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1 Introduction

Inspired by work of Arkani-Hamed, Cachazo, Cheung and Kaplan [1, 2], we use link vari-
ables to obtain expressions for tree amplitudes in open twistor string theory [3]-[5]. This
extends the derivation from the twistor string beyond maximally helicity violating (MHV)
amplitudes and special cases of non-MHV trees [6]-[12], as well as providing a basis for the
dual structure envisioned in ACCK. We use a canonical quantization [13, 14] PROVA of
Berkovits’ version of twistor string theory, and compute the gluon trees.

The extensive literature for amplitudes in the spinor helicity basis, sampled by [15]-[19],
has been used in developing recursion relations [20, 21]. These were motivated by a remark-
able formulation of string theory on twistor space [5], which made contact with a twistor
description for gauge theory [22, 23]. Additional dual forms for trees are found [24]-[26].

At loop level, the twistor string has been difficult to interpret as a dual for the gauge
theory [4, 13]. In this paper, however, we show that the gauge theory based analysis of
ACCK, which is phrased in terms of link variables, appears naturally to lead back to the
twistor string at tree level. This may eventually enlighten our treatment of string loops,
and the pursuit of the dual S-matrix.

Suppose we have N gluons, labeled o = 1,... N, with momenta p{,, = 74744, and
helicities €., m of which are positive and n negative, m +n = N. Write P for the set of
positive helicity particles and N for the set of negative helicity particles.



The link variables c;.,i € P,r € N satisfy the 2N linear equations

Ty = Z Cjr Ty (1.1)

reN
g = _Zﬁ-icis- (12)
1€EP
where we have suppressed the spinor indices. See [13] for our conventions. These equations

are not independent because, as noted by ACCK, they imply momentum conservation. As
in [1] (eq.(37)), these linear conditions imply energy-momentum conservation:

DT =D ) Mjaly == ) T (13)
jEP JEPTreN reN

for momenta satisfying this consistency condition they provide N’ = 2N — 4 constraints
on the mn variables ¢;,, leaving

Nr=mn—N'"=(m—2)(n—2) (1.4)

degrees of freedom. The philosophy outlined by ACCK is to seek to write the tree and loop
amplitudes of gauge theory as contour integrals over the remaining Ng degrees of freedom.

The main observation underlying the analysis of this paper is that, in open twistor
string theory, the link variables should be of the form

k;

ks(pj = ps)’ )

Cjs =

for some suitable pq, ko, as we shall see at the beginning of section 3. The necessary and
sufficient condition for the link variables to be of this form is that the matrix

(Ci17’1):1 (Ci17"2):1 LR (Ci17"n):1
(Ci27’.1) (Ci27"‘2) : (Ci27"‘n) (1.6)
(Cimh)_l (Cimrz)_l e (Cimrn)_l

should have rank two, as we discuss in more detail in section 5. This is equivalent to
the vanishing of the determinant of each 3 x 3 submatrix, that is of each determinant of
the form
N CisCit CitCir CirCis
Crat = |CisCit CieCir Circis
CksCkt CktChkr CkrCks
= CirCjsCktCjrCsCit T CjrCksCitChrCisCjt + CkrCisCjtCirCjsCht
—ClrCjsCitCjrCisCht — CjrCisChiCirChsCjt — CirChsCjtChrCjsCit- (1.7)
For this condition to be met, it is sufficient for a suitable subset comprising Ng of the Cﬁjslf
to vanish, e.g. if we fix I,J € P and R,S € N, it is sufficient to have the vanishing of

the Np, quantities Cé‘éfi where k ranges over P’, the remaining m — 2 elements of P, and ¢



ranges over N/; the remaining n — 2 elements of N. Using the linear conditions (1.1), (1.2)
to express the ¢;. in terms of the ¢i, k € Pt € N, we find in section 3 that the tree

amplitude will have the form
dey,
j{F(C) H C—ta (1.8)

keP’ ke
teN'
where F'(c) is a simple rational function of the ¢;,.

In section 2, we review the derivation of vertex operator expressions for the general
N-point tree amplitudes in twistor string theory from vertex operators. In section 3,
we analyze the amplitude as an integral over constraints. In section 4, we derive the
integrand function F'(c), as a function of the link variables, from twistor string theory.
In section 5, we discuss the parametrization of the linear constraints, and complete the
description of the contour integral expression for the amplitudes. In section 6, we compute
all 6-point functions, including alternative forms, by evaluating the contour integral as a
sum over residues. In section 7, we use our general formulae to check the 7-pt tree with
alternating helicities.

2 The N-point amplitude

As in [3, 13], we consider conjugate twistor variables Z and W

() el e

W-Z=w 7T4+7 w=0ar®+ maw?, (2.2)

and the field describing the twistor string,

We fourier transform the open string vertex operators for gluons according to their helic-
ity [1], as

. [d o dr
Vf(W, P) _ /dQﬂ_aelwaﬂ /;’%52(%)\@([)) _ ﬂ_a)ezmrbub(p)JA _ / ?’%emV[ﬁZ(p)JA’ (23)

VAZ,p) = /d2ﬁ'aei”d”d /f@3d552(f@)\“(p) - w“)emﬁb“b(’)) JApL .yt

= /n3d/<;54(/£Z(p) — Z)JAzpl . ..1/14. (2.4)

Defining X; = Wj, j € P; X, = Z,, s € N, we compute the tree amplitudes as a sum
over instanton sectors. The only non-vanishing contribution to any tree with n negative



helicity states is from the sector with instanton number d, where d = n — 1, [13]

N
M€ €N :/<0|V:141(X1,p1) . VYEA]A\,N(XN,/ON)|O> H dpa/dg

a=1

dadﬁa (n—
/H dpadrio 1V T 6453 Z(ps) — Zo)exp {3 W, - Z(py) § 10)

seN jEP
< TIst TI (or = o 01T (p1) T2 (p2) ... T4 (p)0) / dg (2.5)
seN  r<syr,seN

and dg is the invariant measure on the group GL(2,R) of Mobius and scale transformations.

Because Z(p) is a polynomial of order n — 1,
=> - Z T & (2.6)
ps = Pr’
SEN r#£s;reN

so that k. Z(p,) = Zp, v € N. It & = K, Z(pr) — Zy, 7 € N, the Jacobian resulting from
performing the integrations corresponding to the zero modes of Z(p) is

A& :re ./\/
N Z_pits .- =11~ 11

seN  r<s;rseN

This factor will cancel the worldsheet fermion contribution included in (2.5), and the

amplitude becomes

N
Meren /H T exp i > S e Wy - Z, p fArAeAN [H %] /dg7 (2.7)

reN jep a=1 Pa = Pa+t1

where
_ 5 Pi—Pr (2.8)

which we shall relate to (1.5) in section 3.
The action of the group GL(2,R) is defined by

apa +b

— )
cpa +d

Ko = (Cpa + )" kg, (2.9)

Pa

which leaves c;s invariant.
We transform to momentum space by applying

/exp —iZ(Dj-Wj—i—iZﬁr-wr Hd2®j Hder,

jeEP reN JEP reN
giving
MEL-EN fA1A2 An / H 52 < Z erﬂ'r> H 52 <7T5 + Zﬂ'icis>
jeP reN seN i€P
N
d d
» H Re pa /d (2.10)
ik — Pat1)



As we saw in section 1, the delta function conditions imply energy-momentum conservation.
Fixing a choice of R, S € N,

H62 (7‘1’]’ — Z er7TT> H 52 (77'5 + Zﬁ'icié\) (211)

jEP reN seN i€P
(Z 7Ta77a> H 5 ( - Z er7Tr> H 5 <ﬁ's + Zﬁ'icis> s
jeP reN seN” ieP

so that we are left with 2N — 4 relations from the remaining delta functions to determine
the 2N — 4 effective variables amongst the kg, pa, after allowing for Mdbius and scale
invariance. The dependence of the mn = n(N — n) variables ¢; on the 2N — 4 effective
variables k., po implies the existence of

Nr=mn— (2N —4) = (m —2)(n —2)

(nonlinear) relations between the ¢;,, say Cx(c) = 0,1 < K < Np. eg. for N = 6,m =
n=23,P=/{ijk},N ={rs,t}, there is one relation from (1.7):

CirCjsCiktCirCiksCit + CjrCksCitChkrCisCit + CirCisCjtCirCjsClt

= CkrCjsCitCjrCisCkt + CjrCisChtCirCksCjt + CirChsCjtChiCjsCit- (2'12)
Now,
dprdps drpdkg
dg - ) 9
(pr — ps)* Krks
so that
N
MELEN — fAlAg...AN64 <Z ﬁ-aWCV) MEl...eN, (213)
a=1
with
MEeN =(R, S> PR — ps) /H 52 ( Z erﬂ'r> H 52 <7‘r5 + ZW@'C@‘S)
jeP reN seN’ ieP
N N
H 11 dradpoa (2.14)
— pa+1) a=1 K:a
- a#R,S

Note that if we chose I,.J € P rather than R,S € N,

H 52 (7‘1’]’ — Z erﬂ'r) H 52 <77'3 + Zﬁ-icis> (215)

jEP reN seN i€P

(Z wra> I] 4 < -y qm) I1 ¢ (ﬁs + chis> :

jeP’ reN seN i€P

and we have similar formulae to the above but with [, .J]? replacing (R, S)2.



3 The amplitude as an integral over constraints

In order take into account the constraints Cx in evaluating the amplitude (2.14), we will
rewrite the world sheet integration on p and k as integrals over a set of independent
link variables.

In (2.14), we have

‘:KJHPJ r, jeP, seN, (3.1)

Rs ks Ps
reN

but it is convenient to change variables, defining

k] = H(p] _pT’)l‘fj7 ks - H(ps_pr)/is7 ]e P7 S EN’

reN r#s
reN

so that
ki 1

ks Pj = Ps .
Then (2.14) is left unchanged if we replace k4 by ke, and the action of the invariance group
GL(2,R) is now given by

(3.2)

Cjs =

apa + b
cpo +d’

A=PUN. Writing
fir(C):<i,T>—ZCis<S,T>, f?‘t Tt +ZT’LC21§, T:R,S, ZEP, tGN/,

kj — (ad—be)k;/(cpj+d), kr — k.(cpr+d), acA jeP,seN,

«

SEN i€P
(3.3)
in the expression (2.14) we have
<R,S>2H52 <7Ti_ Zcirﬂ'r> H 52 (71',54‘27‘('@'02‘,5)
i€P reN teN’ i€P

=K [] 6 (fule) [ 6 (frele) = Ki6™ (£(c)), (3.4)

ieP teN’

r=R,S r=R,S

where K1 = (R, S)™ 2[R, S|" 2.

Use g7,1 < £ < N’, to denote generically {pa,kq : 1 < a < N,a # R, S} and divide the
mn variables ¢;, into two subsets: ¢j,1 < ¢ < N’ ;and ¢j;,1 < K < Ng, (e.g., fixI,J € P,in
addition to R, S € N, and take the ¢’ subset to consist of {¢;r, ¢is, crr,cyr i i € P,r € N'},
and the ¢’ subset to consist of {¢; : @ # I,J, r # R,S}). Then (2.14) can be written

mee — iy [ (o) 8 (Hd¥e (35)
where f = f(0) = f(c(e)) and
1
V(o) = (pr — ps)? H o M i (3.6)



In principle, we could use the N’ delta functions to perform the N’ integrals over g, and
then calculate the amplitude as a function of the momenta by solving the equations (3.3)

to give p and k in terms of the momenta and then substitute for them in

MELEN — Kl\I’(Q) ‘M

d(o)

but this is not a calculationally convenient way forward.

—1
: (3.7)

Instead, we seek to rewrite (3.5) first as an integral over all the mn variables ¢; and
then to use the delta functions 8 (f(c)) to perform N’ of these integrations to leave an
integral over Np variables corresponding to the constraints Cx. We can use these Np
constraints to express the Np variables ¢ as functions of the remaining N’ variables ¢,
¢ = & (¢) and thus obtain N’ functions f(¢/) = f(¢,&'(¢)); these are the functions we
would obtain if we used the N’ equations (3.2), corresponding to the ¢ to express p, k as

functions of the ¢'.

!
aN'd

N —1 R
- v |5 5o |55 a
N —1
- [vo|55] |G| e
a1t ae)

SN (£)§NE(CYd e

SNR(CYANR (3.8)

with C(¢") = C(¢(¢"),¢"), where the functions ¢ = &(¢”) are obtained by using the

N’ equations f(c,¢”) = 0 to express ¢ in terms of ¢”’. The Jacobian of f with respect
to ¢’ is a constant, dependent only on momenta rather than the c;., because the f are
linear; the value of the constant depends on the choice of the ¢j. If we use the choice
{cir, cis,crrycyr i € P,r € N'} for ¢,

‘ g((f,i = (R, S)*™[R, S)"2[I, J]" 2.
Then
M N = K / F(")oNm (C)dNr " (3.9)
with
| —1
F(") = ¥(o) ‘g((cg)) g((cc”)) (3.10)
and :
K=K gg; — (R, >[I, P




We can integrate (3.9) to obtain

Mel...EN _ KZF(C”)

, (3.11)

where the sum is over at least some of the simultaneous solutions of the Ng constraint
equations C(¢") = Cx (&(¢"),¢") = 0. [Note that in (3.11) the Jacobian is calculated for
C, that is for C regarded as a function of ¢/ with ¢ put equal to &(¢”), whereas in (3.10) is
for C with respect to ¢, with all the ¢ regarded as independent.] To find a rational answer
for the amplitude, in line with the known results, we need to sum over all the solutions
¢’ with appropriate signs or phases that enable the contributions to be combined into a
contour integral of the form

/!
MEeN = K ]é (e [ L. (3.12)
K Ck

[Here we understand the notation for the contour integral to include appropriate factors of
2mi.] This will become apparent when we discuss the 6-point function, with m = n = 3,

in detail in section 6. But first we will discuss the form of the integrand F'(¢) in section 4,
and the parameterization of the general solution for ¢;. of the linear equations f; = 0 in
section 5.

4 The form of the integrand, F(c)

We can now give a general prescription for the integrand F'(c¢) in terms of the link variables,
working from the string function (3.6). As before, we fix I,J € P and R,S € N, set
P ={keP:k+#ij}and N/ ={t e N :t+#r s}, and chose for the Ny variables ¢ the
collection {ck; : k € P',t € N'}. Then the remaining variables ¢ are {¢;g, ¢is, crt,cye i 1 €
P,t € N'}. Correspondingly, we take the N constraint functions Cx to be

Cr=Cl&, keP, teN' (4.1)
If k,k' € P', and t,t' € N,
gckt =0 unless k =k and t = t/, (4.2)
Ck/t/
so that
a(C) OCry
= . 4.3
‘aw 1 5. )
teN’
1
_ _ Ngr m—2 n—2 -
= lerrcss — crscsr]™™ T lenes)™ 2 I lerrers]” 2 ] e
teN’ keP’ feej\)f;

using the expression we find from (1.7),

OChy
Der, ckscrrcyr(cricys — crscyt) — ckrerscys(Cricyr — CrrRCt)
ot

= crCrtCkRrCRS(CIRCIS — CISCIR)/Cht- (4.4)



Also it is not difficult to see that the Jacobian of ¢ with respect to p, k can be written as
a product of factors:

‘ () ‘:'5(613,615) ‘a(CJRaCJS) " H O(ckR; crs) ' Crt: CJt)
d(p, k) (pr, k1) Npsiks) | ep (pr, k) e | Olprske)
k?_1k§_1 m n—2
:W(PR —ps)™(pr — )" I ke x ] F
keP’ teN’ t
X (4.5)
g) th,, (pr — pt) PJ_Pt)
using
dcir.c1s) ki (PR — ps)
A(pr,kr) krks (pr — pr)*(pr — ps)?’
Oer,cnr) _ krky (pr—pr)
(pt, ki) (k)3 (pr — pe)*(pg — pe)?
So
ad) |-
(or — ps)? H H — (4.6)
B(p, k) leP keN’
k?{mk?m 2-m 2%n —2 -2 -2 2 —2 9 1
= 22— (PR = ps) (pr —ps) " CrRCISCIRCTS H CkRCkS H CIt Cri Hkl H 2
1 J keP’ teN’ leP  ueN “
and, using
krks CirCjs — CisCjr ..
75 \WPi — Py s — Pr)— ——— fi ’ y Iy ) 4.7
s (pi — pi)(ps — pr) P—— ori,j€P, r,seN (4.7)
we have
a) |7t o) 1 1
(pr — ps)? ST 11—
ok o U L
Ak (pr —ps) " (pr = ps)™" crmes = ersesnl
kmkm C?RC?SC?}RC?IS
-3
X H cry cJt H CkR CkS H H H kz’ (4.8)
teN”’ keP’! keP LleP  ueN
and finally
o(d) |7t o)
F(c) =U(p, k
@ =900 | o] |5
kYK m o lerress — ersegr)NEt? n_3 n
:knlmkim (pr — ps) " (p1 — p) [ PRI 03] H - CJt - H CkRsckSB
RIS TRCTISCIRCTS N keP!
N

<1 — H Il = I (4.9)

keP Liep  uenN “ a=1 Pa = Pa+tl
teN



We can write this final product in terms of the ¢; by using (3.2) whenever €, = —€q41;
and using (4.7), with a factor of (pr — ps) supplied when €, = €441 = +, and a factor of
(pr — py) supplied when €, = €441 = —. This will leave (p; — ps) P(pr — ps) P, where p is
the number of sign changes going from ¢; to ey and back to €;. These factors can again be
converted using (4.7), yielding a rational expression for F'(c) of order 6(m —2)(n—2)—

We now give some examples and a general prescription.

(a) For m =n and (e, €9, €3,€4,...€n-1,€2) = (+,—,+,— ..., +,—),
1
F(c) = [crress — C[SCJR](n 2)(n=3) H cr 3cJt 3 H CZR?’ ng —, (4.10)
teN keP kep Cht
te

where the prime on the last product indicates that terms 1/cx; should be omitted
when k,t are adjacent.

(b) For (e1,...,€m,€mt1s---€min) = (+,...,+,—,...,—), where we choose the labeling
=+, 1<i<m;e=—m+1<r<Ny;and I =1,J=m,R=m+1,5 =N,
we have

m—1 1
F(c) = —ciseyr [erress — cseor] T ] ] (4.11)

=7 leircit1s — civ1rCis]

1 1
XH Hclt CJtll_[Clen1 —

[errerrir — crppica] | o Cht

r=m+1 kep! keP

teN
(¢) In general, if (eq,...,€en), begins with ¢ = + and ends with ex = — and comprises
p strings with ¢, = + and, therefore, p strings with ¢, = —, then, up to sign, F'(c) is

given by

+2 p—3 p—3 p—3 p—3 3 m—3
F(c) = [erress — erseqr) B PPEPESIETIES ] a2
teN’

% H iR Chs’ H H da,a+1, (4.12)

keP! kEP
teN

where

CiRCjSCiRCiS do. = CrrCJysCrsCJr

dir = Cir, dp; = Cip, dij = ) rs s
CiRCjS — CjRCiS CrrCJjs — CIsCJr

,jEP, r,seN.

Note, one may obtain different expressions for the integrands using the identity

CiRCjS — CjRCS  CirCjs — CisCjr % CiRCjSCjRCSCIrCJsCrsCr
CIRCJS — CISCJR CirCJjs — CIsCJr CirCjsCisCjrCIRCJSCISCIR

For given m and n, the expressions for F(c) for different orderings of the helicities
are related by the transformations given in appendix A.

,10,



5 Parameterization of the general solution of linear constraints on c;,

In this section we will parameterize the general solution to the linear constraints (1.1), (1.2)
on the link variables in order to express them in terms of suitable independent variables
over which to perform the multi-dimensional contour integral to obtain the amplitudes.
As remarked in section 1, the 2N linear equations (1.1), (1.2) imply energy-momentum
conservation. Thus they typically provide N = 2N — 4 constraints on the variables ¢,
leaving Ng = mn — N’ degrees of freedom. These remaining degrees of freedom are
determined by the Ng independent constraints Cx that follow from the requirement that
c¢ir be of the form (3.2), and we shall discuss the form of these non-linear constraints in
this section.
A solution to the linear equations (1.1), (1.2) is always provided by ¢;» = a;, where
1 N 1 ,
tGr =3 > (i) = o (i,5)[s, 7], (5.1)

JjEP seN

using energy-momentum conservation, and

p= ij = - Zpra p2 = Z <Z7]>[27]] = Z <7°,8>[T',S]. (52)

icP reN 1<j r<s
J ,jEP r,seEN

To show that ¢;, = a; satisfies (1.1), (1.2), first note that
(i, J)mr + (J, k)ymi + (k,i)m; = 0, for any i, 7, k,
because, taking the angle bracket with any vector m,

(t, 4k, 1) + Gy k) (0, 1) = (R )G ) — (R, 3) (0 1) = = (R, ) (G, )

Similarly
[r, 8| + [s, t]T, + [t,7]Ts = 0, for any r, s, t. (5.3)
So
1 .
Z Qi Ty = ——5 Z (i, 8)[s,r]m,
reN p r,sGN
1 . .
— o2 Z [s, 7] ((i, 8)m, — (i,7)7s)
r,sGN

1
=53 Z [s,7](s,r)m; = 5, (5.4)
P r,sEN

establishing (1.1), (1.2) follows similarly.

For convenience write

Air = p2air- (55)

— 11 —



Then, for i,j € P, r,s € N,

AirAjs - AisAjT = Z ((Z’ u> [u’ T] <]a ’U>[U, 5] - <i’ u> [uv 5] <]a v>[v’ T])

u,UEN
= Z (4, u) (g, v) ([u, r][v, ] — [u, s][v, 7])
u,vEN
=[rs] D (Lu)o)u,o] = [rs] D (Gu) (o) = (o)) [u, o]
u,veEN TLTLU<EI.;\[
= p°[r,s](i, ) (5.6)

and so, for 7,7,k € P, r,s,t € N,

Ajr Qjs A4t
(P*)? |ajr ajs aji| = (AirAjs— Ajr Ais) A+ (Ajr Aks — Akr Ajs) Aig+ (Apr Ais — Ain As) At

Qfr Aks Gt

= p°[r,s] ((i,4) Akt + (G, k) Air + (k, D) Aji) = 0, (5.7)
using (5.2).
Since this determinant vanishes for any ¢,7,k € P, r,s,t € N, this implies that
the matrix
ailrl ailrg ailrn
Ajory Qigrg - Qjor, (58)
jor1 Aipare + -+ Aiprn

has rank 2. In fact, this is evident from the fact that a;. is defined in (5.1) as the product
of the m x m dimensional matrix (i, j) and the m x n dimensional matrix [j,7]; because
the m; are two-dimensional, the matrix (i,j) has rank at most two and the rank of a;,
can not be larger. For m,n > 2, this condition is different from the rather more unusual
condition (1.6).

The condition that the matrix (1.6) have rank 2 is sufficient as well as necessary for
¢jr to be of the form

k;j
k. (pj — pr) .

We can prove this by induction on the size of (1.6). Suppose (1.6) is of size m x n, has rank

er =

2 and that the result holds for matrices of this size; consider adding an additional column
T; = (Ci7n+1)_1, 1 <4 < m, while leaving the rank of the matrix at 2. Then

k ky

k
i = A (pi — p1) + (pi = Pnt1), (5.9)

k; k;

where
Ak1p1 + pkapo

k‘n = M\k1 + k, n = )
+1 1T (HR2 Pn+1 N1 + ks

- 12 —



so that the elements of the additional column are
k;
Eni1(pi — pns1)’

Cint+l =

which is of the required form.
For m =2 or n =2, (1.1), (1.2) determine ¢; uniquely, and it is straightforward then
to check that ¢;; = a; provides the well known MHV amplitudes. For n =2, N' = {R, S},
L. (i, 5) (i, R)

CiR:_F@’SHS’R]: <R,S>’ Cis = (S,R>’ asp2:<R,S>[R,S]

in this case. Then

(1,1 + 1)

1
i, RCi — C;,8C; = —=(t,i+ D[R, S] = .
Ci,RCi+1,8 — Ci,SCi+1,R p2<1 i+ 1)[R, 5] R.S)

Then, from the formulae at the end of section 4,
N
MEtm = (RS [ [[(wa+1),

since there are no integrations to perform in this case. Similarly for m =2, P = {I, J},

[J,7] L]

1
) [J,I]’ Cjr = [I’J]7

(I, )[J,r] = — as p? = (I, J)[1, J]

Cir =

in this case, leading to the familiar form of the amplitude for this case.
For m,n > 2 we must add to a;. a solution of the corresponding homogeneous lin-
ear equations,

> épm =0, jEP (5.10)
reN
» R =0,  sEN, (5.11)
i€P

in order to obtain a solution of (1.1), (1.2) that has the property that (1.6) is of rank
2, when

Cir = Qjr + Ciy. (512)
The ¢, lie in an Ng-dimensional space. For m =n =3, P = {i,j,k}, N = {r,s,t}, this

space is one-dimensional and parametrized by

Cir — 4L;2€Uk[ ', k:]erst(s, t>

The single constraint from (1.6), C; = C” «+ = 0 provides a quartic equation to determine
(3, which we shall discuss further in section 6.
For general m,n > 3, the general solution to (5.10), (5.11) is provided by

A 2 : Uk

c’”’ - /Brst j? >
JkE’P
s,teN
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where 3% lz is antisymmetric under permutations of 7, 7, £ and also under the permutations
of r,s,t; it follows from (5.2), (5.3) that this satisfies (5.10), (5.11). Because there are only
(m —2)(n — 2) independent solutions to (5.10), (5.11) there is some arbitrariness in the

choice of B

st * for a given solution ¢;,, e.g.

sz"Jst = ﬂ;]st + 1[4, lhist + 4, l]%]f;t + [k, l]%gt’

where 7,2, is antisymmetric in 4, and in 7, s,t, and 7; is arbitrary, leaves the solution
¢;» unchanged.

We can express each of the ¢;,. as a linear combination of the Np components

e = BrelL, J|(R, S), keP . teN'

by
é[t: Z/Bkt[J7k]<R7S>7 ékR: Zﬁkt[l7‘]]<sat>a éIR: Z/Bkt[J7k]<S7t>7
keP’ teN’ keP!
teN'
keP, teN, (5.13)

and similar expressions for ¢xg, ¢y¢, ¢rs, CJR, C7s- This is equivalent to taking B” K — 0 unless

rst
exactly one of 4, 7, k is in 77 and exactly one of r, s, ¢ is in A/, In this case, the only possibly

nonzero components of ﬁ t are

/BRSt = ﬁkta ke Pla te N/ (514)
and those related to these by antisymmetry under permutations of I, J, k or of R, S,t.
ﬁﬁjslf = €jjkErst3, for m=n=3, (5.15)
and
ﬂi@? = BUkerst, for m > 3,n =3, (5.16)

and, in this case, we can specify that the only nonzero components of 3% are the m — 2
components of the form #//* = g, k € P’ and those obtained by permuting I, J, k.
Then, from (5.12), we have,

jk
Cir = Qjr + 4 T3 Z Byzﬂjst [J, k] (s, 1) (5.17)
LIk

i ]; are zero unless they are related to

BEE = By keP . teN,

where the parameters

by permutation of 7, 7,k and r,s,t. Then, from (3.12), the amplitude becomes

MO = K%F 11 dﬁ’“ (5.18)
keP’ th
teN”’
with
K= 1, J](m73)(n72) (R, S>(mf2)(n73) (p2)(m—2)(2—n) ’ (5.19)

and Cj; = CL/ Lot k provide the Np constraints Cg.
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6 NMHYV 6-point functions

We will exemplify our analysis by computing all NMHV 6-point gluon tree amplitudes.
Following [2], we then find equivalent but different expressions [24, 25] for the amplitudes,
by choosing other equivalent contours and integrands.

For m = n = 3, we take P = {i,j,k}, N = {r, s, t}; from (5.18),

1 dp
Mel...EG — F c —, 61
2 J ( )C(ﬂ) (6.1)
with just one constraint C; = Cx; = C(5),

C(B) = CirCjsCriCjrCrsCit + CjrChsCitChrCisCit + ChrCisCjtCirCjsChi
—CkrCjsCitCjrCisCit — CjrCisCitCirClsCjt — CirClksCjtCkrCjsCit; (62)

the link variables are 3
Cir = Qg + F[ ', k]<85t>a
where (4,7, k) and (r, s,t) are cyclic, and

kZkTkR

k2k2kj2 H

t kep
teN

6
Ct EI ~ Pa+1

For the three different orderings of the NMHYV 6-point functions, the integrands are
given as in section 4.

(a) for the case (i,t,7,7,k,s) = (+,—,+,—, +,—),

1
() = ;
CirCjsClt
(b) for the case (k,i,s,t,5,7) = (+,+,—, —, +,—)
Cis

F++77+7 (c) —

)
(Cks Cit — thcis)cir Cjs

(c) for the case (i,7,k,r, s,t) = (+,+,+,—, —, —)

FHHt=——(p) = _ s .
(©) (CirCjs — CisCir)(CjsCht — CjtChs)

To compute the amplitudes, we examine the explicit form of the constraint, which
leads to a quartic equation for 3. Writing

Vi:[‘vkL Wr:<37t>7 Vi:<j7k>a WT:[S,t],

and similarly for cyclic rotations of (i, 7, k) and of (r,s,t), we have

Cir = Qjp + ]%%WT, (63)
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and, from (5.6),
AirAjs — AisAjr = PQVkWt- (64)

From appendix B, where we list some algebraic relations useful for computing the 6-
point functions,

CirCjs — CisCjr = BEtlm (65)
for
B 1 =
Cri = Qp; + FWTVM Qprj = FAT% B = 1/ﬁa (66)
Ari = Z(T,S>[S,’i] = _Z<r7]>[]71] (67)

seN jEP

In appendix B, we see that det(c) = f so that ¢,; is the inverse of ¢;., and hence
provides the general solution of

Ty = E CriTi, T = — E TrCris
i€P reN

the equations for the amplitude with flipped helicities. Again, from appendix B,

i i 2

AriAgj — AsiArj = p" WiV,

and

CriCsj — CsiCrj = BCpy.
Using these properties of ¢;., the constraint becomes C(3) = 0, where
C(B) = cisCjr(CriCir — ChrCit)(CjsCht — CjtChs) — CirCis(ChsCit — CrtCis)(CjtClr — CjrCit)
) _ _ _ _
=p [Ciscjrcricsj - Circjscsicrj]

= BeirCisct — B CriCsiCun, (6.8)

which is manifestly quartic in 5. Writing

C(B) = Beircjscrt — B7CriCsjtn = CayB* + C(3)8° + Ciy 8% + C1y B + Co),

the coefficients in the quartic are

Cl2) = Qir@jsvpWt + QjsQtViWr + Qir AtV Ws — AriGsj VW — sjAkViWr — QG U Ws;
C(3) = QirVjUpWsWt + AjsVUEWr Wt + AtV VjWrWs — Crilsj Otk

Cla) = ViV VLW WS Wy, (6.9)

where

U = Vi/pQ, Wy = Wr/p2, v; = Vz‘/PQ, wy = Wr/Pz-
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Now consideration of particular cases for the momenta demonstrates that the roots of
C(pB) are irrational functions of the momenta and that rational results can only be obtained

by summing over each of the roots. So, from (6.1), we take

s _ i FEl"'EG(c)
M > 7{9 e s (6.10)

where O is taken to be a contour encircling each of these roots once, but none of the poles
of F(c). We now discuss the evaluation of the amplitude using contour manipulation, in
the spirit of [1, 2].
Because the integrand tends to zero as 82 or faster, as § — 0o, we have
1 FEl ...€6 (C)

MEl...EG - d ’
»? Jo C(B) p

where the contour O’ encircles the poles in 3 of F-+(c) positively, but excludes the zeros

of C(B).
(a) For the case (i,t,7,7,k,s) = (+,—,+,—,+,—),

M = 1 dp

2mi Jo, p?circjscriC(3)’
where O, encircles § = —A;,/ViW,, § = —A;s/V;Ws and § = —Ap/ViiW;. The
integral is the sum of the contributions of these poles of the integrand, and at each
of them C(8) = Beircjscrt — 63Eri65j5tk = —63Eri65j6tk, because cjrcjscke = 0. Thus,
using formulae listed in appendix B,

M= o L 5 dﬁg_ — (6.11)
27 Jo, P*CirCjsCht37CriCsjCik
[, k)% (s, )"

= — - - — + 2 cyclic terms,
(t| P K] (3| Pyl 1] 93, iy ) [, 3]0, ) [, K]

where the two additional cyclic terms are obtained by simultaneously cyclically ro-

tating (7,7, k) and (r,s,t), and where we write

(1| Pg, g, la2] = (a1, B1)[Br, ao] + -+ + (a1, B) (B, azl, (6.12)

so that
(t| P | k] = —(t| Prj|K], etc.,

and
ooy = Pon + - Day)” - (6.13)

Having written the amplitude in the form (6.11), we can replace the contour O, by
a contour ), encircling the poles corresponding to ¢,; = 0, ¢s; = 0 and ¢, = 0, i.e.
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B=—-VW,/Ay, 3= —VjWS/Ajs and 3 = —V W/ Ay, respectively:

mr—rme o L > dﬁg_ — (6.14)
2mi Jor p*CirCjsCrt3°CriCsjCer
Ay

= — - - — + 2 cyclic terms,
(k| Psi[t] (5| Prils]p5y, [d, ](r, )1, t](r, k)

where A,; is defined in (6.7). (6.14) provides a second, equivalent form for the alter-
nating tree amplitude.
(b) For the case (k,i,s,t,j,r) = (+,+,—, —, +, —),
L Cisdﬁ

2mi O p2circjsﬁzrjc(ﬁ),

where Oy encircles 3 = —A;./ViW,., B = —A;s/V;W and § = —VjWT/flrj. The

integral is the sum of the contributions of these poles of the integrand, and at each

M++——+— —

— 2 A AT chmEm ]l — R2h A E A AT A —
of them C() = B7[¢isCjrCriCsj — CirCjsCsiCrj] = [3°CisCjrCriCsj, because ¢iyCjsCsiCrj =0
at the poles. Thus

— 1 ag
- =
M Bl 2mi fi?b pQCircjsﬁEerjrBQEm'Esj (615)
- _ lj k]4<5a t>3 - k, i]3<t, 7“>4
({1 Pk G )k, P03, G ) 3] (1P R Pl slof, (00 G )
Al
rj

(i Py 31| Pyjls]pg, (k) 15, s, ] K, 1)

For an alternative form, starting from (6.15), we can replace the contour O, by a
contour O encircling the poles corresponding to ¢,; = 0, ¢;; = 0 and ¢j, = 0, i.e.
B=—-VW,/Ay, 3= —VjWS/Ajs and = —A;j,./V;W,, respectively:
1 %
2mi Jo; pPcircisBerjcjrB2CriCs;
A%
(K| P [t] (5| Pt i) (e, )03, [2, 8], 5) [, 2]
i
<k|PT]|t]<S|Pt]|T] <Za 3>pzzs[ja t] []a ’I“](k‘, ,L>
[, i]* (s, )*

1Pl (s| Py r]p2 [, r] G t) (s, ) [, ] (6.17)

M++——+— —

(6.16)

(c) For the case (i,j,k, 7, s,t) = (+,+,+,—, —, —),

M = 1 ¢jsdf3
2mi Jo, p*B*euwcriC(B)’

where O, encircles 8 = —VW;/Ay, and 3 = —V;W,/A,;. The integral is the sum
of the contributions of these poles of the integrand, and at each of them C() =
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Beirciscr — ﬂgérﬁsﬁtk = Bcircjscit, because €,iCsjCy, = 0 at the poles. Thus

1 43
M= = —% — 6.18
2mi P2 B32C1CriBCirCit (6.18)

A3 A},

R st Pal sy [ 1) k) (o, ) P [s]p2iglk, 7 (8 6)

To find the alternative form, starting from (6.18), we can replace the contour O, by
a contour O/, encircling the poles corresponding to ¢; = 0, ¢ = 0 and 3 = 0, i.e.
B=—Au/ViW,, B = —Ak/Vi;W; as well as 8 = 0, respectively:

1 d
MU= 2mi j{c pQﬁQEtkﬁiﬁCiert (6.19)
R i, g1 (r,
Aoy (3 Pl 720, (i 07 K] a5 Por ] 2 1)
(*)?

(i)l I k) st A Ay’
where the A;, is defined in (5.5).

7 Multiple constraints and an NMHYV 7-point function

We now consider the general situation in which the number of constraints, Ng > 1. The
general form of the amplitude is

MELEN — KfF H dﬂkt (71)

keP’! th
teN’

where K is given by (5.19). We must specify further the multi-dimensional contour in (7.1)
and explain how it may be evaluated. We remember, from the end of section 3, that the
motivation for (7.1), is obtained by considering the result (3.11) of evaluating the delta
function constraints 6V (C) in (3.9). By replacing real integrals over delta functions with
contour integrals around corresponding poles, we effectively replaced an expression involv-
ing the inverse of the modulus of the Jacobian of the constraints €, summed over a discrete
set of points corresponding to the simultaneous solution of the constraint conditions, with
the same expression with the modulus removed, so that the sum over the simultaneous
solutions of the constraints now includes the phases of the inverse Jacobian at these points.
We saw in section 6, in the case of the Np = 1 6-point function, that this interpretation
was forced on us if we were to be able to reproduce the rational form for the amplitude
known from gauge theory.

In order to specify (7.1) more precisely, we choose an order for the constraints, Cr,
K =1... Ng, and order the parameters, (i, correspondingly. Then, as in section 5.1 of [2],
the contribution of a particular simultaneous solution 3 = 3% of the constraint equations,

Ck(B)=0,is
K}iﬁo F(c , (7.2)

L - a(c)]
11 cKw)] 9= KF ) |55
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where d3 = df N ... ANdBny, and the contour 0% is chosen to be a surface of the form
{B:Ck(B)| =¢,1 < K < Npg}, with its orientation determined by the order of the Cx (as
in [2]), enclosing 3 = 3° but no other zero of the Cx. The integral (7.2) is be the residue
of the integrand at § = 3y and it is antisymmetric under independent permutations of the
order of the Cx or of the B, and so symmetric under simultaneous identical permutations
of both.

Now, as in the Ny = 1 case, we should sum (7.2) over all the simultaneous solutions,
B = 3° of the constraints, Cx(3) = 0, but exclude the contribution of other poles of the
integrand arising from F(c). At this point we should note that, with the particular set of
constraints we have chosen in section 4, namely {Cy; : k # I, J, t # R, S}, there are always
four ‘trivial’ or ‘spurious’ simultaneous solutions of the constraints, namely c;gr = cjr = 0;
cis =cjs = 0;¢cip = crs = 0; and ¢jr = ¢y = 0. They are introduced when we move from
statements about the matrix (1.6), with entries C@'_rl to statements about multinomials (1.7)
in the link variables, ¢;., by multiplying by products of them. They do not correspond to
the matrix (1.6) having rank 2; in fact, they are artifacts of the particular choice of the
independent set of constraints. These spurious solutions should be excluded from the sum.

The problem again with trying to evaluate this sum directly is that the solutions to
the constraints are not all rational individually, only their sum is. So, we seek to use a
multidimensional version of the contour manipulation arguments we used in section 6 to
evaluate the amplitude to obtain the familiar rational results. As in [2], this is provided
by the global residue theorem. Consider an N-dimensional integral of the form

®(5)ds -
7{ 12, ha(B) =

where N < M. For distinct indices aq, ..., apy, the residue of the integrand at a common
zero 3° of hay,. .., hay, assumed to be a simple zero, is

1 O hays- s hay)]
R(hays - hay) = (6% || [ N ] ,
ag¢ A ha(ﬁ(]) a(ﬁl"'wﬁN) B=/30

(7.4)
where A = {aq,...,an}. It may be that the functions hg,,...,hs, have more than one
common zero but we shall assume the set of such simultaneous zeros is finite and, if there is
more than one, we shall understand R(hq,, ..., ha, ) to denote the sum of the residues (7.4)
at these simultaneous zeros. Suppose I'y,1 < ¢ < N are disjoint subsets of {1,..., M},
whose union is the whole set. Then a version [2] of the global residue theorem states that

> Rlhays- - hay) = 0. (7.5)

ap€el’y

We demonstrate the effectiveness of this for evaluating amplitudes by considering a
7-point NMHV tree with helicities (i,7,k,s,l,t,j) = (+ — + — + — +), so that m = 4,
n = 3, Ng = 2. We take the choice (I,J,R,S) = (i,j,7,s). In this case there are two
constraints, Ci, Cj, and, as in (5.16), we can take the two integration variables to be
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By, = Bk, B = B!, where, for r € N,

Cir = G + (ﬁk[]a k] + ﬁl[j7 l])Wr/p27 (76)
cjr = ajr + (Bilk. ] + Bill, )W, /p,
Ckr = Qgr + ﬁk[i,j]Wr/pQ, Clr = G + ﬁl[iaj]Wr/p27 reN.

From (4.9),

CirCit
F(c) = 25t 7.9
(¢) P (7.9)

and so, from (5.18), the contour expression for the amplitude is of the form

[4, 5] CirCjt
M= (p?)? jg) CrtCirCriCue WPudfh. (7.10)
In (7.10) the contour O is chosen so that it includes the residue contributions from each
of the simultaneous solutions of the constraints Cp; = C;; = 0, but excluding the ‘spurious’
solutions. Cpy = Cp = 0if ¢;p = ¢j = 0 or ¢;s = ¢js = 0 or ¢z = ¢y = 0; we do
not have to consider possible spurious contributions from, e.g. ¢;» = ¢;s = 0, because the
variables ¢;,, ¢is, ¢;+ are not independent and no two of them can vanish together for general
momenta, and similar considerations apply to cjr, ¢js, ¢j¢. The residues at ¢; = ¢j = 0 and
cit = cj¢ = 0 vanish because of the presence of ¢; and cj;, respectively, in the numerator of
the integrand, so that we only have to exclude the contribution from ¢;5 = ¢;; = 0 explicitly.
Applying the global residue theorem taking I'; to correspond to {Cg, i} and T's to
correspond to {Cy, cx¢}, we obtain

R(th, Clt) + R(Clra Clt) —+ 'R(th, th) + R(Clr, ckt) = 0. (7.11)
and so, excluding the ‘spurious’ contribution,

M= R(th,Clt) - R(C’isa cjs)
= —R(cur, ckt) — R(Ckt, ckt) — Rlcir, Cir) — Rcis, ¢js) (7.12)

The choice of I'; and I's has been made so that R(Ck, ckt) and R(cy, Cir) are as easy to
evaluate as R(¢jy, cxe) and R(cis, cjs) are.

Because
Ckt = CirCjsCkiCjrCrsCit + CjrCrsCitChrCisCit + ChrCisCjtCirCjsChi
—CkrCjsCitCirCisCrt — CjrCisCitCirClsCjt — CirClsCjtClrCjsCit
_ ik ij ik ij
= Ciscpeclicy) — cyerscly el (7.13)
where
y
¢yl = CirCjs — CisCir, (7.14)
we have that
th|ckt=0 = Ckrckscitcjt(ciscjr - Circjs)’ (7'15)
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from which it follows that we can write R(Ck, cxt) as a sum of terms corresponding to the
factors of Cx; when cx; = 0. Because, in this case, for general momenta, cg,, cps 7 0 when
ckt = 0, and because of the presence of ¢;; in the numerator, we only have to consider the

factors ¢;; and Cijs7 implying

R(th, th) = R(Cit, th) + R(C?s, th). (716)
Similarly, from

Clt‘cl,nzo = Clscltcircjr(citcjs - ciscjt)a (7-17)
we deduce

R(cir, Cit) = R(curs cjr) + Rlcip, €5). (7.18)

Combining (7.16) and (7.18) with (7.12), we have M expressed as a sum of six terms,
M = Ry ckt) — Rt cht) — R(, eit) — R(ciry ¢jr) — Rlcir, €5) — Rlcis, ¢js). (7.19)

We now calculate each of these terms in turn to obtain M.

Using formulae from appendix C, we find the following:

(a) residue from ¢ = ¢ =0

[i,j] 3(Clr,0kt) ! CirCjt
Rcir, crt) = 7.20
(e1r-cie) (2)? 0Bk, 01) | CreCu (7.20)
1
i, JIWe Wy ckrerscircisciicir (CisCir — Circis)(CitCis — CisCit)
(k,r)(k, s)(l, s)(1,t) (s|Pylj] (s|Prrli] (t|PijPrr|s) (s|PijPyulr)”

(b) residue from c¢;; = ¢k = 0 Since at ¢y = ¢ = 0,

O(Chre, cre) _ _5th Jegy _ dcyt Oy

(Ciscjr - Circjs)a

8(Bk7ﬁl) Bﬂl 8ﬁk - aﬁk a—ﬁleerscﬁ

[@j] a(ckt,ckt) ! CirCjt
R(cit, = 7.22
(cit k) (p*)? [ 9(Br, Br) cirCry (7.22)
1
U IWRer cresCiscitcir(CisCir — Circis)(CisClr — Cjres)
_ Wil 0!
iy (i) () (ke s) [ ][t 5)(s] Pue 5] (i Pyell]

(7.23)
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(c) residue from s = ¢ = 0 Since at ¢;’s = cp = 0,

0 (th, th) B OCpy Ocyy Ocy 30%

= = ClrChsCitCit,
(Br, 1) 0B 0By~ 0B op T
acl}]; . .
o5 [(¢jsWr — o W) 3, 1) + (cirWs — cisWi)[L, i)l /p° = —(t| P l] /p?
Citl 1 = ciscucilell. (7.24)
ij [i,j] [3(6191&, th):| ! CirCjt
R(cY ) = 7.25
(6% cxe) (p?)? | 9(Br, B1) cirCry (7.25)
_ Cir
<t|Pij|l]WtClrckrckscitCisClt(ercit - Cthir)(erCls - stclr)
_ W (1P ) a0
p?jtpirs(r, k> <k7 S> <27]><j7 t> <T‘Pks ’l] <Z’Pjt’l] <t‘Piijr’3> . )
(d) residue from ¢ = ¢j = 0 Since at ¢, = ¢j = 0,
e, Cu) _ Ocy OCy _ Ocjy aclrc' ety (Cincin — Cincit)
a(ﬂk,ﬂl) 8ﬁl 86]9 86]9 8ﬁl irClsClt\CisCit isCit)s
[27]] |:a(clr7clt):|_1 CirCjt
Rcir,cjr) = 7.27
(@ cr) (p?)? | 9Bk, B1) CriCrt (7:27)
1
T [k, W 2esC1Ci CrrCisChi (CsCit — CisCit)(CisChi — CitChs)
477, 14
= W, Ik i (7.28)

P2 (s, D (L) (t, 5) [i, v [r, K] (3] Pir K] (5| Pro ]

(e) residue from ¢, = ¢, = 0 Since at ¢ = ¢} =0,

a(clh Clt) 80[7« 80115 80;% 8Clr

- = - CisCitCirCijr,
9(Br, 1) 0B 0Bx  0py 0B T

oY ) .
BBS;: = [(cisWy = ca W)k, i] + (c;eWs — ¢jsWi) 4, k]| /p* = —(r| Py k] /p?
th|ci]t~:0 = Citckrcgfc?s. (7.29)
0J [Za.]] |:a(Clr,Clt):| ! CirCjt
R, c) = 4 7.30
(ar- ) (02)? LB, B1) | Crecre (7.30)
- Cjt
(1| Pij |[k]WycjrcrscieCriCicCrr (CirCjs — CisCir)(CjsCht — ChsCijt)

2,03, (Gi)(ir) (s1)(1t) (j|Pir|k] (¢|Pis|k] (s| P Pyjlr)”
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(f) residue from ¢;s = ¢j5 = 0 Since at ¢;s = ¢js = 0,

O(Cikt,Crt)  O(Cre,Cre)  O(cis, Cjs)

0B, ) Ocis,cis) 0B, B)
9(Ckt, Cit)

e ) = CirCjrChsClsCitCit(CitCjr — CjtCir) (ChrCit — CrtCir)

I cis, cjs) [0, g1k, UW2

Bk, Br) p?)?
[4, 7] [3(th7clt)] e
R Cis, Cjs) = 7.32
(€ie: &je) ()% | 9(Br, B1) ClrCht (7.32)
1
[k W 2cjrepcrsciscitcri(citcir — ciicir) (Crrcit — CriCir)
WAk, 1]*
R . (7.3
pkls<t,]><]a Z> <Za T> [la 5] [Sa k] <T|Pk8 |l] <t|-PlS|k]
Combining these results for the residues, we have that
M =— R(Clra th) - R(Cita th) - R(C;Js, th) - R(Clra er) - R(Clra Cls]t) - R(CiSa st)
_ WiW, i, j1°
<ka T><ka 3> <la 5> <la 7j> <S|Plt |.]] <S|Pk7"|z] <t|PZ]Pk7"|S> <S|P2j-Plt|r>
_ Wt4[j, l]4
i i) (ry k) (e, s) (L ][t 51(s[ P |51( ] Pje 1]
3 Wi (| Py|1)*
P3juh (s k) (R, 8) (0, 7) (s 8) (] Pis |1] (8] Py 1] (¢ Pij Pir|s)
B Wk, i]*
P2 (8 DAL 1)t ), [, K] (G| Pir |] (5| Prer|d]
3 W (r| Py K]
P, Phs (1) (i) (s0) (18) (G| Pir |k]{t| Pis k] (] P Pijlr)
Wk, 1]

PRt ) G ) () L sl k)| P [0t Prs K]

The expression (7.34) has the appropriate soft limits and is antisymmetric under the
transformations ¢ <~ j, k < [, 7 < t, s <> s. It is equal, up to notation and signs, to the
expressions computed directly from the field theory, and by recursion relations [19, 20].
Other tree amplitudes can be computed in a similar fashion from the expressions for
the integrand in section 4. It seems that the dual S-matrix of ACCK leads back to twistor
string theory at tree level. It will be interesting to pursue this link at the loop level.
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A Interchange of particles between P and N
For ke P,te N, let Py =P ~ {k}, No =N ~ {t}, and P' = Py U {t}, N' = Ny U {k},

m = g CirTy + CitTt, 1€ P

reNp
CrtTi — Cit T = E (CirCrt — CitChr)Tr, i€ Py
rENo
(Circkt — CitCk ) Cit .
m = E p - r+c—7Tk, i € Py
reNo kt kt
C
T = — E —T7Tr+—7Tk
rEN Cht
So
T = 5@'7"777*7 re 7)/,
reN’
with
- CirClt —CitCry . - Cit . - Ckr ~ 1
Cip=———"" 4 €Py,r €Np; Cp=—1, 1€ Py; Ctr=——, rENy Cir=—.
Ckt Ckt Ckt Ckt
Similarly

— T, = Z'ﬁ'iéir, TENI,
icP’
with the same definition of ¢;.. It remains to show that the ¢;,. satisfy the same constraints
as the ¢;.. To do this we establish formulae for them in terms of the xy, py.

- CjsCkt — CjtCls R Pj — Pr Pj — Pr Pk — Pu .
JSs J J J J
Cjg = —————— = — —_ — s jGPo,SGNo,

Chkt Rs | Jen Ps = Pr ren Pk = Pr oy Ps = Pu
| r#s r#t u#s

_ﬁ'pj—pt,ps—pk_pj—/)s,Pk—f’t.f’s_pk] b pr
eN’

Rs [Ps — Pt Pj — Pk Pk —Ps Ps— Pt Pj— Pk Ps — Pr
r#s
Py .
S u, jGPo,SGNo.
Ks oy Ps — Pr
r#s
L Cit K TT PP ¢ — K 2 ,
C]k:L:—jH J THp Pr: ]H ] Pr JGPO
Cht Kk oy Pt=Procoe P = Pro Bk S, Pk Py
r#£t r#t r#k
C KR — K
6ts:_ﬁ: tHPk PrHPt Pr:tHPt Pr seN.
ck?t S reN pS pT reN pk?_ 3 TE.N'/
r#s r#t r#s
By, = 1 Pt—Pr _ Kt Pt = Pr
= — = — -
Ckt K reN Pk — Pr KR PN Pk—Pr
r#t r#£k

Thus the ¢;, are given by similar expressions in terms of the py, ky as the c¢j,, and so the

Cjs satisfy similar relations to those satisfied by the c;s,.
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B Relations for the 6-point function

‘/inr - ‘/iAjr = —PQ[]?J"], AirWs - AisWr = —p2<i7t>
‘/inrWs + ‘/iAjsWr - ‘/}AisWr - ‘/iAers = le‘_ltk

where

A= S ns)lsil = = S0l T = A

sEN JjeEP p
det —EZVW(» — ajiags) = b ViV W,W,=p
€l c = B iV lQjsQpt AjtQks) = (p2)2 V1 rVVor — M
zgz i€P reN

where, as before, (i, ], k), (r,s,t) are cyclic.
Corresponding to the relations for A;., we have

Ar_z‘/_ls_j - _fi __rj = P’ W, Vi,
AV = A Vi = —p*(r,k),
WSATZ

When ¢;,. =0,

ViW,.36ri = Pl
‘/iWT‘BES] = <Z S>[’I“,j], ‘/Z'WT‘/BEtk:<7:,t>[T k] ‘/iWTBESk‘:<Z',S>[Ta k], ‘/iWTBEtj:<iat>[r,j]’

Wrczs < > Wrcit:_@ 3> ‘/’ich‘:[karL ‘/ickr:_[larL
‘/’iWT’/BETj <Z’Prk‘]] %Wrﬁzrk = <Z‘ rJ ’k] %Wrﬁzsi = <S‘Ptz ’TL ‘/iWrBEti = <t‘Psi‘r]a
‘/iWrc]s— [k‘Psz’t% %Wrckt—[ ’Ptz’ >7

using notation defined in (6.12) and (6.13).

When ¢;,. = 0,
ViW,Beir =l o o
Vi W_ﬂcjs— [i,s](r,5), Vi Wr_ckt:[z,t](r, k), VZWr_ﬂcks—[z,sKr, k), VZWT_B i =1, t](r, j),
W,Cs = [Z t] WrEti:[i’S]’ ViErj:_<kaT>a VZE k:<.]a >
ViW,Bc Cijr —[ |Prk|]> ZW Begr = [ |P7“j|k>’ V@'WTBCis:[S|Pti|T>, VW, Bc t:[t|Psz|T>

ViWT‘CS] = <k|Psz|t] ViWTEtk:_<j|Pti|5]a
where 3 = 1/4.
C Relations for the 7-point function

We derive the relations we need to evaluate the 7-point function working directly from
the equations

g = CorTy + CosTs + CoT, C=1i,5,k,l, (C.1)

—Ty = MiCiy + TjCjy + TkChy + TCly, u=r,5s,t. (02)
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If ¢ = 0, from (C.1) with £ = k&,
Crr = (k, 8)/(r,5), crs = (k,r)/(s,7), it = 0. (C.3)
(a) For ey = ¢y = 0, in addition to (C.3),
ar =0, as=({1)/(st),  ar=(9)/{ts). (C.4)
and from (C.2) with u = r,
TiCir + Tjcjr = —(Tr(k, s) + T (r,8))/ (1, 5),
yielding
cir = [§|Pers) /8, 51 8), cjr = [ilPirls)/[5,d)(r, 5), (C.5)
and, similarly,
cie = [ Puls) /i 3(E, s), i = [ilPuls) /15, dl(E, ). (C.6)
From (C.1) with £ = i
cis(s,t) = (i,1) —cir(r 1), cjs(s,t) = (4, 8) — ¢jr(r,t)
implying
(circjs — Cjrcis)(s,t) = (J, t)cir — (i, t)cjr = —(t|PijPrrls)/[i, j](r, s)

so that
CirCjs — CjrCis = —(t| Pij Pr|s) /i, j](r, s) (s, 1), (C.7)

and, similarly,
CitCjs — CjtCis = —(r|Pij Pyls) /i, j](s, 1) (r, 5). (C.8)

(b) When ¢y = ¢y = 0, from (C.1) with £ = k, 1,
ckr = (k, s)/(r,s), cks = (k,r)/(s,7), cre =0, (C.9)
and
cir = (1, 8)/(r, s), cis = (i,7)/{s,7), cit = 0. (C.10)
From (C.2) with v =t,
Cjt = _[t’l]/[ja l]a Cit = _[t’j]/[l’j]’ (Cll)

and from (C.1) with ¢ = j,1,

cjr(rs) = (sl /[ 31, ¢js{s,m) = (el Pyl U]/ 1L 51, (C.12)
Clr<r’ S> = <5|Plt|j]/[]’ l]’ Cls<5’r> = <T|Plt|.]]/[]a l] (C13)
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From (C.1) with ¢ =1, j,

(ry )21, d)(eircjs — ciscir) = (i) (s|Pyall] = (i, 8)(r| Pell] = —(r, ) (i Pye|l]
so that
CirCjs — CisCir = (i Pje|l]/(r, 5)[4, 1] (C.14)
From (C.1) with ¢ = j,1,
(circjs = cjrais)(s,t) = (J,thew — (L t)ejr = ((s|Puli] G, ) + (s|Piell] (L, £)) /17, 1), ),

from which it follows that
arcjs — cjrcis = =5/ [, 1(r, 5)- (C.15)
When ¢y = ¢ = 0, from (C.1) with ¢ = k

= (k,s)/(r,s), cks = (k,7)/(s,7), ¢ =0, (C.16)
and with £ =1, j,
CjrTj — CipTj = (ercit - Cz‘ert)Wt,
so that
er<i,t> = Cir<jat>a cjs<iat> = Cis<j7 t>- (C'17)
From (C.2) with u =r,

—[l,?“] = [lvi]cir + [l,j]er + [l7k]<k7 S>/<7“, S>7

implying

(8| Bnll]/ (1, 5) = [ e + 1 e = (1P o/ (1),
so that
G  GPIG  (slPllLd)
i = By s T Byl T T sy (O
B S S 1 SN 11 W1 10 o
O TR sy T T @By O T T By sy

and, from (C.1) with ¢ =4,

it (81 Py |l (r, ) (i, 8) = = (8| P 10, 8) (r, 8) + ([ Prs |10, £) (s, 8) = —(r, 8) (il Praes 13, )

so that . '
Pl 1Pl
it — 5 Cjt - .
([P (t| Py |1]

From (C.2) with v =t,

(C.20)

(P10 tew = —[t, d)e — [t dleje = = [t il Pye|l) — [¢, 51( 1 Pael]
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implying

Clt — 77 (021)
From (C.1) with ¢ =1,

(P (r, s) = (1 s)(E[ Pig[l] — cu(t, s) (¢ Py |l]
<l7s><t’Pij‘l] _p?jt@v 8> - _<t’Piijr‘s>

so that
(t| Py Perls) (t|Pij Pys|r)

(r,s)(t| P[] s = s n)HP (C.22)

Clyp = —
From (C.1) with ¢ = j,1,

(ercls - stclr)<ry t> = Cis <]a 75> - st<l’ t>

implying 2 i
Prrs\Js
CjrCls — CjsClr = —m (0-23)
(d) When ¢, = ¢jr = 0, proceeding as in (b), we have

¢ = 0, as = (I, t)/(s,t), cp=(l,s)/(t,s), (C.24)
cjr =0, cjs = t)/(s,t),  cu={j,s)/(t,s), (C.25)
cir = —[r E]/[i, K], ckr = —[r, 4]/ [k, 1], (C.26)
Cis(s,t) = (¢ P[]/ k], cirlt, s) = (s|Bir|K] /[, 1], (C.27)
cks(s,t) = (t|Pi]/[i, K], ct(t, s) = (s|Pgrlt] /]2, k], (C.28)
CitCjs — cisCit = (j|Pir|K]/ (s, )i, K], (C.29)
CisCht — CitChs = Do/ [i, K] (5, 1). (C.30)

(e) When ¢, = clsi = 0, proceeding as in (c), we have

[(s,t), e =(l,s)/{t,s), (C.31)

) ,
(5] Pul k] (i, ) (| Pulk] ) (s Pul] ()
= T = ST — ey =032
= B M) O Bl ) T = B sy (O
(t1P )i, 7) tPLIK ) (t|P k)i, 5)
= - IS= T D 111/ 2\ jsCir —CisCir = 75 171/ . 2 C.33
=S B M ) T Byl (s 1) 9 O = 1 s, 0y ()
(i1 K] 1P ]
Ciyp = 9 Cjr = 3 (C34)
(r Py K] "= Py k]
2
K Pijr (C.35)
" PR
(r| Py Py |s) (r|Pij Ps|t)
oy = —gtwls) o sl (C.36)
ST s (P Pyl T T (s 0y ([P K]
2 .
) . _ plst<]a’r> C 37
s = e ) PR 0
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(f) When ¢;s = ¢js = 0, also proceeding as in (b), we have

cir = (i, t) /(r,t), cis=0, cu={,r)/(t,T), (C.38)

Cjr = <J}t>/(ﬁ t), ¢js=0, cjip={j,r)/{t,7), (C.39)

ks = —[s,1]/[k. 1], as=—[s, k|/[L, k], (C.40)

Chr(r,t) = <t\Pks!l]/[l7/€] cre(t,7) = (r|Pes|l]/[1, k], (C.41)
cip(r,t) = (¢ Pis|k]/ [k, 1], cult,r)=(r|Ps|k]/[k,1], (C.42)
circjr — carcie = —((i,7) (G, ) = (4,r) (i, ) /{r 6)* = (i, 5)/{t, 7). (C.43)

(ehrei = circre) (r; 8) = (K, s) e — (1 8)cre = ([ Pis K]k, 8) +(r[ Ps (L 5)) / [k, 12 1),

so that
ClrClt — ClyClit = —pzls/[k:, [{t,r). (C.44)

References

[1] N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, The S-matriz in twistor space,
arXiv:0903.2110 [SPIRES].

[2] N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A duality for the S matriz,
arXiv:0907.5418 [SPIRES].

[3] N. Berkovits, An alternative string theory in twistor space for N = 4 super-Yang-Mills,
Phys. Rev. Lett. 93 (2004) 011601 [hep-th/0402045] [SPIRES].

[4] N. Berkovits and E. Witten, Conformal supergravity in twistor-string theory,
JHEP 08 (2004) 009 [hep-th/0406051] [SPIRES].

[5] E. Witten, Perturbative gauge theory as a string theory in twistor space,
Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [SPIRES].

[6] N. Berkovits and L. Motl, Cubic twistorial string field theory, JHEP 04 (2004) 056
[hep-th/0403187] [SPTRES].

[7] R. Roiban, M. Spradlin and A. Volovich, Dissolving N = 4 loop amplitudes into QCD tree
amplitudes, Phys. Rev. Lett. 94 (2005) 102002 [hep-th/0412265] [SPIRES].

[8] R. Roiban, M. Spradlin and A. Volovich, A googly amplitude from the B-model in twistor
space, JHEP 04 (2004) 012 [hep-th/0402016] [SPIRES].

[9] R. Roiban and A. Volovich, All googly amplitudes from the B-model in twistor space,
Phys. Rev. Lett. 93 (2004) 131602 [hep-th/0402121] [SPIRES].

[10] R. Roiban, M. Spradlin and A. Volovich, On the tree-level S-matriz of Yang-Mills theory,
Phys. Rev. D 70 (2004) 026009 [hep-th/0403190] [SPIRES].

[11] F. Cachazo, P. Svréek and E. Witten, MHV vertices and tree amplitudes in gauge theory,
JHEP 09 (2004) 006 [hep-th/0403047] [SPIRES].

[12] M.L. Mangano and S.J. Parke, Multi-parton amplitudes in gauge theories,
Phys. Rept. 200 (1991) 301 [hep-th/0509223] [SPIRES].

[13] L. Dolan and P. Goddard, Tree and loop amplitudes in open twistor string theory,
JHEP 06 (2007) 005 [hep-th/0703054] [SPIRES].

,30,


http://arxiv.org/abs/0903.2110
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.2110
http://arxiv.org/abs/0907.5418
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0907.5418
http://dx.doi.org/10.1103/PhysRevLett.93.011601
http://arxiv.org/abs/hep-th/0402045
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0402045
http://dx.doi.org/10.1088/1126-6708/2004/08/009
http://arxiv.org/abs/hep-th/0406051
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0406051
http://dx.doi.org/10.1007/s00220-004-1187-3
http://arxiv.org/abs/hep-th/0312171
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0312171
http://dx.doi.org/10.1088/1126-6708/2004/04/056
http://arxiv.org/abs/hep-th/0403187
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0403187
http://dx.doi.org/10.1103/PhysRevLett.94.102002
http://arxiv.org/abs/hep-th/0412265
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0412265
http://dx.doi.org/10.1088/1126-6708/2004/04/012
http://arxiv.org/abs/hep-th/0402016
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0402016
http://dx.doi.org/10.1103/PhysRevLett.93.131602
http://arxiv.org/abs/hep-th/0402121
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0402121
http://dx.doi.org/10.1103/PhysRevD.70.026009
http://arxiv.org/abs/hep-th/0403190
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0403190
http://dx.doi.org/10.1088/1126-6708/2004/09/006
http://arxiv.org/abs/hep-th/0403047
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0403047
http://dx.doi.org/10.1016/0370-1573(91)90091-Y
http://arxiv.org/abs/hep-th/0509223
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0509223
http://dx.doi.org/10.1088/1126-6708/2007/06/005
http://arxiv.org/abs/hep-th/0703054
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0703054

[14] L. Dolan and P. Goddard, Current algebra on the torus,
Commun. Math. Phys. 285 (2009) 219 [arXiv:0710.3743] [SPIRES].

[15] S.J. Parke and T.R. Taylor, An amplitude for n gluon scattering,
Phys. Rev. Lett. 56 (1986) 2459 [SPIRES].

[16] F.A. Berends, W.T. Giele and H. Kuijf, On relations between multi - gluon and multigraviton
scattering, Phys. Lett. B 211 (1988) 91 [SPIRES].

[17] D.A. Kosower, Next-to-mazimal helicity violating amplitudes in gauge theory,
Phys. Rev. D 71 (2005) 045007 [hep-th/0406175] [SPIRES].

[18] Z. Bern, L.J. Dixon and D.A. Kosower, All next-to-mazimally helicity-violating one-loop
gluon amplitudes in N = 4 super-Yang-Mills theory, Phys. Rev. D 72 (2005) 045014
[hep-th/0412210] [SPIRES].

[19] Z. Bern, V. Del Duca, L.J. Dixon and D.A. Kosower, All non-mazimally-helicity-violating
one-loop seven-gluon amplitudes in N = 4 super- Yang-Mills theory,
Phys. Rev. D 71 (2005) 045006 [hep-th/0410224] [SPIRES].

[20] R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons,
Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [SPIRES].

[21] R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in
Yang- Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [SPIRES].

[22] R. Penrose, Twistor algebra, J. Math. Phys. 8 (1967) 345 [SPIRES].

[23] V.P. Nair, A current algebra for some gauge theory amplitudes,
Phys. Lett. B 214 (1988) 215 [SPIRES].

[24] A.P. Hodges, Scattering amplitudes for eight gauge fields, hep-th/0603101 [SPIRES].

25] A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, arXiv:0905.1473
g
[SPIRES].

[26] J.M. Drummond and J.M. Henn, All tree-level amplitudes in N = 4 SYM,
JHEP 04 (2009) 018 [arXiv:0808.2475] [SPIRES].

[27] M. Spradlin and A. Volovich, From twistor string theory to recursion relations,
Phys. Rev. D 80 (2009) 085022 [arXiv:0909.0229] [SPIRES].

,31,


http://dx.doi.org/10.1007/s00220-008-0542-1
http://arxiv.org/abs/0710.3743
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0710.3743
http://dx.doi.org/10.1103/PhysRevLett.56.2459
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA,56,2459
http://dx.doi.org/10.1016/0370-2693(88)90813-1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B211,91
http://dx.doi.org/10.1103/PhysRevD.71.045007
http://arxiv.org/abs/hep-th/0406175
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0406175
http://dx.doi.org/10.1103/PhysRevD.72.045014
http://arxiv.org/abs/hep-th/0412210
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0412210
http://dx.doi.org/10.1103/PhysRevD.71.045006
http://arxiv.org/abs/hep-th/0410224
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0410224
http://dx.doi.org/10.1016/j.nuclphysb.2005.02.030
http://arxiv.org/abs/hep-th/0412308
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0412308
http://dx.doi.org/10.1103/PhysRevLett.94.181602
http://arxiv.org/abs/hep-th/0501052
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0501052
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA,8,345
http://dx.doi.org/10.1016/0370-2693(88)91471-2
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B214,215
http://arxiv.org/abs/hep-th/0603101
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0603101
http://arxiv.org/abs/0905.1473
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0905.1473
http://dx.doi.org/10.1088/1126-6708/2009/04/018
http://arxiv.org/abs/0808.2475
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0808.2475
http://dx.doi.org/10.1103/PhysRevD.80.085022
http://arxiv.org/abs/0909.0229
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0909.0229

	Introduction
	The N-point amplitude
	The amplitude as an integral over constraints
	The form of the integrand, F(c)
	Parameterization of the general solution of linear constraints on c(ir)
	NMHV 6-point functions
	Multiple constraints and an NMHV 7-point function
	Interchange of particles between P and N
	Relations for the 6-point function
	Relations for the 7-point function

