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I. Introduction
The subject of singularity structure of opcratdr products at almost light-like distances has received
much attention in the last several years. It is a gencralization of earlier studies of short distance structure
of operator products. There has been much activity recently in the latter subject too. The idea of "scale
invariance" at short and almost light-like distances, or generalizations of this idea, are central to these
approaches. '
Short distance expansions of operator products were introduced by Wilsonl as an abstraction of his

studies in model field theories. Thesc have the form
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Where A, B and F[a] are local operators and 6[a](x4y) singular c-number functions. The-index [a] char-
acterizes Lorentz as well as internal quantum numbers. To any degree of accuracy in (x-y) it is assumed
that only a finite n_umber of terms appear in the expansion Eq. (1). This expansion is a generalization and
an expliéitly covariant form of the Bjorkcn—_Johnson—Low expansion, 2 Its applications are in studies of high
momentum limits. The degree of singularity of the functions C[a] is given by the "asymptotic dimensions" of
the operators involved, namely the dynamical dimension governing short distanc'e behavior. 1 Wilson argues,
that such dimensionality will in general be different from the canenical value as appearing in a formal
Lagrangian consideration, unless there are special reasons against that, Thus local current algebra yields
dimension 3 for the SU(3) ® SU(3) currents. The energy-momentum tensor has dimension 4.

The light cone expansion is an expansion of products of operators when their space-time distance
approaches light-like separations. It was suggested as a genceralization of the short distance expansion, to

study high virtual mass limits in deep inelastic lepton hadron scattering. It has the foz'm3'4‘5
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where F[al(x, y) are bilocal operators, depending on the two points x and y and regular at (x-y)2=0. In fact,

it turns out that they are analytic in (y-x), as follows from the spectral conditions in deep inelastic scattering.
The expansions of the form Eq. (2) and the existence of bilocal operators were postulated to hold in nature,

namely for the {fully interacting theories. 3,4,5

It was an abstraction from Wick's expansion for free fields
and from the existence of such a light cone expansion in the Thirring model.6 In the latter case the light cone
singularities are not canonical, but rather depend on the coupling constant. Matrix elements of the bilocal
operators are directly measurable in deep inelastic scattering experiments, which exhibit simple scaling
phenomena and therefore imply the appearance of canonical light cone singularities. 7,89

Expanding the bilocal operators in a Taylor series,

Pl =2 o Loty PFE ) | (32)
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We get, for each lighf cone singularity, an infinite number of local terms in Wilson's expansion Eq. (1). 10
Inversely, if we have a Wilson expansion with an infinite number of terms of local operators with increasing
spin and the same singularity function C[a], we may sum them up to one bilocal operator and obtain
generalized scaling phenomena, 5,7
Wilson's expansions with sums like in (3a) have been demonstrated to hold in renormalizable quantum
field theories11 to any order in the coupling constant. To any finite order, scaling is violated by logarithmic
terms. Summation of infinite sets of diagrams considered so far show no possibility of obtaining bilocal
operators and scaling. 12 Instead, even when one considers sets in which only power singularities appear
(where one considers neither self-energy nor vertex corrections), the singularities near the light cone de-

2 So far there is no nontrivial model
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pend both on the spin n of the local operators and the coupling constant:.1
of quantum field theory in which canonical light cone singularities are exhibited.

We should emphasize that the study of light cone singularity structure emerged from the scaling observed
at SLAC, 8 a phenomena remarkably predicted by Bjorken, 14 An earlier approach that emerged from scaling
is the parton model, 15 followed by cutoff field theory calculations. 16 Later, "soft field theory" 16a calcula-
tions were developed, and duality ideas were also incorporated. 17 )

A very important step in the development of the light cone approach is the quark algebra structure
suggested by Fritzsch and Gell-—Mann,18 which is to assume free quark field algébra for the SU(3) x SU(3)
structure on the light cone. This made clear the connection with the parton approach in deep inelastic scat-
tering, and shed light on which results of the parton model are of a general nature and \;'hich dependent on
specific assumptions peculiar to that model.

This paper is organized as follows. In Section II we discuss deep inelastic electron-nucleon scattering.

In II. A we review the light cone dominance analysis, and in II. B discuss the Regge behavior in the deep in-
elastic limit and the relation with equal-time commutator sum rules. In Section HI light con¢ expansions of
operator products are considered. We review the general structure in II.A. In I, B we discuss the Thirring
model, where anomalous dimensions appear. It also exhibits the phenomena of "softening'' for composite
operators, namely that their dimensionality may be less than the sum of the dimensionalities of the constituent
fields, and it may also be canonical (as is the case for the currents, but not the scalar and pseudoscalar
densities). We then review the deep inelastic scattering (1. C) and the Cornwall-Norton sum rules (II. D),
the latter in relation with results from summations in field theory. In Section IIl. E we discuss the subject

of fixed poles and the polynomial residue in the mass variables of the "photons". In Section IV we discuss the
quark algebra on the light cone as suggested by Fritzsch and Gell-Mann. It is the light cone singularities that
are exhibited in IV. A as for currents constructed out of free fields. The resulting bilocal operators have
matrix elements which include all the complexity of strong interactions, and have no resemblance to a scale
invariant theory (mass parameters and Regge trajectories play there an important fole). In IV.B we review
the results for deep inelastic scattering and discuss the asymptotic sum rules derived. In IV.C we review
other tests of the light cone algebra as applied to nohforward matrix elements and also tests for the algebra
of the bilocals. InIV.D we show what extra nonleading terms are needed to ensure current conservation.
These extra terms are interaction dependent, in contrast to the leading singularity, the éfructure of which is
interaction independent (it is model dependent in the sense of the kind of constituents used). In Section V we
discuss total e"e” annihilation into hadrons and 7° -~ 2y. The relation between the two following from
consistency considerations of operator product expansions and quark schemes are reviewed. In Section VI
we discuss single particle inclusive annihilation, namely e"e” annihilation with the detection of the momentum
of a given hadron in the final state. The scaling properties are reviewed. Special attention is given to the
question of asymptotic multiplicity. It is shown that canonical light cone singularities, scaling and logarithmic



multiplicities are consistent, as follows from the singularity structure of products of two electromagnetic
currents and two hadronic sources at short distancesgl(for the difference between the space-time points of
the electromagnetic currents). In Section VII we mention other problems and approaches. In particular, one
photon amplitude processes (like form factors, exclusive electroproduction and pp — u+u'X), summations of
perturbation graphs, conformal symmetry approach (very interesting approximate bootstrap schemes were

recently studied in that limit112

), null plane quantization and sum rules, and finite QED.
Finally, we should emphasize that the most important issues ahead are:
(1) Checking scaling and relations among structure functions for higher virtual mass
and energy carried by the currents. Also checking of the various sum rules.
(2) More studies, experimentally and theoretically, of details of final states: distri-
butions, charge ratios, multiplicities, etc. These in both the scattering and

annihilation regions.



II. Deep Inelastic Electron-Nucleon Scattering

“A. Light Cone Dominance

Consider deep inelastic electron nucleon scattéring. For an unpolarized target and in the one photon

exchange approximatioﬂ, the differential cross section is given by
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. where E and E' are initial and final electron energies and £2(9) the scattering angle in the lahoratory frame,
p and M the four-momentum and mass of the target, q the virtual photon four momentum, and My =q-p. W1
and W2 are given by ‘
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q.4 2 1 ] . . 9
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where ju is the electromagnetic current. Bjorken's scaling isl4
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where B is the limit of qz-o - (space like) and p -~ «, 'with o = 2Mp / (—qz) fixed. In this limit most con-
tributions come: from the singularities near the light cone of the current commutator in Eq. (5) 19, 192 Light-
cone analysm of W (q,p) then proceeds through the introduction of the causal functions VL(x ,P:X) and

2(x ,p-X), defmed as

P[5, 1,0]>= (8,,0-9,9,) V1650

oo ; . 2 2
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Bjorken scaling is obtained by7
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as leading light-cone singularities. For a vanishing longitudinal cross section,8 (as may be indicated by
experiment) we get that fL= 0, and thus the leading singularity for VL is alsoa ¢ (xz). In general, for fL non-

Filw) = @n® [gé (“:;) '% L (ZIJ>] |
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vanishing, we obtain

(9

where 1
o0 =f ag @ Px
-1 (10)
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The X integration is limited to |A| < 1 by the spectral conditions, which also implies that fl and f2 are analytic
in (p-x). In these considerations we assume that there are no strongly varying parts to the commutator inside



the light cone, which may contribute in the scaling limit. This is certainly a reasonable physical assumption.
Moreover, Jaffezo calculated the contribution of a 6(x2-a2) singularity, and found that it has, relative to a
G(XZ) contribution, an extra factor of v -3/4 times an oscillatory factor (1- —Ll:)-)‘l/‘l exp[ia v2My (1- %)} . Here
g(1)=0 and g'(1)40 was assumed. In another calculation an extra factor of 1/v, with no extra oscillations,

was found. 21 Here g(1)#0 was assumed, and the method of evaluation was equivalent to averaging over
oscillations. }One can understand the connection as follows., From Jaife's calculation, Eq. (8) in Ref. 20,
taking g(1)#0, oné gets a u-l/ 4 suppression as compared with 5(x2), times a factor

(1—%)-1/4 exp[iaszv(l—%d-)]for w#l and v ~~», Now, since J:dgg(g) (1—5)_1/4exp[ia\/2MVT§—):l mv—3/4g(l),
the oscillatory factor is equivalent to an extra V-a/ 4. The result can be obtained from Eq. (7) in Ref. 20
directly integrating as above, Thus even a d(xz-az) 'singﬁlarity, which is certainly too singular for any
realistic situation, is less important than a 6(x2) in the Bjorken limit.

B. Regge Behaviour and Sum Rules

It had been suggesbed22 that the scaling functions exhibit Regge behaviour for =, This is certainly
an extra assumption, since Regge behaviour, which is ﬁxé limit y—e for fixed qz, may be given by non-
leading light cone singularities. 5,7 Adopting this unification of Regge and scaling limits, we get for the con-
tribution of a Regge pole with intercept a(0),

Filw) — @
wm : (11
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For any a(0)> 0 Eq. (12) implies that the first Fourier transform does not exist as a usual integral. It

has to be understood, of course, as a generalized function.s' 7,23 We replace, for A>0 and 1>a(0)>0,
~[a(0)+1] 1 { SR [-7() 531 , —[a(0)+1]]
1Al —Sisim 7 oo a[0) (-A+ie€) ~ (-:A-i€)

in the integrals. Thus . .
1 iA(p- X) oo
[1 drg; () e = zj; dA g (A) cos A (p-x)

and the contribution of a given Regge pole with 1> @ > 0 may be evaluated as
1 ('” . =(at1) . —(a+1)] ~
{sih7a A dx [(—x-1€) - (-A-ig) Cco8 A (p-X) =

S !; - [(-m g @D (A e)-(oz+1)] 008 A (prx) =

1 si;xxna .l; dr [(')""ie)_a - (‘7\-16)_0] sin A (p+x)
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0

= - %O) l(p-x)ia(o)F[1~a(0)] sin-21-1r[1—a(0)] =2{-x) 0I(O)I‘[—(;\:(O)] cos % T a(0)



Thus,
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For a=1 we can take a limit a—1, or take 5 [W+ (—;-\-:1—52-], from the start in gLO\). As for =0, making

CL(a) o o we see that in the limit ¢ —0 we get a constant contribution to fL(O) and a part « §(2) in gLO\).
Such a part does not confribute to Fl(w), but contributes a subtraction term to Tl' Since fL(O) =8 gives the

matrix element of the operator Schwinger term, we have the sum fule24’ %
o0 _ + .
S=t_ +f dxlgL(x) -2 Cp ) 1)’ . (14)
00 a>0

where we exclude a J=0 singularity in By, t. is a kronecker delta singularity at J=0 in the real part. If

L
present, it will show up also in photoproduction processes (see discussion in IIl. E). Whenever spin 0 or field

26 In the first case we have a non-

algebra spin-1 couplings are present, we have a longitudinal cross section.
vanishing S, while in the latter 8=0, 2
Note that Regge contributions influence the high {p:x) behaviour of matrix elements of bilocal operators.
As is clear from Eq. (13), the contribution of a Regge pole is a {(p*x) 1% to l(p-'x) | —~ = (the integral in
Eq. (13) gives a vanishing contribution in that limit). Similarly, f2(p-x) — I(p-x)la(o)'-?.
Another way to take into account the Regge singularities, including a=0 in By is the following. Define
I £

_ . ~ R
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where g?, f;t are the Regge coniributions. Take

R £ ~(1+a)
g = 2, C; (@) IA)
ot>0[L )

+ éL(O) 8 (1-1A1) T%T]
Then, :
T %) =Lwdx§L(x) P =_/:dx EL0 +f°°d7\ g0 [coé A (%) - 1]
Now we take, ‘ i

| £ (p+ ) =j:dxg§m [cos A (p+x) - 1]
It is easy to show that

L(p.x) = L;O -2) o 1p-x)1~ I'(1-a) sin _i r(l-a)- 2 CL(O)j; i (1-cos E)] .

Thus the  J=0 singularity has a In |(p-x)!| as [(p-x)|—», while its contribution for p-x=0 is zero as for the
@>0 poles. We finally have 4

o0 1 :
o= Eof agm(rra) | (15)

This gives, for p-x=0, the same result as (14) when we separate a

t, 6(\) term from g. . 'Comparing Eq. (15)
© R 2g" L
with Eq. (10) we see that we have effectively set Lw- dr gLOL) =0.



M. Light Cone Expansions of Operator Products

A. General Structure and Examples

In the previous section we were concerned with the singularity structure for one matrix element. In
order to get relations among various experiments we need an operator statement. This is provided, for deep
inelastic processes, by the light cone expansion4’ 5 as in Eq. (2),

AX) B() = ; c@ gy e, ) (16)
To be specific about the Lorentz structure, we EVI']ite
A BE) = % SE“]oc-w};(x—y)al. e Fol a9 o
where sE“](x-y) is a scalar singular function, |
si"‘] 0 = (2% + e xo)d[a] r(-al]) (18)

The value of d[a] is given by the dimensions of the operators as

2al®) - q(a) + aB) - [d (Fg"] o )- n:l (19)
o |

Thus the degree of singularity is determined by the difference '
alel . g (F[“] )- n ' ' ‘ (20)
n Q... O
1 nl s
between dimension and spin, of the operator. 29 The smaller d![:!] the more stronger the singularity near the
light cone.

When the operator product B(y) A(x) is considered, we have

a a
By) Aw = 2y 8%y 20 ) Lo 2 EP oy @1
‘ [e] n 1""""n
where - g .
o]
SEa] x) = (—xz -ie xo)d[ r (—d[a]) ' (22)

Note that apart from the sign changé of € in Eq. (21) as compared with Eq. (17), everything is the same.
This follows from locality and analyticity of the bilocal operators. Thus, in order for [A(x), B(y)] to vanish
at space-like separations, the bilocal operators in Eq, (17) and Eq. (21) have to be the same for {(x-y) space-
like, and by the assumed analyticity have to be the same operator everywhere,

For the commutator the singularity is

(o] [e]]
sllgg =1 (-d["‘]) [(-x2 +1ie xo)d - (#® -1 xo)d ] (23)
which for al®—n, n=0,1,2, ... is
sl T %}’— € (x,) 8 ) (x3)® . 24)
d""*~n : .
For the time ordered product'7 the singularity is
o) )
sl = (2% + ie)d[ r(-al®)) _ (25)

The simplest example of light cone expansions is provided within the framework of free field theory, and
7T

so far the only example with canonical singularities. Thus taking J“(x)=1 :¢+ “ ¢:, where ¢ is a free scalar



field, we have
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where
Ax) = - 2= [ d*p e PX (0 ) 5(p3-MD) ~-L eix) 5(x) near x%=0
3 0 2T 0
(27)
and
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- 27 X

The leading c-number singularities in Eq. (26) are proportional to

2xx, 66 +3g,, 86) 27)
Note that the leading term, namely the first one, is not separately conserved. The sum of the leading 6"'
and next to leading 6" are conserved. As for the operator term, the leading singularity is a x x, 6"(x } with
the scalar bilocal [: ¢+(x) dly):+ :4>+(y) ¢(x):]. The divergence for the leading singularity has n‘:) (“"'(x ) term,
and the 6"(x2) term is cancelled by a corresponding term of a next to leading singularity. Terms of the order
of 6'(x2) in the divergenée are cancelled only after use of the equations of motion for ¢. Since we are going
to generalize to the case of the full currents, where we have no equations of motion, current conservation
will be ensured only after adding more terms in Eq. (26). An explicitly current conserving form is given in
Eq. (36).

It is interesting to comment, that anomalous dimensions appear in the study of solutions of the Dirac

equation in a Coulomb potential Zez/r. Thus the behaviour near the origin, r—0, of the wave function with

_1+[(j+—;-)2 - (Za)z]l/ 2 |

which depends on the coupling constant. A similar situation appears in the Schriodinger equation with a l/r2
potential. In both cases, anomalous dimensions appear when the potential has the same dimension as the
kinetic energy term.

a given angular momentum is

s~ 7T
¢J

B. The Thirring Model
Investigations in the Thirring model showed that anomalous dimensions appear there.

1,6,30 Recently,

an operator solution of the Thirring model was exhibited in terms of the full light cone expansion for products
of Fermion fields. 6 Recall that the Thirring model has a massless spinor field in one space dimension inter-
acting through LI=—g : j“j“ T Define

u=t+x

v=t-x

Since both the axial current jﬁ and the vector current jli are conserved, and since jz = e’w jv , it turns

out that j =j0+j1 depends on u only and j_= jo - jl depends on v only. Since jl»l has no divergence and no curl,
we may be tempted to write ]u— o ¢, where ¢ is a massless scalar field. However, in one space dimension
a massless scalar field do€s not ex.lst since the Fourier transform of the propagator l/p does not exist.
One can introduce regularization procedures. 31 However, it is possible to avoid all these problems and also
others related to singular products in equations of motion and'in defining currents. 32 Our way of obtaining
the solution is essentially algebraic, through commutation rules and consistency requirements. 6 The com-
mutation rules are ‘

[1,00, 3,0] = 21 ¢ 0 = w)

(28)
.o, L) =2te o - v



c is a number, which serves to normalize the current. Also
[1,6, v ¥)] = - @+ west v ba-wy
[1- pvt] = - @-Fvg) wtay) otv-v)

Equations (28) and (29) result from equal-time commutators and conservation of jl»" However, ""a" and "a"
32

(29)

cannot be equal to their canonical value 1 unless g=0. We take these commutation rules as a starting point.

The resulting expansion is
_ (a+522
+ ‘o 4
Pov) (i) = £ [igi-u) + €]

=2
ga—a! u'

Lo-v+ed ™ epll ed /) jLoa (30)
u

+ (a-a>f V@) dnb:
A'

For ¢, 1,[;; replace & — -a. , .
The normal ordering in Eq. (30) is with respect to the frequencies in the decomposition of the current.
Comparing with the equations of motion we get
a-a=gec ' (31a)
while from locality
aa=nnc ' ‘ . (31b)
where 1/2 n is the spin of the field, implying n=1 for spin 1/2. We thus obtain

2 .
1, g7c .
d[¢]= 7 + 4T ’ (32)
Also, for the scalar and pseudoscalar densities, properly def.'ined6
- - a
aF9 = d Grgh =(2) @Y
The generator of scale transformations is

D= Tlé[fu:jf(u): du +fv:jf(v): dv] (34)

Its commutation rules with 3, as calculated by use of Eqs. (29), give us directly d[y] 'r.hrough33

2
1[D, pea] = [x“ 0, + (% +K4—;i>] ) (35)
The main conclusions we can draw from this model are:
(a) Currents are more regular than the respective products of fields and obey simple commutation
rules,
(o) Scalar and pseudoscalar densities, which have no algebraic reason td have canonical dimensions,

indeed have anomalous dimensions. Their dimensions are canonical only for g=0. 34

C. Products of Electromagnetic Currents

In the case of electromagnetic currents, we write the light cone expansion a.s5
=[x _ 4 a(Y)][ ]
[1,00, 3,0 = [o9%) - g oo*0[c, ey 7 exy)

) (y) &) ) (x
+[guaav o +5, 50508 - g, 06, 0 Y0

- gp a(x)a(-V)] [Cz(x-y) Fgﬁ(x,y)] o0 (36)

v a f
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The other terms do not contribute to forward spin averaged matrix elements .‘ Forward matrix elements are
analyzed as in the previous section, with ]

[<p|Fg”3(x.0) lp>] o =P e+ ... (37)

X"=0

The other contributions are less leading in the scaling limit., Note that when the longitudinal cross section
has no scaling contribution, namely CL has no é(xz) and a leading 6 (x2) singularity only, then the extra
terms in (37) of the form paxﬁ + pﬁxa are as important in their contribution to VL. A X xﬁ term in
Eq. (37) has an extra 1/v suppression as compared with (paxjg + pﬁ xa) (we exclude g ap terms, since those

are identical in Eq. (36) to the VLterm).

D. Generalized Cornwall-Norton Sum Rules

The Cornwall-Norton sum rules36 express integrals over moments of the scaling functions in terms of

commutators of corresponding numbers of time derivatives of a space component of the current with a space
component, at infinite momentum. They are,

2, ,2n o W, (qw")dw'? —-
("q ) 2 2 - -[ iq. x [2n+1 - —o]
lim ) ’1 w-2n+2 = lim = 2n+2 e <pl J (x), Jz(O)Ip>

2 M™r
q - Ip|—=
- <p|[a2n+1 I (%), Jx('o‘)] |p>} (38a)
P22 o W (g w)du'? iq.% 2n+1
lim  (-) = f sorg = lm f = 2n+2 e <'p|[ J (‘) J (0)]Ip> (38b)
2 w'
q ——c0 1 | p |~ 00 .

where we choose D in the z direction and q in the y direction. Thus the existence of the scaling limit implies
[ZMIJ (x), Jj(T)')]Ip>. However, if
we have a non-leading singularity which is not an integer power of (x2), we may get infinite contributions

the existence of the spin -(2n+2) operator coefficient of 6( ) (X) in <p|

from lower spin operators.25 (This does not happen for half-odd integer powers. For details see Ref. 25.)

The general results for the moments of W1 and W for qz—- (-9 can be obtained from Wilson's short
distance expansion. We do not assume the existence of a light cone expansion and bilocal operators, and
therefore write, instead of Cz( -y) ]3‘2 ap x,y) in Eq. (36), the form

d

ap - apa 1" _ , . d
v, (x,0) g:()Cn(X) xal... xa‘2 F, “(0);_ Cn(X)—[(—x +ex)) o (—x2-1exo) n]I‘(—dn) (39)

n
The terms we omitted have less singular C Taking the singularity structure of the time ordered product,
and going to the limit of q - for all components with qz—— - (namely qu— Aq with A~ and q any fixed
space- like vector), and then taking Py—, We obtain

T, — ;)An(p-cvz“ )

The first limit of A — « implies that for each n it is the smallest d that is leading, and the second limit
. 4
of p, — = justifies in keeping only the spin (n+2) part for the F *1 2n(0). We could have
taken simultaneously A —w and Py— such that po/x- 0, to obtain the same result.

Writing an unsubtracted dispersion relation for T2 and taking the same limits we obtain,

T, - 2n 2(q of dw?
2n+2

-d -2n-1
n
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Comparing the two expressions we get, for q2- —o0,

W, (a%w") do? -d
(-q >f ~—mm "% -¢h * (402)

Scaling means that dn=0 for all n. In that case the infinite sum of local operators in Eq. (39) defines a
bilocal operator,

Studies of infinite sums of ladder graphs in perturbation theory show that in general the right hand side

2 37

of Eq. (40) is not a power of q". Thus the notion of dimensionality of operators in Eq. (39) is non-

existant. However, for simple ladder sums the right hand side is a power, but then d does depend on n.

For example, for the infinite sum of simple ladders in a theory of a charged spinor interacting with a

pseudoscalar through a s coupling, we have12

g2 1

d =
n 167r2 (2n+2)(2n+3)

(40b)

This also serves to show, that Bjorken scaling cannot lee derived from Wilson's expansion and the assump-
tion of unsubtracted dispersion relations for T 38

a%nelcer} axz'sue that d =0 in Eq. (40a), as ob;erved at SLAC. From the theoretical point of view, since
d[F =4+ 2n + 2d " and since F2 presumably has a part which is the energy-momentum

2
tensor39

and therefore dimensmn 4, we expect d =0, If d is anomalous, d >0 we have a situation in
which vW goes to zero for q --o at each flxed w. We t.hus see that for n-O there is non-uniformity of
the left hand gide, in the sense that the limit (rq )-—-oo cannot be put inside the integral. In fact, this non-
uniformity is there for any n. The reason is the following. We must have an infinite series of increasing
d in Eq. (40a), since if there isonly a finite number of different d there would not be an unsubtracted
unless all d are equal (since any smgle term in the expansion Eq. (39) contrib-

2
utes to T but not W for q2<0 ). Thus for any given d there is a d (withn'>nandd " >d 1f we can

dlSpeI‘SIOIl relation for T

1nterchar11ge the 11m1ts q — with the integration in Eq. (40a) for a certam n, this would 1mply that ,

(-q ) 2(q ,w') scales, which would then violate the sum rule Eq. (40a) for n'. The conclusion is that
either all d are equal, in which case we get scaling, or that there is an infinite number of different d

This also shows that one carnot prove Bjorken scaling from Wilson's expansion and unsubtracted dlspersion

38

relation for '1‘2. All one can show is that it is impossible to have all but a certain finite number of dn

equal,

E. Fixed Poles

It was demonstrated in various works that a J=0 fixed pole exists in the amplitude Tz, either using a

light cone approach or a parton type ''soft" field theory.‘i‘1 42 It has been argued that in 1/q T the

residue of the fixed pole is independent of q2.4‘3

Let us return to V2 of Eq. (7). For the leading light cone contribution we have

d’\gzm
T, ~ 1672M%(-q )f S A1)
-1 - 2A My +ie)
Subtracting all Regge contributions with @>0 (assume no contributions to gy at a=0), then
A0
T(qv)~161rM(q)f 3 42)
1 (- q - 22 My +1¢)
Thus, for v—w,
= 2 2 dA
T’v) — 4r 1—‘“ 7,0 (43)

Y —e0 v =1
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and the integral is convergent since gZO\) vanishes faster than |A| at A —0 (see Eq. (12) for a(O) < 0). But
are we justified in taking only the leading singularity near the light cone, if we deal with fixed q ? It turns
out that this is alright for T

is of the form

2* For suppose we take a less leading singularity. Then its contribution to T2

[d]

[d] o 1 M)
T~ (- (44)
2 (q)j; (-qz-zxMu +u2+1e)?Hd

where d>0 and where we also introduce an "effective" uz, which represents less leading contributions. In
the scaling limit

(d]
- dr g, ()
- A oo i

A Regge pole with intercept a will be generated by a term |A] l-a in gzd () for A — 0, as in Eq. (12). This

is so since Regge behaviour is obtained from the small X or high (p-x) behaviour of the matrix elements of
5

the bilocal operators, and is therefore independent of the type of singularity near the light cone.™’ 7 Thus,

, dro
ng] ~ (g} »2 1 ( 5 2>
-q +p .
where & is the leading singularity with negative intercept. Thus considering (v 2/ -q) Tz = Rz(t), we see that

for v—« and (d+a)> 0

the sum of contributions of the leading light cone singularity and a representative of the non-leading singu-
larities is, '

2 \dro(t) a(t)
Rz(t)~41r [ d;‘gza,t)+c<:2&?> (M) . @5)

where we now look in a non-forward direction and allow for momentum transfer t dependence .(the first term

2 dA
4r _/w 2 g1 o)

thus making contact with Eq. (9)). For a(t) < 0 only the first term survives, which shows the appearance of
a fixed pole in 1/ (-q2 ) T2 at J=0 with a residue that is independent of q2. However, when a(0) is very close
to zero, it méy not be able to separate its contribution by present data through finite energy sum rules.

Since we expect d=1 for the next to leading singularity (as mass term corrections, for example), we see that
the second term is especially important near q2=0, while for q2 — -0 only the first term obviously survives.

can also be rewritten as

An effective change in the value of the residue of the fixed pole around (-q2) ~ “2 in a phenomenological analy-
sis may therefore not be surprising. The value of “2 should be around that value where scaling begins in
-

One can of course separate the first term in Eq. (45) by looking at Compton scattering for t#0, since for
RL=0, a J=0 fixed pole in T2 implies a kronecker delta singularity at J=0 in T 1’ which is q2 independent and
survives at q2=0. One may also detect the t~dependence in amplitudes with one real photon and one off-shell,
like bremsstrahlung in electron-nucleon scattering, 44 since the residue of the fixed singularity does not
depend on the photon masses (see below). Our assumption is that &(t) changes with t, since it comes from the
matrix element of the bilocal, and there is no reason for that to be fixed. (Anything that can move — moves!)

The fact, that the fixed pole term is dominated by the light cone singularity even at low (q2) follows from

the standard phase variation argument in Eq. (5) defining W e For choose the proton at rest and

q=(V’O’01VV2’q2) ~ (V,0,0,V +%>
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Thus most contributions come from lxo—xsl < 1/v and Jxal S w/M. Itis thus x2 < 2w/M = 4/(—q2) that arc
important in deep inelastic. However, if one subtracts all Regge contributions first, namely the behaviour
in Ixol = ngl is damped for high values, then it is sufficient to have v — to get to the light cone. In the
analysis for non-forward direction and different photon *masses" in Compton scattering one has matrix
elements of the bilocal operator between different momentum states,

[presPones] ,  ~PoePx [ da ap X RN gy 46)
X =

where P=p+p'. The spectral conditions restrict the integration variables to a finite region which, in the
variables o, =a+p and o =a-ﬁ, turns out to be the area within the lines connecting the four points (a = %],

1
a —0) and (@, =0, y @y = 11\/1 - 4M2/) 45 One can thus rewrite Eq. (46) as
1, 1 a nBRx lf—P—R‘ x
[<pngB (—z-x,—-ix)lp‘{] , =P PPx f“"ld"z hy (Aot € e (462)

x =0

with 7\ J\ bounded by four lines connecting the pomts (+1,0) and (0,+1). Thus in Eq. (42) we now have a
double integratlon and a denominator of the form (- q - 2aMyp - 268Mp!' + ie) , where My' = q-p'. To arrive
at Eq. (45) is now straightforward @'2 there is an integral over )\2 of H'z). One also see that there is no
dependence of the residue on any of the "photon' masses. The full analysis in the non-forward direction
shows that there is also an additional fixed pole in a spin-flip ampli'cude.44

Finally, we would like to comment that there may be a fixed pole at J=0 in the T a.mplitude coming
from non- leadmg singularities, of the form

2
-2
2 2 2

v -q v

which is non~polynon1ial in q However, such a ferm w111 show up also as a fixed pole m electro-
Qproductxon of the hadronic stz;p_es with the mass uz, that nge rise to the dxscontmuxty at q = u2. _
One may of course replace 1/(q -I ) byf dm p(m )/(q -m ), with fp(m )dm =1, to get the s‘.me effect
as before for the J=0 singularity, but now with a continuum contribution for the discontinuity in q . The
quantum numbers of these hadronic states are those of the electromagnetic current. One can of course a also
have a fixed singularity (kronecker delta) at J=0 in the TL amplitude, which from the Ieadmg light cone singu-
larity implies a tL term in the Schwinger term sum rule Eq. (14). Such a singularity also implies J=0 fixed
singularities in electroproduction of hadronic states, and also changes the relation between T1 and T fixed
singularities. It also ruinsthe polynomial dependence, since it may be of the form q / (q -l ) It may be
argued in this case that such terms are absent, since they are not produced by dispersion integrals over the
imaginary part, but by real subtractions only. (The dispersion integral has no J=0 fixed behaviour once the
a>0 Regge contributions are subtracted.) However, for Ry =0 such terms appear in T}j.

Note, that from a general light cone singularity d we get a fixed pole at a=-d in TZ’
(-q2) f(t) for all q2. Thls follows from Eq. (44) by arguments similar to the above. Note that now it will
appear also in W (for non-integer d).

with a residue
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IV. The Fritzsch-Gell-Mann Algebra

A. Quark Algebra on the Light Cone
A very important step forward in the study of deep inelastic processes was the hypothesis of Fritzsch and

Gell-Mann, 18 that not only is the leading light cone singularity given by a free field of spin-1/2 constituents,
but that so is also the whole SU(3) ® SU(3) structure of the bilocals of the leading singularity. 47 This implied
many relations, and it thus became clear which results of the parton model are a consequence of the
SU(3) ® SU(3) structure on the light cone and which depend on specific assumptions of that model.

To obtain the commutation relations, one writes the electromagnetic and weak currents in terms of quark
fields,

" p . W
-1 1 '
=3y (x +La )z[: | (@72)
n2\"3 \/5 8
J:V - [5-,“(1--,/5)11] cos 6+ [57u(1-v5)k] sin g =
= 9,0v) 3 [0\1“’\2) 008 b+ (4 *iAg) sin Gc]"’ ' @)

and then computes the commutators as for free fields. One then postulates that the type of singularities and
the SU(3) ® SU(3) structure are the same for nature. The space dependence of the bilocal operators is
unknown — it is measured in deep-inelastic electron and neutrino scattering experiments. One should
emphasize, that only the light cone singularities are of a free field nature. The matrix elements include all
the complications of strong interactions and may not have any resemblance with a scale invariant limit of

setting all mass parameters to zero, Defining

I = G0y, (svg) § A% pe: (#9)

we get ) | '
' + -~ be ot o
[Jﬁi ), & (y)] s i X{S,, (KN 8y + Sy (IIE, o - 8y, S5 (%,Y)
F Cpa A y)i o D) + 0 {5 (49)

where ] -

D) = - 5= €(zg) 627
and

£, = 3607, 1275 (322 903 + x=y)
A2 x,9) = 309 7,127 (32%) )2 - x ) e
The commu’mtors [Ja +(x), Jb (y)] are less singular near the light cone by one power of x , namely have a
leading &((x-y) ) singularity rat.her than the §'((x-y) ) as in Eq. (49). They are also proportional to mass
terms.

We now adopt the structure of Eq. (49) to hold in nature for the leading light cone singularity.

One can try and argue that the leading light cone singularity is not going to be modified in renormalizable
field theories, proceeding as if canonical considerations are valid and "subtleties' of renormalization of
infinities can be ignored. 29,48 One then discovers, that the leading bilocal is not changed for interactions
with scalars or pseudoscalars, while for neutral vector mesons, 'gluons', it gets multiplied by a line



15

integral
_ _agflv @a
W) Tp@): — () e Tyy):
where v _(x) is the gluon field and g is the gluon-quark coupling constant, One does not have to worry about
ordering problems in the definition of the exponential since (x-y) is almost light-like and the Gupta-Bleuler
commutation rules are taken for the gluon field, and thus any two parts of the line integral commute.

One can go further and postulate closed commutation rules among bilocal operators, 18 which yield light
cone singularities multiplying the same set of bilocal operators. For two bilocals Fl(xlyl) and Fz(xzyz),
this is assumed to hold when all four points are near to one light ray (all six distances are almost light like),
as indicated from canonical considerations of quarks with gluon interactions.

B. Results for Deep Inelastic Scattering

The analysis of deep inelastic processes proceeds as in our discussion in section II, One takes

[<p!S:(x) Ip>] 2 =P, fo(o-x) + x“gf\(p-x) ' (61a)

x"=0
[piase o] , =p, Ge0+x,850:%) 5 1b)
] x2=0 U A TR}
where the subscripts S and A mean symmetric or antisymmetric in p-x, respectively. The terms that go with

xﬂ do not contribute to the leading terms which give scaling. However, since in an approach with underlying
fermion fields the longitudinal cross sections are zero26 in the scaling limit, these terms contribute

9 ‘

to wL = (1 - V_z w 9" w 1 terms proportional to % 3% (the pu terms contribute a WL=W2‘= % F2 part, and the

contribution ?rom next to leading G(zz) terms starts as 1/v2)_ '

For neutrino-nucleon scattering,49’ 50 the matrix elements that enter are
) 21 4 igx W W+ -
W’w(q,p) =3 zs: d'xe T <psl J“ ), J,°(0) Ips>= |
= [- +S& W(V)( 2,,) + L p _P.Z_q. p. -4 W(V)(qz ,,)\‘
Cuv Z/) 1 av)r 2 P & 9 )Py & a,) Ve 1

o 62)

- ;—? €upag P WY @)

1 v, 2 1 ), 2 i (), 2
+ —= w + + —— -
ez W% Ve @w) oy (qup,, q,,pp) ARG .V)+2M2 (q“p,, q,,p‘u)w6 @w)
and |

0 =_w
wﬂV (ql p) == WV#("LP) »

T invariance sets Wév)=0. Since we have SU(3) @ SU(3) symmetry on the light cone, with all currents con-
served, the scaling limit for vW 4 and VW5 is zero. If the next to leading singularities are given by a struc-
ture like mass term corrections, then it is rather V2W 4 and v2W5 that scale, The latter also do not contribute
to the scattering cross sections in the limit of zero lepton masses. As for W3,

2 .
wWa@v) — Fg(w) (53)
in the scaling limit. The positivity conditions here are

2 /2 2
(1_1’__>w22w12LL

z Mo Wsl
. 3

The algebra Eq. (49) implies
wFy(w) = 2M F () (54)
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for all processes. Setting Bc=0, we get51

6 w[rgp(w) - an(w)] = [F;P(w) - Fg“(w)] (55)
One obviously also has the Adler sum rule®? in the ‘scaling limit,
a dw vp vn
S [P - 7] - - 6)
and the Gross-Llewellyn Smith sum rule®3
| * d n :
f . [F;p(w) + FY (w)] = -6 _ 67)
1 w

The first follows from the equal time commutation felations between time components, while the second
follows from the d coupling part of the commutator between space components of vector and axial-vector
currents. Note that the Adler sum rule can be derived by the p —« method, and holds for any q2 < 0 fixed in

the form52’ 54

- .
A Wi, qh) = -2
0

Equation (56) is the q2 — -0 limit of it, The Gross-Llewellyn Smith sum rule cannot be derived by the p —
method, since it involves a commutator between space components where z-diagram contributions are
important.54 However in some cases, one can include z-diagram contributions in fixed q2 sum rules using
null-plane commu'cataors.55 This is not the case for the sum rule Eq. (57), since in null plane commutators
one deals with f dq’ElVyu(q,p)]('l.,.:O , where " = q° F q3: and therefore the only combination that can come

2
o0 o0
d 9 2, .
[ Zowy ~ [ awrged .
o P 1S | '

out is

One would then get that the integral on the right hand side is q2 independent (it is actually infinite). We thus

see that light cone expansions put all current components on the same footing as far as sum rules at q2 ——c0
are concerned. Bjorken’s sum rule for W1 56 coincides here with the Adler sum rule, since the longitudinal

cross section vanishes.

So far the scaling phenomena and all other relations following from the algebra Eq. (49) are consistent

8,9

with experiments.~’" For spin dependent amplitudes and sum rules see Ref. 57.

Note that other sum rules, derived within the parton model with extra specific assumptions regarding

the "'sea'" of pairs,58
L]
dw [peP, | _ pen ]= 1
f1 o [P - Fhtw)] = 3 (58)
Sw pén _ &
_/; 2 Ty =3 (58b
w .

cannot be derived here. The first one is not related to any local commutator; rather, the left hand side is
proportional to K %)- fi(p-x) , namely an integration over a line on the light cone running to infinity. 58
The left hand side of Eq. (58b) is related to a commutator of a time derivative of a space component with a
space component (n=0 in Eq. (38a)), the value of which between neutron states does not follow from any alge-
braic structure.

When considering the combination -

;[ d3§’<pl[80J?(3?), J?(T)’)]Ip>,
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one gets that the leading light cone singularity contributes a term which is tﬁe part of the kinetic energy
carried by the quark fields, namely «< <p li;(-yi'ﬁj + -yj'é’i)zpl p>. Since only the kinetic energy part of ouv con-
tributes to the pupy part of the matrix element, we get a sum rule,

6[[ p()+F2(>] jj[”p(wF ()] de-fa.e 69)

where ¢ is the fraction of energy carried by constituents that do not couple to the currents, like neutral
gluons. Recent experiments indicate that € =0.46+0.21, 9 namely about half of the energy is carried by
neutrals.

All the results of the light cone algebra depend on the hypothesis that the current constituents have free
field leading singularities. The relation between current quarks and constituent quarks, the latter appearing
in quark model spectroscopy considerations, is a subject of recent activity.sg’ 60

Other implications result from the internal group structure and positivity, and‘are in the form of
inequalities which hold for all . These were first discovered within the parton model,61 and then shown
- to hold from general light cone considerations. 62,63 We mention here the bounds on the ratio between en

and ep structure functions

(8U(2) symmetry) 4)  Fg'(w) 1'

> > ©€0)
(SU(3) symmetry) 3 ng(w)
and the bound
FOP) () 2 sue)
n 2 ep) = 458 61)
4FSVw - FP @ T (5 sUe)

The latter being severe for those w where the ratio in Eq. (60) is.close bo the lower limit.

There have been recently discussions regarding the rate of convergence of the Adler sum rule. It is
argued that elther the convergence is very slow (w ~ 100?) or that FVH/FVp is large for o <5. However,
it can be shown 65 that the ratio is going to be large whenever Fen/Fep is near to a 1/4. It may be possible
to satufate the sum rule up to  ~ 30 - 40 with a ratio F;n/FZp of 3-4 for w<'5. 65

C. Further Implications - Non-forward Matrix Elements

Since the singularity structure near the light cone is a c-number, the scaling laws will be the same for
all processes in which the bilocals of the leading singularity have non-vanishing matrix elements. In particu-
lar, varying the momenta of the states in the matrix elements of bilocal operators constitute a severe test
of the idea of c-number singularities. Such matrix elements occur in amplitudes with two currents, and to
get to the light cone we need both "mﬁsses” of the two currents to become large, in either space like or
time like directions. .

One can consider ¢"e” annihilation into a u+u- pair and a given hadronic state. 66 We are interested in

the part of the amplitude which is the diagram
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Here the hadronic state is with charge conjugation C=1. WithP=f-k and Q= % (¢+k), the matrix element is
M, =f a*x ¥ x T [J“ (3x)3, (- %x)] 10> 62)
One can consider here the BJL limit of Q0 — oo with 6 fixed, which is in the physical region. The scaling
limit here is ¥ =Q:P—  with @ = 2Q-P/Q2 fixed (w < 1). In this limit one can use the light cone expansion
for the time ordered product in Eq. (62). Moreover, by squaring the matrix element and summing over X,
and then letting M —o (first y —« with P and » fixed), one can check the assumption that the bilocals obey

18 291f correct, one obtains an explicit expression for the

a closed algebra when all distances are light like.
cross section as a function of  in the above limit. One has to separate the contribution of the diagrams

where the hadrons are in C=-1 states,

These can be calculated in terms of ete™ — all. For more details see Ref. 66.

Other processes which involve two high off shell currents are inclusive electroproduction of pu¥u~ pa.ir867

68 In the former one can relate the inclusive cross section, again assuming the algebra

and e¥e” —e'e7X.
of bilocals, to total electroproduction. In the latter process of colliding beams one has the advantage that in
certain regions the diagrams where both exchanged photons are space like dominate, thus s1mp11fymg the
analysis of connection with experiments. 68
All these processes have cross sections smaller by 2 -4 orders of magnitude than present day experi-

mental techniques. The colliding beam processes have the largest cross sections for near future study (SLAC, DESY).

D. Current Conservation

The form Eq. (49) for the commutation relations near the light cone for vector currents is consistent
with current conservation to leading .order, namely when applying o (x) we do not get 6"(x ) terms because
DO D(x)=0. However, we do get terms with 6'(x ) singularities in general. These should be cancelled by the
corresponding contributions of the next to leading singularities near the light cone, which in the current
commutators involve 6(x2) singularities, and therefore 6'(x2) terms when a dlvergence is taken,

Note that if we try and write the general terms contributing to Wab and Wa in an explicitly conserved
way like for the case of the electromagnetic currents Eq. (36), we get that tlns gives [JO(X), Jo(y)] =0 for

ib and Vab, a result known long ago 69

local functions V
We can write the next term in Eq. (49) as C (x y) D(x-y}. Also, we do not want <plcz}; *,y)Ip> to
have a p“p term, since such a term contr1butes to the leading scaling behaviour. Let us demonstrate our
results for the £ be part of the commutator. "0 Introducing Z =x+y and A=x-y, we get from the conservation
conditions
( aX

**s_ ) a

o+ (s, - s, ve, PR A% 4 (c, -cC ) &% = a% (63a)

pvpa 5 oy vo

(6“%s,) 4, + (aﬁsv - ol + v #2ag)a%+ (c,, 4 ) %= a2 (63b)
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where g, and hu are new bilocals, which do not contribute to the next to leadi‘ng light cone singularity. Sincc

[S (x,y)] = 2J _(x) which is conserved, it follows that
o X=y a

Zs o ®e ) = (x y) (64)
Therefore,
aZ _ A Y - 2
(%%s,) A, =A%A B, = a%(a 8, - 4.8 )+ 2%
and Eq.  (63a) implies

‘ VA VA A
c_-cC =AQ§V-AV§Q—(SQSV—68 te a“Ag)+(6 -T

ay va uypo ay va) (652)

where A% (Eav - avoe) = Az(gp-gv). Since we do not include in C or C terms proportional to Az, it follows
that g, = §v and

~ ; _ A AT '
Cyp - ?:m =€t DKy : (65b)
As for solving (63b), we observe that
A Vs Z,p _ A
9,8, -aS, + e‘wpaaf‘ AL =Fr A (66)
since each term on the left hand side vanishes for A—0. Thus, observing that F[a 1@2]es is antisymmetric
in the first two indices,
(73 A AQAA _ AQE LA ‘ !
A F[au]kA =AA ‘F[M]oz =aA [F[Av]a + F[Aoz]v]
and hence, from (63b), _
= At N ~ ~
Cap*Cpa= A [F[}\a]v + F[Av]oz] (a ASB) Bay * (Cav + Cva) (67a)
where again, excluding A2 terms in 5, we have
C_ + E =A A S, y) ,' ~ (6b)

ay

Note that only in the free field case, neglectmg masses, can we have C V—-O This is s0 since in any inter-
acting theory § # 0, since g =0 means an infinite number of local conserved quantities through aaZS (x, y)=0. 1
The saine is true for the left hand side of Eq. (66), which vanishes only for free fields, ;
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V. Total Annihilation e e —=all, and 7°—=2y

The total electron-positron annihilation cross section into hadrons is given by

2

a(8) = (68)

where q is the total momentum and s = qz, and the function p (s) is related to the commutator of electromag-
netic currents by

olfs, e, 3, @]0> = —— f d*ae% (@, q, -q,,4)e(d’) (89)

3(2m)

Here we are dealing with a vacuum expectation value of a commutator, and therefore the short distance
and light-cone structure coincide. The asymptotic behavior of g(s) is therefore given by the short distance
structure of the left-hand side of Eq. (69). Using free-field singularities near the light cone, we obtain that

o(s) « % for s——oo.72’73 However, the coefficient cannot be determined unless we also assume that the
unrenormalized fields from which the current is construeted satisfy canonical commutation relations. In

such a case, we obtain

Tete~eall {®) 2,1 2 '
1
8=z s=0

e+e'—°u+u'(s)

Note that when one calculates the short distance structure for free fields using j# =:1¢ Yy Y:, one ob-

tains for the vacuum expectation value near x2 =0,

s~

B

(71)
- - + + { 2
3[aaA (x)][BBA (x)] —[aaA (x)][sp A (x)]g'v;? € {xg) §" (xz)(gw X -2xu xv)
and thus one obtains for the time-space commutators, for xo-—>0,
i (3), 2 (3)
O0f[3,(x), 3, (0)]0> —— —————a & (F)+——5 9,887 (F) (72)
II:O 7k ]I Xg—0 6"2!"0‘ k 121 2

Note that the infinite Schwinger term74 is here obtained without any point-splitting in defining the current.
This shows the advantage of short-distance expansions over direct use of equal-time commutators. Mass
2 8 83 (3.

The prediction for the ratio in Eq. (70) depends now on the constituent scheme used. From oL = 0 in

corrections introduce terms « m

deep inelastic electron scattering, we assume no spin-zero constituents. For the Gell-Mann-Zweig (GMZ)
fractional charge quarks, one obtains p(s) -~ R= % When an extra SU(3) quantum number is introduced, 60,7
"color," then R = 2. '"Color" quarks ("red," "white, " and '"blue") obey ordinary Fermi-Dirac statistics

All physical states are smglets under the "color" group. Thus mesons are constructed as dabq qb and
baryons as €abo aqbq , Where ab c are "color" 1nd;ces and i jk usual SU(3) ones.

Recent experiments at CEA lndicate that R =3 i8 excluded, and are consistent with R = 2, as for the
"color'" quarks. (One should remember, however, that the -:— law has not yet been verified.) The latter
scheme also is in agreement with the observed 1r°--’2'y decay rate, as given by the Adler-Bell-Jackiw anom-
aly, & while the GMZ quarks give a value smaller by a factor of 9. For a discusslon of the various quark
schemes, see ref. 75. Note that the Hahn-Nambu qua.rks77 of integral charge yield the same value for the
7r°——2'y decay as "color" quarks while they predict R = 4 for annihilation. When "charm" states do not con-
tribute, one gets R = 2 for Hahn-Nambu quarks, too. The "charm" quarks do not contribute to 1r°—->2y be-

cause of their quantum numbers. In the Hahn-Nambu scheme,qs"79 the current can be written as
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= 1
= plalyl « FLQ ¥ (73)
i_ {2 1 1 11 2
where Q" = (5, okl 3> as in GMZ and Qa (3 3, - 3-) The first term, J( ), is a singlet under [SU(3)],,cha "

and an octet in the usual SU(3), and the second, J (2) is an octet under [SU(3)J"charm" and a singlet under SU(3).

Thus, if one asserts that "charm" hadron states have very high mass, then when considering matrix elements

"8 However, for total annihilation, we have an

between usual hadrons, the relations are as for GMZ quarks.
extra factor 3, as compared with GMZ, since each index "a" in J(l) contributes equally to the vacuum expec-
tation value of the commutator, thus yielding R = 2. For ° —=2v, all quarks contribute to the triangle
anomaly, since they are virtual. However, since the matrix element involved is {7 \TJ J \0) the com-
bination J( ) J(z) does not contribute since it is an octet in "charm" and J(z) J( ) does not contrlbute since it
is a smglet in SU(3) Thus only J( )J( ) contributes. Here again the amglxtude is 3 times the GMZ value.

T
Note that when "charm'' states contrxbute the Hahn-Nambu scheme predicts =£n > ; , which is excluded

by present experiments. 8 ‘ep

Crew’cher80 showed that a relation exists between total annihilation, ° decay, and a space-space com-
mutator [Vi(')?), Vj(f)‘)]: ie; ik Ak(QZ) 6(3) (X) which appears in Bjorken's polarization sum rule.81 Here Al({Qz)=
{/; s kazzp, and only the isovector part enters into the relation. Also, only the isovector contribution of
total annihilation enters. Denoting the coefficient of the isovector part of Ak by K (which can be measured by
the difference between proton and neutron for polarized electron on polarized target scattering), and Rl the

isovector contribution to total annihilation, the relation is

S=KR,, (74)
where S appears in the ° —= 2y amplitude 3582‘83
1 2 wap ({4, @ 5
S=-15 " et ﬁfjd xdyx,y, ol t* 3, (x)Jﬁ(O)any(y)!O) (75)
For GMZ qua.rks, S = -2- = %’, and K = % For the "color" quarks, § and R1 are multiplied by 3.
8

From experiment, S =

Crewther8 derives this relation by a consistency consideration, first using a short-distance expansion
in x—0 and then iny — 0 in Eq. (75), and the free field form for the three-point function at short dis-
tances. 85 This relation is of great importance, since it connects ° decay to other processes so that we can
get the decay amplitude without any need for renormalized perturbation theory methods. This is relevant
since our light-cone expansions do not hold in the latter approaches. In fact, the form for the three-point

75 to follow

function for all points near one light ray was demonstrated by Bardeen, Fritzsch and Gell-Mann
from consistency considerations in comparing the different ways of reducing that function by light-cone ex-
pansions of pairs of currents. '

" Anintere sting problem is that of constraints imposed on operator product expansions from the free field
form for the three-point function, namely, from the existence of an anomaly. It turns out that one geis con-
straints on Wilson's short-distance expansion, namely, that line integrals of local operators appear in an ex-

pansion of a product of two currents. 86 Light-cone expansions with bilocal operators are not implied.
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V1. Single Particle Inclusive e e~ Annihilation

87,88 to discuss

Light-cone expansions were generalized to include products of more than two operators
single-particle inclusive experiments in ete” annihilation and eN scattering. Recently, it was pointed out
that certain regularity assumptions of the terms multiplying the light-cone singularity lead to finite multi-
plicities in e+e— annihilation, 89 It was also pointed out that introducing singularities to get logarithmic in-
crease in mulfiplicity ruins sca.ling.90 Moreover, suci\ a behavior is inconsistent with the spectral
lconditions. ' ,

A careful examination of the singularity structure reveals that one can get a consistent formulation which
yields both scaling and logarithmic multiplicities from the leading light-cone singularity. 1 The logarithmic
multiplicity is obtained by a certain singularity structure at short distances of the term multiplying the light-
cone singularity. It does not affect the scaling because the relation between this singularity and the light-
cone singularity has to be changed (as compared with that in ref. 89).

2

We consider e'e —H + X, where the four-momentum p of H is observed, and p“ = Mz. Defineg2

— _ 1 .4 igx ‘
W, (@p) = 2,,fd xe XS ol lH(E) x>
X
) _ 2 9,9,
CHEX|T, (0]0> = W v, &) (g, + 5>
q
1 = 2, My My
+*~W(V,Q)*<D ‘——Q><P "_‘1> (76)
272 2 :
M N\ M q U v qz .v .
where we also &um over the spin of particle H and Mv = q. p. Assuming a one-photon exchange amplitude,
we get

dza _ 1roz2
déd(cos ) 2.3

o (1+c0326)+o (1 - cos? 8) . (77)

2
where ¢ = —2—(11\-4—; » 0 isthe scattering angle of H in the e+e_ center-of-mass frame, and

Op = W1
(78)
= W Y W
o, = Wi+ (3 W,
2
me Mé-

where in Eq. (77) terms of order —3 Or —3- Were ignored. (Note that here \7\72 need not be positive. It

is, in fact, negative for oy = 0.) ¢ 1
ﬂ:ﬂg_z_[za (& Q2 +o, (& qZ)}-_—.i."Eo‘_zf(é q2) (79)
d 3 13 » - ]
£ g2 T L'e s
We have
/2M
d —
f dbgF = 1 (@) oy (a?) (80a)
1
q/2M

d¢ d
f 2“%‘ qE = ot (1) (80b)
1
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where E(qz) is the average multiplicity of hadrons H and atot(qz) is the total e” e~ annihilation cross section

(in (80b) we assume for simplicity one type of hadrons present). Assuming owt(qz) ~ —12 , we get
q

q/2M
/ fsﬁ (¢, @) = AT(aD) (812)
1

q/2M
f %%us, ¢ = 2A (81b)
1

A is related to the rate of decrease of atot(qz). In coordinate space

W,, @ ~ fd4xd4yd4z Jax-y) ipz

<o [’r* (J“(x) J’;(O))] [T* (JV (y)JH(z)>] o> (82)

where J H is the source of H (suppressing spin indices) and T* denotes a covariant anti-time-ordered product
(operators with earlier times are to the left). Defining

£, (u2,p-u) =Id4fyd4zeipz (0'[’1‘* Ju(u-fy).]'; (0)} [T* T, () I(2) ][0} (83)

we have

- 4  iqus
/ACH ~J'd ue .fp

Y (u2, pu) (84)
and standard arguments {mply light-cone dominance luzl < —12 for qz—--oo and fixed £€. These arguments
hold also for & -0 as long as P—Jae— —-0. Thus we may ge? light-cone dominance terms also for large £,
where one may get an incréase of n with a.  For f(4,9%)—F(¢) as ¢* —=c0, with F(§) ~ ¢2 for
large &, we get a ldgdrifhmic mul'tiﬁlicivtﬁy.m Since from E% < é(with g > M) the contribution to n is finite,
most of the contribution comes from M(—f— —=0, in which case light-cone dominance applies. We should
remember, however, that a logarithmic increase in n may come from a non-scaling term altogether, like,

for example,
1(6,92) ~ 2B% £ (¢) + £, () (85)

with f1(5) ~ 53 as & — o0 and

o0
_4 1653- £,(¢) finite.

One then gets that only f2 contributes to the energy sum rule, Eq. (80b), and only fl to the logarithmic in-
crease in n, as q“—»00.
We define, in analogy with Eq. (7),
& = { 2 5 2
W, = (g, a +a,q,)7 @)
2 2| =
+ [(q- pHAupy * 4, Py -P,P, a4 -8y, (A D) } Vy(a2v) (86)

and take VL = 0, as follows from the fact that the tensor structure of f’w(uz, p- u) is taken to be the same
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as that for deep inelastic electron scattering. Namely, the light-cone expansion for the product of two currents and two
hadronic sources, asinEq. (83), is taken to have the same tensor structure as the product of two currents, when the
space-time distance between the coordinates of the two currents in the above two cases approaches the light
cone. A discussion similar to what follows can be applied to VL# 0.

We expect
v, (a%v) ~fd4ue‘q“[znu2(- wCie uo)}f(p~ u) (87)
where p is some madss parameter. The singularity structure is that of the next to leading part in a two-point
function,
- 2 .
13fd4qe 194 g (qo)a(a - 42) = —L5 s 1oy PP (P rieuy) + . (88)
(2m) 471" -u +ieu0 167 :

This is dictated by the fact that in Eq. (83), J#(x) is always to the left of Ju (y), and for scaling the singularity
in \7’2 in u2 is of zero order. Writing

f(p-u) =fd°‘§<a> e l@p-u ' (89)
we obtain ' -

Vy(aZv) ~ Jda é(d)fd‘luei(q'ﬂp) !Znuz(-uz +1e u0>

«fda g(@) 8 (qo - apo) [6 ((q -ap)’ -uz) -6((q - dp)z)]
~fdaé(q) o (v -am §(@ -ap?) (90)

Note that 6 (k) §' (kz) has no Fourier transform due to an infrared divergence, as is obvious from Eq. (88).

However, for calculating —\—’2 ‘for q2 —00, the last two expressions in Eq. (90) are equivalent. We obtain
=, 2 -2
Vo vy ~ v () ~ (91)

The other root @, ~ gﬁv of (q - ozp)2 = 0 does not contribute due to the 8(v - aM) factor. The spectral )
conditions also imply g(£) = 0 for £ < 1. To get logarithmic increase in multiplicity, we need g'(£) ~ 52
for large &, which means f(p- u) ~ ——Ll—lq— for small p. u.

If one starts with the Fourier transform of a commutator, one gets an e(xg) 6 (x2) light-cone singularity
for 72. The procedure in ref. 89 is to take over this singularity but modify the bilocal such as to pick up
the part relevant to the annihilation process. However, as pointed out in ref. 90, in such a case the root
o, ~ % also contributes, and in case g(&) grows as £ —e o0, We get a violation of scaling. Moreover,
the spectral conditions are not maintained. One can argue that these g(ngi) terms are cancelled by less
leading singularities with more singular p. u behavior. However, the ¢
term in (£, q2) does not survive in the leading light-cone singularity, and the non-leading singularities do
not produce such a term. Thus one cannot just modify the function multiplying the light-cone singularity
when starting from a commutator; one also has to modify the structure of the light-cone singularity.

If we subtract, in Eq. (83), the expression with u ~—= -u, we obtain that the integrand for \72 of Eq. (87) is

[ﬂnuz (—uz +1¢€ uo)]f—(p- uy - [Rnuz (—u2 -ie uoﬂf(-p - u) (92)
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However, unlike the case of deep inelastic scattering, here f(p- u) is definitely not purely symmetric,
and therefore we do not have a

[in,uz(-u?‘ +ieu0)]—[ﬂnp.2 (~u2 -le uo):] = e(u0>2i1r9(u2)

light-cone singularity only.
It is instructive to examine the above structure in lowest order perturbation theory for a ¢3 type inter-
action, which yields Bjorken scaling for all ladder graphs. 13 Taking a scalar current

- . + \r:yg .
I ) =16 (09, 6(x):

we have a light-cone expansion for the connected part (denbted by subscript ¢},

b,wa, 0]~ —+— “a‘f’”*gf,y’;ﬂp*(x)my)]c +[o <x>¢+<y>]c} o e3)

-u +tieu
0

Consider now

fd4x olax [<le“ (x)J, (0)[p>]
C

in the Bjorken limit, with |p) being a state created as ¢*[0>. Take a ¢* ¢ B interaction, where B is a
neutral scalar field. Define

(o - , |
g (@ = |de-2e' P> ol 100} )] (942)
L . (o]
x2=0
_ [ ip.x ) +
8@ = [ap- 0P *[cols 0" )]p))] (94b)
L C
x2=0

Eyaluating g1 and g, by introducing intermediate states, we get

H

v

X o— B> X 0—

v
)
N7
o
4
Z
o/
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1+ 1I give g, (o), and III + IV give g, (@). Note that II, III, and IV contribute to q2 > 0 only, since for
example Il means, for the Compton amplitude, the contribution

q | ' q

Defining
Ga) = Lre (95)
a?+a <2 - Ji/x_z~> +1
where g is the mass of the quantum of B, we get for the various graphs
I ¢ 6(1+a)G()
II : -8 ()G (@) (96)
I -0 ()G (~a)
Iv: f(a -1)G(-a)
where an overall proportionality constant is omitted. Thus93
g, (@) =8 (-a) 8 (1+a)G (@)
(87)

g,(0) = 6 (@) 6(1 - @) G ()

and gl(a) + gz(a) appears in deep inelastic scattering. However, for our process of single-particle in~

clusive annihilation, only IV contributes. Here g(a) ~ é for large a, which means a In(p- ﬁ) singularity
for small (p. u). b4 To get a logarithmic multiplicity in this case of scalar constituents, one needs here a
singularity, as follows from the structure in Eq. (93). "Soft" field theories yield at most a

1 1
p-u)2 (p-w

havior™" and thus a finite multiplicity.



VI. Other Problems and Approaches
Let us mention here other problems and other approaches that we have not discussed.

A. The Parton Model

It has been discussed in many papers.

15,96 It has also been applied to inclusive single particle

electroproduction in the parton fragmentation region,9 Tand to large angle hadron-hadron scattering. 98 In
both cases the light cone dominance does not directly apply.

B. One Photon Amplitudes

These include exclusive electroproduction, 95 and considerations regarding form factors. 100 For a
review and criticism see Ref. 101. One may argue that in the case of electroproduction of pions the contri-
bution of the light cone singularity of [Jy(x), JH(O);I, where JH(O) is the source of the pion field,is that of a

fixed pole and therefore important also when the mass associated with JH is finite. 102

C. pp—p WX

The theoretical analysis of this process is still controversial. 103 The prediction of Drell and Yan, 104
from arguments of parton-antiparton annihilation dominance, isa simple scaling law
2 2
do o . . :
P

do® (@

where q2 is the mass of the u+u' pair and s = (p1+p2)2. Here the leading light cone singularity, the l/x2
term, does not appear, but only the next one, which is regular on the light cone. Writing

A S S S— —-q dtx e 1 <p.p,ld (x)J“(O)IiJP> (99)
z 3~ 3 P2y 12
dq q 67 S(S 4M .

We need <p1p2lJ (x)J‘u' {0)1 p,p,> near the light cone. Using a form as in Eq. (36), with C -'0 and
C !ln(—x +iex ), as indicated from the scaling at SLAC, we obtain

_51% ~ Q—q- dx 7lax ﬂn(-x2+1€x ) flp,* X, Py X, S)
dq 9 ~0 1 2

3 i{ap+pp,-q) X ‘
=/d—q—qfdadﬁ g(a,B,S)fd4xe 172 xf_n(—x2+iexo)
0 ' :
~f o dedgg(e,B,5) 6(aE  + BEz'q0>5'((apl+sz'q> )

LI
_f d
—f Togfda dﬂ g(avﬁvs) O(QEI + ﬁEz - qo)

X 6'(q2 - 2a Pya- prz.q - aﬁS) (100)
The spectral conditions imply that .
0<acxl
(101)
0<B8x1
and then the contribution comes from either
1>a>¢
)‘2'“’ (102a)
£28 2 1x
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or
1>82¢
(102b)
. )‘1"*’
£>a> 3=
9 -,
where 92
w = S-
2q-p
M=TE L
(103)
2q-p,
2 8§
p 3
-4r ap” g _1 1 2 _
d=Se Vg § =3 Ot A\ () - @

We thus see that a choice like
g(@,B,8) = 6(x) €(8,8) + 6(8) E(@,9)

does not contribute at all (this was the form taken in Ref. 105). The procedure of Drell and Yan amounts to
setting g{(a, 8,9 = 0 for the leading singularity and considering only the contribution of the next to leading as

PP, 19 (%) 3,(0) Ipyp,> ~<pll[$ (")"u]a[‘“o)]g loy> x

x by [0, ] [ 1> ~ P30 Trfry, ]

x f(p;*X) f(pz-x) ~ S1{p,-x) f(pzox)

So that
2
do 3 -
Ly~ [ By E0) 0 602 y0)
dq” @)
S
w="3
q

Brandt and Preparata106 take the form Eq. (100), with g(a, 8,S) exponentially damped in S or in power
thereof. Thus da/dqz. decreases faster than any power in q2 for fixed w.

D. Can Quarks Escape?

In deep inelastic scattering, the bilocal operators that appear have quantum numbers of a quark at one
point and of an antiquark at the other. The distance between the two points is light like, with the space
distance of order w/M. Thus it appears that, although light like, the space distance may be arbitrary
large. The fact that one does not have asymptotic quark states is no doubt due to a complicated dynamic.
Possible infinite potential wells may provide the answer, as argued by Johnson, 107 For a discussion
of this problem in the various quark schemes see Ref, 75.

E. Studies in Perturbation Theory
The studies of Drell, Levy and Yan]‘6 demonstrated the emerging of scaling by introducing transverse

momentum cutoff. If one does not introduce such a cutoff, perturbation diagrams do not scale, but lead to
violations by powers of {g qz/mz. 12 Summation of infinite sets of ladders without self-energy correc-
tions leads to power singularities in Wilson's expansions, but no bilocal structure (as we discussed in

Section III, D). The Callan-Symanzyk equation108

haviour at most for certain values of the coupling constant. This in general does not lead to Bjorken scaling

shows that Green's functions may have power type be~

unless one has canonical dimensionality.
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F. Conformal Symmetry
Wilson's "skeleton” limit,

This limit has been studied recently by many authors.

1,109 is the limit when strong interactions become conformally invariant.

110,111 In particular, an interesting bootstrap
scheme for the two and three point functions was studied. Such an approach originates from the fact that

the two and three point functions are determined by conformal invariance (up to proportionality constants)
from the dimension of the field, and the higher point functions can be computed by skeleton graph expansions.
The integral Schwinger-Dyson equations then turn, by use of conformal invariance, into algebraic equations

112 We should mention again, as in Section IV, that

for the dimension of the field and the coupling constant.
one should take results of scale invariance only for the singularities, since matrix elements of bilocal oper-

ators involve mass parameters (like Regge trajectory slopes, etc).

G. Null Plane Quantization and Sum Rules

Quantization on a null plane instead of an equal time surface was investigated by several authors.
55

113,47

When considering sum rules,” one has here an advantage over the infinite momentum approach54 in that
z-diagrams are taken into account (as verified for the cases of free fields, where the p —« app1oach already
leads to problems for space-space commutators). See also our discussion in Section IV.B. How to take

class II diagrams into account is discussed in Ref, 114.

H. Relation Between Scattering and Annihilation Scaling Functions
It has heen argued92 that the fi(w) defined for single particle inclusive annihilation be analytic continu-

ations in w of the deep inelastic functions according to
Filw) =% F ) Fyolw) =+ Fylw) (104)
where the upper sign is for fermions and lower for bosons.
Such a relation is in general not expected, since the scaling functions are cross sections which have no
simple analyticity properties. Even when Fi(“’) can be continued analytically, Eq. (104) need not hold.
Equation (104) was shown to hold in ladder models with stable particle exchanges. When propagators are

modified to include self-energy cuts, Eq. (104) does not hold any more. 115 It is instructive to consider the
relation implied by a box diagram (with scalar currents and particles), ‘

(#)

(M) (M)
where the exchange @ represents some spectral function. Here F(w) is continuable, but the relation now
is
Fm»=-ReF@»+%wg%/” pZm? dm® (105)
L(w)

where
2 - 2
Liw) =M w+-—£"——~g—§ .
AR Vi

Note that for w near 1 the continuation is expected to hold, since L(w) ~  and there is essentially no con-
tribution from the spectral function term. (Im F(w) is alsovanishingly small there.) For =1+ u/M we have
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the minimal value for L(w), which is (M+u)2. Note that parametrizing F2 =C (w—l/w)3 with F1=(w/2M) F2
the analytic continuation relations to annihilation lead to structure functions which yield a logarithmic
multiplicity (see our Section VI). However, the continuation should not be believed for w—0.
The Gribov-Lipatov relation537 between the scattering and annihilation, as derived in perturbation
theory for gz « 1 and g2 in qz/m2 ~ 1, are
Fy(gem) = -o” Fylwm)

; ’
(106)

127
This also yields a logarithmic growth in multiplicity for F2 ;—::o(const).

2 2]-1
.3 L
W—ng[1°—g—2‘fgm2:]

I. Early Scaling

Light cone dominance does not account for the early scaling observed at SLAC,8 namely for
(-qz) 21 BeVz. Any attempt to explain this result must involve dynamics, since non-leading light cone
116, 117 We should mention that the Bloom-Gilman variable]‘18 w'=w+ Mz/(-qz)

singularities are involved.
119 0t the variable (2My +M2)f-qB+ad, with

extends the scaling to lower qz. It was also suggested

a2 ~ 0.4, is the only variable for all qz.

J. Finite QED
It was recently argued by Adler 120 that the Baker-Johnson-Willey conditiénlzl for a finite photon
0 should be changed to be the

A finite photon propagator yields a finite QED
121,123

propagator, which is an eigenvalue equation for the bare coupling constant a
same condition but for the physical coupling constant a. 122
for an appropriate choice of gauge, when the bare electron mass vanishes, Their condition is
Fm (ao) =0, where F[l}(ao) is defined as the coefficient of In (—q_z/mz) in the single ferrpion loop part

wc[:ll(—qz/mz, 010) of the renormalized photon proper self energy,

"Egl](‘i?z“'ao) = AAALOINN + o AN 4.0 (107)
VWA

2
= G'ﬂ(ao) + F[ll(ao) in <—--L2> + (vanishing terms as qz- )
M
24 zp(ao) =0, which however involves all
120,122

Their condition is a consequence of the Gell-Mann-Low condition
self-energy diagrams (coefficient of logarithmic divergences). Adler shows
that F[l](ao) =0 is an infinite order zero. He furthermore argues, that in such a case one has an extra

solution for finite QED, which is F[l](oz) =0, coming from a different order of summation. The condition

F[l](ozo) =0 comes from summing first all photon self-energy parts, thus obtaining an asymptotic photon

that zp(ao) =0 implies

propagator on/qz, and then inserting those into the vacuum polarization graphs Eq. (107). One can, how-
ever, first sum all single fermion loop vacuum polarizations, then all two loops, etc. One then gets the
condition ¥ ! (a) =0, since the single loop sum now involves ot/q2 for the photon propagator. Adler argues,
that this is the condition chosen in nature. The fact that the zero is of infinite order has implications on

attempts o* evaluating it. 122 For speculations on experimental implications see Ref. 125.
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