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Let X be a Calabi–Yau variety defined over Q of dimension d ≤ 3.

Our goal is to establish the modularity/automorphy of X.

We will discuss two situations where our goal may be achieved.

(1) X is a K3 surface with non-symplectic automorphisms:

(2) X is a Calabi–Yau threefolds of Borcea–Voisin type.
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Modularity Results in the last two decades

• d = 1: Every elliptic curve E over Q is modular. There is a

modular form f of weight 2 on some Γ0(N) such that

L(E, s) = L(f, s).

• d = 2: Every singular K3 surface S over Q is modular. There is a

modular form f of weight 3 on some Γ0(N) + χ or Γ1(N) such that

L(T (S) ⊗ Qℓ, s) = L(f, s).

• d = 3: Every rigid Calabi–Yau threefold X over Q is modular.

There is a modular form f of weight 4 on some Γ0(N) such that

L(X, s) = L(f, s).
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Remarks:

(a) The modularity is established for the above varieties over Q.

However, we do not know conceptual reasons “why” they are

modular. What would be physics implications of modularity?

(b) The above results are obtained by studying 2-dimensional

Galois representations associated to Calabi–Yau varieties over Q.

Here 2 coincides with the d-th Betti number of the Calabi–Yau

variety of dimension d for d = 1 and 3; while 2 is the Z-rank of the

transcendental lattice T (S) for d = 2.
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Modularity/Automorphy of higher dimensional

Galois representations

Higher dimensional Galois representations will occur in the

following situations:

• d = 2: Let S be a K3 surface and let T (S) be the transcendental

lattice. When the Z-rank of T (S) ≥ 3.

• d = 3: Let X be a Calabi–Yau threefold. When h2,1(X) ≥ 1 (so

that B3(X) = 2(1 + h2,1(X)) ≥ 4).

The modularity/automorphy question in these cases is currently

out of reach in the general setting.

For d = 2, we need for K3 surfaces to have more structures (e.g.,

lattice polarizations, automorphisms).

For d = 3, we require that X has nice geometric or algebraic

structures, or that H3(X, Qℓ) decomposes into motives of small

ranks.
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The L-series

We will consider Calabi–Yau varieties defined over Q, say, by

vanishing of a finite number of polynomials with coefficients in Q.

We say that X/Q is a Calabi–Yau variety if X ⊗Q C is Calabi–Yau

variety. Let X/Q be a Calabi–Yau variety with a defining equation

with coefficients in Z[1/m] for some m ∈ N. Let p be a prime

(p, m) = 1, let Xp := X modp be the reduction of X modulo p. We

say that p is good if Xp is smooth over Fp, otherwise bad.

Let #X(Fpk) be the number of rational points on Xp over Fpk .

The local (congruent) zeta function of Xp is defined by taking the

formal sum

Zp(X, T ) := exp

(

∞
∑

k=1

#X(Fpk)

k
T k

)

∈ Q[[T ]]

where T is an indeterminate.
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Let ℓ be a prime 6= p. There is a Weil cohomology theory, the

ℓ-adic étale chomology, that assigns to X̄p = Xp ⊗Fp
F̄p or to

X̄ = X ⊗Q Q̄, Qℓ-vector spaces Hi
et(X̄, Qℓ), 0 ≤ i ≤ 2d. The

Frobenius morphism Frp (x 7→ xp) on Xp induces an

endomorphism Fr∗p on the étale cohomology groups Hi
et(Xp, Qℓ)

for each i, 0 ≤ i ≤ 2d. Grothendieck specialization theorem gives

an isomorphism Hi
et(Xp, Qℓ) ≃ Hi

et(X, Qℓ), where X = X ⊗Q Q.

By the comparison theorem, Hi
et(X, Qℓ) ≃ Hi(X ⊗Q C, C) so that

dimQℓ
Hi

et(X, Qℓ) = Bi(X) (the i-th Betti number). There is the

Poincaré duality: Hi(X, Qℓ) × H2d−i
et (X, Qℓ) → Qℓ is a perfect

pairing for every i, 0 ≤ i ≤ 2d .

Let

P i
p(T ) := det(1 − Fr∗p T |Hi

et(X, Qℓ))

be the characteristic polynomial of Fr∗p.
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Weil’s Conjectures (Theorem)

• P i
p(T ) ∈ 1 + TZ[T ].

• P i
p(T ) does not depend on the choice of ℓ.

• deg P i
p(T ) = Bi(X) for every i, 0 ≤ i ≤ 2d.

• P 2d−i
p (T ) = ±P i

p(p
d−iT ) for every i, 0 ≤ i ≤ d.

• If we write P i
p(T ) =

∏Bi

k=1(1 − αk T ) ∈ Q[T ], then αk is an

algebraic integer with |αk| = pi/2 (The Riemann Hypothesis).

• Zp(X, T ) is a rational function:

Zp(X, T ) =

∏d
i=1 P 2i−1

p (X, T )
∏d

i=0 P 2i
p (X, T )

.

7



Let GQ = Gal(Q/Q) be the absolute Galois group. There is a

compatible system of ℓ-adic Galois representations

ρi
X,ℓ : GQ → GL(Hi

et(X, Qℓ))

sending the (geometric) Frobenius Fr∗−1
p to ρi(Fr∗p

−1) which has

the same action as the Fr∗p on Hi
et(X, Qℓ).

Definition: The i-th (cohomological) L-series (or L-function) of

X/Q is defined by

Li(X, s) := L(Hi
et(X, Qℓ), s)

:= (∗)
∏

p6=ℓ:good

P i
p(p

−s)−1 × (factor corresponding to ℓ = p)

where the product is taken over all good primes different from ℓ

and (∗) corresponds to factors of bad primes. For ℓ = p we use

p-adic cohomology groups.
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The most significant L-series of X is the d-th L- series

Ld(X, s) =: L(X, s).

Locally for each good prime, the characteristic polynomial P i
p(T )

can be determined by geometric information and by counting the

number of rational points on Fp by invoking the Lefschetz fixed

point formula.

#X(Fp) =

2d
∑

k=0

(−1)ktrace(Fr∗p |H
k
et(X, Qℓ))
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Modularity/Automorphy Question

Are there global functions that determine the L-series L(X, s)?

More concretely, are there automorphic (modular) forms that

determine L(X, s)?

Why should we expect modularity/automorphy?
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K3 surfaces with non-symplectic automorphisms

and their motivic modularity/automorphy

Joint work with Ron Livné and Matthias Schütt
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Here we consider K3 surfaces with non-symplectic automorphisms.

Let S be a K3 surface. Let ωS be a holomorphic 2-form on S, fixed

once and for all. Then H2,0(S) = CωS . Let g ∈ Aut(S). Then g

induces a map

g∗ : H2,0(S) → H2,0(S) : g∗ωS = α(g)ωS

for some α(g) ∈ C∗. We say that g is non-symplectic if α(g) 6= 1.

Suppose that T (S) is unimodular, i.e, detT (S) = ±1. Then the

following assertions hold:

• α(Aut(S)) is a finite cyclic group of order k where k ≤ 66

(Nikulin).

• k is a divisor of 66, 44, 42, 36, 28, 12 (Kondo).

• If Z-rank of T (S) = ϕ(k) (where ϕ is the Euler function), then

k = 66, 44, 42, 36, 28, 12. For a given k there is a unique K3 surface

(Kondo).
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k NS(S) rank(NS(S)) T (S) rankZ(T (S))

66 U2 2 U2
2 ⊕ (−E8)

2 20

44 U2 2 U2
2 ⊕ (−E8)

2 20

42 U2 ⊕ (−E8) 10 U2
2 ⊕ (−E8) 12

36 U2 ⊕ (−E8) 10 U2
2 ⊕ (−E8) 12

28 U2 ⊕ (−E8) 10 U2
2 ⊕ (−E8) 12

12 U2 ⊕ (−E8)
2 18 U2

2 4

Here U is the rank 2 hyperbolic lattice, and −E8 is the negative

definite even unimodular lattice of rank 8.
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The K3 surfaces discussed above can all be defined over Q and have

defining equations in terms of Weierstrass models (Kondo).

k S gk

66 y2 = x3 + t(t11 − 1) (x, y, t) 7→ (ζ2
66x, ζ3

66y, ζ6
66t)

44 y2 = x3 + x + t11 (x, y, t) 7→ (−x, ζ11
44y, ζ2

44t)

42 y2 = x3 + t5(t7 − 1) (x, y, t) 7→ (ζ2
42x, ζ3

42y, ζ18
42 t)

36 y2 = x3 − t5(t6 − 1) (x, y, t) 7→ (ζ2
36x, ζ3

36y, ζ30
36 t)

28 y2 = x3 + x + t7 (x, y, t) 7→ (−x, ζ7
28y, ζ2

28t)

12 y2 = x3 + t5(t2 + 1) (x, y, t) 7→ (ζ2
12x, ζ3

12y,−t)
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If T (S) is not uni-modular, there are exactly 10 values for k,

namely, k ∈ {3, 9, 27, 5, 25, 7, 11, 13, 17, 19}. Conversely, for each k,

there exists a unique K3 surface S, up to isomorphism with these

properties. These K3 surfaces are defined by Weierstrass equations

over Q, with one exception of k = 25. For k = 25, the K3 surface is

defined as a double sextic over Q, i.e. a double cover of P2 branched

along a sextic curve.
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We have established the motivic modularity/automorphy of these

K3 surfaces. Note that the Z-rank of T (S) takes even values from 2

to 20, excluding the values 8 and 14. Thus, the associated Galois

representations have dimensions ranging from 2 to 20.

Theorem: Let S be a K3 surface corresponding to one of the

above values of k. Then S has a defining equation defined over Q,

and the following assertions hold:

(1) The ℓ-adic Galois representation associated to T (S) is

irreducible over Q of dimension ϕ(k) ∈ {20, 12, 4}.

(2) Furthermore, this GQ-Galois representation is induced from a

1-dimensional Galois representation of the cyclotomic field

Q(e2πi/k).

(3) The motivic L-series L(T (S) ⊗ Qℓ, s) is automorphic.
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Idea of Proof: Base change and automorphic induction.

The Gal(Q/L) representation defined by T (S) is a direct sum of

1-dimensional representations, which are simply permuted

transitively by Gal(L/Q) to yield an irreducible Gal(Q/Q)

representation of dimension ϕ(k). The 1-dimensional

representations are determined by Jacobi sum Grossencharacters of

L.
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Calabi–Yau varieties of CM type

Definition: A Calabi–Yau variety X/Q of dimension d is said to

be of CM type if the Hodge group Hdg(X) associated to a rational

Hodge structure on Hd(X, Q) is commutative, so

Hdg(X) ⊗ C ≃ copies of Gm.

Remark: Hdg(X) is, in general, not computable.

Examples of CM type surfaces (d = 2)

• Every singular (extremal) K3 surfaces defined over Q.

• The Fermat surface of degree m(≥ 4):

xm
0 + xm

1 + xm
2 + xm

3 = 0 ⊂ P3.

• Delsarte surfaces are defined by four-term equations over Q of the

form:
∑3

i=0

∏3
j=0 x

aij

j = 0.

• Invertible polynomials over Q in P3. (Here invertible polynomials

means that # of monomials = # of variables (4).
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Proposition: All K3 surfaces in the theorem of Livné–Schütt-Yui

are of CM type.

Proof: All the above K3 surfaces have defining equations over Q

with 4 monomials. They can be realized as Fermat quotients by

finite groups. Since Fermat surfaces are of CM type, our K3

surfaces are also of CM type.

Here is a Hodge theoretic proof. Put E := EndHdg(T (S)). Then

[E : Q] = ϕ(k) and in fact, E is a cyclotomic field and hence a CM

field over Q of degree ϕ(k).
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Calabi–Yau threefolds of Borcea–Voisin type

and their motivic modularity/automorphy

Joint work with Yasuhiro Goto and Ron Livné
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• Let (E, ι) is an elliptic curve with a non-symplectic involution ι

such that the induced map

ι∗ : H1,0(E) → H1,0(E), ι∗(ωE) = −ωE

and that E/ < ι >≃ P1. Here ωE is a unique holomorphic 1-form

on E.

• Let (S, σ) is a K3 surface with a non-symplectic involution such

that the induced map

σ∗ : H2,0(S) → H2,0(S), σ∗(ωS) = −ωS .

Decompose H2(S, C) into the (+)- and (−)-eigenspaces under the

action of σ∗ : H2(S, C) → H2(S, C):

H2(S, C) = H2(S, C)+ ⊕ H2(S, C)−.

Set

H2(S, Z)+ := H2(S, C)+ ∩ H2(S, Z)
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and

H2(S, Z)− := H2(S, C)− ∩ H 2(S, Z).

Let

r := rankZH2(S, Z)+.

Then H2(S, Z)+ and H2(S, Z)− have signatures (1, r − 1) and

(2, 20 − r) respectively.

Nikulin has classified such pairs (S, σ) of K3 surfaces S with

non-symplectic involutions σ, up to deformation.

22



Nikulin’s Pyramid
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Theorem (Nikulin, 1979) There are 75 deformation classes of pairs

(S, σ) of K3 surfaces S with non-symplectic involutions σ, and they

are completely determined by the triple integers

(r, a, δ)

where r is as above, a is the integer determined by

(H2(S, Z)+)∨/H2(S, Z)+ ≃ (Z/2Z)a.

The intersection pairing on H2(S, Z)+ gives rise to a quadratic

form q with values in Q. We define δ = 0 if q has integer values,

and 1 otherwise.
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Theorem (Nikulin, 1979) : Let (S, σ) be a pair of K3 surface with

non-symplectic involution σ. Let Sσ be the fixed locus of S under

σ. Then

(1) If (r, a, δ) 6= (10, 10, 0), (10, 8, 0), then

Sσ = Cg ∪ L1 ∪ . . . ∪ Lk (disjoint union)

where Cg is a genus g(≥ 0) curve, and Li(i = 1, · · · , k) are rational

curves.

(2) If (r, a, δ) = (10, 10, 0), then Sσ = ∅.

(3) If (r, a, δ) = (10, 8, 0), then Sσ = C1 ∪ C̄1 (disjoint union) where

C1 and C̄1 are elliptic curves.
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Put

N := the number of components of Sσ = 1 + k

and

N ′ := the sum of genera of components of Sσ = g.

Note that

g = 11 −
1

2
(r + a), N = 1 + k = 1 +

1

2
(r − a).
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Now we will construct Calabi–Yau threefolds of Borcea–Voisin

(BV) type. Let (E, ι) and (S, σ) be as above. Take the product

E × S. Then the product ι × σ is an involution on E × S such that

the induced map

(ι × σ)∗ : H3,0(E × S) → H3,0(E × S)

is the identity map. Write

Eι = {P1, P2, P3, P4}

and

Sσ = {C1, C2, · · · , CN} with N = 1 + k.

Then the fixed point of ι × σ consists of

Pi × Cj (i = 1, · · · , 4; j = 1, · · · , N).

The involution ι × σ lifts naturally to an involution on the blow-up

of E × S along 4N curves. The quotient E × S/ι × σ and its
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crepant resolution ˜E × S/ι × σ is our Calabi–Yau threefold of

Borcea–Voisin (BV) type, and will be denoted by

X = X(r, a, δ).

Note that the exceptional divisors on X are 4 copies of ruled

surfaces

Sσ × P1 := (Cg × P1) ∪ (L1 × P1) ∪ · · · ∪ (Lk × P1).
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Theorem (Borcea, Voisin, 1993, ’94): The Hodge numbers of X

are given by

h1,1(X) = 5 + 3r − 2a = 11 + 5N − N ′

h2,1(X) = 65 − 3r − 2a = 11 + 5N ′ − N

and

E(X) = 12(r − 10) = 12(N − N ′).

(B3(X) = 2(1 + (20 − r) + 4g) = 2(12 + 5N ′ − N) ≥ 4.)

Mirror symmetry conjecture holds for Calabi–Yau threefolds of

Borcea–Voisin type. Mirror symmetry interchanges N and N ′, and

is inherited from mirror symmetry of K3 surface components.
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Since any elliptic curve E defined over Q is modular, the

automorphy/modularity of our Calabi–Yau threefolds

X = X(r, a, δ) depends on the automorphy/modularity of K3

surface component S. We ought to choose appropriate K3 surfaces

for S.

Theorem (Reid 1979, Yonemura 1990): There are 95 admissible

weights (w0, w1, w2, w3) of hypersurface simple K3 singularities

defined by non-degenerate polynomials F (x0, x1, x2, x3) in weighted

projective 3-spaces P3(w0, w1, w2.w3) over Q.

Examples: #1: weight (1, 1, 1, 1)

F = x4
0 + x4

1 + x4
2 + x4

3.

#15: weight (5, 4, 3, 3)

F = x3
0 + x3

1x2 + x3
1x3 + x5

2 + x5
3.
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#53: weight (6, 5, 4, 3)

F = x3
0 + x3

1x3 + x2
1x

2
2 + x0x

3
2 + x3

2x
2
3 + x6

3.

#62: weight (8, 5, 4, 3)

F = x2
0x3 + x4

1 + x1x
5
3 + x5

2 + x1x
4
3 + x2

2x
4
3.

#84: weight (9, 7, 6, 5)

F = x3
0 + x0x

3
2 + x3

1x2 + x1x
4
3 + x2

2x
3
3.

#95: weight (7, 5, 3, 2)

F = x2
0x2 + x3

1x3 + x1x
4
2 + x1x

6
3 + x5

2x3 + x2x
7
3.
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Among these 95 K3 surfaces, we need to find those with the

required involutions.

Theorem: Among the 95 K3 surfaces, 92 have the required

non-symplectic involution σ. These 92 pairs (S, σ) realize at least

40 triplets (r, a, δ) of Nikulin.

Furthermore, the 86 out of 92 of them are realized as Delsarte

surfaces. Consequently these 86 pairs (S, σ) are of CM type (that

is, they are realized as finite Fermat quotients).
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Remarks: (a) For instance, we were not able to find an involution

for #53. There are 3 such K3 surfaces.

(b) For #95 it has an involution σ(x0) = −x0, but cannot be

realized as quasi-smooth hypersurface in four monomials.

Altogether there are 6 such K3 surfaces.

Idea for Proof: Yonemura obtained his defining equations using

toric constructions. For each weight, Yonemura wrote down a

defining equation using all extremal points of the convex hull

determined by the weight. We need to find the required involutions

in the 95 families. We were able to find them for the 92 of them,

but not yet for the remaining three.

For the second assertion,

• We may remove some monomials keeping in mind Yonemura’s

condition
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(*) for each i, 0 ≤ i ≤ 3, the defining equation must contain a

monomial of the form xn
i or xn

i xj (i 6= j).

So if there is a monomial of the form xn
i xm

j with n, m > 1, we can

remove it from the defining equation. We must check that even

after removing monomials, a defining equation must remain

quasi-smooth. As long as quasi-smoothness is satisfied, we will have

K3 surfaces.

• After removing monomials, a holomorphic 2-form ωS should be

sent to −ωS under the involution.

• Also the resolution picture should be invariant under

deformation, that is, remain the same before and after removing

certain monomials.
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We will illustrate by examples that Calabi–Yau threefolds of

Borcea–Voisin type do have birational models defined over Q.

Example 1: Suppose that S is defined by a hypersurface

x2
0 = f(x1, x2, x3) ⊂ P3(w0, w1, w2, w3).

If w0 is odd, then with E2 ∈ P2(2, 1, 1), X = ˜E2 × S/ι × σ is

birational to a hypersurface defined over Q:

z4
0 + z4

1 − f(z2, z3, z4) = 0 ⊂ P4(w0, w0, 2w1, 2w2, 2w3).

Example 2: Suppose that S is defined by a hypersurface

x2
0 + f(x1, x2, x3) = 0 ⊂ P3(w0, w1, w2, w3).

If w0 is even but not divisible by 3, then with E3 ∈ P2(3, 2, 1),

X = ˜E3 × S/ι × σ is birational to a hypersurface defined over Q:

z3
0 + z6

1 + f(z2, z3, z4) = 0 ⊂ P4(2w0, w0, 3w1, 3w2, 3w3).
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Definition:

(1) For a pair (S, σ) of K3 surface with a non-symplectic involution

σ, we call T (S)σ=−1 ⊗ Qℓ ⊂ H2(S, Qℓ) the K3-motive, and denoted

by MS . This is the unique motive with h0,2(MS) = 1.

(2) We will call the submotive H1(E, Qℓ)
ι=−1 ⊗ (T (S)σ=−1 ⊗ Qℓ)

of H3(X, Qℓ) the Calabi–Yau motive of X, and denoted by MX .
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Theorem: Let (S, σ) be one of the 86 surfaces represented by a

Delsarte surface. Let (E, ι) be an elliptic curve over Q. Let X be a

Calabi–Yau threefold of Borcea–Voisin (BV) type. Then X has a

model defined over Q, and X is motivically automorphic.

More precisely,

(a) (S, σ) is motivically automorphic, that is,

L(S, s) = L(ρS , s − 1)L(χS , s)

where ρS and χS are Galois representations corresponding to

NS(S) and T (S), respectively.

Here L(χS , s) = L(MS , s) is automorphic.
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(b) X is motivically automoroic, that is,

L(X, s) = L(ρE ⊗ ρS , s)L(ρE ⊗ χS , s)L(J(Cg), s − 1)4,

where ρE is the Galois representation corresponding to E, J(Cg) is

the Jacobian variety of Cg (here Cg is also of CM type).

Here L(ρE ⊗ χS , s) = L(MX , s) and L(J(Cg), s) are automorphic.
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Remarks: (a) The automorphy of L(χS , s) is proved by using the

argument of automorphic induction. This is justified as S is of CM

type.

We cannot establish the automorphy of L(ρS , s) as this may

correspond to higher dimensional Artin representations, and the

automorphy of Artin representations are still open even for CM

fields.

(b) We get only the motivic automorphy for L(X, s). A reason for

this is that the L(ρE ⊗ ρS , s) may be associated to the tensor

product of ρE and higher dimensional Artin representations.
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Example 1: Let E = E2 : y2
0 = y4

1 + y4
2 ⊂ P2(2, 1, 1). Let S0 be a

(quasi-smooth) K3 surface given by

S0 : x2
0 = x3

1 + x7
2 + x42

3 ⊂ P3(21, 14, 6, 1)

of degree 42. S0 has a non-symplectic involutionσ(x0) = −x0. Let

S be the minimal resolution of S0. Then S corresponds to the

triplet (10, 0, 0) of Nikulin. So its mirror S∨ also corresponds to the

triplet (10, 0, 0). The fixed locus Sσ = C6 ∪ L1 ∪ · · · ∪ L5. Also S is

of CM type as it is dominated by the Fermat surface of degree 42.

The K3 motive MS corresponds to the cyclotomic field K = Q(ζ42)

with [K : Q] = ϕ(42) = 12 = 22 − 10. Then MS is automorphic.
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Now the Calabi–Yau threefold X = ˜E2 × S/ι × σ has a birational

model defined over Q:

X : z4
0 + z4

1 = z3
2 + z7

3 + z42
4 ⊂ P4(21, 21, 28, 12, 2)

of degree 84. Since both E2 and S are of CM type, X is also of CM

type. The Hodge numbers are given by

h1,1(X) = 35, h21(X) = 35.

So X is own mirror.
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Example 2: Let E = E2 and S0 be a (quasi-smooth) K3 surface

given by

S0 : x2
0 = x3

1x2 + x3
1x

2
2 + x7

2 − x14
3 ⊂ P3(7, 4, 2, 1)

of degree 14. S0 has a non-symplectic involution σ(x0) = −x0. Its

minimal resolution S corresponds to the triplet(7, 3, 0) of Nikulin.

Remove the monomial x3
1x

2
2 from the defining equation for S0, we

get

S0 : x2
0 = x3

1x2 + x7
2 − x14

3

which makes S0 of CM type. It is dominated by the Fermat surface

of degree 42 = lcm(3, 2, 14). Then MS corresponds to the

cyclotomic field K = Q(ζ42) of degree ϕ(42) = 12, and it is

automorphic.
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Now the Calabi–Yau threefold X = ˜E2 × S/ι × σ has a birational

model defined over Q:

X : z4
0 + z4

1 = z3
2z3 + z7

3 − z14
4 ⊂ P4(7, 7, 8, 4, 2)

of degree 28 and lcm(4, 3, 14) = 84. Since E2 and S are of CM

type, so is X. The Hodge numbers are given by

h1,1(X) = 20, h2,1(X) = 38, and e(X) = −36.

We now pass from Q(ζ42) to Q(ζ84) to take H1(E2) into account.

The Calabi–Yau motive MX has dimension 24 = ϕ(84). The

Jacobi sum Grossencharacter of Q(ζ84) gives rise to the GL24

irreducible automorphic representation over Q for MX . Hence MX

is automorphic.
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Mirrors of Calabi–Yau threefolds of

Borcea–Voisin type and arithmetic mirror symmetry

We know that mirror symmetry conjecture holds for Calabi–Yau

threefolds of Borcea–Voisin type, and it is inherited from mirror

symmetry for K3 surface components. However, the 95 K3 surfaces

of Reid and Yonemura are not closed under mirror symmetry of K3

surfaces.

Lemma (Belcastro):Among the 95 K3 surfaces, the 57 K3surfaces

S have non-symplectic involution σ acting as−1 on H2,0(S), and all

57 have mirror partners S∨ equipped with non-symplectic

involution σ∨ acting as −1 on H2,0(S∨).

Here if pair (S, σ) of a K3 surface with non-symplectic involution σ

corresponds to a Nikulin’s triple (r, a, δ), then a mirror pair

(S∨, σ∨) corresponds to the triple (20 − r, a, δ).
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Examples of mirror pairs of Calabi–Yau

threefolds of Borcea–Voisin type

We consider the Calabi–Yau threefold in Example 2 above. To find

a mirror family, we look for a mirror S∨ of S. We may take for S∨

the K3 surface defined by

S∨ : x2
0 = x3

1 + x1x
7
2 + x9

2x
2
3 + x13

3 ⊂ P3(21, 14, 4, 3)

of degree 42. It has a non-symplectic involution x0 7→ −x0. The

pair (S∨, σ∨) corresponds to the triplet (13, 3, 0). Removing the

monomial x9
2x

2
3 we can make S0 to be of CM type. Since

lcm(2, 7, 4) = 28, MS∨ corresponds to the cyclotomic field Q(ζ28)

of degree ϕ(28) = 12. Then MS∨ is automorphic.
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A candidate for a mirror family X∨ has a birational model over Q

X∨ : z4
0 + z4

1 = z3
2 + z2z

7
3 + z14

4 ⊂ P4(21, 21, 28, 8, 6)

of degree 84. The Hodge numbers and the Euler characteristic are

given by

h1,1(X∨) = 38, h2,1(X∨) = 20, and e(X∨) = 36.

We pass from Q(ζ28) to Q(ζ56) to take H1(E2) into account. Then

the Calabi–Yau motive MX∨ has dimension 24 = ϕ(56). By the

similar argument as for MX , it is automorphic.
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Observation:

L(MX , s) = L(MX∨ , s)

that is, the L-series of the Calabi–Yau motives of a mirror pair

remain invariant under mirror symmetry. They are automorphic.

A mirror Calabi–Yau threefold X∨ appears in a family. Since we

do not know how to do point counting on a family, we consider X∨

only at a CM point and compute the L-series L(MX∨ , s) at this

isolated point. Then we are comparing the two L-series L(MX , s)

and L(MX∨ , s).

This phenomenon is valid for many examples of mirror pairs of

Calabi–Yau threefolds of Borcea–Voisin type.
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