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Abstract: We show that tree level superstring theories on certain supersymmetric back-

grounds admit a symmetry which we call “fermionic T-duality”. This is a non-local redef-

inition of the fermionic worldsheet fields similar to the redefinition we perform on bosonic

variables when we do an ordinary T-duality. This duality maps a supersymmetric back-

ground to another supersymmetric background with different RR fields and a different

dilaton. We show that a certain combination of bosonic and fermionic T-dualities maps

the full superstring theory on AdS5 × S5 back to itself in such a way that gluon scat-

tering amplitudes in the original theory map to something very close to Wilson loops in

the dual theory. This duality maps the “dual superconformal symmetry” of the original

theory to the ordinary superconformal symmetry of the dual model. This explains the

dual superconformal invariance of planar scattering amplitudes of N = 4 super Yang Mills

and also sheds some light on the connection between amplitudes and Wilson loops. In the

appendix, we propose a simple prescription for open superstring MHV tree amplitudes in

a flat background.
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Figure 1: Relation between the amplitude and the Wilson loop. A planar scattering amplitude of

n gluons is related to a Wilson loop computation involving an n sided polygonal Wilson loop where

the sides are light like vectors given by the momenta.

1. Introduction

During the past year a surprising connection was found between planar scattering ampli-

tudes and Wilson loops in N = 4 super Yang Mills, for a recent review and a more complete

set of references see [1] . This was first noticed in the strong coupling computation of the

amplitudes in [2] . The connection that was found in [2] was apparently valid only at

leading order in the strong coupling expansion. However, the same connection was soon

found in weak coupling computations [3 – 6], based on previous amplitude computations

in [7, 8]. More recently an impressive check of this relationship was performed at two loops

for six gluons in [9, 10].

The basic statement of the relationship is as follows. One considers the color ordered

amplitudes A(P1, · · · , pn), defined via a color decomposition of the planar amplitude

A(a1, p1, a2, p2, · · · ) =
∑

Permutations

Tr[T a1 · · ·T an ]A(p1, · · · , pn) (1.1)

where ai are the group indices and pi are the momenta and we suppressed the polarization

dependence. We can then write the MHV amplitudes as

AMHV = AMHV, tree Â(p1, · · · , pn) (1.2)

where AMHV, tree is the tree level MHV amplitude [11] . Then the observation is that

Â(p1, · · · , pn) = 〈W (p1, · · · , pn)〉 (1.3)

where W is a Wilson loop that ends on a contour made by n lightlike segments, each

proportional to pi, see figure 1. To be more precise, the left hand side in (1.3) is infrared

divergent and the right hand side is UV divergent. The structure of these divergencies is

known. The statement is really about the finite parts of the amplitudes, which can have a

complicated dependence on the kinematic invariants of the process.

A closely related fact is that scattering amplitudes display an interesting non-trivial

symmetry called “dual conformal invariance”. This symmetry was first found in perturba-

tive computations in [12] , and it was recently also observed in next to MHV amplitudes

in [13] , where it was promoted to a full “dual superconformal symmetry”. One would also

like to understand the origin of this symmetry. If one accepts the relationship between am-

plitudes and Wilson loops, then this symmetry is the ordinary superconformal symmetry

acting on Wilson loops.
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In this paper we show that one can understand this “dual superconformal symmetry”

using a T-duality symmetry of the full superstring theory on AdS5 × S5. The T-duality

involves ordinary bosonic T-dualities, which were considered already in [2] , plus novel

“fermionic” T-dualities. These fermionic T-dualities consist in certain non-local redefini-

tions of the fermionic variables of the superstring. The fermionic T-dualities change the

dilaton and the RR fields without modifying the metric. After these T-dualities the sigma

model looks the same as the original sigma model but the computation of the amplitude

in the original model maps to a computation of an object very close to a Wilson loop in

the dual theory. The ordinary superconformal invariance of the T-dual model is the “dual

superconformal symmetry” of the original theory. The amplitude computation does not

map precisely to a Wilson loop computation but to a certain computation involving D(-1)

branes and strings stretching between them. For MHV amplitudes we expect, on the basis

of perturbative computations [3, 4, 9, 10], that the difference should amount to a simple

prefactor which is equal to the tree level MHV amplitude (1.2) . We will not derive this

factor in this paper, but we will give some plausibility arguments.

We will discuss in some detail the nature of fermionic T-duality for general back-

grounds. We will give some general rules regarding the transformation of the background

fields under fermionic T-dualities. Fermionic T-dualities are possible when we have a su-

percharge that anticommutes to zero, Q2 = 0. In that case one can represent the action of

this supercharge as the shift of a certain fermionic coordinate of the sigma model θ → θ+ǫ.

The fermionic T-duality is a transformation of the fermionic variables rather similar to the

one we do for the case of bosonic T-dualities, in the sense that we redefine the field in

such a way that we exchange the equation of motion with the Bianchi identity. The T-

dual sigma model leads to a different background for the superstring. Thus a fermionic

T-duality relates the superstring on a supersymmetric background to the superstring on

another supersymmetric background. In general this fermionic T-duality is a valid sym-

metry only at string tree level for reasons similar to the ones that imply that a bosonic

T-duality of a non-compact scalar is only a symmetry of certain tree level computations.

A connection between amplitudes and Wilson loops in momentum space was discussed

in [14, 15]. One performs a Fourier transformation of an ordinary Wilson loop to obtain the

Wilson loop in momentum space. Then the amplitude is related to a particular momentum

space Wilson loop which looks exactly as the one in figure 1. The important point we are

making here is that this momentum space Wilson loop can be computed by mapping it

to an ordinary position space Wilson loop with the same shape.

It was also expected that “dual conformal symmetry” should be connected to inte-

grability. In fact, in the simpler case of a bosonic AdS sigma model we show that the

non-trivial generators in the “dual conformal group” correspond to some of the non-local

charges that arise due to integrability. This conclusion has also been reached for the full

AdS5 × S5 theory in [16] .

In an appendix we also propose a simple prescription for computing MHV tree level

open string scattering amplitudes in flat space. This prescription is related to the self-dual

N=2 string [17, 18] and reproduces the amplitudes that have been computed previously

in [19] using the standard formalism.
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This paper is organized as follows. In section two we introduce the concept of a

“fermionic T-duality” and we explore some of its properties. In section three we perform a

set of bosonic and fermionic transformations that map AdS5×S5 back to itself which maps

the problem of amplitudes to a problem closely related to Wilson loops. In section four we

discuss in more detail what the computation of the amplitude maps into. In section five we

discuss the relation between the conformal symmetry of the dual theory and the non-local

charges associated to integrability. In section six we present some conclusions.

In appendix A we discuss a proposal for computing MHV amplitudes in flat space

string theory. This is disconnected from the rest of the paper and can be read on its own.

2. Fermionic T-duality

In this section, we discuss “fermionic T-duality” which is a generalization of the Buscher

version of T-duality to theories with fermionic worldsheet scalars.1 We first show how

fermionic T-duality transforms background superfields in the Green-Schwarz and pure

spinor sigma models. We then translate these transformations into the language of Type

II supergravity fields and show that fermionic T-duality changes the background values of

the dilaton and Ramond-Ramond fields. A simple example of fermionic T-duality relates

the flat background with the self-dual graviphoton background. In the following section

we will apply this transformation to the AdS5 × S5 case.

2.1 Review of bosonic T-duality

In the sigma model description of T-duality, one starts with a sigma model

S =

∫
d2z(gmn(x) + bmn(x))∂xm∂̄xn (2.1)

and assumes that the background fields gmn and bmn are invariant under the shift isometry

x1 → x1 + c, xm̂ → xm̂ (2.2)

where c is a constant and m̂ ranges over all values except m = 1. Since x1 only appears

with derivatives, the action is

S =

∫
d2z(g11(x̂)∂x

1∂̄x1 + l1m̂(x̂)∂x1∂̄xm̂ + lm̂1(x̂)∂x
m̂∂̄x1 + lm̂n̂(x̂)∂xm̂∂̄xn̂) (2.3)

where lmn = gmn + bmn.

If g11 is nonzero, one can use the Buscher procedure [21] to T-dualize the sigma model

with respect to x1. This is done as follows. We first replace the derivatives of x1 by a

vector field (A, Ā) on the worldsheet and we add a lagrange multiplier field x̃1, that forces

the vector field to be the derivative of a scalar

S =

∫
d2z[g11AĀ+ l1m̂A∂̄x

m̂ + lm̂1∂x
m̂Ā+ lm̂n̂∂x

m̂∂̄xn̂ + x̃1(∂Ā− ∂̄A)] (2.4)

1T-dualities involving fermionic fields were considered in [20] , but in their case they were T-dualizing

the phase of a fermionic field, which was essentially bosonic. Thus it is not obviously related to what we

are doing here.
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If we first integrate out the lagrange multiplier x̃1, we force ∂Ā − ∂̄A = 0 which can

be solved by saying that A = ∂x1 and Ā = ∂̄x1 and we go back to the original model. On

the other hand, if we first integrate out the vector field we obtain the T-dualized action

S =

∫
d2z[g′11∂x̃

1∂̄x̃1 + l′1m̂∂x̃
1∂̄xm̂ + l′m̂1∂x

m̂∂̄x̃1 + l′m̂n̂∂x
m̂∂̄xn̂] (2.5)

where

g′11 = (g11)
−1, l′1m̂ = (g11)

−1l1m̂, l′m̂1 = −(g11)
−1lm̂1, (2.6)

l′m̂n̂ = lm̂n̂ − (g11)
−1lm̂1l1n̂.

Furthermore, the measure factor coming from integration over the bosonic vector field will

induce a change in the dilaton φ by [21, 22]

φ′ = φ− 1

2
log g11. (2.7)

In the above discussion we have not said whether x1 is compact or not. In order for

the transformation to be valid on an arbitrary compact Riemman surface, it is important

that x1 is compact. The reason is that on an arbitrary surface, the condition that the field

strength of the vector field is zero does not imply that it is the gradient of a scalar. The

vector field could have holonomies on the various cycles of the Riemann surface. If the

Lagrange multiplier field x̃1 is a compact field that can have winding on these circles, then

we find that, after integrating it out, it imposes that the holonomy of the vector field has

certain integral values. In this case we can still write the vector field in terms of a scalar

x1, which might wind along the cycles of the Riemman surface.

If we are considering the theory on the sphere or the disk, we do not need to worry

about this and we can perform this transformation even for non-compact scalars, as long

as the external vertex operators do not carry momentum. Note that in this case we can

always write a vector field with zero field strength in terms of the gradient of a scalar. If

we are on the sphere and the external vertex operators carry momentum, then the T-dual

problem does not correspond to anything we ordinarily encounter in string theory. The

situation is nicer in the case of the disk with external states that carry momentum only

at the boundary of the disk. In this case, after the T-duality these open string states

carry winding and we can interpret them as stretching between different D-branes that are

localized in the T-dual coordinate. In general we will get as many D-branes as insertions

we have on the boundary. In this case we need to treat the zero modes of the scalars

separately. The original model contains an integration of the zero mode of the scalars

which needs to be done before doing the T-duality. Correspondingly in the T-dual model

we do not integrate over the zero mode of the T-dualized scalar, we just set it to some

arbitrary value at some point on the boundary of the disk. This fixes the position of one of

the D-branes on the T-dual circle. The other D-brane positions are fixed by the momenta

that the vertex operators carried in the original theory.

In summary, even though a bosonic T-duality for a non-compact scalar is not well

defined to all orders in string perturbation theory, one can do it for the disk diagram (and

also for the sphere if none of the particles carries momentum in the original direction).

– 5 –
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2.2 Sigma model in superspace and fermionic T-duality

Suppose one is now given a Green-Schwarz-like sigma model depending on bosonic and

fermionic worldsheet variables (xm, θµ) such that the worldsheet action is invariant under

a constant shift of one of the fermionic variables θ1. In other words, the action is invariant

under

θ1 → θ1 + ρ, xm → xm, θµ̃ → θµ̃ (2.8)

where ρ is a fermionic constant and µ̃ ranges over all fermionic variables except for θ1. Of

course such backgrounds preserve a supersymmetry, whose properties we will discuss in

more detail below.

Invariance under (2.8) implies that θ1 only appears in the action with derivatives as

∂θ1 or ∂̄θ1, so the worldsheet action has the form

S =

∫
d2z[B11(Y )∂θ1∂̄θ1 + L1M (Y )∂θ1∂̄YM + LM1(Y )∂Y M ∂̄θ1 + LMN∂Y

M ∂̄Y N ] (2.9)

where YM = (xm, θµ̃), M = (m, µ̃) ranges over all indices except for µ = 1, and LMN(Y ) =

GMN (Y ) + BMN (Y ) is the sum of the graded-symmetric tensor GMN and the graded-

antisymmetric tensor BMN .

If B11(Y ) is nonzero, one can use the Buscher procedure to T-dualize the sigma model

with respect to θ1. This is done by first introducing a fermionic vector field (A, Ā). We

replace the derivatives of θ1 by the fermionic vector field. In addition we introduce the la-

grange multiplier field θ̃1 which imposes that the vector field is the derivative of a fermionic

scalar via a term
∫
d2zθ̃1(∂Ā− ∂̄A). The resulting action is

S =

∫
d2z[B11(Y )AĀ+ L1M (Y )A∂̄YM + LM1(Y )∂Y M Ā+ LMN∂Y

M ∂̄Y N (2.10)

+ θ̃1(∂Ā− ∂̄A)]

Integrating out θ̃1 imposes that A = ∂θ1 and Ā = ∂̄θ1. On the other hand, when we

first integrate out the fermionic gauge field we obtain the T-dualized action

S =

∫
d2z[B′

11(Y )∂θ̃1∂̄θ̃1 +L′
1M (Y )∂θ̃1∂̄YM +L′

M1(Y )∂Y M ∂̄θ̃1 +L′
MN∂Y

M ∂̄Y N ] (2.11)

where

B′
11 = −(B11)

−1, L′
1M = (B11)

−1L1M , L′
M1 = (B11)

−1LM1,

L′
MN = LMN − 1

B11
L1NLM1 (2.12)

Furthermore, the measure factor coming from integration over the fermionic vector field

will induce a change in the dilaton φ by

φ′ = φ+
1

2
logB11. (2.13)

since the integration of the vector field has exactly the same formal form as the one we had

for the bosonic T-duality, except that in this case we are integrating over an anticommuting

– 6 –
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variable. Thus, the change in φ under fermionic T-duality has the opposite sign from the

change in φ under bosonic T-duality. Another difference with bosonic T-duality is that

fermionic T-duality does not change the relative sign of ∂̄θ1/∂̄θ̃1 versus ∂θ1/∂θ̃1, and does

not change the relative sign of L′
1M/L1M versus L′

M1/LM1. We can find the explicit on-

shell relation between the original and the T-dualized variables by computing the equations

of motion for (A, Ā) and using the equation of motion for the field θ̃1 which implies that

the vector field is given by the gradient of θ1. We find

∂̄θ̃1 = B11∂̄θ
1 − (−1)s(M)L1M ∂̄Y

M , ∂θ̃1 = B11∂θ
1 + LM1∂Y

M , (2.14)

where s(M) = 0 if M is bosonic and S(M) = 1 if M is fermionic. On the other hand the

equations that relate a boson to the T-dual boson, coming from (2.4) , are

∂̄x̃1 = −(g11∂̄x
1 + l1m̂∂̄x

m̂), ∂x̃1 = g11∂x
1 + lm̂1∂x

m̂. (2.15)

In other words, we have dx̃1 = g11 ∗ dx1 + · · · for the boson while we have dθ̃1 =

Bdθ1 + · · · for the fermion. Notice the absence of the ∗ for the fermionic case.

Note that the fermionic variables are morally non-compact. Our arguments here have

ignored the fact that the vector field can have non-trivial holonomies on the Riemann

surface. Thus our derivation is only justified in the case of the disk but not on higher

genus Riemann surfaces. Even on the disk, we will need to treat the zero modes of the

original and the T-dual fermion in a special way. We will integrate over the zero modes of

the initial fermion before doing the T-duality and we will not integrate over the fermion zero

modes of the T-dual fermions. (This is similar to the treatment of non-compact bosonic

zero modes on the disk.)

If one wanted to define fermionic T-duality on a higher genus Riemann surface, one

would need to introduce fermionic variables which are allowed to be non-periodic when its

worldsheet location z is taken around a non-trivial cycle on the surface. Note that the

usual Green-Schwarz θ variables are defined to be periodic and satisfy

θ(z + Ci) = θ(z) (2.16)

where Ci is any non-trivial cycle on the worldsheet. If one wants to require that the

fermionic vector field (A, Ā) has trivial holonomies so that it can be expressed as the

gradient of θ, one would need to use a Lagrange multiplier term
∫
d2z θ̃(∂Ā − ∂̄A) where

θ̃(z) is a non-periodic variable satisfying

θ̃(z + Ci) = θ̃(z) + ρi, (2.17)

and ρi are Grassmann constants which need to be integrated over.

So if the original fermionic variable is periodic, the dual fermionic variable is non-

periodic and contains an extra zero mode for every non-trivial cycle on the worldsheet.

Similarly, if the original fermionic variable is non-periodic, the dual fermionic variable will

be periodic and the holonomies of the vector field around the non-trivial cycles will corre-

spond to the ρi constants in (2.17). This T-dual relation between periodic and non-periodic

fermionic variables is analogous to the T-dual relation between non-compact bosonic vari-

ables and bosonic variables compactified on a circle of zero radius.

– 7 –
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2.3 T-duality in pure spinor formalism

Although one normally does not expect two-derivative terms for fermions such as∫
d2zB11∂θ

1∂̄θ1, these terms arise in Green-Schwarz and pure spinor sigma models for

Type II superstrings in Ramond-Ramond backgrounds. To find how the T-duality trans-

formations of (2.12) act on the Type II supergravity background fields, one needs to know

the relation of LMN (Y ) with the onshell supergravity fields. In the Green-Schwarz formal-

ism, this relation depends on the choice of superspace torsion constraints and can be quite

complicated. As recently discussed in [23], the most convenient method for determining

this relation is to use the pure spinor formalism where BRST invariance determines the

choice of torsion constraints and allows a straightforward identification of the background

fields.

In the pure spinor version of the Type II sigma model, the worldsheet action is

1

2πα′

∫
d2z[LMN (Z)∂ZM ∂̄ZN + Pαβ̂(Z)dαd̂β̂

+ Eα
M (Z)dα∂̄Z

M + Eα̂
M (Z)∂ZM d̂α̂

+Ωβ
Mα(Z)λαwβ ∂̄Z

M + Ω̂β̂
Mα̂(Z)∂ZM λ̂α̂ŵ

β̂
+ Cβγ̂

α (Z)λαwβ d̂γ̂ + Ĉ β̂γ
α̂ (Z)dγ λ̂

α̂ŵ
β̂

+Sβδ̂
αγ̂(Z)λαwβ λ̂

γ̂ŵ
δ̂
+ wα∂̄λ

α + ŵα̂∂λ
α̂] +

1

4π

∫
d2zΦ(Z)R (2.18)

where ZM are coordinates for N=2 d=10 superspace, dα and d̂α̂ are independent fermionic

variables, (λα, wα) and (λ̂α̂, ŵα̂) are the left and right-moving pure spinor ghosts, and

R is the worldsheet curvature. BRST invariance implies relations between the various

superfields appearing in (2.18) where the BRST operators are Q =
∫
dz λαdα and Q̂ =∫

dz̄ λ̂α̂d̂α̂. By comparing with the vertex operators for massless fields, one learns that the

θ = θ̂ = 0 component of Pαβ̂ is Pαβ̂|
θ=θ̂=0 = − i

4e
φFαβ̂ where Fαβ̂ is the Ramond-Ramond

field strength in bispinor notation,2 the θ = θ̂ = 0 components of Eα
m and Eα̂

m are the

N=2 d=10 gravitinos, the θ = θ̂ = 0 components of Ωβ
mα(γab)αβ ± Ω̂β̂

mα̂(γab)α̂
β̂

are the spin

connection and NS-NS three-form, the θ = θ̂ = 0 components of Cβγ̂
α (γab)αβ and Ĉ β̂γ

α̂ (γab)α̂
β̂

are the N=2 gravitino field-strengths, and the θ = θ̂ = 0 component of Sβδ̂
αγ̂(γab)αβ(γcd)γ̂

δ̂
is

the Riemann tensor and the derivative of the NS-NS three-form.

If (2.18) is invariant under the fermionic shift in (2.8), one can easily apply the Buscher

procedure of the previous subsection to the action of (2.18). One finds that (2.18) is T-

dualized to

1

2πα′

∫
d2z[B′

11(Y )∂θ̃1∂̄θ̃1 + L′
1M (Y )∂θ̃1∂̄YM + L′

M1(Y )∂Y M ∂̄θ̃1 + L′
MN∂Y

M ∂̄Y N +

+P ′αβ̂(Y )dαd̂β̂
+E′α

1 (Y )dα∂̄θ̃
1+E′α

M (Y )dα∂̄Y
M +E′α̂

1 (Y )∂θ̃1d̂α̂+E′α̂
M (Y )∂Y M d̂α̂ + . . .]

+
1

4π

∫
d2zΦ′(Y )R (2.19)

2The relation to the usual notation for the RR field strengths of type IIB string theory is F αβ̂ =

(γm)αβ̂Fm + 1
3!

(γm1m2m3)αβ̂Fm1m2m3
+ 1

2
1
5!

(γm1···m5)αβ̂Fm1···m5
. The factor of eφ in P = −

i
4
eφF is

present since P has the kinetic term
R

d10xe−2φP 2.

– 8 –



J
H
E
P
0
9
(
2
0
0
8
)
0
6
2

where YM ranges over all bosonic and fermionic variables except for θ1, the superfields

[B′
11, L

′
1M , L′

M1, L
′
MN ,Φ

′] are defined as in (2.12), and

P ′αβ̂ = Pαβ̂ − (B11)
−1Eα

1E
β̂
1 , E′α

1 = (B11)
−1Eα

1 , E′α̂
1 = (B11)

−1Eα̂
1 ,

E′α
M = Eα

M − (B11)
−1L1ME

α
1 , E′α̂

M = Eα̂
M − (B11)

−1Eα̂
1 LM1,

Ω′β
1α = (B11)

−1Ωβ
1α, Ω̂′β̂

1α̂ = (B11)
−1Ω̂β̂

1α̂,

Ω′β
Mα = Ωβ

Mα − (B11)
−1L1MΩβ

1α, Ω̂′β̂
Mα̂ = Ω̂β̂

Mα̂ − (B11)
−1Ω̂β̂

1α̂LM1,

C ′βγ̂
α = Cβγ̂

α − (B11)
−1Eγ̂

1 Ωβ
1α, Ĉ ′β̂γ

α̂ = Ĉ β̂γ
α̂ − (B11)

−1Ω̂β̂
1α̂E

γ
1 ,

S′βδ̂
αγ̂ = Sβδ̂

αγ̂ − Ω̂δ̂
1γ̂Ωβ

1α. (2.20)

Note that the worldsheet variables in the BRST operatorsQ =
∫
dzλαdα and Q̂ =

∫
dz̄λ̂α̂d̂α̂

are not affected by fermionic T-duality, so BRST invariance is manifestly preserved. Al-

though the fermionic T-duality transformations of (2.20) are similar to the bosonic T-

duality transformations discussed in [23], there are some crucial differences. For example,

E′α
1 has the same relative sign as E′α̂

1 in(2.20). But in bosonic T-duality if one dualizes the

xp coordinate as in [23],

E′α
p = (Gpp)

−1Eα
p , E′α̂

p = −(Gpp)
−1Eα̂

p . (2.21)

As will now be explained, this difference implies that unlike bosonic T-duality,

fermionic T-duality does not exchange the Type IIA and Type IIB superstrings and does

not modify the dimension of the D-brane.

As discussed in [24], the pure spinor Type II sigma model and BRST operators are

invariant under three independent local Lorentz transformations which transform

δEa
M = La

bE
b
M , δEα

M = Mab(γab)
α
βE

β
M , δEα̂

M = M̂ab(γab)
α̂

β̂
Eβ̂

M ,

δdα = Mab(γab)
β
αdβ, δd̂α̂ = M̂ab(γab)

β̂
α̂d̂β̂

, . . . (2.22)

where Mab and M̂ab are independent of Lab and . . . denotes similar transformations on all

background fields and worldsheet fields with tangent-space spinor indices. Furthermore, it

was shown in [24] that BRST invariance of the sigma model implies the superspace torsion

constraints

T a
αβ = i fa

b γb
αβ , T a

α̂β̂
= i f̂a

b γb

α̂β̂
, (2.23)

where fa
b and f̂a

b are O(9, 1) matrices.

To compare with the usual description of Type II supergravity which has the torsion

constraints

T a
αβ = i γa

αβ , T a

α̂β̂
= i γa

α̂β̂
, (2.24)

one can use the local Lorentz symmetries of Mab and M̂ab to gauge-fix fa
b and f̂a

b . After

gauge-fixing, only the combined Lorentz symmetry of all three types of indices together

is preserved, which is the usual local Lorentz symmetry of supergravity. If fa
b and f̂a

b are
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SO(9, 1) matrices with determinant +1, one can gauge fa
b = f̂a

b = δa
b and recover (2.24).

But to recover (2.24) when fa
b (or f̂a

b ) has determinant −1, one needs to flip the chirality

of the unhatted (or hatted) spinor.

After performing bosonic T-duality (say in a flat background) with respect to the

coordinates (x1, . . . , xp), the relative minus sign in the transformation of Eα
M versus Eα̂

M

in (2.21) implies that the components (f1
1 , . . . , f

p
p ) of fa

b have opposite sign with respect

to the components (f̂1
1 , . . . , f̂

p
p ) of f̂a

b . So to return to the standard torsion constraints

of (2.24), one needs to perform local Lorentz transformations using Mab and M̂ab which

cancel this change in relative sign in f versus f̂ . These local Lorentz transformations modify

in the expected manner the D-brane boundary conditions which relate hatted and unhatted

spinors. Furthermore, if p is odd, the determinants of f and f̂ will have opposite sign. So

to recover the torsion constraints of (2.24), one will have to flip the chirality of either the

hatted or unhatted spinors, which switches the Type IIA and Type IIB superstring.

On the other hand, since in fermionic T-duality there are no relative minus signs in

the transformation of Eα
M versus Eα̂

M , one does not need to perform local Lorentz rotations

to return to the constraints of (2.24). So there is no switch of Type IIA and Type IIB

superstrings, and no modification of the dimension of the D-brane.

2.4 Transformations of component fields

By considering the θ = θ̂ = 0 components of the superfields in (2.20), one finds that the

fermionic T-duality transformations leave invariant the NS-NS fields gmn and bmn, and

transform the Ramond-Ramond bispinor field-strength Fαβ̂ and dilaton φ as

− i

4
eφ

′
F ′αβ̂ = − i

4
eφFαβ̂ − ǫαǫ̂β̂C−1, φ′ = φ+

1

2
logC (2.25)

where C is the θ = θ̂ = 0 component of B11 and (ǫα, ǫ̂α̂) are the θ = θ̂ = 0 components

of (Eα
1 , E

α̂
1 ). Although it is not difficult to also work out the T-duality transformations of

the fermionic fields, we will assume here that all fermionic background fields have been set

to zero.

To determine the relation of C and (ǫα, ǫα̂) with the supergravity fields, note that the

torsion constraints imply that the superspace 3-form field-strength

HABC = EM
A EN

BE
P
CHMNP = EM

A EN
BE

P
C∂[MBNP ] (2.26)

has constant spinor-spinor-vector components [25]

Hαβc = i(γc)αβ, H
α̂β̂c

= −i(γc)α̂β̂
, H

αβ̂c
= 0, (2.27)

where A = (c, α, α̂) denotes tangent-superspace indices, M denotes curved-superspace in-

dices, and EM
A is the inverse super-vierbein. (The relative minus sign in Hαβc versus H

α̂β̂c

is because H → −H under a worldsheet parity transformation which switches z → z̄ and

α→ α̂.)

Since the fermionic isometry implies that ∂1B1m = 0 where ∂1 ≡ ∂
∂θ1 , one finds that

∂mC = ∂mB11|θ=θ̂=0 = H11m|
θ=θ̂=0 = EA

1 E
B
1 E

C
mHABC |θ=θ̂=0

= iǫαǫβecm(γc)αβ − iǫ̂α̂ǫ̂β̂ecm(γc)α̂β̂
= iǫγmǫ− iǫ̂γmǫ̂ (2.28)
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where ecm ≡ Ec
m|

θ=θ̂=0 is the usual vierbein, Eα
1 |θ=θ̂=0 = ǫα and Eα̂

1 |θ=θ̂=0 = ǫ̂α̂.

Under the fermionic isometry of (2.8),

Eα
MδZ

M = Eα
1 ρ, Eα̂

MδZ
M = Eα̂

1 ρ (2.29)

where ρ is a constant anticommuting parameter. Since the θ = θ̂ = 0 compo-

nents of Eα
MδZ

M and Eα̂
MδZ

M are the local supersymmetry parameters [26], and since

Eα
M δZM |

θ=θ̂=0 = ǫαρ and Eα̂
MδZ

M |
θ=θ̂=0 = ǫ̂α̂ρ, the isometry of (2.8) implies that the

component background supergravity fields are invariant under the supersymmetry trans-

formation parameterized by the Killing spinors ǫα = Eα
1 |θ=θ̂=0 and ǫ̂α̂ = Eα̂

1 |θ=θ̂=0. Note

that we are talking about one supersymmetry given by these two spinors, and not two

independent supersymmetries. So (2.28) implies that the derivative of C is related to the

Killing spinors ǫα and ǫ̂α̂. Note that the constant part of C is unconstrained, as can be

seen from the fact that B11∂θ
1∂̄θ1 changes by a total derivative under a constant shift of

B11.

Since the fermionic isometry is assumed to be abelian (i.e. Q2 = 0), one learns from

the supersymmetry algebra

(ǫαQα + ǫ̂α̂Qα̂)2 = (ǫγmǫ+ ǫ̂γmǫ̂)Pm (2.30)

that

ǫγmǫ+ ǫ̂γmǫ̂ = 0 (2.31)

where (Qα, Qα̂) are the supersymmetry generators and Pm is the translation generator.

So (2.28) implies that ∂mC = 2iǫγmǫ = −2iǫ̂γmǫ̂. Note that if ǫα and ǫ̂α̂ were Majorana

spinors, (2.31) would imply that ǫα = ǫ̂α̂ = 0 since (γ0)αβ is equal to the identity matrix

in this basis. So the only non-trivial solutions to (2.31) involve complex Killing spinors

ǫα and ǫ̂α̂. In general, the T-duality transformation of (2.25) will therefore not map real

background fields into real background fields.

2.5 Supersymmetry of T-dualized background

As was shown in the previous subsection, the fermionic T-duality transformation of (2.12)

and (2.13) leaves invariant the component NS-NS fields gmn(x) and bmn(x), and transforms

the Ramond-Ramond bispinor field-strength Fαβ̂(x) and dilaton φ(x) as

− i

4
eφ

′
F ′αβ̂ = − i

4
eφFαβ̂ − ǫαǫ̂β̂C−1, φ′ = φ+

1

2
logC (2.32)

where C(x) is the θ = θ̂ = 0 component of B11 which satisfies

∂mC = 2iǫγmǫ = −2iǫ̂γmǫ̂, (2.33)

and (ǫα(x), ǫ̂α̂(x)) are the Killing spinors associated to the fermionic shift isometry of (2.8).

In other words, if one performs a local Type II supersymmetry transformation with Killing

spinors (ǫα(x), ǫ̂α̂(x)), the original background is assumed to be invariant.

A useful check of the transformations of (2.32) is that they should map a supersym-

metric Type II background into a supersymmetric Type II background. If the original
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supersymmetry corresponding to a constant shift of θ1 is described by Killing spinors (ǫ, ǫ̂),

the T-dualized supersymmetry corresponding to a constant shift of θ̃1 will be described by

Killing spinors ǫ′ = C−1ǫ and ǫ̂′ = C−1ǫ̂. One can also consider backgrounds with n abelian

supersymmetries corresponding to constant shifts of θJ for J = 1 to n. In this case, the n

Killing spinors (ǫαJ , ǫ̂
α̂
J) should satisfy the identities

ǫαJγ
m
αβǫ

β
K + ǫ̂α̂Jγ

m

α̂β̂
ǫ̂β̂K = ǫJγ

mǫK + ǫ̂Jγ
mǫ̂K = 0 (2.34)

for J,K = 1 to n so that the n supersymmetries anticommute with each other.

After performing T-duality with respect to θJ for J = 1 to n, one finds that the

Ramond-Ramond field-strength Fαβ̂(x) and dilaton φ(x) transform as

− i

4
eφ

′
F ′αβ̂ = − i

4
eφFαβ̂ − ǫαJ(C−1)JK ǫ̂

β̂
K , φ′ = φ+

1

2

n∑

J=1

(logC)JJ (2.35)

where CJK(x) = CKJ(x) is the θ = θ̂ = 0 component of BJK which satifies

∂mCJK = 2iǫJγmǫK = −2iǫ̂Jγmǫ̂K . (2.36)

Furthermore, the new Killing spinors after performing T-duality are

ǫ′
α
J = (C−1)JKǫ

α
K , ǫ̂′α̂J = (C−1)JKǫ

α̂
K . (2.37)

Under N=2 d=10 supersymmetry transformations parameterized by (ρJ ǫ
α
J , ρJ ǫ̂

α
J )

where ρJ are Grassmann constants, the dilatino λα and gravitino ψα
m transform in string

frame as [27]3

δJλα = ∂mφ(γmǫJ)α + 2i(γmPγmǫ̂J)α +
1

12
Hmnp(γ

mnpǫJ)α, (2.38)

δJψ
α
m = ∇mǫ

α
J + 2i(Pγm ǫ̂J)α +

1

8
Hmnp(γ

npǫJ)α,

where Pαβ̂ ≡ − i
4e

φFαβ̂ and Hmnp is the Neveu-Schwarz three-form field-strength. After

T-dualizing all fields and Killing spinors on the right-hand side of (2.38), one finds

δ′Jλ
′
α = ∂mφ

′(γmǫ′J)α + 2i(γmP
′γmǫ̂′J)α +

1

8
Hmnp(γ

mnpǫ′J)α

= (C−1)JKδKλα +
1

2
(C−1)KL(∂mC)LK(γmǫM )α(C−1)JM

−2i(γmǫK)α(C−1)KL(ǫ̂Lγ
mǫ̂M )(C−1)JM

= (C−1)JKδKλα + i(C−1)KL(ǫLγmǫK)(γmǫM )α(C−1)JM +

+2i(γmǫK)α(C−1)KL(ǫLγ
mǫM )(C−1)JM = (C−1)JKδKλα

where we used the gamma-matrix identity

(ǫLγmǫK)(γmǫJ)α + (ǫKγmǫJ)(γmǫL)α + (ǫJγmǫL)(γmǫK)α = 0 (2.39)

3Our conventions differ from the ones in [27] by a factor of 4 for the RR fields. Namely, we have P =

−
i
4
eφF αβ̂

ours = −
i
16

eφF αβ̂

[27] where F αβ̂ = (γm)αβ̂Fm + 1
3!

(γm1m2m3)αβ̂Fm1m2m3
+ 1

2
1
5!

(γm1···m5)αβ̂Fm1···m5
in

both cases.
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We also have

δ′Jψ
′α
m = ∇mǫ

′α
J + 2i(P ′γmǫ̂

′
J)α +

1

12
Hmnp(γ

npǫ′J)α

= (C−1)JKδKψ
α
m − (C−1(∂mC)C−1)JKǫ

α
K − 2iǫαK(C−1)KL(ǫ̂Lγmǫ̂M )(C−1)JM

= (C−1)JKδKψ
α
m + 2i(C−1)JM (ǫ̂Mγmǫ̂L)(C−1)LKǫ

α
K

−2iǫαK(C−1)KL(ǫ̂Lγmǫ̂M )(C−1)JM

= (C−1)JKδKψ
α
m (2.40)

So if the background is supersymmetric before T-duality (i.e. if δJλα = δJψ
α
m = 0), it

is also supersymmetric after T-duality (i.e. δ′Jλ
′
α = δ′Jψ

′α
m = 0).

2.6 Null Ramond-Ramond field strength

The simplest example of fermionic T-duality is in a flat background where the super-

symmetry parameters ǫα and ǫ̂β̂ are constants. One usually does not include the term∫
d2zB11∂θ

1∂̄θ1 in the flat worldsheet action, but if B11 is constant, this term is a total

derivative and can be included without affecting the equations of motion.

Since ∂mB11 = 0, (2.33) implies that the supersymmetry parameters must be chosen

to satisfy

ǫγmǫ = ǫ̂γmǫ̂ = 0, (2.41)

i.e. ǫα and ǫ̂α̂ are d=10 pure spinors. Since (2.41) has no Majorana-Weyl solutions in d=10

Minkowski space, one needs to consider complexified supersymmetry parameters.

After performing the T-duality transformations of (2.32), one finds that the dilaton

shifts by a constant and the Ramond-Ramond field strength picks up the constant value

eφ
′
F ′αβ̂

= 4iǫαǫ̂β̂C−1. (2.42)

Since the stress tensor Tmn for a bispinor Ramond-Ramond field strength is propor-

tional to γm
αβγ

n

γ̂δ̂
Fαγ̂F βδ̂ and since ǫα and ǫ̂β̂ are pure spinors satisfying (2.41), F ′αβ̂ is

a “null” bispinor which does not contribute to the stress-tensor and does not produce a

back-reaction.

A closely related example which will be discussed in the following subsection arises as

follows. One starts with a Calabi-Yau compactification to four dimensions which preserves

N=2 d=4 supersymmetry, and one chooses ǫα and ǫ̂β̂ to be the chiral N=2 d=4 supersym-

metry parameters. In this case, the resulting T-dualized background of (2.42) involves the

self-dual graviphoton field-strength of [28 – 30] which leads to non-anti-commutative N=1

d=4 super-Yang-Mills on a D3 brane. As predicted by T-duality, the closed superstring

spectrum in this self-dual graviphoton background is identical to the spectrum without

the self-dual graviphoton field-strength. But this example shows clearly that fermionic

T-duality changes the theory at higher loops since, unlike in a flat background, certain

F terms in the effective action for a constant graviphoton background have been com-

puted [31] and are non-zero in general.
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2.7 Self-dual graviphoton background

To explicitly derive the T-duality transformations for the sigma model in a flat d = 4

background with Calabi-Yau compactification, it is convenient to use the d = 4 hybrid

formalism for describing the worldsheet action. In a flat background, the worldsheet action

is

S =

∫
d2z[∂xaȧ∂̄xaȧ + pa∂̄θ

a + p̂a∂θ̂
a + p̄ȧ∂̄θ̄

ȧ + ˆ̄pȧ∂
ˆ̄θȧ] + SC (2.43)

where a, ȧ = 1 to 2 and SC is the action for the compactified sector of the superstring. As

discussed in [29], one can choose a chiral representation such that qa =
∫
dzpa and q̂a =∫

dz̄p̂a are the chiral spacetime supersymmetry generators. In this chiral representation,

both the worldsheet action and the BRST operator are invariant under the shift isometries

θa → θa + ρa, θ̂a → θ̂a + ρ̂a (2.44)

where ρa and ρ̂a are constants and all other worldsheet variables are unchanged.

After adding to (2.43) the surface term

∫
d2zCab[∂θ

a∂̄θ̂b − ∂̄θa∂θ̂b] (2.45)

where Cab = Cba is a constant symmetric bispinor, one can T-dualize the shift isometries

of (2.44) by introducing the fermionic gauge fields (Aa, Āa) and (Âa, ˆ̄Aa) to obtain the

action

S =

∫
d2z[∂xaȧ∂̄xaȧ + paĀ

a + p̂aÂ
a + Cab(A

a ˆ̄b
A− ĀaÂb) (2.46)

+θ̃a(∂Ā
a − ∂̄Aa) +

ˆ̃
θa(∂

ˆ̄a
A− ∂̄Âa) + p̄ȧ∂̄θ̄

ȧ + ˆ̄pȧ∂
ˆ̄
θ
ȧ
] + SC .

Integrating out the worldsheet gauge fields produces a constant shift of the dilaton and

the worldsheet action becomes

S =

∫
d2z[∂xaȧ∂̄xaȧ + (C−1)ab(pa∂̄

ˆ̃θb + p̂a∂θ̃b + pap̂b − ∂θ̃a∂̄
ˆ̃θb + ∂̄θ̃a∂

ˆ̃θb) (2.47)

+p̄ȧ∂̄θ̄
ȧ + ˆ̄pȧ∂

ˆ̄
θ
ȧ

] + SC .

After dropping the surface term
∫
d2z(C−1)ab(∂θ̃a∂̄

ˆ̃θb+∂̄θ̃a∂
ˆ̃θb) and defining φa = (C−1)ab ˆ̃θb

and φ̂a = (C−1)abθ̃b, one obtains the action

S =

∫
d2z[∂xaȧ∂̄xaȧ + pa∂̄φ

a + p̂a∂φ̂
a + (C−1)abpap̂b + p̄ȧ∂̄θ̄

ȧ + ˆ̄pȧ∂
ˆ̄
θ
ȧ

] + SC , (2.48)

which is the worldsheet action of [28 – 30] in a background with constant self-dual field-

strength F ab proportional to e−φ(C−1)ab.

The difference between loop amplitudes in the constant self-dual graviphoton back-

ground and loop amplitudes in a flat background comes from the presence of the term

(C−1)ab
∫
d2zpap̂b in the self-dual graviphoton worldsheet action. Since pa is holomorphic

and p̂a is antiholomorphic, this term can be written as (C−1)ab(
∫
dzpa)(

∫
dz̄p̂b) where the
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contours of
∫
dz and

∫
dz̄ go around the non-trivial cycles of the genus g surface. So

this term can absorb the higher-genus zero modes associated with the fermionic one-forms

pa and p̂a. Again, higher genus amplitudes are sensitive to the presence of the constant

graviphoton field strength [31] . This shows that fermionic T-duality is not a full symmetry

of the theory at higher genus.

3. Exact T-duality of the AdS5 × S5 background

In this section, we show that after performing bosonic T-duality with respect to the d = 4

coordinates (x0, x1, x2, x3) and performing fermionic T-duality with respect to 8 of the 32

fermionic coordinates θαj, the original AdS5×S5 background is mapped to another AdS5×
S5 background with constant dilaton. The transformation is an exact change of variables

in the path integral, with a unit jacobian. Thus this is an exact symmetry to all orders

in the α′ expansion and it is also expected to be an exact symmetry non-perturbatively in

α′. We will first show this by analyzing the transformations of the AdS5 × S5 background

fields, and we will then show it again by explicitly T-dualizing the Green-Schwarz and pure

spinor versions of the AdS5 × S5 sigma model.

3.1 T-duality transformations of the AdS5 × S5 background fields

A non-trivial example of fermionic T-duality arises in the AdS5 × S5 background which

has 32 fermionic isometries. These isometries can be identified with the N=4 d=4 su-

persymmetry transformations (qaj , q̄ȧ
j ) and the N=4 d=4 superconformal transformations

(sa
j , s̄

ȧj), and one can choose 8 of the 32 fermionic symmetries to anticommute with each

other and to also commute with the four d = 4 translations. A convenient choice for the

abelian subset are the 8 chiral supersymmetry generators qaj which will be associated with

the Killing spinors (ǫαaj , ǫ̂
α̂
aj). After T-dualizing with respect to these 8 abelian fermionic

isometries, (2.35) implies that

− i

4
eφ

′
F ′αβ̂ = − i

4
eφFαβ̂ − ǫαaj ǫ̂

β̂
bk(C

−1)aj bk, φ′ = φ+
1

2
Tr logC (3.1)

We can determine C in two ways. We could use the explicit form of the Killing spinors

and use (2.36), or we could view Caj bk as the θ = θ̂ = 0 component of Baj bk. We will

follow this second route.

In an AdS5 × S5 background, one can choose a gauge where the only nonzero compo-

nents of BAB ≡ EM
A EN

BBMN are the components

B
αβ̂

= B
β̂α

= −i(γ01234)
αβ̂
. (3.2)

This gauge choice is not possible in a flat background, and it simplifies the Green-

Schwarz Wess-Zumino term in an AdS5 × S5 background [32]. In this gauge, Caj bk is the

θ = θ̂ = 0 component of ǫαaj ǫ̂
β̂
bkBαβ̂

+ ǫα̂aj ǫ̂
β
bkBα̂β , so one finds that

Caj bk = −2iǫαaj(γ
01234)

αβ̂
ǫ̂β̂bk. (3.3)
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It is convenient to write the AdS5 × S5 metric as

ds2 = |y|−2(dxmdxm + dyrdyr) (3.4)

where yr

|y| for r = 1 to 6 are the variables on S5 and |y| is the fifth variable on AdS5.

It is also convenient to decompose the local spinor indices α, α̂ into SO(3, 1) × SO(5)

as α = (a′j′, ȧ′j′). Note that j′ = 1, · · · , 4 is an SO(5) spinor index that can be raised

and lowered using (σ6)j′k′ where (σr)j′k′ are the SO(6) Pauli matrices. In terms of this

decomposition we have that (γ01234)a
′j′ b′k′

= iǫa
′b′(σ6)j

′k′
. In order to write the form of the

Killing spinors we introduce the rotation matrix Mk′

j (y) which is the SU(4)
SO(5) matrix which

rotates the point (0, 0, 0, 0, 0, 1) on S5 to the point |y|−1(y1, y2, y3, y4, y5, y6). The Killing

spinors ǫaj
α and ǫ̂aj

α̂ can be written as

ǫaj
b′k′

= |y| 12 δb′

a M
k′

j (y), ǫaj
ḃk′

= 0, ǫ̂aj
b′k′

= i|y| 12 δb′

a M
k′

j (y), ǫ̂ḃ
′k′

aj = 0. (3.5)

Using (3.3) and the identity

M j′

l (γ01234)a′j′ b′k′Mk′

m = iǫa′b′(σ
r)lm|y|−1yr, (3.6)

one finds that Caj bk = 2iǫabσ
r
jkyr and (C−1)aj bk = − i

2ǫ
ab(σr)jk yr

|y|2 . This formula for C

obeys equation (2.36) . In fact, we could have simply derived the expression for C by

solving (2.36) . To determine the transformation of Fαβ̂ in (3.1), note that

ǫa
′j′

aj (C−1)aj bkǫ̂b
′k′

bk =
1

2
ǫa

′b′(σ6)j
′k′

= − i

2
(γ01234)

a′j′ b′k′
. (3.7)

Note that we get the projection of the matrix γ01234 to the part with definite four

dimensional chirality. Thus, we can write it in terms of a projection operator 1
2 [(γ0123 −

i)γ4]
αβ̂. This only has nonzero components when α = a′j′ and β̂ = b′k′ so that 1

2 [(γ0123 −
i)γ4]

a′j′ b′k′
= (γ01234)

a′j′ b′k′
, and one finds that

eφ
′
F ′αβ̂ = eφFαβ̂ − 4iǫαaj ǫ̂

β̂
bk(C

−1)aj bk

= (γ01234)
αβ̂ − (γ01234 − iγ4)

αβ̂ = (iγ4)
αβ̂ (3.8)

where the γ-matrices appearing in (3.8) have tangent-space vector indices. The dual back-

ground therefore has an imaginary RR scalar field which varies only along the radial AdS

direction. Also, Tr(logC) = 8 log |y| implies that

φ′ = φ+ 4 log |y|. (3.9)

If one now T-dualizes with respect to the four translation symmetries of xm, it is easy to

verify that the one-form Ramond-Ramond field strength proportional to (iγ4)
αβ̂ transforms

back into the five-form Ramond-Ramond field strength proportional to (γ01234)
αβ̂ , and

that the dilaton shifts back to φ = φ′ − 4 log |y|. Note that the factor of i in front of γ4

disappears again in Minkowski space when we T-dualize along the time direction x0 [33] .

So the AdS5×S5 background fields are invariant under the combined bosonic and fermionic

T-duality transformations.
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It is interesting to note that there is another combination of bosonic and fermionic

T-duality transformations which also leaves the AdS5 × S5 background invariant. If one

breaks SU(4) R-symmetry to U(1) × SU(2) × SU(2) by choosing a U(1) direction in the

SU(4), the SU(4) index j = 1 to 4 splits into an index r = 1 to 2 which carries +1 charge

with respect to the chosen U(1) direction, and an index r′ = 3 to 4 which carries −1 U(1)

charge. Under this subgroup of SU(4), the 32 supersymmetries split into (qa
r , q

a
r′ , q̄

r
ȧ, q̄

r′

ȧ ) and

(sr
a, s

r′

a , s̄
ȧ
r , s̄

ȧ
r′), and one can choose the 8 abelian supersymmetries to be qa

r′ and q̄r
ȧ which

all carry +1 U(1) charge. Furthermore, under the breakup of SU(4) into U(1) × SU(2) ×
SU(2), the SU(4) generators Rk

j split into (Rs
r, R

s′

r′ , R
s′

r , R
s
r′) where the four generators Rs

r′

all carry +2 U(1) charge. Together with the four translations of (x0, x1, x2, x3), the 8

supersymmetries (qa
r′ , q̄

r
ȧ) and 4 SU(4) transformations Rs

r′ form an abelian subgroup of

PSU(2, 2|4) isometries with 8 bosonic and 8 fermionic generators. After performing T-

duality with respect to these 8 bosonic and 8 fermionic isometries, one finds using a similar

analysis as above that the AdS5 × S5 background is invariant.

Note that the translation generators Rs
r′ that we chose in the five-sphere are not her-

mitian, so this choice will involve a complexification of the coordinates. An alternative way

to see this is to do an analytic continuation of the S5 coordinates into dS5 (five dimensional

de-Sitter space) and then write the metric of dS5 as ds2 = −dw2+duidui

w2 . With this choice,

the four translation symmetries shift the four u coordinates.

This alternative choice of abelian isometries is related to harmonic N = 4 d = 4

superfields in the same way that the previous choice of abelian isometries using qaj is

related to chiral N = 4 d = 4 superfields. As discussed in [34] and [35], harmonic N = 4

d = 4 superfields are naturally constructed using the supercoset PSU(2,2|4)
PS(U(2|2)×U(2|2)) where the

denominator PS(U(2|2) × U(2|2)) consists of the generators

[M b
a,M

ḃ
ȧ,D,R

s
r, R

s′

r′ , q
a
r , q̄

r′

ȧ , s
r
a, s̄

ȧ
r′ ]. (3.10)

The 16 bosonic and 16 fermionic generators in the supercoset PSU(2,2|4)
PS(U(2|2)×U(2|2))

split into “upper-triangular” generators [P a
ȧ , R

s
r′ , q

a
r′ , q̄

r
ȧ] and “lower-triangular” generators

[K ȧ
a , R

r′

s , s
r′

a , s̄
ȧ
r ], and the “upper-triangular” generators are precisely the 8+8 abelian isome-

tries which are T-dualized in this approach. This is closely related to the decomposition of

PSU(2, 2|4) that one performs when we consider a 1/2 BPS string state with large charge

(corresponding to an operator Tr[ZJ ]). The upper vs. lower triangular generators act as

creation vs annihilation operators for impurities along the string.

3.2 Invariance of AdS5 × S5 Green-Schwarz sigma model

This invariance under the combined fermionic and bosonic T-dualities can also be verified

by explicitly performing the T-duality transformations on the AdS5 ×S5 sigma model. To

show this invariance, we will first consider the Green-Schwarz version of the sigma model

and will then consider the pure spinor version.

In an AdS5 × S5 background, the Green-Schwarz sigma model S =
∫
d2z[(GMN (Z) +

BMN (Z))∂ZM ∂̄ZN ] takes the form

S =
R2

4πα′

∫
d2z[ηcdJ

cJ̄d − i(γ01234)
αβ̂

(JαJ̄ β̂ − J̄αJ β̂)] (3.11)
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where R is the AdS radius, JC = (g−1∂g)C and J̄C = (g−1∂̄g)C are left-invariant Metsaev-

Tseytlin [36] currents constructed from the supercoset g(Z) ∈ PSU(2,2|4)
SO(4,1)×SO(5) , and C =

(c, α, α̂) labels the PSU(2, 2|4) Lie-algebra generators which are not in SO(4, 1) × SO(5).

More precisely, c = 0 to 4 labels the five AdS5 generators of SO(4,2)
SO(4,1) , c = 5 to 9 labels

the five S5 generators of SO(6)
SO(5) , α = 1 to 16 labels the supersymmetries originating from

the “left-moving” half of the N = 2 d=10 supersymmetry, and α̂ = 1 to 16 labels the

supersymmetries originating from the “right-moving” half.

Splitting the SO(9, 1) indices into SO(3, 1)×SO(5) indices, this action can be expressed

as

S =
R2

4πα′

∫
d2z[(JPm + JKm)(J̄Pm + J̄Km) + JDJ̄D +

+JRt J̄Rt + Jqa
j
J̄qa

j
+ J

q̄
j
ȧ

J̄
q̄

j
ȧ

+ J
s
j
a
J̄

s
j
a

+ Js̄ȧ
j
J̄s̄ȧ

j
] (3.12)

where Pm and Km for m = 0 to 3 label the translations and conformal boosts, D labels the

dilatations, Rt for t = 1 to 5 label the SO(6)/SO(5) generators, and (qa
j , q̄

j
ȧ, s

j
a, s̄a

j ) label

the fermionic supersymmetry and superconformal generators. Note that when written in

terms of SO(3, 1) × SO(5) spinor indices, the (γ01234)
αβ̂

matrix in (3.11) decomposes as

(γ01234)aj bk = iǫab(σ
6)jk and (γ01234)ȧj ḃk = iǫȧḃ(σ

6)jk. So the a and ȧ indices in (3.12)

are contracted with ǫab and ǫ
ȧḃ

, while the j indices are contracted with (σ6)jk.

To compute the transformation of (3.12) under T-duality, it is convenient to use the

parameterization of the supercoset g(Z) in which

g(xm, yt, θaj , θ̄ȧ
j , ξ̄

j
ȧ) = exp(xmPm + θajqaj) exp(θ̄ȧ

j q̄
j
ȧ + ξ̄j

ȧs̄
ȧ
j ) |y|D exp

( 5∑

t=1

yt

|y|Rt

)
(3.13)

where |y| =
√∑6

t=1 ytyt and yt

|y| for t = 1 to 6 are the S5 coordinates. In this parameteri-

zation of g, κ-symmetry has been used to gauge-fix to zero the eight fermionic parameters

associated with the N = 4 d=4 chiral superconformal generators saj . But there are still

eight remaining κ-symmetries which have not been gauge-fixed.

If one writes g = exp(xmPm + θajqaj)e
B where

eB = exp(θ̄ȧ
j q̄

j
ȧ + ξ̄j

ȧs̄
ȧ
j ) |y|D exp

( 5∑

t=1

yt

|y|Rt

)
, (3.14)

then the left-invariant currents g−1∂g take the form

JPm = [e−B(∂xnPn + ∂θajqaj)e
B ]Pm , Jqa

j
= [e−B(∂xmPm + ∂θbkqbk)e

B ]qa
j

JD = [e−B∂eB ]D, JRt = [e−B∂eB ]Rt , J
q̄

j
ȧ

= [e−B∂eB ]
q̄

j
ȧ

, Js̄ȧ
j

= [e−B∂eB ]s̄ȧ
j
,

JKm = 0, J
s
j
a

= 0, (3.15)

where [ ]I denotes the component of [ ] which is proportional to the Lie-algebra gen-

erator I. To understand the structure of (3.15), it is useful to note that the generators

(q̄j
ȧ, s̄

ȧ
j ,D,R

k
j ,Mȧḃ

) form an SU(2|4) supergroup where M
ȧḃ

are the anti-self-dual Lorentz
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generators. Under this SU(2|4) supergroup, the generators (Paȧ, qaj) transform as a fun-

damental representation and the generators (Kaȧ, saj) transform as an anti-fundamental

representation.

One can now T-dualize with respect to xm and θaj by introducing the bosonic gauge

fields (Am, Ām) and the fermionic gauge fields (Aaj , Āaj), and adding the Lagrange multi-

plier term

R2

4πα′

∫
d2z[x̃m(∂̄Am − ∂Ām) + θ̃aj(∂̄A

aj − ∂Āaj)] (3.16)

to the action of (3.12). The action then takes the form

S =
R2

4πα′

∫
d2z[A′mĀ′m +A′aj

A′aj
+ x̃m(∂̄Am − ∂Ām) + θ̃aj(∂̄A

aj − ∂Āaj) +

+ JDJ̄D + JRt J̄Rt + J
q̄

j
ȧ

J̄
q̄

j
ȧ

+ Js̄ȧ
j
J̄s̄ȧ

j
] (3.17)

where

A′m = [e−B(AnPn +Aajqaj)e
B ]Pm, A′aj

= [e−B(AmPm +Abkqbk)e
B ]qaj

. (3.18)

Writing Am = [eB(A′nPn + A′ajqaj)e
−B ]Pm and Aaj = [eB(A′nPn + A′bkqbk)e

−B ]qaj
and

integrating out A′m and A′aj , one finds that the T-dualized action is

S =
R2

4πα′

∫
d2z[J ′

Pm
J̄ ′

Pm
+ J ′

qaj
J̄ ′

qaj
+ JDJ̄D + JRt J̄Rt + J

q̄
j
ȧ

J̄
q̄

j
ȧ

+ Js̄ȧ
j
J̄s̄ȧ

j
] (3.19)

where J ′
Pm

= [eB(∂x̃nPm)e−B ]Pn + [eB(∂θ̃ajPm)e−B ]qaj
and J ′

qaj
= [eB(∂x̃nqaj)e

−B ]Pn +

[eB(∂θ̃bkqaj)e
−B ]qbk

.

The integration over A′ and Ā′ gives a measure factor proportional to the superdeter-

minant of |∂A′

∂A
|. Since B is an element of SU(2|4), the super-Jacobian in the transformation

of (3.18) is equal to one. For example, if one restricts to the dilatation transformation pa-

rameterized by |y|, A′m = |y|Am and A′aj = |y| 12Aaj . Since there are four Am’s and eight

Aaj ’s, the super-Jacobian cancels. So the measure factor is equal to one which implies that

the dilaton does not transform under the combined bosonic and fermionic T-duality.

To relate (3.19) to the original action of (3.12), note that

J ′
Pm

= Tr[eB(∂x̃nPm)e−BKn + eB(∂θ̃ajPm)e−Bsaj ] = [e−B(∂x̃nK
n + ∂θ̃ajs

aj)eB ]Km

(3.20)

where Tr denotes the trace over PSU(2, 2|4) indices defined such that Tr(PmK
n) = δn

m

and Tr(qajs
bk) = δa

b δ
j
k. Similarly,

J ′
qaj

= Tr[eB(∂x̃nqaj)e
−BKn + eB(∂θ̃bkqaj)e

−Bsbk] = [e−B(∂x̃nK
n + ∂θ̃bks

bk)eB ]saj .

(3.21)

Suppose one parameterizes

g(x̃, θ̃, y, θ̄, ξ̄) = exp(x̃mK
m + θ̃ajs

aj)eB (3.22)
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where eB is defined as in (3.14) and κ-symmetry has been used to gauge-fix to zero the

eight fermionic parameters associated with qaj. Then the left-invariant currents g−1∂g now

take the form

JKm = [e−B(∂x̃nK
n + ∂θ̃ajs

aj)eB ]Km , Jsaj = [e−B(∂x̃mK
m + ∂θ̃bks

bk)eB ]saj ,

JD = [e−B∂eB ]D, JRt = [e−B∂eB ]Rt , J
q̄

j
ȧ

= [e−B∂eB ]
q̄

j
ȧ

, Js̄ȧ
j

= [e−B∂eB ]s̄ȧ
j
,

JPm = 0, Jqaj
= 0. (3.23)

So the T-dualized action of (3.19) reproduces the action of (3.12) if one uses the parame-

terization of (3.22).

Finally, one can relate the parameterization of (3.22) with the original parameterization

of (3.13) by using the isomorphism of PSU(2, 2|4) which switches

Pm → Km, qaj → saj , q̄j
ȧ → s̄ȧ

j , D → −D. (3.24)

If one simultaneously switches the variables

xm → x̃m, θaj → θ̃aj, θ̄ȧ
j → ξ̄j

ȧ, yt →
yt

|y|2 , (3.25)

the parameterization of (3.22) is mapped to the parameterization of (3.13). So it has been

verified that after partially gauge-fixing the κ-symmetry, the Green-Schwarz version of the

AdS5 × S5 sigma model is mapped to itself under the combined T -duality with respect to

xm and θaj.

Since the argument above might have been too detailed, let us repeat the gist of the

argument using SU(2|4) invariant notation. We group the coordinates as ZaI = (xaȧ, θaj)

where I is an SU(2|4) index. We also have the corresponding generators GaI = (Paȧ, qaj)

and their dual generators GaI = (Kaȧ, saj). We can then write the part of the action

depending on Zaj as

S ∼
∫
ǫabηIJM

I
LM

J
K∂Z

aI ∂̄ZbK (3.26)

where ηIJ is the supergroup invariant metric and M I
L is given by

Tr[GaIe−BGbLe
B ] = δa

bM
I
L , T r[GaIGbL] = δa

b δ
I
L (3.27)

After the T-duality we end up with dual variables Z̃aj and the action will be of a

similar form but it will involve the inverse of this matrix. This inverse can be written by

an expression similar to (3.27) but involving the inverse transformation

δa
b (M−1)IL = Tr[GaIeBGbLe

−B ] = Tr[e−BGaIeBGbL] (3.28)

where in the last expression we noticed that the inverse matrix can be viewed as the

same transformation eB as in (3.27) but acting on the dual generators GaJ . Thus, after

performing the transformation that exchanges the dual generators with the original ones

we end up with the same form of the action.
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At the end of the previous subsection, we discussed an alternative choice of T-

dualization which also leaves the AdS5×S5 background invariant. One can show invariance

of the Green-Schwarz sigma model using this alternative T-dualization by replacing the

above SU(2|4) subgroup of PSU(2, 2|4) with the PS(U(2|2) × U(2|2)) subgroup of (3.10).

After gauge-fixing to zero the 8 fermionic parameters associated with sr′

a and s̄ȧ
r , one can

follow the same steps as above. One first groups the coordinates as ZJ ′

I = (xȧ
a, u

r′

r , θ
r′

a , θ̄
ȧ
r )

where I = (a, r) and J ′ = (ȧ, r′) are U(2|2)×U(2|2) indices, and ur′

r are four coordinates on

the (analytic continuation of) S5. The corresponding generators are GI
J ′ = (P a

ȧ , R
r
r′ , q

a
r′ , q̄

r
ȧ)

and their dual generators are GJ ′

I = (K ȧ
a , R

r′

r , s
r′

a , s̄
ȧ
r). One can now repeat the procedures

of (3.26) - (3.28) to show that the action is mapped to itself under this T-duality.

3.3 Invariance of the AdS5 × S5 pure spinor sigma model

In the previous subsection, it was shown that in the gauge ξaj = 0, the Green-Schwarz

version of the AdS5 ×S5 action is invariant under T-duality where ξaj correspond to the 8

fermionic parameters asssociated with the chiral superconformal generators saj . In other

words, the general element of the PSU(2,2|4)
SO(4,1)×SO(5) coset is

g̃ = g(x, y, θ, θ̄, ξ̄) exp(ξajs
aj) (3.29)

where g(x, y, θ, θ̄, ξ̄) is the gauge-fixed supercoset used in (3.13). It will now be shown that

the pure spinor version of the AdS5×S5 action is also invariant under T-duality. Since the

pure spinor version of the action is quantizable, this proves that the sigma model action in

an AdS5 × S5 background is invariant under T-duality to all orders in α′.

The first step is to use the fact that there is a unique prescription for constructing the

pure spinor action from any κ-invariant Green-Schwarz action. This prescription was first

described by Oda and Tonin [37] and involves relating the Green-Schwarz κ-transformations

with the pure spinor BRST transformations. So if the T-dualized Green-Schwarz action

could be written in a κ-invariant form, one could use this prescription to prove that T-

dualization does not change the pure spinor action.

However, the T-dualized Green-Schwarz action was only shown to be invariant in the

gauge ξaj = 0. This means that the original and T-dualized pure spinor actions may differ

by terms which vanish when ξaj = 0. It will now be argued using BRST invariance that

such terms cannot be present. Note that invariance under T-duality of the BRST operators

Q =
∫
dzλαdα and Q̂ =

∫
dz̄λ̂α̂d̂α̂ is manifest since the worldsheet variables (λα, λ̂α̂) and

(dα, d̂α̂) transform by local SO(4, 1) × SO(5) Lorentz rotations under T-duality.

Suppose that the original pure spinor action is S0 and the T-dualized pure spinor

action is S1 where

S1 = S0 +

∫
d2z ξajV

aj (3.30)

for some V aj . Then BRST invariance of S0 and S1 implies that

∫
d2z (Q+ Q̂)(ξajV

aj) = 0. (3.31)
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Furthermore, as explained in [38], Q and Q̂ act on the supercoset element g̃ of (3.29)

by right multiplication as

(Q+ Q̂)g̃ = g̃[(λaj + λ̂aj)qaj + (λaj − λ̂aj)s
aj + (λȧ

j − λ̂ȧ
j )q

j
ȧ + (λj

ȧ + λ̂j
ȧ)s

ȧ
j )] (3.32)

where the j indices on λaj and λ̂aj are SO(5) spinor indices which can be raised and lowered

using (σ6)jk and (σ6)jk. Using (3.29) and (3.32), one learns that the only worldsheet field

which transforms into (λaj − λ̂aj) is ξaj which has the BRST transformation (Q+ Q̂)ξaj =

(λaj − λ̂aj) + . . . where the terms in . . . will not concern us.

Suppose one expands

V a1j1 = V a1j1
(1) + ξa2j2V

a1j1 a2j2
(2) + ξa2j2ξa3j3V

a1j1 a2j2 a3j3
(3) + . . . (3.33)

where V a1j1...anjn

(n) is assumed to be independent of ξbk and is antisymmetric under exchange

of akjk and aljl indices. Then if one focuses on terms in (Q + Q̂)(ξajV
aj) which are

proportional to (λ− λ̂)aj and have no ξaj dependence, (3.31) implies that

(λ− λ̂)a1j1V
a1j1
(1) = 0. (3.34)

Furthermore, since V a1j1 can only depend on (λ − λ̂)aj in the ghost-number zero

combinations of the Lorentz currents λγcdw and λ̂γcdŵ, it is not difficult to show that (3.34)

implies that V a1j1
(1) = 0.

One can then focus on terms in (Q+ Q̂)(ξajV
aj) which are proportional to (λ − λ̂)aj

and are linear in ξaj , and use a similar argument to prove that V a1j1 a2j2
(2) = 0. Continuing

to higher powers in ξaj , one proves that V aj = 0 and therefore S0 = S1 in (3.30).

So it has been proven that T-duality invariance of the κ gauge-fixed Green-Schwarz

action implies that the pure spinor version of the action is also invariant under T-duality.

4. Amplitudes and Wilson loops

4.1 Generalities on the amplitudes

In order to describe the external Yang Mills states it is convenient to use an on-shell super-

space formalism where the superfields Φ(x, θ) depend only on the eight chiral superspace

variables θai. We also find it convenient to write four dimensional on-shell momentum as

kaȧ = πaπ̄ȧ (4.1)

which obeys k2 = 0. An on-shell gluon supermultiplet is characterized by a momentum k

and fermionic variables κi such that [39, 40]

Φk,κ(x, θ) = eik·xeπaθajκj (4.2)

Different components of the supermultiplet correspond to different terms in the κ

expansion. The + helicity gluons correspond to the κ0 terms and the − helicity gluons

correspond to the κ4 component.
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The corresponding vertex operators in string theory have the form

Vπ,π̄,κ = eiπaπ̄ȧxaȧ

eπbθ
bjκj V̂ (4.3)

where V̂ can contain only derivatives of θ and x. Of course, in addition it could contain

other variables, such as θ̄, with or without derivatives. Thus the whole dependence on the

x and θ zero modes of the vertex operators comes from the prefactor in (4.3) .

As we remarked above, before doing T-duality we should integrate out the zero modes

of xaȧ and θaj. This implies that the amplitude contains a factor

A = δ4

(
n∑

l=1

kl
aȧ

)
δ8

(
n∑

l=1

πl
aκ

l
i

)
Ã (4.4)

We can extract physical amplitudes for individual polarization states from (4.4) by inte-

grating over κl. Thus, if we simply integrate over κl we would be picking out the (κl)4 term

which is the minus helicity gluons. If we multiply by (κl)4 and then integrate, then the lth

particle corresponds to a + helicity gluon. This is equivalent to setting κl = 0 in (4.4) .

The presence of the fermionic delta function in (4.4) implies that the all + amplitude and

the almost all + and one − amplitude vanish. The first non-vanishing case is the MHV

amplitude with mostly + and two − helicity gluons. For MHV amplitudes we do not need

any further κ dependence in Ã, but amplitudes with more − helicities will require that

we know the dependence of Ã on κ. (A prescription for computing Ã|κ=0 at tree level in

string theory in flat space is given in appendix A.)

We introduce an infrared regularization as follows. We imagine starting from a U(N +

k) theory. We consider a vacuum breaking the symmetry to U(N)×U(k) by giving a scalar

field a vacuum expectation values µIR which will play the role of an infrared cutoff. When

we take the ’t Hooft limit we keep k fixed, so that the low energy U(k) theory becomes

free. We then scatter n gluons of the U(k) theory. We are interested in the regime where

all the kinematic invariants are much larger than the infrared scale, sij ≫ µ2
IR. On the

strong coupling side, this infrared regularization corresponds to introducing k D3 branes in

AdS5 × S5. In terms of the AdS metric ds2 = dx2+dy2

y2 the branes are sitting at y = 1/µIR.

See figure 2. It is conceptually simpler for our purposes to say that k = n and that the

n gluons are open strings that stretch among these n branes so that each portion of the

boundary of the disk diagram corresponds to each of the n branes.

4.2 Amplitudes after T-duality

After T-duality we can compute the quantity Ã in the T-dual theory. We explain below

what the corresponding computation is. The T-dual computation of Ã involves a number

of D(-1) branes and each external state maps to an open string stretching between the

D(-1) branes, see figure 2. All the D(−1) branes are sitting at the same ỹ position ỹ =

µIR. We can see that the open strings are stretched by looking at the original worldsheet

equation of motion for one of the R4 bosonic directions near the insertion point of the

vertex operator (4.3) . It has the schematic form

k1δ
2(z) + ∂[g11∂̄x

1 + · · · ] + ∂̄[g11∂x
1 + · · · ] = k1δ

2(z) + (∂∂̄ − ∂̄∂)x̃1 (4.5)
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y =1/ µ  y= y=0
y=0

boundary
boundary horizon

horizon

µ IR
IR~ ~

D3−brane

D(−1) brane

AdS AdS

T−duality

Figure 2: The amplitude computation in the original theory involves the scattering of open strings

on n D3 branes living in AdS5. Under T-duality this maps to a different computation in the T-dual

AdS space. The T-dual computation involves strings stretching between n D(-1) branes. The D(-1)

branes are positioned so that the open strings between them are massless. We are computing the

interaction amplitude between these states in string theory which comes from a disk diagram.

where we have rewritten this equation in terms of the T-dual variable x̃1. Integrating this

in an arc around the insertion of the vertex operator at the boundary we conclude that x̃1

has winding given by k1. In other words, the boundary condition for x̃1 changes from one

side of the vertex operator to the other by an amount proportional to k1 Of course this is

the familiar statement that momentum is mapped into winding under T-duality. Let us

now repeat this for the fermionic coordinates θaj. We find that the equation of motion is

πaκiδ
2(z) + ∂[Cai bj ∂̄θ

bj + · · · ] − ∂̄[Cai bj∂θ
bj + · · · ] = πaκiδ

2(z) + (∂∂̄ − ∂̄∂)θ̃ai (4.6)

Thus we see that the T-dual fermionic coordinate θ̃ai has “winding” ∆θ̃ai = πaκi when

we go across the vertex operator insertion. Thus we can assign to each D(-1) brane also

a position in θ̃ which is consistent with these jumps. Notice that we will not integrate

over the overall θ̃ fermion zero mode, so we are allowed to fix the position of one of these

D(-1) branes arbitrarily. The same is true for the bosonic zero modes. One of the D(−1)

brane positions is fixed arbitrarily. We have n D(-1) branes, at specific separations given

by the momenta and the fermionic coordinates κi of the external gluons. We have open

strings stretching between them that are on-shell. Then we compute a disk diagram which

is the tree level contribution to the interaction between these open strings. The whole

computation is done in terms of the T-dual model, which is T-dual conformal invariant.

The information about the polarizations of the gluons appears as the information about

the particular open string state stretching between D(-1) branes that we are considering

and it is encoded by the κ variables. We see that the theory, written in terms of the

T-dual variables, has manifest dual superconformal symmetry, up to a small subtlety. If

we consider the regularized amplitude, with a finite µIR, as in figure 2, then we map this

to a configuration of D(-1) branes at the same position of the radial variable of the T-dual

AdS space, ỹ = µIR. However, a dual special conformal transformation will change their

relative radial positions. In the limit that µIR → 0, these positions are formally all at ỹ = 0,

which is the boundary of ÃdS space, and are unchanged by the conformal transformation.
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However, the action diverges. Fortunately the structure of the divergences is known. After

extracting the IR divergencies, one finds that the amplitude changes in a well defined way

under such conformal transformation. The change is completely fixed by the structure of

the IR divergencies. This was discussed in detail in [6] (see also [41] for a string perspective

on the same issue.).

The bottom line is that the T-duality argument makes manifest the T-dual conformal

symmetry and explains why it should be a symmetry of the amplitude. We have not been

very explicit about the precise form of the vertex operators, but it seems clear that the sym-

metries are such that one should reproduce the structure described in [13] (and also [12]).

4.3 The amplitude and the Wilson loop

Let us now turn to the Wilson loop computation. The Wilson loop computation involves

a string configuration very similar to the one that we get after performing the T-duality

and taking µIR → 0. One difference is that in the Wilson line computation there is no

information about the polarization states of the gluons. This information arises in the T-

dual computation as the polarization information for the strings stretching between D(−1)

branes. In order to obtain the Wilson loop, we need to “forget” about these polarization

states and reduce the computation to one with fixed boundary conditions on the boundary

of the string. For example we will put Dirichlet boundary conditions for the fermions and

also for the AdS bosons. In the particular case of MHV amplitudes we expect that this

change will simply produce a factor proportional to the tree level MHV amplitude. In

other words, on the basis of the perturbative computations done in [3, 4, 9, 10], we expect

that the relation is

Ã
∣∣∣
κ=0

=
1∏n

i=1(πiπi+1)
〈W (k1, · · · , kn)〉 (4.7)

up to IR and UV divergent terms. We do not have a rigorous justification for the origin

of this prefactor on the string theory side. Of course, this factor accounts properly for

the right helicity weights of the amplitude. It was also argued in [13] that it is dual

superconformal covariant with weights one. So the only issue is whether one could get a

residual superconformal invariant factor.

In lieu of a derivation, let us give some plausibility arguments. From the field theory

side, as pointed out in [15] , when we put in this regularization we have an outer loop in

the Feynmann diagram which consists of a massive supermultiplet. This particle mediates

the interaction between the external U(k) particles and the U(N) internal particles. In the

limit that we turn off the Yang Mills coupling of the U(N) theory, then we simply have a

one loop diagram and we know that the result is equal to the MHV tree amplitude up to

terms that capture the IR divergences [42] . From the string theory side, it is clear that

the only difference between the amplitude and the Wilson loop computation lies in the

detailed boundary conditions at the boundary of the worldsheet. (We explore the shape of

the worldsheet near the boundary for a finite µIR in appendix B.) Thus, it seems natural

to expect that the worldsheet theory will contain some worldsheet excitations that are

confined to the boundary of the worldsheet that would give rise to the prefactor in (4.7) .

These could represent the massive particle we have in the field theory traveling around the
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loop. Then the difference between the amplitude and the Wilson loop would be whether

we do or do not include these degrees of freedom localized at the boundary.

It is also quite plausible that we need to consider a Wilson loop with some insertions

that take into account the polarization states of the particles. Studying the string theory

in more detail one should be able to give a definite answer to these questions. It is also

possible that one could understand this prefactor by computing precisely, as in [15] , the

relation between MHV amplitudes and momentum space Wilson loops.

5. Dual conformal symmetry in the AdS sigma model

In this section we consider a bosonic sigma model with an AdSd+1 target space. Our

goal is to get some insight on the connection between the dual conformal symmetry and

integrability. The conserved currents associated to integrability in the original and T-dual

model were studied in [43] and the flat connection of the T-dual model was written in terms

of the variables of the original model. Our goal here is closely related. We will first relate

the non-trivial dual conformal generators with the non-local currents that arise through

integrability. We will also show the gauge equivalence of the flat connection of the original

model and the one arising from the T-dual model.

As we mentioned above, writing the metric as

ds2 =
dx2 + dy2

y2
(5.1)

and performing T-duality in the x coordinates and an inversion of y

dx̃ = ∗dx
y2

, ỹ =
1

y
, dx = ∗dx̃

ỹ2
(5.2)

we can see that the equations of motion for x̃ and ỹ are the same as the ones we would

obtain for a sigma model on the T-dual AdS space, or ÃdSd+1 space ds2 = dx̃2+dỹ2

ỹ2 . The

new AdS space has an SO(2, d) symmetry group. Some of these symmetries are the same

as the symmetries of the original model. For example, the dilatation symmetry D of the

original model is related to the dilatation symmetry of the dual model, D = −D̃. On the

other hand, the special conformal symmetries of the dual model are not so obvious in the

original model. We would like to understand what these symmetries are in the original

model.

Let us consider first the simpler example of Euclidean AdS2 or H2. In this case we can

write the special conformal generator of the dual model as

K̃ =

∫
dσjK̃τ (σ) =

∫
dσ

[
(x̃2 − ỹ2)

∂τ x̃

ỹ2
+ 2

x̃∂τ ỹ

ỹ

]
(5.3)

where τ and σ are the time and space coordinates on the worldsheet. We can now use (5.2)

to replace the time derivatives of x̃ by sigma derivatives of x. We can then integrate these

by parts. In this integral there are boundary terms and we assume that we can ignore

these boundary terms (this will be true in the application we have in mind, where we will

– 26 –



J
H
E
P
0
9
(
2
0
0
8
)
0
6
2

integrate on a closed contour and demand that x and x̃ are periodic). We are left with

terms of the form x̃∂σx̃x. We now write x̃(σ) =
∫ σ

dσ′∂σx̃, and we replace the derivatives

of x̃ by derivatives of x using (5.2) again. In the end we are left with an expression of the

form

K̃ =

∫
dσ

∫ σ

dσ′jPτ (σ′)jDτ (σ) +

∫
dσjPσ = P2 (5.4)

where jP ∼ ∂x
y2 , jD ∼ xdx+ydy

y2 are the the translation and dilatation currents of the original

model. Thus we see that the special conformal transformation in the dual model correspond

to one of the non-local conserved charges. It is the second non-local conserved charge which

is given by two integrals. Since the AdS model is integrable, we have an infinite set of non-

local charges.

Thus, the conclusion is that the conformal symmetry of the dual model maps to the

higher non-local charges of integrability. The same result is true in general AdSd+1 spaces.

Thus, when we demand that a certain quantity is invariant under the dual conformal sym-

metry we are demanding that it is invariant under some of the non-local charges associated

to integrability.

A simple way to think about these non-local charges is to construct a one parameter

family of flat connections C(λ). This one parameter family can be used to write all the

non-local conserved charges as we will review below. We can do the same for the dual

model and construct C̃(λ). We will then show that these two connections differ only by a

gauge transformation, so that the total set of charges is the same on both sides.

5.1 Integrability and the flat connection

We work in AdSd+1. This is described in terms of the coset manifold SO(2, d)/SO(1, d)

or G/H. We think of it as a right coset g ∼ gh. The group G acts on the left and it

corresponds to the global isometries of AdS. We will now construct the conserved currents

for the model, following the discussion in [44] (see also [45] ), with some minor changes in

notation. We construct the left invariant (G invariant) currents

J = −g−1dg (5.5)

and we decompose them according to the decomposition of the Lie algebra G = H + M,

where H are the generators in the subgroup H and M are the rest. We then find

J = H +M (5.6)

This transforms under H gauge transformations. The quantity

m = gMg−1 (5.7)

is H-invariant. The lagrangian can be written as L ∼ Tr[mαm
α] ∼ Tr[MαM

α]. For two

quantities related as x = gXg−1 we will use the lower case letter for the H invariant version

and the upper case letter X for the G invariant one. We also note that

dx = gdXg−1 − j ∧ x− x ∧ j (5.8)
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where j corresponds to J . Since H is a subgroup we have [H,H] ⊂ H. Since we are

performing a coset we also see that [H,M] ⊂ M. In our case we also have [M,M] ⊂ H.4

From the definition (5.5) we know that dJ = J∧J . Decomposing J as in (5.6) and equating

both sides we get

dH = H ∧H +M ∧M , dM = H ∧M +M ∧H (5.9)

This then implies that

dm = −2m ∧m (5.10)

In addition we also have that m is proportional to the Noether current for the left G

action. So d ∗m = 0. Thus we construct the flat connection as

C = −2 sinh2 λ

2
m+ sinhλ ∗m (5.11)

where λ is an arbitrary complex parameter. This obeys dC + C ∧ C = 0. One can then

construct the holonomy

Ω(λ) = Pe
R

C(λ) (5.12)

Expanding this in powers of λ we get an infinite set of non-local conserved charges.

The charge Qn multiplying λn will contain a maximum of n integrals.

In the case of the cylinder we need to consider Tr[Ωn] where Ω is the holonomy around

the cylinder. These are then the conserved charges for a cylinder.

In the application to the amplitude we have a worldsheet which is a disk and thus we

can form the holonomy around the origin of the disk. Since this can be smoothly deformed

to the origin we conclude that the holonomy should be simply the identity matrix Ω = 1.

This is stating that the amplitude should be annihilated by all the charges, both the

local and non-local charges.5 We see that dual conformal symmetry corresponds to the

statement that some particular charges annihilate the amplitude. Of course one needs to

treat IR divergences carefully (see [6] ), but this is the essence of the statement. It is

natural to expect that demanding that all non-local symmetries annihilate the amplitude

should determine the amplitude.

5.2 Relation between the flat connection in the original and the T-dual model

We now make a specific choice for the coset representative g as

g = ex.P elog yD (5.13)

where D is the dilatation operator and Pi are the momenta, i = 1, · · · , d. We have

[D,Pi] = Pi. We also have the special conformal generators Kj , [D,Kj ] = −Kj ,

4This can be seen as follows. Up to an irrelevant change in signature the coset is the same as SO(1, d +

1)/ SO(d + 1). Then H are all the rotation generators and M are all the boost generators. We know that

the commutator of two boost generators is a rotation.
5This point of view was emphasized to us by A. Polyakov and A. Murugan.
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[Ki, Pj ] = 2δijD+rotation . Note that a combination of P and K, 1
2(P + K) is in

H = SO(1, d) while the other combination is not. We have that

J = −
[
dy

y
D +

dxi

y
Pi

]
= −

[
dy

y
D +

dxi

y

1

2
(Pi −Ki)

]
− dxi

y

1

2
(Pi +Ki)

M = −
[
dy

y
D +

dxi

y

1

2
(Pi −Ki)

]

H = −dx
i

y

1

2
(Pi +Ki) (5.14)

We can now construct the flat connection as in (5.11) . It is now convenient to do a

gauge transformation of C → C′ = g−1Cg+ g−1dg, where g is given in (5.13) . We then get

C′ = −2 sinh2 λ

2
M + sinhλ ∗M − (H +M) = − coshλM + sinhλ ∗M −H

C′ =

(
cosh λ

dy

y
− sinhλ ∗ dy

y

)
D + (5.15)

+ cosh
λ

2

(
cosh

λ

2

dxi

y
− sinh

λ

2
∗ dx

i

y

)
Pi + sinh

λ

2

(
− sinh

λ

2

dxi

y
+ cosh

λ

2
∗ dx

i

y

)
Ki

We can now construct a similar current in the T dual model, C̃, and then make a

similar gauge transformation but in the T-dual model. We then get

C̃′ =

(
cosh λ

dỹ

ỹ
− sinhλ ∗ dỹ

ỹ

)
D + (5.16)

+ cosh
λ

2

(
cosh

λ

2

dx̃i

ỹ
− sinh

λ

2
∗ dx̃

i

ỹ

)
Pi + sinh

λ

2

(
− sinh

λ

2

dx̃i

ỹ
+ cosh

λ

2
∗ dx̃

i

ỹ

)
Ki

In principle we could have introduced another parameter λ̃ here. But, anticipating

our result, we have set λ̃ = λ. We can now express C̃′ in terms of the original variables (x

and y) via (5.2) . We then make an additional gauge transformation of C′, this time by a

constant group element, which maps D → −D and P ↔ K.

We then find

C̃′′ =

(
coshλ

dy

y
− sinhλ ∗ dy

y

)
D + (5.17)

+ cosh
λ

2

(
cosh

λ

2
∗ dx

i

y
− sinh

λ

2

dxi

y

)
Ki + sinh

λ

2

(
− sinh

λ

2
∗ dx

i

y
+ cosh

λ

2

dxi

y

)
Pi

We now note that the original flat connection C′ can be related to C̃′′ via a gauge

transformation by a constant group element

C′ = e−µDC̃′′eµD (5.18)

where µ is given by

eµ = tanh
λ

2
, e−µDPeµD = e−µP , e−µDKeµD = eµK (5.19)
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We can see that expanding (5.18) in powers of λ one obtains a relation between non-

local currents of different order. Notice that the gauge transformations we used prior

to (5.18) were λ independent.

We have recently learnt that similar results, including a generalization to the full

AdS5 × S5 coset theory were obtained in [16] .

6. Conclusions

In this paper we have discussed the concept of “fermionic T-duality”. We have shown

that this is a symmetry of tree level string theory. At the level of the worldsheet we are

performing the same steps as the ones we perform for a bosonic T-duality. We select a

fermionic variable θ which has a shift symmetry. This corresponds to a supersymmetry

that anticommutes to zero, Q2 = 0. We then introduce the dual variable θ̃ via equations

that are similar to the ones we use for a bosonic T-duality. In target space this maps one

supersymmetric background to another supersymmetric background. The RR fields and

the dilaton are changed but the metric and the B field remain the same. In general, the

reality conditions are not respected because we need a complex Killing spinor in order to

have Q2 = 0 for the corresponding supercharge. If we restrict to fermionic variables which

are single-valued on the worldsheet, the T-duality will probably not extend to higher orders

in string loops. On the other hand we expect it to be exact in α′. In fact, the change of the

dilaton comes from a determinant that appears when we perform the change of variables

in the path integral, as in the bosonic case [21, 22]. One example is the case of constant

graviphoton background. This results from performing fermionic T-duality on a flat space

background after adding a total derivative term to the action. Thus tree level string theory

on a constant graviphoton background is the same as string theory on flat space. At higher

string loop orders the two are different.

We have then applied this idea to the AdS5 × S5 background. We performed four

bosonic T-dualities along four translation symmetries of AdS5 as well as eight fermionic T-

dualities along the directions associated to the chiral Poincare supersymmetry generators

Qai where a is a four dimensional chiral spinor index and i is a fundamental SU(4) R-

symmetry index. After the dualities, the string theory comes back to itself. But the initial

problem of computing scattering amplitudes translates into a problem involving a certain

D(-1) brane configuration that is very similar to a Wilson loop configuration, with the

D(-1) branes at the corners of the Wilson loop. The ordinary superconformal symmetry

of the dual superstring theory is what was called “dual superconformal symmetry” of the

original theory. Thus, this transformation makes this dual symmetry manifest. We have

argued this for the classical Green Schwarz sigma model and then for the full quantum

theory constructed using the pure spinor formalism. Our arguments amount to a change of

variables in the path integral. We expect that there should be no anomalies associated to

it. In particular, at one loop, we have checked that the Jacobian for this change of variables

vanishes. Thus, we expect that the symmetry should be a full symmetry for any value of

λ = g2N . In other words, we expect it to be exact in α′. This then explains the presence

of the dual conformal symmetry found in weak coupling computations [12, 9, 10, 13]. It
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would also be nice to explain the emergence of this symmetry purely within the weak

coupling theory. The four bosonic T-dualities are essentially a Fourier transform. This

paper suggests that it would be productive to try to perform an additional transformation

of the fermionic variables in order to be able to see the duality.

In the context of the simpler bosonic AdS sigma model we have also shown that the

dual conformal symmetry amounts to some subset of the non-local charges associated to

integrability. This has also been recently been done, including the extension to the full

AdS5 × S5 sigma model, in [16].

It has become clear that “dual superconformal symmetry” is very powerful in restrict-

ing the form of the amplitude. It even fixes the full amplitudes for four and five gluons [6]

. Since this symmetry is simply a small part in the infinite set of conserved charges asso-

ciated to integrability one would hope that all the higher charges can similarly be put to

use in order to fully fix all amplitudes.

Fermionic T-dualities probably have many more applications that the one we used

in this paper. In particular, since fermionic T-duality is a symmetry of supergravity, it

seems that it might be possible to consider the continuous symmetry groups (e.g. E7 [46] )

that arise from toroidal compactifications and extend them to supergroups. If the current

discussion of E10 and E11 models (see [47, 48] for recent papers) could be generalized to

supergroup models, it might be possible to derive the d=10 and d=11 fermionic supergrav-

ity fields in the same manner as the bosonic supergravity fields have been derived in these

models.
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A. MHV tree amplitudes in superstring theory

MHV tree amplitudes in flat space open superstring theory were studied in [19] using

the RNS prescription. In this appendix, we propose a new prescription for computing

MHV tree amplitudes in open superstring theory. Although our original motivation was

to compute MHV superstring tree amplitudes in an AdS5 × S5 background, up to now we

have only been able to develop this prescription in a flat background. Nevertheless, this

– 31 –



J
H
E
P
0
9
(
2
0
0
8
)
0
6
2

flat space prescription for computing superstring MHV tree amplitudes is simpler than

previous prescriptions and has an interesting relationship with the self-dual N=2 string

of [17, 18]. Such a relationship is not surprising since the self-dual N=2 string computes

self-dual d=4 Yang-Mills amplitudes which have many features in common with MHV

amplitudes [49 – 51].

A.1 MHV tree amplitudes in gauge theory

N -point tree-level MHV amplitudes have an extremely simple form when expressed in

terms of spinor helicities. If the d = 4 light-like momentum paȧ = pmσ
m
aȧ of the rth state is

written as

paȧ
r = πa

r π̄
ȧ
r , (A.1)

the color-ordered N -point tree-level MHV amplitude with N − 2 self-dual gluons and 2

anti-self-dual gluons is

A =
(πJπK)4

∏N
r=1(πrπr+1)

(A.2)

where J and K label the anti-self-dual gluons, πN+1 ≡ π1, and the color factor

Tr(T a1 . . . T aN ) has been suppressed. In (A.2), the self-dual gluon polarization is ηaȧ
r =

εar π̄
ȧ
r and the anti-self-dual gluon polarization is η̄aȧ

r = πa
r ε

ȧ
r where εar and εȧr are normalized

such that εarπra = 1 and εȧr π̄rȧ = 1.

The formula (A.2) can be easily extended to describe the scattering of any N = 4

super-Yang-Mills fields by combining the N=4 super-Yang-Mills fields into a scalar chiral

superfield Φ(x, θ). For an on shell gluon the field has a special form characterized by its

momentum and some fermionic parameters κi determining its various components. We

have

Φp,κ(x, θ) = eip.xeπaκiθ
ai

(A.3)

Expanding in powers of κ we obtain the various components of the superfield. We can

think about the amplitude as a function of πa, π̄ȧ, κi for each gluon. By looking at the

(κr)4 term we extract the amplitude for the negative helicity gluon, while the (κr)0 term

corresponds to the positive helicity gluon.

The amplitude will contain an integral over θ that will translate into an overall factor

of the form

A(πr, π̄r, κr) = δ4
(∑

r

pr

)
δ8
(∑

r

πa
rκ

r
i

)
Ã (A.4)

The amplitude Ã could have additional κ dependence. However, the κ independent

part of Ã is the MHV amplitude, up to the prefactor in (A.4) .

In field theory we find that this MHV part is given by

Ã =
1

∏N
r=1(πrπr+1)

(A.5)

The numerator factor in (A.2) comes from considering the δ function in (A.4) and inte-

grating over four of the κ’s for each of the negative helicity gluons.
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A.2 MHV tree amplitude in open superstring theory

The arguments leading to (A.4) were completely kinematical and also hold for open su-

perstring theory. Namely, they also hold if we consider open string scattering for massless

open strings on a D3 brane, even in the case that the scattering occurs at energies higher

than the string scale. In that case the MHV amplitude will not be given by (A.5) and will

contain dependence on α′ . In this subsection we propose a way to compute Ã in flat space

open superstring theory.

We conjecture that the MHV superstring amplitude is given by

Ã(πr, π̄r) = (π1π2)
−1(π2π3)

−1(π3π1)
−1 ×

〈V1(z1)V2(z2)V3(z3)

∫ z1

z3

dz4U4(z4) . . .

∫ z1

zN−1

dzNUN (zN )〉 (A.6)

where Vr(zr) = eiπrπ̄rx(zr) and

Ur(zr) = (εar π̄
ȧ
r∂xaȧ + ψȧψ̄ḃ

π̄ȧ
r π̄

ḃ
r)e

iπr π̄rx(zr). (A.7)

The correlation function in (A.6) is defined in the usual manner where xaȧ(z) satisfies

the OPE xaȧ(y)xbḃ
(z) → −α′ǫabǫȧḃ

(log |y − z| + log |y − z̄|) and (ψȧ, ψ̄ḃ
) are fermions of

conformal weight (1
2 , 0) satisfying the OPE ψȧ(y)ψ̄ḃ(z) → α′ǫȧḃ(y − z)−1. If (ψȧ, ψ̄ḃ) are

relabeled as ψaȧ, the vertex operator
∫
dzU(z) of (A.7) is the standard RNS vertex operator

for a self-dual gluon. Note that Ur(zr) changes by a total derivative under the gauge

transformation δεar = cπa
r for any constant c, so with the normalization εarπra = 1, the

amplitude is independent of εar .

The novelty of (A.6) is that the computation of the superstring MHV tree amplitude

is manifestly invariant under N = 4 d = 4 spacetime supersymmetry. Although one can

of course compute superstring MHV tree amplitudes using either the RNS or pure spinor

formalism, computations using these formalisms are more complicated and contain many

more fields. Note that (A.6) depends only on πrπ̄r but not on κ. This is because we are

concentrating on MHV amplitudes and we are only giving a prescription for computing

MHV amplitudes. We are not saying how to compute non-MHV amplitudes, which should

contain some κ dependence.

We will not attempt to derive (A.6) from a superstring formalism, however, there is an

interesting relation to the open self-dual string with N=2 worldsheet supersymmetry [17,

18]. This open string theory has a single physical state in its spectrum corresponding to

a self-dual Yang-Mills gluon (in signature d = (2, 2)). The worldsheet matter variables in

the self-dual string consists of (xaȧ, ψȧ, ψ̄ȧ) with ĉ = 2 N = 2 superconformal generators

T =
1

2
∂xaȧ∂xaȧ +

1

2
(ψȧ∂ψ̄ȧ + ψ̄ȧ∂ψȧ), G+ = ψȧ∂x

+ȧ, G− = ψ̄ȧ∂x
−ȧ, J = ψȧψ̄ȧ,

(A.8)

and worldsheet action
1

α′

∫
d2z

[
1

2
∂xaȧ∂̄xaȧ + ψ̄ȧ∂̄ψȧ

]
. (A.9)
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The physical self-dual Yang-Mills state is associated with the N = 2 superconformal

primary field

V = exp(ipaȧx
aȧ), (A.10)

and the integrated vertex operator is

∫
dzG−G+V =

∫
dzπ−(π̄ȧ∂x

+ȧ + π+(ψȧπ̄
ȧ)(ψ̄ȧπ̄

ȧ))eipx (A.11)

where paȧ = πaπ̄ȧ. So if one chooses the gauge ǫ+ = 0 and ǫ− = 1
π+ , (A.11) is equal to

π+π−
∫
dzU(z) where U(z) is defined in (A.7).

Using the “topological” rules of [52] for computing self-dual open string amplitudes,

the N -point tree amplitude prescription is

AN=2 = 〈(G+V (z1))(G
+V (z2))V (z3)

N∏

r=4

∫
dzrUr(zr)〉 (A.12)

where the N=2 superconformal generators of (A.8) have been twisted so that ψȧ carries

zero conformal weight and the zero-mode measure factor is 〈ψȧψ
ȧ〉 = 1. As shown in [52],

these N -point amplitudes vanish when N > 3 as is expected for self-dual Yang-Mills tree

amplitudes.

The N -point tree amplitude prescription proposed here is slightly different from (A.12)

and is

Ã = (π1π2)
−1(π2π3)

−1(π3π1)
−1〈V (z1) V (z2) V (z3)

N∏

r=4

∫
dzrUr(zr)〉 (A.13)

where the N=2 superconformal generators are untwisted. As shown below, this new pre-

scription is non-vanishing for N > 3 and reproduces the gauge theory result of (A.5) in the

limit when α′ → 0.

This suggests that there should be a superstring formalism which combines the world-

sheet variables of the self-dual string with another sector containing θaj worldsheet vari-

ables. One possibility for such a formalism is the self-dual super-Yang-Mills string theory

constructed in [53], which is related to the Green-Schwarz self-dual string of [54]. It would

be very interesting if one could use this formalism to construct a prescription with manifest

N = 4 d = 4 supersymmetry which reproduces superstring non-MHV tree amplitudes.

A.3 α′ → 0 limit of superstring tree amplitude

The first step in checking the validity of (A.6) is to show that it reproduces the gauge

theory amplitude of (A.5) in the limit when α′ → 0. To evaluate (A.6), it is convenient to

use N=2 notation and express the vertex operator of (A.7) as

Ur(z) =

∫
dχr

∫
dχ̄r exp[πa

r π̄
ȧ
rxaȧ(z) + χr(π̄rψ(z)) + χ̄r(π̄rψ̄(z)) + χrχ̄rǫ

a
r π̄

ȧ
r∂xaȧ(z)]

(A.14)
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where χr and χ̄r are Grassmann parameters which are introduced simply as a technical

trick. Using the free-field OPE’s implied by (A.9), one finds

〈V (z1) V (z2) V (z3)

N∏

r=4

∫
dzrUr(zr)〉 (A.15)

=

N∏

r=4

∫
dzrdχrdχ̄r

∏

r,s

|zr − zs|α
′prps ×

× exp

[
α′ π̄rπ̄s

zr − zs
(χrχ̄r(ǫrπs) + χsχ̄s(ǫsπr) + χrχ̄s + χsχ̄r)

]

where we have chosen a gauge for the ǫr’s such that ǫarǫsa = 0 for all r and s. Note that

exp

[
α′ π̄rπ̄s

zr − zs
(χrχ̄r(ǫrπs) + χsχ̄s(ǫsπr) + χrχ̄s + χsχ̄r)

]
(A.16)

= 1 + α′ π̄rπ̄s

zr − zs
(χrχ̄r(ǫrπs) + χsχ̄s(ǫsπr) + χrχ̄s + χsχ̄r)]

and has no double poles when zr − zs → 0.

Since each term in the exponential of (A.16) is proportional to α′, these terms can only

contribute in the limit α′ → 0 if there appear factors of 1
α′ coming from the integration

over zr. Such factors of 1
α′ can arise from contact terms when zr−1 → zr since

∫ zr−1+∆

zr−1

dzr |zr − zr−1|α
′prpr−1−1 = (α′prpr−1)

−1 (A.17)

for arbitrarily small ∆. So the terms in (A.16) can only contribute if they are proportional

to (zr − zr−1)
−1, i.e. if they involve neighboring vertex operators.

After integrating over
∏N

r=4 dχrdχ̄r and taking the limit α′ → 0, one finds that (A.15)

is equal to

lim
α′→0

N∏

r=4

∫
dzr|zr − zr−1|α

′prpr−1|z1 − zN |α′p1pN (A.18)

N−3∑

s=0

[ N−s∏

t=4

α′(π̄tπ̄t−1)(ǫtπt−1)

zt − zt−1

N∏

t=N−s+1

α′(π̄tπ̄t+1)(ǫtπt+1)

zt − zt+1

]

=

N−3∑

s=0

[ N−s∏

t=4

(π̄tπ̄t−1)(ǫtπt−1)

ptpt−1

N∏

t=N−s+1

(π̄tπ̄t+1)(ǫtπt+1)

−ptpt+1

]

=

N−3∑

s=0

[ N−s∏

t=4

(ǫtπt−1)

(πtπt−1)

N∏

t=N−s+1

(ǫtπt+1)

(πt+1πt)

]

= (π3π1)
N∏

r=3

(πrπr+1)
−1. (A.19)

Finally, multiplying (A.19) by the first line of (A.6), one reproduces the MHV gauge

theory amplitude of (A.5).
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A.4 Comparison with four-point and five-point gluon amplitudes

A second check of the conjecture of (A.6) is that it correctly reproduces the four-point and

five-point gluon scattering when all polarizations and momenta are four-dimensional.

For four-point scattering, the correlation function in (A.6) contributes

∫ z1

z3

dz4

3∑

s=1

(ε4πs)(π̄4π̄s)

z4 − zs

∏

r,s

|zr − zs|α
′(πrπs)(π̄r π̄s) (A.20)

=

∫ 1

0
dz4

(π3π1)(π̄4π̄1)

(z4 − 1)(π3π4)

∏

r,s

|zr − zs|α
′(πrπs)(π̄r π̄s)

where εa4 has been gauged to εa4 = πa
3(π3π4)

−1 and (z1, z2, z3) have been set to (1,∞, 0).

Multiplying by the first line of (A.6), one obtains the amplitude

Ã =
(π̄1π̄4)

(π3π4)(π2π3)(π1π2)

Γ(−α′s+ 1)Γ(−α′t)

Γ(α′u+ 1)

Ã =

N=4∏

r=1

(πrπr+1)
−1 Γ(−α′s+ 1)Γ(−α′t+ 1)

Γ(α′u+ 1)
(A.21)

which is the correct open superstring four-point amplitude.

For five-point scattering, the correlation function in (A.6) contributes
∫ z1

z3

dz4

∫ z1

z4

dz5
∏

r,s

|zr − zs|α
′(πrπs)(π̄r π̄s) (A.22)

[∑

r 6=4

(ε4πs)(π̄4π̄s)

z4 − zs

∑

s 6=5

(ε5πs)(π̄5π̄s)

z5 − zs
− (π̄4π̄5)

2

(z4 − z5)2
− (ε4ε5)(π̄4π̄5)

α′(z4 − z5)2

]

=

∫ ∞

1
dz4

∫ ∞

z4

dz5
∏

r,s

|zr − zs|α
′(πrπs)(π̄r π̄s)

[(
(π̄4π̄5)(π3π5)

(π3π4)(z4−z5)
+

(π̄4π̄2)(π3π2)

(π3π4)(z4−z2)

)(
(π̄5π̄4)(π3π4)

(π3π5)(z5−z4)
+

(π̄5π̄2)(π3π2)

(π3π5)(z5−z2)

)
− (π̄5π̄4)

2

(z4 − z5)2

]

=

∫ ∞

1
dz4

∫ ∞

z4

dz5
∏

r,s

|zr − zs|α
′(πrπs)(π̄r π̄s)

(π3π2)

(π3π4)(π3π5)

[
(π̄4π̄5)(π̄5π̄2)(π3π5)

(z4 − z5)(z5 − z2)
+

(π̄4π̄2)(π̄5π̄4)(π3π4)

(z4 − z2)(z5 − z4)
+

(π̄4π̄2)(π̄5π̄2)(π3π2)

(z4 − z2)(z5 − z2)

]

where εa4 and εa5 have been gauged to εa4 = πa
3(π3π4)

−1 and εa5 = πa
3(π3π5)

−1, and (z1, z2, z3)

have been set to (−∞, 0, 1).

Defining z4 = x−1 and z5 = (xy)−1 as in [19], the integral
∫ ∞

1
dz4

∫ ∞

z4

dz5
∏

r,s

|zr − zs|α
′srs (A.23)

[
A

(z4 − z5)(z5 − z2)
+

B

(z4 − z2)(z5 − z4)
+

C

(z4 − z2)(z5 − z2)

]

= A
s35f2 − s15f1

s45
+B

(
f1 −

s35f2 − s15f1

s45

)
+ Cf1
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where srs = (πrπs)(π̄rπ̄s),

f1 =

∫ 1

0
dx

∫ 1

0
dyx−1y−1I(x, y),

f2 =

∫ 1

0
dx

∫ 1

0
dy(1 − xy)−1I(x, y),

I(x, y) = xα′s23yα′s51(1 − x)α
′s34(1 − y)α

′s45(1 − xy)α
′(s12−s34−s45). (A.24)

Plugging in

A =
(π3π2)(π̄4π̄5)(π̄5π̄2)

(π3π4)
, B =

(π3π2)(π̄4π̄2)(π̄5π̄4)

(π3π5)
, C =

(π̄4π̄2)(π̄5π̄2)(π3π2)
2

(π3π4)(π3π5)
,

(A.25)

using the identity
∑

s(πrπs)(π̄sπ̄t) = 0 which follows from the momentum conservation of∑
s ps = 0, and multiplying by the factor in the first line of (A.6), one obtains

Ã =
1

∏N=5
s=1 (πsπs+1)

[s51s23f1 + (π5π1)(π̄1π̄2)(π2π3)(π̄3π̄5)f2] (A.26)

which agrees with the five-point gluon amplitude of [19].

A.5 BRST operator

Since the form of the unintegrated operators V and integrated operators U look very

different in (A.6), it is far from obvious that the superstring formula of (A.6) is invariant

under cyclic permutations of the N states. In the following subsections, we will give an

argument for this cyclic symmetry which involves picture-changing operators. However,

these arguments are not rigorous and it would certainly be useful to better understand this

point.

To argue that the prescription has cyclic symmetry, it is convenient to first define the

nilpotent operator

Q =

∫
dz(λαψ̄ȧ∂xαȧ + eψ̄ȧψ̄

ȧ + fλα∂λα) (A.27)

where λα is a bosonic spinor of conformal weight (−1
2 , 0) and e and f are conjugate fermions

of conformal weight (0, 0) and (1, 0) which satisfy the OPE e(y)f(z) → α′(y − z)−1. This

nilpotent operator will be called a BRST operator for reasons that will become clear shortly.

Using the free-field OPE’s of (xaȧ, ψȧ, ψ̄ȧ), one can verify that QUr = ∂Sr where

Sr = (λεr)(π̄rψ̄)eiπr π̄rx (A.28)

satisfies QSr = 0. Furthermore, under δεar = cπa
r , δSr = QΩr where Ωr = eiπrπ̄rx.

Naively, one would compute BRST-invariant tree amplitudes by evaluating the correla-

tion function of 3 unintegrated vertex operators Sr and N − 3 integrated vertex operators∫
dzUr. However, this would give an inconsistent result for two reasons. Firstly, the 3

unintegrated vertex operators would contribute three factors of ψ̄, whereas ψ̄ȧ has no zero

modes since it has conformal weight (1
2 , 0). And secondly, the −1

2 conformal weight of λα
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implies that it has bosonic zero modes on a disk. As will be explained below, λα has 3

bosonic zero modes on a disk and integration over these non-compact bosonic zero modes

would give a factor of (∞)3 if the correlation function were defined using the above vertex

operators.

To obtain the appropriate zero mode factors, one needs to replace the vertex operators

Sr of (A.28) with vertex operators in a lower “picture”. These picture-lowered vertex

operators Wr will be defined as

Wr = (λεr)δ(λπr)e
iπr π̄rx (A.29)

where δ(λπr) denotes a delta-function which constrains one of the three zero modes of λα.

It is easy to check that QWr = 0 and that Wr is invariant under the gauge transformation

δεr = cπr.

To understand the relation between Wr of (A.29) and Sr of (A.28), note that Sr = QΣr

where

Σr =
(λεr)

(λπr)
eiπrπ̄rx. (A.30)

So if Σr were a well-defined state, Sr would be BRST-trivial. This situation has

an analog in the RNS formalism since any BRST-closed state VRNS can be written as

VRNS = QRNSΣRNS where ΣRNS = cξ∂ξe−2φVRNS and (ηeφ, ∂ξe−φ) is the bosonized version

of the (γ, β) RNS ghosts. In this case, ΣRNS is not a well-defined state since it depends on

the ξ zero mode, i.e. η0 ≡
∫
dzη does not annihilate ΣRNS. However, WRNS = η0ΣRNS =

c∂ξe−2φVRNS is a well-defined state and defines the picture-lowered version of the vertex

operator. Note that WRNS = Y VRNS where Y = c∂ξe−2φ is the picture-lowering operator

satisfying Y X = 1, and X = {QRNS, ξ} is the picture-raising operator. [55]

To mimic this situation in RNS, suppose that λaπ
a
r is bosonized as

(λπ) = ηeφ. (A.31)

This means that Σr of (A.30) can be expressed as

Σr = ξe−φ(λεr)e
iπr π̄rx. (A.32)

Defining the picture-lowered vertex operator as Wr = η0Σr = e−φ(λεr)e
iπr π̄rx, one

obtains the operator of (A.29) if e−φ is identified as δ(λπ). This identification is very

natural and is analogous to the identification of e−φ = δ(γ) in the RNS formalism [56].

A.6 Cyclic symmetry

In this subsection, it will be shown that the amplitude of (A.6) can be expressed as

Ã = 〈W1(z1)W2(z2)W3(z3)

∫ z1

z3

dz4U4(z4) . . .

∫ z1

zN−1

dzNUN (zN )〉 (A.33)

where the vertex operators Wr and Ur are defined in (A.29) and (A.7) and the corre-

lation function in (A.33) includes functional integration over the λα zero modes. Since

the unintegrated vertex operators Wr and the integrated vertex operators Ur are related
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by picture-changing operators, one expects to be able to use the usual picture-changing

arguments of [55] to prove that (A.33) is invariant under cyclic symmetry.

Since λa has conformal weight −1
2 , each component of λa has two zero modes on a

disk, i.e. λa(z) = Aa +zBa where Aa and Ba are zero modes. However, the BRST operator

and all vertex operators are invariant under the rescaling

λa → Cλa, ψ̄ȧ → C−1ψ̄ȧ, ψȧ → Cψȧ, e→ C2e, f → C−2f, (A.34)

so one of the four zero modes can be gauged away. The integral over the remaining three

zero modes can be easily performed using the result that

∫
dA1dA2dB1λa(z1)λ

b(z2)λ
c(z3)δ(λ(z1)π1)δ(λ(z2)π2)δ(λ(z3)π3)

= πa
1π

b
2π

c
3(π1π2)

−1(π2π3)
−1(π3π1)

−1. (A.35)

After plugging (A.35) into (A.33), one easily verifies that (A.33) reproduces the amplitude

prescription of (A.6). So assuming that the picture-changing manipulations of [55] can be

applied to this situation, (A.6) has been shown to be invariant under cyclic permutations

of the vertex operators.

B. Cusp solution for the brane regularization

In this appendix we find the classical solution describing a string ending on a cusp that is

sitting at z = ǫ, near the boundary of AdS space. This is a generalization of the solution

in [57] which describes the case ǫ = 0.

We focus on an AdS3 subspace of AdS5 which is parametrized by x± and the radial

coordinate z. We want to find the surface that ends on the cusp given by x+x− = 0 (only

the part in the forward lightcone) and at z = ǫ.

We assume boost invariance so that the solution depends only on one variable. Let us

define variables so that x± = eτ±σ and z = eτw(τ). Then the action is [58]

S =

∫
dτ

√
(w′ + w)2 − 1

w2
(B.1)

The first integral is given by

c =
w(w + w′) − 1

w2
√

(w′ + w)2 − 1
(B.2)

Solving for w′ we get

w′ = −(w2 − 1 − c2w4) + cw
√

1 −w2 + c2w4

w(c2w2 − 1)
(B.3)

The usual cusp solution is w =
√

2 and c = 1/2. We want a solution where z = ǫ at

τ = −∞. In this case

w = ǫe−τ + 1 + · · · (B.4)
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should be the behavior as τ → −∞. It is possible to see that one can find a solution which

obeys these boundary conditions and asymptotes to the usual cusp solution for large τ only

for c = 1/2. In this case the equation (B.3) simplifies and can be solved as

eτ

ǫ
=

(
w +

√
2

w −
√

2

) 1√
2 1

1 + w
(B.5)

We get the solution in an implicit form. We do see that as τ → −∞, then w → +∞
and we recover (B.4) . On the other hand as τ → ∞, then w →

√
2. The range of w is

(
√

2,+∞). w becomes
√

2 when eτ ≫ ǫ. Thus the solution with boundary conditions at

z = ǫ differs from the solution with boundary condition at z = 0 only for eτ of the order

or smaller than ǫ.
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