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Abstract

Two families of supersymmetric configurations are considered. One is the 1/4

supersymmetric D1-D5 system with angular momentum, and the other is a family

of pp-waves of type IIB string theory with some supersymmetry .

In the first part of the thesis some configurations of the D1-D5 system are

examined which give conical singularities in AdS3 as their near horizon limit. It

is shown that they can be made non-singular by adding angular momentum to the

brane system. The smooth asymptotically flat solutions constructed this way are

used to obtain global AdS3 as the near horizon geometry.

Using the relation of the D1-D5 system to the oscillating string, a large family of

supergravity solutions is constructed which describe BPS excitations on AdS3 ×S3

with angular momentum on S3. These solutions take into account the full back-

reaction on the metric, and can be viewed as Kaluza-Klein monopole “supertubes”,

which are completely non-singular geometries. The different chiral primaries of the

dual CFT are identified with these different supergravity solutions. This part is

adapted from the papers [1], [2].

In its second part, a general class of supersymmetric pp-wave solutions of type

IIB string theory is constructed, such that the superstring worldsheet action in light

cone gauge is that of an interacting massive field theory. It is shown that when the

light cone Lagrangian has (2,2) supersymmetry, one can find backgrounds that lead

to arbitrary superpotentials on the worldsheet. Both flat and curved transverse

spaces are considered. In particular, the background giving rise to the N = 2 sine

Gordon theory on the worldsheet is analyzed. Massive mirror symmetry relates

it to the deformed CP 1 model (or sausage model) which seems to elude a purely
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supergravity target space interpretation. These are results which appeared in the

paper [3].
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Part I

The Rotating D1-D5 System
Introduction

1. Introduction

The formulation of a consistent theory of quantum gravity is one of the greatest

challenges modern physics faces today. Although such a theory is yet unknown, it

has been argued by ’tHooft, motivated by black hole entropy considerations [4] that

such a theory should be holographic in nature [5,6]. This remarkable suggestion

qualitatively means that a quantum gravity theory, describing the physics within

some volume of spacetime, should be describable as some theory on the boundary,

with no more than one degree of freedom per Planck area. This general principle

plays a prominent role in string theory in the context of the AdS/CFT correspon-

dence, relating string theory in AdS spacetimes (times a compact space) with con-

formal field theories of one less dimension, which can be thought of as living on the

boundary of AdS. The correspondence and its first concrete example were suggested

by Maldacena relating type IIB string theory compactified on AdS5 × S5 to N = 4

super Yang-Mills theory [7]. Further, it has been argued by Gubser, Klebanov and

Polyakov [8]for this case and by Witten [9] studying the special properties of gen-

eral AdS spaces, that observables of the quantum gravity theory in AdS correspond

to correlation functions in a local CFT.

Since this outstanding conjecture has been made, it has been successfully tested

in many different settings. The one which we choose to focus on is the AdS3/CFT2

correspondence, which is special and interesting for a few reasons. First, the su-

pergravity theory on AdS3 can be shown to be equivalent to a two-dimensional

superconformal field theory. This was first shown by Brown and Henneaux for pure
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gravity on AdS3 [10] , and later was shown for all extended supergravity theories

1 on AdS3 [14]. The construction relies on the observation that the asymptotic

dynamics and symmetries of the supergravity theory are generated by a left and

right Virasoro and Kac-Moody algebras. Manipulating the 3d supergravity action,

in its Chern-Simons form, an equivalent super-Liouville two dimensional action was

derived 2, which is superconformal invariant 3. Second, the string theory on AdS3

can actually be studied using worldsheet methods beyond the supergravity approxi-

mation [21,22]. This is due to the fact that the string theory can be defined without

turning on Ramond-Ramond fields, and that the symmetry group associated with

two-dimensional conformal theories is infinite-dimensional. This way the correspon-

dence has been established in perturbative string theory.

In string theory, the duality can be derived by thinking of a brane configuration

whose near-horizon geometry is AdS3 × S3 ×M4 (where M4 is either T 4 or K3).

Working in type IIB string theory, one can take a system of Q1 D1 branes along a

circle y of radius R, and Q5 D5 branes wrapping the compact M 4 and stretching

along y as well. All the branes coincide in the transverse directions. This config-

uration has SO(1, 1) × SO(4) ≈ SO(1, 1) × SU(2)L × SU(2)R Lorentz symmetries

1 these theories were classified in [11,12,13.]
2 It is interesting to note that the Liouville action is unable to reproduce the

Bekenstein-Hawking entropy of the black holes. The reason being that its lowest dimension

operators have a nonzero conformal dimension, and thus its effective central charge is not

c = 6k, but ceff = 1. There are many approaches to this problem. Some, like Martinec

[15], claim that the Chern-Simons or Liouville actions are only an effective description,

which does not capture the underlying microscopic degrees of freedom of the system. Oth-

ers, like Carlip [16] try to count the degrees of freedom on the horizon with specific

boundary conditions and claim to reproduce the right entropy. However such approaches

are problematic. For a discussion of some of these issues, see [17].
3 Actually, the superconformal symmetry algebra is not always an algebra in the strict

sense. For some Lie superalgebras of the bulk gravity, the resulting superconformal anti-

commutators also include bilinears in the currents. Such non-linear superconformal alge-

bras have been discussed and classified in [18,19,20]
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and N = (4, 4) supersymmetry. The supergravity solution involves a dilaton, a

3-form RR field strength, and a metric which is asymptotically flat. In the case

that M4 = T 4 it is given by [23,24,25,26]:

e−2φ =
1

g2h2(r)

F3 =
2r25
g
ε3 + 2r21ge

−2φ ∗6 ε3

ds2 =
1

h(r)
[−dt2 + dy2 + (1 +

r21
r2

)dxidx
i] + h(r)[dr2 + r2dΩ2

3]

h(r) ≡ (1 +
r21
r2

)1/2(1 +
r25
r2

)1/2

(1.1)

where ∗6 is taken in the six dimensions t, y, r,Ω3, where ε3 is the volume form on

the 3-sphere , r1, r5 are constants and xi are the directions along the torus, each of

period 2πv1/4α′1/2. In the near horizon scaling limit α′ → 0 with U = r
α′ and R

kept fixed, the solution becomes

e−2φ =
Q5

g2
6Q1

ds2/α′ =
U2

`2
(−dt2 + dy2) +

`2

U2
dU2 +

√
Q1

vQ5
dxidx

i + `2dΩ2
3

g6 = g2/v ; `2 ≡ g6
√
Q1Q5

Q1 =
v

4πg2α′

∫
e2φ ∗6 F3 ; Q5 =

1

4πα′

∫
F3

(1.2)

i.e. AdS3 × S3 ×M4, where the AdS radius and the sphere radius are given by

R2 = g6
√
Q1Q5`

2
s , and the M4 volume is proportional to Q1

Q5
.

The dual superconformal field theory is the IR fixed point of the field theory

living on the D1-D5 brane system. It can be viewed as the 1+1 sigma model

whose target space is the instanton moduli space, with the Q1 D1-branes acting

as instantons of the low energy super Yang-Mills theory on the D5 branes. It

was argued [27,28,29,30] that the instanton moduli space is a deformation of the

symmetric product of k copies of M 4: Sym(M4)k (k = Q1Q5 for M4 = T 4 and
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k = Q1Q5 + 1 for M4 = K3)4.

Using this explicit form of the CFT, further evidence for the correspondence

has been given, comparing the elliptic genus of the orbifold conformal field theory

to a sum over geometries on the supergravity side [32,33].

One may wonder what happens when we add angular momentum to the D1-D5

system, i.e. let the branes rotate in the four dimensional transverse space. Solutions

parameterized by two angular momentum parameters JL,R were given in [34,35] ,

and will be discussed in chapter 2. As we will show, the rotation corresponds in

the CFT to changing the R-charges of the chiral primaries. For specific values

of angular momentum we will see that we get a supersymmetric solution with an

asymptotically flat metric, with non-singular global AdS3 × S3 as its near-horizon

limit.

More general exact supersymmetric gravity solutions for the rotating D1-D5

system can be constructed by relating it through dualities to the oscillating string.

We will explain and employ this method in chapter 3, and use it to match the

chiral primaries of the conformal field theory to exact six-dimensional supergravity

solutions.

This de-singularization can also be viewed as a Myers type blow up effect

[36](induced by angular momentum rather than by an external R-R field), where

the D1-D5 branes blow up into a Kaluza-Klein monopole. Actually, as we will show

on chapter 3, this is dual to the angular-momentum induced blow up of the D0-F1

system to a D2 supertube [37]. For the above mentioned special values of angular

momenta, the Kaluza-Klein monopole radius is related to its charge in a way which

makes the geometry non-singular.

Below we provide some more details about AdS3 spaces and their properties,

4 The deformation of the model consists of blowing up the fixed points of the orbifold

and modifying the B-field living at the fixed points.
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about the 3-dimensional supergravity action and about the 2-dimensional CFT and

its chiral primaries.

1.1. The AdS3 Spacetime - Global and Local Properties

AdS3 is a three-dimensional spacetime of constant negative curvature. It is

the group manifold of the universal covering of SL(2, R) which can be clearly seen

writing its metric as

ds2 =
`2

2
Tr(g−1dgg−1dg) (1.3)

where g ∈ SL(2, R). In the explicit parameterization

g =

(
1/y w−/y

w+/y y + w+w−/y

)

the metric becomes

ds2 =
`2

y2
(dy2 + dw+dw−) (1.4)

This is AdS3 in Poincaré coordinates. In its form (1.3) it is easy to see the

metric is invariant under right and left multiplication of g by constant SL(2, R)

matrices hL,R: g → hLghR. This isometry group SL(2, R) × SL(2, R) ≈ SO(2, 2)

is also manifest when one represents AdS3 as a hyperboloid embedded in R2,2:

X2
0 +X2

3 −X2
1 −X2

2 = `2

ds2 = −dX2
0 − dX2

3 + dX2
1 + dX2

2

(1.5)

The relation between the Poincaré coordinates and the embedding coordinates is

g =

(
1/y w−/y

w+/y y + w+w−/y

)
=

1

`

(
X0 −X2 X1 −X3

X1 +X3 X0 +X2

)
(1.6)

It is important to note that the Poincaré coordinates only cover half of the hyper-

boloid.

Another useful set of coordinates which covers all of the hyperboloid is the

global coordinates, in which the metric takes the form:

ds2 = −[1 + (
r

`
)2]dt2 +

dr2

1 + ( r` )
2

+ r2dϕ2 (1.7)
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These are related to the hyperboloid coordinates by

X0 + iX3 = `

√
1 + (

r

`
)2eit/` ; X1 + iX2 = reiϕ

A 3-dimensional space which is a solution of Einstein’s equations with a negative

cosmological constant, unlike spaces of higher dimensions, has to have a metric

which is locally AdS3. If we take the coordinates in (1.7) to have the range

t ∈ R ; r ∈ [0,∞) ; ϕ ∈ S1 then the space is Globally AdS3. It has the structure

of a solid cylinder with a timelike two-dimensional boundary at r = ∞ (or y = 0 in

the Poincaré coordinates).

Timelike geodesics moving in global AdS3 never reach its boundary and os-

cillate between a maximal and minimal r (the minimal r can be the origin if the

geodesic has no angular momentum). Lightlike geodesics, on the other hand, can

reach the boundary in finite proper time.

However, keeping the local structure, one could quotient the space, changing

its global structure. As AdS3 is the group manifold of SL(2, R), one can quotient

the space by any discrete subgroup of SL(2, R), as long as by doing this one gets a

space with an admissable causal structure, i.e. that no closed timelike or null curves

are created by the identifications. All such possible quotients have been classified

by Bañados, Teitelboim, Zanelli and Henneaux [38] , and are characterized by two

parameters M,J . The different locally AdS3 spaces are:

* Global AdS3 with no quotient : M = −1 ; J = 0.

* Conical Singularities: −1 < M < 0 ; J = 0: These spaces have a deficit angle

of β = 2π −M .

* The zero mass BTZ black hole : M = 0 ; J = 0.

* General BTZ black holes: M > 0 ; |J | ≤ M : These black holes have mass M

and angular momentum J .

The BTZ black hole [39] has an inner cauchy horizon and an outer killing event

horizon, given in global coordinates by r2
± such that r2+−r2− = M`2 ; −2r+r− = J`.

6



In coordinates with natural identifications (ϕ ∼ ϕ+ 2π) the metrics take the form:

ds2 = −N2dt2 +
dr2

N2
+ r2(Nϕdt+ dϕ)2

N2 ≡ −M + (
r

`
)2 + (

J

2r
)2 ; Nϕ = − J

2r2

(1.8)

1.2. Three Dimensional Supergravity as a Chern-Simons Theory

Pure Einstein gravity in three dimensions with a cosmological constant is de-

scribed by the action

S =
1

16πG

∫

M

d3x
√−g[R− 2Λ] (1.9)

It was shown by Witten [40] that for a negative cosmological constant Λ = − 1
`2 ,

this theory can be re-written as a Chern-Simons action with an SL(2, R)×SL(2, R)

gauge group.

To see this, one works with first order formalism, introducing the dreibeins eaµ

and spin connections ωaµ ≡ 1
2ε
a
bcω

bc
µ , where the action is re-written as

S =
2

16πG

∫

M

d3x[ea ∧ (dωa +
1

2
εabcω

b ∧ ωc) +
Λ

6
ea ∧ eb ∧ ec]

and then changes variables from ea, ωa to Aa
L,R = ωa± 1

` e
a . In these new variables

the action (1.9) becomes

S = SCS [AL] − SCS [AR] ; SCS [A] ≡ k

4π

∫

M

Tr(A ∧ dA +
2

3
A ∧A ∧A) (1.10)

where we regard A as taking value in the Lie algebra sl(2, R), and k ≡ `/4G.

The Chern-Simons action is proportional to a topological invariant - the sec-

ondary Chern class, and does not depend on the choice of metric. Thus all observ-

ables of the theory are topological invariants [41]. Under the gauge transformation

A → UAU−1 − dUU−1 (U being a group element) the action changes by a Wess-

Zumino term, which is zero for non-compact groups and an integer winding number

of the transformation for compact groups. Thus the theory is Gauge invariant for

7



any k in the first case, and for integer k’s in the second case. As we are dealing

with SL(2, R) Chern-Simons theory, for which H3 vanishes, the level k need is not

quantized.

Using this equivalence, it was shown [40] that pure gravity in 1+2 dimensions

is solvable, and that it has asymptotic V ir × V ir symmetries [10].

In addition the Chern-Simons formalism makes it clear that the theory has no

bulk degrees of freedom. As the At component has no kinetic term, it effectively

acts as a Lagrange multiplier, and when integrated over, one is left with a two-

dimensional chiral WZW action on the boundary of M . Thus the theory has only

degrees of freedom living on the boundary.

Now, we would like to go beyond pure gravity, and try to describe supergravity

on AdS3 in a similar fashion. This was first done by Achucarro and Townsend

[42] for Osp(N |2;R) × Osp(N |2;R) supergravity, by introducing the concept of

a super-connection Γ i.e. a connection which takes values in a superalgebra ( a

Z2 graded algebra G = G0̄ ⊕ G1̄) . In order to represent AdS3 geometries G

must contain sl(2, R) as a bosonic subalgebra (G0̄
∼= sl(2;R) ⊕ g). There are only

seven families of such superalgebras, which were classified in [11,12,13]. Then the

3-dimensional supergravity action can be written as [14]

Ssugra = Sscs[ΓL]−Sscs[ΓR] ; Sscs[Γ] ≡ k

4π

∫

M

STr(Γ∧ dΓ +
2

3
Γ∧Γ∧Γ) (1.11)

and the supertrace is a Killing nondegenerate bilinear form on the superalgebra.

The field content can be seen by decomposing Γ to its superalgebra components:

Γ = (Aaσa) + (AaT a) + (ψ+αR
+α + ψ−αR

−α)

(Here σa are the sl(2, R) generators, T a the generators of g, the internal bosonic

symmetry algebra , and R±α the fermionic generators , transforming in the spinor

representation of sl(2, R)). Thus we have the following field content: Aa
L,Aa

R which

8



make up the dreibeins and connections , AaL, A
a
R which are the gauge bosons, and

ψ±α
L , ψ±α

R which are the gravitini.

As in the pure gravity case, here also Γt in (1.11) functions as a Lagrange

multiplier, and the action can be re-written as a chiral super-WZW living on the

boundary of M . All the fields, in particular the ALµ , A
R
µ , have degrees of freedom

only on the boundary.

The internal symmetry group g is determined in string theory by the manifold

on which one compactifies the 10-dimensional theory to get AdS3. In the case

we consider, the D1-D5 system wrapped on the M 4, the near-horizon geometry is

AdS3×S3×M4, so the 3-dimensional gauge fields come from Kaluza-Klein modes on

the S3 [43,32] and the symmetry algebra of the space is (sl(2, R)×su(2))×(sl(2, R)×

su(2)). The corresponding symmetry superalgebra is psu(1, 1|2)L × psu(1, 1|2)R,

and the internal symmetry gauge connections ALµ , A
R
µ take values in su(2).

The infinitesimal form of gauge transformations in this formalism is δΓ = dΛ+

[Γ,Λ] where Λ is in the superalgebra. The subset of gauge transformations where

Λ has only G1̄ components (Λ is fermionic) are the supersymmetry transformations

of the model. Using this formalism Izquierdo and Townsend [44] classified all

supersymmetric vacuum spacetimes of (2,0) AdS3 supergravity i.e. AdS3 with one

extra U(1) gauge field. In the next chapter we would discuss specific supersymmetric

configurations with 3-dimensional conical singularities, and show how by changing

the su(2) gauge fields, one can obtain supersymmetric nonsingular configurations.

1.3. The Two Dimensional Conformal Field Theory and its Chiral Primaries

As mentioned before, the two dimensional conformal field theory is a 1+1 di-

mensional sigma model with a target space which is a deformation of the symmetric

product Sym(M4)k. With this deformation the gravity description is valid. One

can change the moduli of the CFT and reach the symmetric product point (with

9



no deformation), where gravity is strongly coupled, and the supergravity approxi-

mation is not good. However, if we discuss chiral primary states of the CFT (states

with L0 = J3
0 and L̄0 = J̄3

0 ), these have protected energies, and so allow treatment

at the orbifold point. Thus, dealing with such states, we can employ the ’gas of

strings’ description of the theory. This is a description valid for orbifold conformal

field theories, in which the strings are winding around the circle y, and moving in

M4, with total winding number k [45].

The CFT contains left and right bosonic Virasoro and SU(2) Kac-Moody gen-

erators and fermionic currents which are charged under the SU(2)s, and has central

charge c = 6k. The supercharges obey the following anticommutation relations:

{Q++
r , Q−−

s } = 2Lr+s + 2(r − s)J3
r+s +

c

3
δr+s(r

2 − 1

4
)

{Q+−
r , Q−+

s } = 2Lr+s + 2(r − s)J3
r+s +

c

3
δr+s(r

2 − 1

4
)

(1.12)

The theory has two sectors, depending on the periodicity condition one assigns

to the fermions around the circle y. Periodic boundary conditions are described by

the R-R sector, and anti-periodic by the NS-NS sector. The modding of the super-

charges r, s are integer in the first case, and half-integer in the second. Thinking

of the CFT as the dual of a gravity theory, the periodicity conditions of the CFT

should correspond to those in the spacetime around the y-circle. Thus, if we are

discussing asymptotically flat supergravity configurations (like the D1-D5 system)

we expect to be in the R-R sector, while if we are discussing other asymptotics (like

the AdS3 × S3 - the near horizon geometry of the brane configuration) we can be

in the NS-NS sector.

For concreteness, let us work with the case M = T 4 (The K3 case follows

similar lines). To describe the orbifold CFT, we choose to work with a specific

realization of the superconformal algebra in terms of 4k free bosons describing the k

coordinates on the T 4 : Xaȧ
I I = 1..k ; a, ȧ = 1, 2 are spinorial indices on the T 4, and

4k free fermions ψαȧI , α, α̇ = ± spinorial indices on SO(4) [46]. The superconformal

10



generators can be realized in terms of these free fields, and in particular the SU(2)

Kac Moody currents are bilinears in the fermion fields.

The periodicity conditions we wish to impose on the fields are that they cycli-

cally permute when one goes around the origin, i.e.

XI(ze2πi, z̄e−2πi) = XI+1(z, z̄) , I = 1..n− 1 ; Xn(ze2πi, z̄e−2πi) = X1(z, z̄)

A simple way to impose this is to define new fields Y m(z, z̄) by Y m ≡ 1√
n

∑n
I=1 e

−2πimI
n XI .

These fields have periodicity conditions Y m(ze2πi, z̄e−2πi) = e2πi
m
n Y m(z, z̄), which

are easier to treat [47]. Their OPEs with a basic Zn twist operator σ̃n are given by:

∂Y m(z)σ̃(1..n)(0) = z
m
n
−1τ(1..n)(0) + ... (1.13)

(τ is an excited twist field).

The conformal weight of the twist field can be obtained by calculating the

expectation value of the energy momentum tensor for the twisted vacuum and is

hσ̃ = 1
24 (n− 1

n ). 5

In order to create charged twist fields, it is convenient to bosonize the left-

moving and right-moving fermions to the bosonic ΦI = φI(z) + φ̄I(z̄):

ψ+a
I (z) = eiφ

I
a(z) ; ψ−a

I (z) = εabe
−iφb

I(z)

ψ̄+a
I (z̄) = eiφ̄

I
a(z̄) ; ψ̄−a

I (z̄) = εabe
−iφ̄I

b(z̄)

Then to get U(1) charged operators in twisted sectors, we add momenta for

the bosonized fermions, and define the operators:

O
(kL,kR)
(1..n) (z, z̄) ≡ e

i
n

[kj

L

∑
n

I=1
φI

j (z)+kj

R

∑
n

I=1
φ̄I

j (z̄)]σ̃(1..n)(Φ, X)(z, z̄) (1.15)

5 Getting back to the XI fields, gives the OPE:

∂XI(z)σ̃(1..n)(0) = z
1
n
−1e−

2πi
n

Iτ(1..n)(0) + ... (1.14)

where we only write the most singular term in the OPE, but there are other less singular

terms as well.

11



Here kjL,R j = 1, 2 are constant vectors, and σ̃(1..n)(Φ, X) involve 6 twist fields as

in (1.14)- four for the XI ’s and two for the ΦI ’s.

In (1.15), note that the exponential has no OPE with the twist fields σ̃, as we

only have the center-of-mass modes
∑
I φ

I ,
∑
I φ̄

I .

The operator in (1.15) has conformal weights

h = n
(k1

L)2+(k2
L)2

2n2 + 6
24 (n− 1

n ), and h̄ = n
(k1

R)2+(k2
R)2

2n2 + 6
24 (n− 1

n )

and R-charges: j3 = 1
2 (k1

L + k2
L) , j̄3 = 1

2 (k1
R + k2

R)

Now, the possible values of the momenta kjL,R should be determined by the

periodicity conditions on the fermions. When one goes once around the origin each

fermion field ψI becomes ψI+1, so the product Πn
I=1ψ

I picks up a phase (−1)n+1.

This product involves only the center of mass boson
∑
I φ

I . In order to reproduce

this OPE we need that 2πin
k1,2

L

n = πi(n + 1 + 2p1,2) for p1,2 some integers, i.e.

k1,2
L = n+1

2 + p1,2. Similarly for kR we get k1,2
R = n+1

2 + q1,2 for q1,2 some integers.

We find that for the operators (1.15) , h− j3 = p1(p1+1)+p2(p2+1)
2n and h̄− j̄3 =

q1(q1+1)+q2(q2+1)
2n , meaning these are chiral primaries in any of the 8 combinations

where p1,2, q1,2 equal 0 or −1. However only 4 of these combinations - the ones

where p1 = p2 and q1 = q2 would exist also for the field theory describing the

symmetric product of K3’s. We therefore focus on these and end up with four

chiral primary twist operators for each n-permutation: (1.15) with k1
L = k2

L = n±1
2 ,

k1
R = k2

R = n±1
2 . By summing over all n-permutations, one can construct the

following chiral primaries with conformal weights and charges:

12



σ−−
n (z, z̄) =

1√
k!(k − n)!n

∑

f∈Sk

O
( n−1

2
,n−1

2
)

f(1..n)f−1 (z, z̄) ; h = j3 =
n− 1

2
, h̄ = j̄3 =

n− 1

2

σ+−
n (z, z̄) =

1√
k!(k − n)!n

∑

f∈Sk

O
( n+1

2
,n−1

2
)

f(1..n)f−1 (z, z̄) ; h = j3 =
n− 1

2
, h̄ = j̄3 =

n+ 1

2

σ−+
n (z, z̄) =

1√
k!(k − n)!n

∑

f∈Sk

O
( n−1

2
,n+1

2
)

f(1..n)f−1 (z, z̄) ; h = j3 =
n− 1

2
, h̄ = j̄3 =

n+ 1

2

σ++
n (z, z̄) =

1√
k!(k − n)!n

∑

f∈Sk

O
( n+1

2
,n+1

2
)

f(1..n)f−1 (z, z̄) ; h = j3 =
n+ 1

2
, h̄ = j̄3 =

n+ 1

2

(1.16)

The last 3 operators can be obtained from the first by successive actions with

J+
−1 and J̄+

−1.

In the gas of strings picture, a twist operator σs,s̄n describes a string with n

winding around the y-circle (and spins s, s̄). A general chiral primary in the theory

(restricting to the cohomology classes of M 4 we have discussed) is described by the

operator
p∏

i=1

[σsi,s̄i
ni

]mi ,

p∑

i=1

nimi = k

and corresponds to a partition of the string to p groups, each has mi copies of

winding ni (si, s̄i take the values +,-).

The NS-NS vacuum corresponds to the global AdS3 vacuum (where constant

time surfaces are smooth discs), and is described by the chiral primary (σ−−
1 )k,

where there are k singly-wound strings.

The two sectors - the RR and the NS-NS are related by spectral flow - an

automorphism of the N = 4 algebra [48] :

hR = hNS − jNS3 +
c

24

jR3 = jNS3 − c

12

(1.17)

This maps the chiral primaries of the NS-NS sector (with h = j3, h̄ = j̄3) to the

ground states of the R-R sector (with h = h̄ = c
24 ).
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In chapter 3, we will find for each chiral primary of the CFT, its dual super-

gravity configuration.
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Chapter 2

De-singularization by Rotation

2. De-singularization by Rotation

It is well known that some BPS states in four and five dimensional supergravity

theories can be realized as non-singular extremal black holes with non-zero horizon

area. This is the situation for generic black hole charges. However, there are some

cases where the area of the horizon becomes zero and the geometry becomes singular.

For example, this happens for 1/4 BPS states of string theory on T 5. In this chapter

we show that by considering 1/4 BPS states with maximal angular momentum we

can produce a completely non-singular geometry once we suitably include one of the

internal dimensions. We were led to this solution by thinking about supersymmetric

conical singularities in AdS3. So first we analyze various aspects of supersymmetric

AdS3 spaces and conical singularities [44]. When we are dealing with AdS3 we can

consider the theory with NS-NS or RR boundary conditions on the spatial circle.

It is known that the M = 0 BTZ black hole is a RR ground state [50]. We show

that by introducing Wilson lines for U(1) gauge fields in AdS3 we can also interpret

other conical singularities as RR ground states. Even pure AdS3 with a suitable

Wilson line can be interpreted as a RR ground state. All these ground states are

different in their U(1) charges.

If we view global AdS3 as the near horizon region of a six dimensional rotating

black string of string theory on R1,4×S1×M4 coming from D1-D5 branes wrapped

on S1, 6 then we can match the smooth global AdS3 solution to asymptotically flat

space in such a way that it preserves supersymmetry. In other words, by adding

angular momentum we can find a smooth supergravity solution that corresponds

6 The D5 branes also wrap M4.
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to the D1-D5 system. These are solutions which have maximal angular momenta

JL = ±JR = Q1Q5/2 ≡ k/2. 7

These AdS3 geometries with Wilson lines can also have the interpretation of

“giant gravitons” in AdS3.

The proper interpretation of these solutions will involve a precise statement

and understanding of the possible boundary conditions for the gauge fields that

live on AdS3. So in section 2.1 we review some facts about gauge fields and Chern

Simons theory. In section 2.2 we describe the interpretation of the solutions from

the AdS/CFT point of view. In section 2.3 we match the AdS3 solutions to the

asymptotically flat region. In section 2.4 we briefly remark about the interpretation

of these configurations as giant gravitons.

2.1. Some Facts about Wilson Lines and Chern Simons Theory

Let us start by describing some facts about U(1) gauge fields. Suppose we have

a plane described by coordinates ρ, ϕ, ds2 = dρ2 + ρ2dϕ. Then consider a gauge

field with the connection Aϕ = a where a is any constant. We see that F = 0

everywhere in the plane except at the origin where it is a delta function. This is of

course the familiar gauge field of a Bohm-Aharonov vortex. The interaction with

the gauge field is normalized so that we get the phase ei
∫
A for the field with the

minimal quantum of charge. We see that if a is an integer particles do not feel any

field and indeed we can set A to zero by a gauge transformations A→ A+dε where

ε(ϕ+2π) = ε(ϕ)+2πn, with n integer. We need to specify the boundary conditions

for the charged fields when we go around the origin. We will work with fixed

boundary conditions for the fields and we will vary a. Suppose we have a fermionic

field and we impose the boundary condition that ψ is periodic as it goes around the

7 One can also view the system in the S-dual picture, involving F1−NS5. Conformal

models describing the F1−NS5 system with couplings representing the angular momenta

have been discussed in [51].
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circle. Then if we set a = 1/2, the field will effectively become antiperiodic. This

implies that the fermionic field will be totally continuous at the origin, since the

minus sign is what we expect for a rotation by 2π.

Now let us suppose that we have Chern Simons theory on a solid cylinder

D2 × R, where D2 is a disk. Then we need to impose some boundary conditions

on the gauge field. As shown in [41][52] we can impose the boundary condition

only on one component of A along the boundary. One way to understand this is to

view the direction orthogonal to the boundary as time so that one realizes that the

two components of A along the boundary are canonically conjugate variables. We

will be interested in setting boundary conditions of the form 2A− = A0 − Aϕ = 0.

It is easy to see that these boundary conditions are consistent. We choose these

boundary conditions because it was shown in [14] that they are appropriate for

gauge fields in AdS supergravities. Once we give these boundary conditions we can

have a variety of states in the theory with various values of A+ on the boundary.

These values are 2A+ = q/2k, with q integer [52], and k the level of the Chern

Simons theory. These various states can arise by inserting various Wilson lines in

the interior. States with q → q ± 2k are related by a large gauge transformation

which does not vanish at the boundary. These transformations map physical states

to other physical states in the boundary theory. From the point of view of the

topological theory in the bulk, states with q and q ± 2k are equivalent. The U(1)

charge of the state has the value of 1
2π

∫
A along the spatial circle. If we have a

Wilson line of charge q in the interior, this value is Aϕ = q/(2k).

Similar remarks about CS theory apply when the gauge group is non-compact,

such as SL(2, R). In this case we consider again configurations with vanishing field

strength and with the same asymptotic boundary conditions. This implies that the

space is locally AdS but not globally. For example, we can consider the conical

space
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ds2 = −(r2 + γ2)dt2 + r2dϕ2 +
dr2

r2 + γ2
(2.1)

Locally this is an AdS3 space, but at r = 0 we have a conical singularity if

γ 6= 1.

2.2. Conical Singularities and AdS/CFT

In this section we will apply some of the above remarks to supergravity theories

on AdS3. What we will describe is mainly contained in [44][53]. We will consider

supergravity theories with extra U(1) gauge fields on AdS3. One example we have

in mind is the case of string theory on AdS3 × S3 ×K3, but other examples could

be treated in a similar way. We will consider gravity theories on AdS3 with at least

(2, 2) supersymmetry. This implies that we will have U(1)L × U(1)R gauge fields.

Pure three dimensional gravity on AdS3 is given by an SL(2, R)2 Chern Simons

theory, which we will use to describe the conical spaces. In this situation we could

consider solutions with arbitrary Wilson lines for the U(1)L,R gauge field as well as

the SL(2, R)L,R gauge fields. In principle these solutions are singular in the interior

and we should not consider them, unless we have a good reason to think that the

singularity will be resolved in the full theory.

In this chapter we will consider singularities which preserve at least (2,2) super-

symmetry. We will impose RR boundary conditions on the fields and we consider

arbitrary Wilson lines. In order for the solution to be supersymmetric the Wilson

line in the SL(2, R) part and the U(1) part should be essentially the same, we will

later make this statement more precise. The boundary of AdS3 is R× S1. We nor-

malize charges so that a fermion carries integer charge under U(1)R,L. As standard

in AdS/CFT, the boundary conditions on all supergravity fields correspond to the

microscopic definition of the “Lagrangian” of the CFT, including the periodicities

of the fields as we go around the circle, etc. We can then consider all solutions to
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the supergravity equations with given boundary conditions. Different solutions cor-

respond to different states in the boundary CFT. Now let us choose RR boundary

conditions for the CFT and sugra fields on the spatial boundary circle. We will

impose the boundary condition AL− = AR+ = 0 for U(1)L,R.8

We will consider flat gauge fields with U(1)R,L connections given by constant

values AL+ = a+, AR− = a−. Supersymmetry determines the three dimensional

geometry. We consider spinors generating supersymmetry that are periodic when

we go around the circle, since we said we are interested in the RR sector. The

solution is then:9

ds23 = − [(r − a2
+ − a2

−
r

)2 + 4a2
+]dt2 +

dr2

(r − a2
+
−a2

−

r )2 + 4a2
+

+

+ r2(dϕ+
a2
+ − a2

−
r2

dt)2

AL+ = a+ , AR− = a− , AL− = AR+ = 0

(2.2)

In the particular case of a+ = a− = γ/2 the solution is

ds23 = − (r2 + γ2)dt2 + r2dϕ2 +
dr2

r2 + γ2

AL+ = AR− = γ/2 , AL− = AR+ = 0

(2.3)

All these configurations have zero energy, as implied by the RR sector super-

algebra. The AdS3 space in (2.3) seems to have negative energy, but one should

add to this the energy that comes from the Wilson line. This additional energy

comes from the “singleton” that lives at the boundary of AdS which encodes this

degree of freedom. This was explicitly shown in [14]. So we have L0 = L̄0 = 0. The

angular momenta are half the U(1) charges, JL = JR = kγ/2. So we see that γ

8 Actually one could impose the boundary condition AL
− = εL , AR

+ = εR, where εL,R

are some constants. These would correspond to left and right spectral flows with the

parameters εL,R.
9 We use conventions where RAdS = 1.
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should be quantized as γ = n/k. We get zero energy states with various amounts

of angular momenta.

So what is the interpretation of these spaces? which ones are allowed and

which ones are not? All these are supersymmetric solutions. Almost all of them

are singular. Only if γ = 1 we see from (2.3) that we get a nonsingular solution.

Let us discuss this solution first. The three dimensional geometry is that of AdS3.

The Wilson line around the origin of AdS3 is such that it effectively changes the

periodicity of fermionic fields from periodic to anti-periodic, so that they are smooth

at the origin. This solution has angular momenta JL = JR = k/2. What is this

state in the boundary CFT?. We know that the boundary CFT has a large number

of RR vacua [54]. These vacua have angular momenta |JL,R| ≤ k/2. We see that the

non-singular solution corresponds to a state with the maximal value of the angular

momentum. From general arguments [49]we know that there is a single RR state

with maximal value of the RR charge, it is the state that maps to the NS vacuum

under spectral flow. Here we indeed see that the state we find is essentially the

same as global AdS3 which was identified as the NS vacuum. The only difference

is that the Wilson lines imply that particle energies are shifted as they are shifted

under spectral flow. Now we turn to the solutions with γ 6= 1. All those solutions

contain a singularity at the origin. It is clear that starting from the solution with

γ = 1 we can add supergravity particles that decrease the angular momentum and

leave L0 = L̄0 = 0, these particles, are of course, the chiral primaries discussed in

[26], see also [32]. If we have particles with high values of the angular momentum,

l � 1, l/k fixed, they will appear like very massive particles from the AdS3 point

of view and will give rise to the conical spaces with γ < 1. It is not possible to get

the conical spaces with γ > 1 in this fashion, since all those supergravity particles

would increase the energy and will remove us from the RR vacuum. In other words,

by adding supergravity particles to the state with JL = JR = k/2 we can decrease
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the angular momentum while preserving the zero energy condition. If we try to

increase J we would increase the energy.

We could imagine decreasing J by adding supergravity particles with low values

of the spin, those gravity particles have wavefunctions which are quite extended

in AdS. If we added them in a coherent state, we should be able to find classical

solutions which are also smooth and do not have these conical singularities. Finding

these solutions would require us to use the full six dimensional gravity equations.

In other words, the fact that for J < k/2 we only found singular solutions does not

mean that there are no non-singular solutions. A trivial example is the following.

Consider the AdS3 ×S3 case. Now we have SU(2)L and SU(2)R symmetry groups.

Let us pick the U(1)’s in the above discussion to be in the direction 3̂. Take the

solution with maximal angular momentum and perform an SU(2)L,R rotation in

the 1̂ axis so that now the angular momentum points in the 2̂ direction. We get

exactly the same AdS3 space but now with a Wilson line AL,2+ = AR,2− = 1/2 and

the rest zero. This is a solution with zero U(1) charges but with no singularity, as

opposed to the solution in (2.3) with γ = 0. Of course here we are treating these

Wilson lines in a classical fashion. This is correct in the large k limit where we deal

with macroscopic amounts of angular momentum.

It is easy to see that any solution which is AdS3 and a Wilson line of the form

AL+ = 1/2+n, AR− = 1/2+n′ with integer n, n′ will be non-singular. These solutions

correspond to the spectral flow of the state with n = n′ = 0. These solutions do

not preserve the supersymmetries that the RR ground state preserve, but they do

preserve other supersymmetries. These are the configurations that are related by

spectral flow to the NS sector ground state.

2.3. Non-singular Solutions in Asymptotically Flat Space

In this section we point out that the conical spaces, including the non-singular
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Figure 1: Spectrum of the theory in the RR sector. RR ground
states have spins |J | ≤ k/2. Quantum numbers that lie within the
shaded region, with L0 > J2/k can be carried by black holes. We have
a similar figure for L̄0 and J̄ .

L0

k

k/4

k/2 3k/2 2k

(k/2,k/2) n=1

2k

k

k/2

(k,k)

(2k,4k)
n=2

J

0
2L >J /k + k/4

3k

4k

Figure 2: Spectrum of the theory in the NS sector sector. Quantum
numbers that lie within the shaded region, with L0 > J2/k + k/4 can
be carried by black holes. States with J = nk, L0 = n2k are AdS3

spaces with Wilson lines.

AdS3 space with a Wilson line, can be extended to supersymmetric solutions of

six dimensional supergravity that are asymptotic to R5 × S1, with periodic bound-

ary conditions on S1. In other words, they represent BPS solutions in this six

dimensional string theory.

We can find the solution by starting with the most general five dimensional

black hole solution written in [55], lifting it up to six dimensions as in [35] and

taking the extremal limit with zero momentum charge while keeping the angular

momenta nonzero. The solution we obtain is parameterized by two angular mo-

mentum parameters which we take as γ1,2: JL,R = k
2 (γ1 ∓ γ2) and can be written

in the form10:

10 To relate our parameters and coordinates to the ones in eq. (4) of Cvetic and Larsen
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ds26√
k

=
1

h
(−dt2 + dϕ2) + hf(dθ2 +

r2dr2

(r2 + γ2
1)(r2 + γ2

2)
)

− 2

hf
[(γ2dt+ γ1dϕ) cos2 θdψ + (γ1dt+ γ2dϕ) sin2 θdφ]+

+h[(r2 + γ2
2) + (γ2

1 − γ2
2)

cos2 θ

h2f2
] cos2 θdψ2+

+h[(r2 + γ2
1) − (γ2

1 − γ2
2)

sin2 θ

h2f2
] sin2 θdφ2

(2.4)

where:
f = f(r, θ) ≡ r2 + γ2

1 cos2 θ + γ2
2 sin2 θ

h = h(r, θ) ≡
√
k

R2
y

(1 +
R2
yQ1

kf
)1/2(1 +

R2
yQ5

kf
)1/2

(2.5)

and Ry is the radius of the S1 parameterized by ϕ.

Setting the two angular momenta equal (γ2 = 0 , γ ≡ γ1): JL = JR = kγ/2

, we get the solution:

ds26√
k

= − 1

h
(dt+

γ sin2 θ

r2 + γ2 cos2 θ
dφ)2 +

1

h
(dϕ− γ cos2 θ

r2 + γ2 cos2 θ
dψ)2+

+ h
r2 + γ2 cos2 θ

r2 + γ2
dr2+

+ h[(r2 + γ2 cos2 θ)dθ2 + (r2 + γ2) sin2 θdφ2 + r2 cos2 θdψ2]

(2.6)

In the decoupling near-horizon limit the metric reduces to a locally AdS3 ×S3,

where the S3 angles are defined as ψ̃ = ψ − γϕ , φ̃ = φ− γt [35].

Since the original angles are identified as: ϕ ∼ ϕ+2π , θ ∼ θ+π/2, ψ ∼ ψ+2π

, φ ∼ φ+ 2π, these new coordinates have the global identifications:

(ϕ, ψ̃) ∼ (ϕ, ψ̃) + 2π(1,−γ) ∼ (ϕ, ψ̃) + 2π(0, 1)

θ ∼ θ + π/2

φ̃ ∼ φ̃+ 2π

(2.7)

[35], we have γ1,2 =
Ry√

k
(cosh δ0`1,2 − sinh δ0`2,1) , k = λ4 and r =

√
k

Ry
rC.L., t = 1

Ry
tC.L. ,

ϕ = 1
Ry
yC.L.
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For general (noninteger) values of the parameter γ the periodicities of the AdS3

and the S3 parts are still coupled, and the geometry obtained is singular.

The most interesting solution is the one with angular momenta JL = JR = k/2,

when γ = 1, since it is non-singular. It is a non-singular, geodesically complete

geometry. In its decoupling near-horizon limit, the space is globally a direct product

AdS3 × S3, as can be seen looking at the periodicities of the angles in (2.7).

It seems that the fact that this solution is non-singular is related to the fact that

there are very few states in the CFT with similar values of the angular momenta.

It would be interesting to see if other BPS states in the AdS3 region could

be matched to the asymptotically flat region. Natural candidates are states with

L0 = 0, JR = k/2 and JL = k/2 + nk. In the near horizon limit these states have

AR− = 1/2, AL+ = 1/2 + n. The elliptic genus formula tells us that there is a single

BPS state with these values of the angular momenta11 (it is just the left spectral

flow of the state we found above). If we tried to take a limit of the solutions in

[55][35], we would find that JR = 0. It could be that we need to make a more

general ansatz.

2.4. Super Giant Gravitons

In this section we consider NS-NS boundary conditions on the circle at the

boundary. The ground state is AdS3 with no Wilson lines for the U(1) gauge

fields. We can consider the spectrum of chiral primaries, i.e. states with L0 = JL,

L̄0 = JR as in [26]. From the CFT point of view we can calculate how many of these

states we expect. It turns out that there is a single state with JL,R = 0 and the

number of states increases as we increase the values of JL,R, it reaches a maximum

at JL = JR = k/2 and then it starts decreasing again so that for JL = JR = k we

11 In principle, we also need to add the center of mass motion of the string in the

transverse four dimensions [56].
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find just a single state again. In other AdS compactifications there is a maximum

value for the single particle BPS states. In [57] it was shown that these states are

realized as expanded branes, see also [58]. In AdS5×S5 the cutoff appears at J = N

[54], where J is the angular momentum on S5. In AdS3 the situation is different

[26], there is an absolute cutoff on J at JL = JR = k, there are no chiral primary

states beyond this value of J . By using the previous ideas about Wilson lines it

is easy to see that this state is just AdS3 with U(1)L × U(1)R Wilson lines equal

to AL+ = AR− = 1. We could roughly think about it as an AdS space which is just

rotating as a whole. Only the “singleton” field is excited. The singleton is the mode

that appears at the boundary from the Chern Simons theory in the interior. We

can say that gravitons became so big that they live at the boundary of AdS.

So in the AdS3 × S3 case the graviton with maximum angular momentum is

not an expanded brane but just a different classical solution. This is in agreement

with the fact that the maximal spin, k, is of the order of the inverse six dimensional

Newton’s constant, while in the AdS5 × S5 this maximal value, N , is proportional

to the square root of Newton’s constant. Notice that objects such as long strings

[59][30] are not of concern here since we can work at a point in moduli space where

there is no finite energy long string at infinity. This is possible if Q1 and Q5 are

coprime [30].

In summary, as we pile up chiral primary particles on AdS3 we get to a point

at JL = JR = k/2 where we are on the verge of making a black hole [54]. If

JL, JR approach their maximal values we have again a smooth geometry with a

small number (if JL,R are sufficiently close to k) of chiral primary particles.
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Chapter 3

Gravity Solutions for the D1-D5 System
with Angular Momentum

3. Gravity Solutions for the D1-D5 System with Angular Momentum

Perhaps one of the most distinctive aspects of gravity is that time slows down

near heavy objects due to gravitational redshift.

We now have many cases where we have dual descriptions of gravitational the-

ories in terms of ordinary quantum field theories via the AdS/CFT correspondence.

It is interesting then to find situations where this effect is under some degree of

control, so that we can understand it from the field theory point of view. Black

holes are extreme examples where this redshift factor goes to zero. In this chapter

we consider configurations where this redshift factor is important but does not go

to zero.

We focus on AdS3 ×S3 compactifications, and we consider states with angular

momentum on S3 that are BPS. These states are also called “chiral primary” states.

When these states carry large amounts of angular momentum, their back-reaction

on the metric cannot be ignored. In this chapter we construct exact gravity solutions

which take this backreaction into account. We indeed find that there is an important

redshift effect that implies, among other things, that the energy gap to the next

non-BPS excitation decreases as we increase the angular momentum. This gap goes

to zero for certain states that are on the verge of forming black holes.

These solutions can be found by noticing that the D1/D5 system with angular

momentum blows up into a Kaluza-Klein monopole supertube, U-dual to the one

described in [37]. Since the Kaluza-Klein monopole is non-singular, these geome-

tries are non-singular. The configuration with maximal angular momentum, which
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corresponds to a supertube with circular shape, has a near horizon geometry equal

to AdS3×S3 in global coordinates. Supertubes with non-circular shapes correspond

to chiral primary excitations on the AdS3 × S3 vacuum.

The solutions are also interesting since they provide non-singular gravity solu-

tions for configurations that are 1/4 BPS in toroidally compactified string theory.

Different gravity solutions are related to different microscopic states.

Previous work on the subject focused on gravity solutions with conical singular-

ities. We show that these conical singularities are not a good description of the long

distance properties of generic chiral primaries, i.e. the non-singular solutions are

different, even at long distances. Some very special chiral primaries can give conical

metrics with opening angles of the form 2π/N . Conical metrics with non-integer

angles are not a good approximation to any of the non-singular metrics. Singular

geometries more closely related to chiral primaries can be found in [60]. We will

show that our solutions look like the solutions in [60] at long distances.

In this chapter we also analyze some aspects of the geometry of supertubes in

other dimensions and in various limits.

In section 3.1 we describe the construction of the gravity solutions. In section

3.3 we discuss the relation of these gravity solutions to the problem of chiral pri-

maries in AdS3 ×S3. In section 3.4 we describe general non-singular solutions with

plane wave asymptotic boundary conditions, which can be thought of as arising

from particles propagating on plane wave backgrounds. In section five we discuss

some aspects of the gravitational geometry of supertubes in various dimensions.

This section is a bit disconnected from the previous parts of the chapter.

3.1. The Solutions

In this section we consider ten dimensional supergravity compactified on S1 ×

T 4, and consider a system of Q1 D1 branes wrapped on S1 and Q5 D5 branes
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wrapped on all the compact directions12. We are interested in constructing solutions

which carry angular momentum and are 1/4 BPS. In other words, they are as BPS as

the D1 and D5 branes with no angular momentum. Since there are four non-compact

transverse directions, the angular momenta live in SO(4) ∼ SU(2)L×SU(2)R. The

angular momentum is bounded by JL, JR ≤ k ≡ Q1Q5 [61]. For large values of Q

the angular momentum can be macroscopic and can have an important effect on the

geometry of the configuration. This was initially explored in [1][62] who found that

the geometry with maximal angular momentum was non-singular. In the meantime,

studies of other 1/4 BPS configurations with angular momentum have given rather

interesting results. The best known example is the so called “supertube” which is a

configuration carrying D0 and fundamental string charges with angular momentum,

which is described in terms of a tubular D2 brane with electric and magnetic fields on

its worldvolume [37]. The configuration with maximal angular momentum consists

of a tubular D2 brane with a radius square proportional to the product of the two

charges. The configuration does not carry any net D2 brane charge. Tubes with

arbitrary cross sections are also possible, but they carry less angular momentum

[37].

The D0-F1 system is U-dual to D1-D5. Under this U-duality the above D2

brane goes over to a Kaluza Klein monopole which is wrapped on T 4 and a circle in

the four non-compact dimensions. The special circle of the KK monopole is the S1

common to the D1 and D5 branes. The gravity solution for a circular KK monopole

was found in [1,62] (based on the general solutions in [34]) though it was not given

this description (which is not that obvious by just looking at the metric). This

solution is non-singular because the KK monopole has a non-singular geometry.

Now we construct similar solutions with arbitrary shapes which are also non-

singular. The technique we use to find the solution is based on the observation

12 In appendix B we explain how to obtain the solutions for the K3 case.
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that this system is U-dual to fundamental strings with momentum along the string.

Microscopic configurations of the system are given by strings carrying travelling

waves along them, in other words, strings with only left (or only right) moving

excitations. For this case there are gravity solutions that closely correspond to given

microscopic states [63,64] Namely these solutions describe an oscillating string with

an arbitrary profile F(v), where v is a lightcone coordinate along the string. By a

chain of dualities these can be mapped to the D1-D5 system so that we find the

solution [65] (see appendix B)

ds2 = f
−1/2
1 f

−1/2
5

[
−(dt−Aidx

i)2 + (dy +Bidx
i)2

]
+ f

1/2
1 f

1/2
5 dx · dx

+ f
1/2
1 f

−1/2
5 dz · dz

e2Φ = f1f
−1
5 ,

C
(2)
ti =

Bi
f1
, C

(2)
ty = f−1

1 − 1,

C
(2)
iy = − Ai

f1
, C

(2)
ij = Cij + f−1

1 (AiBj −AjBi)

(3.1)

The functions f1,5 and Ai appearing in this solution are related to the profile F(v)

f5 = 1 +
Q5

L

∫ L

0

dv

|x − F|2 , f1 = 1 +
Q5

L

∫ L

0

|Ḟ |2dv
|x − F|2 , Ai = −Q5

L

∫ L

0

Ḟidv

|x − F|2
(3.2)

and the forms Bi and Cij are defined by the duality relations

dC = − ∗4 df5, dB = − ∗4 dA. (3.3)

where the ∗4 is defined in the four non-compact spatial dimensions. The one brane

charge is given by

Q1 = Q5〈|Ḟ |2〉 = Q5
1

L

∫ L

0

|Ḟ |2dv (3.4)

The length L that appears in these formulas is

L =
2πn5

R
= 2πn5R

′ (3.5)
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where n5 is the number of fivebranes and R is the radius of the y circle, while R′

is the radius in the original fundamental string description13. n5 is the original

number of strings which becomes the number of fivebranes. We see that we are

taking a configuration where the string is multiply wound. This will be important

for later considerations. Configurations where the string consists of independent

pieces can be obtained by adding the corresponding contributions in the harmonic

functions (3.2). The solutions are parameterized by the profile F(v) which describes

a trajectory in the four non-compact dimensions. Note that the final solution (3.1)

is time independent. We will see that the v dependence of F translates into a

dependence of the solution on the non-compact dimensions. The angular momentum

of the solution (3.1) is given by

Jij =
Q5R

L

∫ L

0

(FiḞj − FjḞi)dv (3.6)

It can be checked that the angular momentum is always smaller than n1n5. We

will later concentrate on the two U(1) components Jφ = J12, Jψ = J34 and define

2JL,R = Jφ ± Jψ.

Note that all these solutions correspond to different ground states of the D1/D5

system. This system has a large degeneracy, of order e2π
√

2Q1Q5 .14.

3.2. An Argument Showing the Solution is Non-singular

Looking at the metric (3.1), one might think that it is singular if x = F(v0)

13 For simplicity we have set g = α′ = V4 = 1 in the above formulas. In that case

Q1 = n1 and Q5 = n5, otherwise Qi have dimensions of length square and denote the con-

tribution of the onebranes and fivebranes to the gravitational radius of the configuration,

while n1,5 are integers.
14 More precisely, these solutions are particular combinations of states of the theory.

Classically there is an infinite number of solutions since they are parameterized by contin-

uous parameters. In the quantum theory we should quantize the moduli space of solutions

and that will give us a finite number. This quantization is expected to give us the same

as quantizing the left movers on a string, though we did not verify it explicitly.
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for some value of v0, since the harmonic functions (3.2) diverge there. However,

it was shown in [1,62] that the maximally rotating solution is non-singular. The

maximally rotating solution corresponds to a circular profile

F1 + iF2 = aeiωv F3 = F4 = 0, with ω =
2π

L
=

R

n5
(3.7)

From the expression for the charges (3.4) we get that the radius is

a =

√
Q1Q5

R
(3.8)

On the other hand if we have a circular profile with a frequency ω′ = nω (and

a′ = a/n), we would get a geometry which has a conical singularity of opening

angle 2π/n.

Let us now look at the geometry corresponding to a more general profile F (v).

We will analyze the metric near the potential singularity x = F(v0) and show that

for a generic profile F(v) the solution is completely regular. By generic we mean a

profile satisfying two conditions:

(i) the profile does not have self–intersections (if v1 6= v2, then F(v1) 6= F(v2));

(ii) the derivative Ḟ(v) never vanishes.

Looking at the vicinity of the singularity for such profile, we find

f5 ≈ Q5

L

∫ L/2

−L/2

dv

|x − F|2 ≈ Q5

L

∫ L/2

−L/2

dv

x2
⊥ + (Ḟ )2v2

=
Q5

L

π

|Ḟ |x⊥
,

f1 ≈ Q5

L

π|Ḟ |
x⊥

, Ai ≈ −Q5

L

πḞi

|Ḟ |x⊥

(3.9)

We have split the coordinates of the transverse space around the point F(v0) into

a longitudinal piece, xl, along Ḟ (v0) and a transverse piece x⊥.

The asymptotics (3.9) can be used to show that there are no singularities in

the longitudinal piece of the metric

ds2l ≡ |Ḟ |
[
f5dx

2
l − f−1

1 |Ai|2dx2
l

]
, (3.10)
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but they are not good enough for finding the finite contribution to dsl. We will

refer to the appendix F of [65] where more careful analysis was done, and give the

result

ds2l = |Ḟ |Cdx2
l (3.11)

where C is a positive numerical coefficient whose value depends on global properties

of the profile

C(v0) =
1

|Ḟ(v0)|2

{
Q5

L

∫ L

0

dv(Ḟ(v) − Ḟ(v0))
2

(F(v) − F(v0))2
+ (1 + |Ḟ(v0)|2)

}
(3.12)

Let us now analyze the metric in the space transverse to the singularity

ds2⊥ ≡ |Ḟ |
[
f5(dx

2
⊥ + x2

⊥dΩ
2
2) + f−1

1 (Bidx
i)2

]
(3.13)

In order to compute the leading order terms in the metric it is important to compute

Bi which is dual to Ai. We only need to compute this to leading order in x⊥ so

that we find

Bψ ∼ −(cos θ − 1)
πQ5

L
(3.14)

where the metric in the flat transverse space is parameterized as

ds20 = dx2
l + dx2

⊥ + x2
⊥(dθ2 + sin2 θdψ2) (3.15)

Note that the range of θ is 0 ≤ θ < π. Then the transverse metric (3.13) becomes

ds2⊥ =
4Q5π

L

[
(d
√
x⊥)2 + x⊥

{(
dθ

2

)2

+ sin2 θ

2
dψ2

}]
(3.16)

Let us now look at the complete metric

ds2 = |Ḟ |Cdx2
l + ds2⊥ +

Lx⊥
πQ5

{
dy2 + 2Bidx

idy − dt2 + 2Aidx
idt

}
, (3.17)

Near the singularity we get

ds2 =
4Q5π

L
{(d√x⊥)2+

+ x⊥

[(
dθ

2

)2

+ sin2 θ

2

(
dψ +

dy

R

)2

+ cos2
θ

2

dy2

R2

]
}

+ |Ḟ |C(dxl −
1

C|Ḟ |
dt)2 − 1

C|Ḟ |
dt2

(3.18)
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where we used (3.5). Let us introduce new coordinates

χ =
y

R
, ψ̃ = ψ + χ, θ̃ =

θ

2
, ρ =

√
x⊥ (3.19)

We see that χ = y
R has periodicity 2π, and thus the change of coordinates from ψ

to ψ̃ is well defined. We also note that θ̃ has a range 0 ≤ θ̃ < π/2 and the metric

(3.18) becomes:

ds2 =
4Q5π

L

{
dρ2 + ρ2

[
dθ̃2 + sin2 θ̃dψ̃2 + cos2 θ̃dχ2

]}

+ |Ḟ |C(dxl −
1

C|Ḟ |
dt)2 − 1

C|Ḟ |
dt2

(3.20)

The first line in the above expression gives the metric of a flat four dimensional

space from which we conclude that the geometry is regular near the string profile.

Note also that the Killing vector ∂t becomes light like at ρ = 0.

To summarize, what is happening is that the circle y is shrinking to zero size as

we approach the string source but the presence of the field Bi implies that it is non-

trivially fibered over the S2 that is transverse to the line described by F in R4 and

we see that the y circle combines with the two sphere and x⊥ to give a non-singular

space, precisely as it happens for the Kaluza Klein monopole. Note also that a

non-trivial condition on the harmonic functions characterizing the solution arises

from demanding that the Bi field leads to a well defined fibration of the y circle on

the four dimensional space away from the sources. This quantization condition on

Bi translates into a quantization condition for the field Ai, which is obeyed with a

unit coefficient if we take and Ai field as in (3.9) with 2πQ5/L = Ry.

In fact we can view these metrics as “supertubes” analogous to the ones de-

scribed in [37] where the D1-D5 system blows up to a KK monopole that wraps

the four directions of T 4 and a curve of shape given by the profile F(v) in the non-

compact directions. The circle of the KK monopole is the y circle where the initial

D1 and D5 are wrapped. The final geometry is non-singular if the system blows up

into a single KK monopole. This is ensured if the function F does not self intersect.
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One would like to know what the topology of these solutions is. We can ignore

the T 4 for this question. Before we put the D1-D5 system, the topology of the six

dimensional space is R×R4×S1. The topology of a fixed radius surface far away is

R× S3 × S1. When we go in the radial direction the S3 is filled in so that we have

R4. Let us start with the non-singular maximally rotating circular solution. The

topology of a fixed radius surface far away is the same as above but when we go in

we fill in the S1 so that the final topology is R×R2 × S3. This is shown explicitly

in appendix A . The topology for geometries that can be obtained as continuous

deformations of the circle is still going to be the same. The actual metric and

geometry of the solution will of course depend on many parameters. For example

in the regime that a2 � Q1, Q5 we find that the gravity solution has the shape of

a ring whose gravitational thickness (of order
√
Q1, or

√
Q5) is much smaller than

its radius.

An important lesson is that these configurations with D-brane charge can

change the topology of the spacetime where they live. This situation is common in

many examples of AdS/CFT. It is an example of a so called “geometric transition”.

3.3. Geometries with AN Singularities

There are some singular geometries that are believed to be allowed in string

theory. A particular example arises when we multiply each non-constant piece in

the harmonic functions (3.2) by N . In that case we get a ZN singularity on the

ring. In other words, instead of a single KK monopole we have N coincident ones

giving rise to an AN−1 singularity. The resulting geometry is a ZN quotient of the

geometries we discussed in the previous subsection. It is easy to see that we can

find non-singular deformations of these geometries by separating the N copies of the

harmonic functions in the transverse directions. When this separation is small we

get that the AN−1 singularity becomes locally a smooth ALE space. This situation
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was explored in detail in [66] and we refer the reader to it for the details. Notice that

if n1 and n5 are coprime and we are at a generic point in moduli space [30], then it

is not possible to deform the AN−1 singularity by displacing the “center of mass” of

the rings in the non-compact directions, but it is possible to deform it by combining

the whole system into a single string. When we start with N coincident rings as in

(3.7) we get a geometry that is a ZN quotient of AdS3 × S3. This has fixed points

along an equator of S3 and the origin of AdS3. The metric can be written as the

conical metric in Appendix C, with a coefficient γ−1 = N . Conical metrics with

arbitrary non-integer γ−1 have been considered in the literature. These metrics are

suspicious since they would correspond to KK monopoles which do not obey the

proper quantization condition. Indeed, if one looks at those metrics one finds that

there are extra conical singularities as compared to the AN case. These are easy

to understand in the space parameterized by the flat coordinates xi. In this case

we have “Dirac-strings” coming out of the KK monopole extended along the disk

in the 12 plane with boundary on the ring. If the quantization condition is not

obeyed, then the metric will be singular on this disk. Since we found a large family

of non-singular metrics one might wonder if one could take a smooth metric which

approximates these conical spaces with γ−1 not integer arbitrarily well. We argue

in appendix C that this is not possible. In conclusion, conical metrics with γ−1 not

integer are not a good approximation to the real solutions.

3.4. Geometries Corresponding to Chiral Primaries.

We first need to take the decoupling limit of the solutions that we considered

above (3.1). This amounts to dropping the ones in the harmonic functions f1 and

f5 in (3.2). We can then see that the asymptotic geometry for large |x| is that

of AdS3 × S3. If we take the standard periodic conditions on the spinors along

S1 that preserve supersymmetry in the asymptotically flat context then we see
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that we are in the Ramond sector of the theory. Different solutions correspond to

different Ramond vacua. These vacua can have various values of angular momenta

ranging over −k/2 ≤ JL,R ≤ k/2. The solution with a circular profile in the

12 plane corresponds to the Ramond vacuum with maximal angular momentum

JL = JR = k/2. Under spectral flow this state goes over to the NS vacuum.

Spectral flow in the CFT is an operation that maps states in the R sector to states

in the NS sector. It is a rather trivial operation involving only the overall U(1)

R-charge of the states so we do not expect a significant change in the properties of

the state when we perform it. In fact spectral flow amounts to a simple coordinate

redefinition

φ̃ = φ− t

R
ψ̃ = ψ +

y

R
(3.21)

with these new variables the time independent configurations that we had in the

Ramond sector can become time dependent if they depended on φ. For example,

the φ independent ring solution (3.7) becomes the time independent AdS3 × S3

vacuum. Ramond sector solutions where the ring is deformed to other shapes, like

an ellipse, for example, become time dependent when they are viewed as NS sector

solutions. This is related to the fact that chiral primaries carry non-zero energy

in the NS sector. Under spectral flow all RR vacua correspond to chiral primary

states with

JNSL,R =JRL,R − k

2

LNS0 =|JNSR | , L̄NS0 = |JNSL | .
(3.22)

The physical properties of the solution in the interior of the space do not change

when we do spectral flow, since it is just a redefinition of what we mean by energy

and angular momentum15. Note, in particular, that the statement that the M = 0

15 Note, in particular, that spectral flow acting on the NS vacuum does not produce

conical singularities as was asserted in [67][53] . A more detailed discussion about the

action of spectral flow can be found in [62][1].
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BTZ black hole is the Ramond ground state is imprecise. There are many Ramond

ground states and they look quite different in the supergravity description depending

on their angular momenta.

As discussed in [26][32][43] chiral primary states close to the NS ground state

can be obtained by adding perturbative gravity modes on the NS ground state.

They are particular gravity modes that are BPS. First we restrict to deformations

of the ring into a more general shape in the 12 plane. There are two classes of

deformations we can consider. One is a change in the shape of the ring and the

other is small changes in the velocity with which we go around the ring. These two

correspond to two towers of chiral primary states.

The supergravity chiral primary states are given as follows [26][32][43]. It is

convenient to separate the three form field strengths in six dimensions into self dual

and anti-self dual parts. The background fields in AdS3 × S3 are self dual. The

chiral primary fields correspond to fluctuations in the anti-self dual part of the three

form field strengths on the S3 (which also mix with fluctuations of scalar fields).

These fields produce gravity modes with (JL, JR) = 1/2, 1, 3/2, · · ·. There is also

one special tower of supergravity fields which starts at (JL, JR) = 1, 3/2, · · ·. These

come from certain fluctuations in the metric of the three sphere.

The two classes of deformations of the ring that we discussed above correspond

to two of these towers of chiral primaries. More precisely, changes in the velocity

correspond to the tower associated to the anti-self dual component of the field

strength whose self dual component is turned on in the background. The changes

in shape correspond to the tower associated with deformations of the sphere. This

can be seen by noticing that the lowest angular momentum deformation of the shape

we can do is to deform the circle to an ellipse. This has angular momentum Jφ = 2

which corresponds to JL = JR = 1. On the other hand we can change the velocity

by v → v + ε cos v which will introduce a mode with angular momentum Jφ = 1
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which corresponds to (JL, JR) = (1/2, 1/2). In summary, different Fourier modes in

the expansion of F1,2 around the circular profile are in direct correspondence with

chiral primary gravity modes with different values of angular momentum on S3 (i.e.

different values of Jφ).

There is another chiral primary tower with (JL, JR) = (m + 1,m), m =

0, 1/2, . . . and a similar one with JL ↔ JR. These corresponds to oscillations of the

ring into the 34 plane.

Finally we should consider many other chiral primaries that come from the

anti-self dual components of other field strengths. These are easily described in

the T 4 theory as oscillations in the internal T 4 directions of the initial fundamental

string which we used to construct the solutions. We give the general solutions for

those in appendix B. One nice aspect of those solutions is that we can easily find

some solutions for which the metric is φ independent. For example, choosing a

simple profile where the string is also oscillating with frequency mω in the internal

torus, we obtain in the near-horizon-limit the six dimensional metric (see appendix

B)

ds2√
Q1Q5

= (r2 + β cos2 θ)
1√
α

[
−(dt− β sin2 θdφ

r2 + β cos2 θ
)2 + (dχ+

β cos2 θdψ

r2 + β cos2 θ
)2

]

+

√
αdr2

r2 + β
+
√
αdθ2 +

√
α

r2 + β cos2 θ
(r2 cos2 θdψ2 + (r2 + β) sin2 θdφ2)

(3.23)

where the function α is given by

α = 1 − (1 − β)

(
β sin2 θ

r2 + β

)m
(3.24)

and β and m are two parameters characterizing the solution. m is the angular

momentum of the single particle chiral primary we are exciting with (JL, JR) =

(m2 ,
m
2 ). In other words we are considering a coherent state associated to this single

particle chiral primary. The parameter 0 ≤ β ≤ 1 measures the total angular
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momentum of the solution which is

JNSL = JNSR =
n1n5

2
(1 − β) (3.25)

So that for β = 1 we get global AdS3 × S3 and for β = 0 we get the singular

geometry corresponding to the M = 0 BTZ black hole which from the NS point

of view could be described as the extremal limit of a black hole that is rotating in

the internal S3. For β > 0 the geometry is non-singular. We can ask if the metric

(3.23) goes over to the metric of a conical defect. Since the angular momentum

is given by (3.25) we would expect that the opening angle of the corresponding

conical defect should be 2πβ, or γ = β in the notation of appendix C. These conical

metrics were considered in [53,1,62]. It turns out that the conical metric is not a

good approximation to the long distance behavior of (3.23) since (3.23) contains

terms that decay slowly at r → ∞. In fact there is a massless field in AdS with

conformal weight two (∆ = ∆̄ = 1) which has a vev, this implies that the metric

(3.23) differs from the AdS metric by terms of order 1/r2. That is precisely the

order of the difference between the conical metrics and the AdS metric. This is

discussed in more detail in appendix B.

It is interesting to consider the limit of very large m with β fixed. In that limit

we can set α = 1 as long as we are at a distance of order RAdS/
√
m from the line

at r = 0, θ = π/2. The limiting metric is obtained from (3.23) by setting α = 1.

In this limit the solution has singularity along the circle r = 0, θ = π
2 like the one

present in the Aichelburg-Sexl metric [68]. The metric coincides with the solution in

[69], which was expected to describe the metric of high momentum particles moving

along a maximum circle of S3.

Another interesting limit that we can take is a “plane wave” limit where we

concentrate on distances which are small compared to the AdS radius. In this limit,

39



and in the region where α = 1, the metric is

ds2 = 2dx+dx− − (s2 + u2)(dx+)2 + ds2 + du2 + u2dψ̃2 + s2dχ2

+ (β − 1)

[
2dx+dx− − (s2 + u2)(dx+)2 − (dx−)2

s2 + u2

]

+
β − 1

s2 + u2

[
u4dψ̃2 − 2s2u2dχdψ̃ + s4dχ2

]
(3.26)

where x+ = t, x− = φR2
AdS and ψ̃ = ψ + χ. This metric is singular at s = u = 0,

but close to this point it is also necessary to take into account the full form for

α which we give in appendix B. The final metric is non-singular and is explicitly

written in appendix B. We see that the behavior near r = s = 0 is of the form we

expect for a metric which is carrying momentum density p− ∼ (β − 1) in the φ or

x− direction.

An interesting aspect of (3.26) is that the metric does not asymptote to the

plane wave metric at large u2 + s2. This is due to the fact that from the plane wave

point of view we have constant p− density and therefore infinite total p−. We show

in section 4 that solutions with excitations localized in the x− direction which carry

finite total p− are indeed asymptotic to the standard plane wave.

An interesting question we would like to understand is the behavior of the

energy gap in these geometries. If we concentrate on excitations that are φ and

ψ independent then the energy gap can be computed easily in the case of m = 1

where we obtain (see appendix B)

ω0 = 2
√
β (3.27)

for the energy of the lowest energy excitation. The energy gap for large m is harder

to estimate but we prove in appendix B that it is always lower than (3.27).

We see that as we increase the energy of the solution (by decreasing β, see

(3.25)) the redshift factor at the origin decreases, so that a clock runs more slowly

there and also the energy gap to the next excitation is very low.
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3.5. Remarks on the CFT Description

A semi-quantitative explanation of this fact was given in [65][69]. The idea is

that these chiral primaries will involve multiply wound strings. The energy gap for

exciting such states becomes smaller as 1/w where w is the winding. This decrease

of the energy gap can be seen even when the CFT is at its orbifold point, where the

theory becomes a free CFT whose target space is Sym(T 4)n1n5 (for a full discussion

of this system see [54]). The NS ground state is in the untwisted sector and can

be interpreted as consisting of n1n5 singly wound strings. The energy gap to the

next BPS excitation is of order one (we normalized the circle of the CFT to have

radius one). High angular momentum single particle chiral primaries involve strings

that are multiply wound. Non-BPS excitations on a string of winding number w

go as 2/w. In order to obtain a more precise match with the particular energy

gaps we obtained above it seems that we need to go away from the orbifold point

otherwise we can easily run into contradictions. For example, let us consider the

chiral primaries with (JL, JR) = (1/2, 1/2) that come from the internal torus. These

would naively correspond, in the free orbifold picture, to states in the untwisted

sector (singly wound strings) where we have some excitations on some of the n1n5

singly wound strings. More precisely, each single particle excitation corresponds to

exciting one string by adding a left and right moving fermion in the lowest state.

Since all strings are singly wound we get an energy gap of order one at the orbifold

point independently of β. On the other hand, the gravity description of such states

is given by (3.23) with m = 1, for which the energy gap is (3.27). Clearly we need to

take into account that the supergravity picture is valid only when we get away from

the orbifold point in the CFT, which blurs the distinction between singly wound

and multiply wound strings. It would be highly desirable to understand better this

effect from the CFT point of view. In [65] some agreement was found with this

naive picture, since only very special geometries and chiral primaries were used.
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3.6. Solutions with Plane Wave Asymptotics

From the general solutions in (3.1) it is also possible to obtain a general family

of solutions with plane wave asymptotic boundary conditions. The final prescription

is that in order to obtain such solutions we should drop the ones in (3.2) and consider

a profile F(v) which is a straight line in R4 with small wiggles in the various R4

and T 4 coordinates. This is rather analogous to our previous discussion where we

took a profile that was a circle with some wiggles.

First we discuss how to obtain this as a limit of the general metric (3.1) cor-

responding to a circular profile with some small oscillations. It is a limit where we

zoom in into a small section of the circle where this section looks like a straight line

with some oscillations. More precisely, we rescale the coordinates and the profile:

x1 = a+
x′1
R
, x2 =

x′2
R
, x3 =

x′3
R
, x4 =

x′4
R
, t = t′R, y = χR, R =

R̂

ε
,

F1 = a cosωv +
F̂1(vR)

R
, F2 = a sinωv +

F̂2(vR)

R
, F3 =

F̂3(vR)

R
, F4 =

F̂4(vR)

R
(3.28)

and we define the new rescaled functions

f̂1 = ε2f1, f̂5 = ε2R̂4f5, Âi =
1

R2
Ai, B̂i =

1

R2
Bi,

Then we take a limit ε→ 0 while the new coordinates and R̂ remain fixed.

Defining the new parameter σ = aωR̂2 and dropping the primes in the new

coordinates we find

f̂5 =
1

2π

∫ ∞

−∞

dv′

(x2 − F̂2 − σv′)2 + (x⊥ − F̂⊥)2

f̂1 =
1

2π

∫ ∞

−∞

[
(σ +

˙̂
F 2)

2 + | ˙̂F⊥|2
]
dv′

(x2 − F̂2 − σv′)2 + (x⊥ − F̂⊥)2

Â2 = − 1

2π

∫ ∞

−∞

(σ +
˙̂
F 2)dv

′

(x2 − F̂2 − σv′)2 + (x⊥ − F̂⊥)2
,

Â⊥ = − 1

2π

∫ ∞

−∞

˙̂
F⊥dv′

(x2 − F̂2 − σv′)2 + (x⊥ − F̂⊥)2

(3.29)
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Here we introduced a new integration parameter v′ = vR. Note that in terms of

this parameter the argument of F̂i is ε–independent. In the derivation of (3.29) we

also used the relation (3.5)

Q

L
=

R

2π

Note that the functions F̂ i(v′) are not required to be periodic, they are arbitrary

functions of v′. In terms of the functions (3.29) the metric becomes

ds2 =
1√
f̂1f̂5

[
−(dt− Âidx

i)2 + (dy + B̂idx
i)2

]
+

√
f̂1f̂5dx

idxi (3.30)

where B̂ is defined by

dB̂ = −∗dÂ

Let us examine the asymptotic behavior of this metric at large x⊥. In this limit

(x⊥ � |F̂ |) we get the following leading contributions to the harmonic functions16

f̂5 ≈ 1

2σx⊥
, f̂1 ≈ 1

β

σ

2x⊥
, Ã2 ≈ − 1

2x⊥
, B̂ψ ≈ − (cos θ − 1)

2
, (3.31)

all other components of the gauge fields Â and B̂ are subleading. In (3.31) we

introduced a parameter β ≤ 1:

β ≡
(

1 +
1

σ2
〈( ˙̂
F 2)

2 + | ˙̂F⊥|2〉
)−1

(3.32)

Substituting the expressions (3.31) in (3.30) and introducing the new coordinates:

x+ =t , x− =
x2√
β
, ψ̃ = ψ + χ

u =β−1/4
√

2x⊥ sin
θ

2
, s = β−1/4

√
2x⊥ cos

θ

2
,

(3.33)

we find

ds2 = −β
[
2dx+dx− + (u2 + s2)(dx+)2

]
+ (1 − β)

(dx−)2

u2 + s2

+ du2 + ds2 +
u2s2

u2 + s2
(dψ̃ − dχ)2 +

β

u2 + s2
(s2dχ+ u2dψ̃)2

(3.34)

16 Here we assumed that 〈
˙̂
F i〉 = 0. If this condition is not true, then string moves along

the direction 〈
˙̂
F i〉 and we can account for this motion by redefining coordinate x2.
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which is indeed the same as (3.26) after some simple changes of signs. This is the

general behavior of the metric for a configurations with uniform momentum density

in the x− direction. If the excitation is localized in the x− direction, as we expect

it to be for a finite p− wavepacket, then the profile for the corresponding vibration

will be such that | ˙̂F | differs significantly from zero only in a finite range of v′. Then

the averages entering the expression (3.32) vanish and β = 1. So in this case the

metric asymptotically goes to the usual plane wave.17

So far we have been looking at profiles which oscillate only in the noncompact

directions. For the case of oscillations on the torus the six dimensional Einstein

metric is still given by (3.30), but the function f̂1 should be replaced by f̄1

f̄1 =
1

2π

∫ ∞

−∞

[
(σ +

˙̂
F 2)

2 + | ˙̂F⊥|2 + | ˙̂F|2
]
dv′

(x2 − F̂2 − σv′)2 + (x⊥ − F̂⊥)2
− f̂−1

5 ÂaÂa,

Âa = − 1

2π

∫ ∞

−∞

˙̂Fadv
′

(x2 − F̂2 − σv′)2 + (x⊥ − F̂⊥)2

(3.35)

The large x⊥ limit of the resulting solution still has the form (3.34), but β is now

defined by

β ≡
(

1 +
1

σ2
〈( ˙̂
F 2)

2 + | ˙̂F⊥|2 + | ˙̂F|2〉
)−1

3.7. The Solution for a Localized Excitation

In order to understand the asymptotic behavior of the solution when the ex-

citation is localized in x−, we write down the explicit form for one such solution

with a very simple profile. We pick a profile with a perturbation only in the torus

direction.

F̂1 =

{
0, |v′| > v0 > 0

b(v0 − |v′|), |v′| < v0

17 Note, in particular, that the coefficient of the term that goes as (dx−)2/(s2 + u2)

goes to zero, while in flat space it goes over to some function of x−. The difference is due

to the rapid decay in the transverse coordinates of wavefunctions with fixed p−.
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with all other components of F̂a and F̂i equal to zero. This profile gives following

harmonic functions

f̂5 =
1

2σx⊥
, Ã2 = − 1

2x⊥
, B̂ψ = − (cos θ − 1)

2
,

A1 =
b

2πσx⊥
arctan

{
2(σv0)

2x⊥x−

[x2
⊥ + (x−)2]2 + (σv0)2(x2

⊥ − (x−)2)

}

f̄1 =
σ

2x⊥
+

b2

2πσx⊥
arctan

(
2σv0x⊥

x2
⊥ + (x−)2 − (σv0)2

)
− f̂−1

5 ÂaÂa,

(3.36)

In particular for σv0 � x⊥ and arbitrary value of x− we get

f̄1 =
σ

2x⊥
+

b2

2πσx⊥

σv0
x⊥

{
2x2

⊥
(x−)2 + x2

⊥
+O

(
σv0
x⊥

)}

Thus in the leading order at large x⊥ we get a usual plane wave [70],[71], i.e. the

metric (3.34) with β = 1.

3.8. The Supertubes in Different Dimensions

The previous analysis of the D1-D5 system is special because the configuration

blows up to a Kaluza-Klein monopole and leads to a non-singular situation. This

will be the case also for all configurations with two charges that result from doing

U-duality on the T 4. Of course, if we did T-duality on the S1 where the D1 and D5

are wrapped we would get a singular metric since the KK monopole would become

an NS 5 brane. The fact that the metric is non-singular is related to the fact

that the theory has a non-zero energy gap for generic non-BPS excitations around

the state with maximal angular momentum. This energy gap is also non-zero for

other two charge systems in different number of dimensions. So we considered

similar supergravity solutions in different dimensions but we found that they were

all singular. In this section we summarize this discussion. For simplicity we have

concentrated on the solutions with maximal angular momentum in a given two

plane of the non-compact transverse directions. Another question we consider is

the following. We take the large radius limit of the ring and then look at the
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resulting geometry. It turns out that the following two limits do not commute, the

near ring limit for fixed ring radius and the large radius first and then the small

distance limit. The physical reason why they do not commute is that when one is

approaching the ring one is exploring the IR region of the field theory living on the

branes so that one is sensitive to the long distance geometry of the branes.

3.9. Solutions in Different Dimensions

In order to analyze such systems, we start with the F1-P1 system in R1,d×S1×

T 8−d (with the appropriate powers in the harmonic functions) , integrate the string

sources along a ring (as explained in [72]), and then perform some dualities on it to

get the desired system. We can write the solutions in different U-dual frames. We

choose to work with the D0-F1 system blowing up to a D2 - the supertube of [37].

We start then with the 1/4 supersymmetric supergravity solution describing

an oscillating string, wound around the S1 and carrying right moving momentum

[63], [64] in d non-compact transverse dimensions

ds2 = −e2Φdudv − (e2Φ − 1)Ḟ 2dv2 + 2(e2Φ − 1)Ḟ · dxdv + dx2
d + dz2

8−d

≡ H(x, v)(−dudv +K(x, v)dv2 + 2Ai(x, v)dx
idv) + dx2

d + dz2
8−d

Buv =
1

2
(e2Φ − 1) ; Bvi = −Ḟi(e2Φ − 1) = HAi

e−2Φ = 1 +
Q

|x − F(v)|d−2

(3.37)

where the light cone coordinates are u, v = t ± y with y ∼ y + Ry and x are d

noncompact directions and z parameterize a T 8−d. F(v) is a d-dimensional vector

describing the location of the string.

Taking the ring profile: (Fα1 + iFα2 )(v) = aei(ωv+α) , Fα3 = Fα4 = 0, and

integrating the harmonic functions along α, we get functions describing oscillating
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strings uniformly distributed along a ring:

〈H−1(x)〉 = 1 +
Q

2π

∫ 2π

0

dα

|x − Fα|d−2
= 1 +

Q

σd−2
I
(d−2)
1 (−2as

σ2
)

〈K(x)〉 =
Q

2π

∫ 2π

0

dα
|∂vFα|2dα
|x − Fα|d−2

= a2ω2(〈H−1〉 − 1) =
a2ω2Q

σd−2
I
(d−2)
1 (−2as

σ2
)

〈Aφ(x)〉 = asω
Q

2π

∫ 2π

0

∂vFφdα

|x − Fα|d−2
=
aωQs

σd−2
I
(d−2)
2 (−2as

σ2
)

(3.38)

where s2 ≡ x2
1 + x2

2 is the radial coordinate in the ring plane, w2 ≡ x2
3 + · · ·+ x2

d is

the perpendicular distance from the ring plane, σ2 ≡ a2 + s2 + w2, and where we

defined the integrals:

I
(n)
1 (k) ≡ 1

2π

∫ 2π

0

dα

(1 + k cosα)n/2
; I

(n)
2 (k) =

1

2π

∫ 2π

0

cosαdα

(1 + k cosα)n/2
(3.39)

for integer n’s. The integrals above can be easily evaluated, and appear in appendix

D. For odd n they involve elliptic functions.

Now, if we perform S-duality and then Ty duality on (3.37), we get the F1D0 →

D2 supertube solution for any dimension d, with H,K,Aφ, I1, I2 as in (3.38), (3.39)

ds2 =
1√

H−1(1 +K)

[
− dt2 + 2Aφdtdφ+H−1dy2+

+ s2(
aωQ

σd−2
)2{((I(d−2)

1 )2 − (I
(d−2)
2 )2) +

1 + a2ω2

a2ω2Q
σd−2I1 + (

σd−2

aωQ
)2}dφ2

]
+

+
√
H−1

(
ds2 + dw2

d−2 + dz2
8−d

)

e−2Φ = H3/2(1 +K)

B2 = − K

1 +K
dt ∧ dy − Aφ

1 +K
dφ ∧ dy

C1 = −(H − 1)dt+HAφdφ ; C3 = − Aφ
1 +K

dt ∧ dφ ∧ dy
(3.40)

where in the second line we wrote gφφ = 1√
H−1(1+K)

(s2H−1(1 +K)−A2
φ) in terms

of the integrals I1, I2.
18

18 Note that I
(d−2)
1 , I

(d−2)
2 in (3.40) are evaluated at − 2as

σ2 .
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Analyzing the behavior of the different functions in the metric above, one finds

that these solutions are everywhere regular, except maybe on a ring of radius a in

the x-space (w = 0, s = a). In appendices C and D we show that these solutions

are indeed singular on the ring in all dimensions except the for the D1-D5 system

described above. We did not find any U-dual frame where the solutions were regular,

except for d = 4 which is U-dual to the D1-D5 system 19.

3.10. The Large Ring Limit

In this subsection we take the limit where the radius of the ring becomes very

large. This can be achieved by taking very large values of the charges. From the

formula of the ring radius (3.8) we see that in this limit we expect to have a finite

energy density per unit length along the ring. In this limit the ring becomes a

straight line. We want to find the metric near the ring in this case. This metric

has the form of the metric of a brane with some fluxes on it. In the D1-D5 it will

be a KK monopole with some fluxes on it. These fluxes have a special value such

that the supersymmetry that is preserved is independent of the orientation of the

brane. Below we explain this in detail.

We can try take the limit where a → ∞ in (3.40), and see if the solutions we

obtain really describe a flat D2 with fluxes.

From a worldvolume analysis [37] one finds that the radius of the supertube

scales with the D0,F1 charges as a ∼ √
Q0Qs where the two charges in our notations

are Q, a2ω2Q. Keeping the ratio of the charges fixed, the scaling is

a ∼ Q→ ∞ ; δ ≡ aω fixed (3.41)

Taking this limit for a fixed ρ in (3.40) and defining the coordinate x‖ ≡ aφ

19 Recently the d = 3 case was analyzed in [73].
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gives the following metrics and fields for d ≥ 4:

ds2 =
[1 + q̃

ρd−3 ]1/2

[1 + δ2 q̃
ρd−3 ]

{dy2 +
1 + q̃

ρd−3 (1 + δ2)

1 + q̃
ρd−3

dx2
‖ +

2δ q̃
ρd−3

1 + q̃
ρd−3

dx‖dt−
dt2

1 + q̃
ρd−3

}+

+ [1 +
q̃

ρd−3
]1/2[dρ2 + ρ2dΩ2

d−2 + dz2
18−d]

B2 = −
δ q̃
ρd−3

1 + δ2 q̃
ρd−3

(δdt ∧ dy + dx‖ ∧ dy)

C1 =

q̃
ρd−3

1 + q̃
ρd−3

(dt+ δdx‖) ; C3 = −
δ q̃
ρd−3

1 + δ2 q̃
ρd−3

dt ∧ dx‖ ∧ dy

e−2φ = (1 +
q̃

ρd−3
)−3/2(1 + δ2

q̃

ρd−3
)

(3.42)

where the effective charge q̃ is given by

q̃ =
Q

a
· lim
ρ→0

[(
ρ

a
)d−3I

(d−2)
1 (1 −

ρ2

2a2

1 + ρ
a sinΘ + ρ2

2a2

)]

which for the different dimensions is :

d = 4 5 6 7 8
q̃ = Q

2a
Q
πa

Q
4a

2Q
3πa

3Q
16a

(3.43)

For d = 3 we get a logarithmic singularity .

We would like to compare (3.42) with the metric and fields describing a D2-

brane with F1 and D0 fluxes on a T 8−d. These can be generated by starting with

the supergravity solution of a D2 in the t̃, ỹ, x̃p directions 20. Then T-dualizing in x̃p

to obtain a D1 in the ỹ, t̃ directions, smeared on the x̃p direction (with a harmonic

function f = 1 + q
rd−3 ) .Then making a boost and a rotation with parameters α, θ

mixing t̃, ỹ, x̃p to give t, y, xp
21, and finally making a T-duality in the y-direction

20 We choose a gauge where the Ramond-Ramond Gauge field vanishes at spatial infinity.
21 so that

t̃ = coshαt+ sinhα(cos θxp + sin θy)

x̃p = coshα(cos θxp + sin θy) + sinhαt

ỹ = (cos θy − sin θxp)
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22 .

This gives the following metric and gauge fields :

ds2 = f−1/2[−(1 − h−1 q sinh2 α

rd−3
)dt2 + (1 + h−1 q cosh2 α cos2 θ

rd−3
)dx2

p+

+ 2h−1 q sinhα coshα cos θ

rd−3
dtdxp + fh−1dy2] + f1/2[dr2 + r2dΩ2

d−2 + dz2
8−d]

B2 = −h−1 q sin θ coshα

rd−3
[sinhαdy ∧ dt+ coshα cos θdy ∧ dxp]

C1 = (f−1 − 1)[cos θ coshαdt+ sinhαdxp] ; C3 = h−1 q sin θ coshα

rd−3
dt ∧ dxp ∧ dy

e2φ = g2f3/2h−1

f ≡ 1 +
q

rd−3
; h ≡ 1 +

q cosh2 α sin2 θ

rd−3

(3.44)

Comparing (3.44) to (3.42) we find exact agreement if we choose sinhα =

tan θ = δ. All of the solutions (3.44) are 1/2 supersymmetric as they are dual

to a D2. However only the subfamily of such solutions with sinhα = tan θ would

continue being supersymmetric (with 1/4 supersymmetry) if we start curving the

brane, taking the direction xp and putting it on some closed curve, e.g. the ring.

(The exact supersymmetries that this curvely shaped D2 with fluxes preserves can

be found doing a worldvolume analysis , as done in [37] , or as done for the D2D2

system in [75][76]). Under a T-duality in the S1 circle this system becomes a D1

brane that winds along the S1, and moves along the S1 as it stretches in the xp

direction. The velocity is such that a brane that is stretched in the opposite direction

along xp but with the same winding and velocity intersects the original brane at a

point that moves with the speed of light [77]. These configurations preserve 1/4 of

the supersymmetries. These configurations are intimately related to the oscillating

strings we started with. In fact strings carrying oscillations only in one direction

will intersect with each other at points that move at the speed of light.

In the d = 4 case we can make a U-duality to the D1-D5 system so that the

22 this procedure was explained for example in [74]
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large ring radius (3.42) becomes a straight KK monopole carrying D1 and D5 fluxes

ds2 = [1 +
q1
ρ

]−1/2[1 +
q5
ρ

]−1/2[−(dt−
√
q1q5

ρ
dx‖)

2 + (dy −√
q1q5(1 − cos Θ)dψ)2]

+ [1 +
q1
ρ

]1/2[1 +
q5
ρ

]1/2[dρ2 + ρ2dΘ2 + ρ2 sin2 Θdψ2 + dx2
‖] +

√
ρ+ q1
ρ+ q5

dz2
(4)

e2φ =
ρ+ q1
ρ+ q5

C2 = − q1
ρ+ q1

(dt+

√
q5
q1
dx‖) ∧ (dy +

√
q5
q1
ρ(1 − cos Θ)dψ)

(3.45)

where we have defined the charge densities qi = Qi/(2a) which are finite in the

limit. This metric is non-singular if Ry = 2
√
q1q5. This is a condition on the fluxes

for a given radius Ry. If we U-dualize (3.44) we can get solutions which represent

KK monopole with arbitrary values of the fluxes that are 1/2 BPS. What is special

about the fluxes in (3.45) is that we can reverse the KK monopole charge, keeping

the same values for q1, q5 so that the configuration with KK and anti-KK charges

still preserve 1/4 of the supersymmetries. As shown in [77] this configuration is

U-dual to configurations with intersecting D-branes where the intersection point

moves at the speed of light (see also [78]).

Note that in the limit that we drop the 1 in the harmonic functions that appear

in (3.45) we obtain a plane wave in six dimensions. We can get this as a limit where

we scale the charges to infinity and the rest of the coordinates appropriately. The

geometry (3.45) thus provides us with a spacetime which is asymptotically flat and

that looks like a plane wave in a suitable near horizon limit.
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Part II

Strings on PP-Waves and
Massive Two Dimensional Field Theories

Introduction

4. Introduction

Ramond-Ramond backgrounds are a very important piece of string theory and

they play a prominent role in the string theory/gauge theory correspondence. Back-

grounds of the plane wave type are particularly interesting since they are exactly

solvable backgrounds [79]. These backgrounds are very useful for studying the

relation between large N gauge theory and string theory [71]. The existence of

a covariantly constant null Killing vector greatly simplifies the quantization of a

string in light cone gauge [80].

Naturally it would be extremely interesting if one could find more Ramond-

Ramond backgrounds, for which the superstring worldsheet action would be simple.

In this part of the thesis we study backgrounds of the pp-wave type which lead to

interacting theories in light cone gauge. For this purpose we consider type IIB string

theory with a five-form field strength which has the form F5 = dx+ ∧ ϕ4. If ϕ4 is a

constant form in the transverse space it leads to masses for the Green-Schwarz light

cone fermions. By taking non-constant four forms ϕ4 we find that the light cone ac-

tion becomes an interacting theory with a rather general potential. The mass scale

in the light cone theory is set by p−. Boosts in the x+, x− directions corresponds

to an RG flow transformation on the worldsheet. Low values of |p−| correspond to

the UV of the worldsheet theory while large values of |p−| explore the IR of the

worldsheet theory. We study solutions that preserve some supersymmetries. We

find that we can have an N = (2, 2) theory on the worldsheet with an arbitrary
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superpotential. Similarly we can get N = (1, 1) theories as long as the real super-

potential is a harmonic function. We discuss solutions where the transverse space is

curved or flat. One interesting result is that we can find backgrounds that lead to

integrable models on the worldsheet in light cone gauge. Using results for integrable

models we can compute some non-trivial features of the string spectrum. We can

consider for example Toda theories. We discuss explicitly the case where we get

the N = 2 sine Gordon model on the worldsheet. Soliton solutions of the massive

theory correspond to strings that interpolate between different “potential wells” in

the target space. Now that we have massive interacting theories on the worldsheet

we see that various dualities of these theories are worldsheet dualities which lead to

interesting dualities in the target space. The N = 2 sine Gordon theory is dual to

the supersymmetric CP 1 theory [81,82,83,84,85], via a mirror symmetry transfor-

mation. The size of the CP 1 depends on the energy scale of the worldsheet theory.

The size of the worldsheet circle is proportional to p−. Thus, we find that strings

with very small p− feel they are on a big space while strings with large p− feel they

are on a smaller space.

Other backgrounds that lead to interacting theories in lightcone gauge were

described in [86,87].

In chapter 5 we discuss the gravity backgrounds that lead to supersymmetric

interacting theories on the worldsheet. In chapter 6 we describe the actions we get

on the worldsheet from the backgrounds discussed in chapter 5. We then discuss in

more detail some particular backgrounds. First we discuss the background leading

to the N = 2 sine Gordon model on the worldsheet and the associated duality to the

CP 1 model. We then discuss what happens if we have an AN singularity transverse

to a pp-wave and we resolve it.

Before we embark on this path, let us review a few concepts we would use

later. In the following subsections we would first review plane-wave and more
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general pp-wave backgrounds, then we would survey the different formalisms devised

for describing the superstring worldsheet action, focusing on the Green-Schwarz

formalism in light-cone gauge. Finally we would review a few points regarding

Landau-Ginzburg models and mirror symmetry, that would become relevant when

we discuss the worldsheet actions in pp-wave backgrounds.

4.1. PP-Wave Backgrounds

Plane fronted parallel-ray waves , or pp-waves, are spacetimes which admit a

covariantly constant null Killing vector. One can always choose coordinates where

the Killing vector is ξµ = ∂µ(x
+), and write the metric in the Brinkmann form :

ds2 = −2dx+dx− + g++(x+, xk)(dx+)2 +A+i(x
+, xk)dx+dxi + gij(x

+, xk)dxidxj

(4.1)

In the following we shall only be working with spacetimes where A+i = 0.

In the particular case where g++(x+, xk) = −µij(x+)xixj and gij = δij , these

are also called plane waves.

We focus first on the case where gij = δij . One can see that for the metrics

(4.1), all curvature invariants vanish 23, yet they differ from flat space in their global

and causal structures, as we would discuss later.

For ∂i∂ig++ = 0, these are naturally solutions of pure gravity 24. However, as

all curvature invariants vanish, it can be argued that these must be exact solutions

of perturbative string theory, that are not corrected in higher orders of α′ [80].

One can also add NS-NS and R-R fields to this background. As long as their

energy momentum tensor satisfies T+i = Tij = 0, and T++ = R++ (which now

23 The only nonvanishing component of the Riemann curvature tensor when gij = δij is

R+i+j ∼ ∂i∂jg++, and therefore of the Ricci tensor R++ ∼ ∂i∂ig++.
24 and if one wants to consider the more general spaces where gij is not necessarily δij

then the condition becomes that that gij is Ricci flat and that ∇2g++ = 0, the laplacian

taken with respect to the transverse metric.
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replaces ∂i∂ig++ = 0), and that they have a zero Lie derivative by the same null

Killing vector ξµ, these are still exact solutions of perturbative string theory, by the

same considerations. 25

The geodesic motion equations on theses spaces are :

ẋ+ = p+ ; ẍ− = p+ġ++ − 1

2
(p+)2∂+g++

ẍi = (p+)2∂ig++

−2p+ẋ− + (p+)2g++ +
∑

i

(ẋi)2 = ε

(4.2)

where dot denotes derivative by the affine parameter, and ε is a negative, zero or

positive constant for time-like, null and spacelike geodesics respectively. Thus light-

cone momentum p+ = −p− is conserved, and the transverse components feel a tidal

force p2
−∂ig++. For plane waves this force is just linear in the displacement, so in

that case the transverse coordinates perform harmonic oscillations or an exponential

motion (depending on the sign of the eigenvalues of µij).

Investigating the causal structure of pp-wave spacetimes, it was shown that

they cannot admit event horizons, as every point in them is causally connected to

infinity [89]. In [89]also the geodesically completeness of plane-wave and pp-wave

backgrounds was studied, as well as their boundary structure.

Note that under rescalings of the form x+ → λx+, x− → λ−1x−, g++ and

p− both rescale, and the combination p2
−g++ is invariant. This property will have

implications later when we analyze the action of strings propagating on such back-

grounds.

Plane-waves have some very interesting supersymmetry properties. It turns

out that by choosing different constant matrices µij one can produce solutions with

25 This situation changes when one introduces a curved metric in the transverse space

(gij 6= δij), as now there are nonzero components with transverse index in the curvature

tensor. α′ corrections can exist even if the transverse space is a Ricci flat Kahler manifold

[88].
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a peculiar fractional amount of supersymmetry (a fraction 1
2 ≤ ν ≤ 1 [90,91,92,93]).

It also turns out that by taking

ds2 = −2dx+dx− − 4µ2(xixi)(dx+)2 + dxidxi

F5 = µ(1 + ∗)(dx+ ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4)
(4.3)

one gets maximally supersymmetric solutions of type IIB string theory [94]. A

similar construction in 11-dimensions :

ds2 = −2dx+dx− − µ2

36
[4

3∑

i=1

(xi)2 +

9∑

i=4

(xi)2](dx+)2 + dxidxi

F4 = µdx+ ∧ dx1 ∧ dx2 ∧ dx3

(4.4)

gives a maximally supersymmetric solution of M-theory [95].

This is quite remarkable, as there are only very few solutions of string theory

which are maximally supersymmetric. In 11 dimensions these are flat Minkowski

space, AdS4 ×S7, AdS7 ×S4 and the maximally supersymmetric plane wave (4.4),

and in 10 dimensional type IIB string theory, these are flat Minkowski space,

AdS5 × S5 and the maximally supersymmetric plane wave (4.3). In [96] it was

proved that for M-theory and type IIB these are all the maximally supersymmetric

solutions, and that for type IIA, type I and heterotic string theories, the maximally

supersymmetric solutions are all locally isometric to flat space with no fluxes and

constant dilaton.

The IIB maximally supersymmetric plane wave solution (4.3) has the following

32 real Killing spinors (where we use our conventions as explained in appendix F,

and we are working with real coordinates xi , i = 1, ..8):

ε = eiµΓ−Γ1234xiΓiΓ+Γ−ψ0 + e−2iµΓ1234x+

Γ−Γ+η0 (4.5)

ψ0,η0 are constant spinors. Note the 16 supersymmetries parameterized by the ψ0

piece are not annihilated by Γ+, while the 16 parameterized by the η0 piece are.
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The 32 killing spinors (4.5) are associated with 32 supersymmetry charges,

which anti-commute to the bosonic symmetry generators of the algebra. These are:

* Twelve SO(4) × SO(4) rotations J ij , i, j = 1, 2, 3, 4 or i, j = 5, 6, 7, 8, 26 the

killing vectors being xi∂j − xj∂i.

* Two translations in the lightcone directions P± , with the killing vectors ∂±.

* Sixteen more x+-dependent translations and rotations :Pi = −2µ sin(2µx+)xi∂−+

cos(2µx+)∂i , and J+i = − cos(2µx+)xi∂− + 1
2µ sin(2µx+)∂i.

Having the killing spinors and vectors, the spacetime superalgebra is easy to

derive and has been written down in [94].

Actually, there is another way to derive the supersymmetry algebra of the

maximally supersymmetric plane wave, thinking of it as a Penrose limit ofAdS5×S5.

In this limiting procedure, one blows up the metric and fields in the neighborhood

of a null geodesic [97][98][99]. Taking the metric of AdS5 × S5

ds2 = R2[−dt2 cosh2 ρ+ dρ2 + sinh2 ρdΩ2
3 + dψ2 cos2 θ + dθ2 + sin2 θdΩ

′2
3 ]

and blowing it up around the null geodesic at ρ = θ = 0 and dt = dψ by the

rescaling:

2µx+ =
1

2
(t+ ψ) ;

1

2µ
x− = R2(t− ψ) ; ρ =

r

R
; θ =

y

R
; R→ ∞

, gives exactly the metric (4.3) with r2 = x2
1 + ...+ x2

4 , y2 = x2
5 + ...+ x2

8
27 [71].

As AdS5 × S5 is also a maximally supersymmetric space, one can take its super-

symmetry algebra su(2, 2|4) and perform the same Penrose limit on the generators.

Doing that one obtains the maximally supersymmetric pp-wave superalgebra [100].

Taking plane waves where µij 6= µδij results with solutions with less super-

symmetry and less bosonic symmetries, but always with at least 16 killing spinors.

26 Note that although the metric in (4.3) has SO(8) rotation symmetry, the 5-form field

strength breaks that to SO(4) × SO(4).
27 And doing the same to the AdS5 × S5 5-form field strength, gives the F5 in (4.3)
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Looking at general pp-wave backgrounds (4.1), supersymmetry is no longer guar-

anteed. In the next chapter we will find all type IIB x+-independent pp-wave

backgrounds, with a 5-form field strength, which preserve some spacetime super-

symmetry. We will distinguish ones which preserve only (1,1) supersymmetry from

ones which preserve (2,2) supersymmetry or more. We will also analyze string prop-

agation on such backgrounds. To do that we first review some ideas regarding the

superstring worldsheet actions and their symmetries.

4.2. Light Cone Gauge and the World Sheet Supersymmetry Algebra

The description of superstrings in general backgrounds is a fundamental prob-

lem in string theory, and yet a highly nontrivial task. Up to date a few alternative

formalisms have been developed, trying to address this problem, yet each one has

its own drawbacks. The two standard ones are the Ramond-Neveu Schwarz (RNS)

formalism [101] and the Green-Schwarz (GS) formalism [102].

The RNS description exhibits a manifest worldsheet symmetry. The worldsheet

fields are the bosonic space-time coordinates Xµ(σ, τ) and their fermionic partners

- two component worldsheet spinors ψµ(σ, τ). In a flat background the action can

be explicitly written and quantized. The action in conformal gauge is

S = − 1

2π

∫
d2σ{∂αXµ∂αXµ − iψ̄µ∂/ψµ} (4.6)

However, in this formulation the existence of spacetime symmetry is not mani-

fest. Also, although it is possible to extend the RNS formalism to more general

backgrounds with NS-NS fields, it is not clear how to extend it to include R-R

background fields.

The GS formalism on the other hand does exhibit manifest spacetime supersym-

metry, but not manifest worldsheet supersymmetry . The worldsheet field content

in this case is ten bosonic worldsheet coordinates Xµ(σ, τ) and two anticommuting
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Majorana-Weyl space-time spinor coordinates θAa(σ, τ), A = 1, 2 , a = 1..16 ( a

being a spinor index in 10-dimensions).

Other than these two, there were also a few more formalisms developed by

Berkovits, and which later have been shown to be related to each other and to the

RNS and GS formulations (a review of these can be found in [103]).

One of these is the covariant pure spinor formalism [104]. This formalism

manifestly preserves all SO(9,1) Poincaré symmetries of the background, and in flat

space reduces to a quadratic action, which is easy to quantize (as the RNS action).

It introduces fermionic canonical momenta dα conjugate to the worldsheet spinors

θα into the action, it uses bosonic pure spinor variables λα, which function as ghost

variables 28, and makes use of a nilpotent BRST operator Q =
∫
λαdα to define

the physical states of the theory. However this formalism in curved backgrounds

usually gives non-linear actions, which are hard to solve.

Another formalism introduced by Berkovits is the hybrid formalism [105,106],

which like the GS action uses spacetime spinor variables on the worldsheet, and

which reduces to a free action for flat backgrounds, where quantization is simple.

The action contains N = 2 worldsheet supersymmetry, replacing the kappa symme-

try of the GS action. However it does not have manifest ten dimensional Lorentz

invariance, and can at most retain a manifest U(5) subset of the Lorentz group.

Actions were built for SO(3, 1)×U(3) , SO(5, 1)×U(2) , SO(1, 1)×U(4) and U(5)

symmetry groups.

The U(4) hybrid formalism, which is of special interest in the context of pp-

waves, exhibits manifest (2,2) worldsheet supersymmetry. It is a critical N=2 su-

perconformal field theory, related by field redefinition to the RNS superstring (as

shown in [107]). In light-cone gauge , when the fermionic superfields are gauged

28 These are the bosonic superpartners of the fermionic worldsheet spinors θα obeying

λγmλ = λ̄γmλ̄ = 0 for all spacetime indices m.
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away, it reduces to the light-cone gauged GS action [108]. It has also been related

to the pure spinor formalism, both being different gauge fixings [109] of the same

action - the “doubly supersymmetric action” [110]. Its field content is four chiral

and four antichiral bosonic superfields (X i, X ī , i=1..4), two chiral and antichiral

fermionic superfields (Θ+,Θ−), (Θ̄+, Θ̄−) and two semi-chiral and semi-anti-chiral

fermionic superfields (W+,W−), (W̄+, W̄−). The action in a flat background ex-

hibits manifestly only 25 of the 45 SO(9,1) Lorentz transformations, 9 of the 10

translations, and 20 of the 32 type IIB supersymmetries. In curved backgrounds,

the action becomes more complicated and in general non quadratic, yet one expects

the supergravity equations of motion to still come from requiring quantum (2, 2)

superconformal invariance of the action. For some special curved backgrounds, the

action was explicitly written [111,106].

For the rest of this section we focus on the GS formalism, and in the end make

some more remarks about the Berkovits U(4) hybrid formalism.

As we are primarily interested in type IIB string theories, we take θ1,2, the GS

worldsheet Majorana-Weyl spinors, to have the same handedness. The GS action

in a flat background is

S = − 1

2π

∫ √
hhαβΠα · Πβ

+
1

π

∫
d2σ{−iεαβ∂αXµ(θ̄1Γµ∂βθ

1 − θ̄2Γµ∂βθ
2) + εαβ θ̄1Γµ∂αθ

1θ̄2Γµ∂βθ
2}

Πµ
α ≡ ∂αX

µ − iθ̄AΓµ∂αθ
A

(4.7)

and its equations of motion are:

Πα · Πβ =
1

2
hαβh

γδΠγ · Πδ

Γ · ΠαP
αβ
− ∂βθ

1 = 0

Γ · ΠαP
αβ
+ ∂βθ

2 = 0

∂α[
√
h(hαβ∂βX

µ − 2iPαβ− θ̄1Γµ∂βθ
1 − 2iPαβ+ θ̄2Γµ∂βθ

2)] = 0

(4.8)
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where Pαβ± are projection operators defined by Pαβ± ≡ 1
2 (hαβ+εαβ/

√
h). The action

has a local fermionic symmetry - kappa symmetry - which is parameterized by κAαa

(α = 0, 1 being a worldsheet vector index) , such that κ1α = Pαβ− κ1
β , κ2α = Pαβ+ κ2

β .

The symmetry transformation is given by

δθA = 2iΓ · Πακ
Aα

δXµ = iθ̄AΓµδθA

δ(
√
hhαβ) = −16

√
h(Pαγ− κ̄1β∂γθ

1 + Pαγ+ κ̄2β∂γθ
2)

(4.9)

In order to quantize the theory we need to fix a gauge. So far the model has

only been successfully quantized in light-cone gauge, where things simplify greatly.

To implement this gauge, we first we use parameterization invariance to set the

worldsheet metric to the flat one

hαβ = ηαβ

Now we use kappa symmetry to set half of the components of θ1 and θ2 to zero:

Γ+θ1 = Γ+θ2 = 0

where Γ± = 1√
2
(Γ0 ± Γ9). So we are left with two spinors each having 8 real

nonzero components. Taking just these components and rescaling them by
√
p− we

create the new 8-component spinors S1,2. As in type IIB theory θ1,2 have the same

handedness , both S1,2 are in the same spinorial representation of SO(8), say 8s.

The last equation in (4.8) implies that ∂α∂αX
+ = 0, and thus one can use

conformal invariance to set all the + oscillators to zero, and impose

X+(σ, τ) = x+ + p−τ (4.10)

It also implies for X i that (∂2
σ−∂2

τ )X
i = 0. The second and third equations simplify

too and become (∂τ + ∂σ)S
1a = (∂τ − ∂σ)S

2a = 0.
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Thus one can write an equivalent action giving the same equations of motion,

including only the transverse fields:

SLC = − 1

2π

∫
d2σ(∂αX

i∂αXi − iS̄a∂/Sa) (4.11)

with Sa being a worldsheet spinor with two components: S1a and S2a. This action

can also be related to the light-cone gauge fixed form of the action (4.6) where ψi

and Sa are related through bosonization and refermionization [112].

The action (4.11) has some worldsheet supersymmetry. As we are working

in the Green-Schwarz formalism, the worldsheet symmetries just descend from the

spacetime ones and should be δθ = ε. When Γ+ε = 0 such transformations will

preserve the lightcone gauge. There are 16 such non-linearly realized supersymmetry

transformations:
δSa =

√
2p−η

a

δXi = 0
(4.12)

These transformations are generated by

Qa =
√

2p−S
a
0

However, when Γ+ε 6= 0 such transformations will take Sa out of the lightcone

gauge. To get back in to the gauge, one can perform in addition a kappa symmetry

transformation with a parameter κ depending on ε such that the resulting Sa is

annihilated by Γ+. Such a kappa transformation also affects the bosonic coordinates.

This gives 16 more linearly realized supersymmetry transformations 29:

δSa = −i∂/Xiγiaȧε
ȧ√p−

δXi = γiaȧε̄
ȧSa/

√
p−

(4.13)

The generators of these transformations are

Qȧ =
1√
p−
γiȧa

∞∑

−∞
Sa−nα

i
n

29 We employ here spin(8) notations for the spinors where the index εa denotes an 8s

spinor and εȧ denotes an 8c spinor.
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(where αin are the oscillator modes for the bosonic transverse fields)

The worldsheet supersymmetry transformations must be part of the worldsheet

supersymmetry algebra, and should anti-commute to the bosonic symmetries of the

model - spacetime translations. These are not all worldsheet translations, as we are

working in lightcone gauge. Calculation of the anti-commutators gives the following

algebra:

{Qa, Qb} = 2p−δ
ab

{Qa, Qȧ} =
√

2γiaȧp
i

{Qȧ, Qḃ} = 2Hδȧḃ

(4.14)

One can see that two non-linearly realized supersymmetries anti-commute to the

light cone momentum p− , and two linearly realized supersymmetries anti-commute

to the light cone hamiltonian:

H =
1

2p−
[(pi)

2 + 2
∞∑

m=1

(αi−mα
i
m +mSa−mS

a
m)]

The supercharges also transform as spinors under Lorentz transformations.

Up to now, we have discussed the propagation of the string on a flat back-

ground. A natural question is how to extend this to strings propagating on more

general backgrounds. For the bosonic string, it was shown that the 2d sigma model,

describing bosonic string theory with spacetime metric, antisymmetric tensor, dila-

ton and tachyon fields, can be described in a manifestly ghost-free light cone gauge

action, provided all the fields have a null covariantly constant spacetime killing

vector, and that the theory is Weyl invariant [113]. (This is one of the great draw-

backs of the lightcone gauge - that it only allows dealing with very particular back-

grounds).

When one tries to write an action for the superstring introducing RR back-

ground fields, the problem becomes much more complicated. The covariant GS

action in a generic type II background has been derived in [114]. It is written in
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terms of superfields with some extra constraints assuring it is kappa-symmetric.

Then to get an explicit component form of the action, one needs to expand the

superfields. This can be done using normal coordinate expansions in superspace

[115] . The expansion is finite, as the fermionic coordinates are grassmanian, yet in

principle one should expand up to order 25 in the θ’s. To overcome this one can try

to gauge fix the kappa symmetry and reduce the expansion order. But even after

doing this and using light cone gauge, the expansion includes a huge amount of

terms, and has only been performed for special backgrounds with some symmetry

properties that simplify the expansion.

An explicit action in component form was obtained only in a couple of cases. In

a paper by Sahakian [116] the action was fully expanded for backgrounds with light

cone symmetry, with zero fermionic background fields and with diagonal metrics,

in which case the expansion truncates in quartic order in the θs. In an other series

of papers the action in light-cone gauge was written for spaces which have a coset

superspace structure : AdS5 ×S5 [117,118,119,120] , AdS3 ×S3 [121,122,123] , and

AdS2 × S2 [124] . For these backgrounds the expansion truncates at quartic order

as well.

Another case where the symmetries of the background were used to write the

explicit GS action in light cone gauge is the case of plane waves [79]. In this case

the expansion ends already at quadratic order. The action can be obtained either

by analyzing independently the symmetries of the plane-wave background, or by

viewing it as a Penrose limit of some AdSp × Sq background.

For the maximally supersymmetric type IIB plane-wave (4.3) the GS light-cone

worldsheet lagrangian was shown to be [79]:

L =
1

2
(∂+x

I∂−x
I −m2(xI)2) + i(θ1γ̄−∂+θ

1 + θ2γ̄−∂−θ
2 − 2mθ1γ̄−Πθ2)

m ∼ p−µ ; Π ≡ γ1γ̄2γ3γ̄4

(4.15)

This is nothing but a free massive field theory, which can be exactly quantized.
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In the next chapter, based on our paper [3], we generalize this, and write down

the superstring worldsheet GS action 30 in lightcone gauge for all type IIB pp-waves

involving a 5-form RR field strength and having at least (1, 1) supersymmetry.

Among these worldsheet actions are all N = 2 Landau-Ginzburg models with four

chiral superfields.

Now, returning to the Berkovits U(4) hybrid formalism we mentioned at the

beginning of this section, we recall it had manifest N = 2 supersymmetry, and

broken Lorentz invariance, which is exactly the situation we have for our pp-wave

backgrounds. It turns out that this formalism is also very convenient to describe

the superstring propagation in these pp-wave backgrounds, and to determine con-

sistency conditions on such backgrounds. As we will not use this formalism in

subsequent chapters, we do not elaborate more on it here and refer the reader to

[111].

4.3. N=2 Landau Ginzburg Models and Mirror Symmetry

As we will see in the next chapter, worldsheet actions of strings propagating in

some pp-wave backgrounds turn out to be Landau-Ginzburg models with N = (2, 2)

worldsheet supersymmetry. In this subsection we will review some basic facts about

Landau-Ginzburg models and about their relation through mirror symmetry to

other Landau-Ginzburg models or sigma-models. We will Particularly focus on

the N = 2 sine-gordon model and its mirror-symmetry dual - the supersymmetric

non-linear sigma model on CP 1.

We start by quickly summarizing our notations, which follow [84]. We take

the 1+1 N = 2 superspace coordinates to be x± , θ± , θ̄±. The supersymmetry

30 More precisely, we find an action with worldsheet fermionic coordinates ψi which can

be related to the GS spacetime fermions Sa as explained in the next chapter.
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generators and derivatives on this space are defined as

Q± =
∂

∂θ±
+ iθ̄±

∂

∂x±
, Q̄± = − ∂

∂θ̄±
− iθ±

∂

∂x±

D± =
∂

∂θ±
− iθ̄±

∂

∂x±
, D̄± = − ∂

∂θ̄±
+ iθ±

∂

∂x±

(4.16)

For integrals we use the shorthand notations:
∫
d4θ ≡ 1

4

∫
dθ+dθ−dθ̄−dθ̄+ ,

∫
d2θ ≡ 1

2

∫
dθ−dθ+|θ̄±=0 and

∫
d2θ̃ ≡

∫
1
2

∫
dθ̄−dθ+|θ̄+=θ−=0.

In addition we define two U(1) R-symmetries - a vector U(1) and an axial

U(1) generated by FV and FA respectively. The supercharges have the following

R-charges :

[FV , Q±] = −Q± , [FV , Q̄±] = Q̄±

[FA, Q±] = ∓Q± , [FA, Q̄±] = ±Q̄±

Superfields are combinations of fields in a supermultiplet, which are functions

of the superspace coordinates.

A chiral superfield Φ is defined to satisfy D̄±Φ = 0 and so can be expanded in

superspace as

Φ = φ+
√

2θ+ψ+ +
√

2θ−ψ− + 2θ+θ−F + ...

F being an auxiliary field and the ... terms involving derivatives of φ, ψ±. An

antichiral superfield Φ̄ satisfies D±Φ̄ = 0.

A twisted chiral superfield Y satisfies D̄+Y = D−Y = 0 and can be written in

components as:

Y = y +
√

2θ+χ̄+ +
√

2θ̄−χ− + 2θ+θ̄−G+ ...

G being an auxiliary field. A twisted anti-chiral superfield Ȳ satisfies D+Ȳ =

D̄−Ȳ = 0.

A vector superfield V consists of a vector field vµ, conjugate Dirac fermions

λ±, λ̄± and a complex scalar σ. In Wess-Zumino gauge it has the component form:

V = θ−θ̄−v− + θ+θ̄+v+ − θ−θ̄+σ + θ+θ̄−σ̄+
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+
√

2iθ−θ+(θ̄−λ̄− + θ̄+λ̄+) +
√

2iθ̄+θ̄−(θ−λ− + θ+λ+) + 2θ−θ+θ̄+θ̄−D

D being a real auxiliary field. Its field strength Σ = 1
2{eV D̄+e

−V , e−VD−eV }

can be checked to be a twisted chiral superfield.

A Landau-Ginzburg (LG) model is characterized by a superpotential, which is

a holomorphic function of Nchiral superfields W (Φi), and by the Kahler potential

on an N -complex dimensional manifold K(Φi, Φ̄i), such that gij̄ = ∂2K
∂Φi∂Φ̄j̄ . The

Lagrangian is made up of two parts - the D term :

LK =

∫
d4θK(Φi, Φ̄i) (4.17)

and the F-term:

LW =
1

2

∫
d2θW (Φi) + c.c. (4.18)

Together they give in component form:

LK + LW = −gij̄∂µφi∂µφj + igij̄ψ
j
−D+ψ

i
− + igij̄ψ

j
+D−ψ

i
+ +Rik̄jl̄ψ

i
+ψ

j
−ψ

k
−ψ

l
+

− 1

4
gj̄i∂jW∂iW − 1

2
[(Di∂jW )ψi+ψ

j
− + (Dī∂jW )ψi−ψ

j
+]

(4.19)

with D±εj ≡ ∂±εj + ∂±φlΓ
j
liε
i

Looking at the bosonic part of the action in component form, one sees the

potential is proportional to g j̄i∂jW∂iW and thus the vacua of the theory {ak} are

obtained by minimization of the potential:

∂W

∂φi
|ak

= 0 , ∀i

Denoting the 1+1 dimensions as x± = 1
2 (τ±σ), the theory will contain solitons

or kinks, which connect one minimum at σ = −∞ to another at σ = +∞: Φi(σ =

−∞) = ai , Φi(σ = +∞) = bi. Such configurations which minimize the energy of

the system are BPS solitons. They satisfy the relation ∂σΦ
i = eiα

2 gj̄i∂jW where α

is the argument of (W (b)−W (a)), and their mass is given by mab = |W (b)−W (a)|.
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This result is true both in the classical level, and also as an exact nonperturbative

quantum statement, due to a non-renormalization theorem for the superpotential in

N = (2, 2) theories in two dimensions. In the W-plane the solitons are just straight

lines, as ∂σW = eiα

2 gij̄∂iW∂j̄W , which has a constant α.

Mirror symmetry is an equivalence of two (2, 2) supersymmetric field theo-

ries under which the supersymmetry generators are exchanged as Q− ↔ Q̄− , the

axial and vector R-symmetries are interchanged, and chiral multiplets are mapped

to twisted chiral multiplets and vice versa. To show that two models are mirror

symmetry dual to each other, one usually defines some action with a few extra non-

dynamical superfields. Then integrating out some superfields will give an action on

one side of the duality (or an action that would RG flow to it), and integrating out

other superfields gives the action on the other side of the duality (or an action that

would RG flow to it) [84].

In the simple case where one of the theories is a supersymmetric sigma model

on a torus of radius R, mirror symmetry reduces to T-duality, relating it to a sigma

model on a torus of radius 1/R. In this case one can start with the action

L =

∫
d4θ(

R2

4
B2 − 1

2
(Θ + Θ̄)B)

where Θ is a twisted chiral superfield and B a real superfield. Integrating out Θ, Θ̄

gives a constraint on B which is solved as B = Φ + Φ̄ , Φ being a chiral superfield,

and the action becomes

Lch =

∫
d4θ

R2

2
ΦΦ̄ .

Integrating out B instead gives

LTwCh =

∫
d4θ(− 1

2R2
Θ̄Θ) .

Lch is an action on a cylinder with a circle of radius R and LTwCh is an action on

a cylinder with a circle of radius 1/R.
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More generally mirror symmetry can relate two LG models to each other, two

sigma-models to each other, or a LG model to a sigma-model. An N = 2 LG model

we will focus on in chapter 4 is the super sine-gordon (SSG), as it is an integrable

model, which describes a superstring propagating in a specific pp-wave background.

As it turns out, the SSG model, with vanishing kinetic term is mirror symmetric

to the CP 1 sigma-model [84], and with a finite kinetic term, is mirror symmetric

to the squashed CP 1 sigma model [85], or ’sausage model’ [125]. This is actually

a special case of a more general mirror symmetry between affine toda AN−1 LG

models and CPN−1 sigma-models [81,82].

The basic idea is to start with a 1+1 dimensional U(1) gauge linear sigma model

(GLSM) with a vector field V and its field strength Σ, and two chiral superfields

Φ1,2 of charge +1. The action is

L′ =

∫
d4θ(

2∑

i=1

Φ̄ie
2V Φi −

1

2e2
Σ̄Σ) − 1

2
(

∫
d2θ̃tΣ + c.c.) (4.20)

with e the gauge coupling and t = r − iθ, r a F.I. parameter and θ a θ-angle

coupling. This model is not conformal invariant and r flows with the scale µ as

r0 = 2 ln(ΛUV /µ).

Now one can show that the term
∫
d4θ

∑2
i=1 Φ̄ie

2V Φi in (4.20) is really equiv-

alent to
∫
d4θ

∑2
i=1[− 1

2 (Yi + Ȳi) ln(Yi + Ȳi)] + 1
2 (

∫
d2θ̃Σ(Y1 + Y2) + c.c.) as both

can be obtained from one action (L0 =
∫
d4θ[e2V+Bi − 1

2

∑2
i=1(Yi + Ȳi)Bi], Bi real

superfields) by integrating over different fields (the first is obtained by integrat-

ing over Yi, Ȳi, and the second by integrating over Bi). Yi are periodic variables

Yi ∼ Yi + 2πi. So (4.20) is equivalent to

L′ =

∫
d4θ{− 1

2e2
Σ̄Σ− 1

2

2∑

i=1

(Yi + Ȳi) ln(Yi + Ȳi)}+
1

2
(

∫
d2θ̃Σ(Y1 + Y2 − t) + c.c.)

(4.21)

Here Yi couple as theta angles, and like t also get renormalized: Y0i = Yi+ln(ΛUV /µ)

so that Σ(Y10 + Y20 − t0) = Σ(Y1 + Y2 − t(µ)) with t(µ) = 2 ln(ΛUV /µ) − iθ.
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It turns out that the action (4.21) gets non-perturbative corrections for the

twisted superpotential due to instanton effects [127]. The gas of vortices and anti-

vortices modifies the twisted superpotential into W̃ (Y ) = Σ(Y1 + Y2 − t(µ)) +

µ(e−Y1 + e−Y2) (The Kahler term can also get corrected, perturbatively and non-

perturbatively).

The main point now is that the IR limit of the GLSM (4.20), when energies

are much smaller than e
√
r0, is the non-linear sigma model on CP 1.

On the other hand, looking at the dual action with Yi,Σ, one sees that the

masses of Σ and Y1 + Y2 are of order e
√
r0, while the mass of the modes tangent to

Y1 +Y2 = t is of order µ
√
r0. In the limit e� µ, one can treat Σ as a non-dynamic

field and integrate over it. As the twisted superpotential is Σ(Y1+Y2−t)+µ(e−Y1 +

e−Y2), the Σ integration imposes the constraint Y1 + Y2 = t and the new potential

is W ′ = µ(e−Y1 + eY1−t) = 2Λ coshY where Λ = µe−t/2 and Y = Y1 − t/2.

Thus we establish that the CP 1 model is dual to the SSG with a superpotential

2Λ coshY .

More generally, had we started with a GLSM with N chiral fields of charge

1 we would have gotten in the IR a NLSM on CPN−1 of size t and on the other

side of the duality we would have gotten the AN−1 affine toda model. If one starts

with general charges Qi (such that
∑
iQi 6= 0), this becomes a weighted projective

space with weights determined by the charges. It can actually be shown that the

mirror symmetry dual of any NLSM on a toric variety XN−k is the algebraic torus

(C×)N−k with a superpotential.

The NLSM on the round CP 1 is actually dual to the SSG in the limit where

the radius of the Y direction vanishes, i.e. if we write the SSG model as
∫
d4θY 2 +

(
∫
d2θΛcoshβY +c.c), then this is the limit β → ∞. Sometimes this is also referred

to as the limit where the kinetic term vanishes. This is equivalent to the previous

statement if we rescale Z ≡ βY and then notice the kinetic term for Z is proportional
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to 1
β2 and thus vanishes when β → ∞. To motivate why the round CP 1 is really

only the β → ∞ limit of the SSG, we recall that the approximate Kahler term was

1
4r2

0

|Yi|2. In the continuum limit ΛUV → ∞ , r0 → ∞ this kinetic term vanishes.

One can argue that the SSG with a finite radius β−1 (or finite kinetic term)

is mirror symmetric to the squashed CP 1 also called the sausage model. This was

conjectured by Fendley and Intriligator, and expanded upon in [85,128]. To see

this one starts with a more general GLSM than (4.20), where in addition there

is another chiral superfield P , another gauge field V ′ with field strength Σ′, a

squashing parameter k, and two parameters R1,2. The action is:

LGLSM−sq =

∫
d4θ[

2∑

i=1

Φ̄ie
2V+2RiV

′

Φi −
1

2e2
|Σ|2] + 1

2
[

∫
d2θ̃tΣ + c.c.]+

+

∫
d4θ[

k

4
(P + P̄ + V ′)2 − 1

2ẽ2
Σ

′2]

The vacuum manifold of this model is the sausage, which for k → ∞ becomes the

round CP 1 again. Dualizing P,Φ1,2, taking into account the vortices’ effects and

integrating over Σ,Σ′ one obtains the SSG with a finite Kahler term, whose metric

is gij = 1
kRiRj . Again the limit k → ∞ makes this term vanish.

The equivalence between the supersymmetric sigma models on CPN−1 and

affine AN−1 Toda models has a lot of support comparing properties of the two the-

ories. The supersymmetric NLSM on CPN−1 is an asymptotically free theory which

generates a dynamical scale Λ (which in our previous notations is Λ = µe−t/N ). It

preserves U(1)V R-symmetry, but breaks U(1)A → Z2N → Z2 the first breaking

due to anomalies, and the second is a spontaneous symmetry breaking. CPN−1 has

N vacua with a mass gap. It also has solitons [127]. These come in the different

Λr representations of SU(n) , r = 1..(n − 1). For each representation there are
(
n
r

)
solitons which are N = 2 doublets : (urα, drα) , α = 1..

(
n
r

)
, and they connect

adjacent vacua.
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The AN−1 affine Toda model also has a mass scale, but here it is explicitly

introduced. Being the mirror dual, it has the roles of U(1)V and U(1)A reversed.

It preserves U(1)A, and has an explicit breaking of U(1)V → Z2N . Also the soliton

spectrum and scattering matrix of the two theories agree [82].
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Chapter 5

Supersymmetric Supergravity Solutions
of the PP Wave Type

5. Supersymmetric Supergravity Solutions of the PP Wave Type

We consider type IIB supergravity solutions with a nonzero 5-form field

strength. They have a covariantly constant null killing vector, ∂
∂x− , which also

leaves F5 invariant and it is such that it gives zero when contracted with F5.

More explicitly, the form of the solutions we consider is

ds2 = −2dx+dx− +H(xi)(dx+)2 + ds28

F5 = dx+ ∧ ϕ4(x
i)

(5.1)

where xi are the 8 transverse coordinates, F5 is the self-dual RR field strength. We

limit ourselves to solutions which are also independent of x+. We consider constant

dilaton and set all other fields to zero. The transverse metric can be curved. Note

that the background is such that we can scale down H and ϕ by performing a boost

in the x± directions.31. This property under boost transformations implies that

we can assign an “order” to each field according to how they change under boosts.

The four-form ϕ is of first order while H is of second order. This means that the

transverse space with zero RR five-form should be a solution of the equations of

motion by itself, since it is of zeroth order.

In order to clarify a bit the discussion we will first consider the simpler case

when the transverse space is flat and then the slightly more complicated case of a

curved transverse space.

31 So the background is not boost invariant in the x± directions.
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5.1. Flat Transverse Space

The equations of motion of type IIB supergravity imply that (5.1) obeys

∇2H = −32|ϕ|2 ; ∗10F5 = F5 (5.2)

where |ϕ|2 = 1
4!ϕµνρδϕ

µνρδ , and ∇2 is the laplacian in the transverse 8-dimensional

space. In our conventions32, the self-duality of F5 implies that ϕ is anti-self-dual in

the 8-dimensional space, so that ∗ϕ = −ϕ and dϕ = 0. 33

In addition we will now require the solution to preserve some supersymmetries.

Supersymmetries in type IIB supergravity are generated by a chiral spinor ε with

16 complex components. We find it convenient to separate it into two components

according to their SO(8) chiralities

ε = −1

2
Γ+Γ−ε−

1

2
Γ−Γ+ε ≡ ε+ + ε− . (5.3)

ε+ has positive SO(1, 1) and SO(8) chiralities, and is not annihilated by Γ+. We

will find, roughly speaking (i.e. to lowest order in ϕ4), that ε+ is related to the

supersymmetries that are preserved by a configuration with nonzero p− and are

linearly realized on the light cone action. These anti-commute to the lightcone

Hamiltonian, plus possibly some rotations. On the other hand the supersymme-

tries generated by ε−, which is annihilated by Γ+, are non-linearly realized on the

worldsheet and imply that some particular fermions are free on the worldsheet. For

reasons that will become clear later we are especially interested in supersymmetries

that are linearly realized on the worldsheet so we are interested in spinors such that

only ε+ is nonzero to first order.

Setting to zero the supersymmetry variations we obtain the following equation

0 = DM ε = (∇M +
i

2
F/ΓM )ε , (5.4)

32 Our conventions and notations are summarized in Appendix F.
33 A ∗ with no subindex will always refer to the 8 dimensional space.
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which leads to

∂−ε+ = ∂µε+ = ∂+ε+ = 0

∂−ε− = 0 ; ∂µε− =
i

2
Γ−ϕ/Γµε+ ; (i∂+ − ϕ/)ε− =

i

4
Γ−∂/Hε+

(5.5)

where ϕ/ ≡ 1
4!Γ

µνρδϕµνρδ. These equations imply that ε+ must be a constant spinor

and they determine the first and higher order parts of ε− in terms of ε+. These

solutions with nonzero zeroth order ε+ determine the linearly realized supersym-

metries of the light cone action. In addition to these we might have solutions of

(5.5) with ε+ = 0. We obviously have 16 solutions of this type if ϕ is a constant

form, but when ϕ is not constant we will generically have no solutions of this type

(below we will make a precise statement). Note that only solutions of this second

type can be x+ dependent. Note also that if ε = ε+ + ε− is a solution, then so is

ε̂ = ε∗+ − ε∗−(−x+).

When we attempt to solve the equation for ε− in terms of ε+ we find some

integrability conditions. First, integrability of the ∂µε− equations places a constraint

on the allowed 4-forms. Then the (i∂+ − ϕ/)ε− equation gives further consistency

conditions on ε− and determines H in terms of ϕ4. In Appendix G we show these

computations in detail. Below we will just state the form of the most general

solutions with (2, 2) and (1, 1) supersymmetry. We did not explore the subset of

(2, 2) solutions which actually have more ε+-type supersymmetries.

It is convenient to choose complex coordinates for the transverse space,

z1, ..., z4. The anti-self-dual 4-forms ϕµνρδ written in complex coordinates can be

split into 2 kinds - those having two holomorphic and two anti holomorphic indices -

the (2,2) forms (of which there are 15) and those having one holomorphic and three

antiholomorphic indices and their complex conjugates - the (1,3) and (3,1) forms

(of which there are 10+10). We denote the (1,3) forms by the shorter notation

ϕmn ≡ 1

3!
ϕmijkε

ijkngnn̄ (5.6)
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Anti-self duality of ϕ implies that ϕmn is symmetric.

It can be shown that one can write the anti-selfdual (2, 2) forms in terms of

ϕij̄ defined as

2ϕlm̄ = gss̄ϕlm̄ss̄ , (5.7)

where the reality and self duality condition imply that ϕlm̄ is a hermitian and

traceless matrix (which could, in principle, be a function of the coordinates). We

also define the lowest weight spinor state |0〉 which is annihilated by Γ+̂ and Γi where

i runs over the four holomorphic indices. We begin by describing the solutions with

an ε+ which at zeroth order is proportional to |0〉 and its complex conjugate. We

later describe solutions with ε+ = 0.

CASE (1) (2,2) supersymmetry or more

The solution is parameterized by a holomorphic function W . In this case the

ϕlm̄ are constants and given in terms of a traceless hermitian 4x4 matrix. W and

ϕlm̄ should also obey

∂n[ϕ
k

j zj∂kW ] = 0 (5.8)

where we raised the index of ϕjk̄ using the flat transverse space metric. The metric

and the 4-form are given by

ds2 = −2dx+dx− − 32(|∂kW |2 + |ϕjk̄zj |2)(dx+)2 + dzidzi

ϕmn = ∂m∂nW , ϕm̄n̄ = ∂m̄∂n̄W , ϕlm̄ = constants
(5.9)

The expressions for the Killing spinors can be found in appendix G.

One can, of course, look at the simpler cases where either W = 0 or ϕlm̄ = 0.

It is interesting to note that if ϕlm̄ is nonzero the superalgebra has a central charge

term proportional to the U(1) symmetry generated by the holomorphic Killing

vector zlϕlm̄∂/∂z
m and its complex conjugate.

CASE (2) (1,1) supersymmetry

76



These solutions are parameterized by a real harmonic function U . However

this time there are only 2 Killing spinors. The solution is

ds2 = −2dx+dx− − 32(|∂kU |2)(dx+)2 + dzidzi

ϕmn = ∂m∂nU ; ϕm̄n̄ = ∂m̄∂n̄U ; ϕlm̄ = ∂l∂m̄U
(5.10)

The expressions for the Killing spinors can be found in appendix G.

5.2. The Homogenous Solution for ε−

The homogenous equations for εhom− are

∂−ε
hom
− = ∂jε

hom
− = ∂jε

hom
− = (i∂+ − ϕ/)εhom− = 0 (5.11)

and are solved by

εhom− (x+) = e−iϕ/x
+

η0 (5.12)

where η0 is a constant spinor. (5.11) implies that ϕ/ and η0 should be such that after

multiplying (ϕ/)nη0 (for n = 1, 2, ...) we still have spinors that are constant in the

transverse space and independent of x+. So we get the spinors η0, ϕ/η0, · · · (ϕ/)n−1η0

which are linearly independent and n ≤ 16. These solutions of (5.11) are associated

to free fermions on the string worldsheet in light cone gauge. In fact the last

equality in (5.11) is the equation of motion for a zero momentum mode on the

string worldsheet. If we diagonalize the matrix ϕ/ in the subspace of solutions we see

clearly that each pair of solutions gives rise to a free fermion on the worldsheet34.

The fermion is free but it can be massless or massive depending on the eigenvalue

of the matrix ϕ/ on it. The sixteen supersymmetries of ε− type that arise in the

usual quadratic plane waves discussed in [94] arise because all fermions are free.

In a general interacting case all fermions will be interacting and there will be no

34 The solutions come in pairs. If the eigenvalue of the matrix ϕ/ is nonzero this follows

by considering the complex conjugate equation. If the eigenvalue is zero then we can

multiply the solution by any complex number so that we have two real solutions.
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supersymmetries of this type. If, in addition, we have worldsheet supersymmetry in

lightcone gauge, as in the cases we are analyzing, each free fermion has a free boson

partner and these two together decouple from the rest of the worldsheet theory.

So the structure is clear, we have as many free bosons and fermions as there are

ε− supersymmetries. In the N=(2,2) case these supersymmetries come in groups of

four, one per complex field that appears at most quadratically in the superpotential.

5.3. Curved Transverse Space

When the transverse space is curved, the ansatz (2.1) is a solution of IIB

supergravity iff it satisfies the equations of motion

∇2H = −32|ϕ|2 ; ∗8ϕ = −ϕ ; dϕ = 0

Rµν = 0
(5.13)

where ∇2 is the laplacian in the transverse curved space, and Rµν is the Ricci tensor

of the transverse space 35.

The supersymmetry equations for the curved case are

∂−ε+ = ∇µε+ = ∂+ε+ = 0

∂−ε− = 0 ; ∇µε− =
i

2
Γuϕ/Γµε+ ; (i∂+ − ϕ/)ε− =

i

4
Γu∂/Hε+

(5.14)

These are exactly the same equations as in the flat case (5.5), with the transverse

derivatives replaced by covariant derivatives. We will now state what the general

solutions are and we refer the interested reader to appendix G for the derivation.

The first point to note is that to zeroth order the supersymmetry equations for the

transverse manifold imply that the transverse space is a special holonomy space. If

we demand (2,2) supersymmetries on the worldsheet it can only be a Calabi-Yau

35 we use (+,-) and greek letters to denote curved indices , and (v,u)and roman letters to

denote flat indices. All notations and conventions we use for curved space are summarized

in Appendix F.
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space (G2 and Spin(7) could also be studied but we do not do that here). For this

reason it is still convenient to choose complex coordinates and we denote by |0〉 the

covariantly constant spinor on the Calabi-Yau manifold that is annihilated by Γ+̂

and Γµ where µ runs over the four holomorphic indices. We will also use the short

notation (5.6) for the (1,3) forms. We first focus on the supersymmetries that are

linearly realized on the worldsheet in lightcone gauge and later we explain what

happens with the homogeneous solutions for ε−.

CASE (1) (2,2) supersymmetry or more

In this case the solution is parameterized by a holomorphic function W , and a

real Killing potential U from which we can define the Killing vectors Vµ = i∂µU ,

Vµ̄ = −i∂µ̄U . The Killing vector should be holomorphic (i.e. V µ is holomorphic

and V µ̄ is antiholomorphic). The following conditions should also hold

∇µV
µ = 0 (5.15)

∂ν [V
τ∇τW ] = 0 (5.16)

The supergravity solution is

ds2 = −2dx−dx+ − 32(|dW |2 + |V |2)(dx+)2 + 2gµν̄dz
µdz̄ν̄

ϕµν = ∇µ∇νW , ϕµ̄ν̄ = ∇µ̄∇ν̄W̄

ϕµ̄ν = ∇µ̄∇νU

(5.17)

where |dW |2 ≡ gµν̄∇µW∇νW , and |V |2 ≡ gµν̄V
µV ν̄ . The expressions for the

Killing spinors can be found in appendix H.

Here too, one can look at the simpler cases where either W = 0 or V µ = 0.

Note that if the transverse space is compact there is no non-constant holomorphic

function. In order to have interesting solutions we need the transverse space to be

non-compact.

CASE (2) (1,1) supersymmetry

79



The (1,1) supersymmetry solutions are parameterized by a real harmonic func-

tion U . The metric, 4-form and the 2 Killing spinors are given by

ds2 = −2dx−dx+ − 32(|∇U |)2(dx+)2 + gµν̄z
µzν

ϕµν = ∇µ∇νU ; ϕµ̄ν̄ = ∇µ̄∇ν̄U ; ϕµν̄ = ∇µ∇ν̄U
(5.18)

Note that the (2,2) part of the 4-form (whose components are ϕλσ̄µν̄ ) is therefore

ϕ = (∇µ∇ν̄Udz
µdzν) ∧ J (5.19)

where J is the Kahler form, which obeys dJ = 0 (so that ϕµν̄ = 1
2g
λσ̄ϕλσ̄µν̄ =

∇µ∇ν̄U).

5.4. The Homogenous Solution for ε−

The homogenous equations for εhom− in a curved background are

∂−ε
hom
− = ∇jε

hom
− = ∇jε

hom
− = (i∂+ − ϕ/)εhom− = 0 (5.20)

There is a solution

εhom− (x+) = e−iϕ/x
+

η0 (5.21)

with η0 a covariantly constant spinor and all of (ϕ/)nη0 (n = 1, 2, ...) covariantly

constant.

The discussion follows exactly the one we had for the flat case, where we argued

that each pair of solutions for (5.20) gives rise to a free (massive or massless) fermion

on the string worldsheet in light cone gauge. Due to supersymmetry each such

fermion has a free boson partner, and they both decouple from the rest of the

worldsheet theory.
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Chapter 6

The Worldsheet Actions

6. The Worldsheet Actions

In the previous chapter we have listed all the supersymmetric solutions of the

pp-wave form. In this chapter we write the action describing a string propagating

in these backgrounds. We choose light cone gauge by setting x+ = τ , where τ

is worldsheet time. Though the standard procedure we then find that p− is con-

served, etc.36 In light cone gauge, only killing spinors which are not annihilated by

Γ+ survive as linearly realized supersymmetries on the worldsheet. These are the

ε+ part of the killing spinor. Since we focused on solutions that preserved some

supersymmetries of this type, we will have a supersymmetric action on the world-

sheet. Thanks to these supersymmetries we do not need to work too much to find

the action, since its form is dictated by supersymmetry.

(2,2) Supersymmetric solutions

We know that if all RR fields are set to zero, the action reduces to the usual

(2, 2) non-linear sigma model which can be written in terms of the Kähler potential.

By turning on (1, 3) and (3, 1) forms we can add an arbitrary superpotential so that

the action in superfield form becomes

S =
1

4πα′

∫
dτ

∫ 2πα′|p−|

0

dσ(LK + LW ) ,

LK + LW =

∫
d4θK(Φi, Φ̄i) +

1

2
(

∫
d2θW (Φi) + c.c.)

(6.1)

36 Our notation with a lower index for p± seems to be contrary to standard practice

in the literature. While in Minkowski space it does not matter where we put the index, it

actually does matter where we put it when g++ is nonzero. (Some papers have chosen the

unreasonable convention of raising the indices using the flat Minkowski metric...). In our

conventions for the metric (where g−+ = −1) we find that p− ≤ 0 for particles propagating

to the future.
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where Φi = Zi +
√

2θLψiL +
√

2θRψiR + 2θLθRF i + .... From this we can find

the component action by integrating out θ [129]. Note that (6.1) contains Yukawa

interactions given in terms of ϕ/, a bosonic potential proportional to H (5.1), as well

as four fermion couplings which follow from supersymmetry. If the transverse space

is flat, there are no four fermion couplings, and the action could also be read from

[79]. The fermions appearing in (6.1) are related to the Green-Schwarz fermions

as follows. The G-S fermions are SO(8) spinors with negative chirality (in our

conventions). Once we choose complex coordinates we have an SU(4) subgroup of

SO(8) which preserves the complex structure. Under this subgroup 8− → 4 + 4̄,

these are the spinors with vector index. More explicitly, let us denote by η0 a

covariantly constant spinor annihilated by all Γī. We then write a general negative

chirality SO(8) spinor as S = ψiΓiη0 + ψīΓīη
∗
0 . This defines the worldsheet spinors

ψi, ψī.

It can be checked that the (3, 1) and (1, 3) forms induce couplings of the type

ψiLψ
j
R as implied by the action (6.1). It can also be seen that the (2,2) forms induce

couplings of the type ψiLψ
j̄
R. These couplings are not present in (6.1). Nevertheless,

it was shown in [130], [131], [132], and reviewed in [84], that if the target space has a

holomorphic isometry, i.e. a holomorphic killing vector field V i (∇iVj̄ +∇j̄Vi = 0),

then this isometry can be gauged to give a vector multiplet (consisting of a complex

scalar, two conjugate dirac fermions and a vector field). Then by taking the weak

coupling limit and then freezing the vector and fermions at zero and the scalar at a

constant value, one can obtain a (2,2) supersymmetric lagrangian. The extra terms

in the Lagrangian that arise in this way are

LV = −gij̄ |m|2V iV j − i

2
(gīi∂jV

i − gjj̄∂īV
j)(mψiRψ

j
L + m̄ψiLψ

j
R) . (6.2)

Note that in our case, we cannot obtain any such holomorphic Killing vector -

we have the extra requirement (coming from the self-duality of F5) that ∇µV
µ = 0.
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It might be possible that including more background fields, such a three form RR

field strength, we get a more general Lagrangian.

In the simple case where the transverse space is flat, we have a holomorphic

killing vector Vj̄ = icij̄z
i , for a hermitian constant matrix cij̄ , and ∇µV

µ = 0

translates into the tracelessness of cij̄ .

The combined action coming from LK+LW+LV is supersymmetric iff V µ∇µW

is constant [131]. This matches nicely with the condition (5.16).

(1,1) Supersymmetric solutions

A general (1,1) supersymmetric sigma-model is of the form

S =
1

4πα′

∫
dτ

∫ 2πα′|p−|

0

dσd2θ(gµνDLφ
µDRφ

ν + U(φ)) (6.3)

where φµ are N = 1 superfields. The superpotential U(φ) is not as general as it

could be in an arbitrary N = 1 theory, since it needs to be a harmonic function.

This condition also follows from conformal invariance in the Berkovits formulation

[111]. Of course if we view the N = (2, 2) solution as an N = (1, 1) theory then the

corresponding N = 1 superpotential is harmonic due to the stricter constraints that

both the superpotential and Killing potential of the N = 2 theory have to obey.

6.1. RG Flow

The light cone worldsheet theory is a theory with a mass scale. So these

theories behave quite non-trivially under RG transformations. This mass scale on

the worldsheet is basically set by p−. More precisely the important dimensionless

parameter is α′|p−|µ where µ is the coefficient in front of the superpotential W =

µf(z/ls) where f is a dimensionless function. This dimensionless parameter is the

product of the mass scale on the worldsheet and the size of the worldsheet cylinder.

A physical spacetime question, like the spectrum of the theory, depends non-trivially

on this dimensionless parameter. We see that performing a scale transformation on
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the worldsheet is related to performing a boost in the x+, x− coordinates. For

low values of |p−| we are exploring the UV of the worldsheet theory while for large

values we explore the IR. As usual we have a UV/IR relation between worldsheet

and target space scales. Note that in many situations, most notably the c < 1

string theories, one can start with a non-conformal theory and “dress” it with the

Liouville mode so that the total theory is a critical string theory. In those cases

the RG flow in the original massive theory becomes related to a change in position

along the Liouville direction. Notice that this case has a different character since

an RG transformation is related to a change in velocity of the motion in the x+, x−

direction. In other words in one case we have that an RG transformation is a

translation in the Liouville direction whereas in our case it is a boost in the x+, x−

directions. The worldsheet will generically have periodic boundary conditions for

the fermions since they are Green-Schwarz fermions. The number of zero energy

(zero p+) supersymmetric ground states can be computed by the standard index

arguments. These will be BPS states in the spacetime theory.

It is interesting to note that we can choose a superpotential that has no su-

persymmetric vacua. In this case we do not have a supersymmetric vacuum on the

worldsheet which means that the corresponding state in the spacetime theory is not

BPS when p− is non-zero. Supersymmetry breaking on the worldsheet should not

be confused with spacetime supersymmetry breaking.

6.2. Solitons

One feature of our models is that they contain solitons on the worldsheet. The

worldsheet is compact and has a size proportional to |p−|α′. If |p−| is large we

will be able to trust soliton computations which are done in an infinite line. Note

that when the string is propagating with fixed value of p− it feels a gravitational

force that pulls it to the regions where −g++ is a minimum. A soliton on the
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worldsheet going between these minima corresponds to a string that goes between

the two positions where −g++ has a minimum in target space. For example, we can

choose a superpotential which is a function of only one variable W (z1). In this case

the three other complex fields on the worldsheet are massless and free. If we solve

∂z1W = 0 we will obtain the values of z1 corresponding to supersymmetric vacua

in the field theory. The gravitational force will be directed towards these points

in spacetime. We can have string configurations that interpolate between these

different points. However, as we are discussing closed strings of finite length (i.e.

we impose periodic boundary conditions on the worldsheet), these configurations

will not be topologically stable, unless there are identifications in the transverse

space. We will discuss below a case with identifications in the transverse space.

6.3. Integrable Theories

It is possible to choose the superpotential in such a way that we get an in-

tegrable model on the worldsheet. We can then rely on the large literature on

integrable models to derive properties of the worldsheet theory. Of course the most

interesting regime is when the worldsheet theory is strongly coupled, since in this

case we do not have any other simple method to derive the spectrum. Our above

derivation of the lightcone worldsheet lagrangian is only valid for weak coupling,

since we used the supergravity approximation. It is nevertheless possible to show

that in the case of flat transverse space these are good string solutions by us-

ing one of Berkovits’ formalisms [108,111] . We now take a flat transverse space

and we explore the physics that results from adding a superpotential of the form

W (z1) = λ cosωz1. This gives the N = 2 supersymmetric sine Gordon theory.
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More explicitly the full background is

ds2 = −2dx+dx− − |λω sinωz1|2(dx+)2 + dzidzi =

= −2dx+dx− − 1

2
|λω|2[cosh(2ωx5) − cos(2ωx1)](dx+)2 + dxidxi

F5 = dx+ ∧ ϕ4 ; ϕ4 =
λω2

32
cos(ωz1)dz1 ∧ dz2 ∧ dz3 ∧ dz4 + c.c.

(6.4)

where z1 = x1 + ix5. The sine Gordon model is conventionally written in terms

of canonically normalized fields φ = z/
√

2πα′ and the parameter β is defined by

writing the superpotential as W = µ cosβφ (where µ, which is proportional to λ,

has dimensions of mass). This implies that w = β√
2πα′

. At this point we could

consider two models, one where x1 is non-compact or another were x1 is compact.

Below we will be interested in the model where x1 ∼= x1 + 2π/ω. This model is

such that we have two distinct supersymmetric vacua, x1 = 0, πω (and also x5 = 0).

When we consider this sine Gordon model on an infinite spatial line (and time)

one can compute exactly its S-matrix [133]. It was found that the S-matrix is the

product of the S-matrices for two theories, one is an integrable version of the N = 2

minimal models and the other is the S-matrix of the bosonic sine Gordon theory.

The N = 2 minimal model is the one with Z2 global symmetry. The spectrum

contains a kink and anti-kink together with some breathers of masses

Mn = 2ms sin(
nπ

2γ
) , γ =

8π

β2
(6.5)

where n = 1, ..., N and N = [γ] is the number of breathers. ms in (6.5) is the mass

of a soliton which is proportional to µ. In order to find the spectrum of states in

string theory we need to find the spectrum of the sine Gordon theory on a circle. If

the size of the circle is very large, which corresponds to large |p−|, we can use the

Bethe ansatz to obtain an approximate answer for the spectrum. The corresponding

expression is expected to be correct up to exponentially small corrections in the size

of the circle (or e−|p−|µα′

). Some exact results for the spectrum on the cylinder for a
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simple integrable model were obtained in [134], but as far as we know the spectrum

for the N = 2 sine Gordon on the cylinder is not known.

Note that the limit β → 0 corresponds to the semiclassical limit of the sine

Gordon model. In this limit the period of the sine is much longer than α′. This

means that the background F field involves large length scales. In this limit there

is a large number of breathers. The lowest lying breather is the basic perturbative

massive field in the theory and the lowest lying ones can be thought of as bound

states of these. On the other hand the limit of large β corresponds to the quantum

regime of the sine Gordon model. Note that for γ < 1 there are no breathers, we

only have the kinks and anti-kinks. When β is large the radius of the x1 circle in

string units is small so that one would attempt to do a T-duality on this circle.

Since the background fields depends explicitly on x1 this is not a straightforward

T-duality. Fortunately the necessary transformation is the mirror symmetry trans-

formation discussed in [84,85], which gives a sausage model. In fact this relation

was conjectured first in [83], by studying the S-matrices and it is a close relative of

[125]. The radius of the sausage is proportional to β. More precisely it is R̃ = α′ω.

We can see that in the limit that the RR fields are small, which is the UV of the

worldsheet theory then in the original picture we have a cylinder with a gravitational

potential that confines the strings to the region near the origin of the non-compact

direction along the cylinder. In the T-dual picture we have a cylinder of the T-dual

radius near the central region of the original cylinder, but the compact circle of the

cylinder shrinks as we move away from the center so that we form a sausage. The

sausage model is again not conformal invariant so that the geometry of the sausage

depends on the scale. As we go to the UV of the field theory on the worldsheet

the sausage becomes longer and longer as log(E), where E is the energy in ques-

tion. Of course such a model contains a mass scale which is basically set by |p−|.

When we go to the IR the sausage model develops a mass gap and there are only
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a few massive excitations. We conclude that we have a background which is such

that if we explore it with strings that have low values of |p−| we see it as being

very large, while if we explore it with strings with higher values of |p−| it appears

smaller. A natural question that arises is whether this background is a solution of

the supergravity equations. For large values of R̃, which means large values of β,

the curvature of the sigma model is small so one would expect it to be a solution

of supergravity. In particular the β = ∞ limit is the SU(2) symmetric round CP 1

model [82]. On the other hand, one could make an argument that this background

cannot be a simple supergravity solution, at least within the context of a simple

light cone reduction. The reason is the complicated way in which the scale of the

model determines the geometry. When we go to light cone the scale that appears

in the light cone theory is related to ∂X+. If this scale appears quadratically or

linearly in the lightcone action it is very simple to find the particular supergravity

fields that give rise to the light cone gauge model, quadratic appearances of ∂X+

are related to g++ and linear appearances of ∂X+ are related to fields with one +

index, such as F+···. In the round CP 1 model the scale is appearing schematically

as

S ∼
∫

log(E/|p−|)∂θ∂θ ∼
∫

log(E/|∂X+|)∂θ∂θ (6.6)

in the action, where the last term is very schematic. This suggests that the back-

ground leading to this CP 1 model contains excited massive string modes. In fact,

if we treat the RR field as a small perturbation (which is correct if we are near

the center of the cylinder and at small |p−|) we can see that a T-duality in the

the x1 direction would transform the momentum mode of F5 into a winding mode

(with winding number two). This is somewhat reminiscent of the description of

the cigar used in [135], though in that case one could view the background as a

gravity solution. Another related, but distinct, way in which a massive theory as

the CP 1 model could arise in string theory was presented in [86]. In that case the
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RG direction was precisely x+ and the metric was x+ dependent.

All that we said here about the sine Gordon model can be generalized to affine

Toda theories (with rank smaller than five) [82]. The mirror symmetry transforma-

tion in this case will produce a deformed CPN model [85].

6.4. Resolving AN Singularities

In this section we will consider deformations of AN singularities in the presence

of RR fields.37 We can start with the maximally supersymmetric plane wave of IIB

theory which has a field strength of the form ϕ1234 = −ϕ5678=constant and all

other components equal to zero. We can form complex coordinates zj = xj + ixj+4.

Then we see that this background corresponds to a background with zero (2,2)

forms and a superpotential of the form W = µ
∑4
i=1(z

i)2. We can consider now

the R4 space spanned by the coordinates 1256 and replace it by an AN singularity.

This background still preserves half the supersymmetries. Let us start discussing

first the case of an A1 singularity. We see that we can replace the A1 singularity

by the Eguchi Hanson space, which is a Ricci flat Kähler (actually hyperKähler)

manifold. When the RR fields are zero this solution preserves the same number of

supersymmetries as the A1 singularity. They preserve 8 supersymmetries that are

linearly realized on the worldsheet, which is actually a (4,4) theory. We also have

8 other supersymmetries that are non-linearly realized and which are associated to

the four real coordinates spanned by z3, z4 which are free on the worldsheet.

Another interesting situation to consider is an A1 singularity involving the first

four coordinates 1234. In this case, in order to find a supersymmetric deformation,

it is convenient to group the coordinates into complex coordinates as z1 = x1 + ix2,

z2 = x3 + ix4, etc. Then the maximally supersymmetric solution can be thought

37 This problem was also considered in [136], where some singular solutions were de-

scribed. Here we construct non-singular solutions.
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of as a solution with W = 0 and only (2,2) forms with Killing potential U =

µ(|z1|2 + |z2|2 − |z3|2 − |z4|2). We can still resolve the A1 singularity by replacing it

by an Eguchi-Hanson space. In this case the solution will be of the type described

in section 2.3. The Killing potential is

U = µ[

√

1 +
a4

ρ4
(|z1|2 + |z2|2) − (|z3|2 + |z4|2)] = µ[r2 − (|z3|2 + |z4|2)] , (6.7)

where ρ2 ≡ |z1|2 + |z2|2 , r4 ≡ ρ4 + a4, and a is the Eguchi-Hanson resolution pa-

rameter. The derivatives of U form a holomorphic Killing vector V ν = −igνν̄∂ν̄U =

−iµ(z1, z2,−z3,−z4) and the (2,2) forms are given by ϕνσ̄ = ∇ν∇σ̄U . One can see

that the solution actually has (4,4) supersymmetry since one can redefine the co-

ordinates z3,4 → z̄3,4 and construct new Killing spinors of the type we constructed

above. Furthermore if we view the theory as an N = 1 theory the superpotential

we get in both cases is the same, so that we have twice the number of supersymme-

tries. Potentials for (4, 4) two dimensional theories were considered in [137,131]. In

conclusion, we have a (4,4) theory on the lightcone worldsheet. Of course we also

have another 8 supersymmetries of the ε− type that are due to the fact that the

coordinates z3, z4 are free.

Above we discussed supersymmetric deformations of the A1 singularity. There

are also non-supersymmetric deformations, which we can describe most easily by

writing the Eguchi Hanson metric in real coordinates

ds2 =
dr2

(1 − a4

r4 )
+
r2

4
(dθ2 + sin2 θdφ2) +

r2

4
(1 − a4

r4
)(dψ + cos θdφ)2 (6.8)

where the angles take values in θ ∈ [0, π) ; φ, ψ ∈ [0, 2π). Then we can choose

the four form to be proportional to the volume element, and the metric component

g++ = −µr2 looks the same as what it was for the original A1 singularity. This

solution is not supersymmetric. It differs from the supersymmetric solution by some

terms which are localized near the singularity. We can view the non-supersymmetric
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solution as the supersymmetric one plus some normalizable modes that live near

the singularity. These are normalizable modes of the four form potential. From

the point of view of the worldvolume theory on the A1 singularity, these are the

modes that gives rise to the self dual tensor in six dimensions. Indeed one can

check that the difference between the 5-form field-strengths of the two solutions is

∆F5 ∼ h3 ∧ l2, where h3 = h+ij is an anti-self dual tensor on the six directions

corresponding to the worldvolume of the resolved A1 singularity (i.e. directions

+ − 5678) and l2 is the unique normalizable anti-self dual two form on the Eguchi

Hanson space, l2 = 1
r2 [ 2rdr ∧ (dψ + cos θdφ) − sin θdθ ∧ dφ].

The solution considered in [136] is equal to the non-supersymmetric solution

described above, up to the addition of a harmonic function to g++ ,which is singular

at r = 0. For any of the solutions described in this chapter, we can add a singular

harmonic function of the transverse coordinates to g++. We can think of them as

describing the metric generated by massless particles with worldlines along x−.

Of course all that we said above can be extended to AN−1 singularities by

replacing the Eguchi-Hanson instanton by the geometry of the resolved ALE space.

These AN−1 singularities arise as Penrose limits of AdS5 ×S5/ZN , it would be nice

to know if in this case we can also resolve the singularity in a smooth fashion. In

the case of (AdS3 × S3)/ZN we know that we can smooth out the singularity in

simple way [66].
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Appendix A

Topology of the solutions
If we have a single ring profile, such as the one in (3.7) then the harmonic

functions (3.2) can be found explicitly and read

f5 − 1 =Qh−1 , f1 − 1 = a2ω2Qh−1

h2 =[(s+ a)2 + w2][(s− a)2 + w2]

Aφ =2a2ωQs2
1

h(h+ s2 + a2 + w2)

(6.9)

where s2 = x2
1 + x2

2 and w2 = x2
3 + x2

4.

In order to understand more clearly the topology of the metric it is convenient

to write the metric in other coordinates such that the metric reads

ds2 =
1√
f1f5

[−(dt− a
√
Q1Q5

r2 + a2 cos2 θ
sin2 θdφ)2 + (dy +

a
√
Q1Q5

r2 + a2 cos2 θ
cos2 θdψ)2]+

+
√
f1f5[(r

2 + a2 cos2 θ)(
dr2

r2 + a2
+ dθ2) + r2 cos2 θdψ2 + (r2 + a2) sin2 θdφ2]

+

√
f1
f5
dzadza

e2φ =
f1
f5
,

C(2) = (1 − 1

f5
)(dt−

√
Q1

Q5
a sin2 θdφ) ∧ (dy −

√
Q1

Q5
a cos2 θdψ)

+Q1 cos2 θdφ ∧ dψ

f1,5 = 1 +
Q1,5

r2 + a2 cos2 θ
(6.10)

This form of the metric arises naturally if we view the solution as a limit of the

general five dimensional black hole solutions in [34]. The explicit coordinate change

from the coordinates w, s in (6.9) to the ones in (6.10) is

s2 = (r2 + a2) sin2 θ , w = r cos θ (6.11)
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and φ and ψ are again the phases of x1 + ix2 and x3 + ix4 respectively. Here there

is a potential singularity when r = 0 and θ = π/2. We can rewrite the metric

(6.10) in a form where its singularity structure is more transparent

ds2 =
√
f1f5(r

2 + a2 cos2 θ)[dθ2 + h cos2 θ(dψ +
a
√
Q1Q5

f1f5h(r2 + a2 cos2 θ)2
dy)2+

+ h̃ sin2 θ(dφ+
a
√
Q1Q5

f1f5h̃(r2 + a2 cos2 θ)2
dt)2]+

+
√
f1f5(r

2 + a2 cos2 θ)[
r2

g
dy2 +

dr2

r2 + a2
] − 1√

f1f5
(1 +

sin2 θa2Q1Q5

f1f5h̃(r2 + a2 cos2 θ)3
)dt2

(6.12)

where the functions h, h̃, g are

g =Q1Q5 + (Q1 +Q5)r
2 + (r2 + a2 cos2 θ)r2

h =
g

f1f5(r2 + a2 cos2 θ)2

h̃ =
Q1Q5 + (Q1 +Q5)(r

2 + a2) + (r2 + a2 cos2 θ)(r2 + a2)

f1f5(r2 + a2 cos2 θ)2

(6.13)

The important properties of these functions are g(r = 0, θ) = Q1Q5, h(r, θ =

π/2) = 1, h̃(r, θ = 0) = 1. These properties, together with (3.8), ensure that the

solution is nonsingular. Note that after the coordinate redefinition ψ̃ = ψ + y/R

and φ̃ = φ+ t/R the metric near r ∼ 0 looks like that of a deformed S3.

In order to study the topology of the solution we notice that the time direction

will just give a factor of R, so we drop it from the discussion. The topology of a

surface of large r is that of S1 × S3. Near r = 0 we see that the S1 circle shrinks

to zero size while the sphere parameterized by ψ̃, θ, φ̃ does not. Topologically this

is basically the same as the sphere we had at infinity since the map (y, ψ, θ, φ) →

(y, ψ̃, θ, φ̃) can be continuously deformed to the identity. This means that the final

topology of the spatial region r ≤ r0 is that of a D2 × S3. So the S3 is non-

contractible.

It is interesting to understand what the deformed three sphere that we have at

r = 0 looks like in the original “flat” coordinates s, w. From (6.11) we see that r = 0
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is the disk spanned by w = 0 and s < a. On top of this we have the y circle. These

together from a three sphere since the y circle shrinks to zero at the boundary of the

disk. Note that in the decoupling limit, where Qi become very large the functions

in (6.13) become constant. Then the three sphere parameterized by the coordinates

ψ̃, θ, φ̃ is a round three sphere. Away from the decoupling limit it is not metrically

a round three sphere.
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Appendix B

Gravity Duals
of Chiral Primaries on the Torus

In the previous sections we discussed the geometries corresponding to chiral

primaries associated with AdS3×S3. Such chiral primaries are universal and they

do not depend on the structure of the internal manifold M in AdS3×S3×M. But

there are also some chiral primaries associated with the internal manifold, and in

this section we will discuss them for the simplest case where M = T 4. We comment

on the K3 case at the end.

To construct the geometries corresponding to such chiral primaries, we will

follow the steps outlined in section 2. Namely we will start from the vibrating

string, perform the dualities to relate it to the D1-D5 system, and then perform

spectral flow to go to the NS sector. The only difference is that now we will allow

the string to vibrate not only in noncompact directions, but also on the torus. Since

to go to the D1-D5 system we have to perform dualities in the torus directions, the

geometry of the vibrating string should be translation invariant in these directions,

and we can achieve this by “smearing” in the torus coordinates (just like we smeared

the profile on the y direction by performing integration over v in the string profiles

(3.2)).

Thus we start with the metric of a vibrating string, smear it over the torus

directions, and perform the following dualities

(
P (5)

F1(5)

)
S
→

(
P (5)

D1(5)

)
T6789
−→

(
P (5)

D5(56789)

)
S
→

(
P (5)

NS5(56789)

)
T5
→

(
F1(5)

NS5(56789)

)

(6.14)
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This way we get an “F1-NS5” of type IIA theory38

ds2 =
1

f̃1

[
−(dt−Aidx

i)2 + (dy +Bidx
i)2

]
+ f5dx

idxi + dzadza

e2Φ =
f5

f̃1
, Bty = −1 +

1

f̃1
, Bti =

Bi

f̃1
,

Byi =
Ai

f̃1
, Bij = Cij −

AiBj −AjBi

f̃1
C(1)
a = f−1

5 Aa,

C
(3)
abc = f−1

5 εabcdAd, C
(3)
iya =

AiAa

f̃1f5
, C

(3)
ita =

BiAa

f̃1f5
,

C
(3)
ija =

(AiBj −AjBi)Aa

f̃1f5
, C

(3)
tya = Aaf

−1
5

(
−2 +

1

f̃1

)
,

C
(5)
tyabc = −εabcdAdf

−1
5

[
2 − 1

f̃1f5

]
, C

(5)
iyabc = −εabcd

AiAd

f̃1f5
,

C
(5)
tiabc = −εabcd

BiAd

f̃1f5
, C

(5)
ijabc = εabcd

(AiBj −AjBi)Ad

f̃1f5

(6.15)

f̃1 ≡ f1 − f−1
5 AaAa

One can now perform additional T duality along one of the torus directions followed

by S duality, to get a D1-D5 system. We will do this step only with the metric.

But in any case, if one wants to study the properties of six dimensional Einstein

metric, then one gets the same results starting either from D1-D5 or F1-NS5. The

functions in (6.15) are given by39

f5 = 1 +
Q

L

∫ ∫ L

0

dzdv

[(x − F)2 + (z −F)2]
2 = 1 +

Q

L

∫ L

0

dv

(x − F)2
,

f1 =1 +
Q

L

∫ L

0

|Ġ|2dv
(x − F)2

, Ai = −Q
L

∫ L

0

Ḟidv

(x − F)2
, Aa = −Q

L

∫ L

0

Ḟadv
(x − F)2

.

(6.16)

Here we introduced an eight dimensional vector G = (Fi,Fa).

38 A simple further T-duality in one of the T 4 directions would give a solution in IIB
39 The simplest way to construct the harmonic functions is following. We can first

decompactify torus directions and look at the vibrating string in eight noncompact direc-

tions. Then we can smear over positions of the string in z1, . . . z4 (which corresponds to

integration over z in f5), and in the end compactify z1, . . . z4 on the torus.
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Note that in (6.16) we have integrated over the position z of the string in the

internal torus. This is done to obtain a solution that is independent of the internal

coordinates. This implies that the dependence on Fa disappears from f5 in (6.16)

, but does not disappear from f1 and Aa.

Let us analyze the metric (6.15)near the singularity. Near the singularity we

get

f5 =
Q

L

π

|Ḟ|x⊥
, f1 =

Q|Ġ|2
L

π

|Ḟ|x⊥
, f1 − 1 − f−1

5 AaAa =
Q

L

π|Ḟ|
x⊥

,

Ai = − Q

L

πḞi

|Ḟ |x⊥
, Aa = −Q

L

πḞa
|Ḟ |x⊥

,

(6.17)

The expressions for f5, Ai and f1 − 1 − f−1
5 AaAa do not depend on the profile in

the internal directions F , and thus the criteria for the absence of the singularity is

the same as in the case with no vibrations on the torus, namely the profile should

not self intersect in the x1, . . . x4 space and Ḟ should never vanish.

In the case of type IIB string theory on AdS3 × S3 × K3 there are also chi-

ral primaries that are associated to extra anti-self dual 3-form gauge fields in six

dimensions that come from anti-self-dual two forms on K3. Using heterotic/IIA

duality it is very simple to get these solutions too. We have to perform the chain

of dualities

(
P (5)

F1(5)

)
het/IIA

→

(
P (5)

NS5(56789)

)
T5
→

(
F1(5)

NS5(56789)

)
(6.18)

so that in the end we get a solution of IIB on K3. In the heterotic theory the

fundamental string can oscillate in the T 4 directions as well as in the 16 extra

bosonic left moving directions on the heterotic worldsheet. Solutions of this type

were discussed in [63][64]. It is in principle straightforward to perform the duality

transformations, but we leave that for the interested reader.

An example of vibrations on the torus
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We consider the simplest example for the vibrations on the torus:

F1 = a cosωv, F2 = a sinωv, F1 = b cosmωv, F2 = b sinmωv, (6.19)

all other components are zero. The frequency ω is related to the radius R of the y

direction by (3.7). As we already mentioned, the expressions for f5 and Ai remain

the same as they were for b = 0, so to find the metric we only have to evaluate

f̃1 = f1 − f−1
5 AaAa. Substituting the profile (6.19)in (6.15), we find:

f1 = 1+
Q

r2 + a2 cos2 θ
ω2(a2+b2m2), A1 = − Q

2π
sinmφIm, A1 =

Q

2π
cosmφIm,

(6.20)

where

Im ≡ bωm

∫ 2π

0

dα cosmα

r2 + a2 sin2 θ + a2 − 2a
√
r2 + a2 sin θ cosα

=
2πbmω

r2 + a2 cos2 θ

(
− a sin θ√

r2 + a2

)m (6.21)

Then we find:

f̃1 = f1−f−1
5 AaAa = 1+

Qω2

r2 + a2 cos2 θ

[
(a2 + b2m2) − Qb2m2

Q+ r2 + a2 cos2 θ

(
a2 sin2 θ

r2 + a2

)m]
,

(6.22)

and the metric for the D1–D5 system becomes:

ds2 =
1√
f̃1f5

[−(dt− a2R

r2 + a2 cos2 θ
sin2 θdφ)2 + (dy +

a2R

r2 + a2 cos2 θ
cos2 θdψ)2]+

+

√
f̃1f5[(r

2 + a2 cos2 θ)(
dr2

r2 + a2
+ dθ2) + r2 cos2 θdψ2 + (r2 + a2) sin2 θdφ2]

+

√
f̃1
f5
dz2

(6.23)

Note that the total fivebrane charge is Q5 = Q and the onebrane charge is given by

Q1 = Qω2(a2 +m2b2) where ω is as in (3.7). In particular we have:

R =

√
Q1Q5

a2 +m2b2
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In order to obtain (3.23) we need to drop the 1 in the harmonic functions in

(6.16). This gives

f̃1 − 1 =
αQ1

r2 + a2 cos2 θ
, f5 − 1 =

Q5

r2 + a2 cos2 θ
, Aφ =

√
β
a
√
Q1Q5 sin2 θ

r2 + a2 cos2 θ

(6.24)

with α and β defined by

β =
a2

a2 +m2b2
, α = 1 − (1 − β)

(
β sin2 θ

r2 + β

)m
(6.25)

Note that for large values of m α is equal to one everywhere except for the small

vicinity of the ring r = 0, θ = π
2 , and in the limit m → ∞ the harmonic functions

(6.24)reduce to the ones for the solution corresponding to a ring of rotating particles

[69,60].

We define χ = y/R and rescale

t→ Rt, r2 → r2(a2 + b2m2) = r2
Q1Q5

R2
, (6.26)

then (6.20)becomes:

ds2√
Q1Q5

= (r2 + β cos2 θ)
1√
α

[
−(dt− β sin2 θdφ

r2 + β cos2 θ
)2 + (dχ+

β cos2 θdψ

r2 + β cos2 θ
)2

]

+

√
αdr2

r2 + β
+
√
αdθ2 +

√
α

r2 + β cos2 θ
(r2 cos2 θdψ2 + (r2 + β) sin2 θdφ2)

(6.27)

Let us look at the limit m → ∞ (which corresponds to α = 1) and compare

the above metric with the metric of the conical defect. To do this it is convenient

to rewrite (6.27) for α = 1 as

ds2√
Q1Q5

= −
(
r2 +

β − β2

2
+ β2

)
dt2 +

(
r2 +

β − β2

2

)
dχ2 +

dr2

r2 + β

+ dθ2 + cos2 θ(dψ + βdχ)2 + sin2 θ(dφ+ βdt)2

+
(β − 1)β

r2 + β cos2 θ
(cos4 θdψ2 − sin4 θdφ2) +

β(1 − β)

2
cos 2θ(−dt2 + dχ2)

(6.28)
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If we now introduce new coordinates:

r′ = r +
β − β2

4r
(1 − cos 2θ), θ′ = θ − β(β − 1)

4r2
sin 2θ

then in the leading two orders at infinity the metric (6.28) becomes:

ds2√
Q1Q5

= −
(
r′

2
+ β2

)
dt2 + r′

2
dχ2 +

dr′2

r′2 + β2

+ dθ′
2

+ cos2 θ′(dψ + βdχ)2 + sin2 θ′(dφ+ βdt)2

+ (β − 1)β cos 2θ′
[

1

r′2
(dθ′

2
+ cos2 θ′dψ2 + sin2 θ′dφ2) + (dt2 − dχ2 +

dr′2

r′4
)

]

(6.29)

The first two lines give a metric of a conical defect, while the last line gives a

perturbation, which corresponds to an AdS3 scalar with angular momentum l = 2.

This mode is a mixture of an overall rescaling of the sphere, AdS, and the three

form field strengths. The fact that the correction to the AdS3 part of the metric in

(6.29) is not just an overall factor is due to the fact that these scalar fluctuations

also imply a change of the metric of the form δgµν ∼ ∇µ∇νδφ where δφ is the scalar

fluctuation. More details and explicit formulas can be found in [43]. Note that the

terms in the last line of (6.29) are of the same order as the terms of the AdS3 part

of the metric in the first line. This implies that the conical defects are not a good

approximation to these metrics.

The plane wave limit of the solution

In this subsection we take the plane wave limit of the solution (6.27). Let us

call
√
Q1Q5 = ε−2, then we define rescaled quantities by

t = x+, φ = ε2x− , r = ε
√
βs ,

π

2
− θ = εu , m̃ =

m

ε2
(6.30)

In the ε→ 0 limit we get the metric

ds2 = βα−1/2[2dx+dx− − (s2 + u2)(dx+)2] + α1/2(ds2 + du2 + u2dψ̃2 + s2dχ2)

+ (α1/2 − βα−1/2)

[
(dx−)2

s2 + u2
− u4dψ̃2 − 2s2u2dχdψ̃ + s4dχ2

s2 + u2

]

(6.31)
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where now α becomes

α = 1 − (1 − β)e−m̃(u2+s2) (6.32)

Note that β remains fixed and 1 − β has the interpretation of momentum p− per

unit length. This metric is non-singular. In the limit m̃ → ∞ it becomes the

metric (3.26) which is singular. Of course for large m̃ the metric looks like (3.26) if

s2 + u2 > 1/m̃ where we can approximate α ∼ 1.

It would be nice to understand why the asymptotic structure of (6.31) (where

we can safely set α = 1) is naively different from that of a usual plane wave. For

example the transverse space is no longer R4 in (3.26). This deserves further study.

The mass gap for the geometry (6.27)

Let us look at the spectrum of excitation on the background (6.27). For sim-

plicity we will look at the minimally coupled scalar field, but our results will be

true for more general excitations. Let us remind the reader that for a conical defect

metric with opening angle 2πγ the mass gap is E = 2γ. Since we argued above that

these conical metrics are not a good approximation to the metrics we consider we

will perform an estimate of the mass gap in the metric (6.27).

For simplicity we will look at the modes of the scalar field which are constant

in the φ, ψ, χ directions. Then looking for the solution in the form Φ(r, θ, t) =

e−iEtΦ(r, θ), we find the Klein–Gordon equation:

1

r
∂r(r(r

2+β)∂rΦ)+
1

sin θ cos θ
∂θ(sin θ cos θ∂θΦ)+

E2Φ

(r2 + β cos2 θ)

[
α− β2 sin2 θ

r2 + β

]
= 0

(6.33)

It is convenient to introduce new coordinates x = r/
√
β, y = cos θ. Then we find:

1

x
∂x(x(x

2 + 1)∂xΦ) +
1

y
∂y(y(1 − y2)∂yΦ)

+
E2Φ

β(x2 + y2)

[(
1 − (1 − β)

(
1 − y2

1 + x2

)m)
− β

1 − y2

1 + x2

]
= 0

(6.34)
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Note that for m = 1 the variables in this equation separate, and in particular we

get spherically symmetric solutions which are normalizable near x = 0:

Φ = (x2 + 1)−kF (−k, 1 − k; 1;−x2)

where E = 2k
√
β. This function in normalizable near infinity if and only if k is a

positive integer. Thus for m = 1 we have a mass gap E = 2
√
β.

Let us now look at the more interesting case when m > 1. In this case the

variables in the equation (6.34) do not separate, and we can’t find the exact spec-

trum. But we can get an upper bound on the mass gap using variational methods.

First we rewrite (6.34) as a Schroedinger equation:

(H − E2V )Φ = 0.

where V is a positive potential (E2V comes from the last term in (6.33)). This

eigenvalue problem is the same as the one that arises when we have masses and

springs, except that now the matrices are replaced by operators in a Hilbert space.

Suppose this equation has a spectrum of eigenvalues Ek with corresponding eigen-

functions Φk obeying (H − E2
kV )Φk = 0. These will generically form a complete

basis system in the space of normalizable functions. Then for any such function we

get

Φ =
∑

amΦm

We also note that

〈Φk|(H − E2V )|Φl〉 = (E2
k − E2)〈Φk|V |Φl〉 = (E2

l − E2)〈Φk|V |Φl〉

From here we conclude that

〈Φk|V |Φl〉 = 0, if k 6= l
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(as usual, if there is a degeneracy Ek = El, the above condition gives a choice of a

basis). For a generic function Φ we get:

〈Φ|(H − E2V )|Φ〉 =
∑

(E2
k − E2)|ak|2〈Φk|V |Φk〉

Since V is positive, 〈Φm|V |Φm〉 ≥ 0. To show that there is an eigenvalue E0 < E

it is sufficient to find a normalizable state |Φ〉 such as

〈Φ|(H − E2V )|Φ〉 < 0

Let us take a trial function

Φ =
1

1 + x2
.

Then taking an average of the left hand side of (6.34), we find

〈Φ|(H − E2V )|Φ〉 = −1

2

∫ ∞

0

dxΦ∂x(x(x
2 + 1)∂xΦ)

−
∫ ∞

0

xdxΦ2E
2

β

∫ 1

0

ydy

(x2 + y2)

[
1 − (1 − β)

(
1 − y2

1 + x2

)m
− β

1 − y2

x2 + 1

]

=

∫ ∞

0

udu

(1 + u)3
− E2

β
{I0 − (1 − β)Im − βI1}

(6.35)

Here we introduced the following integral

Ik =

∫ ∞

0

xdx

(1 + x2)2

∫ 1

0

ydy

(x2 + y2)

(
1 − y2

1 + x2

)k
=

1

4

∫ ∞

0

dx

(x+ 1)k+2

∫ 1

0

(1 − y)kdy

x+ y

=
1

4

∫ ∞

0

dx

(x+ 1)k+2

1

x
F (1, 1; k + 2;− 1

x
)B(1, k + 1)

=
1

4(k + 1)
(6.36)

This gives

〈Φ|(H − E2V )|Φ〉 =
1

2
− E2

4β

{
1 − β

2
− 1 − β

m+ 1

}
(6.37)

This expression becomes negative for E > E1, where

E1 =
√

2β

{
1 − β

2
− 1 − β

m+ 1

}−1/2

(6.38)

so the mass gap is less than E1. In particular, for all m ≥ 1 we have E1 ≤ 2
√
β, so

the mass gap is always less than this amount.
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Appendix C

No Conical Defects with Arbitrary Opening Angles
One can easily write singular solutions with the same angular momentum as

the solutions we have been considering. The simplest is a conical metrics of the

form

ds2

R2
AdS

= −(r2+γ2)dt2+r2dχ2+
dr2

r2 + γ2
+dθ2+cos2 θ(dψ+γdχ)2+sin2 θ(dφ+γdt)2

(6.39)

These metrics have a conical singularity at r = (π/2 − θ) = 0. The singularity has

a form which is rather similar to that of an AN singularity but with an opening

angle which is 2πγ instead of 2π/N . In addition, if γ−1 is not an integer there are

singularities at r = 0 and any θ.

When γ−1 is an integer we can think of the metric (6.39) as arising from a

“supertube” configuration with N KK monopoles instead of just one KK monopole.

Furthermore, it is possible to continuously deform the non-singular solutions that

we had in this paper and get to these conical metrics. All we need to do is to take a

profile F (v) which wraps N times around the origin. If it does not self intersect we

will have a smooth metric and as we take the limit that F is moving on the same

circle N times we get the conical defect metric (6.39) with γ−1 = N .

On the other hand the metrics (6.39) with γ−1 6= N should not be allowed from

the KK monopole point of view since they would mean that we have fractional KK

monopole charge. In fact this is the reason that the singularity for non-integer γ−1

is more extended than for γ−1 integer. In the former case there is a fractional

“Dirac string” coming out of the fractional KK monopole which is responsible for

this singularity. Despite this strange features one might ask the following question.

Can we find a smooth metric that is arbitrarily close to the metric (6.39) with non

integer γ−1 ? When we say that a metric is very close to (6.39) we mean that the
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metric is equal to (6.39) up to very small corrections everywhere except very near

the singularity. Namely, if we pick a γ−1, say 3/2, then we pick an ε, say ε = 10−6,

then we want to find a metric which only differs from (6.39) by terms of order ε

once we are at r > ε. We will now show that this is not possible40.

Without loss of generality we can assume that the angular momentum is in the

direction J12 and all other components vanish. In general the angular momentum

of any configuration is characterized by two invariants J 2
L and J2

R but for conical

metrics of the asymptotic form (6.39) we have J2
L = J2

R so that using a rotation

we can always put the angular momentum in the 12 plane. So suppose we have

a metric that is very close to the metric of the conical defect for distances larger

than some tiny distance ε. Then the harmonic functions will be very similar to the

harmonic functions that give (6.39). The harmonic functions for (6.39) are given

by (6.9) except that ω now obeys ωQ = γR. Since the harmonic functions are close

to each other the source for the hypothetical non-singular metric should be close

to the source of the harmonic functions in (6.9). In particular, f5 implies that the

source is distributed near a ring in the 12 plane. So in the expressions we will find

below we will approximate F 2
1 + F 2

2 − (F 2
3 + F 2

4 ) ∼ F 2
1 + F 2

2 , but we do not make

any assumptions about Ḟ 2
3,4.

It is now instructive to consider the large r behavior of the metric. Using (6.15)

we can read off all the harmonic functions of the form (6.16). The leading behavior

of such functions is

f5 =
Q5

x2
+

2Q5〈Fi〉xi
x4

+ 〈4FiFj − F 2δij〉
xixj
x6

f1 =
Q5〈|Ġ|2〉

x2
+

2Q5〈Fi|Ġ|2〉xi
x4

+ 〈(4FiFj − F 2δij)|Ġ|2〉
xixj
x6

,

Ai = −2Q5〈ḞiFj〉
xj
x4
, Bi = −Q5εijkl〈ḞkFl〉

xj
x4
, Aa = −2Q5〈ḞaFj〉

xj
x4
,

(6.40)

40 So, for example, it is futile to try to find the dual description of the conical de-

fect metrics with arbitrary γ [62], since these metrics are not a good approximations to

anything. It is OK to consider the ones with integer γ−1.
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First let us note that by shifting the origin we can always set 〈Fi〉 = 0. Then the

ten dimensional dilaton will be of the form

e2Φ =
f1
f5

=
Q1

Q5
(1 + 2

xi

x2

〈Fi|Ġ|2〉
〈|Ġ|2〉

+ · · ·) (6.41)

Since this decays very slowly for large x we set its coefficient to zero. Similarly, by

considering the fields that are excited by the torus fluctuations we conclude that

we also need to set to zero 〈FaFi〉 = 0.

We have seen above that our metrics will generically have a particular operator

of weight (1, 1) with a non-vanishing expectation value. This will give rise to a

deformation of the metric that can be sensed far away. If we are interested in having

a metric which is very close to the metric of a conical defect then we want to make

the coefficient of this operator as small as possible. The operator we discussed is an

l = 2 spherical harmonic on S3 so that its coefficients have the form of a quadrupole

moment Qij . In particular we can look at the following combination:

√
f̃1f5 −

1√
f̃1f5

[AiAi −BiBi] =

√
Q1Q5

x2
+ Qij

xixj
x6

+O(x−5)

then we notice that the quadrupole moment Qij vanishes for a conical defect. For

a general metric Qij be computed by using (6.40) and performing a computation

very similar to the one we did near (6.28), (6.29). We find

Q11 + Q22 ∼
〈

[(F 2
1 + F 2

2 ) − (F 2
3 + F 2

4 )](1 +
|Ġ|2
〈|Ġ|2〉

)

〉
− 8

〈Ḟ1F2〉2
〈|Ġ|2〉

(6.42)

where expectation values mean averages over v and we used that the angular mo-

mentum is in the 12 plane41. We want (6.42) to vanish in order to have a metric

close to (6.39). As we argued above we can neglect (F 2
3 +F 2

4 ) relative to (F 2
1 +F 2

2 )

in (6.42). It is possible to show that the result we get after neglecting such a term

41 Note that 2〈F1Ḟ2〉 = 〈F1Ḟ2 − F2Ḟ1〉 ∼ J12.
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is always positive and it only vanishes when the profile is precisely a ring and the

motion has constant velocity. In order to show that let us multiply all terms in

(6.42) by 〈|Ġ|2〉. Defining F1 + iF2 = reiφ we then find

(
〈r2〉〈r2φ̇2〉 − 〈r2φ̇〉2

)
+

(
〈r4φ̇2〉 − 〈r2φ̇〉2

)
+ other terms (6.43)

where all other terms are non negative. Using the formula 〈ab〉2 ≤ 〈a2〉〈b2〉 (and

the equal sign holds only if a/b =constant) we see that all terms are non negative so

that if (6.43) vanishes then all terms should be zero. Setting the first term in (6.43)

to zero we get that φ̇ = constant. Setting the second to zero we get r =constant.

Setting to zero all other terms in (6.43) we get that |Ḟ |2 = Ḟ 2
3 + Ḟ 2

4 = 0.

What we have shown so far is that if the metric is close to the conical defect

then the profile closely tracks a profile with constant r and φ̇. Since φ has to be

single valued this implies that only integer values of γ−1 are allowed.

We also see that generic chiral primaries with JNSL,R < k/2 do not produce

conical metrics (6.39) but the metrics that we have discussed in our paper. Only

very special chiral primaries produce metrics close to (6.39) with integer γ−1.

107



Appendix D

Evaluation and Expansion

of the Integrals I
(n)
1 (k), I

(n)
2 (k)

The integrals we defined in (3.39)

I
(n)
1 (k) ≡ 1

2π

∫ 2π

0

dα

(1 + k cosα)n/2
; I

(n)
2 (k) =

1

2π

∫ 2π

0

cosαdα

(1 + k cosα)n/2
(6.44)

are not hard to evaluate. For even n the integrals are

I
(2)
1 (k) =

1√
1 − k2

, I
(4)
1 (k) =

1

(1 − k2)3/2
, I

(6)
1 (k) =

(2 + k2)

2(1 − k2)5/2

I
(2)
2 (k) = − (1 −

√
1 − k2)

k
√

1 − k2
, I

(4)
2 (k) = − k

(1 − k2)3/2
, I

(6)
2 (k) = − 3k

2(1 − k2)5/2

(6.45)

For odd n , the integrals involve elliptic functions

2πI
(1)
1 (k) = 4

1√
1 + k

K(

√
2k

1 + k
)

2πI
(3)
1 (k) = 4

√
1 + k

1 − k2
E(

√
2k

1 + k
)

2πI
(5)
1 (k) =

4
√

1 + k

3(1 − k2)2
[−(1 − k)K(

√
2k

1 + k
) + 4E(

√
2k

1 + k
)]

2πI
(1)
2 (k) =

4

k
√

1 + k
[(1 + k)E(

√
2k

1 + k
) −K(

√
2k

1 + k
)]

2πI
(3)
2 (k) = − 4

√
1 + k

k(1 − k2)
[E(

√
2k

1 + k
) − (1 − k)K(

√
2k

1 + k
)]

2πI
(5)
2 (k) =

4
√

1 + k

3k(1 − k2)2
[−(1 + 3k2)E(

√
2k

1 + k
) + (1 − k)K(

√
2k

1 + k
)]

(6.46)

They also obey the relations:

I
(n)
1 (−k) = I

(n)
1 (k), I

(n)
2 (k) = −I(n)

2 (−k), I
(n)
2 (k) = − 2

n− 2
∂kI

(n−2)
1 (k). (6.47)

We were interested in evaluating the integrals at k = − 2as
σ2 so that in the near ring

limit k → −1 where the functions (6.45) and (6.46) are singular. Let us find the
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leading contribution near k = −1. For n > 1 we find

I
(n)
1 (k) =

1

2π

∫ 2π

0

dα

(1 + k − 2k sin2(α/2))n/2
≈

√
2

2π

∫ ∞

−∞

dβ

(1 + k + β2)n/2

=

√
2

2π
(1 + k)−n/2+1/2B(

1

2
,
n− 1

2
),

I
(n)
2 (k) ≈

√
2

2π
(1 + k)−n/2+1/2B(

1

2
,
n− 1

2
).

(6.48)

For n = 1 one can extract the leading asymptotic from the elliptic function

I
(1)
1 = I

(1)
2 =

√
2

2π
ln

32

1 + k
(6.49)

We also need the expression for

I
(n)
3 ≡ (I

(n)
1 )2 − (I

(n)
2 )2 (6.50)

and the asymptotics (6.48), (6.49) is not enough to evaluate it. Nevertheless, we

can rewrite the leading asymptotics of this expression as

I
(n)
3 ≈ 2I

(n)
1 (I

(n)
1 − I

(n)
2 ) (6.51)

and the problem is reduced to evaluation of the leading behavior of

I
(n)
4 ≡ I

(n)
1 − I

(n)
2 ≈ 1

2π

∫ 2π

0

2 sin2(α/2)dα

(1 + k − 2k sin2(α/2))n/2
(6.52)

This integral can be written as

I
(n)
4 ≈ 2

n− 2
(k + 1)2−n/2

∂

∂k

[
(k + 1)n/2−1I

(n−2)
1

]
(6.53)

for n > 1, and the integrals for I
(1)
4 and I

(2)
4 can be evaluated explicitly. This gives

the following asymptotics:

I
(1)
4 =

2
√

2

π
, I

(2)
4 = 1, I

(3)
4 =

1

π
√

2
ln

32

1 + k
, I

(n)
4 =

B( 1
2 ,

n−3
2 )√

2π

(1 + k)3−n

n− 2
(n > 3)

(6.54)
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Using above expressions we can find the leading asymptotics of I
(n)
3

I
(1)
3 =

8

π2
(ln

8a

ρ
), I

(2)
3 =

2a

ρ
,

I
(3)
3 =

8a2

π2ρ2
(ln

8a

ρ
), I

(4)
3 = (

a

ρ
)4,

I
(5)
3 =

64

9π2

a6

ρ6
, I

(6)
3 =

3

4
(
a

ρ
)8

(6.55)

where we have used

1 + k ≈ ρ2

2a2
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Appendix E

The Near Ring Solutions
In this appendix we expand (3.40) around the ring to examine its behavior.

Expanding (3.40) for small ρ , where ρ is the distance from the ring, s =

a+ ρ sinΘ, w = ρ cos Θ, using the expansions of I1, I2 around −1 which appear in

Appendix D , we find the following near-ring metrics for the different dimensions42

* d = 3 43:

ds2 ≈ 1

a2ω2
(
aπ

Q
)3/2(ln(8a/ρ))−1/2[

2aωQ

π
dtdφ+

Q

πa
dy2+

+
a2ω2Q

π
(
4

π
+

1 + a2ω2

aω2Q
)dφ2]+

+

√
Q

πa
ln

8a

ρ
[dρ2 + ρ2dΘ2 + dz2

5 ]

(6.56)

* d = 4:

ds2 ≈ 1

a2ω2
(
2a2

Q
)

3
2 (
ρ

a
)

1
2 [ωQdtdφ+

Q

2a2
dy2 +

ω2Q2

2
(1 +

1 + a2ω2

ω2Q
)dφ2]

+

√
Q

2a2
(
a

ρ
)

1
2 [dρ2 + ρ2dΩ2

2 + dz2
4 ]

(6.57)

42 More rigorously, all of the limits above should be thought of as scaling limits where

a,Q, ω remain constant and the coordinates scale. For d = 4 this scaling is ρ, zi ∼ ε2 ,

y, φ, t ∼ ε , ε→ 0. then ds2 ∼ ε3. For d ≥ 5 the scaling is ρ, zi ∼ ε2 , φ ∼ 1 , y ∼ ε−(d−5) ,

t ∼ ε−2(d−5) and then the metric scales as ds2 ∼ ε7−d. In these limits, gtt always scales to

zero as gtt ∼ ( ρ
a
)3(d−3)/2 ∼ ε3(d−3). however, as gtφ remains finite in the limit, the metrics

we obtain are nondegenerate.
43 This form of the metric is valid only for ρ� a where the log is strictly positive. For

larger values of ρ, one needs to retain more terms in the expansion of the elliptic functions.

A U-dual system of this d = 3 solution was recently considered in [73], where it was lifted

to an M-theory solution with zero gauge fields. That solution is singular, as can be verified

by calculating its curvature invariants.
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* d = 5:

ds2 ≈ 1

a2ω2
(
πa3

Q
)3/2(

ρ

a
)[

2ωQ

aπ
dφdt+

Q

a3π
dy2 + (

ωQ

πa
)2 ln

8a

ρ
dφ2]+

+

√
Q

a3π
(
a

ρ
)[dρ2 + ρ2dΩ2

3 + dz2
3 ]

(6.58)

* d = 6:

ds2 ≈ 1

a2ω2
(
4a4

Q
)3/2(

ρ

a
)3/2[

ωQ

2a2
dtdφ+

Q

4a4
dy2 + (

ωQ

4a2
)2(

a

ρ
)dφ2]+

+

√
Q

4a4
(
a

ρ
)3/2[dρ2 + ρ2dΩ2

4 + dz2
2 ]

(6.59)

* d = 7:

ds2 ≈ 1

a2ω2
(
9πa5

2Q
)3/2(

ρ

a
)2[

4ωQ

9πa3
dtdφ+

2Q

3πa5
dy2 +

2ω2Q2

3π2a6
(
a

ρ
)2dφ2]+

+

√
2Q

3πa5

a2

ρ2
[dρ2 + ρ2dΩ2

5 + dz2
1 ]

(6.60)

* d = 8:

ds2 ≈ 1

a2ω2
[
16a6

3Q
]3/2(

ρ

a
)5/2[

3ωQ

8a4
dtdφ+

3Q

16a6
dy2 +

3ω2Q2

256a8
(
a

ρ
)3dφ2]+

+

√
3Q

16a6
(
a

ρ
)5/2[dρ2 + ρ2dΩ2

6]

(6.61)

Looking at these metrics, one can see that only for d = 4, we obtain a gφφ

which scales with ρ like the other metric components parallel to the brane. For the

other dimensions d > 4, we find that gφφ goes to zero much slower than the other

parallel components, as we approach the brane. However, one must bare in mind

that what we should obtain are supergravity solutions describing a brane with fluxes

on a ring. The effects of the curvature evidently affect the metric near the brane

for all d > 4. This is related to I.R. phenomena on the worldvolume theory on the

brane. Whether a solution is singular or not might depend on the U-duality frame

in which it is presented. We did not find any frame where the solutions we have

above for d 6= 4 (d = 4 is U-dual to the D1-D5 system) are non-singular.
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Appendix F

Conventions and notations,
and the Supersymmetry Equations

Flat transverse space

We use conventions where x± ≡ 1√
2
(x0 ± x9) and ε+−12345678 = +1. F5 =

dx+ ∧ ϕ4. Since F5 is self-dual and closed ϕ4 is anti-self-dual in the transverse

8-dimensions and closed. For the metric (5.1) with flat transverse space we choose

the vielbiens as θî = dxi, θ+̂ = dx+, θ−̂ = dx− − 1
2Hdx

+. The corresponding

connections all vanish except ω−̂i = −ωi−̂ = − 1
2∂iHdx

+. The covariant derivatives

acting on spinors are ∇− = ∂−, ∇i = ∂i ,∇+ = ∂+ − 1
4∂iHΓ−Γi. And the terms

involving F5 in the IIB covariant derivative are F/Γ− = Γ+ϕ/Γ− = 0, F/Γj = −Γ−ϕ/Γj ,

F/Γ+ = −Γ−ϕ/Γ+. The chirality matrix is Γ11 = −Γ01...89 = 1
2 [Γ+,Γ−]Γ1...8. The

IIB spinor is a 16-component complex chiral spinor satisfying Γ11ε = +ε. Since ϕ4

is anti-self-dual in 8-dimensions, acting on a chiral spinor F/Γ+ε = 2ϕ/ε. Using all

the above, the susy equations Dµε ≡ (∇µ − i
2F/Γµ)ε = 0 take the form 44

∂−ε = 0 ; ∂+ε− (
1

4
Γ−∂/H − iϕ/)ε = 0 ; ∂jε−

i

2
Γ−ϕ/Γjε = 0 (6.62)

We would find it easier to work in complex coordinates, so we split the transverse

space (x1, ..., x8) to 4 complex coordinates zj = xj+ ixj+4. In complex coordinates,

the susy equations (6.62) are

∂−ε = 0

∂+ε− (
1

4
Γ−Γ̄ · ∂̄H +

1

4
Γ−Γ · ∂H − iϕ/)ε = 0

∂jε−
i

2
Γ−ϕ/Γjε = 0 ; ∂̄jε−

i

2
Γ−ϕ/Γjε = 0

(6.63)

44 To relate these conventions to the ones in Blau, Figueroa et al [94] take their con-

ventions, replace their x± with x0,9 according to x± = 1√
2
[x9 ± x0]. take x0 → −x0 then

flip one of the coordinates, say x1 → −x1, and then replace back with chiral coordinates

x±here = 1√
2
[x0 ± x9].
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Let us classify the a.s.d 4-forms according to their holomorphicity properties. De-

noting by (p,q) the number of holomorphic and anti-holomorphic indices in ϕabcd

(p + q = 4), there are 10 (1,3)-forms, 10 (3,1)-forms, and 15 (2,2)-forms, giving a

total of 35 a.s.d. 4-forms. The (2,2) forms are of the form ϕīijk̄ and ϕīijj̄ (no sum),

and a.s.d implies that ϕ11̄22̄ = −ϕ33̄44̄ etc. and ϕ11̄23̄ = ϕ44̄23̄ etc. The (3,1) and

(1,3) forms are of the form ϕījkl, ϕīijk, ϕijkl, ϕiijk, and a.s.d. relates ϕ1123 = −ϕ4423

, ϕ1̄123 = −ϕ4̄423 etc. The closed condition relates the (2,2) to the (1,3), (3,1) com-

ponents. The reality condition on ϕ implies that ϕijkl = ϕ∗
ījkl

, ϕij̄kl̄ = ϕ∗
jīlk̄

.

Going back to the susy equations (6.63), we separate ε into two components of

different transverse chiralities ε = − 1
2Γ+Γ−ε − 1

2Γ−Γ+ε ≡ ε+ + ε−. Since ε has a

positive Γ11 chirality, ε+ has positive SO(1, 1) and SO(8) chiralities, and ε− has both

negative. The susy equations for ε+ are ∂−ε+ = ∂jε+ = ∂jε+ = (∂+ + iϕ/)ε+ = 0.

As ϕ has negative SO(8) chirality, automatically, ϕ/ε+ = 0 and we conclude that ε+

must be a constant spinor. The susy equations for ε− are

∂−ε− = 0 ; (i∂+ − ϕ/)ε− =
i

4
Γ−∂/Hε+

∂jε− =
i

2
Γ−ϕ/Γjε+ ; ∂j̄ε− =

i

2
Γ−ϕ/Γj̄ε+

(6.64)

In order to solve the susy equations explicitly, it is convenient to introduce a Fock

space notation. The vacuum |0〉 is defined to be the spinor annihilated by Γ+̂

and by all Γi (where i is a holomorphic index) . We also define the operators

bi = Γi = gij̄Γj̄ , b
+ī = Γī. Note that in this normalization {bi, b+j̄} = 2gij̄ , where

gij̄ is the inverse of the Kahler metric. This is not the usual normalization of

annihilation and creation operators. We denote ϕmn ≡ 1
3!ϕmijkε

ijkngnn̄, ϕmn ≡

(ϕmn)
∗ (so that e.g. ϕ24 = ϕ2123 , ϕ21 = −ϕ2234). Anti-self-duality implies that

ϕmn = ϕnm , ϕmn = ϕnm. We also use the notation 2ϕmn̄ ≡ gss̄ϕss̄mn̄, and

denote by b̃k|0〉 ≡ bk 1
4 4! εīj̄k̄l̄(b

+īb+j̄b+k̄b+l̄)|0〉 a ’hole’ creation operator acting on

the vacuum. The slashed four-form acts on the Fock space states as

ϕ/b+m̄|0〉 = 4[ϕm̄nb̃
n − ϕm̄n̄b

+n̄]|0〉 ; ϕ/b̃m|0〉 = 4[ϕmn̄b
+n̄ − ϕmnb̃

n]|0〉 (6.65)
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where we have raised the indices of ϕab using the metric. We parameterize ε∓ in

this Fock space

ε− = Γ−[βk̄b
+k̄ + δk b̃

k]|0〉 ; ε+ = [α+
1

2
γp̄q̄b

+p̄b+q̄ + ζ
εīj̄k̄l̄(b

+īb+j̄b+k̄b+l̄)

4 4!
]|0〉

(6.66)

α, γpq, ζ are complex constants, and βm̄, δk are complex functions of zi, zi. By an

appropriate SO(8) rotation we will see that we can set γp̄q̄ to zero in our solutions.

So from now on we set it to zero. Using (6.65) one can check that

ϕ/ε− = −4Γ−[βm̄ϕ
m̄
n̄ − δmϕ

m
n̄]b

+n̄|0〉 + 4Γ−[βm̄ϕ
m̄
n − δmϕ

m
n ]̃b

n|0〉

∇/Hε+ = α∂j̄Hb
+j̄ |0〉 + ζ∂jHb̃

j |0〉
(6.67)

The susy equations become the following equations for α, βm̄, δm, ζ

4(βm̄ϕ
m̄
n − δmϕ

m
n) = − i

4
ζ∂nH + i∂+δn

4(−βm̄ϕm̄n̄ + δmϕ
m
n̄) = − i

4
α∂n̄H + i∂+βn̄

∂jβk̄ = −2iαϕjk̄ ; ∂j̄βk̄ = 2iζϕjk

∂j̄δk = −2iζϕkj̄ ; ∂jδk = 2iαϕjk

(6.68)

Curved transverse space

Starting from the metric

ds2 = −2dx+dx− +H(xρ)(dx+)2 + gµν(x
ρ)dxµdxν (6.69)

the nonzero connections for this metric are Γ−
++ = − 1

2∂+H ; Γ−
+µ = − 1

2∂µH ; Γµ++ =

− 1
2g
µν∂νH ; Γµνρ = γµνρ , where γµνρ are the connections on the 8-dimensional mani-

fold. The only components of the Ricci tensor which do not vanish are R++ and Rµν

which are given by R++ = − 1
2∇2H ; Rµν = rµν , where rµν is the ricci tensor for

the 8-dimensional metric. The Ricci scalar is the same as that of the 8-dimensional

metric R = r. The Einstein equations are then rµν = 0 and ∇2H = −32|ϕ|2

, where |ϕ|2 ≡ 1
4!ϕµνρδϕ

µνρδ. We also introduce the corresponding flat indices
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a = (v, u, i, j, ...) and the coframe θv = dx+; θu = dx− − 1
2Hdx

+; θiµdx
µ,

such that ds2 = −2θvθu +
∑
i θ
iθi. The connections are determined by the no

torsion condition and their nonzero components are Ωu
i = − 1

2θ
µ
i ∂µHdx

+, Ωi j =

ωiµ j(x
ρ)dxµ, where ωi j(x

ρ) are the connections on the 8-dimensional manifold, sat-

isfying dθi + ωij ∧ θj = 0. The covariant derivatives ∇M = ∂M + 1
2ΩabMΓab are given

by

∇− = ∂− ; ∇µ = ∂µ +
1

2
ωijµ Γij ; ∇+ = ∂+ − 1

4
θiµ∂µHΓui (6.70)

And the susy equations 0 = DM ε = (∇M + i
2F/ΓM )ε are therefore

∂−ε = 0 ; ∂+ε−
1

4
Γu∂/Hε+ iϕ/ε = 0

[∂µ +
1

2
ωijµ Γij ]ε−

i

2
Γuϕ/Γµε = 0

(6.71)

The above equations are exactly the ones we had before for the flat case (6.62),

the only difference being trading the regular derivative in the 8-dim space with a

covariant derivative. also we recall that the Einstein equations imply gµν is Ricci

flat. Let us now try to solve these equations, similarly to what we did in the flat case.

Again we change to complex coordinates, and separate ε = ε− + ε+. As before, we

get that ε+ must be a covariantly constant spinor, i.e. 45 ∂−ε+ = ∂+ε+ = ∇µε+ =

∇µε+ = 0. The equations for ε− are

∂−ε− = 0

∇µε− =
i

2
Γuϕ/Γµε+ ; ∇µε− =

i

2
Γuϕ/Γµε+

(i∂+ − ϕ/)ε− =
i

4
Γu∂/Hε+

(6.72)

As in the flat case, we again use the notation ϕµν , and introduce the Fock space |0〉

which is annihilated by Γv and by all Γµ (µ a holomorphic curved index), and is a

covariantly constant spinor46, and the operators bµ̄+ ≡ Γµ = θµ̄
ī
Γi ; bµ ≡ Γµ =

45 From here on ∇µ denotes a covariant derivative in the 8-dimensional transverse space.
46 As the manifold is a CY, there is a covariantly constant spinor ψ0 = |0〉. The spinor
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θµi Γi ; {bµ, bν̄+} = 2gµν̄ . From now on we can define the “hole” operator b̃µ as

we did in the flat space case. Similarly we can define βµ̄, δµ, α and ζ as in (6.66).

We can similarly derive equations (6.65)(6.67) and finally (6.68), where all that we

would need to do is to replace the ordinary derivative with covariant derivatives for

the transverse indices.

|0〉 is actually constant. In fact the Killing spinor equation is ∂µ|0〉+ 1
2
ωij̄

µ Γij̄ |0〉 = 0. The

term Γij̄ |0〉 is proportional to gij̄ and therefore to the trace of the spin-connection, which

on a CY can be chosen to be zero [112].

117



Appendix G

Deriving the
Flat Space Supersymmetric Solutions

We have seen that ε+ should be a constant. As the transverse space is R8 we

can always do an SO(8) transformation which sets γp̄q̄ = 0 in (6.66), but we will be

unable to distinguish solutions with (2,2) susy from solution with more susy. We

also set all x+ dependence to zero, because, as discussed before, this part could

always be added as a solution to the homogenous equations. Integrability of the

∂jδk and ∂j̄βk̄ in (6.68) then assures (as α, ζ are not both zero) that the (1,3)

and (3,1)-forms make a closed form by themselves. Using the fact that the (1,3)

and (3,1) parts of ϕ are separately anti-self-dual and closed, we can show that ϕij

satisfies ϕij = ϕji from anti-self-duality, ∂[iϕj]m = gk̄k∂k̄ϕkj = 0 from closedness,

for all i, j,m. These imply that ϕij = ∂i∂jW where W is a harmonic function .

Similarly, as ϕmn̄ must be hermitian and closed by themselves, they must be of the

form ϕmn̄ = ∂m∂n̄U where U is a real harmonic function. The equations (6.68)(with

no x+ dependence) become

(βm∂m∂nW − δm̄∂m̄∂nU) = − i

16
ζ∂nH

−(βm∂n∂n̄U − δm̄∂m̄∂n̄W ) = − i

16
α∂n̄H

∂jβk̄ = −2iα∂j∂k̄U ; ∂j̄βk̄ = 2iζ∂j̄∂k̄W

∂j̄δk = −2iζ∂k∂j̄U ; ∂jδk = 2iα∂j∂kW

(6.73)

Integrability of the equations implies that

(|ζ|2 − |α|2)∂j̄∂m∂kW = (|ζ|2 − |α|2)∂m∂j̄∂kU = (|ζ|2 − |α|2)∂m̄∂j̄∂kU = 0 , (6.74)

for all m, m̄, j̄, k. This can be satisfied in one of the following two cases

(i) |α| 6= |ζ|, W is holomorphic and harmonic, and ϕjk̄ = ∂j∂k̄U is a 4x4

hermitian traceless matrix of constants. In that case we can solve the ∂j and ∂j
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equations to get 47

βk̄ = −2i[αϕjk̄z
j − ζ∂kW ] ; δk = −2i[ζϕkj̄z

j − α∂kW ] (6.75)

Then plugging these back into the first two equations in (6.73), and taking into

account the fact that H is real, we get the consistency condition ∂n[ϕjk̄z
j∂kW ] = 0,

and the expression for H = −32(|∂kW |2 + |ϕjk̄zj |2)48. This is the solution with

(2,2) supersymmetries, or more, that we have in (5.9). Plugging (6.75) in (6.66) we

get the explicit expression for the four Killing spinors, which are parametrized by

the two complex numbers α, ζ.

(ii) |α| = |ζ|. Now we have that for all i, j, k̄ ∂i∂j∂k̄[U + α
ζW ] = 0. Without

loss of generality , we choose the constant phase α
ζ = −1.49 Then one can define

U a real harmonic function such that ∂j∂kU = ∂j∂kW and ∂j∂k̄U = ∂j∂k̄U , so the

four-form is given by the second derivatives of U

ϕij = ∂i∂jU ; ϕīj = ∂ī∂jU ; ϕij = ∂ī∂j̄U . (6.76)

Solving the ∂j and ∂j equations gives

βk̄ = 2iζ∂k̄U ; δk = −2iζ∂kU (6.77)

Then plugging these into the first two equations gives two identical equations for H

, which are solved by H = −32|∂kU |2. These are the (1,1) supersymmetric solutions

we have in (5.10). Plugging (6.77) into (6.66) we get the explicit expression for the

two Killing spinors that are parametrized by one complex number, α = −ζ.

47 There is no need to add integration constants to βk̄, δk, as such terms can be set to

zero by a redefinition of dW by a constant shift, and a redefinition of zj by a constant

shift.
48 Here too there is no need to add an integration constant to H, as such a constant

can be set to zero, shifting x− by a constant times x+.
49 This amounts to redefining the complex coordinates by a constant phase.
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Appendix H

Deriving the
Curved Space Supersymmetric Solutions

Here too we set γµν = 0 . This way we would still find all solutions with

at least (1,1) supersymmetry, but would not be able to distinguish solutions with

(2,2) supersymmetry from solutions with more supersymmetry. Note that if the

transverse space has precisely SU(4) holonomy then the Killing spinor has γµ̄ν̄ = 0.

We also take as in the flat case, βν̄ , δν to be independent of x+ (the x+ dependent

part would be dealt with as part of the solution to the homogenous equations for

ε−). Then the equations that we get from (6.68) by replacing ordinary derivatives

by covariant derivatives becomes.

4(βµ̄ϕ
µ̄
ν − δµϕ

µ
ν) = − i

4
ζ∂νH

4(−βµ̄ϕµ̄ ν̄ + δµϕ
µ
ν̄) = − i

4
α∂ν̄H

∇µβν̄ = −2iαϕµν̄ ; ∇µ̄βν̄ = 2iζϕµν

∇µ̄δν = −2iζϕνµ̄ ; ∇µδν = 2iαϕµν

(6.78)

The integrability conditions for ∇δ and ∇β imply that ∇[ρϕµ]ν = 0 (i.e. the (1,3)

and (3,1) forms are closed by themselves). Thus ϕµν = ∇µ∇νW for some harmonic

function W . The (2,2) forms therefore should be closed by themselves, and together

with anti-self-duality they must satisfy ϕµν̄ = ∇µ∇ν̄U = ∇ν̄∇µU for some real

harmonic function U . Plugging these back to the equations (6.78) , we get

∇µβν̄ = −2iα∇µ∇ν̄U ; ∇µδν = −2iζ∇µ̄∇νU

∇µβν̄ = 2iζ∇µ̄∇ν̄W ; ∇µδν = 2iα∇µ∇νW

−[βρ∇ρ∇ν̄U − δτ̄∇τ̄∇ν̄W ] = − i

16
α∂ν̄H

[βτ∇τ∇µW − δτ̄∇µ∇τ̄U ] = − i

16
ζ∂µH

(6.79)

We can immediately solve the two equations in the first line to get βν̄ = −2iα∇ν̄U+

fν̄(z̄), δν = −2iζ∇νU +gν(z) for some antiholomorphic and holomorphic one-forms
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fν̄(z̄), gν(z) respectively. Then we can plug these back into the two equations in the

second line, and get the constraints

∇µ[∇ν(ζU + αW ) +
i

2
gν(z)] = ∇µ[∇ν(α

∗U + ζ∗W ) − i

2
f∗ν̄ (z)] = 0. (6.80)

These can be solved in one of two ways.

(i) |α| 6= |ζ|

Then we can define a new real harmonic function U related to U through fν̄ , gν

50 such that ∇µ∇ν̄U = ∇µ∇ν̄U , and by (6.80) ∇µ∇νU = 0. Note that U is

a Killing potential, if we define a vector Vµ = i∇µU then ∇µ̄V
ν = ∇µV

ν̄ = 0

and ∇µVν̄ + ∇ν̄Vµ = 0. This means that V µ is a holomorphic Killing vector.

Additionally, as U is a harmonic function, the Killing vector also satisfies ∇µV
µ = 0.

By (6.80), one also finds that ∇µ∇νW is holomorphic. Since W appears in the susy

equations only under two holomorphic covariant derivatives, we can take W to be

holomorphic. One can now solve the first four equations in (6.79) to get 51

βν̄ = 2i[iαVν̄ + ζ∇νW ] ; δν = 2i[−iζVν + α∇νW ] , (6.81)

where ϕµν = ∇µ∇νW and ϕµν̄ = ∇µ∇ν̄U . Then plugging these into the last

two equations in (6.79), and using the fact H is real, we get one constraint on

W and V µ and one equation for H. The constraint is ∂ν [V
τ∇τW ] = 0, and the

equation for H yields H = −32(|dW |2 + |V |2), where |dW |2 ≡ gµν̄∇µW∇νW and

|V |2 ≡ gµν̄V
µV ν̄ . This is the (2,2) supersymmetric solution we have in (5.17).

Inserting (6.81) into (6.66) we get the explicit expression for the four preserved

Killing vectors parametrized by α, ζ.

(ii) |α| = |ζ|. We can define a real harmonic function U such that ∇µ∇νU =

∇µ∇νW and ∇µ∇ν̄U = ∇µ∇ν̄U , so that ϕµν = ∇µ∇νU , ϕµν̄ = ∇µ∇ν̄U , ϕµν =

50 The relation is U ≡ U +
(iζ∗

∫
gνdzν+c.c.)

2[|ζ|2−|α|2]
+

(iα
∫

fνdzν+c.c.)

2[|ζ|2−|α|2]
.

51 We did not include integration constants in βν , δν as these can always be set to zero

be a redefinition of the potentials.
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∇µ̄∇ν̄U . Then solving for βν̄ and δν , one gets

βν̄ = 2iζ∇ν̄U ; δν = −2iζ∇νU (6.82)

Plugging these back into the last two equations (6.79), one gets the same equation for

H, whose solution is H = −32|dU |2. These are the (1,1) supersymmetric solutions

we have in (5.18). Again we can insert (6.82) in (6.66) to get the explicit expression

for the Killing spinors.

122



References

[1] J. M. Maldacena and L. Maoz, “De-singularization by rotation,” JHEP 0212,

055 (2002) [arXiv:hep-th/0012025].

[2] O. Lunin, J. Maldacena and L. Maoz, “Gravity solutions for the D1-D5 system

with angular momentum,” arXiv:hep-th/0212210.

[3] J. Maldacena and L. Maoz, “Strings on pp-waves and massive two dimensional

field theories,” JHEP 0212, 046 (2002) [arXiv:hep-th/0207284].

[4] J. D. Bekenstein, “Black Holes And Entropy,” Phys. Rev. D 7, 2333 (1973);

J. D. Bekenstein, “Generalized Second Law Of Thermodynamics In Black Hole

Physics,” Phys. Rev. D 9, 3292 (1974).

[5] G. ’t Hooft, “Dimensional Reduction In Quantum Gravity,” arXiv:gr-qc/9310026

; C. R. Stephens, G. ’t Hooft and B. F. Whiting, “Black hole evapora-

tion without information loss,” Class. Quant. Grav. 11, 621 (1994) [arXiv:gr-

qc/9310006].

[6] L. Susskind, “The World as a hologram,” J. Math. Phys. 36, 6377 (1995)

[arXiv:hep-th/9409089].

[7] J. M. Maldacena, “The large N limit of superconformal field theories and su-

pergravity,” Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38,

1113 (1999)] [arXiv:hep-th/9711200].

[8] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators

from non-critical string theory,” Phys. Lett. B 428, 105 (1998) [arXiv:hep-

th/9802109].

[9] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2,

253 (1998) [arXiv:hep-th/9802150].

[10] J. D. Brown and M. Henneaux, Central Charges in the Canonical Realiza-

tion of Asymptotic Symmetries: An Example from Three Dimensional Gravity,

Commun.Math.Phys. 104 (1986) 207-226.

[11] V. G. Kac, A sketch of Lie Superalgebra Theory, Commun. Math. Phys 53

(1977) 31; Lie Superalgebras, Adv. Math. 26 (1977) 8; Funct. Anal. 9 (1975)

91.

[12] W. Nahm, Supersymmetries and their Representations, Nucl. Phys. B135

(1978) 149-166.

[13] M. Günaydin, G. Sierra and P. K. Townsend, The Unitary Supermultiplets of

d=3 AdS and d=2 Conformal Superalgebras, Nucl. Phys. B264 (1986) 429.

[14] M. Henneaux, L. Maoz and A. Schwimmer, “Asymptotic dynamics and asymp-

totic symmetries of three-dimensional extended AdS supergravity,” Annals

Phys. 282, 31 (2000) [hep-th/9910013].

123



[15] E. J. Martinec, “Conformal field theory, geometry, and entropy,” arXiv:hep-

th/9809021.

[16] S. Carlip, “The statistical mechanics of horizons and black hole thermodynam-

ics,” arXiv:gr-qc/9603049 ;

S. Carlip, “The statistical mechanics of the three-dimensional Euclidean black

hole,” Phys. Rev. D 55, 878 (1997) [arXiv:gr-qc/9606043]

[17] S. Carlip, “What we don’t know about BTZ black hole entropy,” Class. Quant.

Grav. 15, 3609 (1998) [arXiv:hep-th/9806026].

[18] V. G. Knizhnik, “Superconformal Algebras in Two-Dimensions,” Theor.Math.Phys.66

(1986),68

[19] M. Bershadsky, “Superconformal Algebras in Two Dimensions with Arbitrary

N,” Phys.Lett. B174(1986),285-288

[20] E. S. Fradkin and V. Y. Linetsky, “Results of the classification of supercon-

formal algebras in two-dimensions,” Phys. Lett. B 282, 352 (1992) [arXiv:hep-

th/9203045] ;

E. S. Fradkin and V. Y. Linetsky, “Classification Of Superconformal Algebras

With Quadratic Nonlinearity,” arXiv:hep-th/9207035.

[21] J. M. Maldacena and H. Ooguri, “Strings in AdS(3) and SL(2,R) WZW model.

I,” J. Math. Phys. 42, 2929 (2001) [arXiv:hep-th/0001053] ;

J. M. Maldacena, H. Ooguri and J. Son, “Strings in AdS(3) and the SL(2,R)

WZW model. II: Euclidean black hole,” J. Math. Phys. 42, 2961 (2001)

[arXiv:hep-th/0005183] ;

J. M. Maldacena and H. Ooguri, “Strings in AdS(3) and the SL(2,R) WZW

model. III: Correlation functions,” Phys. Rev. D 65, 106006 (2002) [arXiv:hep-

th/0111180].

[22] A. Giveon, D. Kutasov and N. Seiberg, “Comments on string theory on

AdS(3),” Adv. Theor. Math. Phys. 2, 733 (1998) [arXiv:hep-th/9806194];

D. Kutasov and N. Seiberg, “More comments on string theory on AdS(3),”

JHEP 9904, 008 (1999) [arXiv:hep-th/9903219] ;

A. Giveon and D. Kutasov, “Notes on AdS(3),” Nucl. Phys. B 621, 303 (2002)

[arXiv:hep-th/0106004].

[23] G. W. Gibbons, G. T. Horowitz and P. K. Townsend, “Higher dimensional

resolution of dilatonic black hole singularities,” Class. Quant. Grav. 12, 297

(1995) [arXiv:hep-th/9410073].

[24] G. T. Horowitz and A. Strominger, “Counting States of Near-Extremal Black

Holes,” Phys. Rev. Lett. 77, 2368 (1996) [arXiv:hep-th/9602051].

[25] G. T. Horowitz, J. M. Maldacena and A. Strominger, “Nonextremal Black

Hole Microstates and U-duality,” Phys. Lett. B 383, 151 (1996) [arXiv:hep-

th/9603109].

124



[26] J. M. Maldacena and A. Strominger, “AdS(3) black holes and a stringy exclu-

sion principle,” JHEP 9812, 005 (1998) [arXiv:hep-th/9804085].

[27] C. Vafa, “Instantons on D-branes,” Nucl. Phys. B 463, 435 (1996) [arXiv:hep-

th/9512078].

[28] E. Witten, “Small Instantons in String Theory,” Nucl. Phys. B 460, 541 (1996)

[arXiv:hep-th/9511030].

[29] M. R. Douglas, “Branes within branes,” arXiv:hep-th/9512077.

[30] N. Seiberg and E. Witten, “The D1/D5 system and singular CFT,” JHEP

9904, 017 (1999) [hep-th/9903224].

[31] R. Dijkgraaf, “Instanton strings and hyperKaehler geometry,” Nucl. Phys. B

543, 545 (1999) [arXiv:hep-th/9810210].

[32] J. de Boer, “Six-dimensional supergravity on S**3 x AdS(3) and 2d conformal

field theory,” Nucl. Phys. B548, 139 (1999) [hep-th/9806104].

[33] R. Dijkgraaf, J. M. Maldacena, G. W. Moore and E. Verlinde, “A black hole

farey tail,” arXiv:hep-th/0005003.

[34] M. Cvetic and D. Youm, “General Rotating Five Dimensional Black Holes

of Toroidally Compactified Heterotic String,” Nucl. Phys. B 476, 118 (1996)

[arXiv:hep-th/9603100]

[35] M. Cvetic and F. Larsen, “Near horizon geometry of rotating black holes in

five dimensions,” Nucl. Phys. B531, 239 (1998) [hep-th/9805097].

[36] R. C. Myers, “Dielectric-branes,” JHEP 9912, 022 (1999) [arXiv:hep-th/9910053].

[37] D. Mateos and P. K. Townsend, “Supertubes,” Phys. Rev. Lett. 87, 011602

(2001) [arXiv:hep-th/0103030];

R. Emparan, D. Mateos and P. K. Townsend, “Supergravity supertubes,” JHEP

0107 (2001) 011 [arXiv:hep-th/0106012];

D. Mateos, S. Ng and P. K. Townsend, “Tachyons, supertubes and brane/anti-

brane systems,” JHEP 0203, 016 (2002) [arXiv:hep-th/0112054];

D. Mateos, S. Ng and P. K. Townsend, “Supercurves,” Phys. Lett. B 538, 366

(2002) [arXiv:hep-th/0204062].

[38] M. Banados, M. Henneaux, C. Teitelboim and J. Zanelli, “Geometry of the

(2+1) black hole,” Phys. Rev. D 48, 1506 (1993) [arXiv:gr-qc/9302012].

[39] M. Banados, C. Teitelboim and J. Zanelli, “The Black Hole In Three-

Dimensional Space-Time,” Phys. Rev. Lett. 69, 1849 (1992) [arXiv:hep-

th/9204099].

[40] E. Witten, “(2+1)-Dimensional Gravity As An Exactly Soluble System,” Nucl.

Phys. B 311, 46 (1988).

[41] E. Witten, “Quantum Field Theory And The Jones Polynomial,” Commun.

Math. Phys. 121, 351 (1989).

125



[42] A. Achucarro and P. K. Townsend, “A Chern-Simons Action For Three-

Dimensional Anti-De Sitter Supergravity Theories,” Phys. Lett. B 180, 89

(1986).

[43] S. Deger, A. Kaya, E. Sezgin and P. Sundell, “Spectrum of D = 6, N = 4b

supergravity on AdS(3) x S(3),” Nucl. Phys. B 536, 110 (1998) [arXiv:hep-

th/9804166].

[44] J. M. Izquierdo and P. K. Townsend, “Supersymmetric space-times in (2+1)

adS supergravity models,” Class. Quant. Grav. 12, 895 (1995) [gr-qc/9501018].

[45] R. Dijkgraaf, G. W. Moore, E. Verlinde and H. Verlinde, “Elliptic genera of

symmetric products and second quantized strings,” Commun. Math. Phys. 185,

197 (1997) [arXiv:hep-th/9608096].

[46] R. Dijkgraaf, E. Verlinde and H. Verlinde, “Matrix string theory,” Nucl. Phys.

B 500, 43 (1997) [arXiv:hep-th/9703030] ;

A. Jevicki, M. Mihailescu and S. Ramgoolam, “Gravity from CFT on S**N(X):

Symmetries and interactions,” Nucl. Phys. B 577, 47 (2000) [arXiv:hep-

th/9907144]

[47] L. J. Dixon, D. Friedan, E. J. Martinec and S. H. Shenker, “The Conformal

Field Theory Of Orbifolds,” Nucl. Phys. B 282, 13 (1987).

[48] A. Schwimmer and N. Seiberg, “Comments On The N=2, N=3, N=4 Super-

conformal Algebras In Two-Dimensions,” Phys. Lett. B 184, 191 (1987).

[49] W. Lerche, C. Vafa, N.P. Warner, “Chiral Rings in N=2 Superconformal The-

ories,” Nucl. Phys. B324, 427 (1989).

[50] O. Coussaert and M. Henneaux, “Supersymmetry of the (2+1) black holes,”

Phys. Rev. Lett. 72, 183 (1994) [hep-th/9310194].

[51] M. Cvetic, A .Tseytlin,“Sigma model of near extreme rotating black holes and

their microstates,” Nucl. Phys. B537, 381 (1999) [hep-th/9806141];

A. Tseytlin, “ Extreme dyonic black holes in string theory”, Mod. Phys. Lett.

A11, 689 (1996) [hep-th/9601177];

A. Tseytin, “Generalized chiral null models and rotating string backgrounds”,

Phys. Lett. B381, 73 (1996) [hep-th/9603099].

[52] S. Elitzur, G. Moore, A. Schwimmer and N. Seiberg, “Remarks On The Canon-

ical Quantization Of The Chern-Simons-Witten Theory,” Nucl. Phys. B326,

108 (1989).

[53] J. R. David, G. Mandal, S. Vaidya and S. R. Wadia, “Point mass geometries,

spectral flow and AdS(3)-CFT(2) correspondence,” Nucl. Phys. B564 (2000)

128 [hep-th/9906112].

[54] O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri and Y. Oz, “Large N

field theories, string theory and gravity,” Phys. Rept. 323, 183 (2000) [hep-

th/9905111].

126



[55] M. Cvetic and D. Youm, “General Rotating Five Dimensional Black Holes of

Toroidally Compactified Heterotic String,” Nucl. Phys. B476, 118 (1996) [hep-

th/9603100].

[56] J. Maldacena, G. Moore and A. Strominger, “Counting BPS black holes in

toroidal type II string theory,” [hep-th/9903163].

[57] J. McGreevy, L. Susskind and N. Toumbas, “Invasion of the giant gravitons

from anti-de Sitter space,” JHEP 0006, 008 (2000) [hep-th/0003075].

[58] A. Hashimoto, S. Hirano and N. Itzhaki, “Large branes in AdS and their field

theory dual,” JHEP 0008, 051 (2000) [hep-th/0008016];

M. T. Grisaru, R. C. Myers and O. Tafjord, “SUSY and Goliath,” JHEP 0008,

040 (2000) [hep-th/0008015];

S. R. Das, A. Jevicki and S. D. Mathur, “Vibration modes of giant gravitons,”

hep-th/0009019;

S. R. Das, A. Jevicki and S. D. Mathur, “Giant gravitons, BPS bounds and

noncommutativity,” hep-th/0008088;

S. R. Das, S. P. Trivedi and S. Vaidya, “Magnetic moments of branes and giant

gravitons,” JHEP 0010, 037 (2000) [hep-th/0008203];

A. Mikhailov, “Giant gravitons from holomorphic surfaces,” JHEP 0011, 027

(2000) [hep-th/0010206].

[59] J. Maldacena, J. Michelson and A. Strominger, “Anti-de Sitter fragmentation,”

JHEP 9902, 011 (1999) [hep-th/9812073].

[60] O. Lunin, S. D. Mathur and A. Saxena, “What is the gravity dual of a chiral

primary?,” arXiv:hep-th/0211292.

[61] C. Vafa, “Gas of D-Branes and Hagedorn Density of BPS States,” Nucl. Phys.

B 463, 415 (1996) [arXiv:hep-th/9511088].

[62] V. Balasubramanian, J. de Boer, E. Keski-Vakkuri and S. F. Ross, “Super-

symmetric conical defects: Towards a string theoretic description of black hole

formation,” Phys. Rev. D 64, 064011 (2001) [arXiv:hep-th/0011217].

[63] C. G. Callan, J. M. Maldacena and A. W. Peet, “Extremal Black Holes As

Fundamental Strings,” Nucl. Phys. B 475, 645 (1996) [hep-th/9510134].

[64] A. Dabholkar, J. P. Gauntlett, J. A. Harvey and D. Waldram, “Strings as

Solitons and Black Holes as Strings,” Nucl. Phys. B 474, 85 (1996) [hep-

th/9511053].

[65] O. Lunin and S. D. Mathur, “AdS/CFT duality and the black hole information

paradox,” Nucl. Phys. B 623, 342 (2002) [arXiv:hep-th/0109154].

[66] E. J. Martinec and W. McElgin, “Exciting AdS orbifolds,” JHEP 0210, 050

(2002) [arXiv:hep-th/0206175].

[67] J. H. Cho and S. k. Nam, “AdS(3) black hole entropy and the spectral flow on

the horizon,” arXiv:hep-th/9903058.

127



[68] P. C. Aichelburg and R. U. Sexl, “On The Gravitational Field Of A Massless

Particle,” Gen. Rel. Grav. 2, 303 (1971).

[69] O. Lunin and S. D. Mathur, “Rotating deformations of AdS(3) x S**3, the

orbifold CFT and strings in the pp-wave limit,” Nucl. Phys. B 642, 91 (2002)

[arXiv:hep-th/0206107].

[70] J. Kowalski-Glikman, “Vacuum States In Supersymmetric Kaluza-Klein The-

ory,” Phys. Lett. B 134, 194 (1984);

J. Figueroa-O’Farrill and G. Papadopoulos, “Homogeneous fluxes, branes and

a maximally supersymmetric solution of M-theory,” JHEP 0108, 036 (2001)

[arXiv:hep-th/0105308];

M. Blau, J. Figueroa-O’Farrill, C. Hull and G. Papadopoulos, “Penrose limits

and maximal supersymmetry,” Class. Quant. Grav. 19, L87 (2002) [arXiv:hep-

th/0201081]

[71] D. Berenstein, J. M. Maldacena and H. Nastase, “Strings in flat space and

pp waves from N = 4 super Yang Mills,” JHEP 0204, 013 (2002) [arXiv:hep-

th/0202021]

[72] O. Lunin and S. D. Mathur, “Metric of the multiply wound rotating string,”

Nucl. Phys. B 610, 49 (2001) [arXiv:hep-th/0105136].

[73] N. E. Grandi and A. R. Lugo, “Supertubes and special holonomy,” arXiv:hep-

th/0212159.

[74] J. M. Maldacena and J. G. Russo, “Large N limit of non-commutative gauge

theories,” JHEP 9909, 025 (1999) [arXiv:hep-th/9908134].

[75] A. R. Lugo, “On supersymmetric Dp anti-Dp brane solutions,” Phys. Lett. B

539, 143 (2002) [arXiv:hep-th/0206041].

[76] D. s. Bak and A. Karch, “Supersymmetric brane-antibrane configurations,”

Nucl. Phys. B 626, 165 (2002) [arXiv:hep-th/0110039].

[77] R. C. Myers and D. J. Winters, “From D - anti-D pairs to branes in motion,”

arXiv:hep-th/0211042.

[78] C. Bachas and C. Hull, “Null brane intersections,” arXiv:hep-th/0210269.

[79] R. R. Metsaev, “Type IIB Green-Schwarz superstring in plane wave Ramond-

Ramond background,” Nucl. Phys. B 625, 70 (2002) [arXiv:hep-th/0112044];

R. R. Metsaev and A. A. Tseytlin, “Exactly solvable model of superstring in

plane wave Ramond-Ramond background,” arXiv:hep-th/0202109

[80] R. Gueven, “Plane Waves In Effective Field Theories Of Superstrings,” Phys.

Lett. B 191, 275 (1987). ;

D. Amati and C. Klimcik, “Nonperturbative Computation Of The Weyl Anom-

aly For A Class Of Nontrivial Backgrounds,” Phys. Lett. B 219, 443 (1989). ;

G. T. Horowitz and A. R. Steif, “Space-Time Singularities In String Theory,”

Phys. Rev. Lett. 64, 260 (1990).

128



[81] P. Fendley and K. A. Intriligator, “Scattering and thermodynamics of frac-

tionally charged supersymmetric solitons,” Nucl. Phys. B 372, 533 (1992)

[arXiv:hep-th/9111014]

[82] P. Fendley and K. A. Intriligator, “Scattering and thermodynamics in inte-

grable N=2 theories,” Nucl. Phys. B 380, 265 (1992) [arXiv:hep-th/9202011].

[83] P. Fendley and K. Intrilligator, unpublished

[84] K. Hori and C. Vafa, “Mirror symmetry,” arXiv:hep-th/0002222

[85] K. Hori and A. Kapustin “Duality of the fermionic 2d black hole and N =

2 Liouville theory as mirror symmetry,” JHEP 0108, 045 (2001) [arXiv:hep-

th/0104202].

[86] A. A. Tseytlin, “Finite sigma models and exact string solutions with Minkowski

signature metric,” Phys. Rev. D 47, 3421 (1993) [arXiv:hep-th/9211061];

A. A. Tseytlin, “String vacuum backgrounds with covariantly constant null

Killing vector and 2-d quantum gravity,” Nucl. Phys. B 390, 153 (1993)

[arXiv:hep-th/9209023];

A. A. Tseytlin,“A Class of finite two-dimensional sigma models and string

vacua,” Phys. Lett. B 288, 279 (1992) [arXiv:hep-th/9205058].

[87] C. Klimcik and A. A. Tseytlin, “Exact four-dimensional string solutions and

Toda like sigma models from ’null gauged’ WZNW theories,” Nucl. Phys. B

424, 71 (1994) [arXiv:hep-th/9402120].

[88] M. T. Grisaru, A. E. van de Ven and D. Zanon, “Two-Dimensional Supersym-

metric Sigma Models On Ricci Flat Kahler Manifolds Are Not Finite,” Nucl.

Phys. B 277, 388 (1986).

[89] V. E. Hubeny and M. Rangamani, “No horizons in pp-waves,” JHEP 0211,

021 (2002) [arXiv:hep-th/0210234];

V. E. Hubeny and M. Rangamani, “Causal structures of pp-waves,” JHEP

0212, 043 (2002) [arXiv:hep-th/0211195].

[90] J. Michelson, “(Twisted) toroidal compactification of pp-waves,” Phys. Rev. D

66, 066002 (2002) [arXiv:hep-th/0203140]. ;

J. Michelson, “A pp-wave with 26 supercharges,” Class. Quant. Grav. 19, 5935

(2002) [arXiv:hep-th/0206204].

[91] M. Cvetic, H. Lu and C. N. Pope, “M-theory pp-waves, Penrose limits and

supernumerary supersymmetries,” arXiv:hep-th/0203229

[92] J. P. Gauntlett and C. M. Hull, “pp-waves in 11-dimensions with extra super-

symmetry,” JHEP 0206, 013 (2002) [arXiv:hep-th/0203255].

[93] I. Bena and R. Roiban, “Supergravity pp-wave solutions with 28 and 24 super-

charges,” arXiv:hep-th/0206195.

[94] M. Blau, J. Figueroa-O’Farrill, C. Hull and G. Papadopoulos, “A new maxi-

mally supersymmetric background of IIB superstring theory,” JHEP 0201, 047

(2002) [arXiv:hep-th/0110242]

129



[95] J. Kowalski-Glikman, “Vacuum States In Supersymmetric Kaluza-Klein The-

ory,” Phys. Lett. B 134, 194 (1984) ;

P. T. Chrusciel and J. Kowalski-Glikman, “The Isometry Group And Killing

Spinors For The P P Wave Space-Time In D = 11 Supergravity,” Phys. Lett.

B 149, 107 (1984).

[96] J. Figueroa-O’Farrill and G. Papadopoulos, “Maximally supersymmetric so-

lutions of ten-dimensional and eleven-dimensional supergravities,” arXiv:hep-

th/0211089.

[97] R. Penrose, ”Any spacetime has a plane wave as a limit”, in Differential geom-

etry and relativity, PP.271-275, Reidel, Dordrecht 1976.

[98] R. Gueven, “Plane wave limits and T-duality,” Phys. Lett. B 482, 255 (2000)

[arXiv:hep-th/0005061].

[99] M. Blau, J. Figueroa-O’Farrill and G. Papadopoulos, “Penrose limits, super-

gravity and brane dynamics,” Class. Quant. Grav. 19, 4753 (2002) [arXiv:hep-

th/0202111].

[100] M. Hatsuda, K. Kamimura and M. Sakaguchi, “From super-AdS(5) x S**5

algebra to super-pp-wave algebra,” Nucl. Phys. B 632, 114 (2002) [arXiv:hep-

th/0202190].

[101] D. Friedan, E. J. Martinec and S. H. Shenker, “Conformal Invariance, Super-

symmetry And String Theory,” Nucl. Phys. B 271, 93 (1986).

[102] M. B. Green and J. H. Schwarz, “Covariant Description Of Superstrings,” Phys.

Lett. B 136, 367 (1984) ;

M. B. Green and J. H. Schwarz, “Properties Of The Covariant Formulation Of

Superstring Theories,” Nucl. Phys. B 243, 285 (1984).

[103] N. Berkovits, “ICTP lectures on covariant quantization of the superstring,”

arXiv:hep-th/0209059.

[104] N. Berkovits, “Super-Poincare covariant quantization of the superstring,”

JHEP 0004, 018 (2000) [arXiv:hep-th/0001035].

[105] N. Berkovits,“Covariant quantization of the Green-Schwarz superstring in a

Calabi-Yau background,” Nucl. Phys. B 431,258(1994) [arXiv:hep-th/9404162];

N. Berkovits, “Quantization of the type II superstring in a curved six-

dimensional background,” Nucl. Phys. B 565, 333 (2000) [arXiv:hep-th/9908041].

[106] N. Berkovits, “N = 2 sigma models for Ramond-Ramond backgrounds,” JHEP

0210, 071 (2002) [arXiv:hep-th/0210078].

[107] N. Berkovits and C. Vafa, “N=4 topological strings,” Nucl. Phys. B 433, 123

(1995) [arXiv:hep-th/9407190];

N. Berkovits and C. Vafa, “On the Uniqueness of string theory,” Mod. Phys.

Lett. A 9, 653 (1994) [arXiv:hep-th/9310170];

N. Berkovits, “The Ten-dimensional Green-Schwarz superstring is a twisted

130



Neveu-Schwarz-Ramond string,” Nucl. Phys. B 420, 332 (1994) [arXiv:hep-

th/9308129].

[108] N. Berkovits, “The Heterotic Green-Schwarz superstring on an N=(2,0) super-

worldsheet,” Nucl. Phys. B 379, 96 (1992) [arXiv:hep-th/9201004];

N. Berkovits, “Calculation of Green-Schwarz superstring amplitudes using the

N=2 twistor string formalism,” Nucl. Phys. B 395, 77 (1993) [arXiv:hep-

th/9208035].

[109] M. Matone, L. Mazzucato, I. Oda, D. Sorokin and M. Tonin, “The superembed-

ding origin of the Berkovits pure spinor covariant quantization of superstrings,”

Nucl. Phys. B 639, 182 (2002) [arXiv:hep-th/0206104].

[110] D. P. Sorokin, V. I. Tkach, D. V. Volkov and A. A. Zheltukhin, “From The

Superparticle Siegel Symmetry To The Spinning Particle Proper Time Super-

symmetry,” Phys. Lett. B 216, 302 (1989). ;

D. P. Sorokin, “Superbranes and superembeddings,” Phys. Rept. 329, 1 (2000)

[arXiv:hep-th/9906142]. ;

M. Tonin, “World sheet supersymmetric formulations of Green-Schwarz super-

strings,” Phys. Lett. B 266, 312 (1991) ;

N. Berkovits, “A Covariant Action For The Heterotic Superstring With Mani-

fest Space-Time Supersymmetry And World Sheet Superconformal Invariance,”

Phys. Lett. B 232, 184 (1989).

[111] N. Berkovits and J. Maldacena, “N = 2 superconformal description of super-

string in Ramond-Ramond plane wave backgrounds,” JHEP 0210, 059 (2002)

[arXiv:hep-th/0208092].

[112] M. B. Green, J. H. Schwarz, E. Witten, “Superstring Theory,” vol. I,II, Cam-

bridge 1987

[113] R. E. Rudd, “Light cone gauge quantization of 2-D sigma models,” Nucl. Phys.

B 427, 81 (1994) [arXiv:hep-th/9402106].

[114] M. T. Grisaru, P. S. Howe, L. Mezincescu, B. Nilsson and P. K. Townsend,

“N=2 Superstrings In A Supergravity Background,” Phys. Lett. B 162, 116

(1985) ;

P. S. Howe and P. C. West, “The Complete N=2, D = 10 Supergravity,” Nucl.

Phys. B 238, 181 (1984).

[115] S. Mukhi, “The Geometric Background Field Method, Renormalization And

The Wess-Zumino Term In Nonlinear Sigma Models,” Nucl. Phys. B 264, 640

(1986).

[116] V. Sahakian, “Strings in Ramond-Ramond backgrounds,” arXiv:hep-th/0112063.

[117] R. R. Metsaev and A. A. Tseytlin, “Superstring action in AdS(5) x S(5):

kappa-symmetry light cone gauge,” Phys. Rev. D 63, 046002 (2001) [arXiv:hep-

th/0007036] ;

131



R. R. Metsaev, C. B. Thorn and A. A. Tseytlin, “Light-cone superstring in

AdS space-time,” Nucl. Phys. B 596, 151 (2001) [arXiv:hep-th/0009171].

[118] R. Kallosh and J. Rahmfeld, “The GS string action on AdS(5) x S(5),” Phys.

Lett. B 443, 143 (1998) [arXiv:hep-th/9808038].

[119] I. Pesando, “A kappa gauge fixed type IIB superstring action on AdS(5) x

S(5),” JHEP 9811, 002 (1998) [arXiv:hep-th/9808020].

[120] A. Rajaraman and M. Rozali, “On the quantization of the GS string on AdS(5)

x S(5),” Phys. Lett. B 468, 58 (1999) [arXiv:hep-th/9902046].

[121] J. Rahmfeld and A. Rajaraman, “The GS string action on AdS(3) x S(3)

with Ramond-Ramond charge,” Phys. Rev. D 60, 064014 (1999) [arXiv:hep-

th/9809164].

[122] I. Pesando, “The GS type IIB superstring action on AdS(3) x S(3) x T**4,”

JHEP 9902, 007 (1999) [arXiv:hep-th/9809145].

[123] J. Park and S. J. Rey, “Green-Schwarz superstring on AdS(3) x S(3),” JHEP

9901, 001 (1999) [arXiv:hep-th/9812062].

[124] J. G. Zhou, “Super 0-brane and GS superstring actions on AdS(2) x S(2),”

Nucl. Phys. B 559, 92 (1999) [arXiv:hep-th/9906013].

[125] V. A. Fateev, E. Onofri and A. B. Zamolodchikov, “The Sausage model (inte-

grable deformations of O(3) sigma model),” Nucl. Phys. B 406, 521 (1993).

[126] P. Fendley, W. Lerche, S. D. Mathur and N. P. Warner, “N=2 Supersymmetric

Integrable Models From Affine Toda Theories,” Nucl. Phys. B 348, 66 (1991)

[127] E. Witten, “Instantons, The Quark Model, And The 1/N Expansion,” Nucl.

Phys. B 149, 285 (1979).

[128] M. Aganagic, K. Hori, A. Karch and D. Tong, “Mirror symmetry in 2+1 and

1+1 dimensions,” JHEP 0107, 022 (2001) [arXiv:hep-th/0105075].

[129] J. Bagger and J. Wess, “Supersymmetry And Supergravity,” Princeton Univ.

Press, 1992.

[130] J. Bagger and E. Witten, “The Gauge Invariant Supersymmetric Nonlinear

Sigma Model,” Phys. Lett. B 118, 103 (1982).

[131] L. Alvarez-Gaume and D. Z. Freedman, “Potentials For The Supersymmetric

Nonlinear Sigma Model,” Commun. Math. Phys. 91, 87 (1983)

[132] S. J. Gates, “Superspace Formulation Of New Nonlinear Sigma Models,” Nucl.

Phys. B 238, 349 (1984)

[133] K. I. Kobayashi and T. Uematsu, “S matrix of N=2 supersymmetric Sine-

Gordon theory,” Phys. Lett. B 275, 361 (1992) [arXiv:hep-th/9110040]

[134] V. V. Bazhanov, S. L. Lukyanov and A. B. Zamolodchikov, “Quantum field the-

ories in finite volume: Excited state energies,” Nucl. Phys. B 489, 487 (1997)

[arXiv:hep-th/9607099] ;

132



P. Dorey and R. Tateo, “Excited states by analytic continuation of TBA equa-

tions,” Nucl. Phys. B 482, 639 (1996) [arXiv:hep-th/9607167].

[135] V. Kazakov, I. K. Kostov and D. Kutasov, “A matrix model for the two-

dimensional black hole,” Nucl. Phys. B 622, 141 (2002) [arXiv:hep-th/0101011].

[136] E. Floratos and A. Kehagias, “Penrose limits of orbifolds and orientifolds,”

arXiv:hep-th/0203134

[137] A. N. Jourjine, “The Effective Potential In Extended Supersymmetric Nonlin-

ear Sigma Models,” Annals Phys. 157, 489 (1984);

A. N. Jourjine, “Constraints On Superpotentials In Off-Shell Extended Non-

linear Sigma Models,” Nucl. Phys. B 236, 181 (1984).

133


