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We investigate infrared dynamics of four-dimensional Einstein gravity in de Sitter space. We set up a
general framework to investigate dynamical scaling relations in quantum/classical gravitational theories.
The conformal mode dependence of Einstein gravity is renormalized to the extent that general covariance is
not manifest. We point out that the introduction of an inflaton is necessary as a counterterm. We observe
and postulate a duality between quantum effects in Einstein gravity and classical evolutions in an inflation
(or quintessence) model. The effective action of Einstein gravity can be constructed as an inflation model
with manifest general covariance. We show that g ¼ GNH2=π: the only dimensionless coupling of the
Hubble parameter H2 and the Newton’s coupling GN in Einstein gravity is screened by the infrared
fluctuations of the conformal mode. We evaluate the one-loop β function of g with respect to the cosmic
time logHt as βðgÞ ¼ −ð1=2Þg2, i.e., g is asymptotically free toward the future. The exact β function with
the backreaction of g reveals the existence of the ultraviolet fixed point. It indicates that the de Sitter
expansion stared at the Planck scale with a minimal entropy S ¼ 2. We have identified the de Sitter entropy
1=g with the von Neumann entropy of the conformal zero mode. The former evolves according to the
screening of g and the Gibbons-Hawking formula. The latter is found to increase by diffusion in the
stochastic process at the horizon in a consistent way. Our Universe is located very close to the fixed point
g ¼ 0 with a large entropy. We discuss possible physical implications of our results such as logarithmic
decay of dark energy.
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I. INTRODUCTION

In de Sitter-type spaces, nontrivial scaling phenomena
have been observed. de Sitter space is scale invariant
while more nontrivial scaling laws hold in the temperature
fluctuations of the cosmic microwave background (CMB).
It is very desirable to determine the equation of state w for
dark energy. de Sitter space is the solution of the Einstein
equation with a positive cosmological constant or the
Hubble parameter H. It may exhibit a nontrivial dynamical
scaling behavior at quantum level. The infrared (IR)
behavior of Einstein gravity in de Sitter space is likely
to be highly nontrivial as it has an event horizon.
The smallness of H2 in comparison with the Newton’s

coupling GN , i.e., the smallness of the dimensionless
coupling g ¼ GNH2=π, is a quintessential problem. The
other side of the coin is to explain the hugeness of the
de Sitter entropy S ¼ 1=g. It is very desirable to find out
what carries such huge entropy.
Nontrivial scaling laws are easy to implement in slow-

roll inflation theories with various inflaton potentials. The
problem here is the embarrassment of riches. There are too
many inflation models as we lack a principle to constrain
them. We have formulated a duality between quantum
and classical gravitational theories in two dimensions as
Liouville gravity/inflation theory duality [1]. In this paper,
we argue that such a concept of duality works equally well
in four dimensions. It may be regarded as constructing an
effective action of Einstein gravity by an inflation theory.
We are concerned with quantum IR effects due to the
presence of the horizon.
The history of seeking a mechanism to screen the

cosmological constant is long [2–4]. The essential feature
of our mechanism is the diffusion of the conformal zero
mode and the creation of entropy. The negative metric
of the conformal mode is crucial for screening (negative
anomalous dimension) of the cosmological constant
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operator [5,6]. In our mechanism, the IR logarithmic effects
play an essential role [7,8]. We evaluate the one-loop
dynamical β function of g with respect to the cosmological
time logHt to confirm the screening effects: βðgÞ ¼
−ð1=2Þg2. The negative sign implies that g is asymptoti-
cally free toward the future [9,10]. Our interpretation of the
de Sitter entropy as a von Neumann entropy is consistent
with the βðgÞ function in four-dimensional de Sitter space.
We have built on the stochastic picture of IR fluctuations
[11,12]. We show that the de Sitter entropy is created at the
horizon by a diffusion and it reduces the cosmological
constant in a consistent way with βðgÞ. The dual picture to
account for the increase of the de Sitter entropy in inflation
theory is the incoming inflaton energy flux [13].
We also derive the exact β function within the Gaussian

approximation by taking into account the backreaction of g.
The exact β function is negative in the whole region of time
flow. Furthermore, it possesses the ultraviolet (UV) fixed
point in the past g ¼ 1=2. This fact indicates that our
Universe started the de Sitter expansion with a minimal
entropy S ¼ 2 while it has S ¼ 10120 now.
We believe that our results are universal, i.e., indepen-

dent of the microscopic theory of quantum gravity. Of
course, the construction of de Sitter space in string theory is
a challenging task [14,15]. Nevertheless, the investigation
of quantum IR effects in de Sitter-type spaces is necessary
to unlock the secrets of the Universe.
We focus on quantum IR effects which are characteristic

to de Sitter space. Due to the scale invariant spectrum, the
two-point function of the massless minimally coupled
modes exhibits the logarithmic growth with time: log ac,
ac ¼ eHt. We sum up these IR logarithmic effects by using
the technique of the renormalization group. Since g is very
small even at the inflation epoch, the Gaussian approxi-
mation should be very good. In this sense, we have done the
most important work. We sum up all leading IR effects
logn ac ¼ ðHtÞn to the one-loop order. It is essential to
understand global (long term) evolution of the Universe.
Our IR cutoff is the size of the Universe which acts as the
low momentum cutoff. We are interested in the large ac
limit which corresponds to the removal of IR cutoff.
The determination of the β function and the existence of
a future fixed point at g ¼ 0 implies that the existence of the
ac → ∞ limit. Fortunately, it turns out to be flat spacetime
rather than de Sitter space.
This paper consists of the following sections and

appendices. This first section is devoted to the introduction.
In Sec. II, we investigate dynamical scaling laws in 4D
de Sitter-type spaces. We argue that a duality is the key to
reconcile quantum effects and general covariance. In
Sec. III, we investigate quantum IR effects in 4D de
Sitter spaces. We argue that an inflaton is necessary as a
covariant counterterm. We show that the Hubble parameter
is screened by IR logarithmic effects of the conformal
mode. In Sec. IV, we investigate the de Sitter entropy. We

confirm that it increases in a consistent manner with the
Gibbons-Hawking formula S ¼ π=ðGNH2Þ. We sum up
leading IR logarithms by a Fokker-Planck equation. We
derive the β function for g ¼ 1=S and find that g decays
logarithmically toward the future. This is the most impor-
tant result of the paper and may have deep implications. We
discuss some of them such as logarithmic decay of dark
energy in Sec. V. We compare the predictions of our theory
and the standard ΛCDM model with the recent observa-
tions of dark energy. Our theory has characteristic features
and it fares well with the ΛCDM model. We are convinced
that the difference is observable in the near future. We
conclude with discussions in Sec. VI. In Appendix A, we
recall our propagators in a Becchi-Rouet-Stora-Tyutin
gauge fixing for self-containedness. In Appendix B, we
explain a duality between quantum effects in Einstein
gravity and inflation theory in detail.

II. DUALITY AND SCALING
IN 4D DE SITTER SPACE

In this section, we study dynamical scaling laws in 4D de
Sitter-type gravity. The quantum gravity is such an example
while an inflation theory is another [16–19]. We seek a
generic framework to encompass them. Our working
assumption is that there is a duality between a quantum
gravity and an inflation theory. For example, the quantum
effects of Einstein gravity can be reproduced as a classical
solution by an inflation theory. We may call it quantum
gravity/inflation theory duality.
Our duality is based on the fact that Einstein gravity is

likely to be renormalized beyond recognition by quantum
IR effects. We show that manifest general covariance is lost
at the one-loop level. It is because the tree action does not
admit nontrivial scaling laws. We thus need a practical
method to ensure general covariance on the effective action.
In two-dimensional gravity, the conformal invariance
provides such a tool. We claim that manifest general
covariance can be kept in a dual inflation theory. On the
other hand, the duality puts discipline on the inflation
theory. Einstein gravity possesses the shift symmetry in
the weak coupling limit since de Sitter space has a flat
potential, i.e., the cosmological constant. Inflation theory
may be regarded as a low energy effective theory of
Einstein gravity. Such a duality may hold only at the
beginning of the inflation. Afterward, the inflation theory
may evolve by its own logic such as QED or QCD. As
Einstein gravity is a very good description of the current
Universe, this duality may be applicable to dark energy and
quintessence theory [20,21]. In this context, we may call it
quantum gravity/quintessence duality.
As for the principle driving force of the quantum IR

corrections in Einstein gravity, we focus on the scale
invariant fluctuations of the metric, especially the conformal
mode. It causes logarithmic growth of quantumgravitational
corrections. In a stochastic picture, zero modes perform a
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Brownian motion by the collisions with newcomers in field
space (real line) since the two-point function at the coinci-
dent point grows linearly with cosmic time.
In dealing with the quantum fluctuations whose back-

ground is de Sitter space, we adopt the following para-
metrization:

gμν ¼ Ω2ðxÞg̃μν; ΩðxÞ ¼ aðτÞϕðxÞ; ϕðxÞ ¼ eωðxÞ;

ð2:1Þ

det g̃μν ¼ −1; g̃μν ¼ ημρðehðxÞÞρν ¼ ðehðxÞÞμρηρν:
ð2:2Þ

The inverse metric matrix is

g̃μν ¼ ðe−hðxÞÞμρηρν ¼ ημρðe−hðxÞÞρν: ð2:3Þ

To satisfy (2.2), hμν is traceless

ημνhμν ¼ 0: ð2:4Þ

By using this parametrization, the components of the
Einstein-Hilbert action are written as follows. We keep a
parameter D to specify the dimension for generality:

ffiffiffiffiffiffi
−g

p ¼ ΩD; ð2:5Þ

R ¼ Ω−2R̃ − 2ðD − 1ÞΩ−3g̃μν∇μ∂νΩ

− ðD − 1ÞðD − 4ÞΩ−4g̃μν∂μΩ∂νΩ; ð2:6Þ

where R̃ is the Ricci scalar constructed from g̃μν,

R̃ ¼ −∂μ∂νg̃μν −
1

4
g̃μνg̃ρσ g̃αβ∂μg̃ρα∂νg̃σβ

þ 1

2
g̃μνg̃ρσ g̃αβ∂μg̃σα∂ρg̃νβ: ð2:7Þ

From (2.5) and (2.6), the Lagrangian of Einstein
gravity is

1

κ2

Z
dDx

ffiffiffiffiffiffi
−g

p ½R − ðD − 1ÞðD − 2ÞH2�

¼ 1

κ2

Z
d4x½Ω2R̃ − 6Ω∂μðg̃μν∂νΩÞ − 6H2Ω4�

¼ 1

κ2

Z
d4x½Ω2R̃þ 6g̃μν∂μΩ∂νΩ − 6H2Ω4�; ð2:8Þ

where κ is defined by the Newton’s coupling GN as
κ2 ¼ 16πGN . In the last equality, we dropped a total
derivative term. However, this operation changes the value
of the action from 6H2 to −12H2 when D ¼ 4. The former
has the geometric expression with the correct semiclassical
de Sitter entropy.

In the conformally flat coordinate, i.e., Poincaré patch,
the equations of motion are

ds2 ¼ a2ð−dτ2 þ dx2i Þ; ð2:9Þ

a∶ ∂2
0a ¼ 2H2a3; ð2:10Þ

h00∶ ∂2
0a

2 ¼ 6∂0a∂0a: ð2:11Þ

Four-dimensional de Sitter space is the solution of both
equations:

ac ¼
1

−Hτ
¼ eωc ; ð2:12Þ

ds2 ¼
�

1

−Hτ

�
2

ð−dτ2 þ dx2i Þ ¼ −dt2 þ e2Htdx2i : ð2:13Þ

It is a maximally symmetric space R ¼ 12H2 with the
action,

S ¼ 1

κ2

Z
d4x

ffiffiffi
g

p ðR − 6H2Þ ¼ 1

κ2

Z
d4x

ffiffiffi
g

p
6H2: ð2:14Þ

From the action, the potential term is obtained for slowly
varying ϕ,

i
16πGN

Z
d4x

ffiffiffiffiffiffi
−g

p
6H2ðϕ4 − 2ϕ2Þ → π

GNH2
ðϕ4 − 2ϕ2Þ;

ð2:15Þ

where we have compactified four-dimensional de Sitter
space into S4 of radius 1=H. The first term and the second
term corresponds to

ffiffiffi
g

p
and

ffiffiffi
g

p
R respectively. The semi-

classical formula for the geometric entropy for dS4 is
obtained at the minimum of the potential with ϕ ¼ 1,

π

GNH2
: ð2:16Þ

Suppose the cosmological constant evolves with time
while the Newton’s coupling is held constant:

H2ðτÞ ∝ H2

�
1

−Hτ

�
−2γ

: ð2:17Þ

According to (2.10), the scale of the Universe evolves as

a ¼
�

1

−Hτ

�
1þγ

¼ 1

−HðτÞτ ; aHðτÞ ¼ acH: ð2:18Þ

We introduce the cosmic time t,

Ht ¼ 1

γ

�
1

−Hτ

�
γ

: ð2:19Þ
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The scale factor is

a ¼ ðγHtÞ1þγ
γ : ð2:20Þ

The Hubble parameter decays inverse-proportionally with
the cosmic time:

HðtÞ ¼ _a
a
¼ 1

γt
;

log a ¼ 1þ γ

γ
logð1þ γHtÞ ∼ ð1þ γÞHt: ð2:21Þ

The _O denotes the derivative with respect to the cosmic
time t such as _a ¼ ∂a=∂t. Note that this solution does not
satisfy the other equation of motion with respect to h00

(2.11) unless γ ¼ 0 just like 2D gravity.
This is a serious problem which needs to be addressed in

order to investigate possible time dependence of the
cosmological constant in Einstein gravity. Of course, such
a nontrivial solution extremizes the effective action not the
tree action. However, the Einstein-Hilbert action is likely to
be renormalized by quantum IR effects beyond recognition.
It may even contain new degrees of freedom. In two
dimensions, an analogous problem led us to introduce
an inflaton as a dual description of Liouville gravity [1].
A dual model is constructed in such a way that the classical
evolution of an inflaton accounts for the quantum effects of
Liouville gravity. We adopt the analogous strategy here and
introduce an inflaton to satisfy the equation of motion with
respect to h00. Furthermore, its role is to provide a dual
description of four-dimensional Einstein gravity. Namely,
we adopt the inflaton potential in such a way that the
classical evolution of the inflaton reproduces the quantum
IR effects of Einstein gravity.
As a concrete ansatz, we postulate the following

Lagrangian of a single-field inflation model as a dual to
Einstein gravity in four-dimensional de Sitter space:

1

κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 6H2ðγÞ expð−2ΓðγÞfÞ

− 2ΓðγÞgμν∂μf∂νf�: ð2:22Þ

It is clear from this Lagrangian that the inflaton f rolls
down an exponential potential. The Hubble parameter
decreases as the Universe evolves and it eventually vani-
shes. So our proposal is a de Sitter duality between
quantum and classical gravitational theories. This action
looks as follows if we make the conformal mode a
dependence explicit:

1

κ2

Z
d4x½a2R̃þ 6g̃μν∂μa∂νa − 6H2ðγÞa4 expð−2ΓðγÞfÞ

− 2ΓðγÞa2g̃μν∂μf∂νf�; ð2:23Þ

where H2ðγÞ ¼ H2ð1þ � � �Þ and ΓðγÞ ¼ γð1þ � � �Þ are
expanded in γ.
The equations of motion are

a∶ − 6∂2
0aþ 12H2ðγÞa3 expð−2ΓðγÞfÞ ¼ 2ΓðγÞa∂0f∂0f;

ð2:24Þ

f∶ − 4∂0ða2∂0fÞ þ 12H2ðγÞa4 expð−2ΓfÞ ¼ 0; ð2:25Þ

where we put g̃μν ¼ ημν and then R̃ ¼ 0.
The equation of motion with respect to h00 is

6∂0a∂0a − ∂2
0a

2 ¼ 2ΓðγÞa2∂0f∂0f: ð2:26Þ

The solution is postulated to be

a ¼ ef ¼ a1þγ
c : ð2:27Þ

The Eq. (2.26) is not independent as it follows from the
other two equations. It implies

2γð1þ γÞa4þ2γ
c ¼ 2ð1þ γÞ2Γa4þ2γ

c : ð2:28Þ

The contribution from the inflaton fills the right-hand side
of the equation. In fact, the two coefficients, i.e., the Hubble
parameterH2ðγÞ and the anomalous dimension ΓðγÞ can be
adjusted in a simple way as follows to establish the validity
of the solution (2.27) to all orders in γ:

H2ðγÞ¼H2

�
1þ2

3
γ

�
ð1þγÞ; ΓðγÞ¼ γ

1þγ
: ð2:29Þ

We may sweep the inflaton under the rug by using
its identity with the conformal mode (2.27) in the
action (2.23),

1

κ2

Z
d4x½a2R̃þ ð6 − 2ΓÞg̃μν∂μa∂νa − 6H2ðγÞa4ð1−Γ

2
Þ�:

ð2:30Þ

The solution a ¼ a1þγ
c also extremizes this restricted action

as it does so in an extended field space with an inflaton.
In this Lagrangian, the nontrivial scaling dimension of the
Hubble parameter H2ðtÞ ∼ expð−2ΓfÞ ¼ expð−2γωcÞ is
manifest. The equation of motion with respect to h00 is
satisfied by the construction. It requires us to introduce a
new counterterm. It is a finite renormalization of the kinetic
term of the conformal mode. Although it is no longer
manifest here, general covariance is kept intact in its dual
inflation theory.
Our earlier investigation indicated that the one-loop

IR logarithmic corrections in Einstein gravity are of the
form [6]:
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δ
H2ðtÞ
κ2ðtÞ ¼ H2

κ2
ð−4γ log acÞ; δ

1

κ2ðtÞ ¼
1

κ2
ð−2γ log acÞ;

γ ¼ 3

8

κ2H2

4π2
: ð2:31Þ

As is explained in the next section, a further rescaling is
necessary to fix the gravitational coupling κ2.
To the leading order, the quantum correction to the

Hubble parameter is

H2ðtÞ ¼ H2ð1 − 2γ log acÞ: ð2:32Þ

It depends on the scale of the Universe logac ¼ Ht ¼ ωc
due to IR logarithmic effects. This behavior (2.32) is
consistent with our power law working hypothesis H2ðtÞ ∼
a−2γc to the one-loop order. This screening effect takes place
due to the accumulation of scale invariant fluctuations
of the conformal degrees of metric. The screening occurs
due to the negative sign of the conformal mode propagator.
These features are in common with two-dimensional
Liouville gravity in the semiclassical regime.
Our prescription to construct the dual model is to

describe the quantum effects of Einstein gravity by the
classical evolution of an inflaton:

expð−2γωcÞ ¼ expð−2ΓfÞ: ð2:33Þ

We have introduced an exponential potential expð−2ΓfÞ of
the inflaton for this purpose. In order to cancel the IR
logarithmic corrections to the Newton’s coupling (2.31), we
rescale a → aeγωc ,

1

κ2

Z
d4xe2γωc ½a2R̃þ ð6 − 2ΓÞg̃μν∂μa∂νa − 6H2ðγÞa4�:

ð2:34Þ

We note that the action acquires an overall factor e2γωc after
this procedure which can be associated with the Newton’s
coupling. It serves as the counterterm to the Newton’s
coupling such that the physical Newton’s coupling
κ2ðtÞ=a2γc is constant. We have thus constructed a frame-
work to accommodate a nontrivial scaling dimension of the
cosmological constant operator 1 − Γ=2 ¼ α in Einstein
gravity by invoking its dual inflation theory.
In conclusion, we have constructed an inflation theory

with the following scaling law:

H2ðtÞ ∼ a−2γc ; a2 ¼ a2ð1þγÞ
c ;

κ2 ¼ κ2ðtÞ=a2γc ¼ const: ð2:35Þ

By this approach, we are ready to explore the dynamical
scaling relations (2.35) in Einstein gravity and the dual
inflation theory.

III. QUANTUM IR EFFECTS
IN 4D DE SITTER SPACE

As is well known, the gravitational theory has a
conformal invariance for its consistency. In fact, the
Einstein-Hilbert action can be expressed in a manifestly
conformally invariant manner,

1

κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½ϕ2Rþ 6gμν∂μϕ∂νϕ − 6H2ϕ4�: ð3:1Þ

The metric gμν is assumed to be conformally flat as in (2.13)
representing de Sitter space in the Poincaré patch. The
conformal invariance allows us to pick a flat coordinate in
which R̃ only depends on g̃μν,

1

κ2

Z
d4x½Ω2R̃þ 6g̃μν∂μΩ∂νΩ − 6H2Ω4�: ð3:2Þ

The scalar curvature transforms as follows in the
conformal transformation:

R ¼ a−2R̃ − 6a−3∂μðg̃μν∂νaÞ ¼ 12H2; ð3:3Þ

where the last equality holds for the de Sitter solution (2.13)
with a ¼ ac, g̃μν ¼ ημν. The ϕ field corresponds to the
conformal mode of the metric. The equation of motion for
ϕ is readable from (3.1),

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ þ V 0ðϕÞ ¼ 0: ð3:4Þ

Since the signature of the kinetic term of the conformal
mode is negative, the potential is effectively turned upside
down. The extremum of the potential for the conformal
mode is a metastable hilltop point. Recall that the back-
ground ac itself is the classical solution. So the homo-
geneous solution for ϕ must be trivial ϕ ¼ 1. As we show
later that there is a flat direction on-shell in the extended
ðϕ; h00Þ space along X field direction. See Appendix A for
the definition of X field. However, such a direction is lifted
in the off-shell effective action.
Needless to say, we extremize the off-shell effective action

to find a quantum solution. In contrast, no potential is
generated in the nonlinear sigma models due to the repar-
ametrization invariance. The IR logarithmic correction to the
cosmological constant is highly suppressed in nonlinear
sigma models due to the absence of the potential [22,23]. On
the other hand, a nontrivial potential is generated in the
off-shell effective action in Einstein gravity. In this sense,
they are totally different. The flatness of the potential is lifted
by IR logarithmic effects at the one-loop level in four-
dimensional Einstein gravity in de Sitter space.
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Here we explain in some detail how to evaluate the
effective action with IR effects in a background gauge [24].
The relevant propagators are listed in Appendix A for
self-containedness. The essential point is that there are two
types of fields. The massless minimally coupled modes and
conformally coupled modes with the effective mass
m2 ¼ 2H2. Since we are interested in IR logarithmic
corrections, we ignore the massive modes of m2 ¼
OðH2Þ and work in the subspace. Let us consider the
homogeneous and isotropic background:

ĝμν ¼ a2ðτÞημν; ð3:5Þ

where the time dependence of the scale factor is not
specified except being close to de Sitter space with small
but arbitrary perturbations. The Ricci tensor as shown
below becomes proportional to the metric tensor on-shell
which is conformally flat

a2R̂00 ¼ −3a∂2
0aþ 3∂0a∂0a;

a2R̂ij ¼ ða∂2
0aþ ∂0a∂0aÞδij; a4R̂ ¼ 6a∂2

0a: ð3:6Þ

On the general background, the quadratic action for each
field is given by

1

κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 6H2�
���
2
¼ 1

κ2

Z
d4x

ffiffiffiffiffiffi
−ĝ

p �
−
1

4
ĝμν∇μhρσ∇νhσρ þ

1

2
ĝμν∇ρhρμ∇σhσν þ

1

2
R̂μν

ρσhρμhσν

− 2ĝμν∇ρhρμ∂νω − 2R̂μ
νhνμωþ 6ĝμν∂μω∂νωþ 2R̂ω2 − 48H2ω2

�
; ð3:7Þ

Z
d4xLGF ¼

1

κ2

Z
d4x

ffiffiffiffiffiffi
−ĝ

p �
−
1

2
ĝμνFμFν

	
;

Fμ ¼ ∇ρhρμ − 2∂μω − 2a−1∂0aðh0μ − 2δ0μωÞ; ð3:8Þ
Z

d4xLFPj2 ¼
1

κ2

Z
d4x½−a2∂μb̄i∂μbi þ a2∂μb̄0∂μb0 þ ð−2a∂2

0aþ 6∂0a∂0aÞb̄0b0�: ð3:9Þ

The Lorentz indices are raised and lowered by ημν and ημν respectively when the scale factor a is explicitly expressed.
Our task to evaluate the one-loop IR effects in the effective action is accomplished just by contracting the quadratic terms.

The Einstein-Hilbert action induces the IR logarithms as follows

1

κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 6H2�j1-loop ≃
1

κ2

Z
d4x½2a∂0ahh0μ∂νhνμi − 8a∂0ahh0μ∂μωi þ 3∂0a∂0ahh0μh0μi

þ ð4a∂2
0a − 8∂0a∂0aÞhh00ωi þ ð12a∂2

0a − 48a4Þhω2i�

≃
1

κ2

Z
d4x½24a∂2

0a − 48H2a4 þ ð8a∂2
0a − 16∂0a∂0aÞ�hω2i: ð3:10Þ

In the first line, we neglected the terms with twice-differentiated propagators which do not induce the IR logarithms. In the
second line, we made use of the following identities which hold true in the subspace of massless fields:

h00 ≃ 2ω; h0i ≃ 0: ð3:11Þ

We also performed partial integrations. In a similar way, the IR effect from the gauge fixing term is evaluated as

Z
d4xLGFj1-loop ≃

1

κ2

Z
d4x½−2a∂0ahh0μ∂νhνμi þ 8a∂0ahh0μ∂μωi

− 2∂0a∂0ahh0μh0μi þ ð4a∂2
0a − 4∂0a∂0aÞhh00ωi þ ð4a∂2

0aþ 12∂0a∂0aÞhω2i�
≃ 0: ð3:12Þ

We confirm that the gauge fixing term does not induce the IR logarithms. The Faddeev-Popov ghost term also does not
induce the IR logarithms
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Z
d4xLFPj1-loop ≃

1

κ2

Z
d4xð−2a∂2

0aþ 6∂0a∂0aÞhb̄0b0i

≃ 0: ð3:13Þ

It is because b0 is a massive mode,

b0 ≃ 0: ð3:14Þ

The merit of the background gauge is that we only need
to make contractions of pairs of fields in the Einstein-
Hilbert action to derive the one-loop effective action. The
gauge fixing term just determines the gravitational propa-
gators, and the Faddeev-Popov ghost term does not
contribute to the one-loop effect.
The one-loop effective action is obtained by simply

taking the local average,

1

κ2

Z
d4x

ffiffiffiffiffiffi
−ĝ

p
½ðR̂ − 12H2Þh4ω2i − 2R̂μ

νhhνμωi�: ð3:15Þ

Note that the effective action vanishes on-shell. It is
because we have focused on IR logarithms and hence
massless minimally coupled modes. Since they become
exactly massless on-shell, this is what is expected. We
notice a Lorentz symmetry breaking term (traceless sym-
metric tensor) due to the nonvanishing expectation value in
our gauge:

hhμνωi ≃ −
κ2H2

4π2
log ac

�
3

8
δμ0δ

ν
0 þ

1

8
ðημν þ δμ0δ

ν
0Þ
�
;

ð3:16Þ

a2R̂μνhμν ≃ a2ðR̂00 þ R̂11Þh00 ¼ ð−2a∂2
0aþ 4∂0a∂0aÞh00;

ð3:17Þ

a2R̂μνhhμνωi ≃ a2ðR̂00 þ R̂11Þhh00ωi
≃ 2hω2ið−2a∂2

0aþ 4∂0a∂0aÞ: ð3:18Þ

This noncovariant term also vanishes on-shell, as it is the
equation of motion with respect to h00,

−
δ

δh00

Z
d4x

ffiffiffiffiffiffi
−g

p
R ¼ 6∂0a∂0a − ∂2

0a
2

¼ 4∂0a∂0a − 2a∂2
0a: ð3:19Þ

It imposes a strong constraint on the time dependence of
the conformal mode a. The scale factor is determined as
ac ∝ 1=ð−HτÞ and no other scaling is allowed.
Nevertheless, we explore the off-shell effective action

as we seek a nontrivial solution with an anomalous
dimension γ. We refrain from the shift of the Lorentz
tensor h00 to cancel this term (3.18) as it is problematic with
respect to the Lorentz symmetry. We need to preserve it as a

fundamental principle in general relativity. With an ansatz
a ¼ a1þγ

c of a nontrivial dynamical scaling exponent γ, we
find that the coefficient (3.19) no longer vanishes as follows

4∂0a∂0a − 2a∂2
0a ¼ 2γð1þ γÞH2a4þ2γ

c : ð3:20Þ

We need to add a counterterm to subtract the right-hand
side of (3.20) which is OðγÞ. Although the IR logarithm
comes from the two-point function hh00ωi ¼ −γ logac, it
is necessary to cancel the h00-tadpole first. Specifically, we
introduce an inflaton f,

−2Γ
Z

d4x
ffiffiffiffiffiffi
−g

p
gμν∂μf∂νf: ð3:21Þ

We interpret this term as the T00 component of the inflaton
energy-momentum tensor in our construction of dual
inflation theory. For the cancellation of the h00-tadpole,
we arrange ef ¼ a1þγ

c , namely make it coincides with the
conformal mode by postulating an exponential potential
to f,

−
Z

d4x½ ffiffiffiffiffiffi
−g

p
6H2VðfÞ ¼ 6H2a4 expð−2ΓfÞ

¼ 6H2a4a−2γc �: ð3:22Þ

It should be noted that the noncovariant term is canceled
simultaneously as (3.21) includes the eh

00

ϕ2 operator.
We observe that this inflaton potential contains the IR

renormalization factor a−2γc for H2ðtÞ identified in our
previous work (2.32). We thus argue that an inflaton is
necessary as a covariant counterterm to renormalize IR
logarithms of Einstein gravity. In this sense, the introduc-
tion of an inflaton field is analogous to an anomaly.
As explained in (2.30), it is equivalent to a finite modi-
fication of the kinetic term of the conformal mode and the
cosmological constant operator if we eliminate the inflaton
by the conformal mode using their equality as they satisfy
the identical equations of motion. Although it spoils
manifest general covariance, the general covariance holds
due to the presence of the dual inflation theory.
After establishing the renormalization procedure of the

traceless tensor part, we move on to the analysis of the trace
part. The effective action up to the one-loop level is

1

κ2

Z
d4x

ffiffiffiffiffiffi
−ĝ

p �
ðR̂−6H2ÞþðR̂−12H2Þ

�
−
3

4

κ2H2

4π2
logac

�	
:

ð3:23Þ

Let us consider the equation of motion with respect to the
conformal mode:
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−ĝμν
δ

δĝμν
f

ffiffiffiffiffiffi
−ĝ

p
ðR̂ − 6H2Þg ¼

ffiffiffiffiffiffi
−ĝ

p
ðR̂ − 12H2Þ; ð3:24Þ

− ĝμν
δ

δĝμν

� ffiffiffiffiffiffi
−ĝ

p
ðR̂ − 12H2Þ

�
−
3

4

κ2H2

4π2
log ac

��

¼
ffiffiffiffiffiffi
−ĝ

p
ðR̂ − 24H2Þ

�
−
3

4

κ2H2

4π2
log ac

�
: ð3:25Þ

The tree action is stationary with respect to the conformal
mode when R̂ ¼ 12H2. However, the one-loop contribution
is not so, indicating an instability of de Sitter solution
in Einstein gravity due to IR logarithmic effects. In the
Schwinger-Keldysh formalism, the effective action van-
ishes unless we introduce different fields (i.e., sources) on
the closed path. The quantum equation is free from this
problem. Our conclusion is well defined and has a physical
significance.
What we can do is to change the scale of the metric in the

classical action (3.24) to restore the balance in quantum
equation,

a → aaγc: ð3:26Þ

This conformal transformation changes the tree action as
follows1

1

κ2

Z
d4xa2γc ½a4R̂ − 6a4H2a2γc VðfÞ�: ð3:27Þ

As far as aγc (IR logarithm) is concerned, it comes out as the
overall factor,

a2γc
κ2

Z
d4x½a4R̂ − 6a4H2�; ð3:28Þ

where we used (3.22).
Our remaining task is to combine it with the one-loop

correction in (3.23). The result is

1

κ2

Z
d4x½a4R̂ − 6a4a−2γc H2�

¼ 1

κ2

Z
d4x

�
a4R̂ − 6a4H2

�
1 −

3

4

κ2H2

4π2
logac

�	
:

ð3:29Þ

We have succeeded in constructing a new solution of
quantum equation to the leading order of IR logarithms. It
exhibits a nontrivial dynamical scaling law. It is certainly
different from de Sitter space. In this Universe, a nontrivial

dynamical scaling law holds with an exponent γ. The
Newton’s coupling remains constant as the conformal trans-
formation (3.26) cancels its time evolution. The Hubble
parameter and conformal factor of the metric scales as

a2γc
κ2ðtÞ ¼

1

κ2
;

H2ðtÞ ¼ H2

�
1 −

3

4

κ2H2

4π2
logac

�
∼ a−2γc ;

a2 ¼ a2c

�
1þ 3

4

κ2H2

4π2
logac

�
∼ a2þ2γ

c ; ð3:30Þ

in agreement with the scaling arguments, (2.17) and (2.18).
At the one-loop level, the potential is linear rather than the
exponential as we can determine the OðγÞ corrections. It is
an inflationary universe with the slow-roll parameter ϵ ¼ γ
and η ¼ 0. A further finite renormalization of the Einstein-
Hilbert action to make (3.30) fully satisfy the quantum
equation will be explained in Appendix B in connection with
the dual inflation theory. We also investigate the physical
property of this Universe in more detail in Sec. V.
After a heuristic exposition, we have shown that the

following dynamical scaling relation holds in Einstein
gravity at the one-loop level:

H2ðtÞ ¼ H2

�
1 −

3

4

κ2H2

4π2
logac

�
∼ a−2γc : ð3:31Þ

It is consistent with an investigation on the dynamical scaling
law (2.35) in Einstein gravity with γ ¼ 3

8
κ2H2

4π2
. The difficulty

of revealing a nontrivial dynamical scaling relations in
Einstein gravity stems from the fact that the Einstein-
Hilbert action does not allow a modification of the tree level
de Sitter solution with respect to the time dependence.
Nevertheless, we believe that the nontrivial dynamical scaling
relation can be realized in quantum Einstein gravity as the
one-loop IR logarithmic corrections imply. The construction
of such a solution is complicated as we have explained. It is
because the effective action must be renormalized such
that

ffiffiffiffiffiffi−gp
R term loses its original geometric form. The same

is true for the cosmological constant term. This IR renorm-
alization feature of Einstein gravity is analogous to that of
two-dimensional Liouville gravity [1]. The analogous feature
is pointed on UV renormalization of quantum gravity in
(2þ ϵ) dimensions [25].
The solution of the effective action captures the quantum

effects. We postulate that it can be constructed as an
inflation (or quintessence) model. The duality in anti–de
Sitter (AdS) space has been very successful. The quantum
effects in conformal field theory (CFT) has been given by a
geometric description in AdS space. A possible duality in
de Sitter space is an outstanding problem. We hope that
our proposal will provide a new stimulation to this subject
[26–29]. We mention some analogies between our de Sitter

1Here the transformation is not exact as the scalar curvature is
not covariant under the conformal transformation. We will
explain in Appendix B that the duality is a powerful tool to
obtain an exact solution.
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duality and AdS/CFT in Sec. V. Our strategy is to construct
the classical dual inflation model which incorporates
quantum IR effects of Einstein gravity in de Sitter space.
We do not assume the exact de Sitter symmetry. It is shown
to be logarithmically broken in the next section.

IV. DE SITTER ENTROPY AND ASYMPTOTIC
FREEDOM

de Sitter space has a cosmological horizon. Gibbons and
Hawking pointed out that it has a geometric entropy
proportional to the area of the horizon [30]. As we have
found that the Hubble parameter decreases due to quantum
IR effects, the entropy must increase simultaneously. In this
section, we investigate four-dimensional gravity on de Sitter
space from an entropic point of view. In particular, we focus
on our conjecture concerning the identity of the de Sitter
entropy. In our postulate, it is the von Neumann entropy of
the conformal zero mode. As the Universe expands at an
accelerated rate, zero modes accumulate at the horizon. In
this sense, it is a natural idea. Why we focus on the
conformal mode? That is because it is the only mode which
couples to the cosmological constant operator. In other
words, it is a Lorentz scalar and does not need to be
contracted with derivatives. In fact, the other modes are
suppressed in the IR region, though the tensor mode h00

includes a scale invariant spectrum. We believe that the
Lorentz symmetry is consistent only with the conformal
mode condensation. In other words, the other modes are
excluded to contribute to the de Sitter entropy. We have gone
so far to introduce an inflaton field to subtract the non-
covariant quantum correction in the preceding section.
Needless to say, the Lorentz symmetry is one of the
fundamental principles on which general relativity is built.
As is well known, the geometric entropy is equal to the

effective action in quantum gravity as there is no energy in de
Sitter space. A detailed investigation of the de Sitter entropy
by a resummation method enables us to determine the
counterterm. The bare action with the counterterm in turn
enables us to determine the β function of the dimensionless
coupling of Einstein gravity g ¼ GNH2=π. Since the β
function with respect to time is negative, Einstein gravity
is asymptotically free toward the future. It is the most
exciting discovery of this paper. The irony is that the scaling
picture in the preceding section is superseded by the
asymptotic freedom picture immediately after in this section.
We consider the conformal zero mode dependence of

the action:

1

16πGN

Z ffiffiffi
g

p ðRe2ω − 6H2e4ωÞ

¼ 1

16πGN

Z ffiffiffi
g

p
6H2ð2e2ω − e4ωÞ

¼ π

GNH2
ð2e2ω − e4ωÞ ≃ π

GNH2
ð1 − 4ω2Þ: ð4:1Þ

We omit the gauge fixing sector as it does not produce IR
logarithms in the background gauge.
The semiclassical de Sitter entropy π=ðGNH2Þ is

obtained by rotating dS4 into S4. Since H2ðtÞ ∼ a−2γc in
our scheme, the de Sitter entropy increases as

π

GNH2ðtÞ ∼
3

2γ
a2γc ∼

3

2γ
ð1þ 2γ log acÞ ¼

3

2γ
þ 3Ht:

ð4:2Þ

This result can be reproduced in a simple estimate as

π

GNH2
ð1−4hω2iÞ∼ 3

2γ
ð1þ2γ logacÞ¼

3

2γ
þ3Ht: ð4:3Þ

In the dual inflation theory picture, the de Sitter entropy
increases due to the incoming energy flux of the inflaton.
The increase of the entropy is estimated by the first law
TΔS ¼ ΔE where ΔE is the incoming energy flux of the
inflaton. After translating the change of the entropy into
that of the Hubble parameter by the Gibbons-Hawking
formula, one of the Einstein equation is obtained [13],

_HðtÞ ¼ −4πGN
_f2: ð4:4Þ

This relation implies _S ¼ 2πϵ=ðGNHÞ ¼ 3H which is
consistent with (4.2) and (4.3). This classical picture is
dual to our picture, the quantum evolution of the Hubble
parameter.
It is a fundamental question to inquire the identity of

the de Sitter entropy. We have proposed that it is the
von Neumann entropy of the conformal zero mode. The
distribution function of the zero mode is well approximated
by Gaussian,

ρðξ;ωÞ ¼ 1

N
exp

�
−
4ξ

g
ω2

�
¼ 1

N
exp

�
−
6ξ

γ
ω2

�
; ð4:5Þ

N ¼
ffiffiffiffiffi
πg
4ξ

r
; ð4:6Þ

where g ¼ GNH2=π ¼ 2γ=3 denotes the inverse de Sitter
entropy. The Gaussian approximation must be excellent
since g is very small. We have introduced a new parameter ξ
to control the diffusion process of the distribution. The
distribution is diffused as ξ gets smaller. The von Neumann
entropy of the distribution grows at the same time:

S ¼ −trðρ log ρÞ

¼ tr

�
ρ

�
4ξ

g
ω2 þ log N

��

¼ 1

2
ð1þ log πg − log 4ξÞ: ð4:7Þ
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Our hypothesis is that the von Neumann entropy accounts
for the time dependent part of the de Sitter entropy. It
cannot explain the initial value. We fix the parameter g as
the initial de Sitter entropy and let ξ evolve according to a
Fokker-Planck equation. To the leading order in the
log ac ¼ Ht expansion, its growing speed is expected as
follows

_S ¼ 1

2

�
−
_ξ

ξ

�
¼ 3H; ð4:8Þ

to be consistent with semiclassical result (4.2).
Although we have analyzed the one-loop quantum

effects in the preceding section, there is a resummation
method of the leading IR logarithms by a Fokker-Planck
equation. The solution of the Fokker-Planck equation
shows that the leading IR logarithms are power series in
Ht not γHt in the Gaussian approximation. We thus obtain
the one-loop exact result by resummation.
The Fokker-Planck equation of the conformal zero mode

is given by

_ξ
∂
∂ξ ρ ¼ γ

2
·
H
2

∂2

∂ω2
ρ: ð4:9Þ

The left-hand side can be identified as _ρ. The distribution
function ρ defines the correlation functions as follows

hωnðtÞi ¼
Z

dωρðξ;ωÞωn; ð4:10Þ

where n is a positive integer.
The factor γ=2 represents the residue of the conformal

mode propagator in the IR region. This is the conversion
factor from ω to X field. The point is how to treat the
negative sign of the kinetic term of the conformal mode. We
might imagine that the sign of the right-hand side is flipped
into the negative. However, the direction of time flow is
not prefixed in quantum gravity. The sensible choice is to
let it coincide with that of entropy. We see later that (4.9)
leads to entropy generation.
We also drop the drift term. As explained in the

preceding section, the potential is flat in X field direction
at the tree level. At the one-loop level, we have eliminated
the drift force by solving the quantum equation. In the dual
picture, the inflaton moves according to the classical drift
force. The conformal mode diffuses due to quantum IR
effects. We should not double count quantum diffusion and
classical drift as they are the same, i.e., dual effects.
The distribution with ξ ¼ 1 represents de Sitter

space (4.5),

ρðωÞ ∝ expf−VðωÞg; VðωÞ ¼ 24H2

κ2
ω2Θ; ð4:11Þ

where Θ ¼ 8π2=ð3H4Þ is the volume of S4. It may
represent an initial state of the Universe when the inflation
began. Our following solution (4.12) is a one-parameter
extension of the de Sitter solution in (4.11),

ρðξ;ωÞ ∝ expf−Vðξ;ωÞg; Vðξ;ωÞ ¼ 24H2

κ2
ξω2Θ:

ð4:12Þ

In fact, there is an instability of the de Sitter solution against
diffusion. Namely, a broader distribution with decreasing ξ
has a larger von Neumann entropy.
First, we obtain an equation for ξ from the Fokker-Planck

equation. In the Gaussian approximation, the Fokker-
Planck equation becomes

_ξ
∂
∂ξ ρ ¼ _ξ

�
1

2ξ
ρ −

4

g
ω2ρ

�
; ð4:13Þ

γH
4

∂2

∂ω2
ρ ¼ −3Hξρþ 3Hξ2

8

g
ω2ρ: ð4:14Þ

We obtain the equation of our target:

_ξ ¼ −6Hξ2: ð4:15Þ

The solution is

ξ ¼ 1

1þ 6Ht
: ð4:16Þ

The von Neumann entropy is in agreement with (4.7) to
the leading order in the Ht expansion,

S ¼ −
1

2
log ξ: ð4:17Þ

The entropy generation speed is

_S ¼ −trð_ρ log ρÞ ¼ 3Hξ: ð4:18Þ

We have accomplished the resummation of ðHtÞn to all
orders. The von Neumann entropy always increases under
the evolution of the Fokker-Planck equation,

_S ¼ −trð_ρ log ρÞ

¼ −
3

16
H
κ2H2

8π2
tr

� ∂2

∂ω2
ρ log ρ

�

¼ 3

16
H
κ2H2

8π2
tr

�� ∂
∂ωρ

�
2 1

ρ

�

¼ 3Hξ: ð4:19Þ

We have reproduced the time dependent part of the de Sitter
entropy (4.2) from the Fokker-Planck equation. Since
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ξ ¼ 1=ð1þ 6HtÞ is positive, this solution is entropically
more favored than the de Sitter solution. The Fokker-
Planck equation has been reduced to a diffusion equation in
the Gaussian approximation. Our results correspond to the
fact that the standard deviation of the distribution increases
with time as (1þ 6Ht).
It is also possible to estimate the entropy directly from

the partition function of Einstein gravity. The partition
function of the conformal zero mode sector may be rotated
into S4 by assuming the system is quasiequilibrium,

ZðtÞ ¼
Z

dωe
1
gð1−4ξðtÞω2Þ

¼ e
1
g

Z
dωe−

4
gξðtÞω2

¼ e
1
g

ffiffiffiffiffiffiffiffiffiffi
πg

4ξðtÞ
r

: ð4:20Þ

We obtain the de Sitter entropy SðtÞ ¼ logZðtÞ as there is
no energy in de Sitter space,

SðtÞ ¼ 1

g
þ 1

2
ðlog πg − log 4ξðtÞÞ: ð4:21Þ

It is manifest that the conformal zero mode integration
gives rise to −ð1=2Þ log ξ by exponentiating the one-loop
determinant. The correlation functions of this theory are
defined as

hωnðtÞi ¼ 1

ZðtÞ
Z

dωe
1
gð1−4ξðtÞω2Þωn: ð4:22Þ

With the choice of ξðtÞ as (4.16), they satisfy the identical
Fokker-Planck equation. This argument proves that the von
Neumann entropy (4.8) reproduces the time dependence of
the de Sitter entropy (4.21) in the conformal zero mode
sector. Here we have completed a large circle to the original
Euclidean gravity approach by Gibbons and Hawking.
The Fokker-Planck equation enables us to exactly

determine the one-loop IR logarithmic correction to the
entropy, i.e., the action. In what follows, we use a
renormalization group technique to keep track of IR
logarithmic corrections. We define a bare action with a
counterterm to cancel the time dependent IR correction at
the one-loop level. We minimally remove the time depen-
dent part as follows

SB ¼ 1

gðtÞ þ
1

2
log ξðtÞ: ð4:23Þ

Since SB is the bare action, we derive the β functions in a
standard way, i.e., by requiring SB to be time independent,

βðgÞ ¼ −
1

2
g2; βðgÞ≡ ∂

∂ logð1þ 6HtÞ g: ð4:24Þ

Since the βðgÞ function is negative, the coupling g ¼
GNH2=π is asymptotically free toward the future. It is
also remarkable that this equation to determine g has no
small parameter. It indicates that we may obtain observable
effects. On the other hand, our Universe sits very near the
fixed point β ¼ g ¼ 0 with a large entropy [31,32]. In
quantum gravity, the maximal entropy principle operates
since the entropy is directly obtained as S ¼ logZ. It is
because quantum gravity integrates over the geometry and
the temperature is related to the periodicity of the metric in
Euclidean time direction.
The solutions of (4.24) is

1

gðtÞ ¼
1

2
log

ð1þ 6HtÞ
ð1þ 6HtiÞ

þ 1

gi

¼ 1

2
logð1þ 6HtÞ; ð4:25Þ

where g ¼ GNH2=π ¼ κ2H2=ð16π2Þ is the dimensionless
combination of the Hubble parameter H2 and the Newton’s
coupling GN . The dimensionless coupling gðtÞ increases
toward the past. Its initial value is given by the time ti when
the de Sitter expansion started,

1

gi
¼ 1

2
logð1þ 6HtiÞ: ð4:26Þ

The ratio of the couplings has the simple expression:

gðtiÞ
gðtÞ ¼ logð1þ 6HtÞ

logð1þ 6HtiÞ
: ð4:27Þ

We can introduce an analog of the QCD Λ parameter tΛ as
follows

gðtÞ ¼ 2

logð1þ 6HtÞ − logð1þ 6HtΛÞ
: ð4:28Þ

In our formula (4.25), we have adopted the convention
tΛ ¼ 0. Just like QCD, the coupling g becomes large at
t ¼ tΛ. These solutions are globally defined from the
beginning of the de Sitter expansion until the end of
the accelerating expansion. We discuss the property of
the solutions of the renormalization group β function in
comparison to the de Sitter expansion in the next section.
We have evaluated the geometric entropy at the one-loop

level exactly by the Fokker-Planck equation. In quantum
gravity in de Sitter space, the geometric entropy is equal
to the effective action. Therefore, we can determine the
counterterms from entropy. Einstein gravity in de Sitter
space turns out to be asymptotically free toward the
future as implied by the inverse relationship S ¼ 1=g.
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The β function (4.24) controls the time evolution of the
spacetime. It could have many implications on fundamental
issues in physics. First of all, four-dimensional de Sitter
space is doomed and dark energy decays logarithmically
with cosmic time.
Here we mention the previous work which discusses the

cosmological constant problem from an analogy between
the conformal sector in Einstein gravity and the ϕ4 theory
in the flat spacetime [2]. The flat spacetime setup focuses
on the subhorizon dynamics which respects the de Sitter
symmetry. Therefore, the cosmological constant does not
acquire time dependence. In contrast, our work focuses
on the superhorizon dynamics which is expressed as the
stochastic procedure with the de Sitter symmetry breaking.
The geometric entropy increases with time, and the
cosmological constant decreases simultaneously.
Let us check to what extent our estimate of the screening

of g in the preceding section can be trusted in comparison
to the one-loop exact result in this section. The one-loop
evaluation of the IR logarithmic effects (3.30) is a local
estimate of the β function. It obeys a scaling law as follows

1

g
∼

1

g0
e3g0Ht ∼

1

g0
ð1þ 3g0HtÞ ¼ 1

g0
þ 3Ht: ð4:29Þ

On the other hand, the exact one-loop β function gives the
following time evolution:

1

g
∼
1

2
logð1þ 6HtÞ þ 1

g0
∼

1

g0
þ 3Ht: ð4:30Þ

Their local behaviors are identical while they behave in
different ways globally, i.e.,Ht > 1. The g in (4.29) decays
exponentially and the resummed g in (4.30) decays
logarithmically. In evaluating the effective action, we just
exponentiated the linear deformation. On the other hand,
the Fokker-Planck equation sums up all leading powers of
Ht to form a globally valid one-loop solution. It has
revealed asymptotic freedom toward the future, i.e., the
logarithmic violation of scaling.
Before concluding this section, we comment on the

gauge dependence of the β function. It has been pointed out
that Einstein gravity on de Sitter space screens dimension-
less couplings of generic field theories [5]. The mass
parameters are not renormalized presumably due to the
energy conservation. The anomalous dimensions γi of the
operators Oi due to IR fluctuations are found to be gauge
dependent. In a generalized gauge with a gauge parameter
δ, γi in the gauge of this paper becomes ð2 − δ2Þγi. In the
case of the β function, the gauge dependence appears only
through the definition of T ≡ 1þ 6ð2 − δ2ÞHt in (4.24).
The β function does not depend on the linear redefinition of
T since it is defined by the derivative with respect to log T .
Therefore, the β function for g is gauge independent.

We find that the anomalous dimensions also become
gauge independent if we assume that T sets the timescale:

γiHt ¼ γi
6
ðT − 1Þ ∼ γi

6
log T ;

Γi ≡ ∂
∂ logT

�
γi
6
log T

�
¼ γi

6
: ð4:31Þ

The gauge independent anomalous dimensions of the
couplings in the standard model are listed below

Γe2i
¼ −

2γ

3
e2i ; gauge couplings;

ΓYi
¼ −

13γ

24
λYi

; Yukawa couplings;

Γλ4 ¼ −
7γ

3
λ4; Higgs coupling: ð4:32Þ

As is well known, the presence of the fixed point and the
sign of the first derivative at the fixed point of the β function
is prescription independent.
Remarkably, our proposal works not only in two

dimensions but in four-dimensional de Sitter space as well.
We have gathered convincing evidences to our conjecture:
The de Sitter entropy is indeed the von Neumann entropy of
the conformal zero mode. By analyzing dual pairs in four-
dimensional accelerating Universe, the shielding mecha-
nism of the cosmological constant and the identity of the de
Sitter entropy have been well elucidated. The mechanism of
entropy generation has been identified with the stochastic
process at the cosmological horizon [11]. Our research on
four-dimensional de Sitter space reinforces such a line of
thinking.

V. PHYSICAL IMPLICATIONS

In this section, we explore physical implications of
our findings on quantum/classical gravity duals in four-
dimensional de Sitter space. The dimensionless parameter
GNH2=π decays logarithmically with the cosmic evolution.
Einstein gravity in de Sitter space is asymptotically free
toward the future. Our hypothesis is that Einstein gravity in
de Sitter space is dual to an inflation (or quintessence)
model. The merit to postulate quantum/classical gravity
duality in de Sitter space is twofold. First, this duality
enables us to gain an intuitive grasp on quantum IR effects
in Einstein gravity. On the other hand, this duality puts
constraints on the inflation (or quintessence) model. The
problem of inflation models is the lack of principle to
determine the inflaton potential. Our duality suggests that it
may be generated by quantum effects. Since Einstein
gravity is expected to be valid close to Planck scale, it is
important to understand its quantum IR effects in de Sitter
space. Our postulate is that the effective action of Einstein
gravity is given by an inflation model.
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Let us recall the inflaton Lagrangian (2.23):

1

κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R − 6H2ð1 − ffiffiffi

γ
p

κfÞ − κ2

2
gμν∂μf∂νf

	

¼ 1

κ2

Z
d4x

�
a2R̃þ 6g̃μν∂μa∂νa

− 6H2a4ð1 − ffiffiffi
γ

p
κfÞ − κ2

2
a2g̃μν∂μf∂νf

	
; ð5:1Þ

where we canonically renormalized f field and redefine
H2ðγÞ → H2. At the one-loop level, the inflaton potential is
linear,

VðfÞ ¼ 6H2

κ2
ð1 − ffiffiffi

γ
p

κfÞ: ð5:2Þ

The slow-roll parameters are

ϵ ¼ 1

κ2

�
V 0

V

�
2

¼ γ; η ¼ 2

κ2
V 00

V
¼ 0: ð5:3Þ

So Einstein gravity in de Sitter space performs a slow-roll
inflation due to quantum IR effects in an analogous way
with two-dimensional Liouville gravity. Furthermore, the
Hubble parameter eventually vanishes due to the linear
potential. It is an attractive feature with respect to dark
energy application. We have succeeded in constructing a
quintessence model.
The equation of motion for an inflaton in a slow-roll

approximation is

3H _f ¼ −V 0 ¼ 6H2

κ

ffiffiffi
γ

p
;

H2ðtÞ=H2 ¼ 1 − κ
ffiffiffi
γ

p
f ¼ 1 − 2γHt: ð5:4Þ

As the inflaton rolls down the potential, the Hubble
parameter decreases. In turn, the de Sitter entropy S ¼
π=ðGNH2ðtÞÞ ¼ 3=ð2γÞ increases,

_S ¼ π

GNH2
κ

ffiffiffi
γ

p _f ¼ π

GNH2
2Hγ ¼ 3H: ð5:5Þ

The expansion of the Universe is accelerating for small γ
as − _HðtÞ=H2ðtÞ ∼ γ < 1.
The equation of state is

w ¼ p
ρ
¼ −

�
1 − κ2

_f2

6H2

�
¼ −

�
1 −

2

3
γ

�
: ð5:6Þ

It is consistent with the time dependence of the Hubble
parameter,

H2ðtÞ
H2

¼ exp
Z
a
da0

3ð1þ wÞ
a0

∼ a−2γc ∼ 1 − 2γHt: ð5:7Þ

Note that 3ð1þ wÞ ¼ 2ϵ where ϵ ¼ − _HðtÞ=H2ðtÞ is a
slow-roll parameter. Since general relativity applies
very well to the present Universe, the application of this
quintessence theory to dark energy is very natural.
Unfortunately, the equation of state w in (5.6) is very close
to −1 in the quintessence model dual to Einstein gravity.
Fortunately, what we have explained so far is the local
evolution of the Universe. We need to take account of the
global behavior of the Universe at a late time. We show
that H2ðtÞ decreases logarithmically right after it began
recent accelerated expansion in (5.37). When dark energy
dominates, the equation of state becomes 3ð1þ wÞ∼
1=ðlog ac logðlogacÞÞ ∼ 2ϵ. The slow-roll parameter ϵ
decreases toward the future as

ϵ ¼ 1

2Ht logHt
: ð5:8Þ

This is a very robust signature of the asymptotically free de
Sitter gravity as we explain it shortly.
We can reproduce the same physical prediction from

the renormalized Einstein-Hilbert action (2.30) in the dual
picture. We recall the volume operator scale as

Z
d4xð ffiffiffiffiffiffi

−g
p

∼ a4αÞ; ð5:9Þ

where α ∼ 1 − γ=2 is the scaling dimension. The scale
factor is also obtained as the solution of (2.30):

a ¼ a1þγ
c : ð5:10Þ

The metric is given by

ds2 ¼
�

1

−Hτ

�
2ð1þγÞ

ð−dτ2 þ dx2i Þ ¼ −dt2 þ a2ðtÞdx2i ;

ð5:11Þ

where the scale factor is

aðtÞ ¼ ðγHtÞ1þγ
γ : ð5:12Þ

The Hubble parameter shows that the expansion of the
Universe is accelerating − _HðtÞ=H2ðtÞ ∼ γ < 1 which is in
agreement with an inflation picture,

a¼ðγHtÞ1þγ
γ ; H2ðtÞ∼a−2γc ∼H2ð1−2γHtÞ: ð5:13Þ

These results are based on the one-loop IR logarithmic
effect to shield GNH2=π. However, the picture changes
dramatically by summing all leading IR logarithms by the
Fokker-Planck equation. We then find the logarithmic
breaking of scaling with the β function for g ¼ GNH2=π
in (4.24). The scaling picture is replaced by the asymptotic

DE SITTER DUALITY AND LOGARITHMIC DECAY OF DARK … PHYS. REV. D 101, 023504 (2020)

023504-13



freedom picture. The dimensionless Hubble parameter g
decays logarithmically with the cosmic evolution. It implies
that dark energy also decays logarithmically. We will come
back to this subject as a finale of this paper.
We point out an illuminating example of the solutions of

the β function. Here we reparametrize logð1þ 6HtÞ →
logð1þHtÞ using the invariance of the β function under
such a linear transformation. The scale factor aðτÞ of de
Sitter space can be regarded as such a solution,

gðtÞ ¼ 2

logð1þHtÞ ↔ 2aðτÞ ¼ 2

−Hτ
: ð5:14Þ

It is because gðtÞ and 2aðτÞ satisfy the same equation:

∂
∂ð−HτÞ 2aðτÞ ¼ −

1

2

�
2

−Hτ

�
2

¼ −
1

2
ð2aðτÞÞ2; ð5:15Þ

under the following reparametrization of the variables:

logð1þHtÞ; t > 0 ↔ −Hτ; τ < 0: ð5:16Þ

Another interesting property of the solution is the time
reversal symmetry under −Hτ ↔ 1=ð−HτÞ. Namely,
−2Hτ satisfies the same equation:

∂
∂ 1

−Hτ

ð−2HτÞ ¼ Hτ2
∂
∂τ ð−2HτÞ ¼ −

1

2
ð−2HτÞ2: ð5:17Þ

So the inverted function is also the solution of the β
function:

gðtÞ ¼ 2 logð1þHtÞ ↔ 2aðτÞ ¼ −2Hτ: ð5:18Þ

This inversion corresponds to the time reversal symmetry.
As we have pointed out in (4.27), the simplest solution of
the β function is a ratio of the solutions like H2ðtÞ=H2ðt0Þ:

H2ðtÞ
H2ðt0Þ

¼ logð1þHt0Þ
logð1þHtÞ ↔

logð1þHtÞ
logð1þHt0Þ

: ð5:19Þ

We can simply invert the ratio when we change the
direction of time flow.
In view of the transition behavior from the exponential

dumping to the logarithmic dumping, we need to modify
the potential, i.e., running H2ðtÞ, as follows:

H2ð1 − 2γHtÞ → 2H2

−Hτ
¼ 2H2

logð1þHtÞ≡H2ðtÞ: ð5:20Þ

The renormalized action is

1

κ2

Z
d4x½a2R̃þ ð6 − 2ΓÞg̃μν∂μa∂νa − 6H2ðtÞa4�: ð5:21Þ

This is essentially the Einstein-Hilbert action with the
running H2ðtÞ.
Let us consider what is the dual inflaton theory to

Einstein gravity including all leading one-loop IR loga-
rithms. The question is what is the potential of inflaton
VðfÞ in such a theory,

1

κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R − 6H2VðfÞ − κ2

2
gμν∂μf∂νf

	
: ð5:22Þ

We examine the linear potential VðfÞ ¼ 1 − ffiffiffi
γ

p
κf. The

equation of motion in the slow-roll approximation is

3HðtÞ _f ¼ 6H2

κ

ffiffiffi
γ

p
: ð5:23Þ

First, let us assume that f is small. The Hubble parameter
H2ðtÞ=H2 behaves as

VðfÞ ¼ 1 −
ffiffiffi
γ

p
κf ¼ 1 − 2γHt ¼ 1 − 3gHt: ð5:24Þ

This should be compared with the scaling and duality
argument (2.32) and the one-loop quantum IR effect of
Einstein gravity (3.31),

VðfÞ ¼ expð− ffiffiffi
γ

p
κfÞ ∼ 1 − 2γHt: ð5:25Þ

The above agreement by the both linear and exponential
potentials implies that what we have proven with the
exponential potential holds in the linear potential as well
at the one-loop level.
In Sec. IV, this system is solved exactly by the Fokker-

Planck equation for small γ,

gðtÞ ¼ 2

logð1þ 6HtÞ þ 1
g

: ð5:26Þ

This one-loop exact solution can reproduce (5.24) at
Ht ≪ 1 and describe the global behavior at Ht > 1.
However, the scale of the inflaton is restricted toffiffiffi
γ

p
κf ≪ 1. In other words, the deformation from de

Sitter space has been evaluated as a linear response. In
order to discuss the larger scale

ffiffiffi
γ

p
κf > 1, we need to

solve the Fokker-Planck equation for a time dependent
background. Such an investigation is irrelevant with the
current Universe (tiny g) while it is relevant with the
primordial Universe (nonsmall g).
For a time dependent gðtÞ, the left-hand side of the

Fokker-Planck equation becomes as follows

1

2

∂
∂t

�
log

ξðtÞ
gðtÞ

�
ρ −

∂
∂t

�
4ξðtÞ
gðtÞ

�
ω2ρ: ð5:27Þ

In place of (4.15), we obtain
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∂
∂N log

ξ

g
¼ −6ξ; ð5:28Þ

where the e-folding number N is not exactly equal to Ht.
Since 1=ξ measures the magnitude of the enhancement of
the scalar perturbation (4.12), ξ corresponds to the tensor-
to-scalar ratio r.
The exact solution of (5.27) is given by

g ¼ 2

logN

�
1 −

1

logN

�
; ξ ¼ 1

6N

�
1 −

1

logN

�
: ð5:29Þ

The corresponding β function can be evaluated as follows

βðgÞ ¼ ∂
∂ logN g ¼ −

2

ðlogNÞ2
�
1 −

2

logN

�
: ð5:30Þ

In the IR region N ≫ 1, (5.29) behaves similarly to (5.26)
because the 1= logN correction is tiny. Since ϵ decreases
as N increases,

ϵ ¼ −
1

2

∂
∂N log g ¼ 1

2N logN

�
1 −

1

logN − 1

�
; ð5:31Þ

the spacetime expansion does not become decelerating. It is
a future subject to find a mechanism to end the inflation era.
Given the 1= logN correction, there exist not only the IR

fixed point g ¼ 0 but also a UV fixed point. The β function
(5.30) shows that g increases monotonically toward the past
and has the maximum value g ¼ 1=2. The existence of the
UV fixed point may indicate the consistency of quantum
gravity and a conformal invariance in the beginning of
the Universe. This situation is analogous to AdS/CFT.
Near the IR fixed point, i.e., for the weak coupling,
quantum Einstein gravity is a good approximation. On
the other hand, the UV fixed point may indicate the
existence of a strong coupled conformally invariant phase.
We are caught by surprise to find that the exact β

function (5.30) possesses the UV fixed point in addition to
the IR fixed point. Since we have adopted the Gaussian
approximation, this is not a proof of the consistency of
quantum gravity as the critical coupling g ¼ 1=2 is strong.
Nevertheless, the messages are clear that quantum gravity
on de Sitter space is both IR and UV finite. The cosmic
expansion started at the Planck scale with the minimal
entropy S ¼ 2. We believe that this result underscores the
holographic nature of gravity. We have investigated the
degrees of freedom at the horizon. That is presumably all
that matters as far as gravity is concerned.
Let us consider the current accelerating Universe. The

energy contents of the current Universe are given by the
dark energy density ΩΛ ¼ 0.7 and the matter density
ΩM ¼ 0.3. The incoming matter energy flux gives rise
to the same phenomena,

− _Hðt0Þ
H2

0

¼ 4πGN

H2
0

ρM ¼ 4πGN

H2
0

3H2
0

8πGN
ΩM ¼ 3

2
ΩM ∼

1

2
;

ð5:32Þ

where O0 denotes the present value of O. This effect is
self-consistent since the current Universe is accelerating
γ ¼ 1=2 < 1. Since this equation (5.32) follows from the
Friedmann equation,

H2ðtÞ
H2

0

¼ ΩM

a3
þ ΩΛ; ð5:33Þ

it is hard to dispute. This Friedmann equation is a standard
one and thus does not include new effects. We can estimate
the time dependence of the Hubble parameter for small
z ¼ −H0ðt − t0Þ,

H2ðtÞ
H2

0

¼ ΩM þ ΩΛ þ ΩMðe−3H0t − 1Þ

∼ 1 − 0.9H0ðt − t0Þ: ð5:34Þ

We recall the following relation between the energy
density parameter Ω and the energy density ρ:

ΩM ¼ gρMΘ ∼ 0.3; ΩΛ ¼ gρΛΘ ∼ 0.7; ð5:35Þ

where Θ is the volume of S4 of radius 1=H0. If the dark
energy stays constant, it will be the sole energy component
after the matter disappears,

ΩΛ ¼ gFρΛΘF ¼ 1; ð5:36Þ

where ΘF and gF are given by the final Hubble parameter
1=HF.
In terms of the τ variable, it is manifest that we can

scale the solution by τ → cτ. By using this freedom, we
may change the coupling g into the energy density Ω by
g → gρΘ ¼ Ω using the relation in (5.35). The point of this
scaling is to effectively magnify minuscule g into Oð1Þ
quantity Ω. We can use the following expression for Oð1Þ
quantity:

ΩðtÞ ¼ 2c−1

logð1þHtÞ ; ð5:37Þ

where c is a normalization coefficient. For small t, the
above expression becomes,

ΩðtÞ ¼ 2c−1

Ht
∼
2c−1

−Hτ
: ð5:38Þ

So we obtain a condition Ht > 1 for logarithmic behavior
of ΩðtÞ. It coincides when the Universe began the recent
accelerated expansion. Instead of considering Oð1Þ
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quantity Ω, we can consider the ratio H2ðtÞ=H2
0 which is

certainly Oð1Þ. In fact, they are the same quantify
H2ðtÞ=H2

0 ¼ ΩðtÞ.
The quantum effects start to kick in at t ¼ ti. Dark

energy may be no longer constant. Instead, it may initiate
the logarithmic decay. Mathematically, it just sets the initial
condition of the renormalization group for g. The initial
condition is prepared by the classical Friedmann equation.
We combine dark energy and matter effect (5.34),

H2ðzÞ
H2

0

¼ 0.3ð1þ zÞ3 þ 0.7 logðeþ logð1þ zÞÞ; ð5:39Þ

where the redshift variable 1þ z ¼ 1=a is introduced to
compare with the observations. We also make use of
the time reversal operation (5.18) since the redshift
variable z looks backward in time. The solution of the β
function is obtained by the following reparametrization
1þHt → eþ logð1þ zÞ. The factor e is inserted in such a
way that logð1þHt0Þ ¼ 1 at present z0 ¼ 0.
Since log xwith the identification x ¼ logð1þ zÞ cannot

be normalized around x ¼ 0, the shift of time is inevitable.
We have fixed the time translation freedom as x → xþ e
such that logðxþ eÞ is normalized when x ¼ 0. This time
shift does not modify the energy density of matter because
the normalization condition ΩMðx ¼ 0Þ ¼ 0.3 removes the
extra factor due to this time shift. In our convention, there
is no free parameter here although we have ignored the
nonlinear correlation between ΩM and ΩΛ. The threshold
effects at t ¼ ti are also neglected. We hope to improve the
Eq. (5.39) in these aspects. We compute γ to judge the
Universe is accelerating if γ < 1,

ð1þ zÞ ∂
∂zH

2ðzÞ ¼ 2γH2ðzÞ; ð5:40Þ

γH2ðzÞ
H2

0

¼ ð1þ zÞ ∂
∂z

H2ðzÞ
2H2

0

¼ 1

2

�
0.9ð1þ zÞ3 þ 0.7

1

eþ logð1þ zÞ
�
: ð5:41Þ

We propose the following formula in predicting the
future energy density parameters:

H2ðaÞ
H2

0

¼ 0.3
1

a3
þ 0.7

1

logðeþ log aÞ ; ð5:42Þ

γH2ðaÞ
H2

0

¼ −a
∂
∂a

H2ðaÞ
2H2

0

¼ 1

2

�
0.9

1

a3
þ 0.7

1

eþ loga
1

log2ðeþ log aÞ
�
:

ð5:43Þ

At present a ¼ 1 and z ¼ 0, H2 and γ agree in both
formulas. The future oriented formula (5.42) is smoothly

connected to (5.39) at a ¼ 1 and z ¼ 0. This is due to the
time reversal symmetry pointed out in (5.19).
We find a formula in the linear approximation which is

valid for small z:

HðzÞ ¼ H0ð1þ 0.58zÞ; ð5:44Þ

which is the sum of matter effect and dark energy effect
as 0.58 ¼ 0.45þ 0.13. We determine zi by requiring
γðziÞ ¼ 1: when the Universe started the accelerated
expansion. It turns out to be zi ¼ 0.6 and ΩM ¼ 1.2,
ΩΛ ¼ 0.8. At present, z ¼ 0 and ΩM ¼ 0.3, ΩΛ ¼ 0.7,
γ0 ¼ 0.2. This γ0 is considerably smaller than the classical
theory’s one γ0 ¼ 1=2 in (5.32).
The qualitative understanding of these numbers is easy

in the classical case since dark energy density stays
constant. Given the present energy density para-
meters, ΩMðzÞ ¼ ð1þ zÞ3ΩM, γ is given by ð3=2ÞΩMðtÞ=
ðΩM þΩΛÞ. In the classical case, γ ¼ 1 corresponds to
ΩMðzÞ ¼ 4=3 and z ¼ 0.6.
In the quantum case where dark energy decays loga-

rithmically, it turns out that ΩM ¼ 1.2, ΩΛ ¼ 0.8 when
γ ¼ 1. The fact that zi ¼ 0.6 comes out to be in the right
ballpark is a nontrivial check of our theory against the
observations.
In Fig. 1, the Hubble parameter measurements HðzÞ and

their errors σH at 51 redshifts z are plotted. The data are
taken from the compilation of various observations in [33].
For the theoretical curves, we fix the values of density
parameters as ΩM ¼ 0.311 and ΩΛ ¼ 0.689 [34]. However,
we do not fix the Hubble constant H0 because an observed
value of H0 ¼ 73.24� 1.74 km s−1Mpc−1 by type Ia
Supernovae and Cepheids [35] is systematically larger than
an observed value of H0¼67.66�0.42 kms−1Mpc−1 by
CMB [34]. The origin of the discrepancy is not clear at the
present time. For our model, we use

FIG. 1. The Hubble parameter measurements and their errors
(in units of km s−1 Mpc−1) [33] are compared with theoretical
predictions.
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H2ðzÞ
H2

0

¼ΩMð1þzÞ3

þ
�ΩΛ logðeþ logð1þzÞÞ; ðz≤0.6Þ
ΩΛ logðeþ logð1.6ÞÞ; ðz>0.6Þ : ð5:45Þ

The results of the fitting are summarized in Table I. The
figure-of-merit for the observed Hubble data is given by the
chi-square per degrees of freedom, which is defined by

χ2=dof ¼ 1

Ndat − Npar

XNdat

i¼1

½HtheoðziÞ −HobsðziÞ�2
σ2H;i

; ð5:46Þ

where Npar is the number of free parameters, Ndat is the
number of the observational Hubble parameter HobsðziÞ at
redshift zi, σH;i is its error, and HtheoðziÞ is the theoretical
value for a given model. In the present case, we have
Npar ¼ 1, Nobs ¼ 51. If the value of χ2=dof is much larger
than unity, the assumed theory poorly explains the data.
The differences between the standard model and our

theory are not significant, and both can almost equally
explain the observations of the Hubble parameters. The
fitted value of the Hubble constant with our theory is
slightly closer to the value estimated by CMB. The value
of χ2=dof in our theory is slightly smaller than that in
standard model. The difference is not significant, but this
suggests that our theory has a slightly better fit than the
standard model. One of the main reason comes from the
fact that the data of highest redshifts around z ∼ 2.35 are
smaller than the expectations of the standard model, and
our theory predicts smaller Hubble parameter for the high
redshifts, because the decaying nature of the dark energy
makes the slope of the curve shallower than the cosmo-
logical constant.
Next, we consider the parameters of dark energy for

z < 0.6. It is quite common to parametrize the equation of
state of the dark energy by wðaÞ ¼ w0 þ wað1 − aÞ
[36,37]. Comparing the Eq. (5.39) with the standard
theory, an integral 3

R
z
0 dzð1þ wÞ=ð1þ zÞ corresponds to

the function logðlogðeþ logð1þ zÞÞÞ in our theory. The
analytic solution is

3ð1þ wÞ ¼ 1

logðeþ logð1þ zÞÞ
1

eþ logð1þ zÞ : ð5:47Þ

Applying Taylor expansions to both quantities and com-
paring the coefficients of z0 and z1, we obtain

w0 ¼ −1þ 1

3e
; wa ¼ −

2

3e2
: ð5:48Þ

These are interesting predictions of our theory.
The observed values of w0 and wa [38], predictions of

standard cosmology and of our theory are respectively
given by

Observation∶ w0 ¼ −0.91� 0.10; wa ¼ −0.39� 0.34;

ð5:49Þ

Standard∶ w0 ¼ −1; wa ¼ 0; ð5:50Þ

This work∶ w0 ¼ −0.877 � � � ; wa ¼ −0.090 � � � : ð5:51Þ

While both predictions are consistent to the observation,
the values of our theory are closer to the observed values
than those of the standard cosmology. Thus our theory is
promising, although more accurate observations will be
necessary to judge if our theory is significantly better than
the standard one or not.
To conclude, there are some differences between our

theory and the standard theory for the predictions of HðzÞ.
The observed values of HðzÞ and dark energy parameters
w0, wa are slightly closer to the predictions of our theory.
However, the difference is not statistically significant at
the error levels of the present time. Currently ongoing,
and near-future observations such as DESI [39] and Euclid
[40] will significantly reduce the errors by factor 1=3–1=10
for both parameters. Therefore, our theory will definitely
be testable in near future when those observations are
available.

VI. CONCLUSIONS

We have investigated IR dynamics in quantum and
classical gravitational theories on de Sitter-type space.
We have formulated dynamical scaling law in generic
four-dimensional gravitational theories. We have realized
a duality between quantum IR effects in Einstein gravity
and classical effects in an inflation (or quintessence) theory
in four dimensions just like in two dimensions [1]. Namely,
quantum IR effects in Einstein gravity can be interpreted as
classical phenomena in the inflation theory. As an example,
the shielding of the Hubble parameter H is found to occur
in Einstein gravity due to the quantum diffusion of the
conformal mode. We can identify the dual inflation theory
in which H decreases due to classical physics. The inflaton
slowly rolls down the linear potential. The nontrivial point
in this duality is that the inflaton potential is uniquely fixed.
In fact, we find it necessary to introduce an inflaton into
Einstein gravity as a counterterm to cancel the noncovariant
IR logarithm.
We thus postulate a duality between quantum Einstein

gravity/a classical inflation theory. In our view, they may be

TABLE I. Chi-squares per degrees of freedom.

H0 [km s−1 Mpc−1] χ2=dof

Standard 68.8� 2.5 0.739
This work 67.2� 2.5 0.623
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the same thing seen from different angles. In the quantum
gravity point of view, the main character is the conformal
mode. The Hubble parameter decreases due to the stochas-
tic process at the horizon. The de Sitter entropy is nothing
but the von Neumann entropy of the conformal zero mode.
They increase due to diffusion at the horizon in a consistent
way with the Gibbons-Hawking formula. In the dual
picture, the Hubble parameter decreases due to the classical
drift of the inflaton. The de Sitter entropy increases due to
the incoming energy flow of the inflaton. So we can explain
the same physics in terms of quantum effects in Einstein
gravity and by classical physics in its dual inflation theory.
This line of thinking puts strong constraints on possible

outcomes of physics in the accelerating expanding eras. For
example, we may be able to make unique predictions on the
inflaton potential or the fate of dark energy. In this paper,
we have evaluated the β function of g ¼ GNH2=π: the
only dimensionless parameter in Einstein gravity. It turns
out to be asymptotically free toward the future: βðgÞ ¼
ð∂=∂ logðHtÞÞg ¼ −ð1=2Þg2. It predicts that dark energy
decays logarithmically. The exciting prospect is that this
prediction may be well observable.
It is remarkable that the β function does not contain a

small parameter while g is minuscule. Our Universe is
situated very close to the fixed point g ∼ 0 with a huge
entropy 1=g. The β function explains why g is destined to
vanish logarithmically with time. We have gathered more
evidence for our identification of the de Sitter entropy with
the von Neumann entropy of the conformal zero mode. In
fact, the β function tells how fast the de Sitter entropy
increases. It coincides with the increasing speed of the von
Neumann entropy due to quantum diffusion at the horizon.
If our prediction for dark energy is verified by observations,
we are likely to have solved a major part of the cosmo-
logical constant problem: its destined fate and the mecha-
nism of asymptotic freedom of g. However, there are still
mysteries on its evolution process. Why the Universe
started accelerated expansion now after the inflation
ended, and just after the Universe was created? We
certainly need more detailed understandings on the evolu-
tion of the Universe.
In the case of inflation, the prediction of the slow-roll

parameter in Einstein gravity and its dual is too small for
CMB. In this work, the emergence of the linear potential at
the one-loop level is demonstrated, at least locally. This
result underscores our previous scenario where the slow-
roll parameter ϵ grows into an observable value by quantum
and classical effects [41]. It is possible that a desirable

scenario which starts and ends the slow-roll inflation can be
obtained by combining this work and the previous work.
Concerning higher order corrections to the β function,

the Gibbons-Hawking formula is suggestive. If we assume
that the inverse relationship S ¼ 1=g holds to all orders
qualitatively, the β function must be negative on the whole
way to the strong coupling limit since the entropy never
decreases with time. In fact, such a point of view can be
confirmed by the exact β function within the Gaussian
approximation (5.30). It is negative in the whole range of
time flow. The surprising feature is that it has the UV fixed
point in addition to the IR fixed point. The coupling
approaches a finite value toward the past.
Given the UV fixed point, it may be natural to assume the

existence of a strongly coupled conformally invariant
phase. Such an idea is old [25] but the relevance of de
Sitter space is a new insight. Physics may depend on the
dimensionless coupling g ¼ GNH2=π only. In this combi-
nation, large GN is equivalent to large H2. We need a
nonperturbative framework to investigate such a possibility.
Surprisingly, the IIB matrix model indicates that four-
dimensional spacetime emerges out of matrices in de Sitter
phase [42,43]. It is serendipity that our work will be tested
not only by observations but also by matrix models and
string theory.
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APPENDIX A: GRAVITATIONAL
PROPAGATORS IN DE SITTER SPACE

For self-containedness, we review gravitational propa-
gators in de Sitter space. The de Sitter background is
given by

ds2 ¼ a2cð−dτ2 þ dx2i Þ; ac ¼
1

−Hτ
: ðA1Þ

The quadratic terms in the Einstein-Hilbert action are
given by

1

κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 6H2�j2 ¼
1

κ2

Z
d4x

�
−
1

4
a2c∂μhρσ∂μhρσ þ

1

2
a2c∂ρhρμ∂σhσμ þ 2Ha3ch0μ∂νhνμ þ 3H2a4ch0μh0μ

− 2a2c∂μhμν∂νω − 8Ha3ch0μ∂μωþ 6a2c∂μω∂μω − 24H2a4cω2

	
: ðA2Þ
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We adopt the following gauge fixing term:

Z
d4xLGF ¼

1

κ2

Z
d4x

�
−
1

2
a2cFμFμ

	
;

Fμ ¼ ∂ρhρμ − 2∂μωþ 2Hach0μ þ 4Hacδμ0ω:

ðA3Þ

The sum of (A2) and (A3) is given by

1

κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 6H2�j2 þ
Z

d4xLGF

¼ 1

κ2

Z
d4x

�
a2c

�
−
1

4
∂μh̃

ij∂μh̃ij þ 1

2
∂μh0i∂μh0i

−
1

3
∂μh00∂μh00 þ 4∂μω∂μω

�

þH2a4cðh0ih0i − h00h00 þ 4h00ω − 4ω2Þ
	
; ðA4Þ

where h̃ij is the spatial traceless mode:

h̃ij ≡ hij −
1

3
h00δij: ðA5Þ

The quadratic action is diagonalized as follows

1

κ2

Z
d4x

�
−
1

4
a2c∂μh̃

ij∂μh̃ij þ 1

2
a2c∂μX∂μX

þ 1

2
a2c∂μh0i∂μh0i þH2a4ch0ih0i

−
1

2
a2c∂μY∂μY −H2a4cY2

	
; ðA6Þ

where X and Y are given by

X ≡ 2
ffiffiffi
3

p
ω −

1ffiffiffi
3

p h00; Y ≡ h00 − 2ω: ðA7Þ

Furthermore, the quadratic Fadeev-Popov ghost term is
given by

Z
d4xLFP

���
2
¼ 1

κ2

Z
d4x½−a2c∂μb̄i∂μbi þ a2c∂μb̄0∂μb0

þ 2H2a4cb̄0b0�: ðA8Þ

As seen in (A6) and (A8), Einstein gravity consists
of massless minimally coupled modes, and conformally
coupled modes. We neglect the conformally coupled modes

h0i ≃ 0; Y ≃ 0; b0 ≃ 0; ðA9Þ

and focus on the subspace of massless minimally coupled
modes

h00 ≃ 2ω ≃
ffiffiffi
3

p

2
X; h̃ij; bi: ðA10Þ

That is because only the massless minimally coupled
modes induce the IR logarithms

hXðxÞXðx0Þi ¼ −hφðxÞφðx0Þi;

hh̃ijðxÞh̃kli ¼
�
δikδjl þ δilδjk −

2

3
δijδkl

�
hφðxÞφðx0Þi;

hbiðxÞb̄jðx0Þi ¼ δijhφðxÞφðx0Þi; ðA11Þ

where the two-point function of a massless minimally
coupled scalar field is given by

hφðxÞφðx0Þi ≃ κ2H2

8π2
logðacðτÞacðτ0ÞÞ: ðA12Þ

As discussed in the main text, the negative norm of X (i.e.,
h00 and ω) plays an important role to screen the cosmo-
logical constant.

APPENDIX B: ONE-LOOP IR LOGARITHMS
AND DUALITY

We explain our investigations on the IR renormalization
problem of Einstein gravity from the duality point of view.
Although we can work in any conformal frame, we pick the
following frame where the background a is the classical
solution. Sometimes, we find it convenient to assume a is
slightly off-shell,

1

κ2

Z
d4x½a2ϕ2R̃−6aϕ∂μfg̃μν∂νðaϕÞg−6H2a4ϕ4�; ðB1Þ

where we parametrize ϕ ¼ eω. The quantum equation is
the condition that there is no tadpole. In our case, it is
equivalent to require that the coefficient in front of ω; h00

must vanish. In other words, there should be no linear term
in ω; h00 in the effective action. Since the de Sitter solution
satisfies this requirement, the classical action corresponds
to ω ¼ h00 ¼ 0,

1

κ2

Z
d4x½

ffiffiffiffiffiffi
−ĝ

p
ðR̂ − 6H2Þ ¼ 6a∂2

0a − 6H2a4�: ðB2Þ

There may be a gauge and a parametrization where IR
logarithmic effects are suppressed by derivative inter-
actions. We perform partial integrations a few times to
find such a condition. We suppress the ∂Z∂Z-type term
(Z denotes hμν or ω) in what follows. Such candidates are
listed below
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1

κ2

Z
d4x½2∂0a2g̃0ν∂νϕ

2

þ ð6∂0a∂0a − ∂2
0a

2Þg̃00ϕ2 − 6H2a4ϕ4�; ðB3Þ

1

κ2

Z
d4x½−2∂0a2∂νg̃0νϕ2 − a4R̂g̃00ϕ2 − 6H2a4ϕ4�: ðB4Þ

The former (B3) shows the equation of motion with respect
to h00 and the equation of motion with respect to ϕ is
manifest in the latter (B4) respectively.
After these preparations, we integrate the IR fluctuations

around the classical solution. The quantum equation at the
one-loop level requires that no field comes out of the loop.
So we need three-point vertices. The gauge fixing term is
necessary only to define propagators. We use the expo-
nential parametrization of the metric and the quadratic
gauge fixing term. After diagonalization, we have a
massless minimally coupled mode X and a conformally
coupled mode Y. The latter does not have the large IR
fluctuation unlike the former. We regard it to be constant
sitting at the minimum of the potential. The other modes do
not contribute the IR logarithms to the cosmological
constant. We decompose h00 and 2ω into

h00¼AXþ3BY; 2ω¼AXþBY; ðA;BÞ¼
� ffiffiffi

3
p

2
;
1

2

�
:

ðB5Þ

We need to calculate the one-point function of ω; h00 or
take a derivative of the effective action with respect to
ω; h00. Since we are interested in IR logarithms, we can
identify h00 ¼ 2ω for internal loop.
We focus on a singly differentiated term in (B4):

−2∂0a2∂νg̃0νϕ2 ¼ 2∂0a2∂0eh
00

e2ω

¼ 2∂0a2∂0eðAXþ3BYÞeðAXþBYÞ ¼ ∂0a2∂0e2AXþ4BY; ðB6Þ

where we assume Y is constant. Therefore, we obtain

Z
d4x½∂0a2∂0e2AXe4BY ¼ −∂2

0a
2e2AXe4BY ¼ −∂2

0a
2eh

00

ϕ2�:

ðB7Þ

We adopt the approximation h00 ¼ 2ω which is valid in
the subspace with massless minimally coupled modes and
the gauge we have chosen. It is because h00 and 2ω can be
identified with the massless minimally coupled scalar
field X. Nevertheless, the original composition of the
operators should enable us to identify them as

ffiffiffiffiffiffi−gp
R

or
ffiffiffiffiffiffi−gp

.

In this way, we obtain the interaction potential:

1

κ2

Z
d4x

�
1

2
fa4R̂−ð6∂0a∂0a−∂2

0a
2Þgeh00ϕ2−6H2a4ϕ4

¼fa4R̂−ð6∂0a∂0a−∂2
0a

2Þge2AXe4BY−6H2a4e2AXe2BY
	
:

ðB8Þ

We can perform the same approximation in (B3) with the
identical result as the above. Note that potential vanishes
on-shell in X field space. By evaluating the expectation
value of the two-point functions of the interaction potential,
we reproduce (3.15) in Sec. III.
We briefly recall our renormalization prescription given

in Sec. III. In order to prepare the counterterm, we perform
the conformal transformation a → aaγc. We introduce an
inflaton f and its potential expð−2ΓfÞ to subtract the
noncovariant IR logarithm by a covariant counterterm. The
inflaton potential is chosen to let the classical solutions of
the conformal mode and the inflaton coincide. Since it is
equal to a−2γc , it undoes the half of the conformal trans-
formation of H2a4 → H2a4a4γc . The remaining overall a2γc
factor acts as the counterterm for κ2. This constitutes our
counterterm (3.28) to the one-loop quantum correction
(3.23). By combining them, we reproduce the one-loop
effective action (3.29) and the solutions in the background
gauge (3.30):

H2ðtÞ ¼ H2

�
1 −

3

4

κ2H2

4π2
log ac

�
;

a2 ¼ a2c

�
1þ 3

4

κ2H2

4π2
log ac

�
;

κ2 ¼ const: ðB9Þ

These results imply the essence of our approximation is to
restrict the field space to that of X field.
This scaling solution is not an exact solution of the

quantum equation. Since the scalar curvature is not
covariant under the conformal transformation, we still need
to deal with the following drift force,

V 0 ¼ 12γf∂2
0ða log acÞ − ð∂2

0aÞ log acg: ðB10Þ

We may deform the solution (B9) to balance the tree and
quantum effects,

12∂2
0δa − 72H2a2δaþ V 0 ¼ 0 → −24∂2

0δaþ V 0 ¼ 0:

ðB11Þ

The new solution is
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a ¼ ac

�
1þ 3

8

κ2H2

4π2

�
log ac þ

3

4

��
: ðB12Þ

We may alternatively perform finite renormalization of
the Einstein-Hilbert action to eliminate the finite correction
in a as follows

1

κ2

Z
d4x½ ffiffiffiffiffiffi

−g
p fR − 2ð1þ γÞð3þ 2γÞH2ðtÞg

→ ð6 − 2γÞa∂2
0a − 2ð1þ γÞð3þ 2γÞH2ðtÞa4�; ðB13Þ

to keep a ¼ acð1þ 3
8
κ2H2

4π2
log acÞ ∼ a1þγ

c .2

This solution must solve the equation of motion with
respect to h00 (3.20) since it exhibits the dynamical

scaling law. The Hubble parameter is found to scale
with the size of the Universe while we fix the Newton’s
coupling to be constant. In order to match finite terms,
we need to renormalize the scalar curvature operator as
above:

ffiffiffiffiffiffi
−g

p
R¼ a2R̃þ 6g̃μν∂μa∂νa→ a2R̃þ ð6− 2γÞg̃μν∂μa∂νa:

ðB14Þ

The purpose of this appendix is to convey the power of
duality. The quantum solution with a nontrivial scaling
exponent γ in Einstein gravity can be constructed as a
classical solution of the dual inflation theory (2.23). The
fulfillment of the equation of motion with respect to h00 and
general covariance are manifest in the dual inflation theory
while they are secretly hidden in the effective action of
Einstein gravity (2.30).
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