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Determination of the light quark masses from η → 3π
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Recently, several experimental collaborations have invested considerable effort into new and more

precise measurements of theη → 3π decays. These experimental advances require revisiting the

corresponding theoretical analyses. In this work, we present a new calculation of theη → 3π
decay amplitude relying on dispersive methods. We show how the study of this decay allows

one to extract a fundamental parameter of the Standard Model, namely the quark mass ratio

Q2 ≡ (m2
s − m̂2)/(m2

d −m2
u), with good precision. We findQ= 21.3±0.6. We then discuss the

possibility of extracting the individual light quark masses.
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1. Introduction

Studying theη → 3π decay is particularly interesting because this decay allows one to have
access to the light quark mass differencemd −mu. Bose statistics does not allow three pions to
form a configuration where both the total angular momentum and the total isospin vanish. Since
theη meson has isospinI = 0, this decay proceeds exclusively through isospin violating operators.
In the Standard Model, there are two sources of isospin violation: strong and electromagnetic (EM)
interactions. It has been shown that the EM corrections to this decay are very small [1]. To a good
approximation the decay rate is therefore proportional to the square of the light quark mass differ-
ence. If one were able to accurately calculate the proportionality factor, a measurement of the decay
rate would thus provide a determination of this quark mass difference. This is the aim of this work.

It has been shown that due to the Kaplan-Manohar ambiguity [2] appearing at next-to-leading
order (NLO) of Chiral Perturbation Theory (χPT) a better quantity to extract from this decay is the
quark mass double ratio

Q2 =
m2

s − m̂2

m2
d −m2

u
, with m̂=

mu+md

2
. (1.1)

DeterminingQ gives an elliptic constraint on the quark mass ratiosmu/md andms/md [3]. The
ratio S= ms/m̂ is known very accurately from lattice QCD, butmu/md is still poorly known. In
view of the relationmu/md = (4Q2 −S2+ 1)/(4Q2 +S2− 1), a sharp determination ofQ would
lead to an accurate value formu/md. The amplitude of this decay can be expressed as

A(s, t,u) =− 1
Q2

M2
K(M

2
K −M2

π)

3
√

3M2
πF2

π
M(s, t,u) , (1.2)

with s, t andu the three Mandelstam variables satisfyings+ t +u= M2
η +M2

π0 +2M2
π± ≡ 3s0.

Both the theoretical prediction and the measurement ofη → 3π are extremely involved. On
the experimental side, the value of the decay width has increased by more than 3σ since the eight-
ies, fromΓη→π+π−π0 = 197±29 eV in 1982 to 295±20 eV today. This large shift is almost entirely
due to the increase of the value of the total decay width, which is fixed via the processη → 2γ .
On the theory side, the main difficulty is the evaluation of rescattering effects among the pions in
the final state [5]. This can be done perturbatively withinSU(3) χPT but the chiral expansion con-
verges rather slowly in this case. At tree level, the decay width evaluation [4] givesΓtree= 66 eV
in clear disagreement with the experimental result. The oneloop calculation, taking one final state
rescattering into account, leads to a sizable correction:Γone loop= 160± 50 eV [6]. This result
agrees with the experimental result of the time (PDG 1982) but not with today’s value. Higher or-
der corrections should be included, as they are expected to be large. A two-loop calculation inχPT
was performed in Ref. [7] but forη → 3π a large number of unknown low-energy constants enter,
reducing the predictive power of this evaluation. Another approach relies on the use of dispersion
relations. As inχPT, some unknowns, called the subtraction constants, enterthe calculation and
must be determined with other methods. Dispersion relations were applied successfully toη → 3π
in Refs. [8, 9].

Here we will present a new dispersive analysis following theapproach of Ref. [9]. The sub-
traction constants are fixed from a fit to the precise Dalitz plot measurement from the KLOE col-
laboration [13], which is a new feature compared to the original work. Moreover, we can rely on
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new precise inputs for the dispersion relations, theππ phase shifts that have been extracted re-
cently [10 – 12]. Besides, an intense experimental activityin the sector [13, 14] as well as recent
important theoretical works [15 – 18] motivate this study.

2. Dispersive analysis of η → 3π decays

The dispersive method applied to theη → 3π decays relies on the decomposition of the am-
plitudeM(s, t,u) into S- andP-partial waves [9]

M(s, t,u) = M0(s)+ (s−u)M1(t)+ (s− t)M1(u)+M2(t)+M2(u)−
2
3

M2(s) . (2.1)

The MI(s), whereI stands for isospin, are functions of one variable only, withonly a right-hand
cut. This decomposition is exact up to chiral corrections oforderp8. The unitary relations for the
MI (s) are given by

discMI (s) =̇
MI (s+ iε)−MI(s− iε)

2i
=

{

MI(s)+ M̂I(s)
}

e−iδI (s) sinδI (s) , (2.2)

whereδI(s) are theS- andP-waveππ scattering phase shifts andI = 0,1,2. The inhomogeneities
M̂I (s) contain the left-hand cuts of the partial waves. They are obtained from angular averages
over theMI(s), leading to a set of coupled equations. These angular averages are non-trivial and
generate complex analytic structures. Knowing the discontinuities of theMI (s), one can write a set
of dispersion integrals:

M0(s) = Ω0(s)

(

α0+β0s+ γ0s2+
s2

π

∫ ∞

4M2
π

ds′

s′2
sinδ0(s)M̂0(s)

|Ω0(s
′)|(s′−s− iε)

)

, (2.3)

and similarly forM1 andM2. The Omnès functionsΩI(s) are given by

ΩI(s) = exp

(

s
π

∫ ∞

4M2
π

δI(s
′)

s′(s′−s)
ds′

)

. (2.4)

The equations for theMI(s) are solved by an iterative procedure starting with some initial configu-
ration for theMI(s). The inputs of the dispersive integrals are theππ phase shiftδI (s) taken from
Ref. [10]. The dispersion relations fix the amplitudeM(s, t,u) in Eq. (2.1) up to four subtraction
constants:α0, β0, γ0 (see Eq. (2.3) forM0(s)) andβ1 (in the analogous relation forM1(s)). In
Refs. [9, 19], these constants were determined from a matching to the one-loopχPT result. The
present analysis relies on a different determination of thesubtraction constants, which invokes the
precise Dalitz measurement by the KLOE collaboration [13].We perform a fit where the param-
etersα0, β0, γ0 andβ1 are determined by simultaneously minimizing the difference between the
dispersive representation of the amplitude and both, the one-loop representation fromχPT (in the
vicinity of the Adler zero) as well as the observed Dalitz plot distribution (in the physical region
of the decay). The position of the Adler zero, but not the shape of the amplitude there, is protected
by SU(2)×SU(2) chiral symmetry. Thus we expect the neglected NNLO corrections to be smaller
there than, say, at the center of the Dalitz plot.
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Figure 1: Left: The figure shows several results for the decay amplitude M(s, t,u) along the lines= u.
The solid and dashed lines stand for the central values of thereal and imaginary part, respectively and the
dotted lines for the error bands. The vertical dashed lines mark the boundaries of the physical region. Right:
Comparison of several results for the quark mass ratioQ.

3. Results

In Fig. 1 (left), we present the results for the amplitude along the lines= u. We have re-
peated the analysis of Refs. [9, 19] using updated inputs. This leads to the green curve labeled
as “dispersive, matching”. One observes sizable corrections compared to one-loopχPT (in red
in Fig. 1 (left)) in the physical region. Using the PDG average for the decay width [23] and the
dispersive result for the amplitude, we getQ= 22.7±0.7. One can then express the squared am-
plitude in terms of the Dalitz plot variablesX =

√
3

2Mη Qc
(u− t) andY = 3

2Mη Qc

(

(Mη −Mπ0)2−s
)

−1
with Qc = Mη − 2Mπ+ −Mπ0, and compare the theoretical distribution to the measurement [13],
see Fig. 2. Note that the experimental result is given in terms of the Dalitz plot parameters which
are the coefficients of the expansion|A(X,Y)|2 ∝ 1+aY+bY2+dX2+ fY3+ . . . While the Dalitz
distribution along the lineY = 0 is in very good agreement with the experimental result, it grossly
overestimates the data along the lineX = 0.125 for large negativeY (large positives).

Our main result, which comes from the fit to the experimental Dalitz distribution as described
in Sec. 2, is represented by the blue curves labeled “dispersive, fit” in Figs. 1 and 2. Naturally,
the results now agree with experiment. One observes in Fig. 1(left) that the corrections to the
one-loopχPT result are now smaller in the physical region. However, the imaginary part has
large uncertainties because the fit only constrains the absolute value squared of the amplitude.
This analysis yieldsQ = 21.3± 0.6, which is compared to other results in Fig. 1 (right). Our
result stands between the one and two-loopχPT results and is lower than the outcome of the other
dispersive analyses. However, it agrees well with the estimate coming from kaon mass splitting
including large Dashen violation [21]. The discrepancy with the results of Ref. [17], where a
similar dispersive analysis was performed and the same datawere used to determine the subtraction
constants, is not yet understood. AsQ is very sensitive to the normalization of the amplitude, the
most likely reason lies in the difference of the procedure tofix it. While we have chosen to perform
a fit along the lines= u, the authors of Ref. [17] fit along the linet = u, which would lead to a very
strong violation of the Adler zero position in our analysis.

Only one experimental result is available in the charged mode. However, in the neutral channel
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Figure 2: The Dalitz distribution of the amplitudeη → π+π−π0 along the linesY = 0 (left) andX = 0.125
(right). The dashed lines represent the limits of the physical region. The uncertainty band is given by the
dotted lines. In the right panel, we chooseX 6= 0 to probe the termX2Y of the Dalitz distribution.

there exist a large number of experimental results that predict the slopeα of the Dalitz distribution
|Ā(X,Y)|2 ∝ (1+2αZ) with Z = X2+Y2. All the measured values ofα are in agreement which
each other and with the PDG averageα = −0.0317±0.0016 [23]. However, most of the calcula-
tions predict the wrong sign forα . One can obtainα from the dispersive analysis of the charged
mode by using isospin symmetry to relate the charged and neutral amplitudes. The result from the
dispersive analysis with matching to one-loopχPT isα = 0.030±0.011 confirming the previous
theoretical results. From the fit, we obtainα = −0.045±0.010, which has the correct sign but is
only in marginal agreement with the PDG value. Note that the latter has a very small uncertainty.
In order to obtain the best value forQ from the dispersive analysis, we can use all our experimental
knowledge and further constrain the subtraction constantsby requiring the dispersive analysis to
reproduce the experimental value forα . Such a study is currently in progress.

Using the value ofQ from the dispersive analysis and the most precise values of ˆm andms

from lattice QCD [24], we obtain an estimate of the reachableprecision for the extraction of the
light quark masses,mu = (2.02±0.14) MeV andmd = (4.91±0.11) MeV.

We would like to stress that all the results presented here are still preliminary and the last
refinements on the numerical analysis are underway. In particular, theO(p6) effects in the deter-
mination of the subtraction constants are being investigated.

4. Conclusion

In this talk, we have presented a new dispersive analysis ofη → 3π. This decay represents
a very interesting source of information on the light quark masses through the determination of
the quark mass ratioQ. To this end, one needs to have the strong rescattering effects in the final
state under control. This is possible thanks to dispersion relations, which allow one to know the
amplitude up to subtraction constants. Fixing these constants represents the main difficulty of the
analysis. Here, we have presented a new analysis where the subtraction constants have been deter-
mined using experimental data from the charged channel. This yieldsQ= 21.3±0.6. The estimate
used for the size of the NNLO effects in the vicinity of the Adler zero is a delicate point in the
error analysis. This issue still needs to be studied in more detail. Moreover, the present work relies
on data from a single experiment, but hopefully new measurements will appear soon and help to
improve the analysis.
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