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Perpendicular, parallel and effective moments of inertia are calculated for de-
formed doubly even actinide nuclei ranging from Thorium up to Fermium (226 ≤
A≤ 256) within the Belyaev cranking-model and by using the single-particle energies
and eigenstates of a deformed Woods-Saxon mean field. Calculations had been per-
formed systematically for the ground state, for the second and third minima as well as
for the first, second and third saddles points associated with fission isomers. The evo-
lutions of the different momenta of inertia and their dependence on excitation energies
as well as on deformations is shown. Comparisons with experimental values, when
available, is made.
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1. INTRODUCTION

Recently, renewed interest arised for theoretical calculations and predictions
for fission isomers properties. This has been, years ago, motivated mainly by the dis-
coveries of the fission isomers and the related resonant structure of the fission cross
sections. Theoretical investigations of momenta of inertia on rare-earth and actinides
nuclei were able to reproduce the experimental momenta of inertia for equilibrium
deformations of nuclei [1, 2]. This had been done by using the cranking formula with
pairing correlations, combined with various models such as the liquid drop model or
the microscopic-macroscopic model [3] based on the Nilsson [4] or Woods-Saxon
[2, 5, 6] shell models, etc. It is well known that the ground state momenta of inertia
are reproduced within the limits of 10−25%.

Besides, it is well established that the moment of inertia is very sensitive to the
pairing correlations. This dependence has been intensively investigated either at zero
temperature [2] or at finite temperature [7, 8], and also by including neutron-proton
pairing correlations effect at zero [9–12] and at finite temperature [13]. Recently,
excitation energy dependence of the moment of inertia for the 93Mo, 194Ir and 196Au
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2 Momenta of inertia along the Fission Path for Th, U, Pu, Cm, Cf and Fm Nuclei 1421

nuclei had been performed as a function of the nuclear deformation [5]. These nuclei
were recently used in evaluations of induced neutron cross sections and revealed a
strong dependence on momentum of inertia parameters. Furthermore, the moment
of inertia had been calculated for the 240Pu alpha decay process within the cranking
model and using Woods-Saxon two center shell model [6].

Theoretical study of the effective moment of inertia Ieff represents one of the
direct ways to investigate the shape of the nucleus at the barrier [14]. The angular
distributions of fission fragments are related to the conservation of angular momen-
tum, and therefore to the moment of inertia in the region comprised between the
top of the external barrier to the scission. In the last decades, development in ex-
perimental nuclear physics made possible the study of nuclei formed in heavy-ion
reactions [15]. It is known that the experimental value of the effective moment of
inertia can be obtained from an analysis of the anisotropy of the angular distribution
of fission fragments. These fission fragment angular distributions at low spin values
and moderate excitation energies are well represented by the means of statistical the-
ory [16, 17]. In this context, the temperature dependence of the moment of inertia
can be extracted from data concerning the angular distribution of measured fission
fragments anisotropies and the theory can be tested.

The purpose of the present study is to make systematic calculations of the effec-
tive moment of inertia at the saddle point as function of mass number and excitation
energy. This will be done for the isotopes of some deformed even-even actinides
nuclei, i.e. 226−236Th, 230−240U, 236−244Pu, 240−250Cm, 248−254Cf and 252−256Fm.
Furthermore, systematic calculations of perpendicular and parallel momenta of iner-
tia for the same isotopes nuclei as function of excitation energy for the ground state,
the second and third minimum as well as for the first, second and third saddles points
are performed.

2. EFFECTIVE MOMENT OF INERTIA

The anisotropy in fission fragment angular distributions is due to a non-uni-
formity in the distribution of the projections of the total angular momentum along
the direction of fission [18]. The anisotropy is generally weak, and in most cases
the angular distribution is simply described by the means of the parameter K2

0 . In
the statical model, the latter is defined as the mean square value of the projection of
angular momentum on the nuclear symmetry axis [4, 19] and is proportional to the
product of the effective moment of inertia Ieff and the temperature T at the saddle
point [4, 16, 18]:

K2
0 =

IeffT

~2
(1)
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with:

Ieff =

(
1

I‖
− 1

I⊥

)−1
(2)

The temperature dependent momenta of inertia I⊥ and I‖ are those of a deformed
nucleus for a rotation around an axis perpendicular and parallel to symmetry axis
respectively.

In the framework of the Inglis cranking model and by taking into account pair-
ing correlations at finite temperature with the Finite Temperature BCS (FTBCS) me-
thod, the Belyaev formulas for the perpendicular and parallel momenta of inertia
I⊥(‖) are respectively [1, 20]:

I⊥ = ~2
∑
νµ

|〈ν |Jx|µ〉|2
{

[uνvµ−uµvν ]2

Eν +Eµ

(
tanh

βEν
2

+ tanh
βEµ

2

)
(3)

[uνuµ+vνvµ]2

Eν−Eµ

(
tanh

βEν
2
− tanh

βEµ
2

)}
and

I‖ = β~2
∑
ν

|〈ν |Jz|ν〉|2
1

2cosh2

(
βEν

2

) (4)

where β is the inverse of the temperature T of the system and Jx(z) is the single-
particle angular momentum operator corresponding to the perpendicular (axial) rota-
tion respectively. Eν are the quasiparticles energies given by:

Eν(T ) =
√

(εν−λ−Gv2ν)2 + ∆2(T ) (5)

where εν is the single-particle energy in a state |ν〉 supposed to be temperature inde-
pendent [21] andG is a constant pairing force strength. The chemical potential λ and
the energy-gap parameter ∆ as well as the FTBCS parameters uν , vν are obtained by
resolving the finite-temperature BCS gap equations for a system of an even number
of particles n (neutrons or protons):

1

G
=
∑
ν>0

1

2Eν
tanh

(
βEν

2

)
n=

∑
ν>0

[
1− εν−λ−Gv

2
ν

Eν
tanh(

βEν
2

)

] (6)

The solution of (6) determines the pairing gap ∆ and chemical potential λ as a func-
tion of T . In the present study, neutron-proton interactions are neglected, so the
total I⊥(‖) for a specific nuclei is the sum between the contribution of protons and
neutrons calculated separately.
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3. RESULTS AND DISCUSSION

In this work,we considered, doubly even actinides isotopes ranging from Thorium
to Fermium. The energies and single-particle states are obtained with the Woods-
Saxon mean field. The nuclear deformation is described by using the well known
Brack parametrization [1, 20, 22, 23]. To characterize the extrema of the potential
barrier along the fission path, deformation parameters obtained from fully micro-
scopic calculations are used [24, 25]. If no theoretical deformations are provided, we
rely on interpolations and extrapolations procedures.

The pairing strengthG is determined from the zero-temperature BCS equations

(6) to reproduce the values of the pairing gap parameters ∆p =
12√
A

and ∆n =
11√
A

(MeV) (A being the mass number), for protons and neutrons respectively [26]. The
pairing strengths G are assumed constant, no matter deformation [27, 28].

First of all, systematic calculations of the perpendicular =⊥ and parallel mo-
menta of inertia =‖ were performed for deformed even-even actinides nuclei. The
results had been listed in Table 1 for several values of the excitation energyE∗= 0, 5
and 10 MeV for the ground state deformations. Experimental values of the ground
state perpendicular momenta of inertia [1] are also reported in the same table. As it
seems, the agreement with the calculated =⊥ momenta of inertia and the experimen-
tal values is fairly good confirming the fact that the used deformation parameters are
consistent. Indeed, the mean relative discrepancy, defined as |=⊥exp−=⊥|/=⊥exp

is on average about 8.20%.
Furthermore, calculations of =⊥ and =‖ momenta of inertia were performed

for the same nuclei for the second and third minimum as well as at the first, second
and third saddles points. Theses calculations had been done for the same values of the
excitation energy. The corresponding results are presented in Table 2 up to Table 5.
Few experimental values of the momenta of inertia are available for the second and
third minimum. Comparing the present calculations at zero excitation energy, one
can see that for 238,240Pu and 236,238U nuclei, the mean relative discrepancy between
the experimental values [29–32] and the calculated ones for the second minimum
does not exceed on average 20%.

The experimental values of the moment of inertia [29–32] at the third minimum
are available for only a few of the nuclei of the present study. The comparison at
zero excitation energy between them and the theoretical ones shows that for 230Th
and 232Th nuclei the mean relative discrepancy is about 15.38% and 3% respectively.
The best agreement between the experimental and theoretical data is obtained for an
excitation energy of E∗ = 0.3 MeV in the case of 232Th nucleus, close to the top
of the outer barrier. It is a direct confirmation of the fact that the nuclear system is
practically cold at the saddle point.
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We have then studied the variations of =⊥ as a function of the mass number A
(226≤ A≤ 244) for U, Th and Pu isotopes chosen as an example. These variations
had been done for various excitation energies E∗ = 0, 5 and 10 MeV and are given
in Fig. 1 for the ground state, second and third minimum as well as for the first,
second and third saddle point. Thus, the moment of inertia increases rapidly with the
deformation and the temperature. At zero excitation energy, the moment of inertia
obtained in the second minimum is more than two times larger than that measured
one for the ground state. This ratio is also retrieved for E∗ = 5 and 10 MeV.

We have then studied the variations of the effective moment of inertia =eff at
the third saddle point as a function of the excitation energy E∗. Some examples are
presented in Fig. 2. One can see from this figure that for a fixed value of deformation
and for each nucleus, the effective moment of inertia values increase with the increase
of E∗. The dependence of =eff upon excitation energy is therefore a good test of
the persistence of superconducting effects to finite excitation energies [4]. It is worth
noticing that M. Sano et al. [4] obtained a similar curve for the 242Pu nucleus at the
second saddle point where agreement with experimental values is good.

In Fig. 3, the variations of =eff at the third saddle point as a function of mass
numberA for a given excitation energy are presented forE∗= 10 MeV. This value of
the excitation energy is close to the averaged dissipated energy in fission at scission
[33]. As displayed in Fig. 3, the effective momenta of inertia variations as a function
of mass numbers are not constant. In fact, Th and U isotopes effective momenta of
inertia exhibit the same trends with regard to mass numbers A, whereas, Pu, Cf and
Fm isotopes have another ones.

In conclusion, a systematic calculations of the perpendicular, parallel and ef-
fective moments of inertia of various doubly even actinides nuclei ranging from
Thorium to Fermium (226≤A≤ 256) for the ground state, second and third min-
imum as well as for the first, second and third saddle point as a function of excitation
energy had been performed. Comparison with experimental values of momenta of
inertia, when available, had been made.

Acknowledgements. This work was performed under a Grant of the Department of Physics,
Faculty of Sciences, University M’hammed Bougara of Boumerdes UMBB. The authors thank M.
Mirea for useful and interesting discussions.
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Fig. 1 – Dependence of Th, U and Pu perpendicular momenta of inertia as function of mass number
A (228 ≤ A ≤ 256), for ground state, second and third minimum as well as for the first, second and
third saddle points. The values of the excitation energy E∗ are 0, 5 and 10 MeV and are marked on the
plot.
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Fig. 2 – The effective moment of inertia =eff of the third saddle point as a function of the excita-
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example.
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Table 1

Perpendicular and parallel momenta of inertia calculated for the the ground state (g.s) deformations, in

the case of doubly even actinides nuclei at different excitation energies. Experimental values are those

of Ref. [1].

=⊥(~2MeV−1)gs =‖(~2MeV−1)gs =⊥exp(~2MeV−1)gs

Nucleus E∗ (MeV) E∗ (MeV)
0 5 10 5 10

226Th 46.54 82.62 88.425 92.82 94.06 41
228Th 47.58 82.85 89.20 79.84 87.84 52
230Th 53.96 81.69 87.51 92.23 95.91 56
232Th 55.10 85.77 90.50 80.41 88.47 60
234Th 56.54 95.29 97.14 80.46 85.40 63
236Th 58.09 104.01 104.71 89.75 90.70
232U 56.64 84.22 89.72 98.73 99.88 63
234U 56.26 87.06 91.27 72.70 83.55 69
236U 59.07 91.12 94.73 80.58 88.24 66
238U 61.03 93.60 96.88 78.41 85.81 67
240U 62.86 109.90 110.31 87.59 92.78 ————
236Pu 59.48 86.84 92.71 95.08 98.67 67
238Pu 58.27 89.07 93.11 61.04 75.42 68
240Pu 60.70 92.89 96.28 69.57 81.12 70
242Pu 63.52 96.41 99.47 71.08 81.43 67
244Pu 66.27 105.28 106.71 79.20 87.22 67
240Cm 62.52 91.34 96.49 96.52 98.65 ————
242Cm 61.93 90.62 95.14 71.59 83.39 71
244Cm 63.59 103.12 104.70 79.12 87.55 70
246Cm 66.12 105.50 107.01 79.73 88.24 70
248Cm 68.08 108.43 109.80 81.30 90.29 69
250Cm 70.70 113.74 114.57 90.25 99.74 ————
248Cf 67.96 106.86 108.36 83.98 93.83 71
250Cf 69.37 106.70 108.95 78.83 90.77 68
252Cf 70.62 112.65 113.71 88.51 98.35 68
254Cf 70.34 113.02 115.65 96.52 103.60 ————
252Fm 71.57 108.24 110.15 83.28 95.61 ————
254Fm 71.42 112.05 113.24 90.68 98.76 68
256Fm 76.86 113.00 114.82 147.37 135.16 ————
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Table 2

Perpendicular momenta of inertia calculated at the first saddle, second minimum and second saddle.

=⊥(~2MeV−1)1stsaddle =⊥(~2MeV−1)2ndmin =⊥(~2MeV−1)2ndsaddle

Nucleus E∗ (MeV) E∗ (MeV) E∗ (MeV)
0 5 10 0 5 10 0 5 10

226Th 70.54 100.29 100.29 92.16 111.50 113.17 140.06 188.23 191.91
228Th 76.46 103.15 103.22 92.36 117.56 118.74 146.71 180.56 186.22
230Th 75.48 102.93 104.36 99.48 124.25 125.22 157.24 193.44 197.76
232Th 71.20 95.19 105.77 109.04 128.93 130.21 155.92 206.87 208.52
234Th 69.31 92.46 107.50 106.19 133.01 134.17 139.52 166.43 179.19
236Th 70.09 92.47 108.30 112.76 137.81 137.52 142.82 169.04 186.19
232U 75.46 100.91 104.14 101.11 124.16 125.21 132.49 163.38 172.25
234U 73.17 95.18 108.40 113.21 129.19 130.65 128.40 157.37 175.80
236U 75.48 99.30 115.76 110.82 134.28 135.39 131.17 160.29 178.45
238U 92.74 117.35 128.17 118.78 140.03 141.28 133.13 161.14 181.31
240U 99.46 125.47 134.20 118.60 139.83 147.98 137.46 164.60 184.35
236Pu 90.86 119.85 122.64 123.23 144.91 145.04 169.25 231.22 232.39
238Pu 74.56 97.97 113.97 118.25 140.02 146.96 160.16 221.34 240.67
240Pu 69.89 91.87 108.28 120.54 143.10 148.77 161.50 221.54 247.30
242Pu 64.70 88.43 105.34 120.17 142.25 150.73 162.20 222.97 253.10
244Pu 64.71 94.42 108.47 118.47 142.06 152.87 162.97 221.87 257.54
240Cm 63.89 91.46 99.95 135.19 156.52 159.61 128.08 158.89 161.77
242Cm 63.64 87.05 101.74 130.58 151.43 161.71 138.33 165.43 175.28
244Cm 62.57 83.85 101.63 126.41 147.80 162.10 145.28 172.23 189.61
246Cm 68.34 90.45 108.16 123.23 145.14 159.72 162.01 190.55 208.54
248Cm 81.26 103.77 122.79 125.90 148.54 164.86 183.95 214.45 231.15
250Cm 87.38 109.85 128.12 128.47 150.80 167.45 206.15 242.20 254.80
248Cf 92.40 117.66 134.11 122.49 144.02 159.75 129.38 154.31 169.84
250Cf 97.36 121.36 137.10 125.59 148.43 162.72 133.00 159.36 171.97
252Cf 101.08 124.34 140.12 127.53 150.54 165.54 135.11 161.37 174.08
254Cf 109.61 131.66 144.61 130.53 153.71 167.76 130.53 153.71 167.76
252Fm 33.69 77.28 104.47 65.71 117.65 137.32 65.03 123.06 154.22
254Fm 67.01 93.90 106.93 108.52 146.50 156.65 95.46 123.14 143.91
256Fm 129.42 158.83 164.71 171.84 194.74 204.00 142.43 168.30 180.55
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Table 3

Same as Table 2 at the third minimum and the third saddle point.

=⊥(~2MeV−1)3rdmin =⊥(~2MeV−1)3rdsaddle

Nucleus E∗ (MeV) E∗ (MeV)
0 5 10 0 5 10

226Th 195.90 220.26 228.79 227.25 282.00 290.13
228Th 169.15 204.67 216.27 222.47 287.46 293.44
230Th 197.41 225.30 230.86 219.68 284.28 295.60
232Th 193.77 231.82 235.95 217.79 283.91 299.39
234Th 167.13 196.35 219.07 214.77 278.40 300.06
236Th 171.52 200.60 222.50 221.81 292.03 310.29
232U 193.98 240.64 241.94 238.22 291.61 316.33
234U 185.63 244.68 248.21 230.46 291.10 316.64
236U 187.53 244.53 257.73 229.84 288.85 318.80
238U 186.34 240.67 263.27 228.60 288.14 320.22
240U 189.20 242.32 269.21 231.37 291.976 329.27
236Pu 190.79 252.82 250.87 228.56 293.03 315.88
238Pu 185.51 243.55 272.03 218.80 282.16 312.49
240Pu 193.42 252.18 289.42 226.33 262.94 294.22
242Pu 203.03 265.92 301.48 232.57 271.74 296.81
244Pu 207.43 272.74 312.14 236.06 276.43 303.31
240Cm 149.86 179.44 182.65 154.28 189.94 190.48
242Cm 155.81 183.87 199.19 152.42 186.60 194.48
244Cm 169.89 199.18 218.35 192.74 233.16 254.38
246Cm 189.81 223.45 243.48 236.60 283.35 291.40
248Cm 218.87 264.08 277.74 280.05 333.01 329.26
250Cm 252.08 303.63 304.19 328.37 392.80 384.20
248Cf 153.47 178.50 194.73 138.15 174.65 200.29
250Cf 187.88 226.01 238.56 186.65 224.51 252.62
252Cf 209.49 249.92 259.91 247.82 296.08 324.24
254Cf 243.69 293.62 294.34 327.13 392.96 389.68
252Fm 68.73 89.88 108.28 103.17 133.54 147.19
254Fm 90.17 113.60 131.70 95.46 123.14 143.91
256Fm 106.03 125.69 140.63 121.74 128.61 150.83
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Table 4

Same as Table 2, for the parallel momenta of inertia.

=‖(~2MeV −1)1stsaddle =‖(~2MeV −1)2ndmin =‖(~2MeV −1)2ndsaddle

Nucleus E∗ (MeV) E∗ (MeV) E∗ (MeV)
5 10 5 10 5 10

226Th 108.04 113.93 78.97 76.79 67.68 74.52
228Th 87.81 101.07 86.28 79.98 41.75 54.92
230Th 84.52 100.36 79.90 82.22 40.72 55.10
232Th 75.55 102.00 77.59 84.05 49.91 63.41
234Th 73.69 105.07 87.58 87.00 71.18 91.17
236Th 72.95 104.27 92.16 89.45 77.54 102.08
232U 83.80 104.45 68.93 76.65 72.72 96.74
234U 70.60 99.63 70.56 78.36 71.21 102.79
236U 74.30 105.21 74.83 82.96 76.93 107.25
238U 85.00 104.37 81.31 89.89 76.64 110.00
240U 105.85 104.43 92.52 100.94 75.00 108.15
236Pu 82.80 91.06 108.60 99.36 79.74 83.64
238Pu 64.80 95.37 89.64 102.46 73.17 93.46
240Pu 60.75 95.86 94.38 104.52 78.35 104.74
242Pu 84.59 122.71 91.64 107.15 81.52 112.81
244Pu 99.49 121.02 93.12 110.86 79.93 116.93
240Cm 109.95 114.92 106.25 102.74 123.54 109.43
242Cm 101.70 129.69 97.96 112.01 102.95 111.15
244Cm 76.43 116.61 90.89 117.18 92.10 109.39
246Cm 66.41 104.89 90.99 117.01 88.68 104.67
248Cm 69.95 111.69 92.92 123.44 94.10 107.52
250Cm 74.76 115.75 91.74 121.63 107.26 114.73
248Cf 75.40 108.48 90.42 118.83 100.64 124.92
250Cf 76.43 108.33 94.34 119.07 109.05 124.82
252Cf 71.75 105.09 91.69 117.59 107.68 122.62
254Cf 69.43 99.70 92.34 115.67 92.34 115.67
252Fm 110.82 170.53 89.92 122.07 91.45 135.21
254Fm 81.94 115.79 61.16 77.20 58.10 91.00
256Fm 88.62 93.803 86.23 104.76 97.54 115.17
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Table 5

Same as Table 3, for the parallel momenta of inertia.

=‖(~2MeV−1)3rdmin =‖(~2MeV−1)3rd Saddle

Nucleus E∗ (MeV) E∗ (MeV)
5 10 5 10

226Th 39.22 56.81 96.44 99.32
228Th 71.64 84.92 111.69 108.68
230Th 43.82 57.83 111.11 115.16
232Th 50.55 61.83 103.88 119.63
234Th 56.69 85.76 93.74 123.15
236Th 59.24 88.02 102.83 128.13
232U 76.91 78.44 106.01 132.55
234U 91.48 91.19 102.49 134.22
236U 93.60 105.06 103.27 139.62
238U 92.66 118.04 109.31 146.56
240U 95.22 128.07 114.69 162.92
236Pu 107.59 98.41 121.16 148.69
238Pu 99.04 131.43 110.62 151.49
240Pu 99.46 146.91 60.74 107.56
242Pu 99.49 144.69 68.86 106.49
244Pu 103.92 152.17 76.39 118.17
240Cm 101.12 99.43 92.36 93.64
242Cm 92.11 102.78 90.84 98.82
244Cm 88.93 104.05 100.33 116.23
246Cm 99.68 115.32 100.3907 110.79
248Cm 124.85 128.11 141.0274 123.89
250Cm 142.48 129.54 152.1115 119.38
248Cf 74.91 101.73 72.94807 111.40
250Cf 86.41 104.52 84.91559 127.04
252Cf 107.68 114.11 71.28411 110.24
254Cf 140.78 129.30 106.6443 98.43
252Fm 68.94 109.35 62.9415 88.29
254Fm 67.37 105.65 58.10 91.00
256Fm 77.51 109.62 10.90 60.55
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Fig. 3 – Variation of the effective moment of inertia=eff of the third saddle point as a function of mass
number A (228≤ A≤ 256) for deformed doubly even actinides nuclei evaluated at excitation energy
E∗ = 10 MeV.
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