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Chapter 1

Introduction

Since hadrons are known to possess a non-trivial structure – they appear to
consist of point-like constituents in deep inelastic electron-proton scatter-
ing for example – both, experimentalists and theorists try to decipher this
inner structure. The combination of the observed scaling behavior and Gell-
Mann’s famous hadron classification into SU(3) multiplets led to the idea
that baryons and mesons are made up by (at least) either three quarks or
a quark and an antiquark, respectively. Within a quantum-field theoretical
framework these “valence-degrees-of-freedom” are supplemented by gluons,
which mediate the strong force between quarks, and by additional quarks
and antiquarks filling the Dirac sea. The simplest possibility to learn about
the hadron structure, however, is to describe hadrons within quantum me-
chanics using a valence- or constituent-quark model. In order to analyze
the weak structure of heavy-light mesons, as it is observable in semileptonic
transitions, we work within the setting of a constituent quark model. The
kind of processes we are interested in, such asM+νe →M ′+e for example,
shall be investigated for momentum transfers up to several GeV. Therefore
the need of a relativistically invariant description is obvious. According to
P.M. Dirac there are three forms of relativistic (quantum) dynamics [Dir49],
where the point form is certainly the least exploited. A rather universal
formalism to describe the structure of bound few body systems using the
point form of relativistic dynamics had been developed over the last decade
and had been successfully applied to calculate meson spectra [KSK03] and
electroweak meson (transition) form factors [BSFK09, GR11]. The result-
ing spacelike electromagnetic form factors were comparable to correspond-
ing calculations in front form and to experimental results. The weak decay
form factors, however, were found to deviate for higher (timelike) momentum
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6 CHAPTER 1. INTRODUCTION

transfers from front-form calculations and also from the sparse experimental
data. One possible reason for this discrepancy is suspected to be missing
non-valence contributions and their different roles in point form and in front
form. The aim of this thesis is to give an estimate for the size of, so called,
Z-graphs, a specific kind of non-valence contributions, and to check, whether
deviations from experimental data shrink after including such graphs. The
semileptonic transition of a meson M into a meson M ′, as it is seen in a
simple constituent-quark picture, is depicted on the left-hand side of Fig.
1.1. The right-hand side shows the Z-graph contribution. In principle such
contributions are treatable within the kind of approach we are using, by in-
troducing additional channels to account for the extra qq̄-pair. But instead

q̄

Q q′

M M ′

W
l

ν̄l

q̄

Q

q̄′

q′
M

M ′

W
l
ν̄l

M∗

Figure 1.1: Semileptonic decay M →M ′ + l+ ν̄l in a valence-quark picture
(left) and the Z-graph contribution to the decay amplitude (right).

of including Z-graphs explicitly we will follow a different approach. Let us
first consider lepton-meson scattering. It is obvious that for an infinitely
fast moving meson the production of a quark-antiquark pair, and therefore
also the contribution of Z-graphs, should be suppressed. This is realized
in the infinite-momentum frame where, using Mandelstam variables s and
t to parametrize the relativistic kinematics, s approaches infinity. Working
in the infinite-momentum frame, however, is not possible for decay kine-
matics since this would correspond to infinitely large momentum transfer
between the initial meson and the outgoing neutrino, or equivalently, in-
finitely large invariant mass of the outgoing meson and the electron. For
the scattering process, on the other hand, we do not face this problem. The
idea is now to calculate the transition amplitude for meson-neutrino scat-
tering in the infinite-momentum frame and obtain the decay form factors
by analytic continuation of the (spacelike) transition form factors into the
timelike momentum-transfer region. This is possible since the scattering
amplitude and therefore also the form factors are meromorphic functions of
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the momentum transfer squared. The formalism presented in the follow-
ing will be used in Chap. 3 to calculate the 1-W exchange amplitude for
meson-neutrino scattering. Meson-neutrino scattering will be treated as a
coupled-channel problem with instantaneously confined constituent quarks
and the W showing up as a dynamical degree-of-freedom. Relativistic in-
variance is ensured by using the Bakamjian-Thomas construction [BT53]
and the interaction with the lepton is treated perturbatively by dynamical
W-boson exchange. Then, by analyzing the structure of the scattering am-
plitude, we can identify the bound-state current in a unique way. In Chap.
4 we present the form factors for spacelike momentum transfer, obtained
by a covariant decomposition of the bound-state current. This will be done
in two specific frames of reference. The infinite-momentum frame, where
the invariant mass squared of the incoming particles approaches infinity,
and the Breit-frame of reference, which corresponds to backward scattering.
In this context we will discuss a fundamental problem, namely violation of
macrocausality or cluster separability. Cluster separability means that two
subsystems become independent of each other, if they are separated by a
sufficiently large spacelike distance. This is a problem one faces in every
form of relativistic dynamics when using the Bakamjian-Thomas construc-
tion and going beyond the pure two-particle problem [KP91]. The discussion
of the analytic continuation and the comparison with direct decay calcula-
tions, where Z-graphs are not taken into account, follow in Chap. 5. There
we will also present a parametrization of the calculated form factors and
discuss a vector-meson-dominance like mechanism that accounts effectively
for Z-graphs. To complete the picture, the influence of Z-graphs on heavy-
quark symmetry and heavy-quark symmetry breaking is discussed in Chap.
6. The diploma thesis will end with a summary and an outlook.
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Chapter 2

Theoretical Framework

To set up the theoretical framework which this work is based on, we will
proceed as follows: First we will sketch how to formulate a relativistically in-
variant quantum mechanical model. Although it seems to be trivial, we will
start with the Hilbert space for free particles, since it is a convenient point
to start from and also a good opportunity to introduce the not so familiar
velocity-state representation of the Poincaré group. The next step will be to
include interactions into our theory and to set up a coupled-channel formal-
ism to account for particle creation and annihilation as well as dynamical
particle exchange. This framework has been developed and extended in
previous work, so the present chapter must be seen as recapitulation and
summary of the state of the art. For further details we will, of course, refer
to the corresponding papers whenever necessary.

2.1 Relativistic Invariance of Free Particles

2.1.1 The Poincaré Group

In order to ensure any kind of invariance of a theory that is represented on a
particular Hilbert space, it is necessary to find a (anti)unitary representation
of the corresponding symmetry group. In the case of relativistic invariance
this symmetry group is the Poincaré group. The Poincaré or inhomogeneous
Lorentz group is the group of transformations that preserve proper time τxy
between events in Minkowski space which take place at different points in
space-time, xµ and yµ, respectively. The transformations which leave the
proper time

τ2
xy := gµν(x− y)µ(x− y)ν (2.1)

9



10 CHAPTER 2. THEORETICAL FRAMEWORK

invariant are space-time translations and Lorentz transformations. They
have the general form

xµ → x′
µ = Λµνxν + aµ, (2.2)

with aµ ∈ R4 and Λ ∈ L = O(1, 3). The Lorentz group L is a Lie-group
with a six-dimensional parameter space and can be decomposed into the
four components

L↑+ ≡ {Λ ∈ L|Λ0
0 ≥ 1, detΛ = +1},

L↑− ≡ {Λ ∈ L|Λ0
0 ≥ 1, detΛ = −1},

L↓− ≡ {Λ ∈ L|Λ0
0 ≤ 1, detΛ = −1},

L↓+ ≡ {Λ ∈ L|Λ0
0 ≤ 1, detΛ = +1},

(2.3)

of which only L↑+ is a real subgroup, because only this component contains
14, the neutral element of the group. For this reason L↑+ is called the proper
orthochronous Lorentz group. Since all four components can be constructed
by applying an element of the discrete Lorentz subgroup, the Klein group,
which consists of parity transformation P , time reversal T , four-dimensional
reflection PT and the unity in four-dimensional real space 14, on the proper
orthochronous Lorentz group

L↑+ = 14L↑+,
L↑− = PL↑+,
L↓− = TL↑+,
L↓+ = PTL↑+,

(2.4)

we will concentrate on these two subgroups instead of dealing with L itself.
See, for example, [SW64] for further details. The proper Poincaré group P↑+
is then the semidirect product of L↑+ and the group of four-dimensional trans-
lations. Therefore its parameter space is 10 dimensional. Three parameters
belong to the three-vector Θ describing rotations in three-dimensional Eu-
clidean space, another three form the three-velocity v, which parametrizes
a canonical boost, and the remaining four parameters can be combined to
the four-vector a which describes space-time translations. Each parame-
ter is connected with one one-parameter subgroup of the proper Poincaré
group and a corresponding infinitesimal generator. The corresponding ten
generators of the Poincaré group are:
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• Pµ, µ = 0, 1, 2, 3 · · · generators of space-time translations,

• Kj , j = 1, 2, 3 · · · generators of Lorentz boosts in all spatial directions,

• J j , j = 1, 2, 3 · · · generators of rotations in three-dimensional Eu-
clidean space.

The Lie-algebra of the group can then be expressed in commutator relations
which the generators have to satisfy. For the generators of the Poincaré
group, the algebra reads

[Pµ, P ν ] = 0,
[P i, J j ] = ıεijkP k,

[P 0, J j ] = 0,
[P i,Kj ] = ıδijP 0,

[P 0,Kj ] = ıP j ,

[J i, J j ] = ıεijkJk,

[Ki, J j ] = ıεijkKk,

[Ki,Kj ] = −ıεijkJk.
(2.5)

The three boost-generators Kj and the generator of spatial rotations J j can
be combined to one total antisymmetric tensor of rank 2, Mµν :

M0i = Ki . . . i = 1, 2, 3,
M ij = εijkJk,

Mµν = −Mνµ.

(2.6)

The Poincaré algebra can then be written in manifest covariant form

[Pµ, P ν ] = 0,
[Mµν , P σ] = ı(gνσPµ − gµσP ν),

[Mµν ,Mσρ] = −ı(gµσMνρ − gνσMµρ + gνρMµσ − gµρMνσ). (2.7)

As mentioned at the beginning of this section, the aim is to construct a uni-
tary representation of the Poincaré group, acting on the considered Hilbert
space. Since P ↑+ has no simply connected topology, because it contains the
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group SO(3) ∼= SU(2)/Z2 which has no simply connected parameter space,
we are instead looking for a unitary representation of the universal covering
group. Following Wigner’s and Bergmann’s theorems (see, e.g., [Tha92])
the representation of a connected Lie group can be constructed from the
unitary representation of its universal covering group. The covering group
of the proper orthochronous Poincaré group is the inhomogeneous SL(2,C),
which is the group of ordered pairs of complex (2× 2) matrices (Λ, a) with
detΛ = 1 and a = a†. Here we have adopted the notation used in [Biernat11]
to distinguish between elements (Λ, a) of the Poincaré group and elements
(Λ, a) which belong to the universal covering group. To illustrate the cor-
respondence of ISL(2,C) and P ↑+ we will shortly repeat the construction of
Refs. [KP91] and [Tha92].
Every space-time coordinate xµ with x ∈ R4 can be represented by a her-
mitian 2× 2 matrix

σ(x) =
3∑

µ=0
xµσµ, (2.8)

with σi . . . i = 1, 2, 3 being the Pauli matrices and σ0 being the identity
matrix in R2. The proper time defined in Eq. (2.1) can then be expressed
by the determinant

τ2
xy = det[σ(x)− σ(y)]. (2.9)

If we define the action of (Λ, a) on σ(x) by

(Λ, a) : σ(x)→ σ′(x) = Λσ(x)Λ† + a, (2.10)

one can show that all transformations of this form preserve the proper time,
Eq. (2.9), and form a group under the composition

(Λ2, a2) ◦ (Λ1, a1) := (Λ2Λ1,Λ2a1Λ†2 + a2), (2.11)

with the inverse element (Λ, a)−1 = (Λ−1,−Λ−1a(Λ†)−1). Because ISL(2,C)
is the universal covering group and therefore has a simply connected param-
eter space, it is clear that the homomorphisms SL(2,C)→ P ↑+ must posses
a nontrivial kernel. In fact always two elements of SL(2,C), namely (Λ, a)
and (−Λ, a) correspond to the same element (Λ, a) of P ↑+. As a consequence,
P ↑+ is isomorphic to the factor group with respect to the kernel of the ho-
momorphism P ↑+

∼= (SL(2,C)/Z2) � R4, where � denotes the semidirect
product. As a remark it should be mentioned that so far we have con-
structed a two-dimensional representation of P ↑+ . To cover the full Poincaré
group, remembering the decomposition Eq. (2.4), we have to include the
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discrete Lorentz group. As it is shown in [Tha92] the parity transformation
is an automorphism of the SL(2,C) onto itself that cannot be represented
by SL(2,C) matrices. Instead the dimension of the representation has to be
doubled. The covering group of the full Poincaré group is then obtained by
building the semidirect product of R4 and L̃, where

L̃ ≡ {LA,LPLA,LTLA,LPLTLA|A ∈ SL(2,C)} ,

LA ≡
(

A 0
0 (A∗)−1

)
,

LP ≡
(

0 12
12 0

)
,

LT ≡
(

0 −ı 12
ı 12 0

)
, (2.12)

is the covering group of the full Lorentz group. For a detailed derivation and
further discussions of the group-theoretical properties we refer to [Tha92].
Mentioned for mathematical rigor, we restrict our consideration from now
on to the part of the Poincaré group which is connected to the identity and
the two dimensional representation of its covering group ISL(2,C).

2.1.2 Unitary Representation

To construct a unitary representation of the Poincaré algebra, Eq. (2.5),
on a multi-particle Hilbert space we will follow the lines of Ref. [KP91].
Thereby we will adopt the notation used in [Biernat11]. A suitable basis for
a one-particle Hilbert space H consists of the states

|m, j,p, σ〉 ≡ |p, σ〉, (2.13)

which are simultaneous eigenstates of the one-body operators m̂2, ĵ2, p̂ and
ĵ3
c .

• p̂ is the momentum operator and p̂i, i = 1 . . . 3 are the spatial com-
ponents of the free four-momentum operator.

• m̂2 is the mass operator and one of the two Casimir operators for the
representation, m̂2 := p̂µp̂µ.

• ĵ2 is the square of the (total) angular momentum operator and the
second Kasimir operator.
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• ĵ3
c is the three-component of the (total) angular momentum operator.

The operators p̂µ and ĵj are the generators of space-time translations and
three-dimensional rotations on the one-particle Hilbert space and fulfill the
commutator relations, Eq. (2.5). The representation Û(Λ, a) of the proper
Poincaré group on the one-particle Hilbert space spanned by the states |p, σ〉
is given by

Û(Λ, a)|p, σ〉 = e−ı(Λ p)·a
j∑

σ′=−j
Dj
σ′σ[RWc

(v,Λ)]|Λp, σ′〉, (2.14)

where Λp denotes the spatial components of the four-momentum after ap-
plying the Lorentz transformation Λ. The matrix elements Dj

σ′σ[RWc
(v,Λ)]

are the Wigner D-functions which correspond to a 2j+ 1 dimensional repre-
sentation of SU(2). The argument of the Wigner D-functions RWc

(v,Λ) is a
Wigner rotation defined via a canonical (rotationless) Lorentz boost Bc(v)

RWc(p,Λ) := B−1
c (Λp)ΛBc(p). (2.15)

The n-particle Hilbert space is then realized as a tensor product of n single-
particle Hilbert spaces Hi

H1...n = H1 ⊗H2 ⊗ . . .⊗Hn. (2.16)

A basis for the multi-particle Hilbert space can then be defined in a straight
forward manner as tensor product of single particle basis states

|p1, σ1; p2, σ2; . . . ; pn, σn〉 := |p1, σ1〉 ⊗ |p2, σ2〉 ⊗ . . .⊗ |pn, σn〉. (2.17)

The mass and four-momentum operators acting on this tensor-product Hilbert
space read

M̂n := m̂1 ⊗ 12 ⊗ . . .⊗ 1n ⊕ 11 ⊗ m̂2 ⊗ . . .⊗ 1n
⊕ . . .⊕ 11 ⊗ 12 ⊗ . . .⊗ m̂n,

P̂µn := p̂µ1 ⊗ 12 ⊗ . . .⊗ 1n ⊕ 11 ⊗ p̂µ2 ⊗ . . .⊗ 1n
⊕ . . .⊕ 11 ⊗ 12 ⊗ . . .⊗ p̂µn. (2.18)
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Also the n-particle unitary representation of the Poincaré group is the tensor
product of the irreducible one-particle representations

Û12...n[Λ, a] := Û1[Λ, a]⊗ Û2[Λ, a]⊗ . . .⊗ Ûn[Λ, a]. (2.19)

It is a reducible representation with transformation properties following
from the transformation properties of the single-particle representations,
Eq. (2.14),

Û12...n[Λ, a]|pi, σi〉 = e−ı(ΛPn)·a∑
σ′i

|Λpi, σ
′
i〉

n∏
i=1

Dji
σ′iσi

[RWc
(v,Λ)]. (2.20)

|pi, σi〉 is a short-hand notation for |p1, σ1; p2, σ2; . . . ; pn, σn〉 and Λpi de-
notes the spatial components of the four-momentum pi after applying a
Lorentz transformation Λ. Pn =

∑n
i=1 pi is the total four-momentum of the

system.

2.1.3 Velocity States

Although the basis states considered in the last section are the common
choice for the multi-particle Hilbert space, we will use another complete
set of states that is more suitable for the Bakamjian-Thomas construction
carried out in the point form of relativistic dynamics. These states are called
“velocity states” and had been introduced by W. H. Klink in [Kli98]. Let
us assume an n-particle state with particle i having momentum ki. If the
whole system is at rest the particle momenta have to satisfy

n∑
i=1

ki = 0. (2.21)

A velocity state is then obtained by boosting the whole system with mo-
menta ki and spin projections µi to an overall velocity V

Û12...n[ΛBc(V ), a = 0]|k1, σ1; k2, σ2; . . . ; kn, σn〉 ≡

Û12...n[Bc(V )]|{ki, µi}〉 =
∑
{σi}
|{pi, σi}〉

n∏
i=1

Dji
σiµi [RWc

(vi, Bc(V))]

:= |V ; k1, σ1; k2, σ2; . . . ; kn, σn〉,
(2.22)

with
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• ki, µi . . . momentum and spin-projection of the i-th particle in the
overall rest frame,

• pi, σi . . . physical momentum and spin-projection of the i-th particle,

• vi := ki
mi

. . . four-velocity of the i-th particle in the overall rest frame.

The action of Lorentz transformations is then given by

Û12...n(Λ)|V ; {ki, µi}〉 =
∑
{µ′i}
|ΛV ;

{
RWc(V,Λ)ki, µ

′
i

}
〉
n∏
i=1

Dji
µ′i,µi

[Wc(V,Λ)],

(2.23)
see for example [Kli98] or [Biernat11]. The integration measure and there-
fore also the completeness relation for n-particle states can be transformed
from physical momenta to velocity states. This is done in [Kra01] and the
results are summarized in [Biernat11], which shall be repeated shortly. The
completeness relation for n-particle tensor-product states reads

1̂{n} =
∑
{µi}

∫ n∏
i=1

d3pi
(2π)32p0

i

|{pi, σi}〉〈{pi, σi}|. (2.24)

Using the transformed integration measure

∫ n∏
i=1

d3pi
2p0
i

=
∫
d3V

V 0

(
n−1∏
i=1

d3ki
2k0

i

) (∑n
j=1 k

0
j

)3

2k0
n

, (2.25)

the corresponding completeness relation for velocity states becomes

1̂n =
∑
{µi}

∫
d3V

(2π)3V0

(
n−1∏
i=1

d3ki
(2π)32k0

i

) (∑n
i=1 k

0
i

)3
2k0

n

|V ; {ki, µi}〉〈V ; {ki, µi}|.

(2.26)
Therefore the velocity states have to fulfill the orthogonality relation

〈V ′;
{
k′i, µ′i

}
|V ; {ki, µi}〉 = V0δ

3(V′ −V) (2π)32k0
n(∑n

i=1 k
0
i

)3
×

(
n−1∏
i=1

(2π)32k0
i δ

3(k′i − ki)
)

n∏
i=1

δµ′iµi .

(2.27)
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2.2 Relativistic Invariance of Interacting Particles

So far we have constructed a unitary representation of the proper orthochronous
Poincaré group for an interaction-free n-particle system on a pertinent Hilbert
space. The unitarity of the representation ensures relativistic invariance of
our description of freely moving particles. Our next goal is to extend this
construction in such a way that interactions can be included. B. Bakamjian
and L. H. Thomas provided a consistent prescription of doing so [BT53].
This, so called, “Bakamjian-Thomas construction” will be discussed in the
following.

2.2.1 The Point Form of Relativistic Quantum Mechanics

If one deals with an interacting system interaction terms show up in the
Hamiltonian P̂ 0. Since

[P i,Kj ] = ı δijP 0,

it is unavoidable that also other Poincaré generators will be affected by the
interaction. P. A. M. Dirac introduced three different forms of relativistic
dynamics which are specified by the interaction independent Poincaré sub-
groups [Dir49], the “instant form”, the “front form” and the “point form”. In
the instant form the interaction dependent generators, which are also called
“dynamical” generators or “Hamiltonians”, are P 0, K1, K2 and K3 and the
interaction independent or “kinematic” generators are therefore P 1, P 2, P 3,
the generators of spatial translations, and J1, J2 and J3, the generators of
rotations. The term “instant form” refers to the hypersurface of Minkowski
space which is left invariant under the kinematic subgroup generated by the
kinematic generators, in this case the instant x0 = 0. The hypersurface
which is left invariant in the front form is the light front x0 + x3 = 0. In
this form only three generators are dynamical, namely P 0 − P 3, K1 − J2

and K2 + J1, which is less than in any other form. The third and also least
known form is the “point form” of relativistic dynamics with the Lorentz
group being the kinematic group, leaving not only the “point” xµ = 0, but
also the hyperboloid xµxµ = 0 invariant. Since the generators of the Lorentz
group are interaction independent, standard SU(2) Clebsch-Gordan coeffi-
cients can be used to add angular momentum and spin. With the compo-
nents of the four-momentum operator Pµ containing all interactions one has
only to worry about the first two commutation relations in Eq. (2.7) when
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including interactions. This leads to the, so called, “point-form equations”

[Pµ, P ν ] = 0,
Û(Λ)PµÛ †(Λ) = (Λ−1)µνP ν .

(2.28)

2.2.2 Bakamjian-Thomas Construction

The general idea of Bakamjian and Thomas was to start with the genera-
tors corresponding to the non-interacting multi-particle representation and
construct a set of auxiliary operators. This set depends on the specific
form of dynamics. In point form the auxiliary operators are the free mass
operator M̂ free

n , the free velocity operator V̂ µ
free and the generators of the

Lorentz group K̂j
n and Ĵ jn, where the mass and four-velocity operators are

constructed according to

M̂free =
√
P̂µfreeP̂

free
µ , (2.29)

V̂ µ
free = P̂µfree

M̂free
. (2.30)

An interaction term is then added to the mass operator only and the original
set of operators is reconstructed.

M̂ = M̂free + M̂int, (2.31)
P̂µ = (M̂free + M̂int)V̂ µ

free. (2.32)

The algebra, Eq. (2.5), implies constraints on the interaction term added
to the mass operator, namely that its commutator with all other auxiliary
operators vanishes:

[M̂int, V̂
µ] = [M̂int, K̂

j ] = [M̂int, Ĵ
j ] = 0. (2.33)

By satisfying these constraints for the interaction term, one obtains an in-
teracting representation of the Poincaré group on a multi-particle Hilbert
space. Notable, this construction allows even to include instantaneous in-
teractions in a relativistically invariant manner.

2.2.3 Instantaneous Quark-Antiquark Interaction

We have just seen how to introduce an instantaneous interaction into a quan-
tum mechanical theory in such a way that Poincaré invariance is ensured.
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What we need to know in the following is how two-body interactions are
defined in a three- or four-particle Hilbert space. Therefore we will start
with a two-particle Hilbert space and use a two-particle basis which consists
of states that transform irreducibly under (2j + 1)-dimensional represen-
tations of SU(2). This means a change of basis from tensor products of
single-particle states of the form (2.22) to two particle states |k12; k̃; j, µj〉,
with

• k12 . . . total three-momentum of the two particles,

• k̃ . . . magnitude of the three-momentum of particle 1 in the rest frame
of the two-particle system (equals half the relative momentum)1,

• j . . . total (canonical) spin of the two-particle system,

• µj . . . spin projection of the two-particle system.

The way how to construct this transformation explicitly is shown in [Pol09],
[KP91], [Biernat11] and only the result will be stated here:

〈k12; k̃; j, µj |k1, µ1; k2, µ2〉

= (2π)6
∫

Ω
dΩ(k̃)2k0

12δ
3(k12 − k1 − k2)2k̃0

12k̃0
2

2m12
δ3(k̃−B−1

c (ω12)k1)Y ∗lµl(k̃)

×Csµsj1µ̃1j2µ̃2
C
jµj
lµlsµs

Dj1
µ̃1µ1 [R−1

Wc
(ω̃1,Bc(ω12))]Dj2

µ̃2µ2 [R−1
Wc

(ω̃2,Bc(ω12))].
(2.34)

m12 is the invariant mass of the two particle system. ω̃i and ω12 denote
the velocity of particle i in the center-of-momentum frame and the three-
velocity of the two-particle system, respectively.
If we now include a term which provides the interaction between the two
particles, M̂C = M̂ free

12 + M̂int, the Bakamjian-Thomas constraints on the
interacting part imply that the matrix elements of M̂int between states of
an irreducible (2j+1)-dimensional representation are of the form [Biernat11]

〈k′12; k̃′; (l′, s′), j′µ′j |M̂int|k12; k̃; (l, s), j, µj〉
= δjj′δµjµ′j (2π)32k0

12δ
3(k12 − k′12)〈k̃′; l′, s′|M̂int|k̃; l, s〉. (2.35)

Up to this point there is no difference to the Bakamjian-Thomas construction
in instant form. We have constructed the interacting mass operator M̂C

1When dealing with 3 or more particles the tilde always indicates the particle momenta
in the center-of-momentum frame of the 12-subsystem, i.e. k̃1 = −k̃2 = k̃.
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in such a way that it satisfies the same commutation relations with the
auxiliary operators mentioned in Sec. 2.2.2 as the free mass operator M̂ free.
As a consequence the commuting set of operators M̂2

C , k̂12, ĵ
2
C , ĵ

3
c , with ĵC

denoting the operator for the canonical spin [KP91, Biernat11], can also be
used to label the solution of the mass eigenvalue equation

(M̂ free
12 + M̂int)|ΨC〉 = mn|ΨC〉. (2.36)

The solutions are of the form |k12;n, j, µj〉 with n labeling the discrete eigen-
values of M̂C .2 It is now obvious that the projection of eigenstates of M̂C

onto eigenstates of the free mass operator M̂ free
12 is of the form

〈k′12; k̃′; (l′, s′), j′, µ′j |k12, n, j, µj〉 = N2δ(k12−k′12)δjj′δµjµ′ju
j
nl′s′(k̃

′), (2.37)

with N2 being a normalization factor. Inserting a complete set of two-
particle momentum states (2.24) and using Eq. (2.34) leads to the scalar
product

〈k′1, µ′1; k′2, µ′2|k12;n, j, µj〉 = Ñ2δ
3(k12 − k′1 − k′2)Ψnjµjµ′1µ

′
2
(k̃′), (2.38)

where the two-body bound-state wave function is defined by

Ψnjµjµ′1µ
′
2
(k̃′) :=

∑
lsµlµsµ̃1µ̃2

Ylµl(
ˆ̃k′)Csµsj1µ̃1j2µ̃2

Cj2lµlsµsu
j
nls(k̃

′)

×Dj1
µ′1µ̃1

[RWc
(ω̃′1,Bc(ω′12))]Dj2

µ′2µ̃2
[RWc

(ω̃′2,Bc(ω′12))].
(2.39)

The next step is to embed the above defined two-body interaction in a three-
and four-body Hilbert space. Let us assume that particles 1 and 2 interact
via M̂ int

12 , whereas l, a lepton, and W , the gauge boson, act as spectators.
Following [Biernat11] and [KSK03] this leads to scalar products

〈V ′; k′1, µ′1; k′2, µ′2; (k′l), µ′l|V ; k12, n, j, µj ; (kl), µl〉
= N3V

′ 0δ3(V′ −V)δµ′
l
µlδ

3(k′l − kl)Ψnjµjµ′1µ
′
2
(k̃′) (2.40)

and

〈V ′; k′1, µ′1; k′2, µ′2; (k′W ), µ′W ; k′l, µ′l|V ; k12, n, j, µj ; (kW ), µW ; kl, µl〉
= N4V

′ 0δ3(V′ −V)(−gµ′WµW )δµ′
l
µlδ

3(k′W − kW )

×δ3(k′l − kl)Ψnjµjµ′1µ
′
2
(k̃′)

(2.41)
2We are mainly thinking of M̂int being a confining quark-antiquark interaction
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which define the two-body bound-state wavefunction in the three- and four-
body Hilbert spaces.

2.3 Coupled-Channel Approach
In this work weak interactions are treated in a perturbative way and we
restrict our considerations on one-particle-exchange processes. We do this in
a relativistically invariant manner and in such a way that retardation effects
are fully taken into account. Therefore we use a multichannel framework in
which a multichannel matrix mass operator M̂ acts on a truncated Fock-
space (direct sum over a finite number of Hilbert spaces) HN ⊕HN+1⊕ . . .⊕
HM . The dynamics of the theory is then described by the mass eigenvalue
equation

M̂


|ΨN 〉
|ΨN+1〉
...
|ΨM 〉

 = m


|ΨN 〉
|ΨN+1〉
...
|ΨM 〉

 , (2.42)

with

M̂ =


M̂N K̂N→N+1 · · ·

K̂†N→N+1 M̂N+1 · · ·
... . . .

 . (2.43)

The diagonal entries are mass operators M̂N containing the sum of the rela-
tivistic kinetic energies of the particles and instantaneous two-body interac-
tions as described in Sec. (2.2.3). K̂i→j = K̂†j→i, the off-diagonal elements,
are called vertex operators. These vertex operators allow for transitions be-
tween Hilbert spaces corresponding to different particle numbers and species
of particles by particle creation and annihilation:

K̂†N→N+1 : HN → HN+1. (2.44)

A general procedure to construct such vertex operators, which can be used
in a Bakamjian Thomas type mass operator, had been developed in [Kli03a]
and applied in [Biernat11] and [Fuc07] to describe dynamical photon ex-
change in an electron-meson system, as well as in [GRS12] to account for
W-boson exchange and weak mesonic decays. This formalism will be briefly
summarized.
Starting with a quantum-field-theoretical interaction Lagrangian density
Lint(x), the interacting part of the corresponding four-momentum opera-
tor is obtained by integrating the interaction density over the quantization
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surface. Since we are working in point form, which is specified by the space-
like forward hyperboloid xµxµ = τ2 being the quantization surface, the
interaction part of the four-momentum operator reads

P̂µint = −
∫

2 d4x δ(xµxµ − τ2) Θ(x0) xµ L̂int(x). (2.45)

This construction preserves the Poincaré algebra, as long as the interaction
density transforms like a Lorentz scalar [Kra01]

Û(Λ, a)Lint(x)Û †(Λ, a) = Lint(Λx+ a). (2.46)

Having the Bakamjian-Thomas construction in mind, which allows to sepa-
rate the overall four-velocity, we are searching for a velocity-state represen-
tation of the vertex operators K̂n→n+1 which should be connected with Pµint
via

〈V′; k′1, µ′1; · · · ; k′n, µ′n; k′n+1, µ
′
n+1|P̂

µ
int|V; k1, µ1; · · · ; kn, µn〉

= V µ〈V′; k′1, µ′1; · · · ; k′n, µ′n; k′n+1, µ
′
n+1|K̂n→n+1|V; k1, µ1; · · · ; kn, µn〉,

(2.47)

With K̂n→n+1 being diagonal in V (′). Using the transformation properties
of the interaction density and the velocity states, the matrix elements of the
field theoretical interacting momentum operator can be written as

〈V′; k′1, µ′1; · · · ; k′n, µ′n; k′n+1, µ
′
n+1|P̂

µ
int|V; k1, µ1; · · · ; kn, µn〉

= −〈V ′; k′1, µ′1; · · · ; k′n, µ′n; k′n+1, µ
′
n+1|L̂int(0)|V ; k1, µ1; · · · ; kn, µn〉

×
∫

2 d4x δ(xµxµ − τ2) Θ(x0) xµ e−i(
∑

k′0i V
′−
∑

k0
i V )·x. (2.48)

Within the Bakamjian Thomas construction we have to assume that the
left-hand side of Eq. (2.48) is diagonal in V and V ′, which does not hold
in general for the quantum field theoretical case. Evaluating, however, the
integral for equal four-velocities, V = V ′ (see [Kli03a]), we observe that we
can factor out the four-velocity

〈V′; k′1, µ′1; · · · ; k′n, µ′n; k′n+1, µ
′
n+1|P̂

µ
int|V; k1, µ1; · · · ; kn, µn〉

= V µf(k0
i , k
′ 0
j )

×〈k′1, µ′1; · · · ; k′n, µ′n; k′n+1, µ
′
n+1|L̂int(0)|k1, µ1; · · · ; kn, µn〉.

(2.49)
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The factor f(k0
i , k
′ 0
j ) is, according to [Kli03a] and [Kra01], a known function.

Comparing Eq. (2.49) and Eq. (2.47) and keeping in mind that the matrix
elements of the vertex operators should be diagonal in the four-velocity, it
is suggestive to relate the vertex matrix elements and the field-theoretical
interaction density via

〈V; k′1, µ′1; · · · ; k′n, µ′n; k′n+1, µ
′
n+1|K̂n→n+1|V; k1, µ1; · · · ; kn, µn〉

= (2π)3√
(
n+1∑
i=1

k′0i )3 (
n∑
j=1

k0
j )3

V 0 δ3(V−V′)

×〈k′1, µ′1; · · · ; k′n, µ′n; k′n+1, µ
′
n+1|L̂int(0)|k1, µ1; · · · ; kn, µn〉.

(2.50)

The factor f(k0
i , k
′ 0
i ) becomes just a kinematic factor that is chosen such

that the same procedure applied to the pure kinetic part of the field theory
leads to the correct kinetic part of our quantum mechanical model.
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Chapter 3

Neutrino-Meson Scattering

In this work, the process we are interested in is the weak transition of a
heavy-light into either a heavy-light or a light-light meson. In order to learn
something about the inner (parton) structure of such systems, we calculate
the transition amplitude, extract the bound-state current and identify tran-
sition form factors which encode the meson structure. In[GRS12] this has
been done for the situation of semileptonic meson decays. This section will
deal with weak transitions for space-like momentum transfer, as probed in
neutrino-meson scattering. On the hadronic level, using first order perturba-
tion theory, the weak scattering of a meson and a neutrino is accomplished
by the exchange of a single W-boson which transfers charge and changes
the quark flavor (see Fig.3.1). The simplest not-point-like structure one can
think of in a constituent quark model, is a confined quark antiquark pair
building up the meson1(see Fig. 3.2).

M M ′
W

lνl

Figure 3.1: Neutrino-meson scattering on the hadronic level

With the framework presented in sections 2.2 and 2.3 we will calculate
expressions for the time-ordered contributions which sum up to the covariant
scattering amplitude for the process depicted in Fig. 3.2.

1The use of upper- and lower-case letters should indicate the heavy-light nature of the
incoming meson.

25
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q̄

Q q′

M M ′

W

lνl

Figure 3.2: Simplest substructure within a CQM as probed in neutrino-
meson scattering

3.1 1-W-Exchange Amplitude

To extract the weak M → M ′ transition current, we first calculate the
invariant 1-W-exchange amplitude. Without loss of generality let us consider
the B−νe → D0e− scattering process, where the B− consists of a heavy b and
a light ū quark, whereas the D0 contains a heavy c and a light ū quark in our
constituent picture.2 The transition amplitude can be decomposed into two
time-ordered graphs shown in Fig. 3.3. Using the coupled-channel approach,
the underlying Hilbert space is the direct sum of Hūbνe ,HūbW+e,Hūce and
HūcW−νe . The matrix mass operator leading to the 1-W-exchange amplitude
reads:

M̂ =


M̂ūbνe K̂ūbνe→ūbWe 0 K̂ūbνe→ūcWνe

K̂†ūbνe→ūbWe M̂ūbWe K̂ūbWe→ūce 0
0 K̂†ūbWe→ūce M̂ūce K̂ūce→ūcWνe

K̂†ūbνe→ūcWνe
0 K̂†ūce→ūcWνe

M̂ūcWνe

 . (3.1)

In analogy to Eq.(2.42) the mass eigenvalue equation then reads:

M̂


|Ψūbνe〉
|ΨūbWe〉
|Ψūce〉
|ΨūcWνe〉

 = m


|Ψūbνe〉
|ΨūbWe〉
|Ψūce〉
|ΨūcWνe〉

 . (3.2)

With the help of a Feshbach reduction we eliminate the channels which
contain the W. The optical potential which describes the transition between

2We emphasize that the presented derivations do not depend on the heavy-light struc-
ture of the outgoing meson and all calculations also hold for heavy-light to light-light
transitions.
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ū

b c

B− D0

W+
eνe

ū

b c

B− D0

W−
eνe

Figure 3.3: Time-ordered graphs contributing to the scattering amplitude
for the B−νe → D0e− transition.

the two channels we are interested in is then

V̂ ūbνe→ūce
opt (m) = K̂ūbWe→ūce(m− M̂ūbWe)−1K̂†ūbWe→ūbνe

+ K̂ūcWνe→ūce(m− M̂ūcWνe)−1K̂†ūcWνe→ūbνe . (3.3)

Since we are only interested in the Born term for νeB− → eD0 scattering
we just have to consider on-shell matrix elements (k0

B + k0
νe = k0

D + k0
e) of

V̂ ūbνe→ūce
opt between eigenstates of M̂ūbνe and M̂ūce, respectively:

〈V′; kD, αD; ke, µe|V̂
ūbνe→ūce

opt (m)|V; kB, αB; kνe , µνe〉o.s = Γ1 + Γ2. (3.4)

As stated above one gets two time-orderings

Γ1 = 〈V′; kD, αD; ke, µe|K̂ūbWe→ūce(m− M̂ūbWe)−1

×K̂†ūbWe→ūbνe |V; kB, αB; kνe , µνe〉o.s.,

Γ2 = 〈V′; kD, αD; ke, µe|K̂ūcWνe→ūce(m− M̂ūcWνe)−1

×K̂†ūcWνe→ūbνe |V; kB, αB; kνe , µνe〉o.s..

(3.5)

Because the states |V′; kD, αD; ke, µe〉 and |V; kB, αB; kνe , µνe〉 are eigen-
functions of the operators M̂ūce and M̂ūbνe , respectively, and these operators
contain an instantaneous confinement potential, these states are two-body
velocity states.3 To evaluate expression (3.5) we have to insert the appro-

3Keep in mind that the momenta ke and kνe are not independent but are fixed through
condition (2.21).
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priate completeness relations: 4

Γ1 = 〈V′; kD, αD; ke, µe|1ūceK̂ūbWe→ūce1ūbWe(m− M̂ūbWe)−1

×1ūbWe1ūbWeK̂
†
ūbWe→ūbνe1ūbνe |V; kB, αB; kνe , µνe〉 (3.6)

Γ2 = 〈V′; kD, αD; ke, µe|1ūceK̂ūcWνe→ūce1ūcWνe(m− M̂ūcWνe)−1

×1ūcWνe1ūcWνeK̂
†
ūcWνe→ūbνe1ūbνe |V; kB, αB; kνe , µνe〉. (3.7)

Using the completeness relation Eq.(2.26) we obtain for the first time order-
ing:

Γ1 =
∑

µūµcµe

∫
d3V

(2π)3V0

d3kūd
3ke

(2π)62k0
ū2k0

e

(k0
ū + k0

c + k0
e)3

2k0
c

×
∑

µ′ūµ
′
b
µ′Wµ′e

∫
d3V ′

(2π)3V ′0

d3k′ūd
3k′Wd

3k′e
(2π)92k′ 0

ū 2k′ 0
W 2k′ 0

e

(k′ 0
ū + k′ 0

W + k′ 0
e + k′ 0

b )3

2k′ 0
b

×
∑

µ′′
ūb
µ′′
W
µ′′
e

∫
d3V ′′

(2π)3V ′′0

d3k′′Wd
3k′′e

(2π)62k′′ 0
W 2k′′ 0

e

(k′′ 0
ūb + k′′ 0

W + k′′ 0
e )3

2k′′ 0
ūb

×
∑

µ′′ūµ
′′
b
µ′′Wµ′′e

∫
d3V ′′

(2π)3V ′′0

d3k′′ūd
3k′′Wd

3k′′e
(2π)92k′′ 0

ū 2k′′ 0
W 2k′′ 0

e

(k′′ 0
ū + k′′ 0

b + k′′ 0
e )3

2k′′ 0
b

×
∑

µ′′′ū µ
′′′
b
µ′′′νe

∫
d3V ′′′

(2π)3V ′′′0

d3k′′′ū d
3k′′′νe

(2π)62k′′′ 0
ū 2k′′′ 0

νe

(k′′′ 0
ū + k′′′ 0

b + k′′′ 0
νe )3

2k′′′ 0
b

× 〈V′; kD, αD; ke, µe|V; kū, µū; kc, µcke, µe〉

× 〈V; kū, µū; ke, µe|K̂ūbWe→ūce|V′; k′ū, µ′ū; k′b, µ′b; k′W , µ′W ; k′e, µ′e〉
× 〈V′; k′ū, µ′ū; k′b, µ′b; k′W , µ′W ; k′e, µ′e|

(m− M̂ūbWe)−1|V′′; k′′ūb, α′′ūb; k′′W , µ′′W ; k′′e , µ′′e〉
× 〈V′′; k′′ūb, α′′ūb; k′′W , µ′′W ; k′′e , µ′′e |V′′; k′′ū, µ′′ū; k′′b , µ′′b ; k′′W , µ′′W ; k′′e , µ′′e〉
× 〈V′′; k′′ū, µ′′ū; k′′b , µ′′b ; k′′W , µ′′W ; k′′e , µ′′e |

K̂†ūbWe→ūbνe |V
′′′; k′′′ū , µ′′′ū ; k′′′b , µ′′′b ; k′′′νe , µ

′′′
νe〉

× 〈V′′′; k′′′ū , µ′′′ū ; k′′′b , µ′′′b ; k′′′νe , µ
′′′
νe |V; kB, αB; kνe , µνe〉. (3.8)

The further evaluation of the matrix elements occurring in Eq. (3.8) is done
in Secs. 3.1.1 and 3.1.2.

4Underlined characters refer to states where two constituents are confined and form a
meson
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3.1.1 Scalar Products and Wave Functions

In Sec. 2.2.3 we have given a rather general expression for the scalar product
between velocity states for free particles and velocity states describing a two-
particle bound state. To calculate the transition amplitude from which we
are going to extract the bound-state current for neutrino-meson scattering
we need explicit expressions for such scalar products. The first scalar prod-
uct occurring in Eq. (3.8) is the one between the outgoing state containing
the D0 meson and the electron and the free state with the constituents of
the D0 and the electron. According to Eq. (2.40) it can be written as

〈V′; kD, αD; ke, µe|V; kū, µū; kc, µc; ke, µe〉
= N3V

0δ3(V−V′)δµeµeδ3(ke − ke)Ψ∗αDµūµc(k̃). (3.9)

Two-particle velocity states are normalized through the condition

〈V′; kD, αD; ke, µe|V′′,k′D, α′D; k′e, µe′〉

= (2π)6V ′ 0δ3(V′ −V′′)δ3(ke − k′e)δµeµe′δαDα′D
2ke02k0

D

(ke0 + k0
D)3 .(3.10)

Inserting the completeness relation for the free states, Eq. (2.26), gives

〈V′; kD, αD; ke, µe|1ūce|V′′,k′D, α′D; k′e, µe′〉

=
∑

µūµcµe

∫
d3V

(2π)9V0

d3ked
3kū

2k0
e2k0

ū

(k0
e + k0

ū + k0
c )3

2k0
c

×〈V′; kD, αD; ke, µe|V; kū, µū; kc, µc; ke, µe〉
×〈V; kū, µū; kc, µc; ke, µe|V′′,k′D, α′D; k′e, µe′〉. (3.11)

As a consequence of Eq. (2.40) and with the transformed integration mea-
sure (see [Fuc07])

d3kū = d3k̃ū
2k0

ū2k0
c

k̃0
ū2k̃0

c

k̃0
ū + k̃0

c

k0
ū + k0

c

, (3.12)

we can make use of the normalization condition for the wave functions

∑
µūµc

∫
d3k̃ūΨ∗αDµūµc(k̃)Ψα′Dµūµc

(k̃) = δαDα′D . (3.13)
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Comparison of Eq. (3.13) with Eq. (3.10) gives us the scalar product we
want to know:

〈V′; kD, αD; ke, µe|V; kū, µū; kc, µc; ke, µe〉

= (2π)
15
2

√√√√ 2k0
D2ke0

(k0
D + ke

0)3

√
2k0

e2k0
ūc

(k0
e + k0

ūc)3

√√√√ 2k̃0
ū2k̃0

c

2(k̃0
ū + k̃0

c )3

×V 0δ3(V−V′)δ3(ke − ke)δµeµeΨαDµūµc
(k̃ū). (3.14)

The remaining four scalar products in Eq. (3.8) are computed in a straight
forward manner using that

(m− M̂ūbWe)−1|V′′; k′′ūb, α′′ūb; k′′W , µ′′W ; k′′e , µ′′e〉
= (m− k′′ 0

ūb − k′′ 0
W − ke′′ 0)−1|V′′; k′′ūb, α′′ūb; k′′W , µ′′W ; k′′e , µ′′e〉.

(3.15)

For the W the sum over the W spin orientation runs over the physical
values, i.e. µW = −1, 0, 1. Following the same procedure as above the scalar
products then become:

〈V′; k′ū, µ′ū; k′b, µ′b; k′W , µ′W ; k′e, µ′e|
×(m− M̂ūbWe)−1|V′′; k′′ūb, α′′ūb; k′′W , µ′′W ; k′′e , µ′′e〉

= (m− k′′ 0
ūb − k′′ 0

W − ke′′ 0)−1(2π)
21
2

√√√√ 2k̃′ 0
ū 2k̃′ 0

b

2(k̃′ 0
ū + k̃′ 0

b )

×

√√√√ 2k′′ 0
ūb 2ke′′ 02k′′ 0

W

(k′′ 0
ūb + ke

′′ 0 + k′′ 0
W )3

√
2k′ 0

ūb 2k′′ 0
e 2k′′ 0

W

(k′ 0
ūb + k′′ 0

e + k′′ 0
W )3V

′′ 0δ3(V′′ −V′)

×δµe′′µ′eδ
3(ke′′ − k′e)δµ′′

W
µ′W
δ3(k′′W − k′W )Ψα′′

ūb
µ′ūµ

′
b
(k̃′ū),

(3.16)

〈V′′; k′′ūb, α′′ūb; k′′W , µ′′W ; k′′e , µ′′e |V′′; k′′ū, µ′′ū; k′′b , µ′′b ; k′′W , µ′′W ; k′′e , µ′′e〉

= (2π)
21
2

√√√√ 2k′′ 0
ūb 2ke′′ 02k′′ 0

W

(k′′ 0
ūb + ke

′′ 0 + k′′ 0
W )3

√
2k′′ 0

ūb 2k′′ 0
e 2k′′ 0

W

(k′′ 0
ūb + k′′ 0

e + k′′ 0
W )3

×

√√√√ 2k̃′′ 0
ū 2k̃′′ 0

b

2(k̃′′ 0
ū + k̃′′ 0

b )
V ′′ 0δ3(V′′ −V′′)δµe′′µ′′e δ

3(ke′′ − k′′e)

×δµ′′
W
µ′′W
δ3(k′′W − k′′W )Ψα′′

ūb
µ′′ūµ

′′
b
(k̃′′ū),

(3.17)
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〈V′′′; k′′′ū , µ′′′ū ; k′′′b , µ′′′b ; k′′′νe , µ
′′′
νe |V; kB, αB; kνe , µνe〉

= (2π)
15
2

√√√√ 2k0
B2k0

νe

(k0
B + k0

νe)3

√√√√ 2k0
νe2k′′′ 0

ūb

(k0
νe + k′′′ 0

ūb )3

√√√√ 2k̃′′′ 0
ū 2k̃′′′ 0

b

2(k̃′′′ 0
ū + k̃′′′ 0

b )

×V 0δ3(V−V′′′)δ3(kνe − k′′′νe)δµνeµ′′′νeΨαBµ
′′′
ū µ
′′′
b

(k̃′′′ū ).

(3.18)

3.1.2 Vertex-Operator Matrix Elements

We have already mentioned in Sec. 2.3 how vertex-operator matrix elements
are constructed from interaction Lagrangian densities . Starting with Eq.
(2.50) we show the calculation for the matrix elements occurring in Eq.
(3.8).

〈V; kū, µū; kc, µc; ke, µe|K̂ūbWe→ūce|V′; k′ū, µ′ū; k′b, µ′b; k′W , µ′W ; k′e, µ′e〉

= (2π)3√
(Mūce)3(M ′ūbWe)3

V 0δ3(V−V′)

×〈kū, µū; kc, µc; ke, µe|Lweak
int (0)|k′ū, µ′ū; k′b, µ′b; k′W , µ′W ; k′e, µ′e〉.

(3.19)

Inserting the weak interaction density

Lintweak(0) = Ψ̄(0) −ıeVcab

2
√

2 sin ΘW

γµ(1− γ5)Ψ(0)Wµ(0) (3.20)

• with Ψ being the quark-field operator,

• e...positron charge

• Vcab ...Cabbibo Matrix-element of the flavors involved in the transition

• sin ΘW ...Weinberg mixing-angle

• Wµ...W-boson field
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and using the plain-wave expansions for quark and boson fields

Ψ̂(x) = 1
(2π)3

∑
σ=± 1

2

∫
d3p

2p0

(
eıp·xvσ(p)d̂†σ + e−ıp·xuσ(p)ĉσ(p

)
ˆ̄Ψ(x) = 1

(2π)3

∑
σ=± 1

2

∫
d3p

2p0

(
e−ıp·xv̄σ(p)d̂σ + e−ıp·xūσ(p)ĉ†σ(p

)

Ŵµ(x) = 1
(2π)3

∑
σ=0,±1

∫
d3p

2p0

(
eıp·xεµ(p, σ)â†σ(p) + e−ıp·xε∗µ(p, σ)âσ(p)

)
,

(3.21)

the velocity-state matrix element of the interaction density becomes

1
(2π)9

−ıeVcab

2
√

2 sin ΘW

∑
σ,σ′,σ′′

∫
d3p

2p0
d3p′

2p′ 0
d3p′′

2p′′ 0 〈V; kū, µū; kc, µc; ke, µe|

×
(
v̄σ(p)d̂σ + ūσ(p)ĉ†σ(p)

)
γµ(1− γ5)

(
vσ′(p′)d̂†σ′(p

′) + uσ′(p′)ĉσ′(p′)
)

×
(
εµ(p′′, σ′′)â†σ′′(p

′′) + ε∗ µ(p′′, σ′′)âσ′′(p′′)
)
|

×V′; k′ū, µ′ū; k′b, µ′b; k′W , µ′W ; k′e, µ′e〉.
(3.22)

Now we collect only those terms which correspond to the transition under
investigation, namely b+W → c. All other terms lead to vanishing matrix
elements, the only contributing term is

〈V; kū, µū; kc, µc; ke, µe|ūσ(p)ĉ†σ(p)γµ(1− γ5)uσ′(p′)ĉσ′(p′)
×ε∗ µ(p′′, σ′′)âσ′′(p′′)|V′; k′ū, µ′ū; k′b, µ′b; k′W , µ′W ; k′e, µ′e〉.

(3.23)

The velocity states can be expressed by creation operators acting on the
vacuum.

|~k1, µ1;~k2, µ2; . . . ;~kn, µn〉 = ĉ†µ1(~k1) . . . ĉ†µi(~ki)d̂
†
µi+1(~ki+1) . . . d̂†µn(~kn)|0〉,

(3.24)
with

ĉ†µ1(~k1) . . . ĉ†µi(~ki) . . . quark creation operators and

d̂†µi+1(~kd+1) . . . d̂†µn(~kn) . . . antiquark creation operators.
(3.25)
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Concentrating on the creation and annihilation operators in Eq.(3.23) and
expressing the velocity states by means of Eq.(3.24) we get

〈kū, µū; kc, µc; ke, µe|ĉσ(p)ĉ†σ′(p
′)âσ′′(p′′)|k′ū, µ′ū; k′b, µ′b; k′W , µ′W ; k′e, µ′e〉

= 〈0|d̂µū ĉµc ĉµe ĉ†σ ĉσ′ âσ′′ d̂
†
µ′ū
ĉ†µ′

b
ĉ†µ′e â

†
µ′W
|0〉

= 〈0|({d̂µū , d̂
†
µ′ū
} − d̂†µ′ū d̂µū)({ĉµc , ĉ†σ} − ĉ†σ ĉµc)({ĉµe , ĉ

†
µ′e
} − ĉ†µ′e ĉµe)

×({ĉσ′ , ĉ†µ′
b
} − ĉ†µ′

b
ĉσ′)([âσ′′ , â†µ′W ]− â†µ′W âσ′′)|0〉.

(3.26)

Because all creation operators are acting on the bra and all annihilation
operators are acting on the ket, only the product of (anti)commutators
gives a non vanishing contribution which can be evaluated by using the
(anti)commutation relations

{
ĉσ(p), ĉ†σ′(p

′)
}

=
{
d̂σ(p), d̂†σ′(p

′)
}

= (2π)32p0δ3(p− p′)δσσ′ ,

[
âσ(p), â†σ′(p

′)
]

= δσσ′(2π)32p0δ3(p− p′).
(3.27)

After evaluating the summations and integrations by using the appropriate
Dirac- and Kronecker-deltas, the interaction-density matrix element (3.22)
becomes

〈V; kū, µū; kc, µc; ke, µe|K̂ūbWe→ūce|V′; k′ū, µ′ū; k′b, µ′b; k′W , µ′W ; k′e, µ′e〉

= (2π)9√
(Mūce)3(M ′ūbWe)3

V 0δ3(V−V′)2k0
ūδ

3(kū − k′ū)δµūµ′ū2k0
eδ

3(ke − k′e)δµeµ′e

× −ıeVcab√
2 sin ΘW

ūµc(kc)γµ
(1− γ5)

2 uµ′
b
(k′b)ε∗µ(~k′W , µ′W ).

(3.28)
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In the same manner the second vertex-operator matrix element occurring in
Eq. (3.8) is obtained:

〈V′′; k′′ū, µ′′ū; k′′b , µ′′b ; k′′W , µ′′W ; k′′e , µ′′e |K̂
†
ūbWe→ūbνe |V

′′′; k′′′ū , µ′′′ū ; k′′′b , µ′′′b ; k′′′νe , µ
′′′
νe〉

= (2π)9√
(M ′′ūbWe)3(Mūbνe)3

V ′′0 δ
3(V′′ −V′′′)2k′′ 0

ū δ3(k′′ū − k′′′ū )δµ′′ūµ′′′ū 2k′′ 0
b

×δ3(k′′b − k′′′b )δµ′′
b
µ′′′
b

−ıeVcab√
2 sin ΘW

ūµ′′e (k′′e)γµ
(1− γ5)

2 uµ′′′νe (k′′′νe)ε
µ(~k′′W , µ′′W )

(3.29)

3.2 Bound-State Current

To extract the bound-state current we have to evaluate the scattering ampli-
tude, Eq.(3.4), by inserting the expressions (3.14), (3.28),(3.16),(3.17),(3.29)
and (3.18) into Eq.(3.8). We collect all factors 2π, carry out the integrations
over the overall three-velocities by means of the appropriate delta-functions
and substitute all spin polarizations according to

∑
µ δµµ′ ⇒ µ → µ′. Also

the integrations over the lepton momenta, the exchange particle momenta
and the constituent momenta k′ū, k′′ū and k′′b can be carried out by means of
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corresponding δ-functions.

Γ1 = (2π)3V 0δ3(V−V′)
(m− k′′ 0

ūb − k′′ 0
W − k0

e)

×
∑

µ′ūµ
′
b
µc

∑
µ′′
ūb
µ′′ūµ

′′
b

∫ ∫
d3kūd

3k′′ū
(k0
ū + k0

c + k0
e)3

2k0
c

×
∑
µ′W

(k0
ū + k′′ 0

W + k0
e + k′ 0

b )
2k′′ 0

W 2k0
e2k0

ū2k′ 0
b

(k′′ 0
ūb + k′′ 0

W + k0
e)3

2k′′ 0
W 2k0

e2k′′ 0
ūb

×
∑
µ′′
W

δµ′′
W
µ′W
ε∗ ν(k′W , µ′W ) (k′′′ 0

ū + k′′ 0
W + k0

e)3

2k′′′ 0
ū 2k′′ 0

W 2k0
e2k′′′ 0

b

×
∑
µ′′W

δµ′′
W
µ′′W
εµ(k′′W , µ′′W )

(k′′′ 0
ū + k′′′ 0

b + k0
νe)

3

2k0
νe

×
√

2k0
D2k0

e

(k0
D + k0

e)3

√
2k0

e2(k0
ū + k0

c )
(k0
e + k0

ū + k0
c )3

√√√√ 2k̃0
ū2k̃0

c

2(k̃0
ū + k̃0

c )
Ψ∗αDµūµc(k̃ū)

× −ıeVcb√
2 sin ΘW

ūµc(kc)γν
1− γ5

2 uµ′
b
(k′ū)

×

√√√√ 2k̃′ 0
ū 2k̃′ 0

b

2(k̃′ 0
ū + k̃′ 0

b )
2k′′ 0

ūb 2k0
e2k′′ 0

W

(k′′ 0
ūb + k′′ 0

W + k0
e)3

×

√
2(k′ 0

ū + k′ 0
b )2k0

e2k′′ 0
W

(k′ 0
ū + k′ 0

b + k0
e + k′′ 0

W )3 Ψα′′µūb
µ′ūµ

′
b
(k̃′ū)

× −ıe√
2 sin ΘW

ūµe(ke)γµ
1− γ5

2 uµνe (kνe)

×

√√√√ 2k0
B2k0

νe

(k0
B + k0

νe)3

√
2k0

νe2(k′′′ 0
ū + k′′′ 0

b )
(k0
νe + k′′′ 0

ū + k′′′ 0
b )3

2k̃′′′ 0
ū 2k̃′′′ 0

b

2(k̃′′′ 0
ū + k̃′′′ 0

b )

×

√
2(k′′′ 0

ū + k′′′ 0
b )2k0

e2k′′ 0
W

(k′′′ 0
ū + k′′′ 0

b + k0
e + k′′ 0

W )3 ΨαBµ
′′
ūµ
′′
b
(k̃′′′ū )Ψαūbµ

′′
ūµ
′′
b
(k̃′′′ū ).

(3.30)

Since k′′ū = k′′′ū and k′′b = k′′′b , equivalent identitys also hold for the tilded
momenta in the meson center-of-momentum frame. This means that we can
substitute k̃′′ū and k̃′′b by k̃′′′ū and k̃′′′b , respectively. As a consequence we can
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make use of the normalization condition

∑
µ′′ūµ

′′
b

∫
Ψ∗α′′

ūb
µ′′ūµ

′′
b
(k̃′′′ū )ΨαBµ

′′
ūµ
′′
b
(k̃′′′ū )d3k̃′′′ū = δα′′

ūb
αB
, (3.31)

where we have used the transformed integration measure, Eq.(3.12). By
using the same integral transformation for the remaining k̃ū together with
the completeness relation for the W-boson polarization vectors

∑
σ=0,±1

εµ(k, σ)ε∗ ν(k, σ) = −gµν + kµkν

m2
W

, (3.32)

we finally obtain

Γ1 = (2π)3V 0δ3(V−V′) 1
(k0
D + k0

e)3(k0
B + k0

νe)3

× −e
2Vcb

2 sin ΘW
2

1
2 ūµe(ke)γ

µ(1− γ5)uµνe (kνe)

×
(−gµν + kµW kνW

m2
W

)

2k′′ 0
W (m− k′′ 0

ūb − k′′ 0
W − k0

e)
1
22
√
k0
Dk

0
B

∫
d3k̃ū
2k′ 0

b

×
√
k′ 0
ū + k′ 0

b

k0
ū + k0

c

√√√√ k̃0
ū + k̃0

c

k̃′ 0
ū + k̃′ 0

b

√√√√ k̃′ 0
ū k̃′ 0

b

k̃0
ūk̃

0
c

×
∑

µ′ūµ
′
b
µc

ūµc(kc)γν(1− γ5)uµ′
b
(k′b)ΨαDµ

′
ūµc

(k̃ū)ΨαBµ
′
ūµ
′
b
(k̃′ū).

(3.33)

In a straight forward manner the second time-ordered contribution to the
scattering amplitude, Eq.(3.4), is obtained. Both time orderings differ only
in the propagator, but because all particles are on their mass-shell both
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terms sum up to the covariant W-propagator 5:

1
2k0

W

(
1

m− k0
B − k0

W − k0
e)

+ 1
m− k0

D − k0
W − k0

νe

)

= 1
2k0

W

(
1

(k0
νe − k0

e)− k0
W

+ 1
−(k0

νe − k0
e)− k0

W

)

= 1
(k0
νe − k0

e)2 − k0
W

2

= 1
q2 −m2

W

. (3.34)

Comparing our result with the scattering amplitude one expects from lead-
ing order perturbative quantum field theory, we can identify the hadronic
current for the B−D transition in a unique way. So finally we are left with
the 1-W-exchange scattering amplitude

〈V′; kD, αD; ke, µe|V̂
ūbνe→ūce

opt (m)|V; kB, αB; kνe , µνe〉

= V 0δ3(V−V′) (2π)3

(k0
D + k0

e)3(k0
B + k0

νe)3

× −e2Vcb

2 sin ΘW
2

1
2 ūµe(ke)γ

µ(1− γ5)uµνe (kνe)

×
(−gµν + kµW kνW

m2
W

)

q2 −m2
W

1
2J

ν
B→D(kB, αB; kD, αD) (3.35)

and the bound state current

JνB→D(kB, αB; kD, αD) =

2
√
k0
Dk

0
B

∫
d3k̃ū
2k′ 0

b

√
k′ 0
ū + k′ 0

b

k0
ū + k0

c

√√√√ k̃0
ū + k̃0

c

k̃′ 0
ū + k̃′ 0

b

√√√√ k̃′ 0
ū k̃′ 0

b

k̃0
ūk̃

0
c

×
∑

µ′ūµ
′
b
µc

ūµc(kc)γν(1− γ5)uµ′
b
(k′b)Ψ∗αDµ′ūµc(k̃ū)ΨαBµ

′
ūµ
′
b
(k̃′ū).

(3.36)

3.2.1 Pseudoscalar Current

Now we will have a closer look on the overlap of incoming and outgoing me-
son wave functions in the bound state current, Eq.(3.36). In Sec. 2.2.3 we

5q refers to the four-momentum transfer during the scattering process and is defined
as qµ = (pB − pD)µ = (pe − pνe )µ.
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have already given a general definition of the two-body bound state wave
function, Eq.(2.39), where the angular and radial part, of course, depend
on the specific potential used to model instantaneous confinement. Using
Eq.(2.39), the overlap of meson wave functions together with the summa-
tions over the constituent spin polarizations can be expressed as:

∑
µcµ′ūµ

′
b

Ψ∗αDµ′ūµc(k̃ū)ΨαBµ
′
ūµ
′
b
(k̃′ū)

=
∑

µcµ′ūµ
′
b

∑
lsµlµsµ̃ūµ̃c

∑
l′s′µ′

l
µ′sµ̃
′
ūµ̃
′
b

×Y ∗lµl(k̃ū)Csµs ∗jūµ̃ūjcµ̃c
C
jµj ∗
lµlsµs

uj ∗nls(k̃ū)

×Yl′µ′
l
(k̃′ū)Cs

′µ′s
j′ūµ̃
′
ūj
′
b
µ̃′
b
C
j′µ′j
l′µ′

l
s′µ′s

uj
′

n′l′s′(k̃
′
ū)

×Djū ∗
µ′ūµ̃ū

[RW (ω̃ū, Bc(ωūc))]Djc ∗
µcµ̃c [RW (ω̃c, Bc(ωūc))]

×Dj′ū
µ′ūµ̃

′
ū
[RW (ω̃′ū, Bc(ω′ūb))]D

j′b
µ′
b
µ̃′
b
[RW (ω̃′b, Bc(ω′ūb))].

(3.37)

Here we have used the abbreviations for the four-velocities

ω12 = k12
m12

= k1 + k2√
kµ12k12 µ

,

ω̃i = k̃i
mi
,

k̃i = B−1
c (ω12)ki.

If we consider the meson wave function to be pure s-wave, the angular part
as well as the Clebsh-Gordan coefficients simplify to

Y ∗00 = Y00 = 1√
4π
, C

jµj
00sµs = δsjδµsµj , C

j′µ′j
00s′µ′s = δs′j′δµ′sµ′j . (3.38)

For the case of pseudoscalar to pseudoscalar transitions, on which we will
restrict our treatment, the remaining Clebsh Gordan coefficients give

C00
1
2 µ̃ū

1
2 µ̃c

= (−1)1−µ̃c
√

2
δµ̃c−µ̃ū , C

00
1
2 µ̃
′
ū

1
2 µ̃
′
b

= (−1)1−µ̃′b
√

2
δµ̃′

b
−µ̃′ū .
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Therefore Eq.(3.37) becomes∑
µcµ′ūµ

′
b

Ψ∗αDµ′ūµc(k̃ū)ΨαBµ
′
ūµ
′
b
(k̃′ū)

=
∑

µcµ′ūµ
′
b

∑
µ̃cµ̃ū

1
4πu

0 ∗
n00(k̃ū)u0

n′00(k̃′ū)(−1)1−µ̃c−µ̃′b

2

×D
1
2 ∗
µ′ū−µ̃c

[RW (ω̃ū, Bc(ωūc))]D
1
2 ∗
µcµ̃c [RW (ω̃c, Bc(ωūc))]

×D
1
2
µ′ū−µ̃′b

[RW (ω̃′ū, Bc(ω′ūb))]D
1
2
µ′
b
µ̃′
b
[RW (ω̃′b, Bc(ω′ūb))]

= 1
8π

∑
µcµ′b

u∗n(k̃ū)un′(k̃′ū)D
1
2
µ′
b
µc

[RW (ω̃′b, Bc(ω′ūb))×

× R−1
W (ω̃′ū, Bc(ω′ūb))RW (ω̃ū, Bc(ωūc))R−1

W (ω̃c, Bc(ωūc))]. (3.39)

Inserting this into Eq.(3.36) for the bound state current, we obtain

JνB→D(kB, αB; kD, αD) =

√
k0
Dk

0
B

4π

∫
d3k̃ū
2k′ 0

b

√
k′ 0
ū + k′ 0

b

k0
ū + k0

c

√√√√ k̃0
ū + k̃0

c

k̃′ 0
ū + k̃′ 0

b

√√√√ k̃′ 0
ū k̃′ 0

b

k̃0
ūk̃

0
c

×
∑
µ′
b
µc

ūµc(kc)γν(1− γ5)uµ′
b
(k′b)u∗n(k̃ū)un′(k̃′ū)

×D
1
2
µ′
b
µc

[RW (ω̃′b, Bc(ω′ūb)) R−1
W (ω̃′ū, Bc(ω′ūb))×

×RW (ω̃ū, Bc(ωūc))R−1
W (ω̃c, Bc(ωūc))]. (3.40)
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Chapter 4

Spacelike Form Factors

Having now an expression for the bound-state current in terms of con-
stituent currents and bound-state wave functions at hand, we can calcu-
late the current numerically and obtain weak form factors as they could, in
principle, be measured in different meson-neutrino scattering processes like
B− + νe → D0 + e−, B− + νe → π0 + e− and D− + νe → π0 + e−.

4.1 Covariant Decomposition
The general covariant structure of a weak pseudoscalar current is determined
by two covariants which can be built with pα′ and pα, the four-momenta of
the incoming and outgoing mesons. Each covariant is multiplied with a
Lorentz scalar that can only depend on the momentum transfer squared:

Jµ(pα, pα′) = (pα′ + pα)µF+(q2) + (pα′ − pα)µF−(q2). (4.1)

An equivalent decomposition for such a current is given by [WSB85]

Jµ(pα, pα′) =
(

(pα′ + pα)µ − m2
α′ −m2

α

q2 qµ
)
F1(q2) + m2

α′ −m2
α

q2 qµF0(q2).

(4.2)
The four-momentum transfer is defined as q = pα′ −pα1 with q2 = qµqµ. By
comparing both decompositions it follows immediately that

F1(q2) = F+(q2).

F0(q2) = F+(q2) + q2

m2
α′ −m2

α

F−(q2). (4.3)

1Primed variables refer to the incoming- and unprimed to the outgoing meson.
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We have already mentioned in Sec. 2.2.2 that the Bakamjian-Thomas con-
struction spoils cluster separability. As soon as a spectator is present in a
Bakamjian-Thomas type mass operator, it influences the interaction via the
overall velocity-conserving delta function. This delta function is necessary
due to the splitting of the four-momentum operator into the product of an
interacting mass operator and a free four-velocity operator (see Eq. (2.32)).
This argument holds for both types of interactions used in this work, in-
stantaneous confinement interactions as well as vertex interactions (recall
Eqs. (2.40),(2.41) and (2.50)). As a consequence it is conceivable that the
current also depends on a covariant made up by the spectator’s momenta.
This would give rise to an additional unphysical form factor. In contrast
to electromagnetic form factors of heavy-light mesons calculated within this
framework (cf. [GR11]), where this happens, this is not the case for weak
meson transition form factors. However, the violation of cluster separability
enters our description through a Mandelstam s dependence of the form fac-
tors. This means that the form factors in the covariant decomposition of the
bound state current, Eq. (4.2), are not functions of the momentum transfer
squared alone, but also of the invariant mass squared of the electron-meson
system (i.e. Mandelstam s):

Jµ(pα, pα′) =
(

(pα′ + pα)µ − m2
α′ −m2

α

q2 qµ
)
F1(q2, s)+m2

α′ −m2
α

q2 qµF0(q2, s).

(4.4)
The s-dependence of the form factors may also be interpreted as a depen-
dence on the frame in which the γ∗M → M ′ subprocess is considered. It
is not for the violation of cluster separability alone, that we experience this
frame dependence of the form factors. Also the contributions of non-valence
degrees of freedom, in particular Z-graphs, depend on the invariant mass of
the system. It is known for front-form dynamics that Z-graphs vanish when
one uses the q+ = 0 Drell-Yan-West frame [BCJ03]. This also holds for the
infinite momentum frame in instant form. For a more detailed discussion and
a good overview on the correspondence between front form dynamics and
the infinite momentum frame in instant form, we refer to [JISu13]. Owing to
the suppression of Z-graphs, the infinite-momentum frame thus seems to be
preferable for the extraction of hadron form factors as long as one works only
within a valence-quark picture. For finite particle momenta, on the other
hand, non-valence degrees-of-freedom are likely to play a non-negligible role
and a pure valence-quark description may miss part of the physics.
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4.2 Kinematics

To analyze the s-dependence addressed above, we calculate the current,
Eq. (3.40), numerically using two particular kinematic settings. These are
the infinite-momentum-frame, where the invariant mass of the system ap-
proaches infinity and the Breit frame which corresponds to the minimal
invariant mass necessary to obtain a specific momentum transfer

√
−q2.

Before specifying the kinematics, we recall the transformation properties of
velocity states under a Lorentz transformation as given by Eq.(2.23):

Û12...n(Λ)|V ; {ki, µi}〉 =
∑
{µ′i}
|ΛV ;

{
RWc(V,Λ)ki, µ

′
i

}
〉
n∏
i=1

Dji
µ′i,µi

[RWc(V,Λ)].

They do not transform like a four-vector but rather by a Wigner rotation.
As a result also the current, Eq. (3.40), Jν(kα′ ; kα) transforms by a Wigner
rotation. To obtain a covariant quantity, one has to boost it to physical
momenta p

α′
and p

α
. A possibility to avoid this Lorentz boost, but still ob-

tain a covariant current, is to choose a frame in which the physical momenta
automatically fulfill the velocity-state constraint

∑n
i=1 ki = 0. Therefore it

is very natural to work with center-of-momentum kinematics. We choose
the scattering plane to be the (1,3) plane and the three-momentum of the
incoming meson to have a non vanishing component in 1-direction only. As
a result, the meson and lepton momenta are parametrized as follows:

p
α′

=


√
m2
α′ + p′ 2

p′

0
0

 , pνe =


√
m2
νe + p′ 2

−p′
0
0



p
α

=


√
m2
α + p2

p1
0
p3

 , pe =


√
m2
e + p2

−p1
0
−p3

 .

(4.5)

Here p′ and p are the absolute values of incoming and outgoing three-
momenta, respectively. The kinematics is fixed by two variables. The mag-
nitude of the four-momentum transfer squared (−q2) and Mandelstam s. If
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we neglect the lepton masses, p and p′ can be expressed through s according
to

s = (Eα′ + Eνe)2 = (Eα + Ee)2

= (
√
m2
α′ + p′ 2 + p′)2 = (

√
m2
α + p2 + p)2, (4.6)

which implies

p′ 2 = (s−m2
α′)2

4s , p2 = (s−m2
α)2

4s . (4.7)

For scattering, we deal with spacelike momentum transfer. This means that
q2 = qµqµ = −Q2, where the transfer of four-momentum is defined as

q = pα′ − pα =


Eα′ − Eα
p′ − p1

0
−p3

 . (4.8)

Solving Eqs. (4.6) and

−Q2 = (Eα′ − Eα)2 − (pα′ − pα)2 (4.9)

yields p1 and p3 in terms of Q2 and s, which completes the momentum
parametrization, Eq.(4.5).

4.2.1 Infinite-Momentum Frame

Extracting the form factors in the infinite-momentum frame is equivalent
to performing the limit s → ∞. With the momentum parametrization,
Eq.(4.5), and infinitely large Mandelstam s the four components of the cur-
rent, Eq. (4.2), become

J0(pα, pα′)→ F1
√
s, J1(pα, pα′)→ F1

√
s,

J2(pα, pα′)→ 0, J3(pα, pα′)→
F0(m2

α′ −m2
α) + F1(m2

α′ −m2
α +Q2)√

Q2 .

(4.10)

We choose J0(pα, pα′) and J3(pα, pα′) as linear independent components
from which we extract the form factors according to

F1 = J0(pα, pα′)√
s

, F0 =
J3(pα, pα′)

√
Q2 + J0(pα, pα′)(m2

α′ −m2
α −Q2)

√
1
s

m2
α′ −m2

α

.

(4.11)
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4.2.2 Breit Frame

In the Breit frame, in addition to the center-of-momentum kinematics, in-
and outgoing particles have opposite directions (backward scattering). For
our parametrization, Eq.(4.5), this means a vanishing 3-component in pα′

and pα. This restriction implies a definite value for s depending on the
involved masses and Q2:

p3 = 0⇒ s = 1
2(m2

α′ +m2
α +Q2 +

√
(m2

α′ +m2
α +Q2)2 − 4m2

α′m
2
α. (4.12)

This means that s is not fixed, but rather a function of Q2. This is not
so important for spacelike momentum transfers, but plays a role for the
analytic continuation of the form factors into the timelike region. We will
return to this issue when discussing timelike form factors.

4.3 Results
The aim of this section is not to provide quantitative results for meson tran-
sition form factors, since there are no experimental data to compare with,
but rather to discuss the frame dependence of our form factor calculation
due to the Bakamjian-Thomas approach. To calculate the bound-state cur-
rent, Eq. (3.36), we use a simple harmonic-oscillator wave function for the
meson:

un(k̃) = u0(k̃) = 2
4
√
πa

3
2
e−

k̃2
2a2 . (4.13)

The harmonic-oscillator parameter as well as the constituent masses are
taken from [CCH97], where they had been fitted to reproduce meson decay
constants. For the meson masses we use the Particle Data Group values
[PDG12]. All parameters used are collected in Tab. 4.1. In Figs. 4.1-
4.2 we show our results for the form factors F1 and F0, calculated in the
infinite-momentum frame and the Breit frame, respectively, as functions
of Q2 for different transitions. The frame dependence is indicated by the
shaded areas. Compared to the absolute value of the form factors we find
a rather mild frame dependence for all B meson transition form factors,
whereas the D meson transition form factors (Figs. 4.3-4.4) depend much
more on whether we use the infinite-momentum frame (IF) or the Breit frame
(BF). We will argue in Sec. 5 that the difference between infinite-momentum
frame and Breit-frame results can be (partly) attributed to missing Z-graph
contributions in the Breit frame. If these contributions are modeled by
meson-pole terms, the smaller frame-dependence of B decays as compared
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to D-decays may then be traced back to the pole being closer to the physical
region of neutrino-meson scattering in case of the D than in case of the B.

Table 4.1: Model parameters
MB = 5.2795 GeV mb = 4.8 GeV aB = 0.55
MD = 1.869 GeV mc = 1.6 GeV aD = 0.46
Mπ = 0.1396 GeV mu,d = 0.25 GeV aπ = 0.33
MK = 0.4937 GeV ms = 0.4 GeV aK = 0.38
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Figure 4.1: Space-like form factors F1 (top) and F0 (bottom) for the weak B-
D transition calculated in the infinite-momentum-frame (solid line) and the
Breit-frame (dashed line). The shaded area indicates the frame dependence.
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Figure 4.2: Space-like form factors F1 (top) and F0 (bottom) for the weak B-
π transition calculated in the infinite-momentum-frame (solid line) and the
Breit-frame (dashed line). The shaded area indicates the frame dependence.
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Figure 4.3: Space-like form factors F1 (top) and F0 (bottom) for the weak D-
π transition calculated in the infinite-momentum-frame (solid line) and the
Breit-frame (dashed line). The shaded area indicates the frame dependence.
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Figure 4.4: Space-like form factors F1 (top) and F0 (bottom) for the weak D-
K transition calculated in the infinite-momentum-frame (solid line) and the
Breit-frame (dashed line). The shaded area indicates the frame dependence.



Chapter 5

Timelike Form Factors

In contrast to scattering processes, where the momentum transfer squared
is negative, decay processes are timelike and give rise to positive momentum
transfer squared:

• qµqµ < 0 . . . scattering,

• qµqµ ≥ 0 . . . decay.

The lepton-meson scattering amplitude is known to be a meromorphic func-
tion of the Mandelstam variables s and t. Hence form factors are also ex-
pected to be meromorphic functions of t = qµqµ, the momentum transfer
squared. Therefore it is possible to continue them analytically from q2 ≤ 0
to q2 ≥ 0. In our case and with the momentum parametrization used, this
means that we have to substitute Q→ ı Q in Eq. (4.5). This can be done in
both, the infinite momentum frame and the Breit frame. Within the front
form formalism Z-graphs vanish in a specific kinematic setting, the Drell-
Yan-West frame [Si02, MeSi02]. It is also known that Z-graphs vanish in
the infinite-momentum frame in instant form [JISu13]. Since the physical
reason of the latter observation is the vanishing probability for creating an
infinitely fast moving quark-antiquark pair out of the vacuum, we expect
Z-graph contributions also to be suppressed in our point form calculations,
when we use the infinite-momentum frame. Therefore the major part of
this chapter deals with the infinite-momentum kinematics. To strenghen
our further line of argumentation, it is nevertheless worth having a glimpse
on the analytic continuation of the Breit-frame results.
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5.1 Breit Frame
First we want to check, whether analytic continuation from space- to time-
like momentum transfers is a reasonable procedure at all. To this aim we
compare the form factors of a direct decay calculation with the analytic
continuation of scattering form factors for backward-scattering kinematics
(which corresponds to the Breit-frame for γ∗M →M ′). Energetically back-
ward scattering is closest to the decay kinematics for which the invariant
mass squared of the decaying system is m2

B =const. By fixing the scattering
angle, s becomes a unique function of q2 = −Q2. For a given Q2 and back-
ward scattering it attains its smallest possible (physical) value. The replace-
ment Q → ıQ thus means not only analytic continuation in Mandelstam t,
but at the same time also analytic continuation in Mandelstam s. The out-
come of the (naive) analytic continuation Q→ ıQ for the form factor F1 is
compared with the direct decay calculation (see Ref. [GR11]) of B→D and
B→ π in Figs. 5.1 and 5.2, respectively. At q2 = 0 both results agree, as ex-
pected. Approximate agreement is observed up to q2 ' 8 GeV2. At higher q2

the differences increase and become significant towards the zero-recoil point
q2 = (mB −mD)2. We interpret this behavior in such a way that the Breit-
frame expressions for the q2 < 0 form factors are not the most appropriate
ones to start with when performing the analytic continuation Q → ı Q.
Since our form factors for q2 < 0 are s dependent due to violation of cluster
separability the analytically continued Breit-frame form factors also pick up
this unwanted s-dependence. For the directly calculated decay form factors
this would correspond to a dependence on the momentum-transfer squared
between the decaying B meson and the neutrino. We cannot exclude a priori
that our decay form factors contain such contributions due to wrong cluster
properties, but it is neither necessary for the covariant analysis of our decay
current to assume such contributions nor is it possible to identify them in
a unique way. It therefore seems to be preferable to start from form-factor
expressions in a frame in which cluster-separability violating effects are min-
imized, i.e. the s→∞ limit (infinite-momentum frame), and apply analytic
continuation to these expressions. This has also the advantage that s does
not change and thus the continuation procedure might be less delicate.
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Figure 5.1: This figure shows the analytic continuation of the form factor
F1 calculated in the Breit-frame (solid line) in comparison with the decay
result of [GR11] (dashed line) for semileptonic B-D transitions.

5 10 15 20 25
q 2 H GeV 2 L

0.2

0.4

0.6

0.8

1.0

1.2

1.4

F 1

B ® Π

A . C .

5 10 15 20 25
q 2 H GeV 2 L

0.2

0.4

0.6

0.8

1.0

1.2

1.4

F 1

B ® Π

Direct Calculation

Figure 5.2: Same as fig. 5.1 only for semileptonic B-π transitions.
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5.2 Infinite-Momentum Frame

In this section we will present our results for transition form factors for
space- as well as timelike momentum transfers, as obtained by analytic con-
tinuation of the infinite-momentum-frame results. The comparison with the
results obtained in [GR11] will give an estimate for the importance of Z-
graphs. To verify the appearance of such quark-pair contributions in our
approach, we will analyze the pole structure induced by the mass of the
involved resonance. Some effort is also made to point out the quantitative
significance of our results by the comparison with lattice results.

We have already argued at the beginning of this chapter that, if one in-
cludes all possible graphs to calculate the transition current, the analytic
continuation of the scattering form factors leads to the timelike decay form
factors. As we said it is also known, that in the q+ = 0 frame in front-form
dynamics and in the infinite-momentum frame in instant-form dynamics, Z-
graph contributions are suppressed and one obtains the full physical current
without considering them. For decay kinematics the s→∞ limit would cor-
respond to infinitely large momentum transfer between decaying meson and
outgoing neutrino, or equivalently, infinitely large invariant mass of outgoing
meson and outgoing electron. This is, however, not possible, as long as the
decaying meson has finite mass. Therefore one does not have an analogue
of the infinite-momentum frame for decay kinematics. But with the usual
decay kinematics, starting with the decaying meson at rest, one cannot be
sure that Z-graph contributions will not play a role. In [GR11] electroweak
form factors of heavy-light mesons for both, space- and timelike momen-
tum transfer, had been computed in a pure valence-quark model using a
point form approach for the very first time. In figures 5.3-5.6 we compare
these results for various heavy-light transition form factors to our results
obtained by means of analytic continuation of the infinite-momentum-frame
form factors. We stress that quark-antiquark pair production is known to
be suppressed for an infinitely fast moving hadronic system and the differ-
ence in the above mentioned figures therefore should give an estimate for
the role of Z-graphs. We see that they must obviously be considered for q2

approaching zero recoil where the results deviate significantly. This high q2

behavior, especially for the B → π form factor is comparable with predic-
tions in Refs. [CHZ97] and [FaGa14]. In section 5.3, we will motivate how
this behavior near zero recoil can be explained if we assume Z-graphs to be
implicitly included in our analytic continuation.
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Experimental data are hard to obtain near zero recoil, where analytic contin-
uation and direct calculation differ most. Therefore, to proof the significance
of our results and to strengthen our argumentation, we compare our infinite-
momentum-frame data to form factors calculated on the lattice [lattice01].
This comparison is shown in Tab. 5.1. Despite the fact, that we are using
a very simple model to describe the bound-state meson wave functions, our
results agree rather well with the lattice values, especially for the B → π
transition where we agree almost within one σ.
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B → π

q2 Lattice Result [lattice01] Infinite Momentum Frame
13.6 F1 = 0.70(9)+.10

−.03 F1 = 0.71
F0 = 0.46(7)+.05

−.08 F0 = 0.42
15.0 F1 = 0.79(10)+.10

−.04 F1 = 0.82
F0 = 0.49(7)+.06

−.08 F0 = 0.44
17.9 F1 = 1.05(11)+.10

−.06 F1 = 1.15
F0 = 0.59(6)+.04

−.10 F0 = 0.51
20.7 F1 = 1.53(17)+.08

−.11 F1 = 1.75
F0 = 0.71(6)+.03

−.10 F0 = 0.59

D → π

q2 Lattice Result [lattice01] Infinite Momentum Frame
0.47 F1 = 0.67(6+.01

−.00 F1 = 0.74
F0 = 0.62(6)+.02

−.00 F0 = 0.67
0.97 F1 = 0.81(7)+.02

−.00 F1 = 0.88
F0 = 0.70(6)+.01

−.00 F0 = 0.71
1.48 F1 = 1.03(9)+.01

−.00 F1 = 1.07
F0 = 0.80(6)+.01

−.00 F0 = 0.75

D → K

q2 Lattice Result [lattice01] Infinite Momentum Frame
0.19 F1 = 0.70(5)(0) F1 = 0.79

F0 = 0.68(4)(0) F0 = 0.76
0.69 F1 = 0.84(5)(0) F1 = 0.91

F0 = 0.76(4)(0) F0 = 0.79
1.7 F1 = 1.29(7)(0) F1 = 1.27

F0 = 0.96(4)(0) F0 = 0.84

Table 5.1: Form factors F1 and F0 obtained by analytic continuation of the
infinite-momentum-frame results in comparison with lattice data [lattice01].
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Figure 5.3: Form factors F1 and F0 obtained by analytic continuation of the
infinite-momentum-frame results (solid line) compared to the direct decay
results of [GR11] (black dashed line) for B-D transitions.
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Figure 5.4: Form factors F1 and F0 obtained by analytic continuation of the
infinite-momentum-frame results (solid line) compared to the direct decay
results of [GR11] (black dashed line) for B-π transitions.
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Figure 5.5: Form factors F1 and F0 obtained by analytic continuation of the
infinite-momentum-frame results (solid line) compared to the direct decay
results of [GR11] (black dashed line) for D-π transitions.
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Figure 5.6: Form factors F1 and F0 obtained by analytic continuation of the
infinite-momentum-frame results (solid line) compared to the direct decay
results of [GR11] (black dashed line) for D-K transitions.
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5.3 Z-Graph and Meson Pole

The foregoing results suggest that Z-graph contributions should be included
explicitly in a direct decay calculation. Since we use instantaneous confine-
ment throughout, the non-valence degrees-of-freedom arising from quark-
antiquark vacuum fluctuations have to recombine with the existing Qq̄ pair
to color singlet hadrons. This is most simply described by the occurrence of
an intermediate vector meson M∗ (in addition to the final meson M ′). This
mechanism, seen in a constituent-quark-model point of few, is depicted in
Fig. 5.7. In the literature such contributions are included in different ways.

q̄

Q

q̄′

q′
M

M ′

W
l
ν̄l

M∗

Figure 5.7: Z-graph contribution to the semileptonic M →M ′ decay within
a constituent quark picture. M∗ could, for example, be the B+ ∗

c resonance
appearing in a B+ → D0 decay.

In [CHZ97], for example, the initial state of the decaying meson is described
as a composite state of a bare meson and a two-particle state consisting
of the M∗ and the outgoing meson M ′. Similar a decay constant and an
effective Hamiltonian density for the M∗MM ′ vertex, with a soft hadronic
vertex form factor, had been used in [IW90]. In [CHZ97] the authors ana-
lyzed the valence and Z-graph contributions separately for the semileptonic
B → π decay. They found that in the low q2 regime the valence contribution
to the form factor F1 has a pole structure

F pole
1 (q2) = F1(0)

(1− q2

M2
pole

)α
(5.1)

with α = 1.6 and Mpole = 5.32GeV, whereas near zero recoil, F1 decreases
as q2 increases. This behavior resembles the direct decay results of [GR11]
in Fig. 5.4. The combined valence and Z-graph results of [CHZ97] follow
Eq.(5.1) in the whole kinematic region, if parameters α = 2 and Mpole =
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6.0GeV are used. Putting both together a strong increase at zero recoil
is observed which cannot be explained by the valence contribution alone.
Fig. 5.3 shows our attempt to parametrize our results for F1 in case of
B → D and D → K transitions, as obtained by analytic continuation, by
means of Eq. 5.1. Thereby the mass of the lightest possible vector meson
M∗ is taken for Mpole. We find that our results (coming from analytic
continuation) follow Eq. (5.1) rather well in the whole kinematic range,
with αB→D = 1.55 and αD→K = 1.09. The strong increase of the form
factor near zero recoil, indicating a nearby pole, is an evidence for a vector-
meson-dominance like mechanism in which theM →M ′ transition happens
through emission of a vector meson M∗ which subsequently decays into
the lepton pair via W exchange. On the quark level this kind of process
can only happen via a non-valence Qq̄qq̄ component of the decaying meson
M which then leads to the Z-graphs we are interested in. Taking such
contributions explicitly into account would require some additional modeling
of the non-valence component. One possibility, e.g., would be to create the
non-valence component from the valence component by means of a 3P0-
vertex which creates the additional qq̄-pair out of the vacuum [SEF12]. This
is the kind of mechanism depicted in Fig.5.7. In view of these considerations
it is somehow surprising that our analytic continuation procedure provides a
pole-like behavior near zero recoil, although non-valence contributions have
not been taken into account explicitly. However, due to the analyticity
of the scattering amplitude it is clear that, if we include all nonvanishing
contributions for a specific kinematics, we can obtain a result in another
kinematical region, also containing all nonvanishing contributions. This
confirms the validity of the repeatedly stated argument, that one does not
have to include Z-graphs explicitly in the infinite-momentum-frame to obtain
the full physical current in the point form of relativistic dynamics and that
most of the physics is already contained in the valence contribution. From
this point of view the different frame dependencies of space-like form factors,
which we discussed in section 4.3, become plausible. The position of the pole
is determined by the mass squared of the intermediate resonance. In other
words, the smaller the mass of the resonance, the smaller the distance of the
maximum recoil point to the pole, the higher the effect on the form factors in
the space-like momentum transfer region. The different masses of incoming,
outgoing and intermediate states are shown in Tabs. 5.2. For all B →
X transitions the resonance lies much further apart from maximum recoil
than for all D → X transitions. This explains why the differences between
infinite-momentum-frame results and Breit-frame results are larger for D →
X transitions than for B → X transitions. D → X must consequently show
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Table 5.2: Meson masses and resonances
Transition Initial Meson Final Meson Resonance
B− → D0 MB− = 5.2795 GeV MD0 = 1.869 GeV MB∗c > MBc = 6.274 GeV
B̄0 → π+ MB̄0 = 5.2795 GeV Mπ+ = 1.869 GeV MB∗ = 5.325 GeV
B̄0
S → K+ MB̄0

S
= 5.3667 GeV MK+ = 0.4937 GeV MB∗ = 5.325 GeV

D̄0 → K+ MD̄0 = 1.864 GeV MK+ = 0.4937 GeV MD∗−s
= 2.112 GeV

D− → π0 MD− = 1.869 GeV Mπ0 = 0.135 GeV MD∗− = 2.010 GeV

a greater frame dependence than B → X transitions.
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Figure 5.8: B− → D0 (top) and D̄0 → K+ (bottom) transition form fac-
tors F1 for space- and timelike momentum transfer (thick line) and pole fit
F pole

1 (q2) (thin line) with αB→D = 1.55 and Mpole = MBc = 6.274 GeV
(top) and αD→K = 1.09 and MD−S

= 2.112 GeV (bottom). The position of
zero recoil and M2

pole are indicated by the dashed vertical lines.



Chapter 6

Heavy-Quark Symmetry

In this chapter we will focus on heavy-quark symmetry and confront our
results with available experimental data. A consequence of heavy-quark
symmetry is, that the heavy-light meson wave function becomes independent
of flavor and spin of the heavy quark as the heavy-quark mass goes to infinity.
In [GRS12] the preservation of heavy-quark symmetry had been proved for
the point-form approach to form factors applied also in the present work.
It was demonstrated that the electromagnetic scattering and semileptonic
decay form factors of pseudoscalar mesons approach a universal form factor,
the Isgur-Wise function, if one performs the heavy-quark limit. This limit
has to be taken such, that the velocity product

vα′ · vα = kα′ · kα
mαmα′

(6.1)

stays constant, while mQ = mα and mq
mQ

= 0 for mQ → ∞. Since we don’t
want to deal with subtleties of the heavy-quark limit, we refer to [IW89],
[IW90] and [GRS12] for a detailed discussion. What we are rather inter-
ested in, is the effect of Z-graphs on heavy-quark symmetry (breaking). It is
plausible that for an analogous reason as in the case of infinite momentum,
Z-graphs involving heavy quarks should be suppressed in the heavy-quark
limit. The probability for the vacuum to fluctuate into an infinitely heavy
quark-antiquark pair should vanish. The transition we want to investigate
is the B− → D0 transition. Assuming that Z-graph contributions are ac-
counted for by our analytic continuation procedure, the production of a
heavy cc̄ quark-antiquark pair leads to the contribution shown in Fig. 5.7.
In Fig. 6.1 we see that suppression of cc̄ production out of the vacuum is
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indeed well described by our model. In the upper panel the physical meson
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Figure 6.1: Form factors F1 and F0 with and without Z-graphs for physical
meson and constituent masses (top) and considerable larger heavy-quark
masses (bottom).
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and constituent masses are used whereas in the lower panel the constituent
masses are multiplied by a factor 6 and the meson masses are set equal
to the heavy-quark masses. As expected the differences attributed to Z-
graphs (shaded areas) vanish in both, F1 and F0 as the masses of the heavy
quarks become considerably larger. So we can conclude that the extension
of the Bakamjian-Thomas point-form approach with respect to non-valence
degrees-of-freedom does not spoil heavy-quark-symmetry properties.

Z-graphs do not spoil heavy-quark symmetry in the heavy-quark limit, but
they might well influence heavy-quark-symmetry breaking for physical quark
masses. To demonstrate the amount of symmetry breaking we present the
form factors of Fig 6.1 as functions of the product vα′ · vα, which is a widely
used representation for the discussion of heavy-quark symmetry. In order
to allow for a comparison with the Isgur-Wise function, the form factors are
multiplied with appropriate kinematic factors

F1 → RF1,

F0 →
R

1− q2

(MB+MD)2

F0,

R = 2
√
MBMD

MB +MD
. (6.2)

What we then find is, that in contrast to [GRS12] (dashed lines), the form
factors including Z-graphs (dotted lines) fall almost together already for
physical meson and constituent masses (cf. Fig. 6.2). This is what one
would expect from heavy-quark symmetry. The deviation from the Isgur-
Wise function is almost independent from vα · vα′ which is definitely not the
case for the curves which correspond to the valence part only. It looks as if
the Isgur-Wise function for finite b- and c-quark masses was just a slightly
rescaled version of the one obtained in the heavy-quark limit. On the other
hand, the average deviation from the Isgur-Wise function in the v · v′ range
corresponding to q2 ∈ [0, (MB −MD)2]:

σval+Z-graph
F1

= 10.6% σval+Z-graph
F0

= 10.7%

σval
F1

= 5.3%, σval
F0

= 5%
is larger for the full calculation than for the decay calculation involving
valence contributions only. With upscaled heavy-quark masses the influ-
ence of Z-graphs is seen to shrink and heavy-quark symmetry is gradually
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restored with all the curves tending to the Isgur-Wise function in the heavy-
quark limit.

Finally we would like to give a comparison with experimental data. What
one can measure experimentally is the slope of F1 as function of v ·v′ at zero
recoil. To be more precise, the quantity which we compare is defined as

ρ2
D := −F

′
1(vv′ = 1)
F1(vv′ = 1) . (6.3)

The experimental value given by the heavy-flavor averaging group [HFAG10]
is ρ2

D = 1.18± 0.06. In [GRS12] the direct decay calculation involving only
valence degrees-of-freedom gave a value of ρ2

D = 0.59. We confirm this
finding. On the other hand, our analytic continuation procedure which im-
plicitly seems to account for Z-graph contributions (in the time-like regime)
provides a value of ρ2

D = 1.07, much closer to experiment than the direct de-
cay calculation. This hints at the necessity to include Z-graph contributions
in the direct decay calculation.
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Figure 6.2: Weak B → D transition form factors as functions of vα′ · vα
(multiplied with appropriate kinematical factors) in comparison with the
Isgur-Wise function resulting from the heavy-quark limit.
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Chapter 7

Summary and Outlook

The present diploma thesis has extended foregoing work on the theoreti-
cal determination of the electroweak structure of hadrons within relativistic
point-form quantum mechanics using constituent-quark models. Our aim
was to calculate weak transition form factors of pseudoscalar heavy-light
mesons for space- as well as timelike momentum transfers. Such form fac-
tors could, in principle, be measured in neutrino-meson scattering and in
semileptonic weak meson decays, respectively. Our theoretical framework
was the point form of relativistic quantum mechanics and the Bakamjian-
Thomas construction for implementing the weak and the confining interac-
tions in a Poincaré-invariant way. Starting with an appropriate multichannel
mass operator we were able to derive the invariant 1-W-exchange scattering
amplitude. From this amplitude we could separate the weak meson tran-
sition current and identify the weak transition form factors by means of a
covariant decomposition of this current.

Starting with neutrino-meson scattering, we have first derived weak transi-
tion form factors for heavy-light to heavy-light and light-light meson transi-
tions in the spacelike momentum-transfer region. As in the foregoing work
on electromagnetic hadron form factors we found that these transition form
factors are not only functions of Q2, the squared momentum transfer be-
tween incoming and outgoing meson, but depend also (slightly) on Mandel-
stam s, the squared invariant mass of the neutrino-meson system. This s
dependence of the weak transition form factors is the consequence of wrong
cluster properties inherent in the Bakamjian-Thomas construction. It does
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not violate relativistic invariance of our neutrino-meson scattering ampli-
tude, but rather indicates that the WMM ′-vertex is affected by the pres-
ence of the electron. This s dependence may also be interpreted as a frame-
dependence of the W ∗M → M ′ subprocess. We have estimated this frame
dependence by choosing two extreme cases, namely s → ∞ and minimal
s to reach a particular Q2. For the W ∗M → M ′ subprocess the first case
corresponds to the infinite-momentum frame, the second case to the Breit
frame. For the B → D, π transition form factors these differences turned
out to be marginal, whereas they can amount to about 10% for D → K, π
transitions. From the foregoing investigations of electromagnetic form fac-
tors for spacelike momentum transfers it is known that the results of our
point-form calculations in the infinite-momentum frame are equivalent with
corresponding front-form calculations in the q+ = 0 frame. We suppose
that this equivalence does also hold for the weak transition form factors we
are interested in, although we have not checked it explicitly. The q+ = 0
frame in front form has the big advantage that Z-graph contributions to the
form factors, which are caused by non-valence components of the hadrons,
vanish due to kinematical reasons, whereas such contributions can become
sizable in other frames, like the Breit frame. Analogously, in point-form
Z-graphs are also suppressed in the infinite-momentum frame due to kine-
matical reasons, whereas it cannot be precluded that they play a role in
any other frame. It is even suspected that they could partly reconcile the
observed frame dependence of the form factors. In this sense, the infinite-
momentum frame seems to be preferable to any other frame if one sticks to
a pure valence-quark description of form factors.

Our next goal was to extend our form factor calculations to timelike momen-
tum transfers. Following our strategy this could be done by applying our
relativistic multichannel framework to semileptonic weak decays, calculate
decay amplitudes, separate the weak hadronic transition current and iden-
tify the weak transition form factors. In foregoing work the weak transition
form factors have indeed been derived along these line. Since the invariant
mass of the initial state, i.e. the decaying meson, is fixed, the form factors
were found to depend only on the squared four-momentum transfer between
decaying and outgoing meson, as it should be. But this also means that
there is no way for the decay calculation to choose a particular frame for
the M → W ∗M ′ subprocess such that the influence of Z-graph contribu-
tions could be minimized. A similar situation occurs in front form, where
q+ = 0 is simply forbidden by the decay kinematics. From front-form cal-
culations with a simple scalar model – for which one could calculate the
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complete covariant triangle diagram – one furthermore knows that Z-graphs
are by no means negligible for decay kinematics. The full form factor for
the scalar model could, however, be recovered by analytic continuation of
the pure valence contribution obtained for space-like momentum transfers
in a q+ = 0 frame. This was also our motivation to take the form fac-
tors for spacelike momentum transfers, obtained in the infinite-momentum
frame, and continue them analytically to timelike momentum transfers. The
results from this analytic continuation procedure turned out to be compara-
ble with lattice results and also the slope of FB→D1 at the zero recoil point,
i.e. maximum timelike momentum transfer, was found to be compatible
with experiment. Unfortunately there are no other experiments to compare
with. Already for B → D decays the form factors coming from analytic
continuation and from the direct decay calculation were found to differ sig-
nificantly. For B → π and D → K, π decays these differences became even
larger. We interpret these differences as a sign for the missing Z-graph con-
tributions in the direct decay calculation. The size of these differences then
gives us a rough estimate for the absolute magnitude of Z-graph contribu-
tions. We have also checked that these differences vanish in the heavy-quark
limit, which means that Z-graphs do not play a role in this limit. This is
easily understood since an infinitely heavy quark-antiquark pair cannot be
created out of the vacuum. Contrary to previous finding we saw also that
the frame dependence of the B → D-transition form factors vanishes in the
heavy-quark limit and we could verify that all the properties connected with
heavy-quark symmetry are satisfied.

A more quantitative analysis of Z-graph contributions would require some
additional modeling. For B → D decays, e.g., Z-graphs would arise from a
non-valence būcc̄ component in the B. With instantaneous confinement this
could equivalently be described on the hadronic level as aDB∗c component in
the B. Z-graph contributions to semileptonic weak decays can then be sim-
ply understood via a vector-meson-dominance like mechanism in which the
B decays (virtually) into D and B∗c , the B∗c then fluctuates into a W , which
finally decays into the lepton pair. This kind of mechanism gives rise to an
enhancement of the form factors near the zero-recoil point via the presence
of the B∗c pole at timelike momentum transfers much larger than accessible
by physical decay processes. For B decaying into light mesons and for D
decays this pole comes closer to the zero-recoil point and the enhancement
is expected to become stronger. Exactly this kind of behavior is mimicked
by our form factor predictions coming from the analytic-continuation proce-
dure. Surprisingly we found that these predictions could even be fitted over
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a wide space- and timelike momentum-transfer range with a function close
to a monopole and the physical B∗(c) and D∗(s) masses determining the pole
position.

Having understood that Z-graphs on the quark level give rise to a vector-
meson-dominance like mechanism, as long as one works within constituent-
quark models with instantaneous confinement, the explicit calculation of
Z-graphs is considerably simplified. The whole calculation can essentially
be done on the hadronic level. The only input to be determined on the
quark level are the VMM ′-vertex (V being the intermediate vector meson)
and the VW -coupling. For both quantities one has to know the M , M ′ and
V wave functions. For the vertex one has to specify, in addition, how the
non-valence quark-antiquark pair, necessary for the M → M ′V transition,
is created. This could, e.g., be accomplished by means of the widely used
3P0 model. Calculations along these lines will be the subject of future work
and will hopefully give us a more quantitative understanding of the role of
Z-graphs in semileptonic weak decays and also in neutrino-meson scattering
in frames different from the infinite-momentum frame.
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