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I. INTRODUCTORY REMARKS

One of the last few years’ most important developments in theoretical
physics is the recognition that it is useful to extend to complex numbers the
definition domain of intrinsically real variables, such as energy or angular
momentum. This leads one to review many subjects which were considered
to be closed. It should not have surprised me, therefore, when Dr. Salam
asked me to report, at this seminar, on equations for elementary particles
which are not believed to exist in nature, such as particles with imaginary
mass. Even though the equations which describe such particles will play
no role in the theory as long as the variables such as energy or angular mo-
mentum have physically meaningful values, that is, as long as theyare real,
they may play a significant role when the definition domain of these variables
is extended.

1 was, at one time, greatly interested in establishing all linear equations
which are invariant under the inhomogeneous Lorentz group and much of
what I will talk about originates from this interest. The inhomogeneous Lo-
rentz group contains displacements in space and time in addition to Lorentz
transformations; it will be called Poincaré group after the mathematician
who first became convinced of the basic significance of this group for physics.
It turns out that the representations of a group essentially determine all
linear equations which are invariant under the group in question and one is
thus led naturally to the theory of the representations of the Poincaré group.
The term ''representation’ will mean, throughout this article, a group of
linear operators which is homomorphic to the group to be represented; the
. space of the vectors on which these operators act is a complex Hilbert space,
usually infinite dimensional, which will be called representation space.

Only some of the representations of the Poincaré group will be dis-
cussed: those which are irreducible and unitary. The first restrictionmeans,
in the domain of real masses and spins, that only equations for elementary
particles will be considered, and these only on the Schrodinger, that is not
second quantized, level. In the extended domain of the variables it should
mean that the Regge poles to be considered are primitive but at the present
time this point has not been fully elucidated. Naturally, it would be desirable
to consider also the second quantized form of the equations,but I am not able
to do this. My excuse for considering only unitary representations is simi-
lar: the non-unitary ones present complications which have not yet been sur-
mounted, even though Dr. Froissart has made significant progress in their
investigation.
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There is one other respect in which my discussion will be limited: by
the very fact that the Poincaré group will be the basic group throughout. It
would be desirable to consider equations which are invariant under one of
the generalizations of the Poincaré group, in particular equations invariant
under the usual de Sitter group. However, the doctoral thesis of T. Philips
shows that even the interpretation of the real mass-real spin representations
of the usual de Sitter group encounters serious difficulties and I want to
avoid these. Hence, the discussion will be concerned solely with the Poincaré
group and almost solely with the unitary irreducible representations of this,
or the linear equations which correspond to these.

The relation between representations and equations of motion justifies a
few remarks. In one sense, the representation gives much more information
than the equations of motion: whereas the equations of motion, as ordinarily
conceived, give only the change of the state vector (or whatever character-
izes the instantaneous state of the system) with the passage of time, and
this directly only for an infinitesimal increment of time, the representation
gives the change of the state vector for arbitrary Poincaré transformations,
and for finite ones as well as for infinitesimal ones. The time displacement,
the effect of which is given by the equations of motion, is only one special
type of Poincaré transformations. Hence, the representation is more in-
formative than the equation of motion in two regards: because it gives the
effect of finite, rather than only of infinitesimal,transformations, and be-
cause it gives the effect of all Poincaré transformations, not only of time-
displacements. It may even happen that it is, on the basis of the equation
of motion alone, not possible to determine without further assumptions how
the state vector changes under a proper Lorentz transformation. Thus, to
mention a rather trivial example, the Dirac equation in empty space is in-.
variant under Lorentz transformations not only if the four components are
considered to be spinors, but also if they are considered to be scalars.

In another less mathematical but much more suggestive sense, the
equation of motion is much more informative than the representation from
which it arises., The reason is that it invites the application of the methods
of second quantization and hence the replacement of the particle by a quantum
field. Once this is accomplished, one may be led by analogies to assumptions
concerning interactions. Without any knowledge of its interactions, the pic-
ture of a particle is rather empty. All these remarks apply, for the present,
only to representations or equations which describe particles which exist
in some sense in nature. It does not apply to characteristics of Regge poles
or anything similar; for these the relation between representations and
equations of motion (if such exist) is much less clear.

It should be mentioned, finally, that the relation of representations to
equations of motion is not one-to-one. We shall see several examples for
this; one of the principal objectives of these lectures being the establishment
of a general method to obtain one equation of motion for every representa-
tion. This equation of motion will, in some cases, not be the common and
well-known one. However, one example for the lack of uniqueness of the
correspondence between representation and equation of motion is already
known to all of us: the electromagnetic field can be described either by the
scalar and vector potentials, or by the electric and magnetic fields. The
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representation is, however, the same for both: 0, in the usual notation.

In fact, the representation is always uniquely determined by the properties
of an elementary particle because it merely expresses the relation between
the deccriptions of the particle by observers using different but equivalent
frames of reference. In particular, the two frames of reference whose rela-
tion gives the equations of motion are at rest with respect to each other, but
their time scales have different starting points,

II. THE UNITARY REPRESENTATIONS OF THE POINCARE GROUP

One further general observation will be useful for the understanding of
the connections which will form the subject of these lectures. This obser-
vation relates to the greater effectiveness of invariance considerations in
quantum than in classical theory. The reason for this greater effectiveness
was spelled.out already by C.N. Yang: the states in quantum theory con-
stitute a linear manifold whereas there 1s no similar structure of the states
in classical mechunics. However, it will be useful to pursue somewhat more
in detail the way this difference manifests itself. We shall choose for this
a very simple and elementary example in which only rotational symmetry
is present.

Hamel, Klein and Noether have shown how the conservation laws for
angular momentum, for instance, can be derived in classical mechanics
directly from the invariance of the equations with respect to rotations. How-
ever, the considerations leading from the invariance to the conservation
laws are rather subtle, being based on the principle of least action. If one
just considers a possible classical trajectory, such as a planetary orbit,
an unsophisticated application of the invariance principle only leads to the
conclusion that there are other similar orbits, obtained from the given orbit
by a rotation. This is not a very fruitful conclusion. In quantum theory,
given one orbit, one can also obtain other orbits by rotation. However, all
the orbits obtained in this way form a linear manifold and one can select
from this manifold a linearly independent set in terms of which all the
"orbits" can be expressed linearly. If one then subjects the members of
the selected set to a rotation, and expresses these rotated orbits linearly
in terms of the originally selected set, one obtains at once a represent-
ation of the rotation group.

When carrying out the procedure just outlined, one of two situations
may be encountered. If starting with one orbit, the orbits obtained bydiffer-
ent rotations are all linearly independent, no significant conclusion results.
The representation obtained in this case is the infinite dimensional so-
called regular representation of the rotation group, but even with a detailed
analysis it is clear that, in this case, no significant conclusion concerning
the properties of the orbits can be arrived at. In fact, the situation is very
much the same as in classical theory. The most interesting and significant
conclusions concerning the properties of the ""orbits" will result if there
is only a finite number of linearly independent states in terms of which all
states obtained by rotation can be expressed. Inthe well-known case when
this number is 1, all states are spherically symmetric and the conclusions
are usually only little less striking. '
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Let us now review briefly a way in.which the representations of the
Poincaré group can be determined. The procedure has actually been given
by Frobenius long before the Poincaré group was known. Its application
is based on the fact that the Poincaré group has an invariant subgroup, con-
sisting of all displacements. Matters become particularly simple because
this invariant subgroup is abelian (commutative). The mathematics which
will be used is not rigorous because members of the continuous spectrum
will be treated as if they were bona fide vectors in Hilbert space. However,
the procedure can be justified rigorously, principally on the basis of the
investigations of Mautner and von Neumann.

Let us consider states which belong to irreducible representations of
the group of displacements. Since this group is abelian, the unitaryirreduc-
ible representations are one-dimensional. Denoting the displacement vector
by a, its operator by T,, there will be "states" |p, ¢> for which

Ta|p, 2> =e™?%|p, £> (2.1)
where p.a is the Lorentz scalar prodvct of the two vectors p and a:

p-a = ptat - pxax- pyay- pzaz (2.1a)

The reason for the apparently arbitrary sign convention adopted in (2.1) will
become evident soon. It also follows from the unitary nature of the repre-
sentation that the components of p must be real. Otherwise, Ta would not
be unitary. However, the existence of vectors for which (2.1) holds would-
be rigorously assured only if the components of p were discrete variables.
As we shall see at once, this is not the case and it follows that the 'vectors"
|p, ¥ > are not normalizable. This is the point where the derivation is not
rigorous. The variable ¢ was introduced because it is possible that there
are several vectors which transform, under the operations of the displace-
ment group, according to the representation (e “'P-2); the index ¥ distin-
guishes these vectors. It can be assumed to be a discrete variable but if
there are infinitely many vectors which belong to the (e-ip-2 ) representation,
it will assume infinitely many values. Naturally, we do not yet know for
which four-vectors p there are Hilbert vectors |p, t>, i.e., which re-
presentations (e"P-2) of the displacement subgroup occur in the Poincaré
group’s representation which is being analyzed. As a matter of fact, this
representation is not yet specified.

It will be shown now that if a representation of the Poincaré group con-
tains the representation (e-iP-2) of the displacement subgroup, it also con-
tains all representations (e-iP2) of this subgroup if p' = Lp can be obtained
from p by a proper Lorentz transformation L. The representation(eP-2) !
is contained in a representation of the Poincaré group if there is a vector
|p, t > in the Hilbert space of the latter for which (2.1) is valid. Similarly;
(e-ilp.3) is contained in the same representation if there is a vector for whict
(2.1) with p replaced by p' =Lp is valid. Since the vector l,p, ¢ > is expecte:
to describe a state with four-momentum p, one will expect that the operatio:
O, which corresponds to the Lorentz transformation L, will transform
this state into one with momentum p' =Lp. Hence, one will expect that
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Ta(OL |p, £>) = e ™2 0Oy |p, T>. (2.2)
This is indeed the consequence of the equation
Ta OL = OLTL"la- (2 3)

This equation expresses the fact that a Lorentz transformation L followed
by the displacement a is identical to a displacement by L-la, followed by
the Lorentz transformation L. If (2. 3) is applied to the vector lp, £>, the
left side will be identical with the left side of (2.2). The right side becomes

. - -i -1
OLT -1, |p, £>=Oped Ll |p, gy=eL720 |p, €.

The second member is a consegquence of (2.1} as applied to the displace-
ment Lla, the last member follows because the exponential is a numerical
factor and Oy is linear. Furthermore, it follows from the properties of the
Lorentz scalar product that ’

p-Lla=Lp.a (2.4)

so that indeed, (2.2) is established. This then proves that if the Hilbert
space of a representation of the Poincaré group contains vectors Ip, >
with four-momentum p, it also contains vectors with all the momentum Lp,
where L is any Lorentz transformation. According to (2. 2), OLIp, t>is
such a vector.

Since the | Lp,n>, for all possible values of 5, form a complete set
of vectors which transform under the displacement group according to the
representation (eilP-2), one can conclude that

OL|p,§>=ZCn|Lp,n>. (2.5)

The coefficients ¢, can depend on p, ¢, and L. We shall use only a special
case of (2.5) to define what has come to be called the 'little group".

III. THE LITTLE GROUP

We have seen that the four-vectors p for which there are Hilbert vectors
satisfying (2.1) form a set which is invariant under all proper Lorentz trans-
formations. In an irreducible representation, all such vectors can be ob-
tained from a single one by applying all possible Lorentz transformations
to it. Hence, the Lorentz length p.p of the momenta is the same for all
state vectors which are present in the representation space of an irreducible
representation. Altogether, one has to distinguish six qualitatively different
cases.

1. p.p =m?>0, pr > 0. The corresponding representations describe the
transformation properties of real particles with finite rest mass.

2. p.p =0, p,> 0. These representations refer to particles with zero rest
mass. The equations which correspond to some of these representations
are well-known,but we shall discuss all of them.

3. p.p=m?<0, i.e., pis space-like, m imaginary. In this case p: can
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assume arbitrarily large negative (as well as positive) values. It is axio-
matic that no particle can exist which corresponds to such a representatio:
because, if it existed, it could transfer any amount of energy to a particle
of class 1 by going over into a state with sufficiently large negative pi. Nev«
theless, the representations of this class will be described and equations
of motion given which correspond to these representations. Also, some of
the properties will be given which particles corresponding to these repre-
sentations would have, if they existed. This conforms to the program giver
in the first section.

4, p.p =0, p, < 0. Again, p, can assume arbitrarily large negative values.
However, the representations of this class are simply conjugate complex
to the representations of class 2 and will not be discussed further,

5. p.p=m?> 0, p, < 0. These representations are conjugate complex to
the representations of class 1 and will not be discussed further either. Agai
p, can assume arbitrarily large negative values.

6. pp =1y = Py = pt = 0. All states would be displacement invariant. Again, i
is axiomatic that no particles with these transformation properties can
exist,

The preceding enumeration gives the possible momentum vectors p for
which states 1p, ¢ > exist.in the irreducible representation in question. Thr
transformation properties of these states with respect to translations are .
given by (2.1); we shall now discuss their transformation properties with
respect to (homogeneous) Lorentz transformations L. This discussion will
be based on (2.5),

Let us select in every case, except the last one which will be disre-
garded, from all possible momentum vectors a definite one which will be
called p’. In the case of class 1, p° is best chosen to be parallel to the time
axis, in case 3, parallel to the z axis. In case 2, it will be the vector with’
components 1, 0, 0, 1. The choice of p? is arbitrary, but it is useful to ma.
it in order to fix the ideas.

We next define the "little group" as the group of all Lorentz transform:
tions which leave p' invariant.

Lpe = po. (3.1)

The L which satisfy (3.1) evidently form a group and this group does not
depend essentially on the arbitrary choice of p*. If another momentum

pt = L1 p’ had been chosen, the transformations L LL'11 which leave it in-
variant would have formed a group which is isomorphic to the group of L
which leave pt invariant. However, with the preceding choice of p?, it is

" clear that in case 1 the little group is the three-dimensional rotation group
in case 3 the 2+1 dimensional Lorentz group, i.e. the group which leaves
the form t2 - x2 - y2 invariant. In case 2, the group is not quite soobvious.
It clearly contains the rotations in the xy plane and, as will be seen at once
it also contains two sets of commuting operations T¢ (a) and Ty (8) which
form, together with the rotations in the xy plane, a group isomorphic to the
two-dimensional Euclidean group, i.e. the group of rotations and displace
ments in the plane. Tg(a) and T, () are:
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1+ o2 a 0 -1a2
a 0 -
T (@) = 0 1 o I 2 .2
302 a 0 1-1a2
. R
0 1 0 0
T,(B) = 8 0 1 B . (3.2a)
182 0 B 1-3p2

The first row (and column) refers to the t component, the second, third and
last to the x, y and z components. No simple argument is known to this
writer to show directly that the group of Lorentz transformations which
leave a null vector invariant is isomorphic tothe two-dimensional Euclidean
group, desirable as it would be to have such an argument. Clearly, there
is no plane in the four-space of momenta in which these transformations
could be interpreted directly as displacements and rotations because all
transformations considered are homogeneous. The simplest geometrical
picture known to me uses two vectors p® and p?, of length -1 and orthogonal
" to each other as well as to p°. These vectors could be unit vectors parallel
tothe x and y axes. Tne Tg(e)then adds ep®top®, whereas T, (8) adds Sp* to the
p.

In summary, then, the little groups for the first three cases are:
1. p.p=m?> 0, pr > 0: the three-dimensional rotation group
2. p.p =0, pt > 0: the two-dimensional Euclidean group
3. p.p = m? < 0; the 2+1 dimensional Lorentz group.
The little groups for cases 4 and 5 are the same as for 2 and 1, but we shall
not be concerned with these cases.

The significance of the operations of the little group becomes evident
if (2.5) is specialized to p = p? and L. a member of the little group. One then
has

Oul P8 5= ) DiLye|pen . (3.3)
]

The dependence of the c, on the remaining variables, ¢ and L, is made ex-
plicit in (3.3). The L is, however, restricted to members of the little group.
One now concludes in the usual way, by applying another operation Opof.
the little group to (3.3), that the coefficients D(L), form a representation
of the little group. This representation will be unitary and irreducible if
the representation of the Poincaré group which we are analyzing is unitary
and irreducible. It can be shown, further, that all the coefficients ¢, in(2.5)
are essentially determined once the D(L) are given. Hence, the unitary ir-
reducible representations of the Poincaré group are characterized by two
entities: (a) the set of momentum vectors which canbe obtained from a single-
momentum vector p? by applying to it all proper Lorentz transformations
and (b) an irreducible unitary representation of the little group, i.e. the



66 E.P. WIGNER

group of proper Lorentz transformations which leave p® invariant. We shall
take up the three cases of the preceding section separately.

IV. INFINITESIMAL AND CASIMIR OPERATORS

The infinitesimal operators of a unitary representation are skew her-
mitean; they become hermitean when multiplied by i and correspond to
conserved quantities. Because of (2.1), the infinitesimal operators for a
displacement parallel to the t, %, y, z axes are -ip,, ip,, ipy and ip,. Hence,
Pt. -Px, -Py, -Pzare conserved quantities; they are the covariant compo-
nents of the momentum. The covariant components of the angular momentum
tensor will be denoted by My = -Myk. The commutation relations are, then,

[Pk, PQ:I =0 [Mka, P% = i(gymPx - gkmpn) (4.1)

and

[Mkﬂx Mmrzl = i(ngml\'Ikn - gkmMﬂn * 8kn Mﬂm - 8in Mkm) (4.1a)

where g is the metric tensor, g, =-g,, = “8yy = 8y = 1, all other compo-
nents of g vanishing.

The significance of the infinitesimal operators in the present context
derives from the fact that the equation of motion gives the change of the
state vector for an infinitesimal displacement of time. Hence, the equation
of motion will be an equation which permits the calculation of the infinitesi-
mal operator for such a displacement.

Functions of the infinitesimal operators which commute with all in-
finitesimal operators — such functions are called Casimir operators —
commute with all operators of the representation. These are, after all, ex-
ponentials, and products of exponentials, of the infinitesimal operators.
Each Casimir operator of an irreducible representation must be equivalent
with multiplication by a number, at least if the Casimir operator in question
is hermitean, In other words, all vectors in the representation space of an
irreducible representation must be a characteristic vector of every hermite-
an Casimir operator and the corresponding characteristic value candepend only
on the Casimir operator and the irreducible representation, not on the vector
in the representation space. In fact, the vectors which belong to a given
characteristic value of a Casimir operator form an invariant subspace and
the only non-empty invariant subspace of an irreducible representation is the
whole representation space.

It follows that the irreducible representations of any group can bechar-
acterized, at least partially, by the values of the Casimir operators for the
representation in question, i.e. by the numbers with which the Casimir
operators multiply the vectors in the representation space of the irreducible
representation in question. The Poincaré group has two Casimir operators,
One of these was implicitly determined before: it describes the manifold of
momenta
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P=m?=p.p (4.2)

by the ¢common length of the momentum vectors of the states of the repre-
sentation. The second Casimir operator is Lubanski's invariant; this char-
acterizes the representation of the little group. It is the square of the total
angular momentum in the coordinate system in which the particle is at rest,
multiplied with the square of the mass, Mathematically, Lubanski's in-
variant is the negative Lorentz square of a vector w

W=-w.w., | ' (4.3)

The contravariant components of this vector are

k=

wk = Sekmnpy Mon, (4.3a)
ekimn being the fully antisymmetric tensor and (3. 3a) implying summation
of the repeated indices.

We shall not use the Casimir operators to derive the various irreducible
representations of the Poincaré group. However, having derived the ir-
reducible representations, we shall calculate the Casimir operators and
ascertain the extent to which they characterize the representation or can
even replace them.

V. CASE OF POSITIVE REST MASS

The results are, in this case, well known. The irreducible represent-
ations of the little group, which is the three-dimensional rotation group in
this case, can be characterized by a quantity s which can assume the values
0, 3, 1,2, ...; it is called the spin. The dimension of the representation s
is 25+l so that{ can assume 2s+1 values and there are 2s+1 states withthe same
four-momentum. The representation with p.p=m?2=P and the s representation
of thelittle group can be denoted by P, . Equations of motion for the particles
which belong to the representation P, have also beengiven; infact, there are
several forms for these equations. It should be noted, however, that the solu-
tions of these equations do not all belong to the representation P,. They all
have negative energy solutions which belong to the conjugate complex of
P;, i.e, to the fifth class of the section IIl. These spurious solutions are
then eliminated, or rather reinterpreted, when the transition to the f1e1d
theory is undertaken.

The first Casimir invariant is m?, the second one, W, can easily be
calculated for one of the states [p°, t > For these, px=py = pz=0, pr = m,
so that wy = mMy,, wy= mMjy, w, = mM,y and

W = m?s(s+l), (5.1)
so that indeed P and W suffice to characterize the representations with real

rest mass, except that for the two conjugate complex representations — one
of class 1 and the corresponding one of class 5 — the Casimir operators
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have the same value. It was mentioned before that the equations of motion
also permit the vectors of these two representation spaces.

The equations for positive rest mass have been discussed in the liter-
ature repeatedly and will not be given in detail.

VI. CASE OF ZERO REST MASS

A. The representations of the little group.

The representations of the little group, that is the two-dimensional
Euclidean group, are not as commonly known as those of the three-dimen-
sional rotation group. They could be easily determined, however, by the
method used for the Poincaré group. The operators of displacement,
Tela) ,,(B) = ,,(B Tge), form an abelian invariant subgroup and one can
choose "vectors'' in the space of the Euclidean group’s representation which
belong to an 1rredu01b1e representation of this invariant subgroup. If these
are denoted by ] ]7r , > one has

Tele) ||a', a">=ei™| |7, 2", (6.1a)

T,(8) || 2, 7""S=eim8[|x!, 2", (6. 1b)

It is good to remember that the ''displacements' T; and T ;are not displace-
ments in any physical space, their most visualizable interpretation interms
of physical quantities being given after equations (3.2). Similarly, the re-
presentation space is not a physical space but the space of the coordinate
axes which were denoted before by¢ (see (3. 3)). The argument proceeds from
this point just as in the case of the Poincaré group but is simpler because
the group is much more simple. The possible values of (', 7'') can all be
obtained by an orthogonal transformation from one such two- d1mens1ona.1
vector, i.e., in an irreducible representation only such l \7r T >occur for
which ¢'2 + ¢ M2og £ 2 has a fixed value.

We shall not fo]low this method but use the same one which will be used
also to determine the representations of the little group in the case of imagi-
nary rest mass. This method is based on the solution of the commutation
relations of the infinitesimal operators. Since Garding's construction of an
everywhere dense set of vectors in representation space to which all infim-
tesimal operators can be applied, this is entirely legitimate. The only dis-
advantage of this method, as compared with the usual one, is,that it gives
only the infinitesimal operators, not those for the actual group elements.
However, the determination of the infinitesimal operators will suffice for
our purposes.

The infinitesimal operators of the little group are Myy, and, as can be
seen from (3.2) by setting ¢ and B infinitely small, 7' = M, - M,, and
7" =Mzy - M. The communication relations between these operators are

{w', 7r"] =0 , [Mxy, n'} =ir'" [Mxy, 1r":| = _ig', (6.2)
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The characteristic values of My, can be either integer, or half-integer. In
either case, these are discrete numbers so that one can assume a form of
the representation in which Myyis diagonal. Let us denote the diagonal ele-
ments by m,; the aff matrix elements of the second and third equations of
(6.2) are then ' '

(mg - mp)r'gp= in"'q, (mg - mg)n'hs = -imps. (6.3)

One easily concludes that 7' = 733 = 0 unless | m, - mg| ='1, that is, if one
arranges the diagonal elements of Myy in increasing order, both #'and 7'
have non-vanishing matrix elements only between consecutive values of the
diagonal elements-of Mxy. One can then transform all infinitesimal elements
by a unitary diagonal matrix in such a way that the matrix elements of 7'
which are above the diagonal become real. Since 7' is hermitean, all its
matrix elements will then be real whereas the matrix elements of 7" will be
all imaginary. The first of the equations (6. 2) then shows that all the non-
vanishing matrix elements of 7' are equal. Except for this last point, the
situation reminds one of the representations of the rotation group in the
form in which M,y is diagonal.

Two cases have to be distinguished now. These are the analogues of the
six cases encountered in Section III for the Poincaré group. If all the matrix
elements of 7' are zero, the same holds for ''. In these representations
the unit element corresponds.to all the "'displacements' T (a) T,(B) and the
representation is faithful only for the factor group of this representation,
i.e. the two-dimensional rotation group. The representation can be ir-
reducible only if it is one-dimensional. It coordinates to a rotation by 8 in
the xy plane the matrix (e®® ) where s can be an integer or a half integer,
positive, negative or zero. These representations are denoted by 0s; they
are the well-known representations associated with a null-mass Klein-
Gordon particle (s=0), neutrino of positive or negative chirality (s = +3),

a right or left circular polarized light quantum (s = +1). The quantity | s|

is called the spin of the particle. Both Casimir invariants P and W vanish

so that they cannot be used to distinguish these representations. Since the
representations of the little group are one-dimensional, there is only one
state with any definite momentum; the doubling of the number of states for
‘s # 0 is a result of reflection symmetries. These representations have been
adequately discussed in the literature.

The non-singular case, in which 7' and r'' do not vanish, is less well
known. The non-vanishing elements of 7' will be denoted by 3E so that 1’
and 1" are given by

.. 0 3z 0 o 0 iz 0 0
N 3 0 38 0 ... . -3iz 0 iz 0 .
" 0 38 0 fE...f T 0 -jiz 0 jig
0 0 3= O 0 0 -3z o
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2 can be assumed to be positive because its sign can be changed by trans-
forming all infinitesimal elements with a diagonal matrix whose diagonal
elements are, alternately, 1 and -1. Clearly, these representations of the
little group are infinite dimensional; they can be characterized by the Casi-
mir operator 7'2 + 72 = Z 2 of the two-dimensional Euclidean group. How-
ever, this invariant does not characterize them completely: the diagonal
elements of Myy can be either the integers ... -2, -1,0, 1,2, ..., or the
half integers ... -3, -3, 3, 2, ... . In the former case, the representation
is single valued, in the latter case two valued. As far as representations
of the two-dimensional Euclidean group are concerned, the characteristic
values of Mxy could be any arithmetic series with difference 1. However,
unless these arithmetic series consist either of the integers, or of the half
integers, the representation of the Euclidean group will be more than two
valued so that no one or two valued representation of the Poincaré group
can be constructed from these representations of the little group. There is
a theorem according to which all representations up to a factor of the
Poincaré group can be made one or two valued by multiplying the operators
of the representation by suitable factors. Hence, the many valued repre-
sentations are of no interest.’

Since the characteristic value of the operator Mxy, for a state in which
the momentum vector is in the tz plane, can extend to infinity, these re-
presentations are also called "infinite spin'' representations. The values
of the Casimir operators P and W are 0 and £2. The single-valued repre-
sentation, 0(Z), is not distinguished from the two-valued representation
0'(Z) by the values of the Casimir operators.

Numerous arguments can be adduced to show that no real particles can
exist which would transform according to the representation 0(Z) or 0'(Z).
The simplest of these arguments is that the heat capacity of vacuum due
to the possibility of the formation of particles, or of pairs of particles, is
proportional to the number of polarizations of the particle in question. This
number is infinite for particles with one of the representations 0(Z) or
0'(E) because the representation of the little group is infinite dimensional.
Hence, the mere possibility of the existence of any of these particles would
give an infinite heatl capacity to vacuum.

B. Equations

The equations for the well-known zero mass cases 05 are adequately
discussed in the literature. Again, all known equations permit not only solu-
tions which belong to the representation 05, but also solutions which belong
to the conjugate complex of 0;. These are the negative energy solutions which
are then eliminated or reinterpreted in the second quantized form of the
theory. However, equations for the 0{Z) and 0'(=) cases were obtained only
after a general procedure for obtaining equations from representétions was
devised. This will be described next and illustrated also onone of the earlier,
well established cases. It should be admitted, though, that the procedure to
be described can be used only in conjunction with single valued representa-
tions. The reason for this will be evident at once. If one wants to derive
similar equations for the two valued representations, one has to use a space
appropriate for these representations: a two-dimensional complex space
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in which the two valued representations of the Lorentz group are isomorphic
to unimodular matrices. However, this will not be spelled out in detail.

The term "equation for a representation' is not clearly defined and,
in fact, we have seen that several equations may correspond to the same
representation. The quantity to which the equation applies will be called
wave function; it may have one or more components. The wave functions
which satisfy the equation, or equations, should transform, under the opera-
tions of the Poincaré group, according to the representation in question,
but this condition does not yet determine the equation, not even the vari-
ables on which the wave function depends. It is always possible, for instance,
to introduce extraneous, that is unnecessary, variables and then neutralize
these by equations as a consequence of which the wave function is either
independent of these unnecessary variables, or depends on them only in a
trivial fashion. We shall postulate, however, that the variables be of such
a nature that they clearly indicate how the wave function transforms under
the operations of the Poincaré group. This means that the variables are
either the components of a four vector x, or of the difference of two vectors.
A four vector x goes over, under a displacement by a, into x+a, under a
Lorentz transformation L into Lx. The difference of two vectors is invari-
ant under displacements and transforms like a four vector under Lorentz
transformations. Since I do not know a better expression for vectors of this
nature, I will call them difference vectors. The position vector is an ex-
ample for the first case and one is indeed inclined to interpret the compo-
nents of a vector which occurs in a wave equation as the position vector.
This may or may not be justified’.* The momentum vector is a difference
vector. It is because of this restriction of the variables which are admitted
that the equations will always correspond to single valued representations.

We shall determine next the number of vectors and difference vectors
which are needed as variables of the wave function. One will be sure to have
introduced enough variables into the wave function only if every Poincaré
transformation changes the set of values of the variables. If this is not the
case, some Poincaré transformations will necessarily leave the wave func-
tion unchanged, whereas it may follow from the representation that the wave
function is changed by the transformation in question. Hence, the variables
should be able to describe completely a frame of reference. A frame of ref-
erence can be given by an ordinary vector which describes the origin of
the coordinate system, and four difference vectors which give the direction
of the four coordinate axes. These vectors have, together, twenty com-
ponents — surely too many variables,but it will not be difficult to eliminate
the unnecessary ones by restricting the variability domain of some and by
pointing out that the wave function is independent of the others. Neverthe-
less, we do not want to go too far with such an elimination because the final
variables should be quadruplets of vector components.

Let us consider first the difference vectors. One of these may be iden-
tified with the momentum vector and it is convenient, then, to give it the
length of the momentum vector. This is purely a matter of convenience,

* In a recent article,(Dubna report P 939), M.I. Shirokov criticizes the replacement of the variables
of the wave equationby other position operators, as proposed by T.D. Newton and the present writer.
Unfortunately, his considerations contain a serious error.
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giving the final equations a slightly simpler form; the frame of reference
could be specified also if all the difference vectors were normalized in
some other fashion. The other difference vectors can be assumed to be
mutually orthogonal, orthogonal to the momentum vector, and of length 1
or -1, whichever is possible. Since these conditions completely specify the
last difference vector in terms of the first three, the components of this
are surely unnecessary variables and can be omitted. Even the third differ-
ence vector contributes only one independent variable - since it is normal-
ized and is perpendicular to two other vectors. It turns out, although this
is not evident at this point, that it is also "unnecessary', i.e., its omission
does not automatically entail the invariance of a function of the remaining
variables under a Poincaré transformation under which it should not be in-
variant. Hence, we are left with two difference vectors, one of them p. The
other will be denoted by &; its condition of normalization and perpendicu-
larity to p give the wave equations

(p.ply = m%, (6.5)
(.80 = ¢, {6.6)
(p.E)y = 0. (6.7)

At this point, ¢y depends on the eight components of two difference vectors,

p and & and the four components of a normal vector which will be denoted

by x and which will permit y to change under displacements. The equations
(6.5), (6.6), (6.7) are common to the equations of all representations; the
remaining equations with one exception will be characteristic of the repre- |
sentation according to which the solutions of the equation should transform.,
Our remaining task is, therefore, to express the equations of the repre-
sentation in terms of the variation of the wave function. We shall carry
this out in detail at this point for only two cases: the Klein-Gordon equation
for a finite mass Py, and the case of present interest 0(Z).

The first representation equation, still common to all representations,
is (2.1). According to this, an infinitesimal displacement by ha changes
the state vector by a factor 1 - ihp.a. Hence, if we use a vector notation
for the variables of ¢

¢(x +ha, p,&) =(1 - ihp.a) ¢ (x, p,E) . (6.8)

or, since this is valid for all a,

DY - ipky. (6.9)

9 Xk
It follows from (6. 9) that the components of x are ''unnecessary variables''.
If ¢ is given as function of p and £ for one vector x, say x=0, it is deter-
mined by (6.9) for all other x. One has
Y(x, p.g) = e™®xy(0, p,§). (6. 10)

Hence,  can be considered to depend only on p and §.
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Alternately, one can integrate (6.10) over p and obtain a function of x
and £ only:

P(x,8) = (2m)% [d*pylx, p.g) = (zn)‘2f¢(o, p.&) e ®*a'p.  (6.11)

From §(x, &), the original y (x, p,&) can be recovered by Fourier inversion,
v(x, p,g) =y(0, p,g)epx = (21r)‘2fd4x' F(x',g)el X (6. 11a)

The relation between (0, p, &) = ¢ (p, &) and §(x,§) is, except for a propor-
tionality factor, the usual one. It follows from (6.5) and (6.7) that y (x, p.E)
contains the factors & (p.p - m?) and 6(p.g) (as well as 6(E.E + 1)), but
these do not interfere with the integrations in (6.11), It follows, however,
from these equations fory that

92
~ man Y T (6. 5a)
3~ _
B Sa ¥ =0 (6. 7a)

The relation between y(p,E) and § (x,E) is so simple that it makes little
difference which of these wave functions one uses. In the present note
the momentum space representation, y (p,£), will be preferred.

Let us now consider a representation with finite rest mass. Equation
(6.7) restricts § to a three-dimensional space-like manifold which is per-
pendicular to p. In particular, if p = p% i.e., is parallel to the time axis,

v = 0 and (6. 6) further restricts the spatial part of £ to the unit sphere,
E2 +g7 +g2 =1, g, = 0. If we apply an element of the little group to the
two vectors p%and g, the former will remain unchanged, the latter point
to another point of the unit sphere. However, if the representation is Fy,
the representation of the little group is the identical representation, ¢ has
the same value for any two positions which can be transformed into each
other by an element of the little group. Since the little group is the group of
all three-dimensional rotations, y has the same value no matter to which
point of the unit sphere £ points. It follows that ¢ is independent of £ within
the domain of this variable, as restricted by (6.6} and (6. 7). Hence, £ is
an unnecessary variable in this case and can be dropped. Thus, for the
representation Pg, the wave function depends only on p and obeys the single
equation (6.5). This, or rather the Fourier transform of this, is theusual
Klein-Gordon equation so that our procedure led, in this case, to the usual
equation.

It would be quite interesting to derive the equations for the other re-
presentations F,, and also for O;. Instead, we proceed at once to 0(Z). In
this case, (6.6) and (6.7) restrict the variables £ to a cylinder-like struc-
ture the axis of which is p. At & = 0, the spatial components of & are re-
stricted to a unit circle in the plane which is perpendicular to the direction
of the spatial part of p. If we denote by &' and &" two perpendicular purely
spatial vectors (i.e., whose t component is 0) which are orthogonal to p,
the general purely spatial § vector will be &' cos 6 + g" sinf. The other &
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vectors which,are consistent with (6.6) and (6.7) can be obtained by adding
to one of the purely spatial § vectors an-arbitrary multiple of p. This, then,
forms the aforementioned cylinder-like structure. Since p is orthogonal

to itself, the vectors just obtained are also orthogonal to p. It follows simi-
larly that the length of all vectors &' cos 6 + &" sinf + cp is -1.

We yet have to express the condition that the representation of the little
group is given by (6.4) so that W =E2. In order to express this condition,
we recall that the infinitesimal operators of the Lorentz transformations
of the wave function are

. 5}
an= l(Pm apn =~ Pn aapm+ Em agn gn agm) (612)

Both p and £ are vectors, hence both change upon a Lorentz transformation.
On the other hand, (6.9) shows that the infinitesimal operator of displace-
ment is simply multiplication by -ip. Hence, the wk of (4. 3a) will have two
types of terms: those arising from the first two terms of (6.12), involving
only p, and those arising from the last two terms. However, because of

the antisymmetry of the ¢, all the terms vanish which involve only the p.
This is natural since all w vanish if there is no spin variable as in the case
of the representation Py. Hence, we have

wk - 1 €k£mn( agn Em agm S )pﬂ

= i ektmn aagn EmPy- (6.13)
If one now calculates W
W = v wy = MM gy e Empe g 7 B (6. 14)
one can make use of the identity
XM ey gy = - Iy (6mm'6nn"' 6mnt Snmt) - Spm (Smrnburg - 6m?06n'n)
- bgn (6mebnm - Srmbue)- (6.15)

If one inserts this into (6. 14) and applies both sides to ¢, the first two terms
give zero because both p, p! ¢ and p, &¢ y vanish. Hence one can set in any
scalar product:

W¢/=-agn Emag PQ(EP‘PE)W

One can now push the g, across the § /3 £, and obtain using again (6.5),
(6.7), and also (6.6)
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I LA -2 6.16
where
. J
V=ip ——. (6. 16a)
aE,

It now follows from Wy =E 2y that the linear space of the ¢ can be decom-
posed into two subspaces. In one of these subspaces

vy = lelag =2y, (6.17)

in the other subspace (6.17) holds with the opposite sign. Evidently, both
subspaces are relativistically invariant — and also equivalent as the remark
after (6.4) shows. Hence, we may adopt as well (6,17} as the last equation
for  (p,£). It determines the variation of & along the lines in § space which
are parallel to p. We recall that § is confined to a cylinder-like structure
the axis of which is parallel to p. It follows that y can be freely chosen only
on a line around this cylinder, for instance on the line g = 0. This is, as
was also mentioned before, a unit circle in the plane perpendicular to the
direction of the spatial part of p. The reason why y is defined not only onthis
circle — where it can be chosen arbitrarily — but all over the cylinder is,
that the relativistic invariance is manifest only if the variables of & are
restricted only in a relativistically invariant fashion. This is done by {6.6)
and (6.7). On the contrary, (6.5) is more properly an equation of motion,

There are altogether four equations for y(p,g): (6.5) with m=0, (6.6),
(6.7) and (6.17). The common solutions of these equations actually give two
invariant linear manifolds: the positive energy solutions belong to 0(E), the-
negative energy solutions to the conjugate complex of 0( £). These can be
obtained from the positive energy solution by complex conjugation and re-
placement of & by-£. It is of interest to apply the compatibility criterion
to the four equations for y which postulates that the commutator of the
operators of any two of them shall vanish if applied to ¢, and that this shall
be a consequence of the original equations. Evidently, (6.5), (6.6) and (6.7)
commute so that these do not-lead to any condition. However, the commuta-
tor of (6.6) and (6.17) gives just (6.7) whereas the commutator of (6.7) and
{6.17) gives (6.5) with m=0. Hence, the compatibility criterion is satisfied
— but it would not be satisfied for similar equations with a non zero rest
mass.

It is clearly possible to transform the equations from momentum space
into coordinate space. The infinitesimal operators of the little group in{(6.4)
use the coordinate system in which the § dependence of y, on the unitcircle
described before, is expanded into harmonic functions eim®, g being the polar
coordinate, Actually, had we determined the representations of the two-
dimensional Euclidean group by the method outlined at the beginning of this
section, using equations (6.1), the crucial equation (6.17) would have ap-
peared as a more direct translation of the little group’s representation. How-
ever, the method here used is somewhat quicker.



76 E.P. WIGNER
VII. CASE OF IMAGINARY REST MASS

A. The representations of the little group.

The case of imaginary rest mass will not be treated in as much detail
as the case of zero rest mass. It is believed that the general principles are
adequately illustrated in the preceding section and their detailed application
should not be too difficult. The little group inthiscase is clearly the 2+1
dimensional Lorentz group, the group of three-dimensional linear trans-
formations which leave the form pt2 - px2 - p,? invariant.

The representations of the 2+1 dimensional Lorentz group can be de-
termined in the same way in which the representations of the two-dimen-
sional Euclidean group were determined in the preceding section. Actually,
even the representations of the 3+1 dimensional Lorentz group were deter-
mined by L. H. Thomas, using this method. The representations of the 2+1
dimensional Lorentz group were investigated in most detail by V. Bargmann.
At the time he carried out this investigation it was not clear that he obtained
all representations because he used infinitesimal operators inhis calculation.
However, Garding's construction subsequently fully justified Bargmann's
work,

The 2+1 dimensional Lorentz group has three infinitesimal elements.
Their commutation relations are

[Myy, My ] =My, [Myy, My] = -i My, (7.1)

xy?

[My:, My{] =-iM (7.1a)

xy*
They differ from the commutation relations of the rotation group only in

the signs. Since the representations in which we are interested are either
single or double-valued, the characteristic values of Myy are either integers
or half integers. At any rate, they are discrete numbers so that we can
assume, as in the preceding section, that M,, is diagonal. Since the equations
(7.1) are the same as the last two of equations (6.2), with 7' and 7' re-
placed by M,, and M., we can infer again that My, and My, have non-vanish-
ing matrix elements only just above and just below the main diagonal and

that it is possible to transform M,, into a real matrix. My, willthen be purely
imaginary and both will have the form illustrated in (6.4) except that the

% € will be replaced by numbers which are in general different from each
other. We denote the diagonal elements of Mxy by m; the non-vanishing ele-
ments of My, and My, will be denoted, then

Myt hn,mer® Myt dme1,m = N (7.2a)

(Myt )m,m*:»l= '(Myt )m+1,m =i Nrm%- (7.2b)

The last commutation relation (7. la) now gives

N%m%‘N%m{:%mJ (7.3)
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N, =3%Jm? *ec. (7.4)

Since Ny, must be real, only such m must occur as a diagonal element of
Mxy for which m? + ¢ > 0. This will be automatically satisfied if mZ+c> 0
for all m and this gives rise to the first type of representations of the 2+1
dimensional Lorentz group. From (7.2) and (Myy)nm' = m émm one can cal-
culate the Casimir operator of this group:

Q= :M:xt2 + Myt2 - :Mxy2 =c+i. (7.5)

In the present case, the characteristicvaluesof Myxy are either all the in-
tegers, positive, negative, and zero, or all half integers, positive and nega-
tive. In the latter case, ¢> 0, Q> 1. In the former case, c need. not be
positive but only larger than -}, the smallest possible value of -m?. Hence,
Q> 0 holds for single-valued representations of this class, Q> % holds for
the two-valued representations of this class. The former are called Cp, the
latter Cg.

It might appear, first, that this exhausts all the representations. This
is not so, however, because if an N;-; vanishes, the matrices whose rows
and columns are labeled by m=s, s+1, s+2, ... are disconnected from the
rows and columns with lower m and provide in themselves a solution of the
commutation relations. Hence, if

so that
Q=c+4l=_s(s_l) (7.6)

we have a second class of solutions of the commutation relations. For these,
the characteristic values of Mxy are s, s+l, s+2, ... so that s is the lowest
characteristic value. Clearly, s>0 must hold, otherwise Ns%,% would be-
come negative. Hence, s can assume the values 3, 1,3, ... and the values
of the Casimir operator are quantized in this case. The representations

of this subclass are denoted by D{. (The case s=0 will be treated separa-
tely.) Similarly, if m assumes only the values -s, -s-1, -s-2, ... and
N.gj = 0, the matrices My, My given by (7.2), (7.4), and the diagonal ma-
trix Mxy, will satisfy the commgtation relations. The representations of
this subclass are conjugate complex to the representations of the previous
subclass. The value of the Casimir operator Q, and of the parameter c, will
be the same as for the representations just discussed. The representations
of this subclass are denoted by Dj.

The case s=0 remains to be discussed. It follows that, in this case, not
only N;.; = N.j but also Ny} = N} vanishes. The matrices with the single row
and column m=0 therefore separate from the rest and we obtain the trivial
solution Myy = My = Myt = 0 of the commutation relations and the trivial re-
presentation in which every group element is represented by the unit opera-
tor, This representation will be denoted by Dy.

The preceding discussion assumes, implicitly, that the 2+1 dimensional
Lorentz group has only one and two-valued representations up to a factor.
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This is a permissible assumption because only these representations of the
little group can beusedto form a representation of the Poincaré group.

Let us return briefly to the Poincaré group in order to calculate the
Casimir invariant W, defined by (4. 3). Since this invariant has the same
value for all vectors which belong to an irreducible representation, we may
as well calculate it for a state of momentum p?. Hence, we set py =py =py=0,
p, = m in (4. 3a) and obtain

wh = m My, w* =m My, wY = .m My, wZ=0,
It follows that
W =-w.,w=m?Q. (7.7)

B. Equations.

It would seem offhand that one should be able to obtain the equations
for the imaginary mass case by replacing m by im in the equations for posi-
tive rest mass. Thus, one can replace the Klein-Gordon equation by

(p?- P} - py - Py = -m?§ (7.8)
or

32

-W(Z = -m%Z. (7.83)

It is clear, on the other hand, that this procedure cannot work because it
would yield equations with a finite number, 2s+1, of polarizations (linearly
independent states of the same momentum). Since the representations of
the little group are, with one exception, infinite dimensional, there will be,
except for that single case, infinitely many "directions of polarization'.

As a matter of fact, the replacement of m by im gives a self-adjoint
expression for the infinitesimal operators of the Poincaré group only in case
of the Klein-Gordon equation — and this corresponds to the representation
of the Poincaré group for which the little group’s representation is the iden-
tical one, Dy, Thus, if one replaces m by im in Dirac’s equation, the ex-
pression for i 8 /8t will not be self-adjoint any more. This resolves the
paradox of the preceding paragraph but shows, at the same time, how
strongly the results derived in these notes depend on the assumption of the
unitary nature of tne representations.

It is of some interest to investigate the behavior of the solution of the
equation (7.8a) and to contrast it with the solutions of the equations with
positive rest mass. We can further simplify the situation by assuming that
there is only one space-like dimension x. The positive rest mass Klein-
Gordon equation is then

d? d?

It is well known that if, say, at time t=0, the wave function and its timederi-
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vative vanish outside the in.erval (a, b), they will vanish, at time t (or have
vanished at time -t), outside the interval (a - | t| ,b+|t|). This expresses
the finite propagation velocity of disturbances and can be proven ina
variety of ways. The proof which is perhaps simplest starts from a Dirac
equation

¢=mg

and identifies the first component of @, that is 9,, with the solution of (7.9)
which vanishes, together with its time derivative, outside the interval (a, b)
at time 0. The second component 9, will then be equalto m-¥id/at+id/0x) 9,
and have the same property. Hence, the time component of the Dirac current
|cp1|2 + | q)2|2 vanishes at time 0 on the half line x > b. Applying now the
divergence theorem to the shaded region in Fig. 1, one sees that the

Fig.1

integral of the current across the tilted line, which goes through the point
b', t, also vanishes. If the tilted line is space-like, the current across it
is positive definite. Hence, it vanishes at every point. From this, the van-
ishing of both components of ¢ follows, just as both components of ¢ vanish
on a t = const line if the current across this line, | q>1|2 + | cp2|2, vanishes.
This, then, proves the theorem on the finite propagation velocity.
Interchanging now x and t in (7.9), we note that if ¢y, together with its
x derivative, is zero at x=0 outside an interval (a,b) of t, it will be zero
at x after b + |x| , and was zero before a - |x| . Hence,  will be zero this
time in the shaded area of Fig. 2. Instead of the maximum velocity

b
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Fig.2

of propagation, one has a minimum velocity of propagation. This is,
of course, what was to be expected. Actually, one is more interested in the
initial condition which underlies the first figure: that ¢y and 9y/8 t are zero
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for a fixed t, say t=0, in an interval of x. In this case it is not true that ¢
is zero in the shaded area of Fig. 3. However, as t increases, y goes to
zero in this area faster than any power of t.

t

S

—

Fig.3

As was mentioned before, the equations for all other representations
will give an infinite number of polarizations so that the introduction of a
second vector £ as a variable into the wave function is quite appropriate.
The equations (6.6) and (6.7) define in this case a hyperboloid as the domain
of the variables §;.This is unnecessarily complicated as there are null vec-
tors which are perpendicular to the space-like vector p. We therefore re-
place (6.6) by

(£.8)y=0 withy = 0 for g, <0, (7.10)
retain (6.7)
(p.8)y=0 (7.11)
and in order to denote a real number by m, we set
(p-p)y = -m2y (7.12)
instead of (6.5). The calculation of the Casimir operator W then becomes
very similar to that in the preceding section, with the roles of £ and p inter-

changed. The only difference is that the non-commuting nature of g and
8/0 &y, has to be taken into account. The resulting expression is

Wy = m2() 55—, "Za; g - V. (7.13)

The variability domain of ¢ is now a light cone in the three-space of
£ which is perpendicular to p. We can transform (7.13) in such a way that
it contains only the operator L g, 8/9E, which is the derivative along the
straight null-lines of the cone. Further, we can express by (7.7) the Casimir
operator W of the Poincaré group in terms of the Casimir operator Q of
the 2+1 dimensional Lorentz group. This gives
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-V(V+1)¢=—[(V +%)2—%}¢/=Q¢/, (7.14)

A =Z§[ 9 /0¢,. / (7.14a)

This V is different from that defined by (6. 16a) for the equations forthe0(E)
representations. However, we can conclude again, just as we did when
deriving the equations for the 0( Z) representations, that the linear set of
wave functions for which (7.10), (7.11), (7.12) hold and for which the second
Casimir operator has the value W, decomposes into two invariant linear
subsets. For the first of these

Vw=Z§aaaTﬁl//=(—%+J%—Q)w (7.1)
holds, for the second

Vye) g 5y s (- 1T Q. (7.15a)
2

We recall that Q = W/m? is a function of the two Casimir operators W and
m2. These equations are quite similar to (6.17) but whereas the latter gives
the change of y for an increment of the vector & which is parallel top, (7.15)
gives the change of y for an increment of § which is parallel to £ itself.
Both increments are, however, along the straight lines of the developable
surface which is the definition domain of §. The resultant set of equations,
(7.10), (7.11), (7.12), (7.15), was not discussed in detail.

VIII. PROBLEMS WHICH REMAIN

The preceding discussion of the equation for representations with ima-
ginary mass is even more perfunctory than the discussion of the 0(E) equa-
tions. Furthermore, apparently, no more complete discussion is avail-
able in the literature. Whereas for the 0(E) equations several equivalent
forms of the relativistically invariant scalar product are known, the pre-
ceding discussion gives no expression therefor. This should be supple-
mented.

A more serious omission is our failure to give equations for the two-
valued representations, that is for the representations which describe par-
ticles with half integer spin. In order to do this, one should again introduce
a space in which a relativistic transformation can be defined. Such a space
is, in this case, a two-dimensional space with complex coordinates. In that
space then the total manifold of functions must be limited by as many re-
lativistically invariant linear equations as possible. A 'relativistically in-
variant' equation in this case is invariant under complex unimodulartrans-
formations. The statement ''as many as possible' means that the elimination
of a single further function, by a new equation or otherwise, together with
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the postulate of relativistic invariance, eliminates all functions from the
linear manifold so that this becomes vacuous. The task of obtaining equa-
tions for the two-valued representations in this way has not been carried

out.



