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1. Introduction 

Conformal field theories in 2 dimensions are partially characterized by the 

value of the central charge c appearing in the operator product of the stress- 

energy tensor with itself [l] 

c/2 
T(a) W2) N (zl _ z2)4 + (zl :z2)2 5%2) + (zl : z2) a2w2). (1.1) 

Equivalent operator products are satisfied by the anti-holomorphic pieces 

(zr ,22, T + ~1, ~2, n and the two sets of operator products are equivalent 

to two commuting copies of the Virasoro algebra. In what follows, we shall 

only need to consider left-right symmetric systems and so shall frequently omit 

mention of the anti-holomorphic pieces. We shall also frequently borrow the 

terminology of string theory and refer to z and z as “worldsheet” coordinates. 

Systems with N = 1 superconformal symmetry have a super stress-energy ten- 

sorT(z) =TF(z)+OT ( ) h B z w ose components satisfy the operator products 

3q4 
T.WW2) - (zl -z2)4 + (zl Jz2j2 TBkf2) + (zl ‘z2)a2TB(h) 
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TB~)TF(~ - (zl _ z212 T&2) + z1 ; z2a2T~(zz) 

t/4 
TOTS - (zl - z2)3 + z1 _ Z2 *%(Ez) , 

where c^ = $c. The conventional normalization is such that the energy- 

momentum tensor for a single bosonic field has central charge c = 1 in (l-l), 

and that for a single free superfield has central charge c^ = 1 in (1.2). 

For c < 1, there exists a complete classification[2][3] of the unitary repre- 

sentations of the Virasoro algebra, and as well a classification[4] of their mod- 

ular invariant combinations. Analogously, for N = 1 superconformal systems 

with c* < 1 there is a classification(5] of the unitary representations of the su- 

per Virasoro algebra and of their modular invariant combinations[6]. No such 

classifications exist respectively for c 2 1 and c* 2 1, and the boundary cases 

c = 1 and c* = 1 thus provide the simplest opportunities for probing uncharted 

properties of more general conformal systems alleged to be of interest both for 

their own sake and for their role in characterizing the classical solution space 

of string theory. 

The simplest c = 1 conformal, field theory is constructed in terms of a 

single scalar field x parametrizing a circle of radius r, i.e. with the identifica- 

tion x E x + 2zr. In general, operators Vi of dimension (1,l) in a conformal 

field theory are called marginal operators, and can be used to generate defor- 

mations of a theory that preserve conformal invariance at the classical level. 

(To leading order, the change in the action is given by 6S = 6gi s cPzVi(z, Z).) 

Deformations by marginal operators that also preserve conformal invariance at 

the quantum level (i.e. that remain marginal in the deformed theory) may be 

“integrated” to generate a family of conformal theories continuously connected 

to the original theory. Such integrable marginal operators are referred to as 

exactly marginal, truly marginal, or critical. At generic values of the compacti- 

fication radius r, the c = 1 circle theory contains one exactly marginal operator, 

V = axax, and perturbing the theory by this operator simply corresponds to 

changing the value of r. 

At r = fi, another exactly marginal operator appears, giving by definition 

a multicritical point, from which emerges a further line of c = 1 conformal field 

theories. These latter can be constructed in terms of a single scalar field x 

with the identifications x E x + 2nr and x E -x, i.e. parametrizing an S1/Z2 

orbifold. The orbifold line contains no exactly marginal operators other than 

the one that corresponds to changing the radius. 

It was recently observed [7] that there exist in addition to the above two 

lines three isolated points of conformal symmetry with c = 1, disconnected 

from the remaining known c = 1 conformal systems. The new theories were 

constructed from the circle theory at the self-dual radius r = l/fi, where it 

has an affine SU(2) x SU(P)/Z 2 s y mmetry, by modding out by the tetrahedral, 

octahedral, and icosahedral groups T, 0, I c SO(3). 

These results suggest the following strategy for mapping out the moduli 

space of conformal field theories for any given central charge c. First one chooses 

a known theory and identifies the exactly marginal operators. These generate 

a multi-parameter moduli space of conformal field theories with one parameter 
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associated to each exactly marginal operator. Then one identifies any multicrit- 

ical points in this space, and constructs all continuously connected families of 

conformal field theories generated by integrating the new exactly marginal op 

erators that appear at these points. One next identifies any discrete symmetries 

that exist both generically and at non-generic points in the space of theories 

thus far constructed, and mods out by these symmetries to construct all further 

theories allowed by modular invariance. The procedure may then be pursued 

to exhaustion. This procedure can also be applied to superconformal theories, 

although in general the perturbation will break supersymmetry, leaving only a 

conformal field theory. A sufficient condition for the perturbation to preserve 

superconformal invariance is that the exactly marginal operator be the highest 

component of a dimension (i, f) superfield. The perturbation then takes the 

manifestly supersymmetric form 6s = 6gi S &r dt9 dB$(z, Z, 19, e), where the Qi 

are a set of marginal superfields. In practice one must be careful in checking 

that this condition is satisfied, because there may be several possible definitions 

of the worldsheet supersymmetry generator, and hence several possible ways of 

organizing the fields into supermultiplets. Examples of this phenomenon will 

appear in the course of our analysis. 

In this paper we will apply the above procedure to begin charting the space 

of c^ = 1 superconformal field theories. The picture we find is qualitatively sim- 

ilar to that described above for the case c = 1, but in sec. 2 we will find instead 

5 continuous lines of theories, and in sec. 3 show that they are interconnected 

at 4 multicritical points. Features qualitatively different from the c = 1 case 

occur as well. “Discrete torsior? will emerge to act non-trivially in the c* = 1 

case, and some of the c^ = 1 isolated points constructed in sec. 4, for example, 

appear with a two-fold multiplicity. In addition, one of the multicritical points 

in the i? = 1 case has two inequivalent marginal operators and no Z2 symme- 

tries relating either operator to minus itself, so that multicritical point admits 

four inequivalent directions of deformation. Our treatment here points to many 

open questions, some of which are mentioned in our concluding sec. 5. 

2. Lines of theories 

A. The circle line 

A natural realization of superconformal systems at c^ = 1 is given by a 

single free superfield, consisting of a free boson and a free Majorana fermion. 

When the complex worldsheet coordinates z, z live on a torus, we must specify 

the sum over the spin structures of the fermion. To fix our notation, we first 

describe the partition function &r,-(r) for the superconformal circle line. This 

is constructed by tensoring the theory of a single free boson X(Z,Z) = $(x(z) + 

X(Z)) compactified on a circle of radius r, together with the theory of a single 

Majorana fermion with left and right components $(z) and q(z).’ The partition 

function for the single bosonic field is 

r(r) = + C q 
+(E + nr)“,t($ - nr)2 

> 
m,*EZ 

(2.1) 

where q = e2rrir (r is the modular parameter for the torus) and q = 

q’/““n;=r(l-qn). Th e partition function for the fermion, summed over equal 

spin structures for left and right components (i.e. GSO projected by (-l)F), 

is2 

(equal to the critical point partition function for the Ising model on a torus 

with modular parameter r). The product of the two partition functions 

-L(r) = r(r) &sing, (2.3) 

1 Our normalization conventions are such that the operator products sat- 
isfy ax(z N -&, $(Z)+(W) N -& (and similarly for anti- 
holomorphic components). 

2 Recall that the Jacobi theta functions satisfy m = q-1/4s nz=r(l+ 

!l n-1/2), @pj = q-1/48 nr=,(l- qn-1/2), and m = q1/24finFz,(l+ 

cl”). 
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is then the partition function for a GSO projected system with N = 1 su- 

perconformal symmetry generated by left and right worldsheet supersymmetry 

generators TF = -$ax(z), ??F = -$3x(Z). 

We note from (2.1) that Z&(r) h s ares the same duality3 as the bosonic 
partition function I’(r) of (2.1), namely &i,,(r) = ZCipC(1/2r). At the self- 

dual point r = l/d, the affine SU(2) y s mmetry, generated by J3 = idx, 
Jk = ,*i&(z) , combines with the N = 1 superconformal symmetry to form 
not a super-affine symmetry but rather an N = 3 superconformal algebra [9] in 

which the three supersymmetry generators Pi = $Ji transform as a triplet 

under the affine SU(2) subalgebra (ditto for anti-holomorphic). 

To construct new theories, we recall that given a modular invariant theory 
that possesses some symmetry group G, we can frequently construct another 

modular invariant theory by a procedure known as “modding out” by the sym- 

metry G [lo]. In the Hamiltonian picture, this procedure involves projecting 
onto group invariant states in the original (untwisted) Hilbert space sector, and 

then adding on twisted sectors, again with a group invariant projection, cor- 

responding to strings which close only up to an element of G. (An orbifold 
modification, changing the boundary conditions of fields in the theory while 

leaving the the energy-momentum tensor invariant, does not alter the value of 

the central charge as determined by (l.l).) In general, the symmetry group 

G need not act in a left-right symmetric fashion. For the small values of c 
considered here, however, the constraint of modular invariance (equivalent to 

left-right level matching in the case of G abelian( lO](ll]) only allows left-right 

symmetric twists. 

In the Lagrangian picture, we use go to denote the path integral for 
h 

a conformal field theory on the torus twisted by elements g, h E G in the 

‘%ime” and “space” directions. For the case when G is an abelian group with 

N elements, the modding out procedure above corresponds to defining the 
partition function 

2 = f c go 6 h) , 
g,hEG h 

3 For recent discussions and further references, see [7],[8] (the latter reference 
including a treatment of interactions). 

where e(g, h) is a phase factor we shall discuss in a moment. The sum over 

h is seen to implement the sum.over twisted sectors in the Hilbert space, and 

the sum over g (normalized by l/N) the group invariant projection in each 

sector. When G is non-abelian, boundary conditions twisted by non-commuting 

elements g, h E G are not consistent, and the correct prescription is to take the 

summation in (2.4) only over mutually commuting group elements: g, h E G 

with gh = hg [10][12]. In the case that G has a normal subgroup N c G, 

the modding out may be performed in two steps, first constructing the theory 

modded out by N, and then modding out that theory by the quotient group 

G/N.4 

The phase factor e(g, h) in (2.4), t ermed “discrete torsion” in [ 111, is con- 

strained to satisfy one-loop modular invariance, e(g, h) = e(g”hb, gchd) for 

ad - bc = 1, and as well additional conditions stemming in the Hamiltonian 

picture from the requirement of a consistent operator interpretation, and in 

the Lagrangian picture from the requirement of two-loop modular invariance 

and factorization [13]. These conditions may be concisely expressed in the re- 

lations[ll] e(g, g) = 1, e(g, h) = e(h, g)-l, and e(g1g2, h) = e(gl, h) e(g2, h). The 

phase factors e(g, h) can be non-trivial if and only if H2(G, U(l)), the second 

cohomology group of G with U(1) coefficients, is non-trivial. This cohomol- 

ogy group is perhaps more familiar in its role of classifying allowed projective 

representations of the group G (where it is also known as the Schur multiplier 

M(G)). In Hamiltonian language, the inclusion of discrete torsion corresponds 

to changing the projections in twisted sectors. 

If the symmetry group G exists at all values of some set of moduli for 

a given family of conformal field theories, then we can clearly mod out by G 

at all these values to produce another family of theories with the same set of 

moduli. From the standpoint of correlation functions of operators (on the genus 

zero worldsheet), this is easily understood by first noting that exactly marginal 

4 An example of this is given by modding out by a space group S acting 
on Rn, in which case[lO] one can first mod out R” by the normal subgroup A 
of translations, and then mod out the resulting torus by the group H = S/h, 
which gives the action of the point group P on the torus Rn/A. 
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operators invariant under G survive the projection in the untwisted sector of the 

twisted theory. Since correlation functions for fields in the untwisted sector of 

the twisted theory are the same as in the original theory, the G-invariant exactly 

marginal operators will be exactly marginal as well in the twisted theory. We 

can therefore construct new lines of superconformal theories starting from the 

circle theory by identifying those symmetries that exist for all values of the 

radius and leave the worldsheet supersymmetry generator invariant (up to a 

sign). 

We shall now introduce the generic symmetry generators for the theories 

of interest. First we consider two symmetries, each of order two, that act at 

generic radii. The first is the Z2 symmetry generated by 

R: x+ -2, 4 + +. (2.5) 

This is a symmetry both of the action for a free boson and fermion and also of 

the worldsheet supersymmetry generator TF = -$8x. The second symmetry 

is a 22 symmetry of any superconformal theory, defined to act as +l on states 

in the antiperiodic (NS,NS) sector of the worldsheet supersymmetry generator, 

and as -1 on states in the periodic (R,R) sector. We will refer to this symmetry 

as (-1)fi since it resembles the action of an operator (-l)F~ in string theory 

where F, would be the spacetime fermion number.5 In appendix A we give a 

brief description of the result of modding out a general superconformal theory 

by (-l)% 

We now recall that the summation over winding numbers and momenta in 

the circle theory partition function (2.1) is conveniently viewed as a summation 

over an even Lorentzian self-dual lattice of signature (l,l), with lattice vectors 

5 More precisely spacetime fermion number coincides with the chiral analog 
of this operator for conventional NSR fermions in string theory, where spin 
structures of left- and right-movers can be decoupled. In the theories consid- 
ered here, on the other hand, modular invariance requires that left- and right- 
movers have the same spin structure, and will tell us to project onto states with 
(-l)FL+F~ odd rather than even in the sector twisted by (-l)F~ (analogous to 
the case of spacetime theories considered in [14]). 

P = (PL, PR) = m( &, $) + n(r, -r). Modding out the circle theory at any 
radius r by the group generated by exp(2lrip. (r, -r)/e), a Ze subgroup of the 

diagonal U(1) symmetry of the circle theory, gives the same theory at radius 

r/e. To give something new, we must accompany these translations by the 

symmetries R and (- l)Fs d escribed above. Since these other twists are each of 

order two, it is sufficient to couple only to the translation of the circle coordinate 

x by half its period, generated by the operator e2nip’6 where 6 is the shift vector 

i(r, -r). The reason is that if we couple one of the order two elements to a shift 

with L odd, then the group generated is Z2 x Ze, and the effect of modding out 

is the same as modding out the theory at radius r/L by the 22 symmetry. For 

e even, on the other hand, the group generated is isomorphic to Ze and has a 

Ze/2 normal subgroup. The modding out can then be performed in two stages, 

first by Zf/2 and then by Ze/Z+ = Z2, and is thus equivalent to modding 

out the theory at radius r/(L/2) by the Z2 symmetry, Finally the symmetry 

Re2rrip’6 is equivalent to the action of R alone, as can be seen by working with 

a shifted coordinate x’ = x + 2zr/4. 

To summarize, the generic symmetries that we shall employ to try to con- 

struct new theories are the Z2 symmetries R, (-l)Fs, and their non-trivial 

combinations, 

s6 z (-1)Fse2r+6 and SR = (-1)&R , 

with e2rriP.6 and with each other. These symmetries are all consistent with 

worldsheet superconformal invariance. We are now ready to construct new the- 

ories by modding out the circle theory by groups generated by the 22 elements 

we have defined. We shall use the notation (gr , . . . , gn) 2 to denote symbolically 

the theory resulting from modding out the theory Z by the group generated by 

the elements (gr, . . . , gn). 

B. The orbifold line 

A second line of theories is obtained by twisting the circle theory (2.3) by 

the reflection R of (2.5): 

&b(r) = R&m(r). (2.7) 
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Since the sum over the spin structures for the fermion is invariant under $J -+ 

-$, we see that the partition function &b;(r) is equal to that for an ordinary 

S1/Z2 bosonic orbifold6 times the partition function (2.2) for the fermion: 

Zorb(r) shares the same duality as Zcire(r), namely Zo&(r) = Z&,(1/2r). At 

its self-dual point r = l/fi, Zorb(r) satisfies 

(2.9) 

due to the equivalence[lO] (see also [8][7][16]) between the twist by reflection 

and shift by half period at the affine SU(2)2 point. In the superconformal case 

the theories at the point (2.9) incorporate a (twisted) N = 3 algebra. 

C. The super-afine line 

Another line of theories with N = 1 superconformal invariance is given by 

twisting the circle theory by S6: 

Za-a(r) = Sa&irc(r) (2.10) 

(the subscript s-a stands for “super-affine” for reasons that will be clarified 

shortly). These are our first superconformal theories at i? = 1 that are not 

simply products of c = 1 theories with the c = l/2 theory ZIsing. The theories 

defined by (2.10) have partition function 

where l? and I’- are defined as is I’ in (2.1) but with the lattice summation 

restricted to m E 22, m E 22 + 1 (i.e. m even and odd) respectively; the 

shifted lattices I’: are defined similarly but now also with the lattice shifted by 

6 so that n E Z + i. Modular invariance of Zsma(r) is ‘easily verified, as is the 

property 

S6Zs-&r) = &irc(r), 

leaving neither theory the more “fundamental”. Under r c-) l/r, we see that I’+ 

and I’; are invariant, and I’- H I’:, so Zsma(r) satisfies the duality Zsma(r) = 

Zsma(l/r). The theory at the self-dual point r = 1 has partition function 

(2.12) 

and turns out to have a super-affine SO(3)2 symmetry, as discussed in the next 

section. In appendix B, we provide a bit of extra intuition for the modding out 

prescription (2.10) by considering its effect at r = 1. 

D. The super-orbifold line 

The super-affine line of theories inherits all of the Z2 symmetries possessed 

by the circle line. We can therefore construct a fourth line of theories by the 

twist 

&-orb(r) = R z&f). (2.13) 

These theories can also be constructed by twisting the circle theory by the 

Z2 x Z2 group generated by R and S6. For a 22 x Z2 twist with generators 

o, S, discrete torsion corresponds to choosing the sign of the modular orbit 

It is simple to see however that for Q = R and S = S6, each term in this orbit 

actually vanishes since the first term, for example, corresponds in Hamiltonian 

language to taking the trace of an off-diagonal operator, and the remaining 

terms are all related by modular transformations. The torsion therefore has no 

effect on the one-loop partition function in this case, and 
6 For a derivation of the partition function for the S1/Z2 orbifold at c = 1, 

see for example [ 151. &-orb(r) = (56, R) &ire(r) 
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independent of the sign of the discrete torsion. It is not hard to show that 

twisting the circle theory by the group generated by (56, SR) also yields &+b 

independent of the sign of the discrete torsion. 

The partition function for this theory, 

&-orb(r) = i (&-a(r) 

is easily determined by calculating the terms Rn and RS6 q in the circle 
1 1 

theory and adding on their modular orbits. We see that the super-orbifold 

theory shares the duality &orb(r) = &&,(1/r) of the super-affine theory. 

E. The orba’fold-prime line 

The final line of theories is constructed by twisting the circle theory by the 

group generated by SR 

Zorbt(r) = SR&ire(r), (2.16) 

and has partition function 

&rb’(r) = &b(r) - 3, (2.17) 

where .&b(r) is as given in (2.8). We note that this theory shares the duality 

&b’(r) = &,&! (1/2r) of the circle and orbifold lines. 

The close relation (2.17) between the partition functions of the orbifold 

and orbifold-prime theories suggests other relations between them. Indeed the 

result of modding out the super-affine line by its remaining Z2 symmetries 

yields 
&b(r) = (S6, R)+&-&r) = (S6, SR)+&a(fLr), 

&rb’(r) = (S6, R)-&-,(2r) = (S6, SR)-&a@r), 

where the subscript on the group generators indicates the relative sign of the 

discrete torsion specified by c(Sg, R) = fl and e(S6, SR) = fl in the two cases. 

We see that the .&,& and &rb’ theories are simply related by a 22 torsion. 

11 

There is yet another relation between the orbifold and orbifold-prime the- 

ories, given by modding out by+ (-l)*s. According to ‘the results of appendix 

A, this action has the effect of reversing the sign of the contribution of the P [7 

term in the partition function (where the P’s indicate the Ramond sector &r 

the worldsheet supersymmetry generator). Now the orbifold theory has pre- 

cisely three (l/16,1/16) p t o era ors in the Ramond sector: one spin field for the 

fermion and two twist fields for the boson (recall that the P (Ramond) sector 

includes the sector with x and $ both periodic and also the sector with both 

antiperiodic). Keeping track as well of the GSO-unprojected states in the con- 

struction of the orbifold, we find that the PO term in the orbifold partition 
P 

function is equal to three. It follows that 

i&b’(r) = ((-l)Fs)&b(r) and Zorb(r) = ((-l)Fs)&rb’(r)e (2.18) 

This completes our introduction of the theories we have been able to gen- 

erate by modding out by symmetries that exist for generic values of the mod- 

uli. There are some remaining twists of the three orbifold type lines &b(r), 

&-orb(r), and Zorb’(r) not yet considered, but these result in no new theories. 

The orbifold lines are distinguished from the circle and super-affine lines by the 

absence of dimension (1,0) and (0,l) currents and by the fact that R acts triv- 

ially on them. Thus in twisting these theories we only need to consider e2rriP.6 

(which reduces the radius by half), Sg, and (-l)Fs. But twisting by Se gives 

&-orb(r) = s6 &b(r) = s6 Zorb’(r) and &b(r) = s6 &orb(2r). 

Twisting by (-l)Fs, according to the results of appendix A, has a non- 

trivial action on the one-loop partition function only for theories with a non- 

vanishing P 0 term in the partition function. Of the five lines considered here, 

this is the ca:e only for the orbifold and orbifold-prime theories, and these two 

lines, as discussed above, are simply interchanged by the (-l)Fs twist. 

For the other three lines, we wish to show that the (-l)Fs twisted theory is 

equivalent to the untwisted theory; i.e. that it has the same operator algebra as 

12 



well as the same partition function. To do this we need to establish an isomor- 
phism between operators in the Ramond sector with even and odd worldsheet 
fermion numbers. For the circle theory this isomorphism is given by multiply- 
ing operators in the Ramond sector by the fermion zero mode $e. This leaves 
invariant the relevant three-point couplings between two Ramond states and 
a Neveu-Schwarz state, as can be seen by calculating the three-point function 
with the Ramond states as in and out states. Since the three-point couplings 

determine the operator algebra, this establishes the isomorphism. Moreover 
since the super-orbifold line intersects the circle line and has the same super- 

symmetry generator at the crossing point, the same argument implies as well 
that the super-orbifold line is isomorphic to its (-1)fi twisted version at that 
point. But then integrating the effect of the marginal operator that deforms the 
theory in the super-orbifold direction shows that the super-orbifold line and its 
(-l)Fs twisted version are isomorphic throughout. Aa similar argument works 
for the super-afiine line at r = 1, where it can be written in terms of three free 

fermions (see below). The operator giving the isomorphism between the fl 
Ramond states in this case is $A$,“$,“. 

3. Super-af3ne symmetry and multicriticality 

To understand the additional symmetry at the self-dual point &+(r) of the 
super-affine line, we first recall that in general dim G free Majorana fermions can 
be used to realize a super-affine G algebra with an enveloping super Virasoro 
algebra[l7]. At c = 3/2, three free fermions @ taken to transform as the 

vector of SO(3) can be used to represent an N = 1 superconformal algebra 
with a super-affine SO(3) y s mmetry. The superconformal current is given by 
y-fF = -++1$2+3 = -+E’jk&jqjk, and the components of the superfield 
affine generators J’ = Ji + BJ’ = i3’ + e$Eijk$j$k satisfy the super-affine 
operator products 

J’(Q) Jj(a) N (zl’y;)2 + (z:“j”z2) J”(s) 

Ji(z1)J+2) - tz1”‘“22, J’(z2) 

(at affine level Ic = 2). A modular invariant theory on the torus is given by 

taking left and right fermions ,ljli and T and summing over the same spin 

structure for all six fermions (GSO projecting on (-l)FL+FR). This symmetric 

sum over spin structures gives a theory that manifests the full super-affine 
SO(3)2 symmetry and has partition function 

; (A.4*~+ppp~+***~+ppp~)) (3.1) 
AAA AAA PPP PPP 

equal to (2.12). We have thus identified the extra symmetry possessed by 

the &+,(r) theory at its self-dual point as a super-affine SO(3)2 symmetry. 

(We shall frequently refer to the theory Zsma(l) with super-affine symmetry as 

the USO(3)2 theory” to distinguish it from the “SU(2)2 theory” Zci,c(l/fi) 

with ordinary affine SU(2)2 y s mmetry (embedded in an N = 3 superconformal 

algebra) .) 

We now consider the multicritical points that occur on the lines introduced 

in the previous section. It is straightforward from examination of the partition 

functions to determine the points at which additional (1,l) operators appear. 

The first order integrability conditions (as reviewed in [8]) can be used to show 

that the points at which these operators can be truly marginal are at radii 
rzz l *, 1, and fi on any of these lines. We shall see that there are indeed 

exactly marginal operators at each of these points. The reader may find it 

useful to refer to fig. 1 to follow better the discussion of these points. 

The point r = fi on the circle line, for example, corresponds to the 

point r = l/a on the orbifold line for the same reason that this equivalence 

results for the c = 1 circle and orbifold lines. The correspondence between the 

theories at the crossing point, as mentioned in the previous section, is most 

easily established by recognizing that each of the theories can be constructed 

by Z2 twists, either by a reflection x + -x or by a shift x -+ x + 21r/2fi of 

the theory at the self-dual point r = l/d of the circle line, and that the two 

Z2 modifications are equivalent due to the enhanced affine SI!LJ(~)~ symmetry 

at that point. From this we find 

(34 
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not only at the level of the partition function but also as an isomorphism be- 

tween the operator algebras of the theories. From the standpoint of either 

theory, for example, it might not be immediately obvious that the additional 

(1,l) operator that appears at the multicritical point is integrable to all orders, 

but from the standpoint of the other theory, we have the manifestly exactly 

marginal operator &r&r. It might appear surprising at first that both marginal 

deformations are consistent with superconformal invariance, given that there 

is only a single (i, 4) state in the spectrum at the crossing point with which 

the (1,l) operators could be paired by supersymmetry. The paradox is resolved 

by recognizing that there are three (g, 0) operators (and three (0, i)‘s) in the 

non-local Z2 covering theory at that point, one given by $dx and the other two 

by 3 exp(fd&z). The first acts as the supersymmetry generator for the circle 

line. The circle line (and also the super-affine line) at r = fi actually possesses 

an untwisted N ‘= 2 superconformal algebra with the other two dimension (i, 0) 

fields acting as TFf. The U(1) part of this algebra rotates T> and its complex 

conjugate TF by opposite phases, and any hermitian combination of the two 

can be used as the N = 1 supersymmetry generator for the orbifold line. 

We employ a similar logic to establish equivalences between theories at 

the other potential multicritical points mentioned above. With the super-affine 

theory at r = 1 represented in terms of three fermions #, we can regard $1$2 

say as the fermionized current ax. The reflection R of (2.5) can be realized in 

these terms as ti2 ---) -$2, $3 + -$3. But this fermionic twist also has the 

interpretation of decoupling the sum over spin structures to independent sums 

over the (left-right) spin structures for @ and for $2, +3. Rebosonizing the last 

two fermions, we find an Ising model tensored with a circle at radius r = 1 (for 

more details, see appendix B). It thus follows that 

,?&b(l) G R&-a(l) = &c(l), (3.3) 

and the circle and super-orbifold lines cross at a multicritical point, as depicted 

in fig. 1. We can regard the equivalence (3.3) as resulting from the permutation 

symmetry among the fermions at the SO(3)2 point. The enhanced symmetry 

at L?&(l) will be further exploited in the next section when we mod out by 

other subgroups of the diagonalSO(3). 

Other multicritical point equivalences follow from the symmetries of the 

circle line at r = l/G, which imply RZcir,(l/fi) = e2~ip’6ZCire (l/a). From 

this and the r * l/r duality of the super-affine line we find 

SO that .?&,’ (l/a) and Z,-,(a) specify identical theories at a crossing point 

between the super-affine and orbifold-prime lines. Similarly, we find that the 

super-orbifold and orbifold-prime lines cross at &-orb(fi) = &rb’ (fi), 

&o&h) - R&-a(d) = R&z-a (5) =R (sSZ,i,, ($)) 

This last crossing point is distinguished as the only multicritical point at c^ = 1 

for which neither of the theories at the crossing point is self-dual. The junction 

between the circle and super-orbifold theories, on the other hand, is the only 

one at which the supersymmetry generator need not be redefined. At the other 

three multicritical points, there is a phenomenon similar to that discussed at 

the circle-orbifold crossing. Finally we point out that the equivalences (3.2)- 

(3.5) are also easily confirmed at the level of the partition functions from their 

explicit forms given in the previous section. 

The four multicritical points above, all reflecting the enhanced symmetry 

at either the SU(2)2 or SO(3)2 theory, turn out to exhaust the multicritical 

behavior of the c^ = 1 theories considered here. The remaining (1,l) operators 

that appear at r = 1 and fi of the orbifold line, and at r = 1 on the orbifold- 

prime line, are integrable but generate no new theories because of discrete 

symmetries at these points that relate the different marginal directions. The 

theory Zorb(1) f or example is comprised of three copies of the Ising model and 
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has an Ss permutation symmetry that relates the three marginal operators, 

leaving all deformations equivalent to the generic deformation of radius along 

the orbifold line. The same discrete symmetry relates the three potentially 

different marginal directions at r = 1 on the orbifold-prime line. The partition 

function on this line differs from that of the orbifold line by the removal of the 

three (l/16,1/16) p t o era ors, but the operator algebra of the marginal operators, 

coming from the untwisted sector, turns out to be unaffected (see appendix B). 

Finally, the point &,&(fi) on the orbifold line is equivalent to a 4-state 

Potts model tensored with the Ising model, and has an & permutation symme- 

try (under which the three marginal operators transform as a three dimensional 

representation), again rendering all of the marginal deformations equivalent.’ 

On the other hand, there is a multicritical point at r = fi on the orbifold-prime 

line. This point may be obtained from the & symmetric point at r = fi on the 

orbifold line by’ modding out by $5, which breaks the symmetry down to S2, 

leaving two of the three surviving marginal operators inequivalent. This gives 

a good example of an inequivalence of the operator algebras for two theories, 

despite the close relation between their partition functions. 

4. Modding out by enhanced symmetries 

Having modded out by the symmetries that exist at generic radii, we now 

turn to a more systematic consideration of modding out by the enlarged sym- 

metries that occur at specific points on the lines in fig. 1. Even in the c = 1 

case, enlarged discrete symmetries that exist at special values of the radii reirc 

and rorb have been only partially identified. In all known cases, twisting by 

discrete symmetries gives either a point on the circle or orbifold lines or one of 

the three isolated polyhedral theories mentioned in the introduction. In what 

’ It turns out (see the end of sec. 4) that there are also three supersymme- 
try generators at this point, which likewise transform as a three dimensional 
representation of the S’d symmetry. The three marginal operators are each the 
highest component of a dimension (i, $) superfield with lowest component $7 
with respect to one of these three supersymmetry generators. 

follows we shall restrict attention to modding out by discrete symmetries only 

at particular highest symmetry.points. At c = 1 the point of highest symme- 

try is the affine SU(2)2 point at which it is possible to mod out by all the 

finite subgroups of a diagonal SO(3) y s mmetry. The finite subgroups of SO(3) 

are the cyclic groups C, of order n, the dihedral groups D, of order 2n, and 

the polyhedral groups T, 0, and I, of orders 12, 24, and 60 respectively. At 

c^ = 1, the point of highest symmetry is the super-affine SO(3)2 point, at which 

dividing out by the finite subgroups of the diagonal SO(3) preserves the world- 

sheet superconformal symmetry, generated by TF = -&eijkti$j$jk and its 

anti-holomorphic partner. 

Twisting by each of these groups G allows in principle additional new the- 

ories related by insertion of discrete torsion for both c = 1 and c^ = 1. To 

characterize the non-trivial possibilities we need to determine H2(G, U(l)), as 

mentioned in the discussion following (2.4). In the language of projective rep 

resentations of groups it is easy to see that H2(G, U(1)) is at least Z2 for 

many of these groups. A projective representation is a representation U(g) 

of group elements g E G that satisfies the group multiplication law only up 

to a phase, U(gl)U(g2) = w(gl, g2) U(g,g2).’ In terms of these w’s, the phase 

E of (2.4) is given by c(gl,g2) = w(g1,g2)we1(g2, gi) [11][18]. Now the pro- 

jective spinor representation of SO(3) automatically determines a set of 22 

phases w(gi, g2) = fl that restrict to a consistent (i.e. associative) set of phases 

w(gi, g2) for any finite subgroup of SO(3). For the subgroups C, and Dsn+i, 

these phases are easily shown to be removable by a phase redefinition, whereas 

for the remaining groups, Dzn, T, 0, and I, this possibility is easily excluded: 

they all have abelian D2 CJ Z2 x Z2 subgroups for which w(gi, g2) = -w(g2, gi) 

when gi, g2 # 1, and consequently no phase redefinition can exist. To confirm 

that the Z2 central extensions of these groups to their double covers in SU(2) 

indeed saturate all possibilities for non-trivial second cohomology with U(1) 

8 The condition of associativity provides a notion of “closure” that the phases 

w must satisfy, w(gl, gdw(glg2, d = wh, cm) 42, d. An ‘exact” phase 
4Jl2 92) = P-‘(gl)P-l(g2)P(glg2) is one removable by the redefinition U(g) + 
p(g)U(g) for all g E G. There follows a natural notion of cohomology H2. 
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coefficients requires a bit more effort. Conveniently, Schurg (1911) has estab- 

lished that H2(G, U(1)) = Zz for G = Dz,,, T, 0, I, and H2(G, U(1)) = 1 for 

G= G,D2n+1. 

At c = 1 however the modular orbits affected by the discrete torsion all 

vanish (for the same reason as did (2.14)), so the one-loop partition function is 

unaffected. This does not necessarily mean that the two torsion-related theo- 

ries are identical.lO One can argue that they are identical for the Da,,-twisted 

SU(2)2 theories at c = 1, because these theories are points on the c = 1 orb- 

ifold line. This line is more auspiciously viewed as modding out R1 by D, 

(the translation-reflection group of the line), for which H2(D,, U(1)) = 1 [21], 

and so non-trivial torsion is excluded. From the Dz,, point of view, it is easy 

to verify that the different operators selected by the two choices of projections 

in twisted sectors nonetheless satisfy isomorphic algebras. For the polyhedral 

theories T, 0, and I, we have been unable to formulate a definitive argument 

for interactions between different twisted sectors.ll 

At c^ = 1, on the other hand, we shall find the inclusion of discrete torsion 

to have a non-trivial effect. We denote by Z[G] the theory given by modding 

out the super-affine SO(3)2 theory Zsma(l) by the finite subgroup G c SO(3). 

(Each such theory will have its states classified by a twisted super-affine SO(3)2 

g Quoted in [19] in terms of permutation groups - recall that T M Ad, 
0 u &, and I = As. 

lo To see that there is an issue here, we recall that affine Spin(32)/Zz and 
affine Es x Es have identical one-loop partition functions but are different 
conformal field theories. ln the other direction, however, there are as well ways 
of constructing theories that differ by discrete torsion but are nonetheless the 
same theory. For example, if one mods out the tachyonic SO(32) heterotic 
string theory by a (2~)~ acting on the internal fermions as four groups of 
eight, then there are 26 = 64 discrete phase choices. 3 of these give identically 
the Es x Es theory, 5 the Spin(32)/Zz theory, and 33 the SO(16) x SO(16) 
theory[20]. 

l1 An analysis of this question from the standpoint of the associated statistical 
mechanical models may be found in 1221. 

symmetry, isomorphic to the untwisted algebra.) For the cyclic groups G = C,, 

we shall employ the special notation 

z, = Z[C,] (4.1) 

for the partition functions. The generator of C, may be taken to act on the 

super-affine generators as J3 + J3, Jf + efarrifn J* (and simultaneously 

LP,x* + e*2rri/nJ*). For n odd, we find the action of modding out to 

be equivalent to decreasing the radius to discrete values along the line (2.11), 

1 
Z2m+1 = &-a - ( > 2m+l 

= Zs_,(2m + 1). (4.2) 

For n even, n = 2m, we find instead that we are taken to discrete points along 

the line (2.3), 

Z2m = Z&c (A) =Zcire (c)e (4.3) 

(This latter result is easily understood by recognizing that Czm has as normal 

subgroup C2, and the modding out of Zsma( 1) may proceed in two steps: first 

mod out by C2 and then by C&/C2 = C,. The first step gives the theory 

Zcirc(l), and the second step reduces the radius by a factor of m.) We have 

indicated the points corresponding to these theories in fig. 1. Note that Z(Cz] 

and Z[C,] according to (4.3) are equivalent, due to the r c~ & duality of the 

circle line. The partition function Z2 = Z4 = Z+orb(l) = Zcirc (1) corresponds 

to the multicritical point at which the circle and super-orbifold lines cross. 

With the convention Zi = Z,-,(l), the partition functions for the orbifold, 

orbifold-prime, and super-orbifold theories of (2.8), (2.17), and (2.15) may be 

usefully written 

Zorb(r) = i(hc(r) -I- 222 - Zl + 3), 

Zorb’(r) = :(&i..(r) -I- 222 - Zl - 3), 

Zs-orb(r) = Jj(Zs-.(r) + 222 - Zl), 

(4.4) 
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similar in forms to the expression for the partition function at c = 1 for the 

bosonic orbifold S’/Z:! given in [7][8] (although the Zn’s have different defini- 

tions here). Counting the number of (1,l) and (l/16,1/16) states in the theories 

to follow is simplified by noting that Zl has nine (1,l) and zero (l/16,1/16) 

states; Z2 has five (1,l) and one (l/16,1/16) states; and otherwise Z,, has three 

(1,l) and zero (one) (l/16,1/16) states for n odd (even). 

The partition functions for the remaining non-abelian groups may fre- 

quently be calculated in two ways. For the D,, we can take the reflection 

added to C!, to act as J3 -+ -J3, J* + Jr. The method employed in [7] 

evaluates the sum (2.4) by identifying all mutually commuting group elements 

to reduce the calculation of the partition function to a sum over abelian sub- 

sectors, each in turn expressible in terms of the Z, of (4.1). For the Dzn+i, for 

example, the mutually commuting elements lie in a cyclic group, C&+1, and 

(2n + 1) disjoint Cz’s. F’rom (2.4) we find for the partition functions, 

Z[D2n+1] = & ((2, + l)Zzn+l + (2n + I)(222 - ZI)) 

= $Zzn+l + 222 - Zl) (4.5) 

where (2n + l)Z zn+i represents the contribution of Cg,hEC,n+l g[7 and we 
h 

have subtracted Zl = ln from the second term to to avoid overcounting. 

By the comments followin: (4.4), we see that the ZIDan+l] have two marginal 

operators, one of which is integrable, and a single (l/16,1/16) operator. The 

result (4.5) may also be derived via the quotient construction Dzn+i/Czn+i = 

Z2, passing first through the theories (4.2). We see also that the equivalence 

(3.3) in the language of subgroups of SO(3) is due to the coincidence between 

Di and Cz. 

The partition functions for the D 2n’~ may be obtained by the above method 

(see [7]) or via the normal subgroup embedding Dz c Dzn. In the latter 

procedure we first calculate the result for the abelian twist by D2, giving 

Z[D2] = &b(l) = ;(%-&+3) ( e q uivalent to the (Ising) model). Modding 

out by the remaining Dzn/D2 3 C, then gives an orbifold at radius r = l/n. 

The result of either procedure is 

ZP2nl = f(Z2, + 222 - Zl + 3) = Zorb (t) = Zorb (;). (4.6) 

We see that the partition functions (4.5) and (4.6) for the odd and even dihe- 

dral groups lie on the super-orbifold and orbifold lines respectively (the points 

labelled by Dzn+i and Dzn in fig. 1). The Z[Dzn] have two marginal operators, 

one of which is integrable, and three (l/16,1/16) operators. 

We are now in a position to consider the effect of adding ZQ torsion to the 

DP,, theories. This requires adding 22 torsion to each of the n Dz m Z-J x 22 

subgroups of Ds,,. For a single D2, the modular orbit whose sign is changed 

is identically a constant, equal to 3/2 ( see appendix E)). The partition function 

for the torsion-related theory is therefore Z’[D,] = Z,,# (1) = +(3Z2 - Zi - 3). 

The partition functions for the remaining Z’[D2n]‘~, related to those of (4.6) 

by Z2 torsion, can again be calculated either by the method of [7] or via the 

normal embedding Dz c Dan passing this time through the theory Z&,‘(l). 

The result is 

z’[“an] = f(Z2n + 222 - z, - 3) = zorb, (f) = Zorb’ (5>, (4.7) 

not surprisingly giving image points of (4.6) on the ZOrb’(r) line, as indicated 

by the Dk, in fig. 1. The spectrum of the theories (4.7) differs from those of 

(4.6) by the removal of the three (l/16,1/16) states. 

Next we discuss the superconformal analogs of the isolated polyhedral the- 

ories at c = 1. Theories based on the tetrahedral and octahedral groups T and 

0 can be constructed either directly or via one of the normal subgroup em- 

beddings T/D2 = Z3, O/Dz = Sa, or O/T = Z2. In the latter procedure we 

6rst construct the (Ising) theory Z[Dz], then mod out by the Z3 normal sub- 

group of the S’s permutation symmetry to obtain the Z[T] theory, and finally 
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by a residual Z2 symmetry to give the ZIO] theory.12 The partition functions, 

constructed by either method, are 

Z[T] = ;(% + & - zl + l), 

Z[O] = i(Z4 + z3 + z2 - Zl + 2). 
(4.8a) 

The icosahedral group I, on the other hand, has no non-trivial normal 

subgroups, and we have available only the method used in [7] to construct the 

partition function Z[I]. Th e mutually commuting elements of the icosahedral 

group lie in 6 Cs’s acting about axes through opposite faces of a dodecahedron, 

10 Cg’s acting about axes through antipodal vertices, and 5 non-overlapping 

Dz’s comprised of the rotations of order 2 about axes through the centers of (the 

15 pairs of) opposite edges. Substitution in (2.4) gives the partition function 

z[ll = $j (6(55 - zl) + 10(35 - ZI) + 5(4Z[&] - zl) + &)) 
1 (4.8b) 

= $(z5 + 5 + z, - z1 + 1). 

We read off from (4.8a, b) that Z[T] and Z[I] have one (l/16,1/16) operator 

while Z[O] has two, and each of the three theories has a single (1,l) operator. 

Just as was the case for the polyhedral theories at c = 1, the marginal 

operator does not satisfy the first order integrability condition and the theo- 

ries (4.8a, b) constitute isolated points of superconformal symmetry in the c^ = 1 

moduli space. This follows from the observation that of the nine marginal oper- 

ators Ji? of the Z,-,( 1) theory, only the diagonal combination V = ‘& Ji? 

survives the orbifold projection for G = T, 0, I. But the operator product of 

V with itself contains a term proportional to V/lzl - zz 12, and consequently V 

cannot remain marginal in the infinitesimally deformed theory. Our intuition 

for the isolated nature of these theories remains the same as in the c = 1 case: 

l2 A similar procedure gives the polyhedral theories based on T and 0 at 
c = 1, except in that case the starting point is the SU(2)2 theory modded out 
by Da, i.e. the point r = fi on the orbifold line. That theory is the 4-state 
Potts model, and has a full S4 permutation symmetry. 

these are theories constructed by modding out by symmetries that exist only at 

a given fixed radius, r = 1, of the super-affine line, so *modding out effectively 

freezes the radius. 

Our discussion of non-trivial H2’s suggests that we next consider additional 

theories related to those of (4.8o, b) by Z2 torsion. As for the Dzn’s, we find 

that the modular orbit whose sign is changed contributes a constant to the 

partition function, and the torsion-related theories have the partition functions 

Z’[T] = f(2Z3 + Z2 - Zl - I), 

Z’[O] = 2(Z4 + z3 + z2 - Zl - 2), (4-g) 

Z’[I] = ;(s + z3 + z2 - Zl - 1). 

(Z’[T] and Z’[O] ma a o y ls b e constructed by modding out the Z’[Dz] theory 

at ZOrb’ (1) by a Z3, and then a Z2 symmetry.) The marginal operators in these 

theories are identical to those in their torsion-related counterparts; hence these 

theories constitute three additional isolated points of superconformal invariance, 

indicated as 0”s in fig. 1. The spectra of the theories (4.9) are related to those 

of (4.8a, b) by the removal of the one or two (l/16,1/16) states of each theory. 

Just as the action of (-1) Fs toggled between ZO&(r) and Z&,‘(r) in (2.18), 

modding out by (-1) Fs in the polyhedral context takes the theories of (4.8a, b) 

to the corresponding theories of (4.9), and vice-versa. 

To close this section, we catalog the theories at c* = 1 whose states are clas- 

sified by a (twisted) N = 3 superconformal invariance. These are the theories 

reached by modding out the N = 3 theory Zcipc(l/fi) by the finite subgroups 

G of SO(3). Their partition functions Z[G] are simply the products of all the 

c = 1 partition functions given in [7] with the c = l/2 partition function Zrsinz. 

The cyclic groups C, give the points13 

(4.10) 

l3 Note that the Zn’s utilized in [7] are given here by zm/Zrsing. 
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on the circle line. The dihedral groups D, give the points 

(4.11) 

on the orbifold line. (Except for &[D2], we have not marked the theories (4.10) 

and (4.11) in fig. 1.) Finally the polyhedral groups give the three isolated 

theories 

Z[O]= ;(t +$ +z2- Q, (4.12) 

indicated by ii’s in fig. 1. The theories (4.12) are probably less interesting 

from the string theory point of view since despite having an untwisted N = 1 

superconformal symmetry in each twisted sector, the role of supersymmetry 

generator is exchanged between different (z, 0) fields in different twisted sectors 

and it is not clear how to couple such a structure to a single worldsheet gravitino. 

5. Comments 

In sect. 1, we outlined a method for generating conformal field theories - 

identifying exactly marginal operators and modding out by symmetries consis- 

tent with modular invariance - that has been used to generate a set of (super) 

conformal theories at c = 1 (c^ = 1). It leads to all known conformal (super- 

conformal) theories at the two respective values of c. We lack a classification 

theorem that would ensure the completeness of these sets of theories. In its 

absence, we have recourse only to exploring other known ways of constructing 

conformal field theories to see if anything new arises. Two such methods are the 

GKO coset algebra construction[3] and tensoring together theories with smaller 

values of c. 

All possibilities using the GKO construction[3] that we have checked lie 

among the theories already considered. Modular invariant combinations of the 

characters from the c = 1 theories SO( x SO(n)i/SO(n)z, for example, 

give points on the circle and orbifold lines at radii r =‘fi/2 (generalizing the 

SW42 x SU(2)2/q4 4 construction of the N = 2 supersymmetric point at 

r = &). A systematic exploration of these constructions at c = 1 (I$ = 1) 

would be welcome. 

Tensoring together theories with smaller c, on the other hand, does lead 

to something new. At c = 1 the only such possibility is to tensor together two 

copies of the c = 5 Ising model, known to lead to the points r = 1 on the 

circle and orbifold lines. But at c = 312, we find that there exist conformal, 

but not superconformal, theories constructed as the tensor product of minimal 

theories with c = 415 and c = 7110. To describe these, we label the six 

characters of the c = 7110 system as xi, where i = 0, 7116, 3180, 312, 315, 

l/10, and the ten characters of the c = 415 system as A,, a = 0, 215, l/40,7/5, 

21140, l/15, 3, 1318, 213, l/8. The c = 415 system by itself has two modular 

invariant combinations, one diagonal (C, A,&;,) and the other corresponding 

to the 3-state Potts model. Taking the product of either of these with the single 

(diagonal) modular invariant of the c = 7110 system gives two modular invariant 

partition functions, neither of which is that of a superconformal system. To 

show this we first identify the unique dimension (z, 0) field that could serve as 

the supersymmetry generator TF for the i? = 1 system (it is a linear combination 

of the 312 operator from the c = 7110 system and the product of the l/10 

and 715 operators from the two systems). We find that either tensor product 

theory contains primary fields whose singularities with the candidate TF differ 

from the local or square root behavior allowed in the 5 non-local cover of a 

superconformal theory. We also find a single marginal operator in each theory, 

constructed as the product of the dimension (315,315) operator in the c = 7110 

system and the dimension (215,215) p t o era or in the c = 415 system, which 

turns out to be integrable to first order. Thus there may exist lines of theories 

connected to these two (although we see no obvious reason why the marginal 

operator should be integrable in higher orders of perturbation theory). 
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Other less trivial combinations of these two minimal models constitute 

partition functions of superconformal systems. We have identified for example 

the modular invariant combination 

+ 

+ 

+ 

x0x0 +x7/16x7/16 +x3/2y3/2 >( 
(A, + X,)(x, +X3)+2X 2,3'2,3) 

( x3/5yO +x1/10x3/2 +x3/80x7/16 >( b2/5 +A7,5)(xO +I31 +2xl,l5x2,3) 

( x0x33/5 +x3/2%/1O+x7/16~3/80 >( b0 + '3)(x,/5 +I77/5) +2A2,3xl/15 > 

xl/lO%/lO+~3/5~3/5 +x3/80~3/80 >( (x2/5 + A7,5)(x2/5 +x,/5) +2xl,l5~,/l5) 

= z*-,(a) 
as the partition function for the theory at r = fi on the super-affine line. A 

related combination gives the theory at r = fi on the super-orbifold line. The 

problem of finding all modular invariant combinations of the characters of ten- 

sor products of even just two members of the discrete unitary series remains 

open, so we cannot say for certain whether new superconformal theories may 

also arise in this way. As a non-trivial check on the conjecture that all con- 

formal field theories at a given value of c can be constructed by the procedure 

outlined earlier, we are investigating the possibility that there exist discrete 

quantum (non-superconformal invariant) symmetries that would allow the two 

non-superconformal 7110 + 415 combinations to be viewed as twisted versions 

of the super-affine theory at r = fi. 

It would also be interesting to determine what happens when we per- 

turb the systems considered here with relevant operators. Note that there 

are (l/16,1/16) 1 re evant perturbations in many of these theories that preserve 

super-symmetry, so we might hope to find systems that exhibit supersymmetry 

away from the critical point (as emphasized for c = 1 systems in [23]). This 

could prove useful in the pressing search for experimentally realizable super- 

conformal orbifolds in nature. Of potential further interest would be to follow 

the renormalization group flows to other conformal and superconformal theories 

generated by these and other relevant operators (as in (241). 

Another issue of interest involves the existence of statistical mechanics 

models that realize the conformal field theories considered here at their critical 

27 

points. For the c = 1 systems, such models are known[7][25]. For c^ = 1, the 

candidates include 19 vertex models[26]. 

Finally, c = 1 and c^ = 1 are the boundary points for the unitary discrete 

representations of the Virasoro and N = 1 super-Virasoro algebras respectively. 

Are there generic features of conformal field theories that occur as well at the 

boundary points for other discrete series (e.g. [27]) of conformal field theories? 

An analysis at the level presented here is likely to be quite complicated for 

larger values of c. For example, the boundary point for N = 2 superconformal 

theories occurs at c = 3. The natural realization of such theories is in terms of 

a complex superfield, and there are four continuously variable parameters (cor- 

responding to the metric and torsion which define the toroidal compactification 

of the bosonic components of the superfield). There is also a point of higher 

symmetry in the moduli space at which it is possible to write the two super- 

symmetry generators in terms of complexfermions $“.as TF+ = -&I,~$~$~@ 

and TF as its complex conjugate. These are left invariant by SU(3) rotations 

of the fermions and modding out by large enough subgroups of SU(3) can give 

N = 2 superconformal theories that are disconnected from the generic four pa- 

rameter moduli space and/or have lower dimensional moduli spaces (including 

completely isolated theories). 

A more general understanding of the nature of isolated conformal field 

theories and of the connectivity of the moduli space of conformal field theories 

may also be of importance in phenomenological applications of string theory, 

plagued as they are by the large multiplicity of possible string vacuum states. 
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Appendix A. 

The partition function for a general left-right symmetric superconformal 

field theory can be written as 

z,, =; 
( 

An+pO+A/+p[7 , (A4 
A A P P 1 

where A and P refer to antiperiodic and periodic boundary conditions on the 

worldsheet supersymmetry generator. The partition function for the theory 

twisted by (-1) fi is most simply determined by first calculating (-l)Fs q 
1 

and then summing over the modular orbits. This gives 

((-l)FB)Zsc=~(~~+~o+~~-~~) =Z,,- PI . (A.2) 
A A P P P 

In the Ramond sector, the zero mode Go of the worldsheet supersymmetry 

generator, satisfying Gi = LO - C/16, annihilates the Ramond ground states 

with conformal weight 2116, and assigns all remaining states into pairs with 

opposite worldsheet fermion number (-l)F. The Ramond ground states give 

the only contribution to P c], which is therefore a constant equal to the sum of 
P 

their (-l)F eigenvalues. We see that the modification (A.2) in general changes 

the partition function only by a constant. That the partition function could be 

consistently changed by this constant was also observed from a slightly different 

viewpoint in the second of ref. [6]. 

The modding out (A.2) also relates certain of the superconformal theories 

in the c = 1 moduli space. The two N = 2 superconformal theories at r = fi 

and r = d/2 on the circle line for example are related by this modification, as 

are the twisted N = 2 theories at r = fi and r = d/2 on the orbifold line. 

In these two cases the partition functions differ by an additive constant equal 

to the number of Ramond ground states, respectively 2 and 1. 

We emphasize again that although the partition functions of theories re- 

lated by (A.2) in g eneral differ only by a constant, the operator product coeffi- 

cients and correlation functions for fields in the Ramond sector are completely 

different. 

Appendix B. 

In this appendix we try to provide some intuition for the relations between 

some of the lines of fig. 1 by considering their properties at the free fermion 

points r = 1. 

First we consider the effect of the modding out prescription (2.10) at 

r = 1 on the circle line. The theory (2.3) at r = 1 can be understood as a 

Dirac x Majorana theory with two independent sums over spin structures 

&irc(l) = t (AA~+ ppn+ AA~+ PP~) 
AA AA PP PP ._ f (a+cl+4-J+Pl-J) 

A A P P 
w 

The action (2.10) has the effect of coupling together the two independent spin 

structures to give (3.1). By contrast, the action (2.7) has the opposite effect 

of producing a fully decoupled sum over three independent spin structures, 

thereby resulting in the (Majorana)3 = (Ising) theory 

Sorb (1) = Zzing 

at r = 1 on the orbifold line (2.8). 

(Jw 
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The z2 torsion that relates the theory &b (1) to &&,’ (1) has a particularly 

straightforward description in this fermionic language. We can consider the 

(Ising)3 theory at &,&(l) as arising from modding out the theory Zsca( 1) by 

the 22 x 22 that decouples the sum over three identified spin structures to 

a sum over three independent spin structures (this is the action of modding 

out by D2 c SO(3)). Then the discrete torsion changes only the sign of the 

modular orbit for which all three spin structures are different. (This is precisely 

the phase change that distinguishes the SO(16) x SO(16) heterotic theory from 

the Es x Es theory in their construction from a Z2 x 22 modification of the 

tachyonic SO(32) theory[28].) Th e corresponding term in the partition function 

with changed sign is thus (6/8)]62~Jsr94]/]q(~ = 312, and we recover the relation 

&b'(l) = Zorb(l)- 3. 
The interpretation in Hamiltonian language is as follows. The (Ising) 

theory has an independent GSO projection for each of the three (left-right) 

fermions onto say (-l)Fi = +l in each Hamiltonian sector. We denote this 

projection by (+++). Then the effect of the torsion is to change the projections 

to (--+) in the (AAP) sector and to (+--) in the (APP) sector (and similarly 

for permutations), while the projections in the untwisted sectors (AAA) and 

(PPP) are left unchanged. Note that this theory, &b’(l) = Z’[Dz], has the 

same Sa permutation symmetry as &b( 1) = Z[D2]. Modding it out by 5 C 

Ss or by Ss gives respectively Z’(T] or Z’[O]. 
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Survey of c^ = 1 theories. The axes labelled rcirc and rOrb represent the 
lines of ordinary c = 1 compactifications on the circle S’ and orbifold 
S1/Z2 tensored with the c = l/2 Ising model. The regions represented 
by dotted lines are determined by the dualities described in the text. 
The points labelled by groups G are theories that result from modding 
out the super-affine SO(3)2 theory Zsma(l) by the finite subgroups of 
the diagonal SO(3). The points labelled by G’ ‘s are related to the 
preceding theories by a Z2 torsion. The points labelled by -s are 
given by modding out the SU(2)2 theory Zcir,(l/fi) by the indicated 
subgroup of SO(3), and possess twisted N = 3 supersymmetry. For 
clarity we have not indicated most of these latter since the remaining 
simply appear on the circle and orbifold lines at the same positions as 
on the c = 1 diagram given in [7]. 


