LHC energies, could create a hot and baryon
free QGP on the earth.
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Fig. 1.1.2: The pressure normalized by T# as a function of the temperature on N; = 6, 8 and 10 lattices. The
Stefan-Boltzmann limit pgp(T) ~ 5.209-T* is indicated by an arrow. For our highest temperature 7 = 1000 MeV
the pressure is almost 20% below this limit[[7]
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Accelerator Laboratory Year Nucleus Collision energy /snn (GeV/c)

SPS CERN 1986 0, Z8s;j 19.4 (fixed target)
1994  208pp 17.4 (fixed target)

RHIC BNL 2000 7Au 130
2001  7Au 200

LHC CERN 2010 2pp 2760
2011  28pp 2760
2015  298pp 5500

Table 1.2.1: List of high energy heavy-ion accelerator in the world.

The first heavy ion experiments above /syy = 10 GeV is at the Super Proton Synchrotron (SPS) using
fixed target, starting from a light ion collisions (O and Si beams) and a heavy-ion collisions (Pb beam)
at CERN to create for a new state of matter. Several hadronic observable shows strong non-linearity
dependence with respect to the number of nucleons which participate in collisions. The Relativistic
Heavy Ion Collider (RHIC) is the first colliding-beam accelerator instead of a fixed-target accelerator,
and measured many kinds of signatures that indicates a creation of new state of matter, QGP. However the
equation of state of QGP still remains unknown. To access property of the exact matter need to perform
the experiments at higher collision energy, because rare probes such as jets were statistically limited.
Since 2010, new experiments have been started at the Large Hadron Collider (LHC) at the energy of
about 10 times higher (y/snny = 2.76 TeV) than at RHIC energy. The new experiments are expected to
provide signals from QGP with long life time. Therefore the heavy-ion experiments at LHC allows us to
study a significant qualitative improvement for measurements to draw out properties of QGP.

1.3 Collision Geometry

A collision geometry is one of the important and basic ingredients to understand the heavy-ion collisions
at high energies. Fig.[31 shows the example of collision geometry along the beam direction, before
(left) and after (right) a nucleus-nucleus collisions at a high energy.

Projectile Projectile spectators

Participants

Fireball

Tarset Target spectators

Fig. 1.3.1: Simple picture of Before and after collision of high energy nucleus-nucleus
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The collision geometry in a heavy-ion collision is mainly constructed by number of nucleons in projec-
tile nucleus (A), collision energy (/s) and distance between center of two nucleons, called an impact
parameter (b). Differential cross section with inelastic total cross section of nucleon Gli?N is described as
following equation

2 ~in
d (VN 2

1 .
i (b,\/snw) =1—(1 —ETAB(b)GI’\f’N(w/*sNN)A . (1.3.1)

In the case same nuclei collide each other, overlap function T (b) should be described as

Tpp(b) = / ds®Ty(s)Ty(s—b) (1.3.2)

where T} (s) is thickness of nuclei where are penetrated the other nuclei defended as function of nucleon
density p4(r) (normalized nucleon density p,,,) and radius in transverse plane s

Ta(s) = [ dzpa(z,s).palr) = ; e (’ZZ’”_ e (133)

The nucleons in high energy nucleus-nucleus collisions are divided into two regions. One is the “partici-
pant” which is the overlapped region in a collision, and other is the “spectator” region. A nucleus-nucleus
collision have all of assumption by the Glauber Model[I2].

In the Glauber model, we can calculate number of participant nucleons Ny, and number of nucleon-
nucleon collisions N, as following equations,

Npar(b) = [ 5Ta(5)(1 = exp(~0lTa(s)) + [ PsTals = b)(1 —exp(~0Ta(s),  (134)

Noinars(b) = / A5G Ty () Ta(s — b). (13.5)

1.4 Time Evolution

Another important aspect of heavy-ion collisions at high energies is the space-time evolution of a created
system, because the system is dynamical, and the properties also change as a function of time. Fig.[41l
shows the schematic diagram of time evolution for the produced matter by a high energy nucleus-nucleus
collision in the Bjorken picture[B].

After a nucleus-nucleus collision, it is consider that a produced matter is developed by taking the follow-
ing steps as a function of time.

Initial collision and pre-equibiliation (0 < 7 < 7y) : A central high energy nucleus-nucleus collision is
a process of huge entropy production. This entropy production be constructed from the incoherent
models and the coherent models[2]. The incoherent models is minijet production from partons
generated by semi-hard process. Such partons are difficult to separate with partons generated by
soft parton production. And they also interact with each other. The process could contribute to
from an equilibrated parton plasma. The coherent models is the color string braking model which
is the formation of color strings and ropes between two projectile nuclei. Then many quark pairs
and gluon pairs are generated in color electric field in participant region. In short time scale,
equilibrated parton plasma are produced by partons in exited fields[5].

19



b Freeze-Cut k! 4 ,.r’T“ T T

Fig. 1.4.1: The schematic diagram of time evolution of a nucleus-nucleus collision as functions of the beam

direction and time after a collision.

QCD phase transition and hydrodynamical evolution stage (7o) < 7 < 7y) : After the local thermal

equilibrium is achieved, we can use the relativistic hydrodynamical model to describe the ex-
pansion of the system to longitudinal and transverse direction. The results of experiments at the
RHIC indicate that transverse expansion can be described by a nearly perfect fluid. If a thermal
matter expands on approximated hydrodynamics by a perfect fluid, the evolution of a fluid can be
parameterized by a local energy density € and the local pressure P. The energy-momentum tensor
THY and the baryon number current jg of the perfect fluid with fluid four velocity u* is given by

T = (e+P)utu’ — g""P,dy < T >=0, (1.4.1)

g =ngut,dy < j >=0. (1.4.2)

Freeze out stage (7; < 7) : After a phase transition to QGP, the matter gets cooling down due to an

1.5

expansion of the system. Then the quark-gluon matter will become hadron gas again on hyper-
surface and the number of hadron is frozen. We call this stage a chemical freeze-out, where all
inelastic scattering stop and the particle ratios are fixed. And then the elastic scatting stop by the
further cooling of the system, and the kinematics for all hadron (e.g. momentum) are fixed. We
call this stage as “kinetic freeze-out or thermal freeze-out”.

Jet production and parton energy loss in the medium

A jet is a shower of hadrons from the fragmentation of hard parton which is produced by high energy
collisions with large momentum transfer Q and produced back-to-back direction due to a momentum
conservation. The left figure in Fig.[ST shows the sketch of jet production in a single proton-proton
collision.

According to the results of nucleus-nucleus collisions of experiments at the RHIC and LHC, the
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proton-proton collision  / lead-lead collision
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proton proton

quark

quark

J after the collisons

Fig. 1.5.1: Energy loss of parton in QGP

particle yield produced by a hard scattering is suppressed compared with the yield of pp collisions[27].
The right figure in Fig. S shows an idea how a produced jet loses its energy in a medium created by
heavy ion collisions. According to an energy loss model[f], we can describe amount of energy loss of a
parton AE using parton position /, path length L, scattering probability density dP(/)/dl and mean free
path A in general,

L ap(l),, dE(LE) dP(l) 1 1
AE:/Odl D :w)exp<w>. (1.5.1)

It is considered that there are two mechanisms. The first one is collisional energy loss when the parton
lose their energy colliding constituents partons of QGP. Latter one is radiative energy loss when the
parton radiate gluons.

Thus, Eq.3T can be describe by sum of energy loss as follows,

AE = AE opiisional + AE adiative (1.5.2)

At LHC energies, the energy loss by the gluon radiation (AE radiative) is dominated.

1.6 Experimental results of high p; physics

Now, we show current experimental results about jet modification measured at RHIC and LHC.

1.6.1 High p; physics of heavy ion collisions at the RHIC

At RHIC energy, there are two highlighted results using high pr particles; 1) a strong suppression of
yields in Au+Au central collisions at high pr (nuclear modification factor Raa < 1) and 2) a disappear-
ance of away-side jet peak measured by the two particle hadron correlations.

Nuclear modification factor R4y :

High momentum particles and jets are produced from hard parton scattering with large momentum
transfer at the initial state in a collision. Such probes are the strong tool to measure the properties
of the medium. At first, the results by using hard probes were measured as suppression of high
pr particle at the RHIC. These suppression was quantified by the two analysis methods, one is the
nuclear modification factor Raa and another is two particle correlation measurement. The nuclear
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PHENIX Au+Au (central collisions):
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Fig. 1.6.1: Nuclear modification factors of 70, n, direct ¥ as functions of pr in central Au+Au collisions at
/SNN = 200 GeV/c[22]. The solid yellow curve is a parton energy loss prediction for a medium with density
dN8 /dy = 1100.
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modification factor Raa is the ratio of yields of heavy-ion collisions that in pp collisions and can
be given by,
LN
NAM, dprdn
1 AN

Ne{)\f;nt dedn

Rap = (1.6.1)

< Ncoll >

where the number of binary nucleon-nucleon collisions < N,,;; > is estimated by the product of the
nuclear overlap function Tp 4 obtained from the Glauber model, and the inelastic NN cross-section
Gilzi\ll .

Fig.['& 1 shows the nuclear modification factor Raa as function of pr for 1, 7V and direct Y in
central Au+Au collisions at /sy = 200 GeV measured by the PHENIX collaboration. Direct ¥ in
high py region are generated from hard scattering process with high momentum transfer process.
And, direct 7 is not suppressed due to neutral color charge, which means that they do not interact a
QGP matter strongly. On the other hands, the yields of i) and 7° in Au+Au collisions are strongly

suppressed compared with the yields of pp collisions.

Suppression of away side peak :

Fig. 672 shows the azimuthal yields of the associated charged particles yields with respect to the
trigger particle (4 < ptTng < 6GeVie,2 < pF* < ptTng GeV/c). The bottom figure of Fig.I'672 is
the comparison of azimuthal yields of pp, d+Au and Au+Au collisions. The azimuthal yields of pp
and d+Au collisions show two clear jet like peaks, while the away-side peak in Au+Au collisions
are strongly suppressed relative to pp and d+Au collisions. These result indicate that suppression
of away-side peak is caused by jet modification effect in a medium. On the other hand, near side
peaks for all three collision systems look similar, and it indicates one can put a similar surface bias
for three collision systems by requiring high pr trigger hadron on the near-side.

1.6.2 High pr physics of heavy ion collisions at the LHC

Next we summarize the experimental highlights of jet measurements at LHC. The first one is the di-jet
energy asymmetry and the second one is the direct measurement of jet quenching by the study of single
jet spectrum in pp and Pb-Pb collisions at 2.76 TeV. The experiments at LHC started direct measurements
for jet and jet modification.

Di-jet energy asymmetry A; :
Fig. 63 shows an asymmetry of di-jet distribution on ¢ — 1 plane in an event of Pb-Pb /sy =
2.76 TeV from the CMS collaboration at LHC[Z6]. The two jets are reconstructed from charged

particles and neutral particles. The leading jet is seen sharp peak with large transverse momentum
leading

(pr = 205.1 GeV/c), while the sub-leading jet is seen smaller peak and transverse momentum
(pio1edne — 700 GeV/e) compared with the leading jet.

Fig. 64 shows the di-jet energy asymmetry parameter A; distributions (top figures) and di-jet
open angle distributions as function of centrality with p=**"® > 120 GeV/e, pi® '*" > 50
GeV/c and A@reading sub—leading > 27 /3. Di-jet asymmetry parameter A; can be given by

leading sub—leading
—-p

_Pr T
Aj - p}?ading _’_prsrubfleading' (1'6'2)

The shape of A; distributions in Pb-Pb collisions is modified with respect tor the distribution in pp
and increasing A; value. The A¢ distributions show that the leading and sub-leading jets distribute
primarily back-to-back direction in all centrality. However, a small increase are seen in the rate of
sub-leading jets at large angle with increasing centrality.
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Fig. 1.6.2: (a) Two-particle azimuthal distributions for minimum bias and central d+Au collisions and for pp col-
lisions. (b) Comparison of two-particle azimuthal distributions for central Au+Au collisions and d+Au collisions
and pp collisions [23].
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Fig. 1.6.4: The top figures are comparison of Di-jet energy asymmetry parameter A ; of pp, central Pb-Pb collisions

and HIJING simulation embedded PYTHIA events[26]. The bottom figures show Distributions of the azimuthal

angle between leading and sub-leading jets as function of centrality.
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Nuclear modification factor of charged jets :
Fig. &8 shows the nuclear modification factor of charged jets as function of p7 in Pb-Pb col-

Pb-Pb \s\=2.76 TeV

.©
= . [__] correlated uncertainty
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Fig. 1.6.5: Nuclear modification factors of charged jet as function of pr in Pb-Pb collisions at /syn = 2.76 TeV
from the ALICE experiment[24].

lisions at /sy = 2.76 TeV from the ALICE experiment[24]. The reference jet yields are taken
from PYTHIA calculation instead of the jet yields from experimental data. A strong suppression
is seen in jet Ry in measured pt range, and the magnitude of suppression and pt dependence of
of suppression pattern is similar to the single particle analysis.

1.7 Suppression of high pr particles and surface bias

In general, the hard scattering of initial partons with high momentum transfer dominates at pp > 2
GeV/c. Fig.I”T shows the nuclear modification factors of charged particles as function of pr in central
Pb-Pb collisions at /syn = 2.76 TeV from ALICE and CMS experiments at LHC. This figure indicates
that most of high momentum hadrons in heavy-ion collisions are strongly suppressed at pt > 2 GeV/c,
and then absorbed into a medium or shifted towards the low momentum region. Thus, the part of high
momentum hadrons which is not suppressed are produced at the surface in a medium. This effect is
called “surface bias”.

1.8 7°-jet correlations

As mentioned in the previous section, high momentum hadrons in heavy-ion collisions mainly come
from the surface of a medium by the surface bias. This fact suggests that the medium path-length of jets
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Fig. 1.7.1: Nuclear modification factors of charged particles as function of pr in central Pb-Pb collisions at
/SNN = 2.76 TeV from ALICE and CMS experiments[23].

emitted to the opposite side can be maximized by selecting high momentum hadrons as trigger. Thus,
we can control the path-length of jets by changing pr of trigger hadron.

Fig .81 shows the geometry of a trigger 7° and its recoil jet in transverse plane. A hard scattering
point is indicated as solid star, where a di-jet is produced back to back. A trigger 7 goes to the right with
traversing length L1 in the matter, while its recoil jet goes to the left with traversing length L2. Fig. '8
shows the path-length bias of the trigger ° with various § (energy loss per unit path-length) and trigger
n¥ energy threshold which is generated by gPYTHIA. Assuming no in medium energy loss per unit path
length (§ = 0 GeV?/fm), the distribution follows the unbiased distribution of hard scattering, whereas
for a large ¢ values (in this case § = 20 and 50 GeV?/fm) with high energy trigger 7°, it is strongly
biased towards the surface in a medium. In fact, the path-length of away-side jets become longer than
the near-side jets by the surface bias. In addition, we can make an artificial bias on the production points
of near and away-side jets towards at the surface in a medium by requiring the high momentum leading
particle in a jet. Fig.["83 shows an idea of leading particle bias effect and the expected pr dependence.
If we require high momentum leading particle in a near and away-side jet, the path-length of near and
away-side jets become shorter than the other.

Fig &4 shows the ratio of per trigger yields /aa in near and away-side as a function of the as-
sociated particle pr with the di-hadron correlations in central and peripheral Pb-Pb collisions measured
by the ALICE collaboration. The enhancement of jet-like yields are observed in near-side, while the
suppression of jet-like yields is observed in away-side by the surface bias. The enhancement in near-side
is caused by the effect of 1) a change of the fragmentation function and 2) a possible change of the
quark/gluon jet ratio in the final state[29].
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Fig. 1.8.1: Geometry of trigger 7 and its recoil jet in transverse plane[2].
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Fig. 1.8.2: Trigger n° energy dependence of hard scattering point distribution in transverse plane with trigger
pions moving to the right[28].
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Fig. 1.8.3: Momentum dependence of the leading particle in a jet of the surface bias in near (top) and away-side
(bottom). The left two figures are required a low momentum leading particle, the right figures are required a high
momentum leading particle.
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Fig. 1.8.4: Ratio of per trigger yields Iaa in near and away-side as a function of the associated particle pr
with the di-hadrons correlation in central (black) and peripheral (red) Pb-Pb collisions at /sy = 2.76 TeV from
LHC-ALICE[29].
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1.9 Physics motivation

According to the results of from the RHIC and LHC, jet modifications are measured a suppression of
high pr particles. Di-jet energy asymmetry and suppression of jet and high pt particle in away-side with
respect to triggered high pt hadron indicate that a medium created in heavy-ion collisions at RHIC and
LHC is opaque and a large amount of energy is deposited the medium.

The RHIC experiments have measured particle yield ratios of nucleus-nucleus collisions and pp col-
lisions by using nuclear modification factor and modification of away-side particle yields in two particle
correlation measurements. They give us knowledge of jet modification in medium. However, it is dif-
ficult to reconstruct jets due to lower jet cross section at the RHIC that at the LHC. Thus, we can not
extract information of jet modification directory. The LHC experiments have measured the back-to-back
di-jet energy asymmetry and suppression of recoil jet yields with triggered high pr charged hadron in
heavy-ion collisions. However, these measurements does not give enough information of path-length of
leading and sub-leading jets and near-side jet modification due to auto-correlation. We need more detail
differential measurements on jets.

According to the jet quenching model, hadron-jet correlation measurements allow us to control
the medium path length of the parton that is reconstructed as jet in away-side of measured hadron,
by selecting high transverse momentum hadrons as trigger that mainly come from the surface of the
medium. In addition, selecting 7¥ as trigger particle instead of charged hadron, we can ignore a trivial
auto-correlation between trigger particles and charged jets, since the trigger 7° is not directly a part of
charged jet, although the auto-correlation from other physics processes are all include in the measured
correlation, that is also a motivation of this analysis.

In this thesis we report the measurement of neutral pion-charged jet correlation in pp /s = 7 TeV and
central Pb-Pb collisions at /sy = 2.76 TeV. In particular, we report the azimuthal correlations between
high momentum #° and charged jet, the ratio of per trigger yields Iaa and Gaussian widths in near and
away-side as function of trigger 7° and associated jet momentum. These measurements could address
the following physics points using 7’-jet angular correlation;

Correlation between high momentum neutral particle production and jet production

— Effect of the surface bias of jet production in the medium at high pr region.

Path-length dependence jet energy loss by changing pr of trigger 7°.

Possible modification of jet shape which exhibit in widths of azimuthal distributions of jet in near
and away sides by a comparison between pp and Pb-Pb collisions, different trigger pr for 7° and
leading particles.

In particular, we measure the enhancement of near-side jets and suppression of away-side jet by the
surface bias at high pr region above jet pr larger than 10 GeV/c for the first time.

1.10 My contribution

— obtain the preliminary results of 7°-jet correlation measurements in pp collisions at \/s = 7 TeV
in the ALICE experiment.

— EMCal/DCal commissioning works for the Run 2.
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Chapter 2

Experimental Apparatus

As mentioned in the previous section, we use the high energy heavy-ion collisions for research of QGP
matter. In this section, we describe the overview of the Large-Hadron Collider (LHC) and the sub-
detectors used in this analysis in the ALICE detector.

2.1 Large Hadron Collider (LHC)

v neutrinos
CNG/S\‘\
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T2 AD

East Area
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neutrons e”
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Ions

Fig. 2.1.1: Large Hadron Collider (LHC)[BU]
The Large Hadron Collider (LHC)[BU] is located at CERN laboratory of Geneva in Switzer-land and

was built for research high energy particle and nuclear physics. It first started up on 10 September 2008.
The first physics run for Pb-Pb collisions started since end of 2010. The collision energy of LHC is the
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highest energy in the world with proton-proton collisions /s = 14 TeV and Pb-Pb collisions at /sny =
5.5 TeV as the maximum design energy. The LHC is constructed the two rings which had 27 km long
circumference, and the Super Proton Synchrotron (SPS) and Proton Synchrotron (PS) is used as the
booster accelerators to inject proton and lead beams to the LHC. There are four major experiments at
LHC: ATLAS[31], CMS[32], ALICE[B3] and LHCb[34].

Table.T1 shows the LHC beam parameters for proton beam operation. LHC can fill bunches with
25 ns interval in full bunches operation, and accelerate proton to 7 TeV from injection energy 450 GeV.

Injection  Collision

Beam Data

Proton Energy (GeV) 450 7000
Relativistic gamma 479.6 7461
Number of particles per bunch 1.15x 10"
Number of buches 2808
Longitudinal emittance (40) (eVs) 1.0 2.5
Transverse normalized emittance (um rad) 3.5 3.75
Circulating beam current (A) 0.582
Stored energy per beam (0] 23.3 362

Peak Luminosity Related Data
RMS bunch length (cm) 11.24 7.55
RMS beam size at the IP1 and IP5 (um) 375.2 16.7
RMS beam size at the IP2 and P8 (um) 279.6 70.9
Geometric luminosity reduction factor F - 0.836
Peak luminosity in IP1 and IP5 (cm~2sec™ 1) - 1.0 x 103
Peak luminosity per bunch crossing in IP1 and IP5  (cm™2sec™!) - 3.56 x 1030

Table 2.1.1: LHC beam parameters relevant for the luminosity lifetime for protons.

2.2 ALICE detector

The ALICE detector(Fig.ZZZT)[BS] was built to exploit the unique physics potential of nucleus-nucleus
interactions at the LHC and is capable of studying jet quenching effects via particle identification and jet
reconstruction. The ALICE detector is constructed by the 14 sub-detectors which is divided into three
kinds of detector class, Global detectors, Central detectors and Forward detectors. Table.Z2Z1 shows
the overview of geometrical properties of sub-detectors in the ALICE detector. In latter section, we will
describe more detail of sub-detectors in the ALICE detector.

2.2.1 VZERO

The VO detector[36] is constructed from 32 scintillator counters in 4 rings and installed on both side of
the ALICE interaction point. The detector of A side is named VOA, the detector of C side is named VOC.
Fig.Z73 shows the segmentation of the VO detector. This detector was designed for three purposes, 1)
to provide minimum-bias trigger for the central detectors in pp and Pb-Pb collisions, 2) to determine
centrality in Pb-Pb collisions and 3) to determine event plane angle in Pb-Pb collisions.

2.2.2 Inner Tracking System (ITS)

The Inner Tracking System (ITS)[B7] is consists of 6 cylindrical layers of silicon detector. The pair of
each two layers are called the Silicon Pixel Detector (SPD), Silicon Drift Detector (SDD) and Slicon
Strip Detector (SSD) from the interaction point. The main purposes of the ITS are,

— reconstruction of primary vertex and secondly vertex from a heavy flavor decay,
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Fig. 2.2.2: V0 detector
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Detector Radius Rapidity Azimuthal Range Technology Purpose
Global detectors
TO z=370 cm 4.6 <n <49 full quartz time, vertex
z=-70 cm -33<n<-3.0 full quartz time, vertex
VO z=329cm 28 <n <5l full scint. charged particles
z=-88 cm B3T7<n<-17 full scint. charged particles
ZDC z==%113cm In| > 8.8 full W+quartz forward neutrons
z==+113cm 65<n<15 |¢| < 10° W+quartz forward neutrons
Central detectors
SPD r=39cm In|] < 2.0 full Si pixel tracking, vertex
r=7.6cm In| < 1.4 full Si pixel tracking, vertex
SDD r=150cm In| < 0.9 full Si drift tracking, PID
r=239cm In| < 0.9 full Si drift tracking, PID
SSD r=38.0cm In| < 1.0 full Si strip tracking, PID
r=43.0cm In| < 1.0 full Si strip tracking, PID
TPC 85 < r/cm < 247 In| < 0.9 full Ne drift+MWPC tracking, PID
TRD 290 < r/cm < 368 In| < 0.8 full TR+Xe drif+-MWPC  tracking, e id
TOF 370 < r/cm < 399 In| < 0.9 full MRPC PID
EMCal 430 < r/cm < 455 In| < 0.7 80° < ¢ < 187° Pb+scint. photons and jets
PHOS 460 < r/cm < 478 In| < 0.12 220° < ¢ < 320° PbWO4 photons
HMPID r=490 cm In| < 0.6 1° < ¢ <59° CoF14 RICH+MWPC PID
Forward detectors
FMD z=320cm 36<n<5.0 full Si strip charged particles
z=280cm 1.7<n <37 full Si strip charged particles
PMD z =367 cm 23<n <39 full Pb+PC photons
MCH -142<z/m<-54 -40<n<-25 full MWPC muon tracking
MTR -17.1<z/m<-16.1 -40<n<-25 full RPC muon trigger

Table 2.2.1: Information of sub-detectors in ALICE detector

Fig. 2.2.3: Segmentation of the VO detector[36]
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Fig. 2.2.4: Schematic view of Inner Tracking System (ITS)

— particle identification and reconstruction of low-momentum particle,
— improvement of the momentum and angle measurements from the TPC.
Fig. 73 shows vertex resolution in z axis (beam direction) as a function of particle density in 17 and

indicates that this detector contribute to a better z vertex resolution in heavy-ion collisions.
The ALICE is used the method based on the Kalman filter algorithm to reconstruct charged par-
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Fig. 2.2.5: Vertex resolution in z axis as a function of particle density in 1 [B7].

ticles. The left figure in Fig.Z8 shows ITS stand-alone efficiency and fake track rate as a function of
transverse momentum and the right figure shows angular resolution as function of transverse momentum.
We obtain 90 % tracking efficiency with less than 10 % fake track rate above 2 GeV/c in pr, and angle
resolution is less than 1 mrad at 2 GeV/c.

Momentum of charged particles are reconstructed by combining the ITS and TPC, because it is
difficult to estimate curvature factor in high momentum region. Fig.Z2Z77 shows the comparison of mo-
mentum resolution between only ITS and ITS+TPC as a function of transverse momentum. Momentum
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Fig. 2.2.6: Left figure: ITS stand-alone efficiency and fake track rate as a function of transverse momentum.
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resolution get better by sorting and refitting for TPC tracks to ITS tracks in high momentum region.

Fig. 2.2.7: Comparison of momentum resolution between only TPC and combining ITS+TPC as a function of
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transverse momentum[37].

2.2.3 Time Projection Chamber (TPC)

The Time Projection Chamber (TPC)[3R] is the most important sub-detector which is installed in the AL-
ICE experiment to reconstruct charged particles and tracking. The TPC is a drift chamber with MWPC
(Multi-Wire Proportional Chamber) for three dimensional charged particles reconstruction with a good
resolution and less materials. The TPC can detect transverse trajectory as track of induced charge on a

10
Transverse Momentum (GeV/c)

1 10
Transverse Momentum (GeV/c)

pad and longitudinal trajectory as difference of drift time. The main purposes of the TPC are;

— Charge particle momentum measurement with the ITS.

— Particle identification and primary, secondly vertex reconstruction with a good momentum resolu-

tion.
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Fig. 2.2.8: Schematic view of Time Projection Chamber (TPC)

— Two track separation and dE /dx resolution to study about hadronic and leptonic signals in the
region pr < 10 GeV/c and the acceptance |n| < 0.9.

— charged particle identification using dE /dx.

2.2.4 Electromagnetic Calorimeter (EMCal)

The Electro-Magnetic Calorimeter (EMCal)[3Y9] in the ALICE detector is the Pb-scintillator sampling

calorimeter with a longitudinal pitch of 1.44 mm Pb and 1.76 mm scintillator and constructed from the

12,288 towers of the 12 super-modules?ZZ9. The EMCal is designed to measured electrons and photons

with large acceptance for high momentum physics and also used as the photon and jet trigger detector.
Energy resolution of EMCal is given by,

2
%: (%) L 2.2.1)

where b is the stochastic term and c is the constant term.

Fig. 710 shows the energy resolution as function of electron energy measured from PS and SPS
test beam line in CERN compared with the simulation results calculated from GEANT 3 indicated as the
dashed carve.
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Fig. 2.2.9: Schematic view of Electro-magnetic Calorimeter (EMCal)
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Fig. 2.2.10: Energy resolution of EMCal as a function of electron energy with fitting by Eq.2ZTl
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Chapter 3

Analysis

In this chapter, we describe details of the procedure of this analysis to study 7°-jet correlation. At first,
we present the event selection for this analysis, and then describe hot to reconstruct high momentum 7°’s
and charged jets.

3.1 Data set

The pp collision data used in this analysis were measured in 2011 LHC pp collisions at /s = 7 TeV with
EMCal triggered events and the Pb-Pb data used in this analysis were measured in 2011 LHC central
(centrality: 0-10 %) Pb-Pb collisions at /sy = 2.76 TeV with EMCal triggered events (Table.Z1T),
because the statistics of pp collisions at y/s = 2.76 TeV and mid-central and peripheral Pb-Pb collisions
are not enough for this analysis.

The Pb-Pb collisions data used in this analysis are divided in two categories,

Year Collision Energy Number of event
2011  pp collisions Vs =7TeV 7™
2011 Pb-Pb collisions /sy = 2.76 TeV 12M

Table 3.1.1: Information of data used in this analysis.

— Good TPC runs : A run is qualified as “good” if and when the TPC has been functioning fully
during data taking, resulting in a flat distribution of tracks in 17, ¢ plane. The analysis on this
data-set is done in full azimuth.

— Semi-good TPC runs : In these runs, the inner read-out chamber’s (IROC C13) voltage was low-
ered resulting in a loss of tracking efficiency. Since azimuthal acceptance of the semi-good TPC
runs is not uniform.

The run list of the two kinds of runs are putted on Appendix.
3.2 Event selection

3.2.1 Vertex cut

The following reconstructed z-vertex cut is used to select a primary collisions.

— Primary vertex is reconstructed by the SPD.
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— Number of tracklets contributing to the primary vertex is larger than 0.

— Vertex position in z direction: |Zyeex| < 10 cm

3.2.2 Event trigger

This analysis are used the three kinds of trigger class, minimum bias trigger (Pb-Pb collisions), EMCal
LO trigger (pp collisions) and EMCal L1-gamma trigger (Pb-Pb collisions). The definition and purpose
of those triggers are as follows.

— Minimum bias trigger : The minimum bias trigger in the ALICE experiment is used to select the
low multiplicity events and the diffractive events with fine beam background (beam-gas, beam-
halo interaction), efficiently. The hits from the three detectors are used to define the minimum bias
trigger, VOA (A side), VOC (C side) and SPD as following,

— EMCal LO and L1-gamma trigger : The EMCal photon trigger in the ALICE experiment is used
to measured the high momentum photons efficiently and based on the energy deposition in 2x?2
adjacent tiles. If the energy deposited in the 4 tiles was above the values mentioned previously, the
event was recorded. The main difference between the LO and the L1-gamma trigger is that the tiles
in the LO cannot be a combination of adjacent tiles in 2 adjacent EMCal super-modules and the
fact that the threshold has to be fixed and not depend on VO multiplicity (Fig.B=2T). The data of
pp collisions used in this analysis is the trigger threshold from 4.5 to 5.5 GeV. In order to enhance
the high pr photon clusters relative to the minimum bias events.

TRU #1
8 towers
1 SM~ TRU#2 | =
— 4 fastor
TRU #3 Energy deposit
h Subregion size
phi
—L0 patch
T—Veta TRU#4 L1 photon patch
—L1 jet patch

A
\

48 towers=24 fastor

Fig. 3.2.1: Comparison of different possible LO,L1-gamma and L1-jet trigger patches [20].

3.2.3 Centrality

The Pb-Pb collision events is characterized by the collision geometry, and we use the centrality calculated
from the Monte Carlo Glauber model instead of the impact parameter. The ALICE experiment estimates
the centrality using the VO detector amplitude, and then we obtain a good centrality resolution in the all
centrality region. The resolution is from 0.5 % (central) to 2 % (peripheral). Fig.322 shows the VO
detector amplitude distribution with data and Glauber model fitting (a high VO amplitude corresponds to
a central event (e.g. 0—10 %), and low amplitude corresponds to peripheral event (e.g. 60—80 %.

40



()] 3 T T 1 LI B B B L T 1 T N T T T
£19° = Po-Pb at\ /s = 2.76 TeV K oaatnt o omanee ]
4 + Data [ T
W | —— Glauber fit 17
10 NBD x f N, + (1-f)N F
£=0.194, 1=29.003, k=1.202 Part L
10
10 0
1 =
10"
| | | 11 1 | 11 1 11 1 | 1 1 | || 1 | | | 11 1 | 1 1 1 | | | 1 | 1

0 2000 4000 6000 8000 1000012000 1400016000 1800020000
VZERO Amplitude (a.u.)

Fig. 3.2.2: V0 amplitude distribution with data and Glauber fitting.

3.3 7" identification with EMCal

This analysis uses the 7 identification by using the cluster splitting method [&2]. The invariant mass
method identify a 7° by calculated the invariant mass from 2 photon clusters when decaying from 7°.
This method with V1 clusterizer (see Sec.33) is used to identify low energy 7% (1 ~ 15 GeV/c).
Another way to identify 7¥ is via the cluster splitting method with V1 clustrizer that used the fact that
n° decays form a single cluster instead of two in the calorimeter already at 6 GeV. When high energy
n’decaying into 2 photons with small opening angle, of the order of few calorimeter cells size (6 cm), it
produces a large and elongated cluster of calorimeter cell. Checking the energy deposition in the cells, if
there are local maxima cells, this cluster can be separated into two sub-clusters that should correspond to
the original photons, when the particle showers are not too overlapped. When we have 2 local maxima,
the split is relatively straight forward, just take the cells around the 2 maxima to form the 2 clusters, but
when there are only 1 maxima or more than 2, careful studies are needed as described in the ALICE
analysis note [47].

3.3.1 Clusterization

A calorimeter cluster consists of calorimeter cells. Clusters represent ideally the energy a given particle
deposited in the calorimeter. There are several clustering methods for the ALICE-EMCal as follows.

— V1 clusterizer: Start the clusters selecting a seed cell with energy above a given threshold Eg,..,.
Then, it aggregates to the cluster all cells with common side to the seed tower if their energy is
above E,;,. It continues aggregating towers with common side to the already aggregated ones if
their energy is still larger than E,,,;,,. A cell cannot belong to more than one cluster.

— V2 clusterizer: Similar to V1 clusterizer but before aggregating a cell to the cluster, it checks if
the energy of the cell to be aggregated is smaller than the energy of the cell that belongs already to

41



the cluster and is neighbor with common side. If the energy is larger, the cell is not added to this
cluster and the clusterization stops. Default clusterizer in Pb-Pb and p-Pb collisions.

For the invariant mass mass method, we usually use the V2 clusterizer. For the cluster splitting method
(current analysis), we use the V1 clusterizer, because V2 clusterizer can split clusters produced by several
particles if the shower topology is appropriate.

The parameters of clusterizer in this analysis used Ey..; and E,;;;, and the cell time region.

Egoeq = 100 MeV
- Emin =50 MeV.
425 <t < 825 ns.

3.3.2 Cluster selection

The cuts for cluster selection in this analysis are listed here:

— Ejuster > 6 GeV (the cluster splitting method)
— Cell with highest energy in cluster must be 1 cell away from border of the calorimeter.
— Distance to a bad channel from the highest energy cell is larger than 2 cells.

— Rejected exotic clusters : Exotic clusters have cells with larger energy compared with its surround-
ing cells. In this analysis, we rejected clusters with 1-E;y;/ E75 > 0.97 as the exotic cluster. More
details in Ref. [43].

— Timing cut : The cluster time is the time of the cell with highest energy in the cluster. It is not
calibrated during the reconstruction. At the analysis level, a recalibration procedure has been
implemented allowing to improve the time cell resolution and recenter the time distribution to 0
ns[42]. After recalibration, The cluster time was required window [¢| < 20 ns, because recalibration
procedure centers the cluster timing at O with a spread of £ 25 ns. At n*50 ns pile-up contribution
can be clearly observed (Fig. B3).

— Charged particles veto : There are clusters which are generated by charged particles. In order to
remove such clusters from the analysis, we apply a cut in the residual angular position between
the clusters and the projection of the TPC tracks to the EMCal surface. We reject clusters with
residuals in 1 and ¢ direction of An < 0.025 and A¢ < 0.03 (Fig. B37).

3.3.3 Number of Local Maxima in cluster

A local maxima cell in the cluster is defined as cell with higher energy than its adjacent cells defined as
follows,
E(Local Max candidate) — E (ad jacent cell) > AEyy (3.3.1)

when comparing to all the adjacent cells and with energy above a certain threshold Ejp;_s..q. In this
analysis, AE;y—seeq = 30 MeV was used, like in the EMCal reconstruction code used for the unfolding
procedure, and an energy threshold Ej—seq = 100 MeV in pp collisions.

The Number of Local Maxima, NLM, will be used later in the analysis to select the clusters, since
the shape of the shower depends on this number. With the V1 clusterizer, photon clusters can have only
NLM = 1 unless the suffered previously a conversion in the material in front of EMCal or they have
a random contribution from other particles, and 7° clusters will have a priory NLM = 2 at low energy
and NLM =1 at higher energy. The reason of more photons converted in the material in front of the
calorimeter, producing at least two separated et e~ particles, or some spurious noise in the calorimeter.
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Fig. 3.3.1: Photon clusters (0.1 < k& < 0.27) time before (left plot) and after (right plot) time recalibration in pp
collisions at /s = 7 TeV, real data triggered with EMCal.[27]
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Fig. 3.3.2: Residual in 17 and ¢ between the cluster and projected track to the EMCal surface 1 or ¢ versus the
cluster energy or versus each one, V1 clusters in pp collisions at /s =7 TeV.[d2]
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3.34

Shower shape

The shower shape of a cluster can be described using an ellipsoidal parametrization by the axis of the
shower surface ellipse in the calorimeter towers. The ellipse parameters are denoted as ),3 (long axis)
and A? (short axis). Fig. shows the A and A? distributions for photons and #° for a wide energy
range from 8 to 30 GeV. Photons are peaked at A> = 0.25 within a narrow range 0.1 < 2,02 < 0.3 and
independently of the energy. 7°’s have a widely spread distribution, that changes with the energy, being
closer to the photon region when increasing the 7° energy. No clear dependency on the particle type and
energy can be observed for A2.

A possible conclusion is that those V1 clusters with lg > 0.3 can be considered as 7°, but the merging
of photon clusters is not only reason to have large shower shape. The reasons why a cluster can have a
large 7LO2 or several local maxima are summarized below:

Conversion photon in the material in front of EMCal produce the electronic magnetic shower
earlier, instead of a photon there is a separated e e~ pair depositing in the calorimeter.

Several particles from a jet produced in a close region.

In heavy-ion collisions, the high multiplicity particle environment produces overlaps of random
particles.

Decay of different meson types like 7° or 7.

Incidence angle of the particle in the calorimeter (negligible effect for particles coming from the
interaction point).

Hadronic interactions, neutrons, pion, etc, produce a broader shower compared to the electromag-
netic particles.

Overlap of clusters produced in different event, pile-up. Such contribution is not observed when
looking to the time of the cells inside the cluster, no structures due to different bunch-crossings are
observed.
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Fig. 3.3.3: 102 and 112 distributions for photon and 7° clusters with the large cluster energy regions.[&2]

3.3.5

Cluster splitting for n’identification

For the illustration, Fig. B34 shows cluster splitting procedure, taken from the analysis note [&2]. The
briefly description of the cluster splitting is as follows.
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1. Select EMCal clusters with track matching cut removed track matched clusters).
2. Find local maxima in the cluster

3. Split the cluster in new two sub-clusters by taking the two highest local maxima cells and aggregate
all towers around them from 3 x 3 cluster.

4. Overlapped cell energy is re-calculated by weighting with respect the local maxima cell energy.
5. Obtain the two newly produced sub-clusters, and calculate the energy asymmetry and invariant

mass from these new sub-clusters.

n® cluster : E = 18.33 GeV, NLM = 1,32 =0.59

16 =
E 10 E
0.347686 -
uf
15
14
107
13
12
41 42 43 44 45
column
Split cluster 1 : E =12.67 GeV Split cluster 2 : E =5.67 GeV

E,., (GeV)

107

107

41 42 43 44 45

Fig. 3.3.4: Example of the cluster splitting method, taken from [22]. The squares represent the cells, and the
value in the cell is the cluster energy in each cell, being the y and x axis the position within the super-module.
Upper plot: V1 input cluster with NLM = 1 measured in real data, pp collisions /s = 7 TeV, coming likely from a
7. Bottom plots: sub-clusters formed after splitting. Each plot contains the fraction of energy measured in a cell
of the cluster. In this case the 2 selected maxima are in diagonal.
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3.3.6 Shower shape long axis parameter (lg) cut

The shower shape parameter 102 of single photon clusters is below ),3 < 0.27 and almost independent
of the energy distribution, whereas the shower shape parameter 102 of 7° clusters depends on the cluster
energy and the NLM value. This analysis required 7LO2 as a function of cluster energy and the different
NLM value. Fig. B33, B3@, B3 show the l& distribution as function of the cluster energy with
different NLM in the real data and simulation. We defined a minimum and maximum value of 3,02 as as
shown in the black lines. Also the fixed minimum cut off value of A = 0.3 is used for all cases. The
selected window has been chosen a bit broader from the comparisons of 7LO2 distribution as function of
cluster energy between 7t° clusters and other particle clusters. Written as:

Al (E)=e"™E L c 1 d+E+e/E (3.3.2)

,max,min

The parameters can be found in Tab. B31 and are estimated by the simulation (PYTHIA and HIJING).

a b c d e

NLM=12Min 2.135 -0.245 0 0 0
NLM = 1Max 0.0662 -0.0201 -0.0955 1.86x10~3 9.91
NLM=2Max 0.353 -0.0264 -0.524 5.59x10° 21.9

Table 3.3.1: The parameter of A] cuts

data, pp 7 TeV, NLM = 1, No cut data, pp 7 TeV, NLM = 2, No cut data, pp 7 TeV, NLM > 2, No cut

1
10 15 20 25 30 35 40 45 30 35 40 45 30 20 45

E“-“'S'E‘" (Gev) Eclusler (GeV) Ecluster (GeV)

Fig. 3.3.5: 102 distributions as function of the cluster energy with three different NLM in pp collisions at /s = 7
TeV. The two black lines show the selection windows defined in this section.

3.3.7 Energy asymmetry cut on split sub-cluster

The two photons coming from 7° decay are the same energy, but in laboratory we observe an energy
asymmetry defined as |[A| = |E1 — E2|/|E1 + E2|, spanning from 0 to 1. The energy asymmetry is
related to the opening angle that becomes smaller with increasing n° energy. Fig. B3R8, B39 and
B3T0 show the energy asymmetry of the split sub-cluster as function of cluster energy with different
NLM. Fig. B3R and B39 are used the real data (LHCl11c,d and LHC11h), Fig. B3T0 is used the
simulation data (LHC12f2a). The black line define the maximum value cut. This line is a polynomial fit
of order 3:

Apin(E) =a-+b*E+c/E’ (3.3.3)

The parameters can be found in Tab. B34 and are estimated by the simulation.
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data, Pb-Pb, 0-10%, NLM = 1, No cut

data, Pb-Pb, 0-10%, NLM = 2, No cut

40 45

Ecluster (G eV)

data, Pb-Pb, 0-10%, NLM > 2, No cut

Fig. 3.3.6: 102 distributions as function of the cluster energy with three different NLM in central PbPb collisions
at \/snN = 2.76 TeV with centrality 0—10 %. The black lines show the selection windows defined in this section.
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Fig. 3.3.7: Ag distributions as function of the cluster energy by using the simulation data (LHC12f2a). First row

plots are generated by the ¥ clusters, second row plots are generated by the single photon clusters and third row
plots are generated by the charged hadron clusters.
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a b [

NLM=1 0.96 0.0 -879
NLM=2 095 0.0015 -233

Table 3.3.2: The parameters of split sub-cluster energy asymmetry cut.

data, pp 7 TeV, NLM =1, No cut data, pp 7 TeV, NLM =2, No cut data, pp 7 TeV, NLM > 2, No cut
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Fig. 3.3.8: The split sub-cluster energy asymmetry as function of cluster energy with three different NLM in pp
collisions at /s = 7 TeV. The black line shows the selection windows defined in this section.
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Fig. 3.3.9: The split sub-cluster energy asymmetry as function of cluster energy with three different NLM in PbPb
collisions at /syn = 2.76 TeV. The black line shows the selection windows defined in this section.

48
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Fig. 3.3.10: The split sub-cluster energy asymmetry as function of cluster energy by using the simulation data
(LHC12f2a). First row plots are generated by the 7 clusters, second row plots are generated by the single photon
clusters and third row plots are generated by the charged hadron clusters.
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3.3.8 Invariant mass
Fig. 33T, BT show the invariant mass distribution as function of cluster for different NLM.

data, pp 7 TeV, NLM =1, No cut data, pp 7 TeV, NLM =2, No cut data, pp 7 TeV, NLM > 2, No cut
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Ecluster
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Eclus!er (Gev) Ecluster (Gev) (GeV)

Fig. 3.3.11: Invariant mass My, distributions as function of cluster energy with three different NLM in pp colli-
sions at \/s = 7 TeV. These distributions are not applied A7, energy asymmetry and invariant mass cuts.
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Fig. 3.3.12: Invariant mass My, distributions as function of cluster energy with three different NLM in pp colli-
sions at /s = 7 TeV. These distributions are applied A7, energy asymmetry and invariant mass cuts.

Fig. B3T3 and B3TA are projections of the invariant mass distributions versus cluster energy after )Lg
and energy asymmetry cuts. Based on these observations from real data, a rough parametrization of
the evolution of the mass and the width as a function of the cluster energy is found to be good and it
will be used later to select the clusters falling at 3o from the expected mass window. The data points in
Fig. B3T17 were fitted with a polynomial function for the first order:

M(E),0(E)=a+b+E (3.3.4)

and the parameters can be found in Tab. B33. The parametrization is shown in the red lines displayed
in Fig. 3317. Fig. B319 shows 7 raw transverse momentum spectra after applying A2, asymmetry
and invariant mass window cuts. This result indicates that we can identify high momentum 7%’s up to 40
GeV/c by using the cluster splitting method.

3.4 Charged jet reconstruction
3.4.1 Charged track selection
This analysis used the charged tracks reconstructed by ITS and TPC with the track momentum range

pr > 0.15 GeV/c and 1 range [n| < 0.9. In order to avoid the azimuthally-dependent efficiency due
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Fig. 3.3.13: Invariant mass My, distributions as function of cluster energy with three different NLM in Pb-Pb
collisions at y/snN = 2.76 TeV. These distributions are not applied lg, energy asymmetry and invariant mass cuts.

data, Pb-Pb, 0-10%, NLM = 1, No cut data, Pb-Pb, 0-10%, NLM = 2, No cut data, Pb-Pb, 0-10%, NLM > 2, No cut
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Fig. 3.3.14: Invariant mass My, distributions as function of cluster energy with three different NLM in Pb-Pb
collisions at /sy = 2.76 TeV. These distributions are applied A7, energy asymmetry and invariant mass cuts.

Function NLM E range(GeV) a b
M(E) 1 12-50 0.044 0.0049
M(E) 2 6-21 0.115 9.6x10~*
M(E) 2 21-50 0.1 0.0017
o(E) 1 12-19 0.012 0
o(E) 1 19-50 0.0012  6x107*
o(E) 2 6-10 0.009 0
o(E) 2 10-50 0.0023 6.7x107*

Table 3.3.3: The parameters of mass mean and sigma.
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Fig. 3.3.15: Mass of split clusters in LHC11¢ and d, real data pp collisions at /s = 7 TeV, after /102 and energy
asymmetry cuts, for 9 cluster energy bins and different NLM.
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Fig. 3.3.16: Mass of split clusters in LHC11c and d, real data pp collisions at /sy = 2.76 TeV, after 7L§ and
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Fig. 3.3.17: Mean mass (upper) and width(lower) of split sub-clusters invariant mass distribution versus cluster
energy, for different values of NLM from left to right: filled circles, pp collisions at /s =7 TeV, LHC11c+LHC11d

EMCal triggered.

pp col., NLM = 1 pp col., NLM = 2
- ~ 02
K K r ® Data
> >
K X [ O MC
= = o018 e PpData, Em“>150 MeV........
g g [ O ppMC, Em”>1 50 MeV
[ °
016k e
0.14
e
0.12
R e T T ‘ L
T30 15 =20 25 30 a5
E (GeV) E (GeV)
pp col, NLM =1 pp col., NLM = 2
En 00351
£ 0,026 ® Data
© 2 I O MC
€ 0024 € o0 o ppData E >150 Mev
® 0.022 ° | o ppMC,E ‘3150 MeV
0p s e
0.018 r
0.02f
0.016 r
0.014 0015
0.012 r
0.01 00118
0.008 " ““ 'I“I":" ‘II‘I"“ “'I"I":‘ “‘ 0.005 ) ) ) L . ) . L
10 15 20 25 30 35 : 0 15 20 25 30 35
E (GeV) E (GeV)

54



0.22

0.2

mass (GeV/c?)

0.18

0.16

0.14

0.12

0.

Pb-Pb col., 0-10%, NLM = 1

0.08

10 20

E (GeV)

Pb-Pb col., 0-10%, NLM = 1

Lol b Loy L L 1

Fig. 3.3.18: Mean mass (upper) and width(lower) of split sub-clusters invariant mass distribution versus cluster
energy, for different values of NLM from left to right: filled circles, PbPb collisions at /snn = 2.76 TeV, LHC11h

EMCal triggered.

E (GeV)

mass (GeV/c?)

o (GeV/c?)

55

0.2
r @ Data
[ O MC
018 @ ppData, Ece">1 50MeV...........
[ O PPMC,E ”>150 MeV
[ cel

oo Ly e Ly b L w 1l

Pb-Pb col., 0-10%, NLM = 2

0.035

0.03

0.025

0.02

0.015

0.01

0.005

20

E (GeV)

Pb-Pb col., 0-10%, NLM = 2

Data

MC

pp Data, Ece">1 50 MeV

pp MC, E ”>150 MeV
cel

ol by Ly Loy L 1

10

E (GeV)



< 10-1:
~ -
O -
= -
> - ALICE Preliminary
(D)
(D 1020 pp Vs=7TeV
~ E —o- EMCal LO trigger, E > 4-5.5 GeV
patch
|_ -
% B - Uncorrected Raw T° spectra
~ A+Mass cuts
® 10°: e .
= = -o— NLM <2
© C P
E -
210 _o-
() - —o—
Z -
~ B _._
— B —o—
_5 _._
10 == -0
- e =
_I|IIII|IIII|IIII|IIII|IIII|IIII_

10 15 20 25 30 35 40
P. o (GeV/c)

Fig. 3.3.19: 7°pr distributions with three different NLM after applying 102, energy asymmetry and invariant mass
window cuts.

56



to non-uniform response of the SPD, charged tracks were selected via the hybrid track selection. The
hybrid track selection consists of two track classes (global and complementary tracks). For global tracks,
at least one SPD hit is required, complementary tracks cover the regions without SPD response. In order
to ensure a consistent momentum resolution in the event without the SPD hits, the complementary tracks
are constrained to a primary vertex. These selection criteria are given in Table B4l

After applying the hybrid track cuts, we checked the ¢ and 1 distributions of charged tracks. The

AliESDtrackCuts function

Value

Comment

Global and complementary tracks

SetMinNClustersTPCPtDep

70 + 30/20 - pr, 20

linear rise from 70 (pr = 0)
to 100 (pr = 20GeV/c),
100 for pr > 20GeV/c

SetMaxChi2PerClusterTPC 4 Maximum x? per TPC cluster
in the first iteration

SetRequireTPCStandAlcone kTRUE Enable cut on TPC clusters
in the first iteration

SetAcceptKinkDaughters kFALSE Reject tracks with kink

SetRequireTPCRefit kTRUE Require TPC refit

SetMaxFractionSharedTPCClusters 0.4 Maximum fraction of shared
TPC clusters

SetMaxDCAToVertexXY 24 Maximum Distance of Closest
Approach (DCA) to the main
vertex in transverse direction

SetMaxDCAToVertexZ 3.2 Maximum DCA in longitudinal
direction

SetDCAToVertex2D kTRUE Cut on the quadratic sum of
DCA in XY- and Z-direction

SetMaxChi2PerClusterITS 36 Maximum x? per ITS cluster

SetMaxChi2TPCConstrainedGlobal 36 Maximum x? between global
and TPC constrained tracks

SetRequireSigmaToVertex kFALSE No sigma cut to vertex

SetEtaRange -0.9,0.9 Pseudorapidity cut

SetPtRange 0.15, 1E+15 Minimum pr > 150MeV /¢

Only for global tracks

SetClusterRequirementITS AliESDtrackCuts:: Require at least one hit in SPD

kSPD, kAny

SetRequireITSRefit kTRUE Require ITS refit

Only for complementary tracks

SetRequireITSRefit kFALSE No ITS refit

Table 3.4.1: The parameters of the hybrid track selection [&7]

uniformity of track acceptance is important for the uniformity of reconstructed jet. Fig. B4 demon-
strates the effect of hybrid track cuts. There is an uniformity in @ in hybrid track cuts in minimum bias
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triggered events (left). We recover the uniformity in ¢ and 1 directions by using the hybrid track cuts.
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Fig. 3.4.1: ¢ distribution of global tracks, complementary tracks, and hybrid tracks for minimum bias trigger (left)
and EMC gamma trigger (right) . The right plots are enhanced towards EMCal acceptance by EMCal photon
trigger

3.4.2 Jet reconstruction

In order to reconstruct jets, this analysis used charged particles which are reconstructed by ITS+TPC
with hybrid track cuts. We utilize anti-kr algorithm in FastJet package[48] with jet cone radius R = 0.4,
jet area A > 0.4. Fig.B47 shows transverse momentum pT”’Ch, azimuthal angle ¢, rapidity angle 7
distribution in pp collisions at /s = 7 TeV.
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Fig. 3.4.2: Charged jet pt, @ end n distributions with R=0.4, A4., > 0.4 and input track p’T’“C" > 0.15 (GeV/e),
used EMCal triggered events.

3.4.3 Jet reconstruction in Pb-Pb collisions

The energy of a jet in Pb-Pb collisions includes the contributions of the hard process and the underlying
event. In order to measure the true jet energy, we have to subtract the contribution of the underlying
event on a jet-by-jet. Earlier ALICE studies have used an event averaged energy density per unit area
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P, as an estimate of the jet background energy coming from the underlying event. In this section, this
event averaged p, from here denoted as (p), will be described briefly, after which a *local p (@)’ will be
introduced in order to take into account the contribution of elliptic flow (v;) and triangular flow (v3) from
the underlying event.

3.44 Event averaged energy density per unit area (p)

The event averaged energy density per unit area (p) is estimated from the FastJet package [4R] [4Y]. To
subtract background energy calculated from event averaged energy density (p) and a jet’s area A (= TR?)
is performed jet-by-jet,

pr =P — (p) x A (3.4.1)
where (p) is estimated by the median method of the distribution of k7 jets divided by their area

p = median Pry

(3.4.2)

i

as used in previous ALICE jet studies[50].

3.4.5 Local energy density p(¢)

The reconstructed jet momentum is biased not only by the centrality but also the event second order and
third order. We need to subtract the background energy depended on the event plane second order and
third order from the reconstructed jet energy in Pb-Pb collisions. The ’local’ estimate, p(¢), is obtained
by fitting the first three terms of a Fourier expansion

p(@)=pox(1+ 2{1/'(2)1”00.5‘( {(p — ‘PERZ} }) —|—v(3’b‘cos(3 [(p — lPEP,3] )}) (3.4.3)

to the de L distribution - the distribution of total transverse momentum per A¢ window - of an event. In
this equatlon Yepo, WEps represent the second and third order event plane reconstructed by VO detector.
The event plane reconstruction procedure will be described in the next section. Fig.B-43 shows the dﬁgT
distributions fitted by p(¢) with three different centrality bins.
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Fig. 3.4.3: d?gf distribution fitted by p(¢), p(¢) (total of local p) is the black lines, elliptic and triangular flow
components are the green and blue lines and (p) is the dashed magenta lines, respectively.

3.4.6 Event plane reconstruction

In order to obtain a flat event plane distribution, we applied the two step corrections. The first correction
is VO gain equalization and the second correction is re-centering of the flow vector Q,,.
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In this analysis, we do not consider the difference in rapidity and acceptance of each VO ring and the
gain equalization was performed separately for VOA and VOC according to equation,

M.
M = ———— (3.4.4)
(Mi> XM

where M; is the multiplicity of channel i in the analyzed event, (M;) the mean multiplicity of channel i
from all good events in the run, M a gain factor obtained by fitting with a degree 0 polynomial the mean
multiplicity distribution of VOA/VOC. Fig. B244, B4 show the multiplicity distribution and its RMS of
VO detector before and after gain equalization as a function of channel number for run 167813. We can
obtain the flat distribution of VO multiplicity by applying the gain equalization.

The re-centering was performed for each centrality bin using the following equation,

1000 1000
> P
= =
‘G 900 '© 900
= 1 o ]
5 800 ] = 800 Pb-Pb ys,, =2.76 TeV7]
S E S . . ]
< 700 1 S 70 min. bias 1

Before gain calibration After gain calibration
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0 10 20 30 40 50 60 0 10 20 30 40 50 60
channel channel

Fig. 3.4.4: Multiplicity distribution before (left) and after (right) gain equalization together with the main multi-
plicity as a function of channel number for run 167813. The steps around the channel 30 indicate the difference of

distance from a interaction point of VO A side and C side.

cor __ Qn,x - <Qn,x>
05 = ot (3.4.5)
cor Qn,y — <Qn,y>
cor — / (3.4.6)
O =760,

where the (Q,) and 6Q, are the mean value and the width of the O, (Q,) distribution from the full run
under investigation. Then the event plane angle is calculated using the corrected Q,,,

Ccor COr
atan2( ey n,x)

n

(3.4.7)

cor __
W, =

Fig. B4 shows the VO A+C side event plane distribution before (black) and after (red) the two correc-
tions with three different centrality bins and indicates that we can obtain flat event plane distribution by

the re-centering correction.
In order to check whether the event plane is reconstructed correctly, we compared the anisotropic
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Fig. 3.4.5: RMS of the multiplicity distribution before (left) and after (red) gain equalization for run 167813
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flow coefficients (v, v3) with the ALICE published results.
The event plane resolution was estimated using the 3 sub-event method based on ¥ calculated from
TPCA, TPCC, TPCAC, VOA, VOC, VOAC,

a_ [ {cos(n(Wsg —Ph))) (cos(n(Ws —¥3)))
(cos(n(P —¥,))) = \/ (cos(n(Wh —we))) (3.4.8)

Fig. B277 shows the VO event plane resolution from the 3 sub-event method for VOA (black), VOC
(red) and VOAC (blue) as a function of centrality.
The observed v,, can be calculated as
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Fig. 3.4.7: The VO event plane resolution from the 3 sub-event method for VOA (black), VOC (red) and VOAC
(blue) as a function of centrality.

VvoPs = (cos(n(@; — ¥,))) (3.4.9)

where the angel brackets denote an average over all particles in all events. And then, the final flow

coefficients are

vobs

n
R, (3.4.10)
where R, is the event plane resolution. Fig. B4R, 349, B4T0 show the v,, v3 as a function of pr 4k
and centrality. The open markers are the ALICE published results[5T].

The v, and v3 results in this analysis are good agreement with the result published from the ALICE

experiment, which mean the event plane in this analysis are reconstructed, exactly.

Vp =

3.4.7 Fitting procedure

deT

In order to obtain v, and v3 value in Eq.B243, we fitted a g

Eq.5Z3.

distribution event-by-event by using

po calculation
Parameter pg in Eq.B-43 which is the normalization of the Fourier expansion is calculated by the
median method of the distribution of k7 jets with excluding two leading jet in a event. And then,
this parameter is not fixed parameter and only used for the initial input. py can be changed by the
fitting results.
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Fit histogram
A dz” L distribution is obtained by filling of the ¢ value of tracks using for each track a weight of

P, and then fitted by Eq.B243 (see in Fig.8473). pr range of tracks filled to a dz(’;T distribution is
from 0.2 to 5 Gev/c. Tracks that are part of the leading jet of an event excluded from the sample.

All tracks within the same 1 region of the leading jet are rejected from the sample (i.e. a cut
excluding all tracks |Nsack — Nieading jet] < R where R is the jet resolution parameter is performed).
For the semi-good runs, tracks with an azimuthal angle ¢ > 4 are rejected to obtain uniform
efficiency of the azimuthal region. In order to obtain the good fitting quality, the number of bins of
a dz” T histogram is determined corresponding to the square root of the number of accepted tracks
selected by the hybrid track cut. In case of the semi-good runs, the region 0 < ¢ < 4 is divided
into v/N bins.

Finally, we checked x2 value. We will describe more detailed how to check the fitting quality in
the next section.

3.4.8 Fitting quality check

We can not obtain a better fitting result of the background density than (p), when ¢ dependence is either
absent, ill-described poorly by Eq.B 473 or the fitting procedure is failed for some reason. If the fitting
of Eq.B23 is failed, the median method is taken to estimate the background density instead of the local
p () method. We require to pass a number of quality checks to determine whether or not to use the local
p(¢) method.

— Negative values : The first check is the requirement that a minimum value of p(¢) in an event is
larger than or equal to 0, which mean that an event can not have a local energy density smaller

than 0. This reason dominate in very peripheral events with a sparsely filled d%’ L,

— p-values and goodness of fit : The second check is a cut on the probability p value derived from
the 2 static. The x? static of the fit is given by,

2_i x; — ;2
X —Z( po ) (3.4.11)

n=0

where x; is the content of bin i, L; is the theorized value of the bin content and o; is the error on
the measured point. The x? method is used as the quality check which is taken into account the
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estimates of the errors on the measurements when determining the goodness fit.
In a simple case, if the number of bins in the fitted histogram would be equal for each event, a
goodness of fit quality could be imposed by cutting on the x2 or the reduced 2,

2= (3.4.12)

P

k
where k is the number of degrees of the freedom. However, an acceptable cut on )22 depends on
the multiplicity of accepted track, because the binning of the dEi histogram varies from event
to event. In order to obtain a goodness of fit which does not depend on the number of degrees
of freedom, we calculate the p-value, which is the probability of finding a test statistic at least as
extreme as the observed one in a y? distribution of each fit. The p-value can be obtained from
evaluating the cumulative distribution function (CDF) with the appropriate number of degrees of
freedom k and x? value:

1 k x
CDF (k,x*) = — (=, %), 3.4.13
where I and y are Gamma functions. The corresponding p-value of the fit is obtained from
Eq.BZ213 by
p=1—CDF. (3.4.14)

The higher p-value is the confidence that the observed deviation from the null hypothesis is signif-
icant. Thus, the fit with the lower p-value should be rejected. Fig.34_TT shows the p-value and x>
as a function of centrality and the correlation between p-value and y?. In this analysis, the local

% 10 20 30 40 50 60 70 80 90 10( O 10 20 30 40 50 60 70 80 90 10( % 0.10.20.30.4050.60.70.80.9 1
centrality (%) centrality (%) p-value

Fig. 3.4.11: p-value (left) and x> (center) as a function of centrality and correlation between p-value and y>
(right).

p (@) is used when the p-value is larger than 0.01.

3.4.9 Comparison of background density estimation method between the median method and the
local p(¢) method

Fig.B-2T2 shows the Jet pr distributions subtracted after background with the local p(¢) method and
the median method. The distributions subtracted background by the median method are biased towards
a in-plane region, while the peak centers of the distributions subtracted background by the local method
are seen no difference between the in-plane and out-plane regions.
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Fig. 3.4.12: Jet py distribution subtracted after background with the local p(¢) method (upper 3 figures) and the

median method (bottom 3 figures).

3.4.10 Leading particle momentum dependence of background fluctuation

Fig. B4 T3 shows the jet spectra after event-by-event subtraction of the background (mentioned in the

previous sections) with the four different momentum thresholds of the leading particle in a jet.

We

observe the large fluctuations around zero, and it is removed by selecting jets with a high momentum

leading particle.
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Fig. 3.4.13: Leading particle momentum dependence of the widths of background fluctuations in Pb-Pb collisions
with the momentum thresholds of the leading particle in p'S*™8P*™ > 3 GeV/e (black), pe*t"8P™ > 5 GeVie
(red), pl{fadingpm' > 7 GeV/c (blue) and plfadingp S 9 GeVie (magenta). Jet pr distribution subtracted after
background with the local p(¢) method (upper 3 figures) and the median method (bottom 3 figures).
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Chapter 4

Corrections

In this analysis, the azimuthal correlations was calculated by the following function to obtain the associ-
ated par trigger yields as function of AQ = @0 — Q.

deet . 1 deair (4 0 1)
= 0 V.
dA(P N, tfigger dA(p

The azimuthal correlation is obtained in five different pr bins for trigger 7%, and three different associated
jet pr bins. Trigger nOpT regions were required [8-12] [12-16] [16-20] [20-24] [24-36] GeV/c, and
associated jet pr thresholds were require [p]Teih > 10, 20, 30] GeV/ec.

4.1 Event mixing

We selected trigger particles 70 within EMCal acceptance, and associated jets within all azimuthal ac-
ceptance. In order to correct the effect of detector acceptance, this analysis is used event mixing method.
We analyzed n°-jet correlation with EMCal triggered events. Such events can not be used to construct
the mixed event pool due to the limited EMCal acceptance and the trigger, which make most of the time
the selected associated particles close to the trigger particle in the calorimeter. The conditions for the
event mixing in pp and Pb-Pb are as follows.

pp s =7TeV

— 100 events in the pool
— z vertex divided by 2 cm step bin size (10 bins) from -10 cm to 10 cm

— Track multiplicity, 8 bins on multiplicity of hybrid tracks being : [0-5], [5-10], [10-20],
[20-30], [30-40], [40-55], [55-70], [>70] (show in Fig.ETT)

Pb-Pb ,/snn = 2.76 TeV

— 100 events in the pool
— z vertex divided by 2 cm step bin size (10 bins) from -10 cm to 10 cm
— Centrality, 10 bins on centrality : [0-10], [10-20], [20-30], [30-40], [40-50], [50-60], [60-70],
[70-80], [80-90], [90-100]
For mixed events we get N5¢7¢( p%o ,A@) and N™xed ( p?O,A(p). In order to get the final per-trigger yield,

pair pair
we calculate the following formula:

J Npised (p7" AQ)dAQ  Niame(ps’, Ag)

pair pair

ClAp) = L ! 4.1.1)
() J Nsame(pE* A@)dAG  Nmixed (pT° Ag)
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Fig. 4.1.1: Charged track multiplicity distributions with 8 different mixing bins pp collisions at /s = 7 TeV.
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. 0
L dN* [ Npair (PF ,Ap)dAg.
NT dAQ NE (p=)

trig trig

C(Ag) 4.1.2)

Fig. shows the azimuthal correlation for real events and mix events and applied event mixing.
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Fig. 4.1.2: The azimuthal distributions of same event without applying event mixing, mixed event and same event
with applying event mixing, trigger n°p7 regions 8 < p%o < 12 (GeVlic), 16 < p%o < 20 (GeVlic), 24 < p%o < 36
(GeV/c) and associated jet pr > 10 (GeV/c) in pp collisions at /s = 7 TeV.

4.2 Flat background subtraction

The counting pairs technique is used to extract the correlated and un-correlated yield of charged jets in
different A¢ width. Pedestal subtraction is used to extract correlated jet yield. The uncorrelated back-
ground is considered as a flat distribution in A¢. The pedestal uncorrelated background is determined in
the following two step:

1. Take 4 bins in the valley region on the left and right side from a near side peak region

2. Calculate the average background value from 8 bins in valley regions

Fig BT shows the Ag distribution between a trigger 7° and accosiated jets of before (black) and after
(red) pedestal background subtraction with the momentum range of the trigger 7° 8 < p%o <16 GeV/cin
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central Pb-Pb collisions, and the three different momentum ranges of the associated jets and thresholds
of the leading particle in a jet. The momentum ranges of the associated jets increase with going from left
to right side and the momentum thresholds of the leading particle in a jet increase with going from the
top to bottom figures. These results indicate that the amount of pedestal background strongly depends
on the momentum of the associated jets and the leading particle in a jet.
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Fig. 4.2.1: Ag distribution between a trigger 7° and accosiated jets of before (black) and after (red) pedestal
background subtraction in Pb-Pb collisions with momentum range of the trigger 7° 8 < p%o < 16 GeV/c, and the
associated jets 10 < pr chjer < 20, 20 < p chjer < 40 and 40 < pr cphjer < 80 GeV/e. The thresholds of the leading
particle in a jet are 5, 7 and 9 < péfadi"gp “" GeV/c. The two bands around the near side peak defined blue lines

show the valley region to determine the flat background.

4.3 7° and jet reconstruction efficiencies

In order to correct the effect of the 7° and jet reconstruction efficiency, we calculated by using Monte
Carlo data, as follows:

_ cluster generated by 2y from n®decayidentified asn° forNLM = X

0
e’ 4.3.1
(pr) all clusters generated by 2y from n° ( )
; N,
jet _ matched
e’ (pr) el <05 4.3.2)
particlelevel

Fig. B30 shows the ¥ reconstruction efficiency as function of p?o, and Fig. B3 shows the jet finding
efficiency as function of p’T” with generated p7. In order to correct the effect of 7° and jet reconstruction
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efficiency, we applied the following equation:

R
1 lec;(a);’:ected _ 1 Z 1 degi‘:’/(i) (Aptrig) (4.3.3)
I - i j T o
N, tcr(z)'g cred  dAg Z"APT,(i) ?}‘0 'Ng(i)g(i) (Ap tTr g) Apr (i) gl?ro gl dAg

Since the ¥ reconstruction efficiency is not flat, in order to correct the effect of 7° reconstruction effi-
ciency to a pr bin trigger more exactly, this analysis are used a bin-by-bin correction method with the
bin width, Ap%o =1 GeV/c. The jet reconstruction efficiency was also corrected with three different pr
bins.(10 < pi' <20 GeV/c : €/ =0.93,20 < pi’ < 30 (GeV/c) : €/ =0.97,30 < pi’ GeVlc: el =
0.98)
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Fig. 4.3.1: 7° reconstruction efficiency as function of 7°p7 with NLM <= 2.

4.4 Scale down factor calculation

In this section, we explain about the scale down factor calculation to obtain the near and away side jet
yields in pp collisions at /s = 2.76 TeV from those at /s = 7 TeV. This analysis is used the real data
of pp 7 TeV (LHCl11cd) as pp collision reference, and then we have to scale the near and away side
jet yields of pp 7 TeV before comparison to the Pb-Pb 2.76 TeV results (For example the ratio of the
trigger yields /a4 analysis). In order to obtain the scale down factors, we compare near and away side
jet yields between pp 7 TeV and 2.76 TeV which is calculated by the Monte Carlo simulation (PYTHIA
simulation). The top figures in Fig. &4, B4 show the comparison of near and away side jet yields
between pp 7 TeV and 2.76 TeV as function of the associated jet pr ch jer in he momentum range of the
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trigger 1° 8 < p%o < 16 GeV/c, and the bottom figures show its ratios. These ratios will be used as the
bin-by-bin scaling factors to near and away side jet yields in pp 7 TeV.
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Fig. 4.4.1: Comparison of near side jet yields between pp 7 TeV (blue) and 2.76 TeV (red) which is calculated
by the Monte Carlo simulation (PYTHIA simulation) and its ratio as function of the associated jet pr ch jer in the
momentum range of the trigger 7° 8 < p%o < 16 GeV/c. The thresholds of the leading particle in a jet are 5, 7 and
9 < pléedinsrart- Geje. The near side region is [A@| < 0.7 (rad).

4.5 Unfolding correction

The measured jet spectrum contains the effects of the detector response (pp and Pb-Pb collisions) and the
fluctuations in background energy density (Pb-Pb collisions). In order to obtain the true jet spectrum, we
have to correct these effects and this analysis is used the unfolding correction method. Mathematically,
the measured jet spectrum can be calculate by the following equation,

Pr) / G(pFe, 5" T (p3")dps" 4.5.1)

where M (p/©) is the measured jet spectrum, G(p¢¢, p§™) is a functional description of distortions due to
background fluctuations and detector effects, T(p5") is the true jet spectrum. And, Eq.B51 is changed
and can be written in matrix form

My = G- Ty 4.5.2)

where the term Gy, is the response matrix which is taken into account the effect of background fluc-
tuation and detector response. Solving Eq.BES is non-trivial as it requires inversion of G, and the
exact solution to this problem is usually non-physical as is oscillates wildly due to the statistical errors
on the measured distribution[52][53]. We need to regularize the unfolded solution, constraining it to
some physical form. This analysis are used the two methods; the Single Value Decomposition (SVD)
and iterative Bayesian unfolding for regularized solving of Eq.E32.
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Fig. 4.4.2: Comparison of away side jet yields between pp 7 TeV (blue) and 2.76 TeV (red) which is calculated

by the Monte Carlo simulation (PYTHIA simulation) and its ratio as function of the associated jet pr ch jet in the

momentum range of the trigger 7° 8 < p%o < 16 GeV/c. The thresholds of the leading particle in a jet are 5, 7 and
leadingpart.

9 <py GeV/c. The away side region is |A¢ — 7| < 0.7 (rad).

4.5.1 Response matrix

The response matrix contains the effects of the detector response and fluctuations of background density
which influence to the measured jet spectrum. These effects are determined in two matrices separately,
and the full response matrix are produced from the two matrices.

Response matrix for fluctuations of background density
The magnitude of the fluctuations of background density is estimated by embedding rigid random
cones into an event and subtracting the expected background from these cones. The random cone
procedure are constructed the four steps:

1. A cone with radius R is embedded randomly in ¢-7n plane limited in detector acceptance.

2. Calculated the total energy within a cone by the following equation,

3. The expected background energy density is subtracted from the total energy within a cone by
the following equation.
opr=pr—p xA 4.5.4)

where p is background density per unit area which is calculated from local p method ex-
plained in the previous section.
4. These processes are repeated until the total covered area equals the detector acceptance.
The response matrix for fluctuations of background density is obtained from the d¢ distribution

which is converted to a probability distribution by normalizing it to 1. Fig.Z31 shows the 6 pr dis-
tribution of random cone analysis with cone radius R = 0.4 and normalizing to 1 and the response
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matrix for fluctuation of background density built from the the & pr distribution. The probability
of reconstructing a true jet with pf' ., at p%:h.jet is extracted from the & p distribution. This
response matrix uses the assumption that the smearing of measured jet spectrum is the same in all
transverse momentum regions.
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Fig. 4.5.1: Left figure: §pr distribution of random cone analysis with cone radius R = 0.4 and normalizing to 1.
Right figure: Response matrix for fluctuation of background density built from the left figure. The x axis is the

true jet momentum pf'¢j ., and y axis is the reconstructed jet momentum pr'gy o

Response matrix for detector response
The second source smearing the measured jet spectrum is the detector response. The measured
jet spectrum contains the effect of detector response due to limited efficiency and resolution. This
effect is estimated from comparison between generated and reconstructed of Monte Calro simula-
tion. The relation between generated and reconstructed is generally called the detector response
matrix. Fig. A3 shows the response matrices for detector response in the momentum thresholds
of leading particle with the three different momentum threshold of leading particle in a jet.
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Fig. 4.5.2: Response matrices for detector response in the momentum thresholds of leading particle in a jet 5, 7

and 9 < pl{f adingpart. (GeV/c). The x axis is the true (particle level) spectrum, the y axis is the measured (detector

level) spectrum.
Combined response matrix
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The measured jet spectrum in this analysis is unfolded by a full response matrix which is com-
bined two response matrices of background fluctuation and detector response. The matrices of
background fluctuation and detector response are combined by trivial matrix multiplication

My, = Gm,d : Gd,t ‘Ty= Gm,t : Tt, (4.5.5)

where Gy, g is a detector response matrix and Gy, ¢ is a response matrix for background fluctuations.
The fine binning of the combined response matrix is generally not suitable for unfolding since
uncertainties on the measured spectrum are too large to lead to a satisfactory result. Since the jet
spectrum itself is steeply falling, a weighted re-binning procedure of the response matrix is used,
where as bin weights a Tsallis-fit to a PYTHIA spectrum is used[54].
_ PT 38

flpr) =pr(1+ ﬁ) (4.5.6)
Fig.B53 shows the full response matrix which is combined the matrices of background fluctuation
and detector response. The momentum thresholds of leading particle in a jet increase with going

to the right side.
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Fig. 4.5.3: Full response matrix which is combined the matrices of background fluctuation and detector response
with re-binning and scaling of a Tsallis-fit in the momentum thresholds of leading particle in a jet 5, 7 and 9
< péf' adingpart. (GeV/c). The x axis is the true (particle level) spectrum, the y axis is the measured (detector level)

spectrum.

4.5.2 Unfold near and away side jet spectrum

Fig B54 A5 show the comparisons of near and away side jet yields in pp and Pb-Pb collisions with
three different momentum thresholds of leading particle in a jet. The jet yields in pp collisions are only
corrected the effect of detector response, while the jet yields in Pb-Pb collisions are corrected not only
detector response, but also fluctuations of background density. The differences of SVD and Bayesian

unfolding algorithm are added into the systematic uncertainties.
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Chapter 5

Systematic uncertainties

In this analysis, five different systematic uncertainties are considered;

EMCal shower shape long axis parameter()koz) cut,

Invariant mass window,

n° identification purity,

Flat background subtraction method in azimuthal correlations,

— Unfolding algorithm for near and away side jet yields.

The systematic uncertainty of flat background subtraction method for azimuthal correlations is only
applied to pp collisions.

5.1 Systematic uncertainty on shower shape (the major axis parameter lg)

As mention in the previous section, this analysis used the shower shape long axis cut as function of
cluster energy. In order to estimate the systematic uncertainty from shower shape cut, we compare
between default cut and modified cuts.

— Default cut : A2

0,min,max

(E)=e""*E f ¢+ d+E +e/E

— Modified cut 1 : A2

0,min,max

(E) =15%(e"™E +c+d*E+e/E)

— Modified cut 2 : A2

0MI-WW(E) =0.95% (e""*E ¢+ d+E +e¢/E)

Fig BTN BT and BT3 show the comparisons of the three kinds of shower shape cuts of azimuthal
correlations and its ration in pp collisions with the momentum range of trigger 7° 8 < p%o < 16 GeV/c
and Fig. 8 T4 TT and 618 are in Pb-Pb collisions. The uncertainties of azimuthal correlations are
determined by the fitting of constant functions on the ratios.  Fig. 8T8 T8 show the comparison of
the three kinds of shower shape cuts of near (top) and away (bottom) jet yields and its ratio in pp and
Pb-Pb collisions with the momentum range of trigger 7° 8 < p%o <16 GeVl/e.
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5.2 Systematic uncertainty on invariant mass window

A 3 sigma invariant mass selection window was used in the analysis. In order to estimate the systematic
uncertainty from invariant mass window, we compared 3 sigma with 2.5 sigma. Fig. 521, 87 and B23
show the comparison of invariant mass cuts between 3 sigma and 2.5 sigma of azimuthal correlations in
pp collisions with the momentum range of trigger 7° 8 < p%o < 16 GeV/c, and Fig. 874, 877§ and 524
show the results in Pb-Pb collisions. The momentum ranges of associated jets increase with going to the
right side. The uncertainties of azimuthal correlations are determined by the fitting of constant functions
on the ratios.  Fig.827], B8 show the comparison of the two kinds of invariant mass cuts between
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Fig. 5.2.1: Comparison of the two kinds of invariant mass (black:3 sigma, red:2.5 sigma) cuts of azimuthal
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GeV/c and associated jets 10 < prcnjer < 20, 20 < prcnjer < 40 and 40 < prcnjer < 80 GeV/e. The momentum
threshold of leading particle in a jet 7 < pllfadmgp Y GeVle.
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3 sigma and 2.5 sigma of near and away side jet yields in pp and Pb-Pb collisions wiht the momentum
range of trigger 10 8 < p%o < 16 GeVl/e.
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Fig. 5.2.7: Comparison of the two kinds of invariant mass cuts (black:3 sigma, red:2.5 sigma) of near (top) and
away (bottom) jet yields and its ratio in pp collisions with the momentum range of trigger 7° 8 < p%o < 16 GeV/c.
The momentum threshold of leading particle in a jet 5(left), 7(center), 9(right) < pl¢*“"$P*"" GeV/e.

5.3 n° identification purity

The n° identification purity in the cluster splitting method is high, 90 % in pp collisions, 85 % in Pb-Pb
collisions. In the 7%-charged hadron analysis in the ALICE experiment, in order to estimate the effect
of the ¥ identification purity, a simple ratio of reconstructed candidate 7°-hadron correlations to true
n%-hadron correlations is calculated with generated pr and named pair purity. The pair purity can be
given by the following,

reconstructed n°(MC matched) — jet(Gen.pr)

5.3.1
reconstructed n° — jet(Gen.pr) ( )

pair purity =

Fig. 837, B3 show the pair purity as a function of A¢ in pp and Pb-Pb collisions of Monte Calro sim-
ulation with the two momentum bins of trigger 7° and associated charged hadron. These results indicate
that the effect of 71° identification purity is very small (few percent) in both collisions systems. Thus, in
this analysis, we add 10 % uncertainty in the systematic uncertainties as the effect of 7° identification
purity in pp and Pb-Pb collisions.

5.4 Flat background subtraction method in azimuthal correlation

The flat background comes from combinatorial pairs in Pb-Pb collisions increases with going to the
low momentum region and depends on the calculation method due to large statistical fluctuation in this
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analysis. This analysis add the differences of the three methods for flat background estimation in the
systematic uncertainties:

1. Take 4 bins in the valley region on the left and right side from a near side peak region (as mentioned
in the previous section)

2. Constant fitin 1 < |A@| < 7/2

3. Average value of the eight smallest points in full |A¢| range.

Fig. 541, 547 and BE2473 show the comparison of the three kinds of flat background subtraction methods
of azimuthal correlations and its ratios in Pb-Pb collisions with the momentum range of trigger 7° 8
< p%o < 16 GeV/c and thresholds of leading particle in a jet 5, 7 and 9 < plTeadi"gp “" GeVl/c. FighZa
shows the comparison of near and away side jet yields. The ratios of the bottom small figure are added
in the systematic uncertainties.
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Fig. 5.4.1: Comparison of the three kinds of flat background subtraction methods of azimuthal correlations (top)
and its ratios (bottom) in Pb-Pb collisions with the momentum range of trigger 7° 8 < p%o < 16 GeV/c and
associated jets 10 < pr e jer < 20, 20 < prchjer < 40 and 40 < pr cpjer < 80 GeV/e. The momentum threshold of
leading particle in a jet 5 < plTe”dmgp Y GeVle.

5.5 Unfolding algorithm

We consider the difference between the two unfolding methods, SVD and Bayesian. Fig. 5851, 537
show the comparison of the two kinds of unfolding algorithm of near (top) and away (bottom) side jet
yields in pp and Pb-Pb collisions with the momentum range of trigger ° 8 < p%o < 16 GeV/c. The
momentum thresholds of leading particle in a jet increase with going to the right side. The ratios of the
bottom small figures are added in the systematic uncertainties.

5.6 Total systematic uncertainty

The total systematic uncertainties of this analysis are calculated by using quadrature sum method. Writ-
ten as:

Total systematic error = \/ Emoz> + Emv? + Epairpurityz + Egairresoluﬁ on T Ertat® + Eunfold” (5.6.1)
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The bottom small figures show the ratio of the jet yields of the two kinds of unfolding algorithm.
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Fig 86, show the systematic uncertainties as a function of jet pr cp jer for azimuthal correlations
in pp and Pb-Pb collisions with the momentum range of trigger 7° 8 < p%o < 16 GeV/c. Figh®a13,
B.6.4 show the systematic uncertainties as a function of jet pr cp jer for near and away side jet yields in
pp and Pb-Pb collisions with the momentum range of trigger 7° 8 < p%o < 16 GeV/c. Figh®d, 56 A
show the systematic uncertainties as a function of jet pr chjer for near and away side Widths in pp and
Pb-Pb collisions with the momentum range of trigger 7° 8 < p%o < 16 GeV/c. Figh®, B6R show
the systematic uncertainties as a function of jet pr cpjer for near and away side RMSs in pp and Pb-Pb
collisions with the momentum range of trigger 7° 8 < p%o < 16 GeVl/e. Table. 56T shows the
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pp collisions Pb-Pb collisions

source azimuth  yield width  azimuth yield width
Shower shape cut < 1% <1% <1% < 3% <2% < 12%
Invariant mass cut < 3% <1% <1% <11% <11% <14%
Flat background subtracktion - - - <13% <67% <48%
Pair purity <10% <10% <10% <10% <10% < 10%

Unfolding method - < 25% - - <21% -
Total <11% <26% <10% <16% <70% <48%

Table 5.6.1: Summary of systematic uncertainties.

101



Chapter 6

Results and Discussions

In this chapter, we show the results of 7°-jet correlations in pp collisions at \/s = 7 TeV and Pb-Pb
collisions at /sy = 2.76 TeV. The pt range of the 70 trigger is 8.0 < p%o < 16.0 GeV/c, the pr ranges
of the associated jets are divided into three bins, the lowest bin of jet pr range is 10 < prcpjer < 20
GeV/c, the following bin as 20 < pr chjer < 40 GeV/c and the highest bin as 40 < pr chjer < 80 GeV/e.
We use the three different thresholds for the leading particle in a jet to produce the surface bias and avoid
the effects of background fluctuation of jets, fake/combinatorial jets. The pt thresholds for the leading

particle in a jet are plTeadmgp a5, plffadmgpart' > 7 and plTeadmgp > 9 GeVle.

6.1 Azimuthal angle correlation between 7° and jets

The measurements of azimuthal correlation is very important to find out whether the high pt 7° pro-
duction is associated with the jet production. If the high pr ¥ production is independent to the jet
production, we can not produce the surface bias by triggering high pr 7°.

Fig b T, BT and show the azimuthal correlations between the trigger 7° and the associated jets
in pp (top) and Pb-Pb (bottom) with the three pr thresholds for the leading particle in a jet pls“"P™ >
5 GeV/c (FigEI), pi™eP™ ~ 7 GeV/e (Fig5I2) and pi™P™ > 9 GeV/e (Fig5I3). The jet-
like peaks at both near and away-side in pp collisions and at near side in Pb-Pb collisions are observed,
although barely see some away-side peak like structure in Pb-Pb. As shown in Fig.6T1, BT and b173,
we observe similar jet-like peak structures for all pr ranges of the associated jets and thresholds of the
leading particle in a jets. These results indicate that the high pr 7° production is associated with the jet
production in the both collision systems, and then we can use 7°’s as trigger particle to make the surface
bias.

In Pb-Pb collisions, the peaks in away-side (|A¢ — | < 0.7) are smaller and broader than pp collisions.
As mentioned in Chapter 1, these results suggest that the path-length of the away-side jets is longer than
the near-side jets due to the surface bias, and the jet yields are strongly suppressed.

6.2 Near and away-side jet yields

The near and away-side jet yields in pp and Pb-Pb collisions are extracted from Fig.e11, BT and
by counting the values in bins within in the region of |[A¢| < 0.7 for the near side and |Ap — 7| < 0.7
for the away side. Fig.b-ZTl shows the near (left) and away-side jet yields (right) as a function of pr cp jet
in pp collisions (top) and Pb-Pb collisions (bottom) with the different thresholds of the leading particle
in a jet plTeadmgpart‘ > 5 GeV/c (red), plTWhng Pt 7 GeVle (blue) and plTeadmg Pt 9 GeV/e (magenta).
The jet yields in the low pr regions 10 < prcnjer < 20 GeV/ec and 20 < prchjer < 40 GeV/c decrease
with increasing the thresholds of the leading particle pr in a jet, because the contribution of background
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fluctuation and combinatorial jets can be removed by requiring higher pr for the leading particle in a jet
(see Fig.3-4T3)[4], and requiring the high pt leading particle in a jet increases the average of the jet

pr.

6.3 Ratio of per trigger yield /44

In this section, we show the results of /54, the ratios of per trigger jet yields between pp collisions and
Pb-Pb collisions to know the effect of surface bias by requiring high pr trigger 7°, and to measure the
modification in jet yield in Pb-Pb collisions at high prt regions. The ratio of per trigger yields Iaa is
defined as;

B 0
YRR (P20 b chjet)

YPP(pE, DT chjet)

0
IAA(PT 5 PTchijet) =

5 (6.3.1)

where YPP~P® is a per trigger jet yield in Pb-Pb collisions and YPP is a per trigger yield in pp collisions.
The Iaa represents the effect of enhancement (> 1) or, suppression (< 1), or absence of modification (=
1).

Fig B3 shows the ratios of per trigger yields Iaa of near (left) and away-side (right) as a function

of prchjet With the three thresholds of the leading particle in a jet plTeading part- 5 (red), plfadingpm' > 7

(blue) and plTeadmg P 9 GeV/e (magenta).

In order to evaluate the effect of integration region, we compare the results by changing near and away-
side bin counting regions; region of |[A@| < 0.7 to |A@| < 0.5 and also |[A@| < 0.9, and the differences
between 0.7 and 0.5, 0.9 are =~ 6 %. In the near-side, we observe around 0.6 for pr ¢ jer = 10 — 20 GeV/e,
a unity for 20—40 GeV/c, and above 1 (enhancement) for 40—80 GeV/c jet pt bin. This effect can be
seen for all pr thresholds for a leading particle in a jet. In the away-side, there is a clear suppression
pattern in measured jet pr range, and for all leading particle prt thresholds. These results indicate that
triggering a high pr 7° selects jets in near-side which is produced mostly on a surface in a medium
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due to the surface bias effect, while the path-length of the away-side jets become longer than those for
near-side jets. On the other hand, as mentioned in Chapter 1, we can also bias near and away-side jets
to the surface in a medium by requiring high pr of leading particle in a jet. However, the dependence
of the thresholds of the leading particles in a jet is not seen in the both sides and all pr ranges of the
associated jets due to large statistical fluctuation and/or too strong surface bias of trigger 7. It is likely
that we need to require lower pr of trigger 7°, e.g. around 5 GeV/c in order to reduce the surface bias
from triggering 71° and to see the effect of path-length dependence for jets, as we mentioned in Chapter
1.

Fig. 63 shows the comparison of Ixa as a function of the associated jet pr ch jer between n%-charged
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Fig. 6.3.1: Ratios of per trigger yields Iap of near (left) and away-side (right) as a function of prchjer With
the three thresholds of the leading particle in a jet PEAAnEPIt - 5 GeVle (red), pr®™ P > 7 GeV/e (blue) and
plfadmg P~ 9 GeV/e (magenta).

hadron analysis (black markers) in the associated charged hadron pt region 3 < prch. < 10 GeV/c and

ﬂo—charged jet analysis (magenta) in the associated jet pr region 10 < prcpjer < 80 GeV/c. We only

show the results of the 7’-jet analysis with the pr threshold of the leading particle in a jet plTeadingpart' >9

GeV/c in order to compare both results in the same p threshold for leading particle. In the near-side, the
result of the 7¥-jet analysis in the pt range of the associated jets DT chjet > 20 GeV/c has good agreement
with the results of 7°-hadron analysis, and in the away-side, the result of the 7°-jet analysis also agree
with the the 7°-hadron analysis for the all pr ranges of the associated jets. These results indicate that
triggering high pr ¥ provide the surface bias in the high pr regions for jets similar to those at low pr
region (< 10 GeV/c) for hadrons and jets.

6.4 Near and away-side widths

In this section, we show the results of the widths of near and away-side peaks in the azimuthal correlations
in Fig. BT, BT and to extract the property of jet shape modification in Pb-Pb collisions. The
near-side widths are estimated by a Gaussian function fit in the region of |A¢| < 0.5 (rad), and the away-
side widths are estimated by the same way for the near side in the region of [A¢ — 7| < 0.7 (rad). Fig.BT],
B, show the near and away side peaks by fitting Gaussian functions in pp and the near-side peaks
by fitting Gaussian function in Pb-Pb collisions. The near-side peaks in pp and Pb-Pb collisions and the
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away-side peaks in pp collisions are fitted for all py ranges of the associated jets and thresholds of the
leading particle in a jet. However, the away side peaks in Pb-Pb collisions are not so clearly visible due
to statistical fluctuations. Thus, we do not fit the away-side peaks in Pb-Pb and not discuss the widths in
this thesis.

Fig. 6271 shows comparison of the near and away-side widths as a function of the associated jet
pt between pp collisions (top) and Pb-Pb collisions (bottom) with the three thresholds of the leading
particle in a jet plTeadmg P 5 (red), pl;admg P~ 7 (blue) and plTeadmg P~ 9 GeV/e (magenta). The
near-side widths in pp and Pb-Pb collisions are constants with all pt ranges of the associated jets, while
the away-side widths in pp collisions decrease with increasing pr ranges of the associated jets due to the
di-jet kinematics.

We also check the potential surface bias by changing trigger pt for 7° and leading particle pr region.
Fig.b 272 shows the comparisons of near-side widths between pp and Pb-Pb collisions as a function of the
associated jet pr ch jer With the two different pr ranges of trigger n%in8 < p%o <12GeV/c, 12 < p%o <
36 GeV/c. The pr thresholds of the leading particle in a jet increase with going from the left to right
side in Fig 542, The widths with 8 < p% < 12 GeV/c and p* ™8™ > 5 GeV/c in Pb-Pb collisions
become broader than that in pp collisions, and the differences between pp and Pb-Pb collisions decreases
with increasing the pr of the trigger 7° or the leading particle in a jet.

Fig 823 shows the comparisons of near-side widths between the two different pt ranges of the
trigger 7t in pp (top) and Pb-Pb (bottom) collisions. The pr thresholds of the leading particle in a jet
increase with going from the left to right side in Fig.&e4d3. In pp collisions, the differences of widths
between the two pr ranges of the trigger 71 are constant for the all py thresholds of the leading particle
in a jet, while its differences in Pb-Pb collisions decrease with increasing the pt of leading particle in
a jet, especially for the higher pr associated jets. These results suggest that the jet production points is
strongly biased towards the surface in a medium by requiring the high pr trigger 7° and leading particle
in a jet compared with requiring the low pr trigger 7° and leading particle in a jet (mentioned in Chapter

1).
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6.5 Summary of the surface bias

We see the azimuthal correlations, jet yields and widths in near and away-sides by using 7°-jet correlation
in pp collisions and Pb-Pb collisions. In particular, we focus here away-side suppression, near-side
enhancement and near-side width broadening by the surface bias with respect to py of trigger 7° and
leading particle in a jet.

6.5.1 Suppression of away-side jet yields

We observe suppression of away-side jet yields in Pb-Pb collisions by triggering high pr #¥ in the all
pr regions of the associated jets and the leading particle in a jet, while the path-length dependence of
suppression of away-side jet yields by changing pr ranges of the trigger 7° and leading particle in a jet
are not seen in this analysis (see in Fig.63T). In order to interpret the results in this analysis, we compare
these with two other experimental results of jet suppression in Pb-Pb collisions at \/syy = 2.76 TeV.

Fig 65T shows the Ras for R = 0.2 jets with leading particle requirement of 5 GeV/c in 0-10 %
and 10-30 % most central Pb-Pb collisions compared with the two different models of YaJEM[56] and
JEWEL[B7]. This result indicate that the jet yields in central Pb-Pb collisions are strongly suppressed in
the pr range of jets in 40 < prje < 120 GeV/c, and is qualitatively in good agreement with the results
of suppression of away-side jet yields in this analysis. _

Fig 552 shows the second-order harmonic coefficient vgh'Jet as a function of pr e je in 0-5 % and
30-50 % collision centrality in Pb-Pb collisionsh37. A positive v, is observed in semi-central collisions,
and this results indicates the jet suppression depends on the path-length of initial parton in a medium.
However, this effect are not observed in this analysis. In order to observe the path-length dependence of
jet suppression by triggering high pt hadrons, we need to take a larger interval between two trigger pr
regions. In this analysis, we can not take a large enough lever arm for trigger 7° pr dependence due to

109



_0 _0 _0
iS) T [ ] b=l
S © I 1 ©
c [ pp Vs =7TeV 1 £ 1 & I ]
s o7 EMCal triggered 1 = o7 1 < o ]
=2 o leading part. =2 o leading part. E =2 leading part.
= 5<p " GeVic = L 7< [ * GeVic i = 9< P, " GeVic
0.15 Near side : |[A¢| < 0.5 ] 0.15 ] 015 .
F My thesis ] F E
0.1~ :8: E - 0.1~ B J 0.1~ -
—_— :8:—4:— ] :8:+—D—
0.05 J 0.0 J 0.0 J
fo| P P Y IS I P PP P P fo| P P Y U IR P PP PR P [o| P P P Y IR P PR PO |
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
p. . (GeVic) p_ . (GeVic) p (GeVic)
T.ch.jet T.ch.jet T.ch.jet

o
o
o
O

Pb-Pb \s,, =2.76 TeV
Centrality: 0-10 % ]
EMCal triggered 1

©8<plf<12GeVic

Width (rad)
T

=12< p’T‘O <36 GeVic

Width (rad)
T
Width (rad)
F
1

o
=
3

T

1
o
[
3
T
1

o

[

3
T
1

_¢_ ] e
0.05f— - 0.051— - 0.051— -
o [FTE FENTE FEREE FENT] SRR SRR IRRTE FRRTE SAw o 1 1 M FEET FETR SRR PRl FTRTl FE o 1 1 'l TR FRTRE PRl INRTE FETE FT
10 20 30 40 50 60 70G \8/0/ 10 20 30 40 50 60 70G \8/0/ 10 20 30 40 50 60 7OG \8/(}
pT,ch.jet ( e C) pT,ch.jet ( e C) pT,ch,Jet ( e C)

Fig. 6.4.3: Comparisons of near-side widths between the two different pt ranges (glay and magenta) of the trigger
7 in pp (top) and Pb-Pb (bottom) collisions. The pr thresholds of the leading particle in a jet increase with going
to the right side.

< 1.2
< I I
T | ALICE Pb-Pb ys,=276TeV | Antid R=02 [n <05 AS> 5 GeVio
S S I
- * Data 0 - 10% [ ]Correlated uncertainty | + Data 10 - 30% [ ]Correlated uncertainty
0.8 F & Shape uncertainty N ## Shape uncertainty
’ — JEWEL | === JEWEL
— YaJEM L - - YaEM
0.6 L
04
0.2
0 [ L L L | L L L L I L [ 1 1 1 | 1 1 1 1 | 1
0 50 100 50 100

Pr et (GeV/c) Prjet (GeVic)

Fig. 6.5.1: R for R = 0.2 jets with leading particle requirement of 5 GeV/c in 0-10 (left) % and 10-30 % (right)
most central Pb-Pb collisions from the LHC-ALICE[55] experiment compared to calculations from YaJEM[56]
and JEWEL[51].

110



low statistics in high pr regions and small signal to noise ratio of 7° identification in low pr regions.
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Fig. 6.5.2: Second-order harmonic coefficient vgh'jet as a function of pr cp jer in 0-5 (left) % and 30-50 % (right)
collision centrality in Pb-Pb collisions from the LHC-ALICE experiment[5].

6.5.2 Enhancement of near-side jet yields

In this analysis, we observe enhancement of near-side jet yields in Pb-Pb collisions by triggering high pt
¥ in the highest pr region of the associated jets. Enhancement of jet yields in near-side are observed by
Iaa of the di-hadron correlation in the LHC-ALICE experiment (Fig.I'84)) and also observed by the 70-
hadron correlation in the LHC-ALICE experiment. The possible explanations for this yield enhancement
are;

— achange of the fragmentation function,

— a possible change of the quark/gluon jet ratio in the final state due to the different coupling to the
medium,

— abias on the parton pr spectrum after energy loss due to the trigger particle selection.

6.5.3 Broadening effect of near-side widths

In the theoretical approach, the jet shape modification in heavy-ion collisions are expected to depend on
the properties of a medium and its dynamics. Fig.Ba33 shows the jet shape modification with the three
kinds of medium types in vacuum, static medium and flowing medium. One is a static medium, if jets
go through a static medium, the jet shapes are broadened like the middle figure in Fig.b553. Second is a
flowing medium, if jets go through a flowing medium, the asymmetrical jet shape can be observed like
the right figure in Fig.b33.

In this analysis, we observe that the jet shape in near-side of Pb-Pb collisions become broader than
that pp collisions. The potential jet broadening in Pb-Pb collisions become stronger in low pt regions
of trigger n¥ and/or leading particle. This fact suggests that we can provide the surface bias by selecting
the high pr trigger 7° and/or leading particle in a jet and these results don’t conflict with the expectation
of jet shape modification in a static medium.
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(center) and flowing medium (right).
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Chapter 7

Conclusion

We study the jet modifications in near and away-side by using the correlation between high pr ¥ (trigger
particle) and charged jet in pp collisions at y/s = 7 TeV and in central Pb-Pb collisions at \/snn = 2.76
TeV from the LHC-ALICE experiment.

To identify and measure 7° in high pr regions, a new method “cluster splitting method” has been
implemented. This method identifies high pr 7%s via a shower shape with long axis parameter A of the
elliptic shape of two overlapping shower. We can reconstruct high pt 7° up to 40 GeV/c by this method.
We also measured charged jets from 10 to 80 GeV/c in pt with anti-kt algorithm and resolution parameter
R = 0.4. The contamination of reconstructed jets in Pb-Pb collisions are subtracted by considering the
event plane dependence of underlying events density.

In the azimuthal correlations between 7°’s and charged jets measurement, we observe two jet-like
peaks in pp collisions at /s = 7 TeV and also in central Pb-Pb collisions at /syn = 2.76 TeV. Thus, it
is confirmed that high pr 7° production is strongly associated with jet production.

In the ratio of per trigger yields (/aa) measurements, we observe the enhancement of near-side jets in
DT,chjet > 20 GeV/c while the suppression of jets in away side by triggering high pr 7’ (8 < p%o <16
GeV/c). This result indicates that we select jets produced near at the surface of the QGP by triggering
high pr hadron, so that the path-length of away side jets get longer than that of near side jets. In the
comparisons to the results of low pr regions (1°-charged hadron correlation), the Ix values in the near-
side with the pt range of the associated jets pr chjer > 20 GeV/c are in good agreement with the present
data. The /5 values in the away-side with the all pr ranges of the associated jets (10 < pr cpjec < 80
GeV/c) are also consistent each other. Thus, triggering high pr 7° provides the surface bias in high pr
regions in the similar to the low pt associated hadrons.

In the near and away-side width measurements, we observe an indication of jet broadening effect in
the near-side by requiring the low pr triggering 7° and low pr leading particle in a jet in central Pb-Pb
collisions. This effect decreases with increasing pr of the trigger 71° or the leading particle in a jet. These
results suggest a possible jet broadening effect in central Pb-Pb collision depending on the path-length
of a initial parton in a medium.

In order to extract more detailed information of path-length, we need larger data samples to take
a large enough lever arm between different the trigger 7° momenta. The Di-jet calorimeter has been
installed in opposite azimuthal direction of the EMCal in the ALICE experiment. This new apparatus
allows us to study of the path-length dependence of parton energy loss in QGP in more detail through
the high statistics correlation measurements during the LHC Run-2.
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Appendix

A Quantum Chromo Dynamix (QCD)

The QCD is the theory to describe fundamental force in strong interaction between quarks and gluons
with three color symmetry SU(3). Quarks have not only the flavor degrees of freedom (up, down, strange,
charm, bottom, tor), but also the color degrees of freedom (red, blue, and green) and are always bound
together to form color-white composite in hadrons. Gluons is spin 1 gauge bosons that mediate the strong
force between quarks. QCD permit gluons to interact by themselves.

The classical Lagrangian density for a quark with mass m given by

Ny 1
L =), Dy —my)qy — 2hvEe” (1.1)
7

Quark (gluon) field g belong to the SU(3) triplet (octet). Therefore, f runs 1 to 3, while a runs 1 to 8.

The covariant derivative, D, is
. Al
DH = a“—Flg?Aﬁ (12)

where A¢ is the eight Gell-Mann matrices. The strength tensor of gluon field F}jy is defended as
Fily = 0uAS — OvA] + g funcALAS, (1.3)

where AY, is the gluon fields, and f,. is the structure constants of the SU(3) group. g is defined using
coupling constant ¢ as,
¢=\/4na, (1.4)

B function can be calculated in perturbation theory if g is small enough. And the function can be ex-
panded in series of g

%:ﬁoﬁ(g)z—ﬁog3—l315+m (1.5)

1 2 1 38
ﬁOZW(Il_ng)aﬁl :W(IOZ—?NJI) (1.6)

Running coupling constant can be described as function of momentum transfer Q,

_ 1 - &ln(ln(Qz/AZQCD))
47TB01“(Q2/A2QCD) [302 ln(Qz/AZQCD)

os(0) (1.7)

Aocp is called QCD scale parameter, to be determined from experiments.

According to Eq.A, running coupling constant of strong force ¢ should be smaller at large mo-
mentum transfer Q (or smaller distance). This property in large momentum transfer region is called
asymptotic freedom. The effect decreasing coupling constant with the increasing energy comes from
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anti-screening of color charge. The decreasing coupling constant with increasing energy is caused
by the effect of anti-screening of color charge. It can be to calculate in perturbative calculations by
DGLAP[B][Q][TO] of cross sections in deep inelastic processes.

Fig [T illustrates that the coupling constants measured by several experiments are good agreement
with the calculations by perturbative QCD. On the other hands, in smaller Q region (or larger distance),
o gets increase rapidly. We call the property “confinement of quarks”. Even if we try to draw quark
away from hadron, strong force generate energy to produce a new gq pair from the vacuum. Therefore,
we can not let quark be alone in vacuum.
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Fig. 1.1: Running of the strong coupling constant established by various types of measurements at different scales,
compared to the QCD prediction for o (M) = 0.118 £0.003.[I1]

B Run list

2.1 Data set in pp collisions at /s =7 TeV

— LHCl1c, full EMCal, LO trigger at 5.5 GeV: 154808, 154796, 154793, 154789, 154787, 154786,
154783, 154780, 154773 154763.

— LHCl1c, full EMCal except super-module 5, LO trigger at 5.5 GeV: 154495, 154485, 154483,
154480, 154478, 154383, 154385 , 154382, 154289, 154286, 154283, 154281,154273, 154270,
154269, 154266, 154264, 154261, 154257, 154252, 154222, 154221, 154219, 154211, 154207,
154143, 154141, 154136, 154132, 154130, 154126.

— LHCllc, full EMCal, LO trigger at 4.5 GeV: 53566, 153560, 153558, 153552, 153548, 153544,
153542, 153541, 153539, 153536, 153533, 153373, 153371, 153369, 153296, 153362, 153232,153223.
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— LHCll1c full EMCal except super-module 5, LO trigger at 4.5 GeV: 53738, 153733, 153728,
153727, 153726, 153725, 153718, 153709, 153702, 153594, 153589, 153591 , 153587, 153571,
153570.

— LHCI11d, full EMCal, LO trigger at 5.5 GeV: 59582, 159581, 159580, 159577, 159575, 159538,
159535, 159532, 159286, 159260, 159258,159254, 157976, 157975, 157819, 157818, 157569,
157567, 157564, 157562, 157560, 157496, 157475, 157277, 157275, 157262, 157261, 157257,
157227, 157220, 157203, 156896, 156891, 1568809.

2.2 Data set in Pb-Pb collisions at ,/syy =2.76 TeV

— LHC11h, good TPC runs, full EMCal, L1-Gamma+Central+SemiCentral trigger: 167813, 167988,
168066, 168068, 168069, 168076, 168104, 168212, 168311, 168322, 168325, 168341, 168361,
168362, 168458, 168460, 168461, 168992, 169091, 169094, 169138, 169143, 169167, 169417,
169835, 169837, 169838, 169846, 169855, 169858, 169859, 169923, 169956, 170027, 170036,
170081, 169415, 169411, 169035, 168988, 168984, 168826, 168777, 168512, 168511, 168467,
168464, 168342, 168310, 168115, 168108, 168107, 167987, 167915, 167903

— LHCI11h, semi-good TPC runs, full EMCal, L1-Gamma+Central+SemiCentral trigger: 169975,
169981, 170038, 170040, 170083, 170084, 170085, 170088, 170089, 170091, 170152, 170155,
170159, 170163, 170193, 170195, 170203, 170204, 170205, 170228, 170230, 170264, 170268,
170269, 170270, 170306, 170308, 170309

C Comparison with Monte Carlo

The MC data (LHC12a15f) used in this analysis is PYTHIA pp collisions at /s = 7 TeV with unbiased
jet-jet events and doesn’t include the information of EMCal trigger. This analysis are used the two kinds
of MC data to compare with real data. The first one is the MC data without EMCal trigger bias, and the
next one is the MC data which is reproduced EMCal trigger by using a sliding window algorithm [?].
We compare the pr distributions (charged track, jet, 7°) and 7%-jet azimuthal distributions between real
and MC data.

Fig. Bl shows the comparison of charged track, jet and 7° pt distribution with two different MC sam-
ples. The Results of MC data used in this analysis are normalized by the number of events generated, and
the average cross section given by PYTHIA. When we combine various pr-hard bins after normalized
by the average cross section, there are outliers in 7°p7 distributions and azimuthal correlations in away
side. In order to avoid the effect of outliers, we removed outliers of °p7 distributions and azimuthal
correlations in away side. In case of removed outliers of 7°p7 distributions, I fitted 7°p7 distributions
by exponential functions at the regions of & 5 bins from the outlier, and then scaled down outliers to the
fit functions. Fig. B show the 70 pr distributions before and after removed outliers.

Fig. shows the comparison of azimuthal yields between uncorrected MC and real data. Fig. B4
shows the comparison of azimuthal yields between particle level MC and corrected real data. Fig. B3
shows the comparison of near and away side width between MC and real data.

3.1 Comparison of away-side jet yields between 7°-jet analysis and /*-jet analysis

Ass mention in the previous section, we could not exactly compare the away-side jet yields with the
results of MC due to large fluctuations which are caused by low statistics of MC. In order to avoild the
effect of large fluctuations, we compared with the away-side jet yields of A™-jet analysis(Filip’s analysis)
[?]. The away-side jet yields of A*-jet analysis are consistent with the results of MC.

Fig. B8 shows the away-side jet yields of h*-jet and 7°-jet analysis, and fig. B2 shows the ratios of
the away-side jet yields of 7%-jet to the away-side jet yields of h*-jet. The results of h*-jet analysis
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were applied the unfolding method to correct the detector effect, while the results of 7°-jet analysis were
applied the bin-by-bin correction.
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Fig. 3.6: The away-side jet pr distribution of 7°-jet and h*-jet analysis with six different trigger pr regions, 8
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of h*-jet analysis.

D Gaussian fitting of the near and away-side peaks in azimuthal correlations

Fig B, B2, B3 show the near and away side peaks by fitting Gaussian functions in pp and the near-side
peaks by fitting Gaussian function in Pb-Pb collisions.
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Fig. 3.7: The ratios of the away-side jet yields of 7%-jet to the away-side jet yields
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Fig. 4.1: Near side peaks in |A@| < 0.5 (rad) fitted by Gaussian functions in pp collisions at /s = 7 TeV with
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trigger 7” momentum region 8 < pJ < 16 GeV/c. The momentum ranges of the associated jets increase with

going to right sides and the momentum thresholds of the leading particle in a jet increase with going bottom sides.
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