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Homogeneity and correlations in the observed CMB are indicative of some form of cosmological coherence in earlier times. 
Cosmological dark energy de-coherence is assumed to occur when the rate of expansion of the microscopically relevant 
cosmological scale parameter in the Friedmann-Lemaitre equations at early times is no longer supra-luminal. This choice of the 
scale parameter in the FL equations directly relates the scale of dark energy de-coherence to the De Sitter scale (associated with 
the positive cosmological constant) at late times.  It is shown that  the class of dynamical models so defined necessarily 
requires a spatially flat cosmology in order to be consistent with  observed structure formation. Prior to de-coherence, the 
coherence which preserves the uniform density needed to make the FL dynamical equations meaningful must be maintained by 
supra-luminal (cosmological) correlations and not by the luminal or sub-luminal microscopic exchanges available after de-
coherence.   The basic assumption is that the dark energy density which is fixed during de-coherence is to be identified with the 
cosmological constant. This approach makes no assumption about the constancy of dark energy density outside of the finite 
time interval when the expansion rate is not supra-luminal. It is shown for the entire class of models that the expected 
amplitude of fluctuations driven by the dark energy de-coherence process is of the order needed to evolve into the fluctuations 
observed in cosmic microwave background radiation and galactic clustering. 

 
 

1. INTRODUCTION AND GENERAL 
APPROACH 

The luminosities of distant Type Ia supernovae and 
analysis of the CMB radiation show that the rate of 
expansion of the universe has been accelerating for several 
giga-years, in quantitative agreement with a (positive) 
cosmological constant fit to the data. When the dynamics 
of the cosmology is made consistent with cosmological 
scales so defined, it is expected that the usual microscopic 
interactions of relativistic quantum mechanics (QED, 
QCD, etc) cannot contribute to cosmological 
(gravitational) equilibrations when the relevant FRW scale 

expansion rate is supra-luminal, cR >& . The cosmological 
dark energy density is expected to decouple from the 
energy density in the Friedmann-Lemaitre(FL) equations 
when the FRW scale expansion is no longer supra-luminal, 
at which time the microscopic interactions open new 
degrees of freedom. The general approach used here is to 
start from well understood macrophysics, assume that the 
physics of de-coherence defines a cosmological scale 
parameter, and end the  examination of the backward 
extrapolation of  cosmological physics at the time when 
the rate of expansion of that scale parameter is the velocity 
of light.  The process that takes the cosmology from the 
very early universe (i.e. prior to de-coherence) through this 
boundary will be called gravitational dark energy de-
coherence.   An understanding of the physics of de-
coherence allows one to use the known value of the 
cosmological constant (dark energy) to determine the 
behavior of the scale parameter during early times. 

 

2. COSMOLOGICAL EVOLUTION 

2.1. The Friedmann-Lemaitre Equations 

Global gravitational coherence prior to de-coherence 
(i.e. the assumption that the FL equations still apply in the 
very early universe) solves the horizon problem because 
the gravitational correlations implied by the FL equations 
are supra-luminal; it is hypothesized that the same will be 
true of any type of dark energy to be considered. Prior to 

the de-coherence scale condition cRDC =& , gravitational 

influences on scales R>RDC must propagate (at least) at the 
rate of the gravitational scale expansion, and microscopic 
interactions (which are assumed to propagate no faster 
than c) cannot contribute to cosmological scale 
equilibrations.  If the expansion rate is supra-luminal 

cR >& , scattering states cannot form decomposed (de-
coherent) clusters on cosmological scales.   

The Friedmann-Lemaitre(FL) equations are assumed 
valid during de-coherence.  
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where H(t) is the Hubble expansion rate, the dark energy 
density is given by ρΛ, ρ represents the FL matter-energy 
density, and P is the pressure. The term which involves the 
spatial curvature k has explicit scale dependence on the 
FRW parameter R. The dark energy density is assumed to 
make a negligible contribution to the FL expansion during 
de-coherence, but will become significant as the FL 
energy density decreases due to the expansion of the 
universe. 
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2.2. Single Parameter for De-coherence 

The energy density during dark energy de-coherence ρDC  
satisfies 
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Assuming that the relevant scale RDC describes the evolution 
of the cosmology, a so called “open” universe k=-1 is 
excluded from undergoing this transition, since the positive 
dark energy density term ρΛ already excludes a solution with 

cR ≤& . For a “closed” universe that is initially radiation 
dominated, the scale factors corresponding to de-coherence 

cRDC =&  and maximal expansion 0max =R&  can be directly 

compared: 
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Since the relevant scale has a value RDC early enough for the 
observed structure of the CMB at last scattering (and the 
subsequent galactic clustering now observed) to develop, a 
“closed” (k=+1) universe must be ruled out. It follows that 
this de-coherence scenario necessarily requires a spatially flat 
cosmology in order to be consistent with structure formation. 

Setting the expansion rate to c in the Lemaitre equation 
with k=0 defines the energy density during de-coherence ρDC  
as 
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in terms of the single parameter RDC. 
As is often assumed, if the cosmology remains radiation 

dominated in the standard way down to t=0, then the scale 

parameter satisfies 
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dominance during de-coherence corresponds to a thermal 
temperature of 
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where g(TDC) counts the number of degrees of freedom 
associated with particles of mass mc2 << kB TDC, and  MP is 
the Planck mass. 

Using the FL densities at radiation-matter (dust) equality 
ρM(zeq)= ρrad(zeq) one can extrapolate back to the de-
coherence period. Ignoring threshold effects (which give 
small corrections near particle thresholds while they are non-
relativistic), this gives 
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Here, ΩMo is the present normalized non-relativistic mass 
density. The scale parameter at the present time is then 
expressed in terms of this redshift using the usual definition 

( ) DCDCo RzR += 1 . 

The evolution of the cosmology during the period for which 
the dark energy density is de-coupled from the FL energy 
density is modeled using the FL equations.  There is a period 
of deceleration, followed by acceleration towards a De Sitter 
expansion. The rate of scale parameter expansion is sub-
luminal during a finite period of this evolution, as shown in 
the following figures.  

 

 
 

 
 

The particular value for the scale at de-coherence is 
determined by the microscopic makeup of the dark energy. 
Present time corresponds to the origin on both graphs. The 
value of the expansion rate is c for R=RDC, as well as when 
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2.3. Estimate of CMB Fluctuations 

Adiabatic perturbations (those that fractionally perturb 
the number densities of photons and matter equally) grow 
according to 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∆

−⎟⎟⎠

⎞
⎜⎜⎝

⎛
∆

=∆
dominatedmatter

)(

dominatedradiation
)(

2

eq
eq

DC
DC

R

tR

R

tR

. 

An estimation of the scale of fluctuations at last scattering 
is given by 
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As will be shortly justified, the energy available for 
fluctuations in the two point correlation function during 
dark energy de-coherence is expected to be given by the 
cosmological dark energy.  This means that the amplitude 
of relative fluctuations δρ/ρ is expected to be of the order  
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Using the previous equations, this amplitude at last 
scattering is given by  
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where a spatially flat cosmology has been assumed. This 
estimate is independent of the scale parameter during de-
coherence RDC, and is of the order observed for the 
fluctuations in the CMB. Fluctuations in the CMB at last 
scattering of this order are consistent with the currently 
observed clustering of galaxies. 

2.4. De-coherence during Matter/Plasma 
Domination 

The previous results have demonstrated NO dependency 
on the energy density during the transition period if de-
coherence occurs during radiation domination.  For 

completeness, the amplitude of expected fluctuations if the 
phase transition occurs during the matter/dust/plasma 
dominated era is next examined.  The acoustic wave has 
coherent phase information that is transmitted to the CMB 
at last scattering.  There must have been a significant 
enough passage of time from the creation of the acoustic 
wave to the time of last scattering such that peaks and 
troughs of the various modes should be present  δ t > 
Ds/vs, where Ds is the distance scale of the longest 
wavelength (sound horizon), and vs ~ c/√3 is the speed of 
the acoustic wave. 

Generally, if the phase transition occurs while the 
energy density is dominated by dust/plasma, prior to last 
scattering then the amplitude satisfies 
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which varies from 2 x 10-5 if the phase transition occurs at 
radiation dust equality, to 4 x 10-5 if it occurs at last 
scattering. 

 

3. STATISTICAL DARK ENERGY DE-
COHERENCE 

One type of physical system for which vacuum energy 
density directly manifests is the set that exhibit the 
Casimir effect.  Lifshitz and his collaborators 
demonstrated that the Casimir force can be thought of as 
the superposition of the van der Waals attractions between 
individual molecules that make up the attracting media 
resulting from the zero-point motions of the sources.  
Since these motions are inherently a quantum effect for 
systems which manifest vacuum energy, one expects 
space-like correlations consistent with a quantum 
phenomenon. 

A weakly interacting sea of the quantum fluctuations 
due to zero point motions should establish statistical 
variations in this ``dark energy" density during de-
coherence.  One should be able to use simple counting 
arguments to quantify these variations.  Consider a 
partitioning of the system as demonstrated in the figure. 

If the zero-point motions of the sources have a statistical 
weight Ω(EA) associated with a partition A having energy 
EA while holding total energy fixed, then the probability of 
such a partitioning is given by 
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where A  represents all external to the A partition.  
Requiring then that the most likely configuration of 

energy partitions results when (the log of) this probability 
is maximized, this distribution gives a uniform dark 

energy distribution (
AA EE ΛΛ = ) if the dark energy EΛ is 

given by 
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Here EΛ is an intensive energy associated with the 
statistical bath and boundary conditions. This result is of 
course analogous to the zeroth law of thermodynamics.  

If one next examines a “small” partition A for which the 
reservoir  has energy Etot-EA, one can examine the (log of 
the) lowest order partitioning of energy from the reservoir  
to the partition A to show 
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thus defining a probability distribution 
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For such an ensemble, one can immediately show that 
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A typical equation of state will connect the extensive 
variable <E> to a dimensionless extensive variable that 
counts the available degrees of freedom NDoF. On 
dimensional grounds, the terms in a typical equation of 
state which depend on EΛ should take the general form 
E=NDoF (EΛ)

a / εa-1, where ε is a system dependent constant 
with dimensions of energy.  The expected fluctuations are 
then given by 
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In terms of the densities, one can directly write  
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This means that the amplitude of relative fluctuations δρ/ρ 
is expected to be of the order  
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4. AN EXAMPLE:  COLD DARK BOSONIC 
MATTER 

As an example of such a phase transition, consider cold 
dark bosonic matter made up of particles of mass m. For 
non-relativistic bosonic dark matter, the relationship 

between number density and critical density for a free bose 
gas is given by 
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Since the dynamics is assumed non-relativistic,  

2mc
V

N
m ≅ρ , giving the following requirement for a 

macroscopic quantum system made up of Bose condensed 
cold dark matter: 
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In order for the macroscopic space-like quantum 
coherent state to persist, the ambient temperature must be 
less than this critical temperature.  If the phase transition 
occurs while the dark matter is cold (i.e. non-relativistic), 
its density can be assumed to depend on the redshift by 

3)1( zmom += ρρ .  The temperature of the photon gas 

is expected to likewise scale with the redshift when 
appropriate pair creation threshold affects are properly 
incorporated. Substitution into the critical equation gives 
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where g(z) counts the number of low mass degrees of 
freedom available at redshift z.  If the transition occurs at 
last scattering, this mass must be as low as 0.8 eV. 
 

5. CONCLUSION 

When global gravitational coherence of the dark energy 
is lost, only local coherence of microscopic degrees of 
freedom within independent clusters is expected to remain, 
and the dark energy scale coherence with the clusters is 
lost as the new degrees of freedom become available.  The 
effect of dark energy density at de-coherence is ``frozen 
out" as a positive cosmological constant. The predicted 
order of magnitude for the amplitude of CMB fluctuations 
has been shown to be independent of this scale (and by 
inference, independent of the energy density) at de-
coherence.  The dark energy de-coherence hypothesis 
defines a class of cosmological models all of which give 
an amplitude of density fluctuations in the CMB expected 
to be of the order 10-5. 

 

Acknowledgments 

The authors are grateful for useful discussions with E.D. 
Jones, T.W.B. Kibble, and W.R. Lamb.  

Work supported by Department of Energy contract  

1304 4

DE-AC02-76SF00515. 



 
 

  

References 

For more on this poster, see 
• J.V. Lindesay and H.P.Noyes, ``A Calculation of 

Cosmological Scale from Quantum Coherence", 
astro-ph/0407535 43 pages (2004). 

• J.V. Lindesay and H.P.Noyes, ``Cosmic 
Microwave Background Fluctuation Amplitude 
from Dark Energy De-Coherence", astro-
ph/0410217 9 pages (2004). 

 
For more on Casimir effect and zero-point motions, 
see 
• H.B.G.Casimir, Proc.K.Ned.Akad.Wet. 51, 793 

(1948) 
• E.M. Lifshitz, Soviet Phys. JETP 2, 73 (1956).   
• I.D. Dzyaloshinskii, E.M. Lifshitz, and I.P. 

Pitaevskii, Soviet Phys. Usp. 4, 153 (1961). 

• I.D. Landau and E.M. Lifshitz, 
\textit{Electrodynamics of Continuous Media}, 
pp368-376 (Pergamon, Oxford, 1960) 

 
For more on cluster de-composition and de-coherence, 
see 
• M.Alfred, P.Kwizera, J.V.Lindesay and 

H.P.Noyes, ``A Non-Perturbative, Finite Particle 
Number Approach to Relativistic Scattering 
Theory, hep-th/0105241, Found.Phys.34:581-
616(2004). 

• J.V.Lindesay, A.Markevich, H.P.Noyes, and 
G.Pastrana, “Self-Consistent Poincare-Invariant 
and Unitary 3-Particle Theory", 
Phys.Rev.D.33,2339-2349(1986). 

 

1304 5


