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Let X be a Calabi—Yau variety defined over Q of dimension d < 3.
Our goal is to establish the modularity /automorphy of X.

We will discuss two situations where our goal may be achieved.

(1) X is a K3 surface with non-symplectic automorphisms:

(2) X is a Calabi—Yau threefolds of Borcea—Voisin type.




Modularity Results in the last two decades

e d = 1: Every elliptic curve E over Q is modular. There is a
modular form f of weight 2 on some I'g(/N) such that
L(E,s) = L(f,s).

e d = 2: Every singular K3 surface S over Q is modular. There is a

modular form f of weight 3 on some I'g(N) + x or I'; (V) such that
L(T(S) ® Qe, s) = L(f, 5).
e d = 3: Every rigid Calabi—Yau threefold X over Q is modular.

There is a modular form f of weight 4 on some I'4(/N) such that
L(X,s) = L(f,s).




Remarks:

(a) The modularity is established for the above varieties over Q.
However, we do not know conceptual reasons “why” they are
modular. What would be physics implications of modularity?

(b) The above results are obtained by studying 2-dimensional

(Galois representations associated to Calabi—Yau varieties over Q.

Here 2 coincides with the d-th Betti number of the Calabi—Yau
variety of dimension d for d = 1 and 3; while 2 is the Z-rank of the
transcendental lattice T'(.S) for d = 2.




Modularity / Automorphy of higher dimensional
Galois representations

Higher dimensional Galois representations will occur in the
following situations:

e d =2: Let S be a K3 surface and let T'(S) be the transcendental
lattice. When the Z-rank of T'(S) > 3.

e d = 3: Let X be a Calabi—Yau threefold. When h%1(X) > 1 (so

that B3(X) = 2(1 + h>1(X)) > 4).

The modularity /automorphy question in these cases is currently
out of reach in the general setting.

For d = 2, we need for K3 surfaces to have more structures (e.g.,
lattice polarizations, automorphisms).

For d = 3, we require that X has nice geometric or algebraic
structures, or that H>(X, Q) decomposes into motives of small

ranks.




The L-series

We will consider Calabi—Yau varieties defined over QQ, say, by
vanishing of a finite number of polynomials with coefficients in Q.
We say that X/Q is a Calabi-Yau variety if X ®q C is Calabi-Yau
variety. Let X/Q be a Calabi—Yau variety with a defining equation
with coefficients in Z[1/m/| for some m € N. Let p be a prime
(p,m) =1, let X, :== X modp be the reduction of X modulo p. We

say that p is good if X, is smooth over [, otherwise bad.

Let # X (F,») be the number of rational points on X, over IF .
The local (congruent) zeta function of X, is defined by taking the

formal sum

L HX(F )
RSt

k=1

Z,(X,T) :=exp (

T’“) e Q[[T]]

where T' is an indeterminate.




Let ¢ be a prime # p. There is a Weil cohomology theory, the
(-adic étale chomology, that assigns to X, = X, ®@r, F, or to
X=X ) Q, Q-vector spaces H,(X,Qy), 0 <i < 2d. The
Frobenius morphism F'r, (z — 2P) on X, induces an
endomorphism Fr; on the étale cohomology groups H (X, Q)
for each 7, 0 <17 < 2d. Grothendieck specialization theorem gives
an isomorphism H?,(X,, Q) ~ H',(X,Qy), where X = X ®¢ Q.
By the comparison theorem, H',(X,Q,) ~ H (X ®¢ C,C) so that
dimg, H?, (X, Q) = B;(X) (the i-th Betti number). There is the
Poincaré duality: H* (X, Q) x H2"*(X,Q,) — Qy is a perfect
pairing for every 7, 0 <1 < 2d .

Let

Pi(T) = det(1 — Fr; T| Hi (X, Q)

be the characteristic polynomial of F'ry.




Weil’s Conjectures (Theorem)
o P\(T) € 1+ TZ[T).
e P'(T) does not depend on the choice of /.
o deg P}(T) = B;(X) for every i,0 < i < 2d.
o PYUT) = +P.(p?'T) for every i, 0 < i < d.

o If we write P}(T) = HkB;'l(l — T) € Q[T], then «y is an
algebraic integer with |ax| = p*/? (The Riemann Hypothesis).

e Z/,(X,T) is a rational function:

d i—
[[im P (X, T)
d ; )
Hi:O PQZ (X7 T)

p

Z,(X,T) =




Let Gg = Gal(Q/Q) be the absolute Galois group. There is a
compatible system of ¢-adic Galois representations

Pt Go = GL(H (X, Q)

sending the (geometric) Frobenius Frx-! to p*(Fry ') which has
the same action as the Frj, on HZ, (X, Qp).

Definition: The i-th (cohomological) L-series (or L-function) of
X/Q is defined by

Li(X,s):= L(H,(X,Qq),s)

H P; (p—s)—l X (factor corresponding to ¢ = p)
p#&good

where the product is taken over all good primes different from ¢
and (*) corresponds to factors of bad primes. For ¢ = p we use

p-adic cohomology groups.




The most significant L-series of X is the d-th L- series
Lq(X,s)=: L(X,s).

Locally for each good prime, the characteristic polynomial P;(T)

can be determined by geometric information and by counting the
number of rational points on [F, by invoking the Lefschetz fixed

point formula.

2d

#X(Fy) = ) (—1)*trace(Fry | Hiy (X, Qo))

k=0




Modularity /Automorphy Question
Are there global functions that determine the L-series L(X,s)?

More concretely, are there automorphic (modular) forms that
determine L(X,s)?

Why should we expect modularity /automorphy?




K3 surfaces with non-symplectic automorphisms

and their motivic modularity /automorphy

Joint work with Ron Livné and Matthias Schutt




Here we consider K3 surfaces with non-symplectic automorphisms.
Let S be a K3 surface. Let wg be a holomorphic 2-form on .5, fixed

once and for all. Then H?*%(S) = Cwg. Let g € Aut(S). Then g
induces a map

g H*?(S) — H*Y(9) : g*'ws = a(g)ws

for some a(g) € C*. We say that g is non-symplectic if a(g) # 1.

Suppose that T'(.S) is unimodular, i.e, detT(S) = 1. Then the
following assertions hold:

e a(Aut(5)) is a finite cyclic group of order k where k < 66
(Nikulin).

e k is a divisor of 66, 44,42, 36, 28,12 (Kondo).

o If Z-rank of T'(S) = ¢(k) (where ¢ is the Euler function), then
k = 66,44,42,36,28,12. For a given k there is a unique K3 surface
(Kondo).




rank(IN.S(5))
2
2
10
10
10
18

Here U is the rank 2 hyperbolic lattice, and —FEg is the negative

definite even unimodular lattice of rank 8.




The K3 surfaces discussed above can all be defined over Q and have

defining equations in terms of Weierstrass models (Kondo).

k S 9k

66 y2 — IB + t(tll o 1) (ZC? Y, t) = <C626£C7 Cgfiya Cg6t>
4| =+ttt | (v,yt) = (—x, (Y, Gat)

42 y2 — 373 + t5 (t7 o 1) ($, Y, t) = (5422377 C22y7 Cigt)

36 y2 — xS o t5(t6 o 1) (:Ca Y, t) — (C§6x7 C??Gyv ggt)
28| y*=a+a+t’ | (z,y,t) = (-2, (Y, (3st)
12 y2 — xS + t5 (t2 - 1) (xa Y, t) = (C122:E7 C%2y7 _t)




If T'(S) is not uni-modular, there are exactly 10 values for k,
namely, k € {3,9,27,5,25,7,11,13,17,19}. Conversely, for each k,
there exists a unique K3 surface S, up to isomorphism with these
properties. These K3 surfaces are defined by Weierstrass equations
over (, with one exception of kK = 25. For k = 25, the K3 surface is

defined as a double sextic over Q, i.e. a double cover of P? branched

along a sextic curve.




We have established the motivic modularity /automorphy of these
K3 surfaces. Note that the Z-rank of T'(.S) takes even values from 2
to 20, excluding the values 8 and 14. Thus, the associated Galois

representations have dimensions ranging from 2 to 20.

Theorem: Let S be a K3 surface corresponding to one of the
above values of k. Then S has a defining equation defined over Q,
and the following assertions hold:

(1) The ¢-adic Galois representation associated to T'(S) is
irreducible over Q of dimension p(k) € {20,12,4}.

(2) Furthermore, this Gg-Galois representation is induced from a

1-dimensional Galois representation of the cyclotomic field
Q(e%i/k).
(3) The motivic L-series L(T(S) ® Qg, s) is automorphic.




Q

Idea of Proof: Base change and automorphic induction.

The Gal(Q/LL) representation defined by T'(S) is a direct sum of
1-dimensional representations, which are simply permuted

transitively by Gal(IL/Q) to yield an irreducible Gal(Q/Q)

representation of dimension (k). The 1-dimensional

representations are determined by Jacobi sum Grossencharacters of
L.




Calabi—Yau varieties of CM type

Definition: A Calabi—Yau variety X/Q of dimension d is said to
be of CM type if the Hodge group Hdg(X) associated to a rational
Hodge structure on H%(X,Q) is commutative, so

Hdg(X) ® C ~ copies of G,,.
Remark: Hdg(X) is, in general, not computable.

Examples of CM type surfaces (d = 2)
e Every singular (extremal) K3 surfaces defined over Q.

e The Fermat surface of degree m(> 4):
it + o + 2l + 2 =0 C PA.

e Delsarte surfaces are defined by four-term equations over Q of the
form: 327 H?:o z;" = 0.

e Invertible polynomials over Q in P3. (Here invertible polynomials

means that # of monomials = # of variables (4).




Proposition: All K3 surfaces in the theorem of Livné—Schiitt-Yui
are of CM type.

Proof: All the above K3 surfaces have defining equations over Q
with 4 monomials. They can be realized as Fermat quotients by
finite groups. Since Fermat surfaces are of CM type, our K3

surfaces are also of CM type.

Here is a Hodge theoretic proof. Put &£ := Endeg(T(S)). Then
€ : Q] = ¢(k) and in fact, £ is a cyclotomic field and hence a CM
field over Q of degree (k).




Calabi—Yau threefolds of Borcea—Voisin type

and their motivic modularity /automorphy

Joint work with Yasuhiro Goto and Ron Livné




e Let (F, 1) is an elliptic curve with a non-symplectic involution ¢
such that the induced map

o HYY(E) - HYY(E), f(wg) = —wg

and that £/ < 1 >~ P!. Here wg is a unique holomorphic 1-form
on k.

e Let (S,0) is a K3 surface with a non-symplectic involution such

that the induced map
o* : H*(S) — H*Y(9), o*(ws) = —ws.

Decompose H?(S,C) into the (+)- and (—)-eigenspaces under the
action of o* : H*(S,C) — H?(S,C):

H%(S,C) = H2(S,C)* @ H%(S,C)".

H?(S,Z)" .= H*(S,C)" N H*(S,7Z)




and

H?(S,7)” = H*(S,C)" N H 2(S,7).

Let
r = rank; H*(S,Z)7.
Then H?(S,Z)" and H?(S,Z)~ have signatures (1,7 — 1) and
(2,20 — r) respectively.
Nikulin has classified such pairs (S, o) of K3 surfaces S with

non-symplectic involutions o, up to deformation.
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Theorem (Nikulin, 1979) There are 75 deformation classes of pairs
(S,0) of K3 surfaces S with non-symplectic involutions o, and they
are completely determined by the triple integers

(r,a,d)

where r is as above, a is the integer determined by

(H*(S,Z)")Y JH?*(S,Z)" ~ (Z/27)".

The intersection pairing on H?(S,Z)" gives rise to a quadratic
form q with values in Q. We define 6 = 0 if ¢ has integer values,
and 1 otherwise.




Theorem (Nikulin, 1979) : Let (S,0) be a pair of K3 surface with

non-symplectic involution o. Let S° be the fixed locus of S under
o. Then

(1) If (r,a,d) # (10,10,0), (10,8,0), then

S =Cy,ULiU...ULy (disjoint union)

where C, is a genus g(> 0) curve, and L;(i = 1,--- , k) are rational

curves.

(2) If (r,a,d) = (10,10,0), then S7 = ().

(3) If (r,a,6) = (10, 8,0), then S° = C; U C; (disjoint union) where
C, and C, are elliptic curves.




N := the number of components of S =1+ £

N’ := the sum of genera of components of S = g.

Note that

1 1
g=1—g(r+a), N=1+k=1+5(r—a)




Now we will construct Calabi—Yau threefolds of Borcea—Voisin
(BV) type. Let (F,t) and (S,0) be as above. Take the product

E x S. Then the product ¢ x ¢ is an involution on £ X S such that
the induced map

(tx o) : H¥Y(E x §) — H*Y(E x S)

is the identity map. Write
E' = {P17P27P37P4}

and
S° :{01,02,“' ,ON} with N =1+ k.

Then the fixed point of ¢+ X ¢ consists of
P,xC; (i=1,---,4,5=1,---,N).

The involution ¢ x ¢ lifts naturally to an involution on the blow-up
of £ x S along 4N curves. The quotient E x S/1 x ¢ and its




crepant resolution E' x S/iv x o is our Calabi—Yau threefold of
Borcea—Voisin (BV) type, and will be denoted by

X =X(r,a,0).

Note that the exceptional divisors on X are 4 copies of ruled

surfaces

ST x Pl = (Cy x PHYU(Ly x PY)U---U (L x PY).




Theorem (Borcea, Voisin, 1993, ’94): The Hodge numbers of X

are given by
Y X)=5+3r—-2a=114+5N — N’
h*'(X)=65—-3r—2a=11+5N"— N

and

E(X) =12(r — 10) = 12(N — N').
(B5(X) =2(1 4 (20 — ) + 4g) = 2(12+ 5N’ — N) > 4.)

Mirror symmetry conjecture holds for Calabi—Yau threefolds of

Borcea—Voisin type. Mirror symmetry interchanges N and N’, and

is inherited from mirror symmetry of K3 surface components.




Since any elliptic curve E defined over Q is modular, the
automorphy /modularity of our Calabi—Yau threefolds

X = X(r,a,0) depends on the automorphy/modularity of K3
surface component S. We ought to choose appropriate K3 surfaces

for S.
Theorem (Reid 1979, Yonemura 1990): There are 95 admissible

weights (wg, w1, ws, ws) of hypersurface simple K3 singularities
defined by non-degenerate polynomials F(xq,x1,x2,x3) in weighted

projective 3-spaces P?(wq, w1, wo.w3) over Q.

Examples: #1: weight (1,1,1,1)

4 4 4 4

#15: weight (5,4, 3, 3)

3 3 3 5 5
F =25+ 2w + 2723 + 25 + 3.




. weight (6, 5,4, 3)

F = xp + x3xs + 2305 + oTs + 2573 + 25.
: weight (8,5,4,3)

F = xixs + 2] + 2125 + 25 + 2125 + w573,
. weight (9,7,6,5)

3

3 3 3 4 | .2
F = x5+ xoxry + x{22 + 2175 + T575.

. weight (7,5, 3,2)

2 3 4 6 5 7
F' = xjre + 2{23 + 1125 + 1203 + X503 + T275.




Among these 95 K3 surfaces, we need to find those with the

required involutions.

Theorem: Among the 95 K3 surfaces, 92 have the required

non-symplectic involution o. These 92 pairs (S, ) realize at least

40 triplets (r,a,d) of Nikulin.

Furthermore, the 86 out of 92 of them are realized as Delsarte
surfaces. Consequently these 86 pairs (S, o) are of CM type (that
is, they are realized as finite Fermat quotients).




Remarks: (a) For instance, we were not able to find an involution
for #53. There are 3 such K3 surfaces.

(b) For #95 it has an involution o(xy) = —xg, but cannot be

realized as quasi-smooth hypersurface in four monomials.

Altogether there are 6 such K3 surfaces.

Idea for Proof: Yonemura obtained his defining equations using
toric constructions. For each weight, Yonemura wrote down a
defining equation using all extremal points of the convex hull
determined by the weight. We need to find the required involutions
in the 95 families. We were able to find them for the 92 of them,
but not yet for the remaining three.

For the second assertion,

e We may remove some monomials keeping in mind Yonemura’s

condition




(*) for each i, 0 <1 < 3, the defining equation must contain a

monomial of the form x} or xl'x; (i # j).

So if there is a monomial of the form z;'z7" with n, m > 1, we can
remove it from the defining equation. We must check that even
after removing monomials, a defining equation must remain
quasi-smooth. As long as quasi-smoothness is satisfied, we will have

K 3 surfaces.

e After removing monomials, a holomorphic 2-form wg should be

sent to —wg under the involution.

e Also the resolution picture should be invariant under
deformation, that is, remain the same before and after removing

certain monomials.




We will illustrate by examples that Calabi—Yau threefolds of
Borcea—Voisin type do have birational models defined over Q.

Example 1: Suppose that S is defined by a hypersurface
x5 = f(21,%2,23) C P (wo, w1, wa, ws).

If wp is odd, then with Ey € P?(2,1,1), X = E3 x S/t X 0 is
birational to a hypersurface defined over Q:

25 + 21 — f(20, 23, 24) = 0 C P*(wp, wo, 2wy, 2w, 2w3).

Example 2: Suppose that S is defined by a hypersurface
x5+ f(z1, 22, 73) = 0 C P (wo, w1, wa, w3).

If wg is even but not divisible by 3, then with E3 € P%(3,2,1),
X = FE3 x S/t x o is birational to a hypersurface defined over Q:

ZS) + Z? + f(22,23,24) =0C P4(2w0,w0,3w1,3w2,3w3).




Definition:

(1) For a pair (S, 0) of K3 surface with a non-symplectic involution

o, we call T(S)"="' @ Q, C H*(S, Q) the K3-motive, and denoted
by Mg. This is the unique motive with h%?(Mg) = 1.

(2) We will call the submotive H'(E, Q)= ! @ (T'(S)°=1 @ Q)
of H3(X,Qy) the Calabi—Yau motive of X, and denoted by M x.




Theorem: Let (S,0) be one of the 86 surfaces represented by a
Delsarte surface. Let (F, 1) be an elliptic curve over Q. Let X be a
Calabi—Yau threefold of Borcea—Voisin (BV) type. Then X has a

model defined over Q, and X is motivically automorphic.
More precisely,

(a) (S, 0) is motivically automorphic, that is,

L(S,s) = L(ps,s —1)L(xs, s)

where pg and x g are Galois representations corresponding to
NS(S) and T(S), respectively.

Here L(xs,s) = L(Mg, s) is automorphic.




(b) X is motivically automoroic, that is,

L(X,s) = L(pg ® ps, s)L(pE ® xs,5)L(J(Cy),s — 1)*,

where pg is the Galois representation corresponding to E, J(C,) is
the Jacobian variety of C, (here Cy is also of CM type).

Here L(pg ® xs,5) = L(Mx,s) and L(J(Cy), s) are automorphic.




Remarks: (a) The automorphy of L(xg, s) is proved by using the

argument of automorphic induction. This is justified as S is of CM
type.

We cannot establish the automorphy of L(pg, s) as this may
correspond to higher dimensional Artin representations, and the
automorphy of Artin representations are still open even for CM

fields.

(b) We get only the motivic automorphy for L(X,s). A reason for

this is that the L(pg ® ps, s) may be associated to the tensor
product of pg and higher dimensional Artin representations.




Example 1: Let £ = Fy : y3 = yi +y3 C P?(2,1,1). Let Sy be a
(quasi-smooth) K3 surface given by

So: w3 =) + 2l + 3% C P3(21,14,6,1)

of degree 42. Sy has a non-symplectic involutiono(xg) = —z¢. Let
S be the minimal resolution of Sy. Then S corresponds to the
triplet (10,0, 0) of Nikulin. So its mirror S also corresponds to the
triplet (10,0,0). The fixed locus S =Cg ULy U---U Lg. Also S is
of CM type as it is dominated by the Fermat surface of degree 42.
The K3 motive Mg corresponds to the cyclotomic field K = Q({42)
with [K: Q] = ¢(42) = 12 = 22 — 10. Then Mg is automorphic.




Now the Calabi—Yau threefold X = E5 x S/t X ¢ has a birational
model defined over Q:

X iz 4+ 2 = 25 + 23 + 27 C P*(21,21,28,12,2)

of degree 84. Since both Fs and S are of CM type, X is also of CM
type. The Hodge numbers are given by

(X)) =35, h*'(X) = 35.

So X 1s own mirror.




Example 2: Let E = F5 and Sy be a (quasi-smooth) K3 surface
given by

So : x5 = x3w0 + x5 + b — 23t CP3(7,4,2,1)

of degree 14. Sy has a non-symplectic involution o(xg) = —x¢. Its
minimal resolution S corresponds to the triplet(7,3,0) of Nikulin.
Remove the monomial x323 from the defining equation for Sy, we
get

C2 3 7 14
So 1 xy = xiT2 + 15 — X3

which makes Sy of CM type. It is dominated by the Fermat surface
of degree 42 = lem(3,2,14). Then Mg corresponds to the
cyclotomic field K = Q(({42) of degree ©(42) = 12, and it is

automorphic.




Now the Calabi—Yau threefold X = E5 x S/t x ¢ has a birational
model defined over Q:

X 25+ 21 = 2523+ 28 — 24t C P*(7,7,8,4,2)

of degree 28 and lem(4,3,14) = 84. Since F5 and S are of CM
type, so is X. The Hodge numbers are given by

1 (X) =20, h*'(X) = 38, and e(X) = —36.

We now pass from Q((42) to Q((s4) to take H'(E5) into account.
The Calabi—Yau motive M x has dimension 24 = ¢(84). The
Jacobi sum Grossencharacter of Q((g4) gives rise to the G Loy
irreducible automorphic representation over QQ for M x. Hence M x

is automorphic.




Mirrors of Calabi—Yau threefolds of

Borcea—Voisin type and arithmetic mirror symmetry

We know that mirror symmetry conjecture holds for Calabi—Yau
threefolds of Borcea—Voisin type, and it is inherited from mirror
symmetry for K3 surface components. However, the 95 K3 surfaces
of Reid and Yonemura are not closed under mirror symmetry of K3
surfaces.

Lemma (Belcastro):Among the 95 K3 surfaces, the 57 K3surfaces
S have non-symplectic involution o acting as—1 on H*°(S), and all

57 have mirror partners SV equipped with non-symplectic

involution oV acting as —1 on H*Y(SV).

Here if pair (S, o) of a K3 surface with non-symplectic involution o
corresponds to a Nikulin’s triple (r,a,d), then a mirror pair
(SV,0Y) corresponds to the triple (20 — r, a, ).




Examples of mirror pairs of Calabi—Yau
threefolds of Borcea—Voisin type

We consider the Calabi—Yau threefold in Example 2 above. To find
a mirror family, we look for a mirror SV of S. We may take for SV
the K3 surface defined by

SV ad =t + xwh + ahas + 23 C P3(21, 14,4, 3)

of degree 42. It has a non-symplectic involution xg — —zy. The
pair (SV,o") corresponds to the triplet (13,3,0). Removing the
monomial 23z we can make Sy to be of CM type. Since
lem(2,7,4) = 28, Mgv corresponds to the cyclotomic field Q((2g)

of degree ¢(28) = 12. Then Mgv is automorphic.




A candidate for a mirror family XV has a birational model over Q

XV zé + zf = zg + zgzg + zi4 C IP4(21,21,28,8,6)

of degree 84. The Hodge numbers and the Euler characteristic are

given by
Ab1(XY) =38, h*1(XY) =20, and e(X") = 36.

We pass from Q((25) to Q((s6) to take H(Es) into account. Then
the Calabi—Yau motive M xv has dimension 24 = ¢(56). By the

similar argument as for M x, it is automorphic.




Observation:

L(Mx,s) = L(Mxv,s)

that is, the L-series of the Calabi—Yau motives of a mirror pair

remain invariant under mirror symmetry. They are automorphic.

A mirror Calabi-—Yau threefold XV appears in a family. Since we
do not know how to do point counting on a family, we consider XV
only at a CM point and compute the L-series L(Mxv, s) at this
isolated point. Then we are comparing the two L-series L(Mx, s)

and L(Mxv,s).

This phenomenon is valid for many examples of mirror pairs of
Calabi—Yau threefolds of Borcea—Voisin type.




