
C
ER

N
-T

H
ES

IS
-2

01
2-

06
1

//
20

12

SEARCH FOR HIGH-MASS DIELECTRON RESONANCES WITH THE ATLAS
DETECTOR

By

Sarah Heim

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Physics

2012



ABSTRACT

SEARCH FOR HIGH-MASS DIELECTRON RESONANCES WITH THE
ATLAS DETECTOR

By

Sarah Heim

This thesis describes a search for new heavy particles decaying into electron-positron pairs.

The search utilizes 1.08 fb−1 of proton-proton collisions at a center-of-mass energy of

√
s = 7 TeV, produced in 2011 by the Large Hadron Collider and recorded with the ATLAS

detector at the CERN laboratory in Switzerland. The reconstructed dielectron invariant

mass spectrum is compared to Standard Model expectations. Since no significant excess is

found, upper limits on the cross-section times branching ratio of Z′ bosons and Randall-

Sundrum gravitons are determined at the 95% confidence level using a Bayesian approach.

These limits are combined with limits obtained by a parallel analysis in the muon channel

and converted into lower limits on the masses of the Sequential Standard Model Z′SSM bo-

son (1.88 TeV), E6 Z
′ bosons (1.54 - 1.68 TeV), as well as the Randall-Sundrum graviton

(1.67 TeV for k/M̄P l = 0.1).
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Chapter 1

Introduction

For a long time it has been a human endeavor to understand what the universe is made of

and why it looks the way it does. Today we know that the matter we find on earth consists

of atoms: nuclei of protons and neutrons surrounded by electrons. Protons and neutrons

are not fundamental particles but contain quarks and gluons. The quarks and electrons that

make up ordinary matter have heavier relatives which, soon after they are produced, decay

into lighter particles. Elementary particles can interact with each other through exchange

particles like the photon. For all particle types there exist antiparticles, with the same masses

but opposite charges (some particles like the photon are their own antiparticles).

The goal of particle physics is to understand what the elementary particles are and how

they interact with each other. During the 20th century, the Standard Model of Particle

Physics (SM) was developed, a very successful theory describing fundamental particles and

their interactions. The SM has not only been confirmed in many precision measurements,

but has also been able to predict observations like the discovery of the Z boson in 1983

[1, 2]. However, the SM cannot describe the subatomic world completely and has several
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shortcomings: Among other things it does not include gravitation and it cannot explain why

there is more matter than antimatter in the universe.

One of the biggest quests in particle physics today is therefore to understand what lies

beyond the SM. This is done experimentally by searching for particle interactions that are not

predicted by the SM. As the SM has been under scrutiny for decades, the new interactions

are expected to be quite rare or only possible when the particles interacting with each other

have very high energies. The LHC (Large Hadron Collider) at the CERN (Conseil Européen

pour la Recherche Nucléaire) laboratory in Geneva, Switzerland, collides particles with the

highest energies ever achieved in a particle accelerator and offers the unique opportunity to

directly search for physics inaccessible anywhere else. Large particle detectors like ATLAS

(A Toroidal LHC ApparatuS) are required to detect, filter and record the outcome of these

interactions. Their size is determined by the need to reconstruct the properties of the

produced particles.

This thesis describes a search for a heavy (> 130 GeV), electrically neutral particle

which is produced in proton-proton collisions at the LHC and decays into an electron and a

positron1. We select collision events resulting in two electrons because such a heavy particle

decays too fast to be observed and the ATLAS detector can only record its decay products.

The invariant mass of the two electrons corresponds to the mass of the new particle and its

unique signature is a narrow resonance peak in the dielectron mass spectrum. The position of

this peak depends on the mass of the new particle, and its size on the production cross-section

as well as the branching ratio with which it decays into electrons. A high-mass dielectron

resonance is not predicted by the SM, but by some of its extensions like the E6 model [3, 4],

1From here on, “electron” will be used representatively for both electrons and positrons.
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which is one of the Grand Unified Theory models, suggesting that all fundamental forces

(except for gravity) are the same at very high energies. Another example is the Randall-

Sundrum model [5], which proposes the graviton as the exchange particle for gravitation,

and which suggests the existence of at least one extra dimension. Finding the graviton or

another new exchange particle would significantly contribute to our understanding of the

fundamental forces. If we do not see a resonance, we can exclude at least parts of the

proposed extensions to the SM.

Besides this thesis, this analysis is published in [6]. The thesis is organized in 8 chapters:

1. Introduction.

2. This chapter describes the SM, focusing on the electroweak interaction. Successes

and shortcomings of the SM are discussed, as well as potential extensions that could

produce a high-mass dielectron resonance.

3. The LHC as well as the ATLAS detector are explained, with emphasis on the parts

necessary to find electron pairs: Tracks of electron candidates are recorded in the Inner

Detector and their energy is measured in the electromagnetic calorimeter.

4. Dedicated triggers filter events containing electron candidates whose energy and direc-

tion need to be reconstructed. Identification cuts increase the probability of an electron

candidate to be a real electron. Furthermore, the specific properties of electrons that

have high energies are described.

5. This chapter lists the simulated samples for signal and background processes used to

compare the data to the SM background plus potential signal, and the corrections that

need to be applied to the simulation to improve the modeling.
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6. The event selection and the comparison between data and SM expectations for the

dielectron invariant mass distribution and other kinematic distributions are shown. The

estimate of QCD multijet production, which is obtained from data, is also described.

7. This chapter outlines the search for significant excesses in the dielectron invariant mass

distribution in data as compared to the SM background. Since no significant excess

is found, the Bayesian procedure for setting 95% confidence level limits on the cross-

section times branching ratio and the signal mass is described and the resulting limits

are shown.

8. Conclusion.
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Chapter 2

Standard Model of Particle Physics

and beyond

In this chapter, the SM is discussed, as well as possible extensions that could result in

high-mass dielectron resonances. In spite of spectacular successes describing and predicting

interactions between fundamental particles, the SM in its current form is considered to

be incomplete. In order to understand observations not explained by the SM, many models

have been suggested, some of which predict a new heavy particle decaying into two electrons.

Examples are models that allow the unification of fundamental forces at high energies as well

as models predicting extra dimensions.

2.1 Standard Model of Particle Physics

The SM describes almost every phenomenon observed in the subatomic world. It contains

the elementary particles of matter - quarks and leptons, which are fermions - and describes

the interactions between them as exchanges of force-carrying bosons. The W+/W−and Z
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bosons as well as the photon (γ) mediate the electroweak force, while gluons (g) carry the

strong force. The SM also contains a Higgs field generating the masses of the fundamental

particles. The corresponding Higgs boson has not been found yet.

While the SM is incomplete (compare Sec. 2.2), it fits most of the available data to very

high precision and can be used to make reliable predictions. Examples of past successes of the

SM are the prediction of the existence and the properties of the weak bosons W+/W−and

Z. These were discovered [7, 8, 1, 2] at the Super Proton Synchroton, CERN, more than 10

years after the formulation of the electroweak theory [9, 10, 11].

In the following, the fundamental principles and building blocks of the SM are described,

followed by a discussion of electroweak interactions with a focus on the Drell-Yan process

(DY, qq̄ → Z/γ∗ → e+e−). Not only is the DY process the largest background in this

analysis, but many proposed new interactions leading to high-mass dielectron resonances

have very similar structures and could actually modify it, as shown in Sec. 2.2.3.

2.1.1 Symmetries and fields

The SM is a gauge theory in which the fundamental particles are represented by quantized

fields. In gauge theories, the Lagrangian is invariant with respect to certain local transforma-

tions, i.e. changes of the participating fields that can be different at any point in space-time.

In contrast to this, global transformations like translations change a field the same way at ev-

ery point. Gauge theories are very powerful tools because they are renormalizable [12]. This

means they provide a way to cancel divergences, infinities that may arise in the calculation of

physical quantities. Furthermore, every gauge invariance leads to a conserved quantity [13]

as well as a number of force carriers, called gauge bosons, which only act on fields carrying
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some of the conserved charge. This can easily be seen by looking at the electromagnetic

interaction, where the need to make the Lagrangian invariant with respect to phase changes

of the electron field leads to the introduction of an additional vector field, the photon. This

has to be massless since a photon mass term would not be gauge invariant. The conserved

quantity in this example is the electromagnetic charge.

Transformation invariances can be described by symmetry groups, whose members are

the generators of the transformation, e.g. unitary matrices in case of rotations. The SM is

described by the following combination of gauge symmetry groups:

SU(3)C × SU(2)L × U(1)Y (2.1)

Here, U(1) corresponds to a unitary group of degree 1. It has one generator and describes

the invariance of the Lagrangian when the fields are multiplied by any given phase factor.

SU(2) is a special unitary group of degree 2. It has three generators, which can be rep-

resented by 2 × 2 matrices whose determinant is 1. SU(2)L × U(1)Y corresponds to the

electroweak interaction. According to the number of generators, U(1)Y contributes one

gauge boson, called B, while SU(2)L has three, W0,W1,W2. The conserved quantity in

U(1)Y is the weak hypercharge Y , in SU(2)L it is the weak isospin ~I. These quantities are

not independent; their relation to the electromagnetic charge Q is Y = Q− I3, where I3 is

the third component of the weak isospin [12]. The electroweak interaction is chiral, which

means particles are treated differently depending on whether they are left- or right-handed:

Right-handed particles and left-handed antiparticles do not interact with the SU(2)L gauge

bosons. Spontaneous Symmetry Breaking (SSB, see Sec 2.1.2) results in an unbroken group

U(1)Q, whose gauge boson is a massless photon and consists of a linear combination of B

7



and W0. The photon interacts with particles that have electromagnetic charge. The orthog-

onal linear combination of B and W0 produces a neutral Z boson, whose mass has been

measured to be 91.19 GeV [14]. The remaining force carriers of the weak interaction are

the charged W+ and W− bosons, which correspond to linear combinations of W1 and W2.

Their mass has been experimentally determined to be 80.40 GeV [14].

SU(3)C describes the strong interaction. Its generators can be represented by 3 × 3

matrices and correspond to eight massless gluons. The conserved quantity is the color charge.

The strong force only acts on particles carrying color; these are the gluons themselves as

well as the six flavors of quarks.

Table 2.1 shows the fermion fields of the SM, including their charges. The table for

the antiparticles looks identical, except for a sign-flip in the charges. Each quark can have

one of three color indices. There are three generations of quarks and leptons. The right-

handed fermions are SU(2)L singlets, which means they do not interact with the W bosons.

The leptons do not have color charge, thus they do not participate in the strong interaction.

Likewise, the neutrinos are electromagnetically neutral, so they cannot interact with photons

directly. Right-handed neutrinos have never been observed; however, oscillations have been

detected between the three generations of neutrinos, which enforce the inclusion of right-

handed neutrinos as an extension to the SM (compare Sec. 2.2.1).

2.1.2 Lagrangian

This section describes the Lagrangian density of the SM with focus on the neutral electroweak

interaction, as this part could be modified by the new physics we search for in this analysis.

A short description of SSB is given, and the electroweak Lagrangian is shown before and
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Generation Charges

I II III Color? I3 Y Q

Quarks

(

u
d

)

L

(

c
s

)

L

(

t
b

)

L

Yes 1/2 1/6 2/3
Yes -1/2 1/6 -1/3

uR cR tR Yes 0 2/3 2/3
dR sR bR Yes 0 -1/3 -1/3

Leptons

(

νe
e

)

L

(

νµ
µ

)

L

(

ντ
τ

)

L

No 1/2 -1/2 0
No -1/2 -1/2 -1

eR µR τR No 0 -1 -1

Table 2.1: Fermion fields in the SM and their charges [14]. Each quark can have one of three
color indices.

after including SSB.

The Lagrangian describes the dynamics of fields and their interactions. It is defined as

L = T − V, (2.2)

where T is the kinetic energy and V is the potential energy. In field theory, the Lagrangian

density L is used instead of the Lagrangian, with L =
∫

L d3x. A Lagrangian in field theory

can contain terms for the free propagation of particles, their masses, and their interaction

with other particles as well as with themselves.

The Lagrangian density of the SM can be split into four parts [12]:

L = LFermion + LGauge + LHiggs + LY ukawa (2.3)

LFermion describes the kinetic energy of the fermions as well as interactions of the fermions

with the gauge bosons. If the weak eigenstates of the fermions are described in 4-component

vectors F , the part of the Lagrangian density that describes the free motion of the fermions

9



can be written as:

L0 = F̄ (x)(i/∂ −m)F (x), /∂ = γµ
∂

∂xµ
= γµ∂µ, (2.4)

where γµ is the set of Dirac matrices and the Dirac adjoint is defined as F̄ = F †γ0. If the

fermion field F is written as F = FL+FR, where FL(R) corresponds to left-(right-)handed

fermions, FL = F (1 − γ5)/2 and FR = F (1 + γ5)/2, it becomes clear that only mass

terms survive that contain a left- and a right-handed field, since F̄LFL = F̄RFR = 0.

The Lagrangian density for the electroweak sector, LEW , can be written as:

LEW =
∑

f

F̄Lf i /DFLf + F̄Rf i /DFRf . (2.5)

D is the derivative in the free Lagrangian density, which is made gauge invariant with respect

to SU(2)L and U(1)Y by adding the fields Wi
µ and Bµ:

DµFLf = (∂µ + ig~I · ~Wµ + ig′YLfBµ)FLf

DµFRf = (∂µ + ig′YRfBµ)FRf . (2.6)

Here, g and g′ are the gauge coupling constants for SU(2)L and U(1)Y respectively. ~I

corresponds to the weak isospin, while Y is the weak hypercharge. There is no mass term

since a term mixing left- and right-handed fields would break the gauge symmetry.

LGauge contains the kinetic terms of the gauge bosons B, Wi and g as well as the self-

interaction terms for all gauge bosons but B, which does not self-interact. The Lagrangian

density for the Higgs field LHiggs (Eq. 2.7) consists of the kinetic energy and the self-
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interaction of the Higgs boson as well as terms for interactions between the Higgs and the

gauge bosons. The Yukawa term LY ukawa describes the couplings between the Higgs boson

and the fermions, giving the latter their masses.

Like for fermions, explicit mass terms for gauge bosons violate the gauge invariance.

However, we know that the weak gauge bosons have mass, thus the gauge symmetry of the

electroweak interaction must be broken. In the SM, this happens through SSB. Charges

are still conserved, since SSB does not introduce any explicit symmetry breaking. The

Lagrangian density of the Higgs field φ preserves the gauge symmetry:

LHiggs = (Dµφ)†(Dµφ)− V (φ), (2.7)

where φ is the complex scalar Higgs field, and

Dµφ = (∂µ + ig~I · ~Wµ +
ig′
2
Bµ)φ. (2.8)

V (φ) needs to be gauge invariant with respect to SU(2)L×U(1)Y as well, and has the form

V (φ) = µ2φ†φ+ λ(φ†φ)2. (2.9)

The ground state of φ can be found by looking for the minimum of V (φ), and can be written

as φ0 =
(

0
v
)

, where v =
√

−µ2/λ. If µ2 < 0, φ has a non-zero vacuum expectation value

and φ can be written as φ = φ0 + φ′, where φ′ is a field with a zero vacuum expectation

value. In terms of φ′, the SU(2)L × U(1)Y symmetry in Eq. 2.7 is broken and mass terms

for the weak bosons emerge. These are now a mixture of the original gauge bosons. The
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electroweak mixing angle θW is defined as

tan θW =
g′
g
. (2.10)

The Z boson can be expressed in terms of this angle and the gauge bosons B and W3:

Zµ = −Bµ cos θW +W3
µ sin θW . (2.11)

The photon is the orthogonal linear combination:

Aµ = Bµ cos θW +W3
µ sin θW . (2.12)

The couplings g and g′ are not independent, instead they are related to the electromagnetic

coupling e and the neutral weak coupling gZ by

e = g sin θW , gZ =
g

cos θW
=

g′
sin θW

=
e

sin θW cos θW
. (2.13)

Now the Lagrangian density for the neutral electroweak interaction of fermions can be

written down. It can be obtained by replacing Bµ and W3
µ with Aµ and Zµ according to

Eq. 2.11 and 2.12 in Eq. 2.5:

LEW,n = −e
∑

f

ψ̄f γ
µQfψfAµ (2.14)

− gZ

∑

f

[ψ̄Lfγ
µ(I3f −Qf sin2 θW )ψLfZµ + ψ̄Rfγ

µ(−Qf sin2 θW )ψRfZµ].
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e+

e−q̄

q

Z/γ∗

Figure 2.1: Feynman diagram of the DY process.

The first line describes the electromagnetic interaction. Its strength is independent of the

chirality of the leptons and depends on the coupling constant e and the fermion charge Qf .

This part of the electroweak Lagrangian can also be derived directly from the requirement

of gauge invariance of the Lagrangian with respect to phase changes in the electron fields.

The second line describes the neutral weak interaction, which is chiral, having a different

strength for left- and right-handed fermions. The Lagrangian density is now written in terms

of mass eigenstates ψ, instead of weak eigenstates F .

Sec. 2.2 shows how the electroweak Lagrangian is modified by additional neutral Z′ gauge

bosons.

2.1.3 Feynman diagrams and cross-section calculations

Feynman diagrams simplify the calculation of the probability that particles interact with

each other in a certain way. The diagrams help visualize the initial, intermediate, and final

states, and they help determine the importance of different sub-processes.

The Feynman diagram in Fig. 2.1 shows two of the possible ways in which two quarks

can annihilate: The production of a Z boson or a photon and the subsequent decays of the

intermediate particle into two electrons. In this process, countless additional interactions are

possible, for example radiation of gluons and photons as well as particle loops. These sub-
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g

e+

e−q̄

q

Z/γ∗

(a)

g γ

e+

e−q̄

q

Z/γ∗

(b)

γ

e+

e−q̄

q

Z/γ∗

(c)

Figure 2.2: Strong and electroweak higher order contributions to the DY process: Radiation
of a gluon in the initial state (a), a gluon loop in the initial state and the emittance of a
photon in the final state (b), and a photon loop in the final state (c).

processes can be illustrated in different Feynman diagrams (see Fig. 2.2 for a few examples).

Since the probability amplitude of every particle interaction is proportional to the cou-

pling constant, the less particle-particle vertices a Feynman diagram for a given sub-process

has, the more likely it is. Furthermore, higher order contributions involving gluons are larger

than those involving photons because the strong interaction has larger couplings than the

EW interaction. The Feynman diagram in Fig. 2.1 illustrates the dominant, leading order

(LO) contribution to the qq̄ → e+e−X process (X denotes additional radiation). In this

sense, Feynman diagrams are tools of perturbation theory; they allow to split up the infinite

number of possible interactions in a process into different orders of probability.

Using the corresponding diagrams, one can in principle calculate cross-sections up to a

required precision, however, for higher order processes it is necessary to introduce normaliza-
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tion and factorization scales. These are artificial cut-offs removing infinities which can occur

if not all orders of the perturbation series are taken into account. Furthermore, perturbation

theory can only be applied as long as the coupling constants are small. This is the case for

electroweak interactions, but not necessarily for interactions involving the strong force. Since

we are looking at dielectron final states, strong interactions can only happen in the initial

state. The factorization theorem [15] states that perturbation theory still applies for the

hard scattering process itself, because the quarks are asymptotically free at high energies.

The Feynman rules give a prescription on how to turn Feynman diagrams into matrix

elements, which correspond to probability amplitudes of the interactions. These rules are

obtained from the Lagrangian [16]. In order to calculate the matrix element, the 4-momenta

of the incoming and outcoming particles must be known. If they are defined for the incoming

particles, the inclusive cross-section is proportional to the absolute square of the matrix

element, integrated over all possible momenta of the final state particles. However, at hadron

colliders like the LHC which collides protons, the reacting quarks carry an unknown fraction

of the proton momenta. In order to calculate cross-sections, one usually integrates over all

possible incoming quark momenta, using probability functions for the momentum fraction

of the quarks (parton distribution functions, PDFs) which are obtained from fits to data

[17, 18, 19]. Since the quarks in the protons are bound by the strong interaction, the PDFs

include non-perturbative effects, and can account for higher order QCD corrections in the

initial state.
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2.1.4 Drell-Yan process

In the DY process, a quark and an antiquark produce a photon or a Z boson, which then

decays into quarks or leptons. The final state considered in this analysis is the dielectron

decay (qq̄ → Z/γ∗ → e+e−). Figure 2.1 shows the Feynman diagram of the LO DY process.

The DY process is the most important SM background to the search for new physics

with dielectron final states. Its electroweak structure serves as a model for interactions with

new heavy neutral gauge bosons. The inclusion of new gauge bosons in the electroweak La-

grangian does not necessarily lead to a simple cross-section addition of the different processes,

but can cause shifts in the peak mass of the Z boson and its couplings to the fermions (mass

mixing, [20]) as well as cross-section enhancement/suppression due to positive/negative in-

terference. Neglecting mass mixing, we write down the electroweak Lagrangian and the

matrix element of the DY and the new Z′ boson in Sec. 2.2 (Eq. 2.22, 2.23). In this section,

the components of the pure DY matrix element are explained.

In order to write down the LO equation for the DY matrix element [21], the following

4-momenta (p, k) and helicities (σ, τ) are assigned to the incoming and outgoing particles:

q(p1, σ1) + q̄(p2, σ2) → e−(k1, τ1) + e+(k2, τ2). (2.15)

The Mandelstam variables are defined as

ŝ = (p1 + p2)
2, t̂ = (p1 − k1)

2, û = (p1 − k2)
2. (2.16)

Here, ŝ corresponds to the center-of-mass (CM) energy of the collision and is, at LO, equal

to the invariant mass of the two outgoing electrons (k1 + k2)
2.
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Applying the Feynman rules [16], one can write down the chirality dependent matrix

element for the full DY process at LO as [21]:

Mσ,τ (ŝ, t̂, û) =
e

ŝ

∑

V=γ,Z

cσqqV cτeeV PV (ŝ) Mστ . (2.17)

For the weak interaction, the couplings between fermions f and exchange bosons depend on

the chiralities σ = σ1 = −σ2 and τ = τ1 = −τ2. The couplings c are taken directly from

the electroweak Lagrangian (Eq. 2.14) and can be written as:

c
L/R
ffγ

= −eQf , cLffZ = e
I3f − sin2 θWQf

sin θW cos θW
, cRffZ = −eQf

sin θW
cos θW

. (2.18)

The propagators for the two exchange particles are:

Pγ = 1, PZ =
ŝ

(ŝ−M2
Z + iŝΓZ/MZ)

. (2.19)

Since the Z boson is not a stable particle, its width ΓZ is inserted into the Z boson propa-

gator. This is done in the “running width” scheme, which illustrates the change of the width

with different CM energies.

The “standard” matrix element Mστ depends on the polarization of the incoming and

outgoing fermions. Two different chirality combinations are allowed,

MLL =MRR = 2û, MLR =MRL = 2t̂. (2.20)
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2.2 Beyond the Standard Model

The SM is quite successful in describing the interactions of fundamental particles throughout

the experimentally available energy range. However, there are many missing pieces, observa-

tions not explained by the SM or even contradicting its predictions. Furthermore, there are

theoretical concerns and arguments which suggest that the SM can only be part of a larger

theoretical framework.

2.2.1 Limitations of the Standard Model

Some observations not covered by the SM are the matter-antimatter asymmetry in the

universe without which there would be no stable matter, as well as the existence of dark

matter. The SM predicts neutrinos to be massless, but the observation of neutrino oscillations

requires neutrinos to have mass [22, 23, 24, 25]. The latter is fortunately quite easy to

incorporate in the SM by adding right-handed neutrinos. The largest discrepancy between

theory and observation can be found in the value of the cosmological constant, usually

considered to describe the energy density of the vacuum [26]. Astronomers have measured

the rate with which the universe expands and have found this expansion to be accelerating,

leading, in the framework of general relativity, to a very small, positive cosmological constant

[27, 28]. However, the SM as a quantum field theory predicts a value orders of magnitudes

above the one suggested by astronomical measurements.

Theoretical concerns include the ∼20 parameters of the SM, like the number of genera-

tions and masses of the fermions, which cannot be derived, but have to be experimentally

determined. Furthermore, no explanation is given why the electric charges of electrons and

protons cancel each other. Another important issue is gravity, which is the only one of the
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four fundamental forces which the SM does not describe. But even assuming some under-

lying gravitational theory, the SM cannot explain why gravitation is so weak compared to

the other forces. This is known as the “hierarchy problem”, and is closely related to the

“fine tuning problem”: The Higgs field is constrained by the known masses of the W and Z

bosons, and cancellations of the order of 1016 times the Higgs boson mass are required in

order to reconcile its value with the huge quantum corrections from fermion and gauge bo-

son loops predicted by the SM. Another point is the observation that the coupling constants

depend on the energy of the particles involved in the interaction, and that in the SM these

coupling constants almost but not fully coincide when extrapolated to high energies.

2.2.2 Models predicting a dilepton resonance

Historically, dilepton resonances have been a window to a better understanding of funda-

mental particles and forces. Figure 2.3 shows the reconstructed invariant mass distribution

of ATLAS electron candidate pairs passing a Tight set of identification cuts (see Sec. 4.4).

The resonance peak of the J/ψ meson, which is a cc̄ bound state, was found at a mass of

∼3.1 GeV. The discovery of the J/ψ resonance in 1974 [29, 30] is called November Rev-

olution, since it confirmed, together with subsequent discoveries of charmed baryons and

mesons [31, 32, 33], the existence of a fourth quark and showed that the electroweak theory

can be applied to hadrons. The resonance peak of the Z boson was discovered at a mass

of 91.2 GeV in 1983 [1, 2]. Together with the charged gauge bosons W+ and W−, it was

predicted by the electroweak theory (see Sec. 2.1) and helped to firmly establish the latter

as part of the SM. The discovery of a dilepton resonance beyond the peak of the Z boson

could have a similar effect on currently postulated extensions to the SM.
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Figure 2.3: Reconstructed dielectron invariant mass distribution of electron candidate pairs
passing the Tight identification cuts for events selected by low ET threshold dielectron
triggers [34]. The number of events is normalised by the bin width. Errors are statistical
only.

There are several models that predict a resonance beyond the Z boson peak. Many of

them try to solve specific problems of the SM, others use theoretical arguments like the

unification of forces to motivate extensions to the SM.

Supersymmetric (SUSY) models [35, 36, 37] solve the hierarchy problem by assigning

every SM particle a supersymmetric partner, canceling its loop contribution to the Higgs

field. Since SUSY must be broken, one of the heavier superpartners of the SM particles

could be discovered as a high-mass dilepton resonance.

Technicolor theories [38, 39, 40], inspired by how the strong interaction is modeled, avoid

the hierarchy problem completely by proposing an alternative way of SSB which does not

require a Higgs boson. Like QCD, technicolor models predict a zoo of composite particles,
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Figure 2.4: Feynman diagrams for Z′ boson (a) and graviton (G*) (b) exchange.

which could be visible as dilepton resonances.

Additional U(1) symmetries lead to the emergence of new neutral gauge bosons, called Z′

bosons, which might be heavy and observable as resonances in the dielectron spectrum (see

Sec. 2.2.3 and Fig. 2.4(a)). Examples are the Sequential Standard Model, which is described

in Sec. 2.2.4, the little Higgs models [41] and the higgsless Stueckelberg model [42]. The new

U(1) symmetries could be due to Grand Unified Theories (GUTs). GUTs try to unify all

three SM forces at high energies within large symmetry groups, which break at lower energies

into the SM group and other symmetry factors. Suggested GUT models (among others) are

the E6 model, which is discussed in detail in Sec. 2.2.5, and the left-right symmetric models

[43, 44, 45].

Extra dimensions might be the explanation for the extreme differences between the

strengths of the fundamental forces. By allowing the graviton, the postulated exchange bo-

son of gravitation, to propagate into extra dimensions, only a fraction of its strength might

be visible in the standard 4-dimensional space-time. The Randall-Sundrum (RS) model of

extra dimensions is discussed in Sec. 2.2.6. Its force carrier, the RS graviton, obtains mass

through Kaluza-Klein excitations and decays into two electrons (compare Fig. 2.4(b)), hence

it could be discovered in a dilepton search.
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2.2.3 Additional U(1) symmetries

A large number of models predict the SM symmetry (Eq. 2.1) to be extended by at least

one additional U(1)′ group:

SU(3)C × SU(2)L × U(1)Y × U′(1). (2.21)

If this symmetry is broken, e.g. by the Higgs mechanism, a massive, neutral gauge Z′ boson

with spin-1 emerges. The addition to the electroweak Lagrangian density (Eq. 2.14) can be

written as

LEW,n+U(1)′ = LEW,n − gZ′
∑

f

[ψ̄Lfγ
µQ′LfψLfZ

′
µ + ψ̄Rfγ

µQ′RfψRfZ
′
µ]. (2.22)

The structure of the additional term in the Lagrangian density is the same as the term

describing the exchange of a SM Z boson (compare the second line in Eq. 2.14). The coupling

gZ′ , the charges Q
′
Lf and Q′Rf , and the mass of the additional boson depend on the model

which predicts the additional symmetry. In addition, couplings to exotic new fermions could

be possible, and are even required in some models, in order to cancel anomalies (triangle

Feynman diagrams in which the gauge symmetry would not be conserved).

Here, mass mixing between the Z and the Z′ boson is neglected. Mass mixing can happen

if there are mixed Z/Z′ terms in the kinetic part of the Higgs Lagrangian, where the masses

of the bosons are generated. Diagonalizing the resulting mass matrix shows the Z and Z′

bosons as linear combinations of mass eigenstates Z1 and Z2. Precision measurements at

the Z boson mass peak have put stringent limits on such a mixing, and it can be safely

ignored here [20].
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The matrix element of the DY process in Eq. 2.17 can now be extended to also include

a term for the Z′ boson:

Mσ,τ (ŝ, t̂, û) =
e2

ŝ

∑

V=γ,Z,Z′
cσqqV cτeeV PV (ŝ) Mστ . (2.23)

The couplings cσ
ffZ′ are model dependent, the propagator however is assumed to be the

same as for the Z boson (Eq. 2.19), with the exception of the width, which might differ

because of new couplings, possible decays into exotic fermions, as well as the inclusion of the

tt̄ decay channel for Z′ bosons with masses larger than twice the top quark mass.

The addition of the Z′ boson as an exchange particle in the DY process happens in the

matrix element. Therefore the total cross-section, which is proportional to |M|2, will not

just be the sum of the cross-sections of DY and the new process. Instead there will be

model-dependent interference effects.

2.2.4 Sequential Standard Model

In this analysis, the Sequential Standard Model (SSM) Z′ boson [4] is used as a refer-

ence model. The Z′SSM boson has the same couplings to the SM fermions as the Z boson

(Eq. 2.18), but differs in mass and width (ΓZ′ ∝ MZ′). It can only exist if it couples to

additional exotic fermions or as an excited state of the Z boson in the context of extra di-

mensions [47], but it is a very useful baseline model to make comparisons between the reach

of different experiments.

The mass peak of the Z′SSM is shown in Fig. 2.5, assuming a pole mass of 1500 GeV. The

distributions in this figure are produced using the Pythia [46] generator (compare Sec. 5.2.1,
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Figure 2.5: Mass peaks of the Z′SSM and several E6 bosons, assuming a pole mass of

1500 GeV. The distributions are produced with the Pythia [46] generator; their normaliza-

tion corresponds to 1 fb−1 of pp collison data at a CM energy of 7 TeV. For interpretation
of the references to color in this and all other figures, the reader is referred to the electronic
version of this dissertation.

detector effects like resolution are not included) and correspond to 1 fb−1 of data. It can

be seen that below the mass peak, the differential cross-section for the DY process alone is

larger than the combined cross-section for DY and Z′SSM due to destructive interference.

However, the additional cross-section at the peak dominates the shape, therefore interference

effects are neglected in this analysis.

2.2.5 E6 model

GUTs are interesting because they unify electroweak and strong forces by postulating one

single gauge symmetry at a very high energy (referred to as the GUT scale). This can help
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to explain relations between quarks and leptons, since both can be part of the same group

representation. The GUT considered in this analysis is a model based on the symmetry

group E6 [3, 4], which can be derived from superstring theories. At the GUT scale, the E6

symmetry successively breaks into weaker symmetries,

E6 → SO(10)× U(1)ψ → SU(5)× U(1)χ × U(1)ψ, (2.24)

where SU(5) breaks into the SM symmetry (Eq. 2.1). The model suggests that a linear

combination of the two additional U(1) gauge groups is broken at the electroweak scale

(about 1 TeV), producing one additional gauge boson whose charges depend on the fermions

f , their chiralities σ and the mixing angle θE6
:

Q′σf (θE6
) = Qσfχ cos θE6

+Qσfψ sin θE6
, 0 ≤ θE6

< π. (2.25)

The coupling in the matrix element (Eq. 2.23) can be written as:

cσ
ffZ′ =

√

5

3

e

cos θW
Q′σf (θE6

), (2.26)

where the factor
√

5
3

e
cos θW

corresponds to the U(1)Y coupling g′ (see Eq. 2.13), with an

additional normalization factor to unify the SM gauge groups into an SU(5) group at GUT

energies.

Table 2.2 lists the names of models for several choices of θE6
[3, 4], which can be derived

from different GUT scenarios and could be detectable at the LHC. As mentioned above,

the charges Qσfχ and Qσfψ depend on the type of fermion and the helicity. They are listed
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Model Z′χ Z′ψ Z′η Z′I Z′N Z′S
θE6

0 π/2 − arctan
√

5/3 π + arctan
√

3/5 arctan
√
15 arctan

√
15/9

Table 2.2: Several motivated choices of θE6
and the corresponding models [3, 4].

uL, dL uR, eR dR eL

2
√
10 Qχ -1 1 -3 3

2
√
6 Qψ 1 -1 -1 1

Table 2.3: Charges of SM fermions in the E6 model [3, 4].

in Table 2.3 for the first fermion generation, but are the same for the other generations.

According to the underlying larger symmetries, some of the quarks and leptons share the

same charges.

All of the E6 models predict right-handed neutrinos, and most need the addition of exotic

fermions in order to cancel anomalies [20]. Right-handed neutrinos and exotic fermions are

assumed to be too heavy to participate in the Z′ decay.

Figure 2.5 shows the dielectron invariant mass peaks of the Z′χ, Z′η and Z′ψ bosons,

produced by the Pythia [46] event generator assuming a pole mass of 1500 GeV.

2.2.6 Randall-Sundrum graviton

As a gauge theory (see Sec. 2.1.1), the SM predicts exchange bosons for the electromagnetic,

strong and weak forces. Since gravitation is also a force, the graviton has been postulated

as its exchange boson. Its spin would be 2, because of the mathematical structure of the

interaction. However, no viable quantum field theory of gravitation has been developed yet,

due to infinities arising in the calculations. The “classical limit” of such a theory would be
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Figure 2.6: Suppression of the graviton wave function at the standard brane.

the theory of general relativity [48]. In this limit, it is possible to look at different space-time

scenarios and their effects on SM interactions, the gravitational force and its hypothetical

exchange particle, the graviton.

In the last few decades, models with extra dimensions have been proposed to explain

why gravity is so much weaker than the other fundamental forces, or, formulated differently,

why the Planck scale (MPl ≈ 1016 TeV) is so much higher than the electroweak scale

(MEW ≈ 1 TeV). While the model of Large Extra Dimensions [49] leads to a new hierarchy,

the Randall-Sundrum (RS) model [5] manages to remove the hierarchy problem completely.

In its minimal form, the RS model introduces one extra dimension φ which is considered

to be finite, forming a circle with radius rc at every point in the standard 4-dimensional

space-time. Two 4-dimensional subspaces, called branes, are suggested to be located at

angles φ = 0 and φ = π of this circle: the standard space-time brane at φ = π and a Planck

brane at φ = 0 (see Fig. 2.6). All SM particles are confined to the standard brane; only

the graviton field extends into the extra dimension. In the framework of general relativity,
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this extra dimension results in a 5-dimensional space-time metric with a “warping” factor in

front of the standard 4-dimensional metric:

ds2 = e−2krcφgµνdx
µdxν + r2cdφ

2, (2.27)

where xµ, xν are the standard 4-dimensional coordinates, φ is the extra dimension, and k is

a scale of the order of the reduced Planck scale M̄P l =MPl/
√
8π ≈ 2 10−18. As a result of

the warping factor e−2krcφ, the graviton probability functions are exponentially suppressed

away from the Planck brane, as illustrated in Fig. 2.6. This reduces the real masses m0 of

particles in the standard brane to an apparent mass m:

m = e−krcπm0. (2.28)

If krc ≈ 12, the electroweak scale is MEW ≈ e−12πMPl, solving the hierarchy problem.

As the graviton field propagates through finite extra dimensions, it can undergo Kaluza-

Klein excitations, which can be compared to excited states of a quantum harmonic oscillator.

Just like the excited oscillator states have higher energies than the ground state, the graviton

can obtain a mass, which depends on the order of the excitation n [50]:

mn = kxne
−krcπ. (2.29)

Here, xn is the nth root of the Bessel function j1. If the mass of a certain order as well as

the scale k are known, the couplings and width of the excited graviton states can be derived.

In this analysis, we set limits on the first excitation of the graviton, whose mass is
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Figure 2.7: Line shapes of Kaluza-Klein resonance peaks of a 1500 GeV RS graviton, as they
might be produced at the LHC. From top to bottom, the curves are for k/M̄P l = 1, 0.5,
0.1, 0.05, and 0.01, respectively [52].

expected to be at the TeV scale. Instead of k, the normalized scale k/M̄P l is used as the

input parameter. If the RS model solves the hierarchy problem, a small k/M̄P l implies a

large radius rc. This restricts the allowed values of k/M̄P l, since large extra dimensions are

easier to observe. On the other hand, if rc is too small, the theory becomes non-perturbative

[51]. Values considered in this analysis are 0.01 ≤ k/M̄P l ≤ 0.1.

Among other channels, the graviton is predicted to decay into two electrons and, depend-

ing on its cross-section and width, its first excitation could be visible as a resonance in the

dielectron invariant mass spectrum. The shape (height and width) of the resonance peak

depends on k/M̄P l as mentioned above and is illustrated in Fig. 2.7. Different from the Z′

bosons, the graviton is a spin-2 particle, and its production does not interfere with the DY
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Figure 2.8: Excluded regions in the space spanned by k/M̄P l and the graviton mass measured
at the 95% C.L. by the D/0 collaboration [53].

process. Furthermore, it can be produced in gluon-gluon annihilation and decay into two

photons, which is not possible for the resonance in the other models.

2.2.7 Previous limits

Before summer 2011, the strongest constraints for a Z′SSM boson came from precision mea-

surements of the Z boson peak at the Large Electron Positron collider (LEP), CERN. A

potential Z′ boson would change the shape of the Z boson mass peak by mixing (compare

Sec. 2.2.3). The combination of the indirect measurements [54, 55, 56, 57] excludes a Z′SSM
boson with a mass below 1.787 TeV at the 95% confidence level (C.L.) [58].

Direct experimental limits are determined at hadron colliders by searching for resonances

in the dielectron, dimuon and, in the case of the RS graviton, diphoton invariant mass
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spectra. The Tevatron collider at Fermilab, Batavia, USA, was shut down in fall 2011. Until

then it collided protons and antiprotons with
√
s = 1.96 TeV, while the LHC data used in

this analysis are produced by proton-proton (pp) collisons at
√
s = 7 TeV. Higher collision

energies increase the accessible search region in the invariant mass spectrum, allowing the

ATLAS and CMS collaborations at the LHC to obtain mass limits higher than the Tevatron

collaborations (CDF and D/0), with only a fraction of the number of recorded collisions.

Limits obtained by the ATLAS, CMS and Tevatron collaborations for the Z′SSM before

summer 2011 were all of the order of 1 TeV [59, 60, 61, 62], the highest being the limit by

CMS with 40 pb−1 of data, which excluded the Z′SSM boson at the 95% C.L. for masses

below 1.140 TeV [60]. It was a combination of the measurements in the dielectron and

dimuon channel. Limits for the E6 Z
′ bosons were also determined by several collaborations

[59, 60, 61, 63]. Table 2.4 shows the 95% C.L. mass limits for different E6 models obtained

with 40 pb−1 of ATLAS dimuon and dielectron data [59].

Model Z′ψ Z′N Z′η Z′I Z′S Z′χ

Mass limit [TeV] 0.738 0.763 0.771 0.842 0.871 0.900

Table 2.4: Combined mass limits at the 95% C.L. on the E6-motivated Z′ models using

40 pb−1 of ATLAS dimuon and dielectron data [59].

Direct mass limits for the RS graviton with a coupling parameter k/M̄P l = 0.1 were

obtained by the CMS and Tevatron collaborations, and were of order 1 TeV, the highest

being 1.079 TeV by the CMS collaboration with 40 pb−1 of combined dimuon and dielectron

data [60]. Figure 2.8 shows the excluded regions in the space spanned by k/M̄P l and the

graviton mass, measured at the 95% C.L. by the D/0 collaboration using 5.4 fb−1 of Tevatron

data and combining the dielectron and diphoton decay channels.
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Chapter 3

Experimental setup

The LHC is a circular collider at CERN in Geneva, Switzerland. This chapter gives an

overview over the technologies and strategies that allow the LHC to achieve record collision

energies at very high rates. As the data analyzed in this thesis were recorded with the

ATLAS detector, one of the four large detectors along the LHC ring, the second part of this

chapter describes its design, focusing on the components that are relevant for the detection

and reconstruction of electrons.

3.1 Large Hadron Collider

The most powerful accelerator ever built, the LHC [64, 65] was designed to collide two proton

beams 40 million times per second at a CM energy of 14 TeV (7 TeV per proton) with

an instantaneous luminosity of up to L = 1034 cm−2s−1. The instantaneous luminosity

measures the actual pp collision rate, which does not only depend on the frequency of the

beam crossings, but also on the density of the protons in the beam and the area in which

the two beams overlap. The LHC also has the functionality to collide heavy ions (e.g. lead)
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and has done so successfully already. On a ring with a circumference of 27 km, the beams

are crossed at four interaction points, where the four large LHC experiments are located:

ATLAS, ALICE, CMS and LHCb. ATLAS and CMS are both general purpose detectors,

while LHCb was built for analyzing flavor physics and ALICE primarily for detecting heavy

ion collisions.

3.1.1 Accelerator chain

The LHC ring is the last link of the CERN accelerator chain [66] (see Fig. 3.1). A number

of accelerators are used to bring the protons successively to higher energies and to split the

beam into bunches. With the exception of the newly built LHC, the accelerators in the chain

are older machines. Updated to serve as preaccelerators for the LHC, they were originally

built for previous experiments, like the Super Proton Synchrotron (SPS), where the W and

Z bosons were discovered. Every component of the accelerator chain is optimized for a

certain energy range. It was decided to fill the LHC with protons only instead of protons

and antiprotons, because the production of the latter limits the collision rates that can be

achieved.

The chain starts with a bottle of pure hydrogen gas, which lasts for about a year of LHC

running [67]. The hydrogen is ionized in a duoplasmatron, which uses a cathode to emit

electrons. The electrons are focused and hit the hydrogen molecules, splitting and ionizing

them to produce bare protons, which are then extracted and accelerated by an electric field.

The next station for the protons is a 1 m long radiofrequency quadrupole, which consists

of sinusoidal electrodes. The proton beam is accelerated to 750 keV, as well as focused and

divided longitudinally into bunches.
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The protons receive an energy of 50 MeV (which already gives them 30% of the speed of

light) in a linear accelerator called LINAC 2. This accelerator is 30 m long and consists of

three tanks; each of the tanks contains a line of drift tubes in an alternating electric field.

The frequency of the electric field is such that the protons are shielded within the tubes

when the field points in the wrong (decelerating) direction, so that they always gain energy

as they pass from tube to tube.

The protons are next accelerated in a series of synchrotrons where magnets are used

to bend the protons’ path to form a closed loop. The strength of the magnetic fields is

regulated and depends on the speed of the particles in order to keep the radius of the beam

trajectory constant. The energy that protons can reach in a synchrotron is usually limited by

the maximum strength of its bending magnets. To achieve further acceleration, the protons

must be transferred into another ring with larger radius and/or more powerful magnets. All

the synchrotrons in the LHC chain use resonating cavities, in which the electric field forms

a standing wave whose frequency and phase are timed to accelerate the protons.

The first circular accelerator in the chain is the Proton Synchrotron Booster (PSB). It

actually consists of four circular beam lines, stacked on top of each other, with a circumfer-

ence of 157 m. The protons leave the PSB with an energy of 1.4 GeV (corresponding to 91%

of the speed of light) and are fed into the next machine as six bunches.

The Proton Synchrotron (PS) is the oldest machine in the chain, built in 1959. On a circle

of 682 m, it accelerates the protons to 25 GeV. Furthermore, it splits the six bunches into

up to 72, which circulate closely together in a so-called bunch train. The concept of bunch

trains is important, because each injection takes time. Bunch trains allow the injection of

several bunches into an accelerator at once, making it possible to fit more bunches into the
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Figure 3.1: CERN accelerator complex.

ring.

The last accelerator before the LHC is the SPS, which has a circumference of 7 km.

There are two transfer lines to the LHC so that proton beams can be injected into the LHC

ring in both directions. The protons leave the SPS with an energy of 450 GeV as bunch

trains consisting of up to 4 · 72 bunches. A nominal LHC fill contains 2808 bunches in each

direction, produced in 12 SPS cycles, each cycle consisting of 3-4 PS fills.

3.1.2 LHC design

The LHC is a synchrotron located 50-175 m underground, in a tunnel with a circumference

of 27 km. It consists of two beam lines, in which two proton beams complete around 11,000
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turns per second in opposite directions to be collided at four interaction points. An ultra-

high vacuum (10−10 Torr, corresponding to three million molecules per cm3) is necessary

in the beam lines to avoid deflecting protons on gas molecules.

To accelerate the protons, the LHC uses eight superconducting cavities per beam. The

superconducting material makes it possible to store large amounts of energy. This allows for

fast acceleration, while only tiny fractions of the field energy are given to the beam when

it passes, making the cavity fields quite insensitive to small variations in the beam current.

As protons lose little energy due to synchrotron radiation after the acceleration phase, the

cavities’ main task is to keep the bunches of protons longitudinally focused. This happens

because the cavities form so-called radiofrequency buckets, in which the synchronous protons

(the ones right in the middle of the bucket) are optimally accelerated, while the other protons

oscillate around these central protons, getting too much or too little acceleration. Since the

cavities need to be cooled down to 4.5 K to maintain their superconducting properties, they

are grouped as four within a cryostat.

In order to keep protons at energies of 7 TeV in a circular orbit, magnets with very large

fields (up to 8 T) are needed. For the wires of the magnet coils, a superconducting material,

niobium-titanium, is used. This allows for the creation of large fields and is important to save

energy, since the currents needed to produce such magnetic fields are huge (∼12 kAmp). For

bending the proton orbits, the LHC uses 1232 dipole magnets of 15 m length. Quadrupole

and sextupole magnets are used for transverse beam focusing. Additional magnets correct

errors and improve the beam quality. For the metal to be superconducting and able to

transport large currents in the presence of a strong magnetic field, the magnets have to be

cooled down to 1.9 K.
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Because the LHC uses so much superconducting technology, a very powerful cooling

system is required. 10,000 tons of liquid nitrogen are used to bring the temperature of

around 100 tons of helium down to 80 K. Refrigeration units achieve further cooling. Below

2 K, liquid helium is superfluid, which means it has excellent heat transfer properties and

can propagate into tiny cracks in the magnet coils to absorb heat.

This design enables the LHC to achieve unprecedented collision rates at record CM

energies. The strength of the dipole magnets and the design of the cavities allow for protons

with very high energies. In addition, the accelerators further up the chain were upgraded

to accelerate large numbers of protons and divide them into many bunches. The higher-

order magnets (quadrupoles, sextupoles etc.) increase the density of the proton bunches, by

squeezing them transversally. The cavities keep the bunches compressed longitudinally. The

colliding frequency is further enhanced by using bunch trains, with very few and short gaps

between the bunches, so that more bunches per turn can be brought to collide at a given

interaction point. Finally, the beams are aligned to cross with a large overlap.

3.1.3 LHC status 2011

The LHC started colliding protons with protons in November 2009 and reached a CM energy

of 7 TeV (3.5 TeV per beam) in March 2010. Collisions at 8 TeV are foreseen in 2012. The

design CM energy of 14 TeV is expected to be achieved in 2014 after an extended technical

stop. The lower energy also limits the luminosity. While the LHC is planned to eventually

run with 2808 bunches per beam and an instantaneous luminosity of L = 1034 cm−2s−1, in

2011, the maximum number of bunches per beam were 1380 and the maximum instantaneous

luminosity L = 3.65 · 1033 cm−2s−1.
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3.2 ATLAS detector

ATLAS [68] is a general purpose detector, built to detect, filter and record high energy pp

and heavy ion collisions produced by the LHC. It was designed for precision measurements

of SM parameters as well as the search for a wide variety of possible new physics phenomena.

The detector is located 92.5 m underground at one of the LHC collision points. It is con-

structed cylindrically around the beamline, weighs 7000 tons and is 44 m long. The ATLAS

collaboration was formed in 1992. Today it consists of ∼3000 physicists from 38 countries.

The detector was constructed between 2003 and 2008.

3.2.1 Coordinate system

The coordinate system of the ATLAS detector is illustrated in Fig. 3.2. The origin is set at

the nominal interaction point in the center of the detector. The positive x-axis points to the

center of the ring, the positive y-axis upwards. The z-axis follows the beam line. The angle

φ is defined with respect to the positive x-axis and wraps around the beam axis, while the

angle θ is defined with respect to the positive y-axis.

The pseudo-rapidity is defined as η = − ln tan(θ/2) = 1/2 ln
|~p|+pz
|~p|−pz . For relativistic

objects (|~p| ≈ E), the pseudo-rapidity corresponds to the rapidity y = 1/2 ln
E+pz
E−pz . The

transverse momentum pT, transverse energy ET, and missing transverse energy Emiss
T are

defined in the x-y plane. Furthermore, the distance ∆R in the pseudorapidity-azimuthal

space is defined as ∆R =

√

∆η2 + ∆φ2.

38



z (beam line)

y

x (to ring center)

θ

φ

Figure 3.2: Coordinate system of the ATLAS detector.

3.2.2 Design

As a general purpose detector, ATLAS needs to be able to discover a wide range of new

physics phenomena. Thanks to the record high CM energy of the LHC, we can search for

heavier particles than ever before. In order to be able to detect and reconstruct possible

decay products up to very high energies, ATLAS has to be as hermetical as possible and

cover a large η range. In order to identify electrons in the presence of the large QCD multijet

background produced in pp collisions, calorimetric resolution as well as tracking capabilities

must be excellent. Subdetectors with high resolution close to the beam line are needed to

find jets produced by b-quarks, which, due to their lifetime, can be tagged by looking for

a small distance (a couple of mm) between the primary and secondary interaction vertices.

Furthermore, new physics is rare. In order to find it, the design number of pp collisions

at the LHC is 40 million times per second, which requires very fast detection and efficient

filtering at a very early stage in the data flow.
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Figure 3.3: Schematic view of the ATLAS detector [69].



The ATLAS detector is built like an onion around the beam line (see Fig. 3.3). From

the inside out, it consists of an inner detector for tracking, a calorimeter system for particle

identification and measuring the energy of electrons, photons and quark/gluon jets, as well as

a muon spectrometer. There are two magnet systems, a solenoid around the inner detector

and a large toroid for the muon system. The magnets bend the tracks of charged particles

and allow for charge/momentum determination.

The ATLAS Inner Detector consists of three subdetectors submerged in a solenoidal

magnetic field (2 T). It records the tracks of charged particles. Pattern recognition allows

the determination of the interaction vertex as well as of additional vertices from particles

with a long life-time, like B-mesons.

Located outside the Inner Detector’s solenoid are the electromagnetic (EM) and hadronic

calorimeters. They use a sampling technique, which means they consist of alternating layers

of absorbing and ionizable material. The EM calorimeter uses lead as the absorber and

liquid argon (LArg) as the active layer. The hadronic calorimeter is constructed using steel

and scintillating tiles in the barrel and copper (as well as tungsten in some parts) with LArg

in the forward regions.

Muon momenta are measured in the muon spectrometer, consisting of three layers of

high precision tracking chambers. Most of these chambers are drift tubes, filled with gas

that can be ionized by a traversing muon. The alignment of the chambers has to be done

very carefully to achieve good momentum resolution, especially for particles with high pT

(the design resolution is 10% for muons with pT = 1 TeV). The chambers are surrounded

by an air core toroid system. Of course, charged particles other than muons, which traverse

the calorimeters, could be detected by the system as well.
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At nominal luminosity, the ATLAS trigger system needs to filter 200 interesting events per

second out of 40 million others. It consists of three stages, Level 1 (L1), Level 2 (L2) and the

Event Filter (EF). L1 is hardware based, and uses a reduced granularity in the calorimeters

as well as specialized, fast muon chambers to trigger on high transverse energy/momentum

objects, Emiss
T and large total transverse energies. L1 chooses regions of interest (ROI),

which are picked up by L2 and analyzed with dedicated software algorithms on the full

detector granularity. The EF employs offline analysis algorithms to pick interesting events.

A menu of different cut combinations exists at all stages and it is possible to set prescales

to record only a fraction of the events triggered by a certain menu item.

A fast, efficient data acquisition system (DAQ) is needed to cope with the large amounts

of data. The data have to be channeled from the electronic read-outs of the different detector

systems to the storage disks. Event fragments from the different subdetectors are buffered

while the L1 trigger makes its decision. The requested ROI information is transferred to the

L2 trigger. Once L2 accepts an event, the full event information is assembled by the Event

Builder, so that the event can be analyzed by the EF. Accepted events are then moved to

the storage disk. The amount of data written to disk is still enormous; around 1000 million

events are recorded per year with a typical event in 2011 having a size of 1.1 MB [70].

Both the Inner Detector and the EM calorimeter need to be understood very well to allow

for the reconstruction of electrons and are therefore discussed in more detail in Sec. 3.2.3

and Sec. 3.2.4. Electron triggers are discussed in Sec. 4.2.
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3.2.3 Inner Detector

In order to provide high momentum and vertex resolution as well as good tracking abilities,

the ATLAS Inner Detector [68] consists of three subdetectors, which are submerged into a

solenoidal magnetic field (see Fig. 3.4). The inner layers, the Pixel detector and the Semi-

conductor Tracker (SCT), have very high granularities and typically provide three (Pixel

detector) and eight (SCT) hits per track, while the outermost detector, the Transition Ra-

diation Tracker (TRT), offers around 36 hits per track with less precision but over a larger

volume, thus contributing significantly to the momentum reconstruction.

The Pixel detector and the SCT cover a pseudo-rapidity range up to |η| < 2.5. They

consist of semiconducting silicon elements with an applied electric field (∼150 V). Charged

particles passing through the semiconducting material set charge carriers free that accumu-

late at the electrodes. This results in a charge difference which is turned into a signal current.

Both detectors are exposed to immense amounts of radiation from the proton beams. The

innermost Pixel layer is as close as 5 cm to the beam line and will have to be replaced after

three years of running at design luminosity. Both detectors are cooled to reduce the leakage

current, which increases with irradiation.

The Pixel detector consists of 80 million silicon pixels (each with a size of 50 by 400 µm).

It has three barrels around the beam line and three disks at each side, covering radii between

5 and 15 cm. The SCT, covering radii up to 52 cm, contains silicon microstrips, measuring

80 µm by 12.6 cm. The microstrips are arranged in double layers, each layer with two sets

of strips at a small angle to each other, in order to obtain a 3D measurement.
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Figure 3.4: Schematic view of the ATLAS Inner Detector [69].



The TRT is a drift tube system, extending to |η| < 2. It consists of straw tubes that are

4 mm wide and up to 1.44 m long and are filled with a Xe/CO2/O2 gas mixture. Within the

tubes are gold-plated tungsten wires, serving as anodes, kept at ground potential, while the

tubes themselves are used as cathodes, with a potential of -1530 V. Charged objects ionize

the gas and the resulting ions travel to the electrodes. The drift time (max. 45 ns) allows

for a determination of the objects’ crossing R, φ coordinates with a resolution of 170 µm.

The TRT does not provide information about the z-coordinate. In addition to its tracking

capabilities, the TRT can contribute to particle identification. The straws are surrounded by

polypropylene, which produces transition radiation (photon emission if a relativistic particle

crosses the boundary of two materials). The xenon gas reacts with the photons, causing a

larger signal than the passing charged particles. A two-threshold system makes it possible

to distinguish between tracking and transition radiation signals. Since electrons are lighter

than hadrons, the necessary ET for an electron to cause transition radiation is O(1 GeV),

while for pions, which are almost 300 times heavier, the necessary ET is O(100 GeV). Of

course, this discrimination breaks down for particles with very high ET.

3.2.4 Electromagnetic calorimeter

The EM calorimeter [68] has alternating layers of absorbing lead and LArg, which serves as

the active medium. Submerged into the LArg are electrodes creating electric fields. Charged

particles traversing the lead interact with it through bremsstrahlung and produce secondary

particles, which can interact with the material themselves, thus creating tertiary particles

(see Fig. 3.5). This showering can also be initiated by a photon converting into an electron

pair and continues until all the energy is absorbed [71]. When the shower particles travel
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Figure 3.5: Schematical illustration of an electron shower in the EM calorimeter.

through the LArg, they ionize the liquid. The ions travel to the electrodes, where they

produce a current proportional to the applied voltage and the energy deposited in the LArg.

The coverage of the EM calorimeter is up to |η| < 3.2 overall, and up to |η| < 2.5 with

fine granularity, matching the Inner Detector. It consists of a barrel and two endcap wheels

(see Fig. 3.6). The barrel (|η| < 1.475) is constructed of two halves, separated by a small

gap (4 mm) at z = 0. The endcap wheels are each divided into an inner and an outer wheel.

In order to achieve uniformity in φ, to avoid azimuthal cracks, and to allow for very fast

read-out, the EM calorimeter is constructed like an accordion. Lead absorbers, LArg, and

electrodes are folded following a zig-zag pattern (see Fig. 3.7). In the barrel, the folds are

parallel to the beam line, and the angle is varied with the radius to keep the width of the

LArg gap constant. For the endcaps, the geometry is more complicated. Here, the accordion

folds are perpendicular to the beam line and the angle and amplitude of the folding vary with

the radius. The width of the LArg gap therefore varies, which is accounted for by changing

the applied voltages with η.
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Figure 3.6: Schematic view of the ATLAS calorimeters [69]. The outer radius is about 4 m, while the extension along the
beamline is 12 m.



Figure 3.7: Accordion structure of the EM calorimeter [69].

The precision region is made up of three layers with different granularities in η and φ [72]

(see Fig. 3.8). In η and depth the partition is achieved by etching the electrodes, in φ by

bundling electrodes. The first layer consists of narrow strips, used for position measurements,

that are very important e.g. for the determination of photon directions. Most of the energy

is collected in the second layer, which is the deepest. The third layer has a very coarse

granularity and is installed to absorb objects with very high energies. Underneath the three

layers, for |η| < 1.8, a presampler, consisting of a thin layer of LArg, is used to estimate the

energy lost in the Inner Detector. In order to keep the argon liquid, the barrel and the two

endcaps are surrounded by cryostats, which cool the material down to 88 K.
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Figure 3.8: Barrel module, showing the different layers of the EM calorimeter [68]. X0
describes the radiation length, which is the travel distance for a relativistic electron during
which it loses all but ∼1/e of its original energy.
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Chapter 4

Electrons in the ATLAS detector

In order to search for high-mass dielectron resonances, we look for central, highly energetic

electrons, produced in pp collisions at the center of the ATLAS detector. Since electrons

are charged, they leave a track in the Inner Detector (see Sec. 3.2.3 and 4.1). Furthermore,

they deposit their energy across several cells in the EM calorimeter (compare Sec. 3.2.4

and 4.1). Since no interesting events should be missed, the electron trigger, reconstruction

and identification efficiencies in ATLAS need to be high. On the other hand, many pp

collisions contain hadronic jets, which can fake electron signatures in the detector and during

reconstruction. These need to be rejected to reduce backgrounds and, in the case of the

trigger, to decrease the amount of data to be processed and stored. This chapter describes

how electrons in the ATLAS detector are triggered, reconstructed and identified.

4.1 Z → ee event display

Figure 4.1 illustrates the signature of a Z → ee event in the ATLAS detector [69]. Two

different perspectives of the detector are shown, as well as a lego plot, which illustrates the
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energy deposited in the EM calorimeter. The numbers denote various detector components:

1. Pixel detector

2. SCT

3. TRT

4. EM calorimeter

5. Hadronic calorimeter

The two electrons are depicted by the yellow pattern. The letters correspond to parts of the

electron signature in the detector:

a) Tracking hits in the Inner Detector

b) TRT high threshold hits

c) Energy cluster in the EM calorimeter
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Run Number: 154817

Event Number: 968871

mee = 89 GeV

η

φ
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Figure 4.1: Event display of a Z → ee event [69]. Two different perspectives of the detector are shown (left, bottom right), as
well as a lego plot (top right), which illustrates the energy deposited in the EM calorimeter.



4.2 Electron trigger

The purpose of the ATLAS trigger system is to filter 200 interesting events out of the 40

million pp collisions happening per second in the ATLAS detector (see Sec. 3.2.2). The

trigger also does a first categorization, separating events with electrons and photons from

events with muons or jets only.

The ATLAS trigger is an event selection system, consisting of three stages, L1, which

reduces event rates of 40 MHz to 75 kHz, L2 (reduction to 3.5 kHz) and EF (reduction to

200 Hz). The triggers used in physics analyses are actually trigger chains, with one link

for each trigger level. A menu of different cuts, called trigger items, exists at every stage.

Here, only functionalities of the triggers that are used to select electron events are described.

These triggers cover a range of |η| < 2.5.

4.2.1 Level 1 Calorimeter trigger

The first step in triggering electrons is the hardware-based Level 1 Calorimeter (L1Calo)

trigger [73]. Since the time between two pp collisions is too short for a complete trigger

decision, the data are pipelined, which makes it possible to have a trigger decision for every

collision, albeit with a small latency (< 2.5 µs). To save processing time, the L1Calo trigger

does not use the full granularity of the EM calorimeter. Instead, it performs analog sums

over the three vertical layers and the cells, resulting in 3500 trigger towers with a dimension

of ∆η ×∆φ = 0.1× 0.1 in the barrel middle layer (illustrated in Fig. 3.8). For every trigger

tower, the recorded analog pulse is associated with a bunch-crossing of the LHC, corrections

are applied and it is digitized, i.e. translated into an energy measurement. An L1 EM

trigger item with a simple energy threshold is passed if there are two neighboring trigger
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towers whose energies sum up to a value larger than the threshold. If the central 2 × 2

window passes at least one of the L1 trigger items, the 4 × 4 window around it is called

the Region of Interest (ROI) and its coordinates are sent to the next level, the L2 trigger.

Events without a region that passes any item of the L1 trigger menu are discarded.

4.2.2 High Level Trigger

The High Level Trigger (HLT) [74] is software-based and consists of L2 and EF. Since the

time constraints are less stringent than at L1, the full granularity of the EM and hadronic

calorimeters, as well as information from the Inner Detector can be used. Both levels employ

a number of selection algorithms on the reconstructed energy clusters and tracks, similar to

the offline identification cuts (see Sec. 4.4). For electrons, three baseline selections with

increasing jet rejection capabilities (and decreasing efficiencies) are chosen: Loose, Medium,

and Tight.

The L2 trigger receives the coordinates of the ROIs defined by L1. Using the full calorime-

ter granularity and starting from the cell with the highest energy in the ROI, it reconstructs

the energy clusters. This reconstruction includes potential energy deposits in the hadronic

calorimeter. The values of several variables describing the shape of the energy showers are

determined, since these shower shapes differ for electrons and jets and can therefore serve

as discriminants. Depending on the L2 trigger item, a number of cuts are applied on the

shower shape variables. For reconstructing tracks as fast as possible, the IDScan algorithm

first determines the z coordinate of the interaction vertex. Only tracks are reconstructed

that point to the interaction vertex. Finally clusters and tracks are matched to each other

to build L2 electron objects, and cuts can be applied on variables describing the quality of
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the matching.

If at least one ROI passes the L2 trigger, the corresponding event is fully assembled

using all available information from the different subdetectors. Thus the EF has access

to the complete event, but usually only uses the ROIs provided by L2. Cluster and track

reconstruction are the same as in the offline case (see Sec. 4.3). The situation is similar for

the identification cuts (Sec. 4.4), however, unlike the offline cuts, the EF cuts are not ET

dependent.

4.3 Electron reconstruction

Central electrons (|η| < 2.5) are reconstructed by the standard e/gamma algorithm [75],

which matches energy clusters in the EM calorimeter to tracks in the Inner Detector.

Electrons usually leave their energy in more than one calorimeter cell. The appropriate

cell energies have to be combined into energy clusters [76]. The first part of the algorithm

looks for seed clusters. The energies in the layers of the EM calorimeter are summed into

towers of size 0.025 × 0.025 in η, φ (in the second layer) and a 3 × 5 window slides over

these towers to find local energy maxima above a certain energy threshold. Using a smaller

window, the position of the seed cluster is determined by finding the energy weighted center.

If two clusters are too close to each other, only the one with the larger energy is kept.

Track reconstruction in ATLAS [77] is challenging due to the large amount of QCD

multijet production in pp collisions. Two complementary tracking algorithms are used: The

main algorithm starts with finding track seeds in the Pixel and SCT parts of the Inner

Detector (see Sec. 3.2.3). A combination of global and local pattern recognition is applied

and the tracks are extended to the TRT. For tracks without or with only a few hits in the

55



Pixel detector/SCT, a track finding algorithm starting from the TRT is used.

Tracks and energy clusters are matched to each other by extrapolating from the last track

measurement point to the second layer of the EM calorimeter and then comparing the η,

φ coordinates of this extrapolation with the coordinates of the seed clusters. If ∆η < 0.05

(this cut is only applied to tracks with hits in the Pixel detector/SCT) and ∆φ < 0.05, a

track is matched to a cluster. Possible bremsstrahlung (electrons radiating photons while

accelerating, losing energy and therefore being bent more by the magnetic field), which might

affect the quality of the extrapolation, is accounted for by allowing ∆φ < 0.1 in the direction

where the track is bent. If more than one track is matched to a given cluster, all matched

tracks are kept, and the one with the smallest ∆R is considered the best match. Tracks with

silicon hits are preferred over tracks without, since the latter are more likely to come from

photon conversions (photons converting into an electron-positron pair).

Energy clusters with matched tracks are considered electron candidates. For each can-

didate, the cluster is recomputed with an optimized cluster size, separately for each layer,

starting with the coordinates of the seed cluster [77]. All cells in a 3 × 7 window (in middle

layer cell units) are considered part of the cluster. Energy corrections are applied. The

electron candidate’s 4-momentum is calculated by taking the energy from the cluster and its

direction from the best matched track, if this track contains hits in the Pixel detector/SCT.

If not, the η, φ coordinates of the cluster are used.

4.4 Electron identification

Among the reconstructed electron candidates are not only electrons from the processes we

are interested in, but also jets, electrons from conversions, and electrons from pion decays,
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which can all leave tracks in the Inner Detector and energy clusters in the calorimeters.

Additional algorithms are needed to reduce this background.

Electron identification [75, 34] in ATLAS is done by applying a number of cuts on the

shapes of the showers in the EM calorimeter, on the tracks in the Inner Detector and on

the matching between clusters and tracks. This is effective, since jets tend to have wider

showers than electrons, as well as more tracks. Conversions and electrons from pion decays

are usually produced a bit off the center of the detector, and therefore can miss the first

layers of the Inner Detector. The TRT can help with particle identification by measuring

the transition radiation of relativistic particles (see Sec. 3.2.3).

The identification cuts have been optimized to allow for the best possible electron effi-

ciencies while maintaining high rejection rates for QCD jets. As part of the optimization, the

cuts are binned in η and ET of the electron candidates. The cuts are binned in ET because

the showers for both jets and electrons are narrower at higher energies. Both shower shapes

and tracks in the Inner Detector depend on the amount of material the electrons have to

traverse, which makes binning in η necessary. Harmonized with the triggers, three reference

cut sets are defined, Loose, Medium, Tight, with increasing jet rejection from Loose to Tight.

The Loose cut set relies on cuts on shower shape variables in the middle layer of the

EM calorimeter and on a cut on the energy leakage into the hadronic calorimeter. On top

of that, the Medium set includes cuts on the shower shapes in the first layer of the EM

calorimeter, as well as track quality cuts and cuts on the track matching. The Tight set

applies more stringent cuts on the track matching and on the track quality; furthermore

cuts on the TRT hits are added, including cuts on the high threshold hits, which come from

transition radiation.
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An overview of the different cuts used for electron identification in ATLAS is given in

Table 4.1 [75, 34].

Type of cut Description
Loose

Middle layer of EM calorimeter
Ratio of the energy in 3 × 7 cells to the energy in 7 × 7
cells centered at the electron cluster position
Width of the shower in η

Hadronic leakage
Ratio of ET in the first layer of the hadronic calorimeter
to ET of the EM cluster (used over the range |η| < 0.8

and |η| > 1.37)
Ratio of ET in the hadronic calorimeter to ET of the
EM cluster (used over the range |η| > 0.8 and |η| <
1.37)

Medium (in addition to Loose cuts)

First layer of EM calorimeter
Total shower width
Ratio of the energy difference between the largest and
second largest energy deposits in the cluster over the
sum of these energies

Track quality
Number of hits in the Pixel detector (≥ 1)
Number of total hits in the Pixel detector/SCT (≥ 7)

Transverse impact parameter (|d0| < 5 mm)

Track-cluster matching ∆η between the cluster position in the first layer of the
EM calorimeter and the matching extrapolated track
(|η| < 0.01)

Tight (in addition to Medium cuts)

Track-cluster matching
∆φ between the cluster position in the middle layer and
the matching extrapolated track (∆φ < 0.02)
Ratio of the cluster energy to the track momentum

Tighter ∆η requirement (∆η < 0.005)

Track quality Tighter transverse impact parameter cut (|d0| < 1 mm)

TRT
Total number of hits in the TRT
Ratio of the number of high-threshold hits to the total
number of hits in the TRT

Against conversions
Number of hits in the first layer of the Pixel detector
(≥ 1)
Veto electron candidates matched to reconstructed pho-
ton conversions

Table 4.1: Description of the electron identification cuts [75, 34].
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4.5 Electron isolation

In addition to the electron identification cuts, it is possible to require the tracks and/or the

calorimeter cluster of the electron candidate to be isolated [75]. This allows for an enhanced

rejection of QCD jets, which usually consist of a bundle of tracks and wide clusters. In the

case of track isolation, a cut is applied on the sum of the scalar pT of the tracks that fall

into a cone with an opening angle R around the electron. For calorimeter isolation, the ET

deposited in the EM and hadronic calorimeters in a cone around the electron is summed

up. Of course, the ET of the electron cluster itself is subtracted. Corrections are applied to

account for pile-up effects (see Sec. 5.3.4) and energy in the cone that actually belongs to

the electron. As this leaked energy is ET dependent, so are the corrections.

4.6 Performance of electrons with high ET

The performance of electrons in ATLAS, i.e. the efficiency and quality of electron triggers,

reconstruction and identification, has been studied very well. The focus of these studies has

been on electrons with ET up to around 100 GeV, due to feasibility and physics analyses’

needs: Most electrons from low mass Higgs, Wand Z bosons as well as top quark decays

have energies below 100 GeV. However, in this analysis, we look for signatures with mass

peaks up to 2 TeV. The electrons from these resonances can have transverse energies above

500 GeV and we need to understand their properties in order to detect them efficiently and

correctly reconstruct their energies. Furthermore we have to make sure that we can control

the background from QCD jets faking electron signatures.

Studies of the properties of high ET electrons in ATLAS data are very challenging because
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of low statistics and the difficulty of obtaining a clean electron sample in data without jet

contamination. At lower energies, this is achieved using the characteristic decays of Z and

W bosons (see App. A), but at high energies no such handle is available and most studies

rely on calibration runs and simulations.

4.6.1 Energy reconstruction

The energy resolution at sampling calorimeters [78] can be parameterized as

σ(E)/E = a/
√
E ⊕ b/E ⊕ c, (4.1)

where ⊕ represents addition in quadrature, and E is the energy in GeV. The first term is

stochastic, the second one is due to pile-up and electronic noise and the third is the constant

term. The constant term is the result of imperfect reconstruction of the cluster energies,

which can happen because of unaccounted energy deposits in the Inner Detector or other

calibration issues. At high energies, the constant term dominates the resolution, and a lot

of work has been done to decrease it. For |η| < 1.37, the constant term (and therefore the

resolution for highly energetic electrons) has been measured in data at transverse electron

energies of ∼50 GeV to be 1.1%, while for 1.52 < |η| < 2.47, it is 1.8%, a bit larger due

to additional material in front of the calorimeter. Calibration runs, using electronic pulses,

showed that high energy signals up to 2 TeV do not cause unexpected deterioration of

the resolution [79]. Figure 4.2 shows the effect of the electron resolution on the dielectron

invariant mass peaks of the Z′SSM boson and the Z′χ boson assuming a peak mass of 1.5

TeV. Thanks to the excellent electron resolution, after reconstruction, the two models can

still be distinguished due to their shape.

60



 [TeV]eem
1

E
ve

nt
s

-310

-210

-110

1
SSM, reco
SSM, gen
, recoχ
, genχ

Figure 4.2: Simulated dielectron invariant mass distribution of the Z′SSM boson and the

Z′χ boson for an assumed peak mass of 1.5 TeV. The distributions are normalized to unit
area and shown before (“gen”) and after electron reconstruction and application of event
selection cuts (“reco”, see Sec. 6.1 for a description of the selection cuts).

The uncertainty on the absolute energy scale in ATLAS ranges from 0.5-1.5%, depending

on ET and η [80]. Again, calibration runs using pulses with a wide variation of energies

have been employed to determine the linearity of the electronic response and its effect on the

energy reconstruction. Nothing problematic has been seen throughout the range of tested

energies (up to 2 TeV) [79].

4.6.2 Bunch-crossing identification

The L1Calo trigger (Sec. 4.2) saturates if the transverse energy per trigger tower is larger

than 255 GeV [73]. In principle, this is not a problem since every event with a saturated
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L1Calo signal automatically passes the trigger. However, the identification of the correct

LHC bunch-crossing depends on the shape of the analog pulse, so it could be impacted

by the saturation [81]. If the saturated signal from a high ET electron is associated with

a bunch-crossing too early or too late, the wrong event will be triggered, and therefore

the trigger efficiency will be decreased for events with highly energetic objects. Dedicated

algorithms for saturated signals have been employed to deal with this issue [81]. Preliminary

studies in 2011 show no inefficiency for energies up to 3 TeV in the barrel (η < 1.37), and

up to 2.1 TeV in the calorimeter endcaps.

4.6.3 Trigger and identification efficiencies

Trigger and identification efficiencies for electrons with ET below ∼100 GeV can be de-

termined from data by applying the Tag-and-Probe method on Z boson decays (this is

documented in detail for identification efficiencies in App. A). In this energy range, Tag-and-

Probe studies show rising efficiencies in ET. However, at higher energies, the Tag-and-Probe

method suffers from low statistics and cannot be used reliably any more. One important

alternative is to study efficiencies in simulated samples.

The identification criteria chosen for this analysis are the Medium set (see Table 4.1) and

two additional cuts: the requirement of a hit in the innermost layer of the Pixel detector

(B-layer) to reject electrons from photon conversions and a cut on the calorimeter isolation

(see Sec. 4.5) to decrease the background due to QCD jets.

Fig. 4.3(a) shows the efficiency of these cuts with respect to reconstructed electron can-

didates in bins of ET. A simulated sample of Z′ events is used for this study. No efficiency

decrease with ET is expected for the selection according to the simulation. This can be
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understood by looking at the details of the cuts: Since highly energetic electrons tend to

have more focused showers (the momentum in the direction of flight dominates), the shower

shape cuts are actually less stringent than at low ET (for this reason the cuts are binned

in ET, though the highest ET bin starts at 80 GeV). The energy leakage into the hadronic

calorimeter is expected to be larger for high ET electrons, but the applied cut (compare

Table 4.1) is a ratio cut, thus no efficiency should be lost. The track cuts are not expected to

cause problems with increased energy either. As can be seen in Fig. 4.3(b), the B-layer cut

actually becomes more efficient with higher ET. However, this efficiency gain is cancelled

by the isolation requirement, whose efficiency drops slightly with rising ET. This is due to

imperfect leakage corrections (compare Sec. 4.5).

The trigger chain used in this analysis is L1 EM14 - L2 e20 medium - EF e20 medium.

Figure 4.4 shows that the efficiency for this trigger with respect to the electrons used in this

analysis is very high (∼99%), and flat in ET.
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Figure 4.3: Identification efficiency with respect to reconstructed electrons as a function of
ET. M = Medium, BL = B-layer and Iso = isolation requirements. (b) shows the effects of

the B-layer and isolation cuts individually. Both plots are made with a simulated “flat” Z′
sample (see Sec. 5.2.2) and integrated over η between -2.47 and 2.47, excluding the transition
region between barrel and endcap calorimeters.
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Figure 4.4: Trigger efficiency with respect to the electrons used in this analysis as a function
of ET. The plot is made with a simulated “flat” Z′ sample (see Sec. 5.2.2) and integrated
over η between -2.47 and 2.47, excluding the transition region between barrel and endcap
calorimeters.
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Chapter 5

Simulation of signal and background

processes

In this analysis, we are looking for a resonance in high-mass electron pairs. In order to

estimate the SM background, it is important to understand which SM processes can produce

the same signature (two reconstructed electrons) in the detector. This chapter describes the

simulated signal and background samples, as well as data-driven corrections, which need to

be applied to them to increase the quality of the modeling.

5.1 Standard Model backgrounds

The largest, irreducible background in this analysis is the DY process, the production of a

Z boson or an excited photon which then decays into an electron and a positron (compare

Sec. 2.1.4, Fig. 2.1 and 2.4).

All other backgrounds are smaller than the DY process by at least a factor of ten:
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• Diboson production, the production of two Z bosons, two W bosons or one Z and one

W boson, can lead to a dielectron final state, if one (in case of a Z boson) or two (in

case of WW production) bosons decay into electrons.

• The same is true for tt̄ production, the simultaneous production of a top and an antitop

quark. Both top quarks decay into a bottom quark and a W boson. If both W bosons

decay into electrons (and neutrinos), the event has a dielectron final state.

A second class of backgrounds involves the misidentification of QCD jets as electrons:

• A W boson can be produced in association with one or more jets. The electron from

the W boson and one of the jets could be misinterpreted as an electron pair.

• Because the LHC collides protons at very high energies, a large fraction of events

contains multiple QCD jets. Two jets which are wrongly reconstructed and identified

as electrons contribute to the SM background as well.

Dedicated electron identification and isolation requirements are applied (compare Sec. 4.4

and 6.1), which reduce the background from misidentified QCD jets very efficiently. However,

a non-negligible fraction survives these cuts, since the cross-sections for W + jets and QCD

multijet production are very large.

5.2 Samples

In this analysis, all SM backgrounds, except for the QCD multijet production, are taken

from simulated samples. The background contribution from QCD multijets is estimated

from data (see Chapter 6.2), as a huge number of QCD multijet events would have to be
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simulated, given the small rate of jets misidentified as electrons. Furthermore, there is a

large uncertainty on the simulation of the misidentification rate itself.

5.2.1 Event generators

Simulated samples are made with event generators, computer programs that produce final

states of a chosen number of particle collisions for a variety of physics processes. These event

generators receive probabilities as input: The PDFs, as well as the Feynman diagrams for

given physics processes (see Sec. 2.1.3). They simulate the final state particles and their

properties by integrating over the allowed phase space using a random number sampling

(Monte Carlo).

A number of event generators have been developed with different strong and weak points.

Pythia [46] and Herwig [82] are general purpose generators, starting from LO matrix el-

ements. They include the decays of particles and apply corrections due to beam remnants,

electroweak and QCD radiation. The latter is often described as showering, since one emit-

ted parton can result in a large number of hadrons. Alpgen [83] does not solely rely on

dressing up the LO process with showers, but calculates the matrix elements individually for

different jet multiplicities. This is important for realistic modeling of hard parton radiation.

MC@NLO [84] combines the additional processes in a more consistent way than Alpgen

and includes matrix elements for all next-to-leading order (NLO) processes that contain real

gluon or quark emissions and virtual particle loops.

In order to compare the simulated final states with real data, the detector response must

be replicated as well. For this, ATLAS feeds the output of the event generators into a

detector simulation program called Geant4 [85], which propagates the final state particles
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through the detector. For example, electrons are translated into hits in the Inner Detector

and energy deposits in the calorimeters.

5.2.2 Samples and cross-sections

Table 5.1 shows simulated samples of the SM processes used for the background estimates

in this analysis. The table also contains the production cross-section σ times the branching

ratio B which corresponds to the fraction of events decaying into two electrons.

In order to calculate the expected event yield N of a given process,

N = σBALint, (5.1)

the following ingredients are needed:

• The production cross-section σ.

• The branching fraction of events B decaying into the final state we are interested in,

for example two electrons.

• The acceptance, which is the fraction of produced events recorded by the ATLAS

detector. This is usually not one, due to kinematic cuts and inefficiencies in particle

detection (see Sec. 4.6.3).

• The integrated luminosity Lint - the number of pp collisions, corresponding to the

integral of the instantenous luminosity: Lint =
∫

Ldt (compare Sec. 3.1).

With the exception of the tt̄ process, all samples are simulated at LO, using a PDF set

called MRST2007lomod [19] (CTEQ6.1 [86] forW+jets). The tt̄ sample is produced at NLO
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Figure 5.1: Reweighted invariant mass distributions for different masses of the Z′SSM boson.
The histograms are all normalized to unit area.

with the CTEQ6.6 PDF [87]. However, the overall cross-sections are scaled to the highest

known order: NLO for dibosons, NNLO for W + jets and approximate NNLO for tt̄ [88, 89].

The DY as the dominant background is corrected using mass-dependent correction factors

(see below).

Table 5.2 and 5.3 show a representative selection of possible signal processes and their

cross-sections. All signal samples are produced at LO with Pythia and interference between

Z′ production and the DY process is neglected. For the Z′ process, instead of separate signal

samples, we use a sample which is flat in bins of dielectron mass. To produce this sample, the

Breit-Wigner resonance curve and exponential cross-section drop due to parton luminosities

were removed. It can be reweighted to obtain the dielectron mass distribution for any given

Z′ mass (see Fig. 5.1).

In order to improve the LO estimate for the DY process as the dominant SM background,
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Process Generator Order Filter Binning Bins σB [pb]

DY Pythia LO 2 electrons mee [GeV]

> 60 856
75-120 819.9145
120-250 8.711065
250-400 0.415835
400-600 0.067136
600-800 0.011168

800-1000 2.7277 · 10−3

1000-1250 9.1646 · 10−4

1250-1500 2.4942 · 10−4

1500-1750 7.6876 · 10−5

1750-2000 2.6003 · 10−5

> 2000 1.5327 · 10−5

Dibosons Herwig LO 1 electron/ process
WW 17.46
WZ 5.543

muon ZZ 1.261

W + jets Alpgen LO 1 electron jets

1 1551.6
2 452.5
3 121.1
4 30.4
5 8.3

tt̄ MC@NLO NLO 2 electrons mee [GeV]

30-150 3.0240
150-300 0.34669
300-450 0.028965

> 450 4.81 · 10−3

Table 5.1: List of background samples. The DY cross-sections are shown at LO, while the
cross-sections of the other background samples are scaled to the highest available order.

correction factors are calculated as a function of the dielectron invariant mass [90]. These

k-factors are determined for NNLO QCD corrections (gluon loops and radiation) as well as

for electroweak corrections. Pythia already includes photon emissions, thus the additional

corrections that are accounted for are gauge boson loops. Gauge boson emissions are not

included, which results in an underestimate of the DY cross-section of 2%. Since the elec-

troweak k-factor depends on the coupling of W and Z bosons to the exchange particle, only

the QCD k-factor can be applied to Z′ production, assuming that slightly different couplings
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Mass [GeV] σB(Z′SSM) [pb] σB(Z′χ) [pb] σB(Z′ψ) [pb]

250 27.35 15.89 8.132

500 2.038 1.163 0.5968

750 0.3668 0.2101 0.1069

1000 0.09477 0.05183 0.02690

1250 0.02960 0.01556 8.171 · 10−3

1500 0.01033 5.064 · 10−3 2.732 · 10−3

1750 3.876 · 10−3 1.747 · 10−3 9.833 · 10−4

2000 1.579 · 10−3 6.410 · 10−4 3.706 · 10−4

2250 6.935 · 10−4 2.493 · 10−4 1.422 · 10−4

2500 3.296 · 10−4 1.044 · 10−4 5.668 · 10−5

Table 5.2: LO cross-sections for the Z′SSM and some of the E6 models [90]. The generator is

Pythia, a dielectron filter is applied and interference between the Z′ and DY is neglected.

Mass [GeV] σB(k/M̄P l = 0.01) [pb] σB(k/M̄P l = 0.1) [pb]

300 0.5216 -
500 0.04046 -

800 2.996 · 10−3 0.2982

1000 0.7839 · 10−3 0.07734
1250 - 0.01838

1500 - 5.288 · 10−3

Table 5.3: LO cross-sections for the RS graviton with different values of k/M̄P l [90]. The
generator is Pythia and a dielectron filter is applied.

to the initial state quarks do not change the correction. No higher order correction factors

are currently available for RS graviton production [91, 92]. Table 5.4 shows values of the cor-

rection factors for different invariant masses for samples produced with the MRST2007lomod

PDF [19].
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mee [GeV] 500 750 1000 1250 1500 1750 2000

k∗QCD 1.131 1.109 1.080 1.041 0.990 0.929 0.860

k∗EW 1.032 1.016 1.000 0.986 0.971 0.956 0.941

Table 5.4: Higher order QCD and electroweak (EW) correction factors [90] for DY samples
produced with the MRST2007lomod PDF [19].

5.3 Corrections to the simulated samples

The simulation of electrons and their signatures in the ATLAS detector is in good agreement

with results obtained from real data. The main reason for imperfect modeling of electron

signatures is missing knowledge of the exact distribution of material in the ATLAS detector

[93]. An example is the modeling of electron shower shapes. Discrepancies were found

between data and simulation of electron shower widths. These differences are largely due to

a simplified description of the absorber layers in the EM calorimeter: Instead of the actual

sandwich structure iron-glue-lead-glue-iron, the simulation assumes a homogenous mixture

of materials.

The difference in shower widths affects the efficiency of the identification cuts, as some of

these cuts are applied on shower shape variables (compare Table 4.1). In order to do a fair

comparison between data and simulation, this efficiency discrepancy needs to be corrected for

using scale factors applied to simulated samples. A description of these and other necessary

corrections to the simulated samples is described in the following sections.
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5.3.1 Efficiencies

The imperfect description of the detector in the simulation causes small differences between

data and simulated samples concerning electron trigger, reconstruction and identification

efficiencies. In order to correct this and allow for an unbiased comparison between data and

simulated signal and SM backgrounds, scale factors (SF) are calculated as the ratio between

the efficiencies (ǫ) for true electrons in data and in the simulated samples:

SF =
ǫ in data

ǫ in simulation
. (5.2)

To account for changes of the efficiency in different regions of the detector and for electrons

with various energies, the SF are binned in η and ET.

The biggest challenge in the efficiency measurement consists of getting a sample of elec-

trons from data on which to perform the efficiency determination. This sample should consist

of real electrons, not QCD jets, and no cuts should be applied to these electrons that could

bias the efficiency measurement. The method of choice is the Tag-and-Probe method, which

makes use of the characteristic signatures of the Z → ee and W → eν decays. In the case

of Z → ee Tag-and-Probe, very strict cuts are applied on one of the two decay electrons

(called “Tag”), and the second electron candidate (“Probe”) is used for the measurements.

Additional cuts, which ensure that the invariant mass of the two objects is close to the Z

boson mass, and that the two electrons have opposite charge, greatly enhance the chance

that the second, unbiased electron candidate is a real electron. The Tag-and-Probe method

is described in detail in App. A.
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5.3.2 Energy resolution

For electrons with high ET the constant term dominates the energy resolution parametriza-

tion (see Eq. 4.1 in Sec. 4.6.1). The constant term used in the simulated samples is smaller

than what can currently be achieved by detector calibration in data, which means the energy

of each simulated electron needs to be varied according to a Gaussian distribution in order

to artificially worsen its energy resolution. The parameters for this Gaussian smearing are

obtained by comparing the mass peak of the Z boson as measured in data with the one

obtained from a simulated Z → ee sample [34].

5.3.3 Calorimeter electronics

For a fraction of the data taking period, a small region (0.8%) of the EM calorimeter

(Sec. 3.2.4) was not functioning. Since it is not possible to correctly reconstruct the energy of

electrons falling into or close to the problematic region, these electrons are not considered in

this analysis. The whole EM calorimeter is assumed to be working in the simulation, which

means the detector acceptance is overestimated. In order to be able to compare kinematic

distributions and achieve the same electron acceptance in the simulation as observed in data,

electrons passing the problematic region must not be considered. This should happen only

for a fraction of each simulated sample, which corresponds to the fraction of corrupted data.

5.3.4 Pile-up

The LHC collides protons at higher rates than any other accelerator before. Collision rates

of 40 MHz can only be achieved if the protons are concentrated in dense bunches, and if these

bunches cross each other at very high frequencies (compare Sec. 3.1.2). A side effect of high
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proton densities in the beam is that multiple protons might collide in one bunch-crossing and

that collisions from subsequent bunch-crossings can overlap in the detector. These effects

are called in-time and out-of-time pile-up respectively. Over the whole data-taking period,

in order to provide as much data to the experiments as possible, the LHC was continuously

increasing the collision rates, and therefore also the pile-up.

The simulations include pile-up; however, the conditions are not exactly the same as in

data since the increase of collision rates was not completely known at the time the simulated

samples were made. Since the amount of pile-up can affect the electron reconstruction and

identification efficiency, the simulated samples have to be reweighted to contain the same

fraction of events with a given amount of pile-up as the data.
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Chapter 6

Event selection and comparison with

Standard Model expectations

This chapter describes how the data used in this analysis are selected. Selection cuts, filtering

events with two reconstructed electrons that pass identification cuts, are applied to data as

well as to simulated signal and SM background samples. The QCD multijet background is

estimated from data by reversing electron identification cuts. The invariant mass distribution

is calculated and the observed data counts are compared to the expected SM backgrounds.

Other kinematic distributions are compared as well to ensure good modeling of the SM

backgrounds.

6.1 Event selection

This analysis uses LHC collision data obtained by the ATLAS detector between March and

June 2011. Only collisions are considered during which the LHC beam quality is good and

the necessary parts of the ATLAS detector are functioning. This amount of data corre-
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sponds to an integrated luminosity of 1.08 fb−1, which can be translated into one event

of a hypothetical process with a cross-section of 1.08 fb or ∼1 million Z bosons decaying

into electrons. In order to find a dielectron resonance, events are selected that contain two

electron candidates. This section describes the selection cuts that enhance the probability

for the electron candidates to be real electrons. Unless noted otherwise, the same selection

cuts are applied to data and the simulated signal and SM background samples.

6.1.1 Event selection

• Data quality

Only collision data are used that have been recorded when the protons in the LHC

beams are circulating in a stable orbit and are well focused, in order to avoid stray

protons or other beam radiation faking collision events in the detector. For data used

in an electron analysis, it is required that the calorimeters and the Inner Detector are

functioning at the time of collisions, and that the solenoidal magnetic field is switched

on, since it is needed for the momentum determination of the particles in the Inner

Detector. Furthermore, no irregularities in the e/gamma trigger performance (like

sudden rate drops) are allowed.

• Vertex

Only events in which there is at least one reconstructed collision point with more than

two tracks in the Inner Detector are used.

• Trigger

Events are selected if they pass the trigger EF e20 medium (compare Sec. 4.2). This

means they were recorded because they have at least one electron candidate with
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ET > 20 GeV.

• Two reconstructed electrons

Since we are looking for dielectron resonances, we only want events with at least two

electron candidates reconstructed by the standard e/gamma reconstruction algorithm,

which is seeded by an energy cluster in the EM calorimeter (see Sec. 4.3).

The following selection cuts are applied to all electron candidates in the event; only

electron candidates that pass the previous cuts are considered at each stage. Events which

have less than two electron candidates fulfilling all requirements are discarded.

• η

The Inner Detector can only detect tracks up to |η| < 2.5 (compare Sec. 3.2.3), therefore

a selection cut of |η|< 2.47 is applied to the electron candidates. Furthermore, electrons

are rejected which fall into the transition regions (1.37 < |η| < 1.52) between the barrel

and the endcap of the EM calorimeter (Sec. 3.2.4), since the energy reconstruction in

these areas is not very accurate.

• ET

A selection cut of ET > 25 GeV is applied to the electron candidates to be consistent

with the trigger. Since we are looking for high-mass resonances, in principle the ET

cut could be far higher but the mass peak of the Z boson is used for normalization and

as a sanity check, thus electrons coming from the Z boson decay (most of which fulfill

30 . ET [GeV] . 60) should be kept. Before the ET cut is applied, the energy of the

electron candidates in data is calibrated by corrections which are obtained comparing
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the Z boson mass peak to the prediction [34]. Energy smearing in the simulated

samples is described in Sec. 5.3.2.

• Electron quality

Electron candidates are not considered if they fall into problematic regions of the

EM calorimeter. Which regions are problematic changes with time, due to hardware

problems like broken electronics as well as irregularities in the applied voltage [94]. The

treatment of these time-dependent selection cuts in the simulated samples is described

in Sec. 5.3.3.

In addition, we reject events that contain corrupt event data or obvious electronic

malfunctions, like noise bursts which illuminate a large fraction of the cells in the EM

calorimeter.

• Identification

In order to enhance the probability that electron candidates are real electrons, they

are required to pass the Medium identification cuts (compare Sec. 4.4).

• B-layer

To avoid electrons from photon conversions, we require that electrons have a tracking

hit in the innermost layer of the Pixel detector (B-layer).

In events with more than two electrons at this stage of the selection cut flow, the two

electrons with the highest ET are chosen.

• Isolation

In order to reduce the fraction of electron fakes from QCD multijet production, the

energy cluster of the leading electron (the electron with the highest ET) must be
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isolated (compare Sec. 4.5). We require that the ET in a cone of ∆R < 0.2 around

the electron is less than 7 GeV. Corrections are applied accounting for pile-up effects

and energy in the cone that actually belongs to the electron. Since the subleading

electron often has less energy because it lost a fraction due to radiation, it usually is

less isolated and we do not require it to pass the isolation cut.

• Invariant mass

The invariant mass of the two electrons is calculated by taking the square root of the

square of the sum of the two electron 4-momenta and is required to be above 70 GeV.

The threshold is chosen to be below the Z boson mass peak (∼91 GeV) as mentioned

above.

6.1.2 Cutflows and acceptance

Table 6.1 shows the number of events passing the different selection cuts for data and for a

simulated Z′SSM sample (m
Z′ = 1500 GeV). The absolute efficiencies of the cuts as applied

to the signal sample are shown as well. The event numbers for the simulated sample contain

all corrections as described in Sec. 5.3, and they are weighted to an integrated luminosity of

1.08 fb−1.

After applying the event selection cuts to the data, 266543 events are left, as shown in

Table 6.1. Figure 6.1 illustrates the event with the highest dielectron invariant mass (mee =

993 GeV). In this event, the ET of the two electrons is 257 and 207 GeV respectively. The

(η, φ) values for the leading electron are (-0.76, 1.14), for the subleading electron (2.05, -2.05).
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Selection cuts Data Z′SSM + DY eff(Z′SSM + DY)

(mee > 750 GeV)

Before cuts 152750511 16.53 1.00

Data quality 132525884 16.53 1.00

Vertex 132399372 16.53 1.00

Trigger 61869726 16.29 0.99

Two reconstructed electrons 40238063 15.97 0.97

η 36465364 15.29 0.93

ET 1747586 14.28 0.86

Electron quality 1710056 13.59 0.82

Identification 299073 11.60 0.70

B-layer 274997 11.25 0.68

Isolation 273929 10.98 0.66

Invariant mass 266543 10.98 0.66

Table 6.1: Event numbers after selection cuts for the data sample and a simulated Z′SSM
sample (mZ′ = 1500 GeV, mee > 750 GeV). The numbers for the simulated sample include
all corrections as described in Sec. 5.3, as well as the weighting to the data luminosity.
Furthermore, DY events with invariant masses above 750 GeV are included in the count
(they contribute ∼20%).
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Figure 6.1: Event display of the dielectron event with the highest invariant mass (mee = 993 GeV) after full event selection
[95].



Figure 6.2(a) shows the (η, φ)-map of all electrons in the data sample that pass the full

selection. The region centered at (η, φ) = (0.7, -0.7) has less electrons than the surrounding

areas. This is a part of the EM calorimeter that was not fully functioning during a fraction

of the data taking. The cut on the electron quality ensures that electrons falling into this

region are not considered, since their energy cannot be reconstructed reliably. To allow

for a consistent comparison between data and the simulated backgrounds, as described in

Sec. 5.3.3, this region is also excluded for a fraction of the simulated samples, which can be

seen in Fig. 6.2(b).

The acceptance of the selection cuts can be seen in Fig. 6.3 for different mZ′ . The

problematic region in the EM calorimeter reduces the acceptance by about 4% (absolute).

The turn-on as well as the drop at high mZ′ is mainly due to the invariant mass cut as well

as the cuts on electron η: The increase in mZ′ up to ∼2 TeV produces more Z′ bosons at

rest, which causes the decay electrons to be more central, leading to more events passing the

η cuts. However, above mZ′ of ∼2 TeV, it becomes less and less likely that the colliding

quarks have enough energy to produce a Z′ event at the peak mass, and a low mass tail

develops (compare Fig. 5.1), whose decay electrons are again less central.

6.2 QCD background estimation from data

Applying the event selection cuts reduces the probability that events are chosen which contain

one or two QCD jets instead of a real electron pair. However, due to the high production

rates for QCD jets in pp colliders, the event sample still contains a non-negligible number of

jets faking electrons.

The shape of the kinematic distribution of the QCD multijet background is estimated
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Figure 6.2: (η, φ)-map of all electrons passing the full selection in data (a) and in the
simulated DY background sample (b). Regions colored in violet/blue have less events than
regions colored in yellow/red.
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Figure 6.3: Efficiency of the selection cuts for different m
Z′ .

from data by inverting some of the cuts on the electron identification. The normalization is

determined in a two-component template fit of the QCD shape and the other backgrounds

to the invariant mass distribution in data. Two additional estimation methods are used as

a cross-check and to assign systematic uncertainties.

6.2.1 Multijet shape estimate

We request data events to pass all selection cuts of the standard cutflow (compare Sec. 6.1.1)

except for the Medium identification cut (see Sec. 4.4). In order to select QCD jets that

might be able to fake real electrons, we require the objects to pass the Loose identification.
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Figure 6.4: The invariant mass spectrum obtained by reversing the shower shape cuts in the
first layer of the EM calorimeter is fitted with a dijet function [90]. The probability of this
fit function to describe the reverse identification distribution correctly is 77%.

This ensures that the energy showers of the jets in the second layer of the EM calorimeter

are similar to real electron showers. In order to avoid selecting real electrons, two cuts of the

Medium identification (compare Table 4.1) are reversed which describe the shower shapes in

the finely binned first layer of the EM calorimeter.

In order to smoothen the distribution and extrapolate it to high invariant masses, the

resulting invariant mass distribution is fitted with an analytical function (see Fig. 6.4):

f(x) = p0x
p1xp2 ·Logx. (6.1)

This function describes the dijet invariant mass spectrum very well [96, 97] and Fig. 6.4

shows that it is also an appropriate model in this analysis.

86



6.2.2 Multijet background normalization

The dielectron invariant mass spectrum between 70 and 200 GeV is used as a discriminator

to find the fraction of the QCD multijet background in data. Three samples are used: Data,

the QCD shape obtained as described above, and the sum of the remaining backgrounds after

event selection taken from simulated samples and weighted according to their corresponding

theory cross-sections (compare Sec 5.2.2).

As shown in Fig. 6.5, a two component template fit of the two background histograms

to the data distribution determines the normalization of the QCD multijet background. To

avoid biases, the complete Z boson mass peak is covered by a single bin, since the simulated

DY sample does not model the shape of the peak perfectly. The remaining shape differences

between the QCD dijet distribution and the other backgrounds, dominated by DY, are large

enough to constrain the fit.

To assign systematic uncertainties to this multijet estimation method, different electron

cuts are inverted, and the QCD normalization uncertainty from the two-component template

fit is propagated to the full mass range.

6.2.3 Cross-checks with alternative methods

In order to obtain systematic uncertainties on the estimated QCD multijet distribution and

to cross-check the baseline method, the QCD multijet background is determined using two

independent methods [90].

The “Isolation Fits method” uses the distribution of the isolation variable as a discrimi-

nating variable. This works because real electrons deposit far less energy in a cone around

themselves than QCD jets which contain several particles. Templates for QCD multijets are
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Figure 6.5: Template fit used to normalize the QCD multijet shape to data (black dots).
The green, dotted line shows the QCD estimation as it results from the log likelihood fit,
while the blue curve describes the full background estimation (QCD estimate plus all other
backgrounds from simulated samples).

derived from data by requiring a maximum fraction of high-threshold hits in the TRT. This

enriches the sample in QCD fakes, as pions are less relativistic than the lighter electrons

and therefore produce less transition radiation (compare Sec. 4.4, 3.2.3). Templates for real

electrons are obtained by applying cuts that select electrons from W boson decays. These

isolation templates are fitted to data passing the full event selection (Sec. 6.1.1). The fits are

performed separately for the leading and subleading electron in bins of ET and mee, and

the resulting QCD jet yields are combined to determine the amount of QCD multijet and

W + jets background for each dielectron invariant mass bin. The systematic uncertainty is

dominated by the uncertainty on the normalization from the fit.

An alternative QCD multijet estimation method, the “Fake Rates method”, uses events
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recorded with jet triggers. Jets faking electrons are obtained by requesting them to be

reconstructed as electrons and to pass a subset of the Loose identification cuts (Sec. 4.4).

Real electrons from Z boson and W boson decays are removed by applying cuts on the

dielectron invariant mass and Emiss
T . The fake rate is calculated by determining the fraction

of events in this sample passing the Z′ electron selection criteria. This rate is obtained

for different η and ET bins and has a systematic uncertainty of ∼40%, obtained from the

comparison of samples selected by different jet triggers. The fake rate is applied to a selection

of electron-jet events, in which the jets are required to fail the Medium identification cuts,

but otherwise pass the same cuts as the sample used to calculate the fake rates. This results

in a combined estimate of QCD multijet and W + jets backgrounds.

Table 6.2 shows the resulting amount of QCD multijet and W + jets background in this

analysis after full selection as obtained by the three methods. The W + jets yield from the

simulated sample is normalized to the theory cross-section and luminosity and is added to

the results of the baseline method to allow for a comparison between the methods. The

predicted yields of the three methods agree within their large uncertainties, and the largest

differences to the baseline estimate are used as an additional systematic uncertainty.

Mass range [GeV] Baseline method Isolation Fits Fake Rates

70 < mee < 110 482.3 ± 85.2 - -
110 < mee < 130 136.7 ± 24.2 107.0 ± 46.0 -
130 < mee < 150 90.4 ± 16.1 116.3 ± 45.1 72.8 ± 29.2
150 < mee < 200 113.7 ± 20.2 147.6 ± 58.3 104.9 ± 42.0
200 < mee < 800 85.2 ± 15.2 149.8 ± 52.4 106.4 ± 42.6
800 < mee < 3000 0.2 ± 0.2 - -

Table 6.2: Comparison of the different QCD jet estimates [90]. As the Isolation Fits and the
Fake Rate methods include W+jets, the W+jets number from simulation has been added to
the results of the baseline method.
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6.3 Comparison of data with Standard Model expec-

tations

The full event selection (Sec. 6.1) is applied to the DY, Diboson, W + jets, and tt̄ simu-

lated samples. The resulting invariant mass distributions are weighted by the corresponding

cross-sections (see Sec. 5.2.2) and added together. The estimated QCD background (see

Sec. 6.2) is subtracted from the data distribution, and the sum of the other SM backgrounds

is normalized to the remaining invariant mass distribution between 70 and 110 GeV. This

normalization of the simulated samples to data simplifies the treatment of systematic uncer-

tainties, since all systematic uncertainties on the SM background that are mass independent,

like the luminosity uncertainty, cancel out.

6.3.1 Event yields

Table 6.3 shows the predicted SM background as well as the observed event counts in data

after the selection cuts. The errors include both statistical and systematic uncertainties,

except for the uncertainty on the total background in the normalization region (70-110 GeV)

which corresponds to the square root of the number of observed events. For each bin in

dielectron invariant mass, the observed number of data events agrees with the SM background

within ±1σ.

6.3.2 Kinematic distributions

This section shows a comparison of kinematic distributions from data after full event selection

with the estimated SM backgrounds.
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mee [GeV] 70-110 110-130 130-150 150-170 170-200

DY 258481.5±413.9 3185.4±106.9 1182.9±46.4 607.9±28.0 473.0±23.6
tt̄ 218.1±23.0 86.9±10.5 64.1±7.6 50.9±5.2 51.2±5.2

Dibosons 368.2±18.8 30.9±2.3 23.8±2.0 14.9±1.4 15.7±1.5
W+jets 150.1±42.8 56.7±17.0 40.0±12.5 26.8±8.7 26.1±8.4
QCD 332.2±59.1 79.9±41.9 50.4±19.7 32.2±7.3 28.6±6.5

Total 259550.0±421.3 3439.9±116.6 1361.2±52.5 732.8±30.7 594.6±26.4

Data 259550 3419 1362 758 578

mee [GeV] 200-240 240-300 300-400 400-800 800-3000

DY 311.8±17.6 196.1±8.6 105.0±5.2 53.8±3.1 2.8±0.4
tt̄ 37.0±3.8 30.4±3.1 14.9±1.4 5.4±0.5 0.1±0.0

Dibosons 13.5±1.4 7.8±0.9 7.5±1.1 3.1±0.5 0.3±0.1
W+jets 19.5±6.4 14.2±5.0 9.0±3.5 4.6±2.0 0.2±0.4
QCD 19.0±15.2 11.6±9.3 5.5±4.4 1.8±1.4 0.0±0.0

Total 400.8±24.5 260.0±14.0 141.9±7.9 68.8±4.0 3.4±0.6

Data 405 256 147 65 3

Table 6.3: Expected and observed number of events after selection cuts. The errors quoted
include both statistical and systematic uncertainties, except for the uncertainty on the total
background in the normalization region (70-110 GeV) which corresponds to the square root
of the number of observed events. Entries of 0.0 indicate a value < 0.05.

In the dielectron invariant mass spectrum (Fig. 6.6), the mass peak of the Z boson

can clearly be seen. This is the distribution in which we look for an additional resonance

peak. Three Z′SSM distributions with different masses are overlayed for illustration. The

η distribution of the leading and subleading electron is shown in Fig. 6.7. The gaps in

the distribution are due to the selection cuts rejecting electrons that fall into the transition

region between the barrel and endcap of the EM calorimeter (1.37 < |η| < 1.52). The

asymmetry in η is due to the region of the calorimeter that was not fully functional during

a fraction of the data taking. Other variations in the measured η rates, like the dip around

0, are in part due to detector properties. Only the DY background is shown, since the other

background contributions are too small to be visible in linear scale. Figure 6.8 shows the

ET distributions of the leading and the subleading electron separately. Again, three Z′SSM
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Figure 6.6: Dielectron invariant mass distribution after full event selection, comparing the
SM backgrounds to data. Three Z′SSM distributions are added for illustration.

distributions with different masses are overlayed for illustration. The dielectron rapidity and

dielectron pT can be seen in Fig. 6.9. The isolation distributions are shown in Fig. 6.10

for the full dataset and in Fig. 6.11 for events that have a dielectron invariant mass above

130 GeV. These distributions are important checks of the QCD multijet estimate, since this

background dominates at the high end of the isolation spectrum. In all distributions the

estimated SM background describes the data very well.

6.4 Muon channel

We also performed this analysis in the dimuon channel. This section gives a brief overview

over the event selection and comparison between data and expected SM background. More
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Figure 6.7: η distribution of the leading and subleading electrons after full event selection,
comparing the SM backgrounds to data.

details can be found in [6] and [90].

6.4.1 Event selection

In order to obtain the dimuon mass spectrum, events with two muon candidates with opposite

charge are selected. Both muons have to fulfill pT > 25 GeV and they have to pass quality

cuts in the Inner Detector. Furthermore at least three hits are required in each of the inner,

middle, and outer layers of the muon system. Muons are only considered if they have tracks

close to the nominal interaction points in order to suppress cosmic rays. In order to reduce

background from QCD multijet events, the muon tracks have to be isolated. The total signal

acceptance in the muon channel is 40%, much lower than in the electron channel, which is

mainly due to the need to improve the pT resolution by only accepting muons that pass very
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strict cuts.

6.4.2 Comparison of data with Standard Model expectations

mµ+µ− [GeV] 70-110 110-130 130-150 150-170 170-200

DY 236318.6±319.7 3132.1±87.5 1073.4±35.9 548.7±21.8 416.3±18.3
tt̄ 193.1±21.0 70.0±9.1 50.7±7.0 34.2±3.6 37.7±3.9

Diboson 306.7±15.9 24.9±2.2 19.4±2.0 13.3±1.6 11.7±1.5
W+jets 1.3±0.7 0.4±0.4 0.0±0.0 0.2±0.2 0.0±0.0
QCD 1.3±1.2 0.3±0.2 0.1±0.1 0.1±0.1 0.0±0.0

Total 236821.0±486.6 3227.8±88.0 1143.7±36.6 596.5±22.2 465.8±18.7

Data 236821 3210 1132 621 443

mµ+µ− [GeV] 200-240 240-300 300-400 400-800 800-3000

DY 249.4±13.0 152.9±7.1 80.8±3.9 40.3±2.5 2.0±0.3
tt̄ 30.5±3.2 20.6±2.2 11.7±1.2 4.2±0.4 0.1±0.0

Diboson 10.1±1.4 8.0±1.1 6.7±1.1 1.7±0.5 0.0±0.0
W+jets 0.0±0.0 0.0±0.1 0.0±0.0 0.0±0.0 0.0±0.0
QCD 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Total 290.0±13.5 181.5±7.6 99.3±4.2 46.1±2.6 2.1±0.3

Data 279 195 83 51 5

Table 6.4: Expected and observed number of events in the dimuon channel [6]. The errors
quoted include both statistical and systematic uncertainties, except the total background in
the normalization region which corresponds to the square root of the number of observed
events. Entries of 0.0 indicate a value < 0.05.

Table 6.4 shows the comparison between the predicted SM background and the observed

event counts in data after the selection cuts. The errors include both statistical and system-

atic uncertainties, except for the uncertainty on the total background in the normalization

region (70-110 GeV) which corresponds to the square root of the number of observed events.

The invariant mass distribution in data and for the SM backgrounds is shown in Fig. 6.12.

Three Z′SSM distributions with different masses are overlayed for illustration.
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Figure 6.8: ET distribution of the leading (a) and subleading electron (b) after full event

selection, comparing the SM backgrounds to data. Three Z′SSM distributions are added for
illustration.
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Figure 6.9: Dielectron rapidity (a) and dielectron pT (b) after full event selection, comparing
the SM backgrounds to data.
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Figure 6.10: Calorimeter isolation distribution of the leading (a) and subleading electron (b)
after full event selection, comparing the SM backgrounds to data.
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Figure 6.11: Calorimeter isolation distribution of the leading (a) and subleading electron (b)
after full event selection, comparing the SM backgrounds to data. Only events with mee >
130 GeV are shown.
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Chapter 7

Statistical treatment and results

This chapter starts with a description of the theoretical and experimental systematic uncer-

tainties. The dielectron invariant mass spectrum in data is searched for peak-like deviations

from the SM background. Since no statistically significant excess is found, 95% C.L. upper

limits are set on the cross-section times branching ratio of Z′ bosons and RS gravitons using

a Bayesian approach [98, 99].

7.1 Systematic uncertainties

The treatment of systematic uncertainties is facilitated by normalizing all SM backgrounds to

data between dielectron invariant masses of 70 and 110 GeV. As a result, mass-independent

uncertainties, like the luminosity uncertainty, need not to be considered because they would

result in an overall shift of the distribution which is however fixed by the normalization at

the Z boson mass peak.

The largest systematic uncertainty on the cross-sections of simulated signal and back-

ground processes is due to incomplete knowledge of the PDFs (see Chapter 5 and Sec. 2.1.3)
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and the strong coupling constant αS. This uncertainty grows with invariant mass because

the input values for the PDFs are measured at low energies. In order to determine the size of

the uncertainty, DY, Z′SSM, and G∗ cross-sections produced with systematic PDF variations

are compared to the nominal ones. For further comparison, cross-sections are produced with

PDF sets which correspond to variations of αS [90]. The resulting Z′/G∗/DY cross-section

uncertainty is 10% at an invariant mass of 1.5 TeV.

In order to improve the cross-section estimate of the simulated DY and Z′ samples, which

are produced at LO, k-factors are calculated (compare Sec. 5.2.2). The uncertainties on the

mass-dependent QCD k-factors are determined by varying the normalization and factoriza-

tion scales by a factor of two around the nominal values (compare Sec. 2.1.3). Furthermore,

the k-factors are reevaluated for Z boson production only instead of Z/γ∗ production and

the difference, less than 1%, is included in the uncertainty. The total uncertainty of the

QCD k-factor is 3% at an invariant mass of 1.5 TeV. The corresponding uncertainty on the

electroweak k-factor is 4.5% to account for real boson emission and higher order corrections

as well as differences between the generator used for calculating the electroweak corrections

and Pythia, with which the DY samples are simulated.

The experimental uncertainties in this analysis are quite small:

• The uncertainty on the energy calibration of the EM calorimeter ranges from energy

shifts of 0.5% to 1.5%, depending on transverse energy and η [80].

• For high energies, the energy resolution is dominated by the constant term (see Sec. 4.6.1),

which has a negligible uncertainty.

• Uncertainties on trigger and identification efficiencies are independent of the invariant

mass above ∼90 GeV.
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• The isolation cut has been shown in the simulation to cause an efficiency drop of 1.5%

for an invariant mass of 1.5 TeV. As illustrated in Fig. 4.3 in Sec. 4.6.1, this drop

is cancelled by the rising efficiency of the B-layer cut, but in order to account for

possible differences between the modeling and data, a conservative uncertainty of 1.5%

is assigned.

• The largest contribution to the uncertainty on the estimation of the QCD multijet

background is the comparison to alternative estimates (compare Sec. 6.2). This un-

certainty is very large, however the QCD multijet background is only a small fraction

of the total SM background (compare Table 6.3), so the overall uncertainty on the

background yield is only 1.5% at an invariant mass of 1.5 TeV.

Table 7.1 lists the systematic uncertainties that are applied when searching for a sig-

nal and setting limits. The uncertainties are presented as the relative changes in the sig-

nal/background yields for variations of 1σ. Other systematic uncertainties below 3% are

neglected in the analysis, since they do not change the results visibly. The uncertainty on

the QCD estimate is considered nonetheless since it is the only uncertainty that can be larger

at lower invariant masses. No theoretical uncertainties are applied on the signal. However,

the luminosity normalization of the SM background to the data under the Z boson mass

peak has a 5% uncertainty due to the Z boson cross-section uncertainty.

7.2 Statistical analysis

This section describes the likelihoods used for the signal search and for limit setting, as well

as the treatment of systematic uncertainties.
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Source Dielectrons
Signal Background

Normalization 5% NA
PDFs/αS NA 10%
QCD k-factor NA 3%
Weak k-factor NA 4.5%
QCD estimate NA 1.5%
Total 5% 11%

Table 7.1: Systematic uncertainties on the expected signal and background yields at
mee = 1.5 TeV for the Z′ and RS graviton analysis. NA means not applicable [90].

According to Poisson statistics, the likelihood to observe n events for a predicted yield

of µ can be calculated as

L(n|µ) = µne−µ
n!

. (7.1)

The predicted yield is the sum of background and potential signal, while the observed events

are the event counts in data:

µ =
∑

j

Nj = Nsig +Nbkg , n = Ndata. (7.2)

Nbkg is predicted and Ndata is measured; the parameter of interest is Nsig.

Systematic uncertainties, like a change in the QCD k-factor, could change the predicted

yield:

µ =
∑

j

Nj

∏

i

(1 +G(θij, δij)). (7.3)

According to the Bayesian treatment of systematic uncertainties, G is the probability density

function of the nuisance parameter θij which is usually chosen to be Gaussian with a mean
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of zero and a σ that corresponds to the relative uncertainty δij .

In this analysis, the likelihood is calculated for every bin k in the search range of the

invariant mass spectrum (mee > 130 GeV), and the results of all bins are multiplied to form

an overall likelihood:

L(n|Nj, θij) =
∏

k

µ
nk
k
e−µk
nk!

, (7.4)

where µ is defined in Eq. 7.3 and n, Nj , and θij are now vectors whose dimensions correspond

to the number of mass bins.

Using a binned likelihood takes advantage of the peak-like shape of the signal, which

makes the analysis more robust toward broad underestimates of the SM background and more

sensitive to finding a peak than a single bin counting experiment. Eq. 7.4 takes into account

possible correlations of systematic uncertainties not only between signal and background but

also between different bins.

In order to obtain a reduced likelihood L′ that is only a function of Nsig, a multidimen-

sional integral over the probability functions of the nuisance parameters is performed. This

is done by integrating numerically using the Bayesian Analysis Toolkit [98]:

L′(n|Nsig) =
∫

L(n|Nsig,Nbkg, θ0, θ1, θ2...)dθ0dθ1dθ2... (7.5)

Instead of the number of signal events Nsig, the cross-section times branching fraction

σsigB is used when calculating the likelihood. The translation is done according to Eq. 5.1

by replacing the integrated luminosity Lint with the number of Z boson events NZ , the Z
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boson cross-section σZ and acceptance AZ :

σsigB =
Nsig

Asig

AZ
NZ

σZB. (7.6)

This approach has the advantage that all mass-independent uncertainties cancel out; how-

ever, the uncertainty on σZ has to be included (compare Sec. 7.1). Mass-dependent uncer-

tainties on NZ and
AZ
Asig

are small enough to be neglected. This thesis correctly includes

higher order corrections to NZ and σZ (compare Sec. 5.2.2). The resulting limits are slightly

more stringent than in Ref. [6], where higher order effects were accounted for twice.

7.3 Signal search

The first part of the statistical analysis is to quantify possible excesses in the data invariant

mass spectrum as compared to the SM background (see Fig. 6.6). The reduced likelihood over

the mass spectrum, starting well above the normalization region at 130 GeV, is calculated

using the Z′SSM model as a reference (see Eq. 7.5).

Figure 7.1 shows the reduced likelihoods for different test masses and cross-sections. The

red regions have higher likelihoods than the blue regions and correspond to local excesses in

the dielectron spectrum in the data compared to the SM prediction (compare Fig. 6.6). The

most likely values for MZ′ and σZ′ are MZ′ = 600 GeV and σZ′ = 0.012 pb.

The next step is to determine the statistical significance of the excess. For this, we

compute the probability for the SM background to fluctuate to the observed data. The

Neyman-Pearson lemma [100] states that the best discriminant between two hypotheses, in

our case (signal+background) vs. (background only), is the log-likelihood ratio (LLR). The
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Figure 7.1: Reduced likelihoods to have an excess caused by new physics for different Z′ test
masses and cross-sections.

likelihood for the M̂Z′ = 600 GeV and σ̂Z′ = 0.012 pb as well as the background-only

hypotheses are calculated. Then the LLR value is determined as:

LLR(σ̂
Z′ , M̂Z′ , θ̂i, ˆ̂θi) = ln

L(n|σ̂Z′ , M̂Z′ , θ̂i)
L(n|σ̂Z′ = 0, ˆ̂θi)

. (7.7)

Here, θ̂i and
ˆ̂θi are the values of the nuisance parameters, determined by integrating over all

other parameters and finding the maximum of the respective reduced likelihoods.

A large number of background-only pseudo-data distributions are produced: First, values

of the nuisance parameters are chosen by sampling from their Gaussian distributions, then the
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SM background distribution, shifted by the systematic uncertainties, is sampled according

to a Poisson distribution. For each of the pseudo-data distributions, M̂Z′ and σ̂Z′ are

determined, and the LLR is calculated. Since M̂Z′ and σ̂Z′ are free parameters and can be

different for every pseudo-data distribution, the look-elsewhere effect is naturally taken into

account. This effect describes the reduction of the significance of an excess when considering

the probability that a statistical fluctuation might appear anywhere in the mass range. The

fraction of pseudo-experiments in which an LLR value as large or larger than the one in

data is found is called p-value,

p = p(LLR ≥ LLRdata|SM only). (7.8)

The common convention is that a p-value less than 1.35 × 10−3 constitutes evidence for a

signal and a p-value less than 2.87 × 10−7 constitutes a discovery. (These are one-sided

integrals of the tails of a unit Gaussian distribution beyond +3σ and +5σ, respectively.)

In this analysis, the p-value from the LLR test is 0.54, which means more than half the

background-only pseudo-data distributions show an excess at least as significant as the one

found in data, thus the observed excess is not statistically significant.

The search for a significant excess is also performed in an alternative fashion, independent

of the Z′ mass shape. The BumpHunter algorithm [101] divides the invariant mass spectrum

into ranges with varying widths, and determines the local p-value for each range. Only

ranges are considered in which the data have a higher yield than the background, and for

which there is an agreement between data and SM background in sidebands half as wide

as the ranges themselves. The window with the smallest local p-value, and therefore the

most significant excess is determined. This smallest local p-value is used as a test statistic
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in a large number of background-only pseudo-data distributions. For each of the pseudo-

experiments, the smallest local p-value could be in a different mass range, which accounts

for the look-elsewhere effect. An overall p-value is calculated by determining the fraction of

the pseudo-data distributions which have a smallest local p-value smaller or equal to the one

determined from data. The overall p-value thus obtained is 0.79, thus both methods state

that there is no significant excess in the dielectron invariant mass spectrum as obtained from

data by our event selection.

7.4 Limits

Since no significant excess is found in the dielectron invariant mass spectrum, limits are set

at the 95% C.L. on the cross-section times branching fraction of the Z′SSM boson and the RS

graviton model with k/M̄P l = 0.1 (compare Sec. 2.2.6). These σsigB limits are obtained

for a range of signal pole masses and are translated into lower mass limits on the Z′SSM
boson, different E6 Z

′ bosons (compare Sec. 2.2.3), and the RS graviton with various values

of k/M̄P l.

L′(n|σsigB) (see Eq. 7.5, 7.6) gives the likelihood to find n data events given a signal

cross-section and branching ratio. In order to translate this into an equation which describes

the likelihood that there is a signal with σsigB given that we see n data events, Bayes’

theorem [102] is employed:

L′(σsigB|n) = L′(n|σsigB)
π(σsigB)

π(n)
∝ L′(n|σsigB), (7.9)

where π(n) is the prior for the number of observed events and π(σsigB) is the prior for
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σsigB. π(n) is the same for all possible values of σsigB:

π(n) = const. (7.10)

Since we do not have any information about σsigB, we set its prior to be flat as well,

following the common convention:

π(σsigB) = const. (7.11)

The value for σsigB, which includes 95% of the integral over the likelihood starting at zero,

is called 95% C.L. limit:

0.95 =

∫
(σsigB)95
0 L′(σsigB|n)d(σsigB)

∫∞
0 L′(σsigB|n)d(σsigB)

. (7.12)

The limits which are listed in Sec. 7.4.1 and 7.4.2 are all 95% C.L. limits, which means, we

state with 95% C.L. that σsigB is smaller than the quoted limit (σsigB)95.

7.4.1 Electron results

Figure 7.2 shows the limits on σsigB for different test masses of the Z′SSM boson (spin-

1, 7.2(a)) and the RS graviton with k/M̄P l = 0.1 (spin-2, 7.2(b)) as well as theoretical

cross-section curves for several models. The mass at which the theoretical cross-section line

intersects the limit curve is the lower mass limits.

The red line shows the σsigB limits as they are observed in data. It is not smooth due

to local excesses and deficits in the dielectron invariant mass spectrum in data compared

109



to the SM background expectation (see Fig. 6.6). The cross-sections times branching ratios

above the limit line are excluded at the 95% C.L..

The plots also show expected limits and their 1σ and 2σ envelopes. These are the

limits expected in the absence of signal. They are obtained by using 1000 background-only

pseudo-data distributions as input for the limit setting. As for the signal search, the SM

background histogram is modified by sampling values of the nuisance parameters from their

Gaussian distributions. Then pseudo-data distributions are sampled from these background

histograms according to a Poisson distribution. Figure 7.3 shows the σB limits for mZ′ =

810 GeV from 1000 pseudo-data distributions. The dashed line indicates the median of the

distribution, while the green and yellow areas show the 68% (1σ) and 95% (2σ) envelopes.

The theoretical cross-sections (times branching fractions) for the Z′SSM, the Z′χ and

the Z′ψ boson are shown in Fig. 7.2. The same peak shape and acceptance is assumed for

all Z′ models, which is a valid approximation as interference is neglected and the widths

of the Z′ bosons in the E6 models under consideration are smaller than the Z′SSM boson

width (compare Fig. 2.5), making the limits slightly more conservative. For the RS graviton,

the cross-section curves for k/M̄P l = 0.1, 0.05, 0.03, 0.01 are presented. Again, the signal

template and acceptance curve is the one for k/M̄P l = 0.1, which has the largest width.

Uncertainties on the cross-sections due to the QCD k-factor (in the Z′ case) and the PDF

(compare Sec. 7.1) are illustrated representatively by the thickness of the curve with the

highest cross-section values.
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Figure 7.2: 95% C.L. limits on the cross-section times branching ratio for different Z′ models
(top) and the RS graviton with different values of k/M̄P l (bottom) as obtained from the
dielectron invariant mass distribution.
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The lower mass limits for Z′ bosons are listed in Table 7.2 and the limits on RS gravitons

in Table 7.3. The expected and observed limits agree very well; small deviations are due to

fluctuations in the data distribution.

Observed mass Expected mass
limit [TeV] limit [TeV]

Z ′

SSM
1.74 1.74

Z ′

χ 1.56 1.56

Z ′

S
1.52 1.52

Z ′

I 1.49 1.49
Z ′

η 1.46 1.45

Z ′

N
1.44 1.43

Z ′

ψ 1.42 1.41

Table 7.2: Dielectron 95% C.L. mass limits on the Z′SSM boson and the E6 Z
′ bosons.

Observed mass Expected mass
k/M̄P l limit [TeV] limit [TeV]

0.1 1.55 1.54
0.05 1.26 1.25
0.03 0.99 1.05
0.01 0.72 0.67

Table 7.3: Dielectron 95% C.L. mass limits on the RS graviton with different values of
k/M̄P l.

7.4.2 Combination with muon channel

We also performed a search for resonances in the dimuon channel [6, 90]. No significant

excess is found in the dimuon invariant mass spectrum (see Fig. 6.6): The p-value obtained

by the LLR test is 24%. Electron-muon combined limits are obtained by extending the

likelihood (Eq. 7.4) to also include the dimuon reconstructed invariant mass bins. By using

σsigB instead of Nsig (compare Eq. 7.6), different acceptances and integrated luminosities
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are automatically taken into account. As before, statistical uncertainties are independent

for each mass bin, but systematic uncertainties can be correlated between the bins, and

therefore also between the different channels.

The expected and observed combined limits are shown in Fig. 7.4(a) for different Z′

bosons and in Fig. 7.4(b) for RS gravitons with different values of k/M̄P l. The theoretical

curves are the same as for the dielectron limit (Fig. 7.2); the addition of the dimuon channel

increases the dataset. The expected and observed limits on the pole masses of the Z′SSM and

different E6 Z
′ bosons as well as RS gravitons with different values of k/M̄P l are shown in

Tables 7.4 and 7.5. They differ slightly from the results in Ref. [6], as explained in Sec. 7.2.

Observed mass Expected mass
limit [TeV] limit [TeV]

Z ′

SSM
1.88 1.87

Z ′

χ 1.68 1.67

Z ′

S
1.64 1.63

Z ′

I 1.60 1.59
Z ′

η 1.58 1.57

Z ′

N
1.56 1.55

Z ′

ψ 1.54 1.53

Table 7.4: Combined dielectron and dimuon 95% C.L. mass limits on the Z′SSM boson and

the E6 Z
′ bosons.

Observed mass Expected mass
k/M̄P l limit [TeV] limit [TeV]

0.1 1.67 1.66
0.05 1.37 1.35
0.03 1.09 1.12
0.01 0.72 0.72

Table 7.5: Combined dielectron and dimuon 95% C.L. mass limits on the RS graviton for
different values of k/M̄P l.
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7.5 Discussion of results

The LHC collides protons with record CM energies, which allows us to probe the SM by

searching for new physics in regions of phase-space that have never been tested before. The

main result of this analysis is that using ∼1 fb−1 of ATLAS data we have not found any

statistically significant peak-like excess over the SM background in the dielectron and dimuon

invariant mass distributions.

7.5.1 Interpretation

The non-existence of any significant excess is quantified by limits on the cross-section times

branching ratio for two representative models: The SSM, which predicts a spin-1 Z′ boson,

as well as the RS model, which predicts excitations with spin-2. Lower mass limits can

be obtained from the respective σB limit curves for any spin-1/spin-2 model, as long as

peak-shape and acceptance are similar.

In this analysis we use the Z′SSM boson cross-section limit curve to set lower mass limits

on the E6 model for different choices of the mixing angle θE6
. We also set limits on the RS

graviton mass for different couplings. These mass limits do not exclude either of the tested

models, but significantly limit their allowed parameter space.

A reinterpretation of the spin-1 limits was done by ATLAS in the context of the Low

Scale Technicolor model [39, 103] by setting mass limits on technimesons [104]. As can be

seen in Fig. 7.5, the analysis excluded masses of 130-480 GeV for the techni-rho and techni-

omega, dependent on the mass of the techni-pi. The limits just barely excluded the mass

values (πT = 160 GeV, ρT = 290 GeV) suggested in [105] as explanation of the Wjj excess

seen by the CDF collaboration [106].
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Other models predicting high-mass dielectron/dimuon resonances can also be restricted,

for example little Higgs models [41, 107, 108].

7.5.2 Comparison to other analyses

The CMS collaboration also searched for dielectron/dimuon resonances in ∼1 fb−1 of LHC

collision data [109]. The combined lower mass limits are shown in Tables 7.6 and 7.7. They

are higher than the results of this analysis, mainly because of a larger acceptance in the

muon channel due to a different muon detector design. Tables 7.6 and 7.7 also contain the

limits set by the CDF and D/0 collaborations at the Tevatron. Due to the higher CM energy

at the LHC, ATLAS and CMS have a larger search range and obtain higher mass limits,

even when less collision events are evaluated.

Looking at other ATLAS analyses, limits on the RS graviton were obtained in a diphoton

resonance search using ∼2 fb−1 of LHC data [110]. The combination of dielectron, dimuon

and diphoton channels yields a mass limit of 1.95 TeV for k/M̄P l = 0.1.

Furthermore, both the ATLAS and CMS collaborations released preliminary updates to

the dielectron/dimuon search using the full 2011 dataset (∼5 fb−1) [111, 112]. No significant

excess was found and the results are shown in Tables 7.6 and 7.7.

Experiment Channel Luminosity [fb−1] Mass [TeV] Reference

D/0 ee 5 1.023 [62]
CDF µµ 5 1.071 [61]
ATLAS (2011) ee+ µµ 1 1.88 this analysis
CMS (2011) ee+ µµ 1 1.940 [109]
ATLAS (2012) ee+ µµ 5 2.21 [111]
CMS (2012) ee+ µµ 5 2.320 [112]

Table 7.6: Observed limits on the lower mass of the Z′SSM boson as obtained by different
experiments.
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Experiment Channel Luminosity [fb−1] Mass [TeV] Reference

D/0 ee+ γγ 5 1.050 [53]
CDF ee+ γγ 6 + 5 1.058 [113]
ATLAS (2011) ee+ µµ 1 1.67 this analysis
CMS (2011) ee+ µµ 1 1.780 [109]
ATLAS (2011) (ee+ µµ) + γγ 1 + 2 1.95 [6], [110]
CMS (2011) γγ 2 1.84 [114]
ATLAS (2012) ee+ µµ 5 2.16 [111]
CMS (2012) ee+ µµ 5 2.135 [112]

Table 7.7: Observed limits on the lower mass of the RS graviton with k/M̄P l =0.1, as
obtained by different experiments.

Z′ bosons and RS gravitons are also searched for by the ATLAS collaboration in the

ditau and top-antitop channels [115].

7.5.3 Outlook

The sensitivity of the search for high-mass dilepton resonances towards lower cross-sections

and higher pole masses increases with the number of recorded events and the CM energy.

In 2012, the LHC will collide protons at
√
s = 8 TeV, extending the accessible combined

dielectron and dimuon signal range in 10 fb−1 of data to ∼2.7 TeV for a Z′SSM boson [116].

This could vary depending on the achieved acceptance, of course.

Possible improvements to this analysis would be the consideration of interference between

the Z′ bosons and the DY background as well as variations of the width of the resonance

for different models and different coupling values. Furthermore, angular distributions could

be used to increase the sensitivity of the signal search, as done by the CDF collaboration in

2006 [117].
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Figure 7.4: 95% C.L. limits on the cross-section times branching ratio for different Z′ models
(a) and the RS graviton with different values of k/M̄P l (b) as obtained from the dielectron
and dimuon invariant mass distributions.
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Chapter 8

Conclusion

We have performed a search for high-mass dielectron resonances in ∼1 fb−1 of proton-proton

collision data. The collisions were produced at a center-of-mass energy of
√
s = 7 TeV by

the Large Hadron Collider, CERN, Switzerland, between March and June 2011 and recorded

with the ATLAS detector. The dielectron invariant mass spectrum from data is compared

to Standard Model expectations which are predicted using simulated samples and estimates

from data in control regions. No statistically significant excess is found: The dielectron

invariant mass spectrum contains no evidence for a high-mass resonance due to new physics.

We know that the Standard Model cannot describe all aspects of the fundamental parti-

cles and interactions that make up our universe. The LHC with its record collision energies

gives us the unique opportunity to look for additional particles and forces, allowing us to

probe the Standard Model’s validity in so-far untested regions of phase-space. There are

possible reasons why we have not seen any indication of physics beyond the Standard Model

in this analysis:

• The so-far unknown additional particles are too heavy to produce a dielectron resonance
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peak at the current CM energy. This year, the LHC will run with energies of
√
s =

8 TeV, and in a couple of years with
√
s = 14 TeV, increasing our search region

considerably.

• The rate of interactions not included in the Standard Model is even lower than we

assume. More collisions, as planned to be produced in the following years by the LHC,

will allow us to test for even rarer processes.

• There are many proposed extensions to the Standard Model and not all of them contain

dielectron or dimuon resonances within our reach, instead predicting different event

signatures. A large number of analyses at the LHC and other research facilities look

for different ways new physics could manifest itself.

Since no significant excess is found, in combination with the dimuon analysis, 95% con-

fidence level lower limits are set on the masses of the Sequential Standard Model Z′ boson

(1.88 TeV), E6 Z
′ bosons (1.54 - 1.68 TeV) as well as the Randall-Sundrum graviton (0.72 -

1.67 TeV) for couplings ranging from k/M̄P l = 0.01 to 0.1.

These limits restrict the allowed parameter space for the models under consideration and

other proposed extensions to the Standard Model, constituting an important step in our

quest for understanding elementary particles and forces.

121



APPENDIX

122



Appendix A

Determination of identification

efficiency correction factors with

Tag-and-Probe

The differences between electron signatures in data and simulated samples (compare Sec. 5.3)

make it necessary to correct the simulation for an unbiased comparison between data and

SM backgrounds. This section shows how the factors for correcting identification efficiencies

of electrons are obtained using the Tag-and-Probe method.

A.1 Definitions

The efficiency for true electrons passing a cut Y to also pass a cut X is defined as

ǫX =
#electrons passing Y and X

#electrons passing Y
. (A.1)
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Efficiency scale factors (SF) are the ratio between the efficiencies (ǫ) for true electrons in

data and in simulated samples (see Eq. 5.2).

Identification efficiencies are calculated with respect to reconstructed electron candidates

and are binned in η and ET (compare Sec. 4.4).

A.2 Method

The biggest challenge in the efficiency measurement consists of getting a sample of electrons

from data on which to perform the efficiency determination. This sample should consist of

real electrons, not QCD jets, and no cuts should be applied to these electrons that could

bias the efficiency measurement. The method of choice is the Tag-and-Probe method, which

makes use of the characteristic signatures of the Z → ee and W → eν decays. In the

case of Z Tag-and-Probe, very strict cuts are applied on one of the two decay electrons

(called “tag”), and the second electron candidate (“probe”) is used for the measurements.

See Fig. 2.1 for an illustration of Z boson production and decay. Additional cuts which

ensure that the invariant mass of the two objects is close to the Z boson mass, and that

the two electrons have opposite charge, greatly enhance the chance that the second electron

candidate is a real electron while remaining unbiased. A simulated Z → ee sample, on which

the same tag and probe selection is applied as in data, is used for the denominator of the

SF. The W Tag-and-Probe method, which is not discussed here, uses the Emiss
T from the

neutrino as the tag, and the single electron in the event as the probe.
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Figure A.1: Illustration of the QCD jet background estimation under the Z peak. Both plots
show tag and probe pairs in which the tag is a Tight electron and the probe is a reconstructed
electron candidate. (a) shows the sideband method applied for the efficiency determination
in η bins, (b) shows as an example a 2-component fit applied to pairs in which the probe
fulfills 35 GeV ≤ ET ≤ 40 GeV.

125



 [GeV]eem

0 20 40 60 80 100 120 140 160 180 200

E
ve

nt
s

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

|<0.8η0<|
|<1.37η0.8<|
|<1.52η1.37<|
|<2.01η1.52<|
|<2.47η2.01<|

|<0.8η0<|
|<1.37η0.8<|
|<1.52η1.37<|
|<2.01η1.52<|
|<2.47η2.01<|

|<0.8η0<|
|<1.37η0.8<|
|<1.52η1.37<|
|<2.01η1.52<|
|<2.47η2.01<|

|<0.8η0<|
|<1.37η0.8<|
|<1.52η1.37<|
|<2.01η1.52<|
|<2.47η2.01<|

|<0.8η0<|
|<1.37η0.8<|
|<1.52η1.37<|
|<2.01η1.52<|
|<2.47η2.01<|

(a)

 [GeV]eem
0 20 40 60 80 100 120 140 160 180 200

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04  20-30 GeV
T

E
 30-40 GeV

T
E

 40-50 GeV
T

E
 > 50 GeV

T
E

(b)

Figure A.2: Invariant mass distribution of tag and probe pairs for QCD jet background
from a simulated sample, (a) for bins in η, (b) for bins in ET [118]. The distributions are
normalized to unit area.
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A.3 Background estimation

Identification efficiencies are determined with respect to reconstructed electron candidates.

In spite of the strict cuts on the tag electron and additional event cuts, there is a non-

negligible background of QCD jets in the probe sample, coming from QCD multijet produc-

tion as well as the W + jets process. Since we are interested in the identification efficiency

of real electrons and not jets, this background needs to be accounted for.

In order to subtract the jet background for the identification efficiency measurements,

two data-driven methods are employed, depending on whether the efficiencies are binned in

η or ET. These methods are chosen because they perform best in closure studies where the

background is known [118]. In both cases, the discriminating variable is the tag and probe

invariant mass coming from the characteristic shape of the Z peak (compare Fig. A.1).

Figure A.2(a) shows the jet background taken from simulation for bins in η. Although

the statistics are low, this figure demonstrates that the background shape between 60 and

120 GeV does not change very much for bins in η. We assume a linear shape in this window

and subtract it using a sideband method as illustrated in Fig. A.1(a): For each η bin, the

number of oppositely charged pairs (M) is counted in the signal window around the Z pole,

and the number of same-sign pairs is determined in the two sidebands (S1, S2). The number

of real electron pairs Nsig in the signal region is then calculated as

Nsig =M − S1 + S2

2
, (A.2)
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if the windows have the same width, and otherwise as

Nsig =M −
[

(

S2

w2
− S1

w1

)

w2M + w1w2

w1 + wM + w2
+
S1 wM
w1

]

, (A.3)

where w1(2) is the width of sideband 1(2) and wM is the width of the middle band. It is

assumed that for QCD jets the number of events in which tag and probe pairs have the same

charge is equal to the number of events in which tag and probe pairs have opposite charges.

This is in contrast to electron pairs from the decay of the Z boson which should always have

opposite charges. It is not possible to simply subtract the same-signed pairs under the Z

peak because of the small same-sign peak (compare Fig. A.1(a)), which is due to a very low

(< 2%) rate of charge misidentification affecting electrons from the Z boson decay.

The background subtraction for efficiencies in ET bins is more complicated due to the

more complex shape of the QCD jet background (see Fig. A.2(b)). Figure A.1(b) shows the

invariant mass distribution for tag and probe pairs where the probe is a reconstructed electron

candidate with 35 GeV ≤ ET ≤ 40 GeV and the tag is a Tight electron. The number of real

electrons in the signal region is estimated by a 2-component fit, with the QCD jet background

modeled by a function (a convolution of a Gaussian and an exponential). The Z peak shape

is estimated in two ways: by a function (Breit-Wigner convoluted with Crystal-Ball) as well

as by a simulated Z → ee template, as shown in Fig. A.1(b).

The QCD jet background is subtracted independently for every η/ET bin as well as for

the numerator and denominator of the efficiency calculation. For the numerator, where the

probe is requested to be an identified electron, the background contamination is much lower

than in the denominator, where the probe is only a reconstructed electron candidate.

Since a Z → ee sample is used, no QCD multijet background is subtracted in the simu-
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lation. However, in order to reject jets produced in association with the Z boson, the probe

is required to be a true electron from the Z boson decay (this includes electrons that are

converted from photons radiated by the decay electrons).

A.4 Systematic uncertainty

The dominant source of systematic uncertainty in the efficiency determination is the QCD jet

background estimate. The uncertainty has two components. The first part is determined by

a closure test, performed on a simulated signal and background sample, showing the overall

bias of the two background estimation methods. For the sideband method this bias is ∼2%

in each η bin, while for ET bins it varies between ∼3% in the low mass bins to < 1% for

the highest ET bins where the QCD jet background is much lower. The second part of the

systematic uncertainty is obtained by varying the background estimation method itself. For

both the sideband and the fit method, the requirement on the tag is varied, changing the

QCD jet background yield. Furthermore, the signal window around the Z peak is changed.

In addition, the ranges of the sidebands are modified for the sideband method. In the fit

method, the fit range is varied, and the signal shape is estimated by different fit functions

and templates. The systematic uncertainty from these variations is 1-2% in η and 4-1% in

ET.

A.5 Results

The identification efficiencies obtained from data and a simulated Z → ee sample, as well

as the SF for electrons fulfilling the Medium requirement (compare Sec. 4.4) are shown in
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Figure A.3: Identification efficiencies obtained from data and a simulated Z → ee sample,
as well as calculated SF for electrons fulfilling the Medium requirements (compare Sec. 4.4).
The uncertainties are statistical and systematic, but the closure test bias is not included.

Fig. A.3. The uncertainties include statistical and systematic components with the exception

of the closure test bias. The identification efficiency measured in data is lower than in the

simulated Z → ee sample, which results in correction factors lower than 1. For physics

analyses, these numbers are combined with SF obtained from W Tag-and-Probe and are

factorized into SF in η with ET corrections.

Figure A.4 shows efficiencies and SF for the additional requirements in this analysis (B-

layer cut as well as calorimeter isolation), calculated with respect to Medium electrons. The
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Figure A.4: Efficiencies and SF for the B-layer cut as well as calorimeter isolation, calculated
with respect to Medium electrons. The uncertainties are statistical only.

uncertainties are statistical only. The B-layer efficiency drop for high |η| is larger in the

simulation than in data, which is reflected in the SF. The additional SF are almost flat in

ET.

A.6 Limitations and improvements

The efficiencies and SF were obtained with a fraction of the dataset available in 2011. More

statistics will allow an extension of the ET range, reducing the uncertainty on efficiencies at
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high invariant masses. The ET range can also be extended by using high invariant mass DY

events, however, for this an alternative way of subtracting the background is needed since

the characteristic Z peak cannot be used. In W Tag-and-Probe, the calorimeter isolation

has already been shown to have enough discriminating power [34].

More data will also enable us to produce 2D SF binned in (η, ET), which yield values

with smaller uncertainties, as the current factorization into η and ET bins is only an approx-

imation. With higher statistics, and 2D bins, the current approximation of a linear QCD

background shape is no longer valid.

Another method to improve the efficiency determination is to reduce the QCD jet back-

ground by applying stricter tag requirements and additional cuts to the events, for example

a maximum Emiss
T cut to reduce the W + jets contribution. These additional cuts must not

bias the probe sample, though.
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