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Abstract We demonstrate the agreement between the Higgs branches of two
N = 2 theories proposed by Argyres and Seiberg to be S-dual, namely the SU(3)
gauge theory with six quarks, and the SU(2) gauge theory with one pair of quarks
coupled to the superconformal theory with E6 flavor symmetry. In mathematical
terms, we demonstrate the equivalence between a hyperkähler quotient of a linear
space and another hyperkähler quotient involving the minimal nilpotent orbit of
E6, modulo the identification of the twistor lines.
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1 Introduction

1.1 Argyres-Seiberg duality

In a remarkable paper [1], a new type of strong-weak duality of four-dimensional
N = 2 theories was introduced. Consider an N = 2 supersymmetric SU(3)
gauge theory with six quarks in the fundamental representation. This theory has
vanishing one-loop beta function, and the gauge coupling constant

τ =
θ

π
+

8πi
g2 (1.1)

is exactly marginal. Argyres and Seiberg carried out a detailed study of the be-
havior of the Seiberg-Witten curve close to the point τ → 1, where the theory is
infinitely strongly-coupled, and were led to conjecture a dual description involving
an SU(2) group with gauge coupling

τ
′ =

1
1− τ

. (1.2)

To understand the matter content of the dual theory, one first needs to recall
the interacting superconformal field theory (SCFT) with flavor symmetry E6 first
described by [2]. This theory has one-dimensional Coulomb branch parametrized
by u whose scaling dimension is 3, and is realized as the low-energy limit of the
worldvolume theory on a D3-brane probing the transverse geometry of an F-theory
7-brane with E6 gauge group. The gauge group on the 7-brane then manifests as
a flavor symmetry from the point of view of the D3-brane. We denote this theory
by SCFT[E6] following [1].

Now, the theory Argyres and Seiberg proposed as the dual of the SU(3) gauge
theory with six quarks consists of the SU(2) gauge bosons, coupled to one hy-
permultiplet in the doublet representation, and also to a subgroup SU(2) ⊂ E6 of
SCFT[E6]. The SU(2) subgroup is chosen so that the raising operator of SU(2)
maps to the raising operator for the highest root of E6. In the following, we refer
to two sides of the duality as the SU(3) side and the exceptional side, respectively.

Argyres and Seiberg provided a few compelling pieces of evidence for this
duality. First, the flavor symmetry agrees. On the SU(3) side, there is a U(6) =
U(1)× SU(6) symmetry which rotates the six quarks. On the exceptional side,
there is an SO(2) symmetry which rotates a pair of quarks in the doublet repre-
sentation, which can be identified with the U(1) part of U(6). Then, the flavor sym-
metry of the SCFT with E6 is broken down to the maximal subgroup commuting
with SU(2) ⊂ E6, which is SU(6). Second, the scaling dimensions of Coulomb-
branch operators agree. Indeed, on the SU(3) side one has trφ 2 and trφ 3, where φ

is the adjoint chiral multiplet of SU(3). The dimensions are thus 2 and 3. On the
exceptional side, one has trϕ2 (where ϕ is the adjoint chiral multiplet of SU(2)),
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which has dimension 2, and the Coulomb-branch operator u of SCFT[E6], which
has dimension 3.

Third, Argyres and Seiberg studied in detail the deformation of the Seiberg-
Witten curve under the SU(6) mass deformation, and found remarkable agree-
ment. Fourth, they computed the current algebra central charge of the SU(6) fla-
vor symmetry on the SU(3) side, which agreed with the central charge of the E6
symmetry on the exceptional side, inferred from the fact that the beta function of
the SU(2) gauge group coupling is zero. This is as it should be, because SU(6)
arises as a subgroup of E6 on the exceptional side. This provided a prediction of
the current central charge of SCFT[E6] for the first time, which was later repro-
duced holographically by [3]. There are generalizations to similar duality pairs
involving SCFTs with flavor symmetries other than E6 [1; 4].

Our aim in this note is to present further convincing evidence for this duality,
by showing that the Higgs branches of the two sides of the duality are equivalent
as hyperkähler cones. Mathematically speaking, we will show the agreement of
their twistor spaces as complex varieties with real structure, but we have not been
able to prove that they share the same family of twistor lines. Instead we give
numerical evidence that their Kähler potentials agree in Appendix C.

1.2 Higgs branch

On the SU(3) side, let us denote the squark fields by

Qi
a, Q̃a

i , (1.3)

where i = 1, . . . ,6 are the flavor indices and a = 1,2,3 the color indices. The Higgs
branch is the locus where the F-term and the D-term both vanish, divided by the
action of the gauge group SU(3). As is well known, this space can also be obtained
by setting F = 0 without setting D = 0, and dividing by the complexified gauge
group SL(3,C).

Thus the Higgs branch is parametrized by gauge invariant composite operators

Mi
j = Qi

aQ̃a
j , Bi jk = ε

abcQi
aQ j

bQk
c, B̃i jk = εabcQ̃a

i Q̃b
jQ̃

c
k (1.4)

which satisfy various constraints, e.g.

B[i jkMl]
m = 0 (1.5)

to which we will come back later. The fields Qi
a, Q̃a

i have 36 complex compo-
nents, while the F-term condition imposes 8 complex constraints. The quotient by
SL(3,C) reduces the complex dimension further by 8, so the Higgs branch has
complex dimension

2×3×6−8−8 = 20. (1.6)

Our problem is to understand how this structure of the Higgs branch is realized
on the exceptional side. Firstly, we have one hypermultiplet in the doublet repre-
sentation, which we denote as vα , ṽα in N = 1 superfield notation. Here α = 1,2
is the doublet index.
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We also have the Higgs branch of SCFT[E6], the structure of which is known
through the F-theoretic construction of the SCFT. Recall that this theory is the
worldvolume theory on one D3-brane probing a F-theory 7-brane of type E6. Say
the D3-brane extends along the directions 0123, and the 7-brane along the direc-
tions 01234567. The one-dimensional Coulomb branch of this theory is identified
with the transverse directions 89 to the 7-brane. The theory becomes superconfor-
mal when the D3-brane hits the
7-brane, at which point the Higgs branch emanates. This is identified as the pro-
cess where a D3-brane is absorbed into the worldvolume of the 7-brane as an E6
instanton along the directions 4567. The real dimension of the N-instanton moduli
space of E6 is 4hE6N with the dual Coxeter number hE6 = 12. The center-of-mass
motion of the instanton corresponds to a decoupled free hypermultiplet, and thus
the genuine moduli space is the so-called ‘centered’ one-instanton moduli space
without the center-of-mass motion, which has complex dimension 22.

The SU(2) gauge group couples to the quark fields vα , ṽα , and this instanton
moduli space. Imposing the F-term condition and dividing by the complexified
gauge group, we find the complexified dimension of the Higgs branch as

2×2+22−3−3 = 20, (1.7)

which correctly reproduces the dimension of the Higgs branch on the SU(3) side.
We would like to perform more detailed checks, and for that purpose one

needs to have a concrete description of the instanton moduli. It is well known
that the ADHM description is available for classical gauge groups, but how can
we proceed for exceptional groups? Luckily, there is another description of the 1-
instanton moduli spaces, applicable to any group G, which identifies the centered
1-instanton moduli space with the minimal nilpotent orbit of G [5].

Let us now define the minimal nilpotent orbit. GC acts on the complexified Lie
algebra gC, which has the Cartan generators H i and the raising/lowering operators
E±ρ for roots ρ . GC also acts on the dual vector space g∗C of gC via the coadjoint
action,1 and the minimal nilpotent orbit Omin(G) of G is the orbit of (Eθ )∗, where
θ denotes the highest root:

Omin(G) = GC · (Eθ )∗. (1.8)

The minimal nilpotent orbit is known to have polynomial defining equations.
Moreover, they can be chosen to be quadratic, transforming covariantly under GC.
These relations are known under the name of the Joseph ideal [6]. The simplest
example is the case G = SU(2). In this case gC is three-dimensional; denote its
three coordinates by a, b and c, which transform as a triplet of SU(2). The minimal
nilpotent orbit is then given by

a2 +b2 + c2 = 0 (1.9)

which describes the space C2/Z2, and as is well-known, the centered one-
instanton moduli space of SU(2) is exactly this orbifold.

1 One can of course identify g∗C and gC using the Killing form, but it is more mathematically
natural to use the coadjoint representation here.
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Let us come back to the case of E6. We fix an SU(2) subalgebra generated by
E±θ . The maximal commuting subalgebra is then SU(6). The E6 algebra can be
decomposed under the subgroup SU(2)×SU(6) into

X i
j, Y [i jk]

α , Zαβ , (1.10)

where i, j,k = 1, . . . ,6 are the SU(6) indices, α,β = 1,2 those for SU(2). Here
X i

j and Zαβ are adjoints of SU(6) and SU(2) respectively, and Y i jk
α transforms as

the three-index anti-symmetric tensor of SU(6) times the doublet of SU(2). The
minimal nilpotent orbit is then given by the simultaneous zero locus of quadratic
equations in X , Y and Z which we describe in detail later.

For now let us see what are the gauge-invariant coordinates of the Higgs branch
of the exceptional side. The SU(2) gauge group is identified to the SU(2) ⊂ E6
just chosen above, i.e. the SU(2) gauge bosons couple to the current of this SU(2)
subgroup of the E6 symmetry. We also have the quarks vα and ṽα in addition to
the fields X , Y and Z, and we need to make SU(2)-invariant combinations of them.
Moreover, we need to impose the F-term equation, which is

Zαβ + v(α ṽβ ) = 0 (1.11)

as we argue later. Thus, any appearance of Z inside a composite operator can be
eliminated in favor of v and ṽ. Therefore we have the following natural gauge-
invariant composites, from which all gauge-invariant operators can be generated
as will be shown in Sec. 5.4:

(vṽ), X i
j, (Y i jkv), (Yi jkṽ). (1.12)

Here we defined

(uw)≡ uα wβ ε
αβ (1.13)

for two doublets uα and wα , and Yi jk,α is defined by lowering the indices of Y i jk
α

by the epsilon tensor, see Appendix A.
This suggests the following identifications between the operators on the two

sides of the duality:

trM ↔ (vṽ), M̂i
j ↔ X i

j, (1.14)

Bi jk ↔ (Y i jkv), B̃i jk ↔ (Yi jkṽ), (1.15)

where M̂i
j is the traceless part of Mi

j. The identifications preserve the dimensions of
the operators if we assign dimensions 2 to the fields X , Y and Z. The SU(6) trans-
formation nicely agrees. The U(1) part of the flavor symmetry can be matched if
one assigns charge ±1 to Q, Q̃, and charge ±3 to v, ṽ.

This factor of 3 was predicted in the original paper [1] from a totally different
point of view, by demanding that the two-point function of two U(1) currents
should agree under the duality. Let us quickly recall how it was derived there. The
form of the two-point function of the U(1) current jµ is strongly constrained by
the conservation and the conformal symmetry, and we have

〈 jµ(x) jν(0)〉 ∝ k
x2gµν −2xµ xν

x8 + · · · . (1.16)
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k is called the central charge, and · · · stands for less singular terms. Let us nor-
malize k such that one hypermultiplet of charge q contributes q2 to k. Assign Q, Q̃
the charge ±1, and let the charge of v, ṽ be ±q. Then k calculated from the SU(3)
side is 6×3 = 18, while k determined from the exceptional side is 2q2. Equating
these, Argyres and Seiberg concluded that the charge of v, ṽ should be q =±3.

The agreement is already impressive at this stage, but we would like to see
how the constraints are mapped. We would also like to study how the hyperkähler
structures agree, because so far we considered the Higgs branch only as a complex
manifold. For that purpose we need to recall more about the hyperkähler cone.

The structure of the rest of the paper is as follows: We discuss in Sec. 2 what
data are mathematically necessary to show the equivalence of the Higgs branches.
Section 3 is devoted to the description of the minimal nilpotent orbit, i.e. the 1-
instanton moduli space, as a hyperkähler space. Sections 4 and 5 will be spent in
calculating the necessary data on the SU(3) side and the exceptional side, respec-
tively. Then they are compared in Sec. 6 which shows remarkable agreement. We
conclude in Sec. 7. We have four Appendices: Appendix A collects our conven-
tions, Appendix B gathers the machinery of twistor spaces required to show the
equivalence of hyperkähler cones, and Appendix C compares the Kähler potentials
of the duality pair. Appendix D is a summary for mathematicians.

2 Rudiments of Hyperkähler Cones

Here we collect the basics of the hyperkähler cones in a physics language. Math-
ematically precise formulation can be found in [7; 8]. The Higgs branch M of an
N = 2 gauge theory is a hyperkähler manifold, i.e. one has three complex struc-
tures J1,2,3 satisfying J1J2 = J3, compatible with the metric g, and the associated
two-forms ω1,2,3 are all closed. We choose a particular N = 1 supersymmetry
subgroup of the N = 2 supersymmetry group, which distinguishes one of the
complex structures, say J ≡ J3. M is then thought of as a Kähler manifold with
the Kähler form ω = ω3. Ω = ω1 + iω2 is a closed (2,0)-form on M which then
defines a holomorphic symplectic structure on M . Physically this means that the
N = 1 chiral ring, i.e. the ring of holomorphic functions on M , has a natural
holomorphic Poisson bracket

[ f1, f2] = (Ω−1)i j
∂i f1∂ j f2 (2.1)

for two holomorphic functions f1,2 on M .
Second, we are dealing with the Higgs branch of an N = 2 superconformal

theory, which has the dilation and the SU(2)R symmetry built in the symmetry
algebra. The dilation makes M into a cone with the metric

ds2
M = dr2 + r2ds2

base, (2.2)

and SU(2)R symmetry acts on the base of the cone as an isometry, rotating the
three complex structures as a triplet. These two conditions make M into a hy-
perkähler cone. K = r2 is a Kähler potential with respect to any of the complex
structures J1,2,3, and is called the hyperkähler potential in the mathematical liter-
ature. The dilatation assigns the scaling dimensions, or equivalently the weights,
to the chiral operators on M .
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Let us consider an element of SU(2)R which acts on the three complex struc-
tures as (J1,J2,J3) → (J1,−J2,−J3). This element defines an anti-holomorphic
involution σ : M → M because it reverses J ≡ J3. This induces an operation
σ∗ on holomorphic functions on M via (σ∗( f ))(x) ≡ f (σ(x)). σ∗ maps holo-
morphic functions to anti-holomorphic functions, but is a linear operation, not a
conjugate-linear operation. We call this operation the conjugation.

As will be detailed in Appendix B, the space M as a complex manifold, with
the Poisson brackets, the scaling weights and the conjugation, almost suffices to
reconstruct the hyperkähler metric on M . Therefore, our main task in checking
the agreement of the Higgs branches of the duality pair is to identify them as
complex manifolds, and to show that the extra data defined on them also coincide.
In order to complete the proof we need to show that the families of the twistor
lines coincide, which we have not been able to do. Instead we will give numerical
support by calculating the Kähler potential directly on both sides in Appendix C.

The Higgs branches M that we treat here are gauge theory moduli spaces.
They can be described by the hyperkähler quotient construction [9], which we
now review. Let us start with an N = 2 gauge theory with the gauge group G,
whose hypermultiplets take value in the hyperkähler manifold X . The action of
G on X preserves three Kähler structures, and thus there are three moment maps
µa

s (s = 1,2,3; a = 1, . . . ,dimG) which satisfy

dµ
a
s = ιξ aωs, (2.3)

where ξ a is the Killing vector associated to the ath generator of G. The Higgs
branch of the gauge theory, in the absence of any non-zero Fayet-Iliopoulos pa-
rameter, is then given by

M ≡X ///G ≡ {x ∈X
∣∣ µ

a
s (x) = 0}/G. (2.4)

With one complex structure J = J3 chosen, it is convenient to call

Da = µ
a
3 , Fa = µ

a
1 + iµa

2 . (2.5)

Then, as a complex manifold,

M = {x ∈X
∣∣ Fa = 0}/GC. (2.6)

It is instructive to note that Fa is exactly the Hamiltonian which generates the
G action on the chiral ring of X , under the Poisson bracket associated to Ω =
ω1 + iω2.

The conjugation σ∗ and the Poisson bracket [·, ·] on the quotient M are given
by the restriction of the corresponding operations on X . It is instructive to see
why the Poisson bracket of the quotient is well-defined: two G-invariant holo-
morphic functions f1,2 on X lead to the same function on M if and only if
f1 = f2 + uaFa with holomorphic functions ua. Then we have, for a G-invariant
holomorphic function h,

[ f1,h]− [ f2,h] = [uaFa,h] = [ua,h]Fa +ua[Fa,h] (2.7)

on X . The first term in the right hand side is zero on M because we set Fa = 0,
while the second term is zero because h is G-invariant. Therefore [ f1,h] and [ f2,h]
determine the same holomorphic function on M .
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The Kähler potential of M is similarly the restriction of that of X to the zero
locus of the moment maps in our situation, as discussed in Sec. 2B of [9]. To
illustrate the procedure, let us consider an N = 1 supersymmetric U(1) gauge
theory coupled to chiral fields Φi of charge qi whose Lagrangian is

L =
∫

d4
θ

(
∑

i
Φ
∗
i e2qiV Φi +ξV

)
, (2.8)

where ξ is the Fayet-Iliopoulos parameter. The moduli space can be determined by
taking the gauge coupling to be formally infinite, i.e. treating the linear superfield
V as an auxiliary field. Then V is determined via its equation of motion

∑
i

qiΦ
∗
i e2qiV Φi +ξ = 0, (2.9)

i.e. Φ ′
i = eqiV Φi solve the usual D-term equation. The Kähler potential of the

moduli space is then given by plugging the solution to (2.9) into (2.8). It can
be generalized to any gauge group, and the result agrees with the mathematical
formula given in Sec. 3.1 of [10]. This shows that the Kähler potential is given just
by the restriction of the original one if ξ = 0. This analysis does not incorporate
quantum corrections, but it is well-known that for N = 2 theories the quantum
effect does not modify the hyperkähler structure, see Sec. 3 of [11].

3 Geometry of the Minimal Nilpotent Orbit

Here we gather the relevant information on the hyperkähler geometry of the min-
imal nilpotent orbit of any simple group G, which coincides with the centered
moduli space of single instantons with gauge group G [5; 8]. We hope this section
might be useful for anyone who wants to deal with the one-instanton moduli space.
In the following G stands for a compact simple Lie group, gR its Lie algebra. We
let GC and gC be complexifications of G and gR respectively.

The existence of a uniform description of the one-instanton moduli space ap-
plicable to any G might be understood as follows: we can construct a one-instanton
configuration easily by taking a BPST instanton of SU(2) and regard it as an in-
stanton of G via a group embedding SU(2)⊂G. It is known that any one-instanton
of G arises in this manner [12]. The one-instanton moduli space is then parame-
terized by the position, the size, and the gauge orientation of the BPST instanton
inside G. This description realizes the one-instanton moduli space as a cone over a
homogeneous manifold G/H, where H is the maximal subgroup of G which com-
mutes with the SU(2) used in the embedding. It is however not directly suitable
for the analysis of its complex structure. For that purpose we use another realiza-
tion of the one-instanton moduli space as the minimal nilpotent orbit Omin of G
[5].

Let us define Omin. First we decompose gC into the Cartan generators H i

and the raising/lowering operators E±ρ for roots ρ . The minimal nilpotent orbit
Omin(G) is then the orbit of (Eθ )∗ in g∗C, where θ denotes the highest root:

Omin(G) = GC · (Eθ )∗ ⊂ g∗C. (3.1)
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We will write Omin without explicitly writing G for the sake of simplicity when
there is no confusion.

We think of elements of gC as holomorphic functions on Omin, i.e. we have
holomorphic functions2 Xa (a = 1, . . . ,dimG) on Omin. The defining equations of
Omin are a set of quadratic equations which we call the Joseph relations [6].3

These relations can be studied using a theorem of Kostant [13]: Let V (α)
denote the representation space of a semisimple group G with the highest weight
α , and let v ∈ V (α)∗ be a vector in the highest weight space. The orbit GC · v is
then an affine algebraic variety whose defining ideal I is generated by its degree-
two part I2. Furthermore, I2 is given by the relation

Sym2V (α) = V (2α)⊕I2, (3.2)

where we identify Sym2V (α) as the space of degree-two polynomials on V (α)∗.
The minimal nilpotent orbit is exactly of this form where V (α) is the adjoint
representation, i.e.

Omin = {X ∈ g∗C
∣∣ (X⊗X)|I2 = 0}. (3.3)

For practice, let us apply this to the case G = SU(2). There, V (α) is the triplet
representation, so by (3.2) I2 is the singlet representation. Therefore, if we pa-
rameterize su(2) by (a,b,c), the minimal nilpotent orbit is given by the equation

a2 +b2 + c2 = 0, (3.4)

which is C2/Z2 as it should be.
Now that we have given Omin as a complex manifold, let us describe its hy-

perkähler structure. The main fact we use is that G acts isometrically on Omin,
preserving the hyperkähler structure.

There is a triplet of moment maps µa
s for this action where a = 1, . . . ,dimG and

s = 1,2,3. The functions Xa are the holomorphic moment maps of the G action,
i.e. Xa = µa

1 + iµa
2 . It follows that their Poisson bracket is

[Xa,Xb] = f ab
cXc, (3.5)

where f ab
c are the structure constants of G. Phrased differently, the holomorphic

symplectic structure underlying the hyperkähler structure of the nilpotent orbit
is the standard Kirilov–Kostant–Souriau symplectic form on the coadjoint orbit
[5; 8].

The conjugation is given by the SU(2)R action, which sends (µ1,µ2,µ3) to
(µ1,−µ2,−µ3). Therefore

σ
∗(Xa) = (Xa)∗. (3.6)

2 More mathematically, one has a natural holomorphic g∗C-valued function X : Omin ↪→ g∗C
given by the embedding. Then every element t ∈ gC gives a holomorphic function (X, t) on
Omin via x ∈ Omin 7→ (X(x), t). Our Xa is (X,T a) for a generator T a of gC. We take a real basis
of gC, so in fact T a ∈ gR ⊂ gC.

3 Strictly speaking, the Joseph ideal is a two-sided ideal in the universal enveloping algebra
of gC, and what we use below is its associated ideal in the polynomial algebra.
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The scaling dimension of X is fixed to be two, as it should be for the F-term in an
N = 2 supersymmetric theory.

Let us next describe a Kähler potential for Omin, which was determined in [14].
The derivation boils down to the following: G acts on Omin with cohomogeneity
one, and by averaging over this action we can consider K to be G-invariant; so K
is a function of trXX∗. K should be of scaling dimension two, so that K is propor-
tional to

√
trXX∗ up to a constant. The constant factor can be fixed by considering

a particular element on Omin. For this purpose we again turn to the minimal nilpo-
tent orbit of SU(2), which is C2/Z2. The normalization of the Kähler potential of
the minimal nilpotent orbit of a general group can then be determined because it
contains the minimal nilpotent orbit of SU(2) as a subspace.

We parameterize C2 by (u, ũ) and divide by the multiplication by −1. We de-
fine our conventions for the holomorphic Poisson bracket and the Kähler potential
of a flat H as follows:

K = |u|2 + |ũ|2, [u, ũ] = 1. (3.7)

Now, C2/Z2 is parametrized by

Z11 = u2/2, Z12 = Z21 = uũ/2, Z22 = ũ2/2 (3.8)

which satisfy

Z11Z22 = Z12
2. (3.9)

The Kähler potential is now

K = 2
√
|Z11|2 + |Z22|2 +2|Z12|2 = 2

√
Zαβ Z̄αβ . (3.10)

Then, the moment map associated to the generator J3 of non-R SU(2) acting on
C2/Z2 can be explicitly calculated, with the result

F = Z12, D =
2
K

(|Z11|2−|Z22|2). (3.11)

Now that the preparation is done, we move on to the calculation of the Higgs
branch on both sides of the duality.

4 SU(3) Side

The theory has six quarks in the fundamental representation,

Qi
a, Q̃a

i , (4.1)

where a = 1, . . . ,6 and i = 1,2,3. As is well known, any SU(3)-invariant polyno-
mial constructed out of these fields is a polynomial in the operators [11]:

Mi
j = Qi

aQ̃a
j , Bi jk = ε

abcQi
aQ j

bQk
c, B̃i jk = εabcQ̃a

i Q̃b
jQ̃

c
k. (4.2)

In the following we study the Poisson brackets, the action of the conjugation, and
the constraints in turn.
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4.1 Poisson brackets

The Poisson bracket of the basic fields is given by

[Qi
a, Q̃

b
j ] = δ

i
jδ

b
a. (4.3)

Then we have, for example,

[Mi
j,Q

k
a] =−δ

k
j Qi

a, (4.4)

i.e. Mi
j is the generator of U(6). We define trM to be the trace of Mi

j, and

M̂i
j = Mi

j −
1
6

δ
i
j trM (4.5)

is its traceless part. M̂i
j is the SU(6) generator and trM the U(1) generator. We

define the U(1) charge q of an operator O to be given by

[trM,O] =−qO. (4.6)

The most complicated bracket is

[Bi jk, B̃lmn] = 18M[i
[lM

j
mδ

k]
n]

= 18M̂[i
[lM̂

j
mδ

k]
n] +6(trM)M̂[i

[lδ
j
mδ

k]
n] +

1
2
(trM)2

δ
[i
[lδ

j
mδ

k]
n].

(4.7)

4.2 Conjugation

We choose the involution on the elementary fields to be

σ
∗(Qi

a) = (Q̃a
i )
∗, σ

∗(Q̃a
i ) =−(Qi

a)
∗. (4.8)

Then the transformation of the composites are

σ
∗(Mi

j) =−(M j
i)∗, σ

∗(trM) =−(trM)∗, (4.9)

σ
∗(Bi jk) = (B̃i jk)∗, σ

∗(B̃i jk) =−(Bi jk)∗. (4.10)

4.3 Constraints

The constraints were studied in [11]. Those which come before imposing the F-
term constraint are

Bi jkB̃lmn = 6M[i
lM j

mMk]
n, (4.11)

Bi j[kBlmn] = 0, B̃i j[kB̃lmn] = 0, (4.12)

M[i
jBklm] = 0, Mi

[ jB̃klm] = 0. (4.13)
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The F-term constraint

Qi
aQ̃b

i −
1
3

δ
b
a (QQ̃) = 0 (4.14)

further imposes

M̂i
jB

jkl = 1
6 (trM)Bikl , (4.15)

M̂i
jB̃ikl = 1

6 (trM)B̃ jkl , (4.16)

M̂i
jM

j
k = 1

6 (trM)Mi
k. (4.17)

We will find it convenient later to have constraints in terms of irreducible repre-
sentations (irreps) of SU(6). We use the Dynkin labels to distinguish the irreps in
the following. The MB = 0 relations (4.13), (4.15), (4.16) give

M̂{i
lB[ jk]}l = 0, M̂{i

lB̃[ jk]}l = 0, (4.18)

M̂l
{iB[ jk]}l = 0, M̂l

{iB̃[ jk]}l = 0. (4.19)

Here we defined the projector from a tensor with the structure Ai[ jk] to the irrep
(1,1,0,0,0) by A{i[ jk]} ≡ Ai[ jk]−A[i[ jk]]. We also have

M̂[i
lB jk]l =

1
6
(trM)Bi jk, M̂l

[iB̃ jk]l =
1
6
(trM)B̃i jk. (4.20)

The MM = 0 relation (4.17) gives

M̂i
jM̂

j
k =

1
6

δ
i
kM̂m

n M̂n
m, (4.21)

M̂i
jM̂

j
i =

1
6
(trM)2. (4.22)

The BB = 0 relation (4.12) gives

BiklB jkl = 0, B̃iklB̃ jkl = 0. (4.23)

Finally, the decomposition of the BB̃ = MMM relation gives, using (4.21) and
(4.22) repeatedly,

Bi jkB̃i jk =
2
9
(trM)3, (4.24)

BiklB̃ jkl
∣∣
adj =

2
9
(trM)2M̂i

j, (4.25)

Bi jmB̃klm
∣∣
0,1,0,1,0 =

2
3
(trM)M̂[i

[kM̂ j]
l]
∣∣
0,1,0,1,0, (4.26)

Bi jkB̃lmn
∣∣
0,0,2,0,0 = 6M̂[i

lM̂ j
mM̂k]

n
∣∣
0,0,2,0,0 . (4.27)
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5 Exceptional Side

5.1 Poisson brackets

We have chiral fields Xa which transform in the adjoint of E6, and satisfy the
quadratic Joseph identities. We decompose Xa under the subgroup SU(2)×
SU(6)⊂ E6. It gives

X i
j, Y [i jk]

α , Zαβ , (5.1)

where X i
j and Zαβ are the adjoints of SU(6) and SU(2) respectively, and Y i jk

α is
in the doublet of SU(2) and in the representation (0,0,1,0,0), i.e. the three-index
antisymmetric tensor, of SU(6). The Poisson brackets of the fields X , Y and Z are
exactly the Lie brackets as explained above, which we take to be

[X i
j,X

k
l ] = δ

i
l Xk

j −δ
k
j X i

l , (5.2)

[Zαβ ,Zγδ ] =
1
2
(εαγ Zβδ + εβγ Zαδ + εαδ Zβγ + εβδ Zαγ) (5.3)

and

[X i
j,Y

klm
α ] =−3δ

[k
jY

lm]i
α +

1
2

δ
i
jY

klm
α , (5.4)

[Zαβ ,Y i jk
γ ] = Y i jk

(α εβ )γ , (5.5)

and finally

[Y i jk
α ,Y lmn

β
] = ε

i jklmnZαβ −
3
2

εαβ (X [i
pε

jk]lmnp +X [l
pε

mn]i jkp). (5.6)

The final commutation relation can also be written as

[Y i jk
α ,Ylmnβ ] =−18X [i

[lδ
j
mδ

k]
n]−6Zαβ δ

[i
[lδ

j
mδ

k]
n]. (5.7)

As we explained above, X , Y and Z are the holomorphic moment maps of the
E6 action. Therefore the contribution from Omin to the F-term constraint for the
SU(2) gauge group is given just by Zαβ .

We take the bracket of v and ṽ to be

[vα , ṽβ ] = εαβ . (5.8)

Then we have

[v(α ṽβ ),vγ ] = v(α εβ )γ , (5.9)

and

[(vṽ),vα ] = vα , [(vṽ), ṽα ] =−ṽα . (5.10)

Recall that we define (uw)≡ uα wβ εαβ for two doublets uα and wα . It is straight-
forward to check that v(α ṽβ ) is the moment map of the SU(2) action on v and ṽ.
Thus the F-term condition is

v(α ṽβ ) +Zαβ = 0. (5.11)
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5.2 Conjugation

We take the conjugation on the variables v, ṽ to be

σ
∗(vα) = (ṽβ )∗εαβ , σ

∗(ṽα) = (vβ )∗εαβ . (5.12)

In terms of our variables (X i
j,Y

i jk
α ,Zαβ ), the conjugation acts as follows:

σ
∗(X i

j) =−(X j
i)∗, (5.13)

σ
∗(Y i jk

α ) = (Yi jk β )∗εαβ , σ
∗(Yi jk α) =−(Y i jk

β
)∗εαβ , (5.14)

σ
∗(Zαβ ) = (Zγδ )∗εαγ εβδ . (5.15)

5.3 Constraints

As explained in Sec. 3, the Joseph relations are given by

(X⊗X)|I2 = 0, (5.16)

where I2 is given by the relation

Sym2V (adj) = V (2adj)⊕I2. (5.17)

Here, V (adj) is the adjoint representation of E6 whose Dynkin label is ad j =
Esix010000. We then have

I2 = V (Esix100001)⊕V (Esix000000) . (5.18)

The representations which appear in I2, decomposed under SU(2)×SU(6),
are summarized in Table 1. The table reads as follows: e.g. for relation 4, the fourth
column tells us there is one Joseph identity transforming as a doublet in SU(2)
and as (0,0,1,0,0) under SU(6), but the fifth column says one can construct two
objects in this representation from bilinears in X i

j, Y i jk
α and Zαβ . This means the

identity has the form

0 = Y i jk
α Zβγ ε

αβ + c4X [i
lY

jk]l
γ , (5.19)

where c4 needs to be fixed, which can be done e.g. by explicitly evaluating the
right hand side on a few elements on the nilpotent orbit. Elements on the nilpotent
orbit can be readily generated, because one knows that the point

X i
j = 0, Y i jk

α = 0, Z11 = 1, Z12 = Z22 = 0 (5.20)

is on the nilpotent orbit by definition. Then the rest of the points can be gener-
ated by the coadjoint action of E6, which can be obtained by exponentiating the
structure constants.
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Table 1 Decomposition of I2 in terms of SU(2)×SU(6)⊂ E6

SU(2) SU(6) in I2 in Sym2V (adj)
1. 3 (1,0,0,0,1) 1 2
2. 2 (1,1,0,0,0) 1 1
3. 2 (0,0,0,1,1) 1 1
4. 2 (0,0,1,0,0) 1 2
5. 1 (0,1,0,1,0) 1 2
6. 1 (1,0,0,0,1) 1 1
7. 1 (0,0,0,0,0) 2 3

Carrying out this program, we obtain the following full set of Joseph identities:

1. 0 = X i
jZαβ +

1
4

Y ikl
(α Yjklβ ), (5.21)

2. 0 = X l
{iY[ jk]}lα , (5.22)

3. 0 = X{i
lY

[ jk]}l
α , (5.23)

4. 0 = Y i jk
α Zβγ ε

αβ +X [i
lY

jk]l
γ , (5.24)

5. 0 = (Y i jm
α Yklmβ ε

αβ −4X [i
[kX j]

l])
∣∣
0,1,0,1,0, (5.25)

6. 0 = X i
kXk

j −
1
6

δ
i
jX

k
lX l

k, (5.26)

7. 0 = Y i jk
α Yi jkβ ε

αβ +24Zαβ Zγδ ε
αγ

ε
βδ , (5.27)

7’. 0 = X i
jX

j
i +3Zαβ Zγδ ε

αγ
ε

βδ . (5.28)

5.4 Gauge invariant operators

Let us enumerate the generators of the SU(2)-invariant operators constructed out
of vα , ṽα , and X i

j, Y i jk
α , Zαβ , using the F-term equation (5.11) and the Joseph

identities (5.21) ∼ (5.28). Suppose we have a monomial constructed from those
fields. We first replace every appearance of Zαβ by−v(α ṽβ ). All the SU(2) indices
are contracted by epsilon tensors of SU(2). Therefore the monomial is a product
of X i

j, (vṽ), (Y i jkv), (Y i jkṽ) and (Y i jkY lmn). The last of these can be eliminated
using the Joseph identities. Indeed, the combination of the relations (5.25), (5.27)
and (5.28) gives a Joseph identity of the form

Y i jk
α Ylmnβ ε

αβ = 18X [i
[lX

j
mδ

k]
n]−3Zαβ Zγδ ε

αγ
ε

βδ
δ

[i
[lδ

j
mδ

k]
n]. (5.29)

We conclude that any SU(2)-invariant polynomial is a polynomial in

X i
j, (vṽ), (Y i jkv), and (Y i jkṽ). (5.30)
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6 Comparison

6.1 Identification of operators

Let us now proceed to the comparison of the structures we studied in Sec. 4 and
in Sec. 5. We first make the following identification:

M̂i
j = X i

j, trM =−3(vṽ). (6.1)

These are the moment maps of the flavor symmetries SU(6) and U(1), so the
identification is fixed including the coefficients, and then the Poisson brackets
involving either M̂ or trM automatically agree. The conjugation acting on X i

j, (vṽ)
also agrees with that on M̂i

j and trM.
We then set

Bi jk = c(Y i jkv), B̃i jk = c̃(Yi jkṽ). (6.2)

One has

σ((Y i jkv)) = (Yi jkṽ)∗. (6.3)

To be consistent with (4.10), we need to have

c̃ = c∗. (6.4)

Let us then calculate the Poisson bracket of (Y i jkv) and (Ylmnṽ) using (5.29). We
have

[(Y i jkv),(Ylmnṽ)] =−18X [i
[lX

j
mδ

k]
n] +18(vṽ)X [i

[lX
j
mδ

k]
n]−

9
2
(vṽ)2. (6.5)

Comparing with the bracket [Bi jk, B̃lmn] calculated in (4.7), we find they indeed
agree if cc̃ =−1. Thus we conclude c = c̃ = i, i.e.

Bi jk = i(Y i jkv), B̃i jk = i(Yi jkṽ). (6.6)

6.2 Constraints

Now, let us check using the Joseph relations that the constraints on the SU(3) side,
listed in Eqs. (4.18) ∼ (4.27), can be correctly reproduced on the exceptional side.

• (4.18): Contract v or ṽ to the relation 2, (5.22).
• (4.19): Contract v or ṽ to the relation 3, (5.23).
• (4.20): Contract v or ṽ to the relation 4, (5.24).
• (4.21): This is exactly the relation 6, (5.26).
• (4.22): This is exactly the relation 7’, (5.28).
• (4.23): Contract vα vβ or ṽα ṽβ to the relation 1 (5.21).

As for the relation of the type BB̃ = MMM,

• (4.24): The singlet part. Contract vα ṽβ to the relation 7 (5.27).
• (4.25): The adjoint part. Contract vα ṽβ to the relation 1 (5.21).
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• (4.26): The (0,1,0,1,0) part. Contract vα ṽβ to the relation 5 (5.25).
• (4.27):This is the (0,0,2,0,0) part and is slightly trickier, but it follows from a

cubic Joseph identity

0 = ε
αγ

ε
βδ ZαβY i jk

γ Ylmn,δ

∣∣
0,0,2,0,0 −6X [i

lX j
mXk]

n
∣∣
0,0,2,0,0 (6.7)

upon replacing Zαβ with v(α ṽβ ). This cubic Joseph identity itself can be derived
from the quadratic Joseph identities, as it should be. First, we use the relation 4
(5.24) to show

ε
αγ

ε
βδ ZαβY i jk

γ Ylmnδ

∣∣
0,0,2,0,0∝ X [i

pY jk]p
α Ylmnβ ε

αβ . (6.8)
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Now, the antisymmetric product of two Y ’s contain both the singlet and the
(0,1,0,1,0) part. One sees the singlet drops out inside the projector to the
(0,0,2,0,0) part, so we have

∝

(
X [i

p(Y jk]pYlmn)
∣∣
0,1,0,1,0

) ∣∣
0,0,2,0,0 . (6.9)

Then we use the relation 5 (5.25) to transform this to

∝ X i
l X j

mXk
n
∣∣
0,0,2,0,0 . (6.10)

The proportionality constant can be fixed, e.g. by evaluating on a few points on
the orbit. This concludes the comparison of the constraints.

7 Conclusions

In the previous three sections, we determined the Higgs branches both on the
SU(3) side and on the exceptional side. We demonstrated that their defining equa-
tions agree, and furthermore exhibited that the Poisson bracket and the conjuga-
tion are the same on both sides. As was stated in Sec. 2 and will be detailed in
Appendix B, these are (almost) sufficient to conclude that they are the same as
hyperkähler manifolds. To remove any remaining doubts, we compare the Kähler
potentials of the two sides in Appendix C. Again, they show remarkable agreement
with one another.

Thus we definitely showed the agreement of the Higgs branches of the new S-
duality pair proposed by Argyres and Seiberg in [1], which provides a convincing
check of their conjecture. In this paper we only dealt with the example involving
E6, but there are more examples of similar dualities in [1 and 4]. It would be in-
teresting to carry out the same analysis of the Higgs branches to those examples.
A pressing issue is to understand the Argyres-Seiberg duality more fully. For ex-
ample, it would be nicer to have an embedding of this duality in string/M-theory.
We hope to revisit these problems in the future.
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A Conventions

Greek indices α,β are for the doublets of SU(2), a,b,c, . . . for the triplets of SU(3) and i, j,k, . . .
for the sextets of SU(6). We define

(uw)≡ uα wβ ε
αβ (A.1)

4 It can be downloaded from http://www-math.univ-poitiers.fr/˜maavl/
LiE/.

http://www-math.univ-poitiers.fr/~maavl/LiE/
http://www-math.univ-poitiers.fr/~maavl/LiE/
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for two doublets uα and wα ,
We use the following sign conventions for the epsilon tensors of SU(2), SU(3) and SU(6):

ε
αβ =−εαβ , ε

abc = εabc, ε
i jklmn = εi jklmn. (A.2)

We normalize the antisymmetrizer [abc...] and the symmetrizer (abc...) so that they are projec-
tors, i.e.

T i jk = T [i jk] (A.3)

for the antisymmetric tensors T i jk, etc. We raise and lower three antisymmetrized indices of
SU(6) via the following rule:

T i jk =
1
6

ε
i jklmnTlmn, Tlmn =

1
6

T i jk
εi jklmn. (A.4)

Our convention for the placement of the indices of the complex conjugate is e.g.

Z̄αβ ≡ (Zαβ )∗, (A.5)

i.e. the complex conjugation is always accompanied by the exchange of subscripts and super-
scripts, as is suitable for the action of SU groups.

We take the Kähler potential of a flat C parameterized by z with the standard metric to be

K = |z|2. (A.6)

B Twistor Spaces of Hyperkähler Cones

Recall that a hyperkähler manifold M admits a continuous family of complex structures Jζ ,
parameterized by ζ ∈ CP1. The full information in the hyperkähler metric is captured by this
family of complex structures and their Poisson brackets. It can be encoded into purely holomor-
phic data on a complex manifold Z , the twistor space of M , as we now review.

Topologically Z = M ×CP1. Its complex structure can be specified by specifying which
functions on Z are holomorphic: they are f (x,ζ ) which are holomorphic in ζ for fixed x ∈M ,
and also holomorphic in x with respect to complex structure Jζ for fixed ζ . Hence we may view
Z as a holomorphic fiber bundle over CP1, where the fiber over ζ is just a copy of M , equipped
with complex structure Jζ .

The Poisson brackets on the holomorphic functions in each fiber glue together globally to
give a bracket operation on Z . This bracket operation is globally twisted by the line bundle
O(−2): i.e. given local holomorphic functions f1, f2 we get a local section { f1, f2} of O(−2),
and more generally if f1, f2 are sections of O(d1), O(d2) then { f1, f2} is a section of O(d1 +
d2−2). Finally there is an involution σ on Z , simply defined by (x,ζ )→ (x,−1/ζ̄ ). This is an
antiholomorphic involution, since the complex structure Jζ is opposite to J−1/ζ̄

.
As a complex manifold Z is a fibration over CP1, and (x,ζ ) with x fixed gives a holomor-

phic section of this fibration, which is invariant under σ . The normal bundle to this section is
isomorphic to the line bundle O(1)⊕n, where n is the complex dimension of M . Conversely, a
holomorphic section of Z which is invariant under σ and whose normal bundle is isomorphic to
O(1)⊕n is called a twistor line. Therefore, the points on M give rise to a n-dimensional family
of twistor lines on Z .

It was shown in [9] that given Z , together with its Poisson brackets and antiholomorphic
involution, one can canonically reconstruct a hyperkähler metric on the space of twistor lines.
Therefore, to check that our two hyperkähler cones are the same is essentially to check that their
twistor spaces Z are the same.

Now, the twistor space of a hyperkähler cone can be constructed from the data we described
in Sec. 2, i.e. the Poisson bracket, the dilatation and the conjugation on M . We pick one complex
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structure induced from the hyperkähler structure, and regard M as a complex manifold. We then
form Z as a complex manifold as

Z = ((C2 \ (0,0))×M )/C×, (B.1)

where C× acts on the first factor by multiplication, and on the second factor as the natural com-
plexification of the action of the dilatation. Then the Poisson bracket on M naturally induces
one on Z . We define σ on Z to send (z,w,x) ∈ C2 ×M to (−w̄, z̄,σ(x)). Then it is straight-
forward to check that this Z is the twistor space of M , using the SU(2)R action on M rotating
three complex structures.

There is a subtle problem remaining, however. Namely, the theorem in [9] asserts that there
is a component of the space of the twistor lines of Z which agrees metrically with the original
hyperkähler manifold M , but does not exclude the possibility that the space of twistor lines has
many components, each of which is a hyperkähler manifold with the same complex structure but
with a different metric. Mathematicians the authors consulted know no concrete example where
this latter possibility is realized, so the authors think it quite unlikely that our two hyperkähler
manifolds are the same as holomorphic symplectic manifolds but not as hyperkähler manifolds.
To dispel this last possibility, in the next appendix we directly compare the Kähler potential of
our two hyperkähler manifolds.

C Comparison of the Kähler Potential

In this Appendix, we describe the method to calculate and compare the Kähler potential of the
Higgs branches on the two sides of the duality.

C.1 Exceptional side

The invariant norm of E6 in our notation is

Zαβ Z̄αβ +
1
6

Y i jk
α Ȳ α

i jk +X i
jX̄

j
i. (C.1)

Therefore the correctly normalized Kähler potential is

KE6 = 2

√
Zαβ Z̄αβ +

1
6

Y i jk
α Ȳ α

i jk +X i
jX̄ j i, (C.2)

and the D-term for the SU(2)⊂ E6 is

D(E6)
αβ

=
2

KE6

[
Zαγ Z̄γδ

εδβ +Zβγ Z̄γδ
εδα +

1
12

(Y i jk
α Ȳ γ

i jkεγβ +Y i jk
β

Ȳ γ

i jkεγα )
]
.

(C.3)

We also have quarks vα , ṽα which have

Kv,ṽ = ∑
α

(|vα |2 + |ṽα |2) (C.4)

and

D(v,ṽ)
αβ

=
1
2
(vα v̄γ

εγβ + vβ v̄γ
εγα + ṽα

¯̃vγ
εγβ + ṽβ

¯̃vγ
εγα ). (C.5)

The Kähler potential of the exceptional side is thus given by

Kv,ṽ +KE6 (C.6)

restricted to the locus

v(α ṽβ ) +Zαβ = 0, D(v,ṽ)
αβ

+D(E6)
αβ

= 0 (C.7)

expressed as a function of Mi
j , Bi jk, B̃i jk and their complex conjugates.
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C.2 SU(3) side

We start from the Kähler potential

K = ∑
i,a
|Qi

a|2 + |Q̃a
i |2. (C.8)

Using the analysis in [11], the Kähler potential on the quotient was determined in [15] as

K = 2 ∑
i=1,2,3

√
m2

i +
ν2

4
, (C.9)

where (m2
1,m

2
2,m

2
3,0,0,0) are the eigenvalues of Mi

jM̄
j
k, and ν is defined by

3ν = ∑
i,a
|Qi

a|2−|Q̃a
i |2, (C.10)

i.e. 1/3 of the U(1) D-term. In terms of gauge invariants we have

∏
i=1,2,3

(√
m2

i +
ν2

4
+

ν

2

)
= 1

6 Bi jkB̄i jk, (C.11)

∏
i=1,2,3

(√
m2

i +
ν2

4
− ν

2

)
= 1

6 B̃i jk ¯̃Bi jk. (C.12)

C.3 Comparison

Now, the Kähler potentials of the two sides, (C.6) and (C.9) should agree as functions of M, B
and B̃, but we have not been able to check that analytically. Instead, one can check it numerically
on as many points on the quotient as computer time allows. The algorithm is as follows:

1. Generate a point X = (X i
j,Y

i jk
α ,Zαβ ) on the nilpotent orbit of E6, by applying an element

of the group E6 to the point (Z11,Z12,Z22) = (1,0,0), X i
j = Y i jk

α = 0.
2. Find vα , ṽα which satisfy

v(α ṽβ ) +Zαβ = 0. (C.13)

This is more or less unique up to C× action on v, ṽ.
3. Apply SL(2,C) action to (v, ṽ,X) to find the solution of the D-term equation,

D(v,ṽ)
αβ

+D(E6)
αβ

= 0. (C.14)

This is equivalent to the minimization of

Kv,ṽ(g(v),g(ṽ))+KE6(g(X)), (C.15)

where g is an SL(2,C) action.
4. Form M, B, B̃ from v, ṽ and X thus obtained, and calculate ν and mi. At this point, two

checks of the sanity of the calculation are possible. One is to see that three eigenvalues of
MM̄ are zero. Another is to see that ν determined from (C.11), (C.12) is equal to

ν = ∑
α

|vα |2−|ṽα |2. (C.16)

The latter fact follows from the identification of ν as 1/3 of the U(1) moment map on the
quotient.
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5. Evaluate the Kähler potential of the SU(3) side using (C.9) and compare it to that of the
exceptional side (C.6).

We implemented the algorithm above in Mathematica, and found that the value of the Kähler
potential at any points agrees on both sides of the duality to arbitrary accuracy.5 An analytic
proof of the agreement of the Kähler potential will be welcomed.

D Mathematical Summary

Let us summarize briefly in the language of mathematics what was done in this paper. Let
M(m,n) be

M(m,n) = Hom(V,W )⊕Hom(W,V ) where V = Cm, W = Cn (D.1)

which is a flat hyperkähler space of quaternionic dimension mn. It has a natural triholomorphic
action of U(m)×U(n) induced from its action on V and W . Let N(m,n) be the flat hyperkähler
space

N(m,n) = Rm⊗R Hn (D.2)

of quaternionic dimension mn, which has a natural triholomorphic action of SO(m)×Sp(n).
One then defines a hyperkähler quotient A by

A1 = M(6,3)///SU(3). (D.3)

We consider another hyperkähler quotient

A2 = (N(2,1)×Omin(E6))///Sp(1) (D.4)

where Omin(G) is the minimal nilpotent orbit of the group G, and the Sp(1) action on Omin(E6)
is given by considering the maximally compact subgroup Sp(1)×SU(6)⊂ E6.

One sees easily that A1,2 are both of quaternionic dimension 10, both carry a natural triholo-
morphic action of SU(6)×U(1). Our claim is that A1 = A2 as hyperkähler cones. We demon-
strated that A1 and A2 match as holomorphic symplectic varieties by explicitly showing that their
defining equations and the holomorphic symplectic forms are the same. We also found that the
twistor spaces of A1 and A2 are the same as complex manifolds with antiholomorphic involution,
but could not show that A1 and A2 correspond to the same family of twistor lines. Instead we
directly compared the Kähler potentials of A1 and A2. Again we could not rigorously prove the
equivalence, but we performed numerical calculations of the Kähler potential which convinced
us that they agree.

The equivalence of A1,2 was suggested by the analysis of a new type of S-duality in four-
dimensional N = 2 supersymmetric gauge theories in [1]. In [1; 4], more examples of the same
type of duality were described, of which we record two more here.

Now consider

B1 = N(12,2)///Sp(2) (D.5)

and

B2 = Omin(E7)///Sp(1). (D.6)

Here Sp(1) acts on Omin(E7) through the maximal subgroup Sp(1)×SO(12)⊂ E7. The quater-
nionic dimension of B1,2 is 14, and both have triholomorphic actions of SO(12). We believe
B1 = B2 as hyperkähler cones.

For an example which involves Omin(E8), consider

C1 = (Z⊕N(11,3))///Sp(3). (D.7)

5 We thank H. Elvang for improvement of the accuracy in the calculation.



Argyres-Seiberg Duality and the Higgs Branch 23

Here Z is a pseudoreal irreducible representation of Sp(3) of quaternionic dimension 7, which
arises as

∧3
C X = Z⊕X , (D.8)

where X = C6 is the defining representation of Sp(3). Let us take another hyperkähler quotient

C2 = Omin(E8)///SO(5), (D.9)

where SO(5) acts via embedding

SO(5)×SO(11)⊂ SO(16)⊂ E8. (D.10)

It is easy to check that C1,2 are both of quaternionic dimension 19, and SO(11) acts triholomor-
phically on both C1 and C2. We predict that C1 = C2 as hyperkähler cones.
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ideal Ann. Sci. École Norm. Sup. Ser. 4 9 1

7. A. Swann (1991) Hyperkähler and quaternionic Käher geometry Math. Ann. 289 421
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