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HEAD-TAIL EFFECT II: 

FROM A RESISTIVE-WALL WARE 

Summary: 

Earlier work onthe head-tail effect in electron 

storage rings is extended using the fast-wake due to the 

conventional resi,stive-wall effect in a cylindrical tube. 

The results are qualitatively similar to those obtained 

earlier for a step-function wake, except for the length 

dependence. The magnitude of the effect seems much too 

small to account for the observed instabilities. 
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I. INTRODUCTION 

In an earlier note* (Note I) I have treated the general problem 
of the head-tail effect in storage rings. A complete analysis was 
carried through there only for an idealized model in which (a) the wake 
field of a single particle was zero in front of and a constant behind 
the particle (a "step-function" wake); and (b) all the particles of the 
bunch had the same amplitude of synchrotron oscillations. In this note 
I show the results for a model in which the wake field is, instead, taken 
to be that produced by the "resistive-wall" effect, although, again, the 
detailed calculations are carried out only for the same idealized dis- 
tribution of particles (assumption (b)). 

The analysis leads to the following conclusions. The quali- 
tative features of the head-tail effect for the resistive-wall wake 
are similar to those for a step-function wake except that: (1) the 
frequency shift, which is a pure imaginary for the step-function wake, 
has, for the resistive-wall wake, both real and imaginary parts, and 
(2) the imaginary part (real exponential) changes from a first power 
dependence on the bunch length to a square-root dependence. More impor- 
tant, however, is the quantitative result that the resistive-wall wake 
is much too weak to account for the thresholds observed at AC0 and Adone. 

II. FORMULAS FOR AN ARBITRARY WARE 

Following Note I, and adopting the same notation**, we describe 
the synchrotron oscillations of a particle in terms of its time displace- 
ment r(t) , which varies with time as 

'c =Acos(wst+$) . (1) 

* "The Head-Tail Effect: An Instability Mechanism in Storage Rings", 
M. Sands, SLAC TN-69-8, March 28, 1969. 

** A list of symbols and their definitions are given in the Appendix. 
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As before we consider only an idealized bunch in which all particles 
have the same amplitude A of synchrotron oscillations but have differ- 
ent phases 0 , and in which the distribution of particles in 0 is 
uniform. An individual particle is, then, conveniently identified by 
its phase $ . 

In Note I the coupling between the betatron motions of two 
particles is characterized by a wake function p(.r' - r) which gives 
the lateral force on a particle at T from the wake field produced 

by the lateral displacement of another particle in the bunch at T' . 
For each pair of particles the relative time delay (T' - T) oscillates 
with time as (see Eq. (31) of Note I) 

T' - T = R cos(wst + 0) 

where R and 8 depend on the phases 9' 

(2) 

and (p . In particular, 

(3) 

which is a function only on the absolute value of the phase differences 

(4)' - $) l 

It was shown in Note I that the interaction between each pair 
of particles is summarized by a number (see Eqs. (27) and (30) of Note I) 

1 WI--- 
2wOTS 

1 - iwo i(? - T) - T) (4) 

where the integral is to be taken over ohe complete synchrotron period, 

Ts = 2n/ws . Because of the averaging in this definition, F fs 

independent of the initial phase 8 of Eq. (2), and depends only on R 

which is,.in turn, a function only of the magnitude of the relative 
phase ($' - $J) . So w= w(l4' - $1) . 
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The interaction between each pair of particles through the 
wake fields leads to collective betatron motions which can be described 
in terms of a set of normal modes, each associated with a mode number 

lJ; v = 0, 1, 2, 3,.... For each mode the complex amplitude of the 
betatron oscillations of all the particles is given by (see Eq. (41) 
of Note I) 

z =.a ,ib,,t + ~4) . P u (5) 

The characteristic frequency of each mode is given in terms of w (see 
Eq. (38) of Note I) 

+-IT 

Ao --$ lJ i 
We iLdJ W(l)) 

--II 

where $=$I-$. As pointed out above, W is a symmetric function 

of J, , so we may also write 

(7) 

Given any wake function p(~' - T) , we can obtain w from 
Eq. (4); using this w in Eq. (7) we can obtain the frequency shift 
AlAl for each mode. In the next Section we derive the wake function 

lJ 
associated with the resistive-wall effect, and in Section IV we evalu- 
ate AU for such a wake. 

lJ 

III. THE RESISTIVE-WALL WAKE 

The wake fields of relativistic particles moving in a re- 
sistive vacuum chamber were first considered by Laslett, Neil, and 
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Sesslerl. Robinsox? has given a particularly illuminating derivation 
of the long-time wake fields for a cylindrical pipe. We take the 
Robinson formulation as our starting point. Consider a straight 
cylindrical pipe with its axis horizontal --along what we shall take as 
the z-axis. When a particle travels parallel to this axis but above 
it by the distance y , it leaves behind eddy currents in the walls 
which produce a transverse magnetic field Bx near the axis. This 
field is proportional to y . A following particle passing through 

,this field then experiences a vertical force proportional to the verti- 
cal displacement of the leading particle, F = evBx . Our wake function 

Y 
p is defined as this force-divided by the effective mass ymo of the 
betatron oscillator, and divided by the displacement y of the leading 
particle. 

Suppose the'leading particle passes z - 0 at the time 
t=O; using Robinson's result for Bx , and considering only relativ- 

istic particles, we get that the wake function at the time t is 

rOc 1 p(t) - 2 - - 
J;; &ii. vb3fi 

, (8) 

where we are using MKS units and the symbols have the following mean- 
ings: 

r. : classical electron radius, 
C : velocity of light, 

lJ,u: permeability and conductivity of the walls, 

Y : energy of the particle in units of its rest mass, 
b: radius of the pipe. 

1 L. J. Laslett, V. K. Neil, A. M. Sessler, Rev. Sci. Inst. 32, 276 (1961). 

2 K. W. Robinson, Storage Ring Summer Study, SLAC Report No. 49, Aug. 196.5, 
p. 32. 
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When Robinson gave his derivation he was concerned only with 
the long-time part of the wake (for its effect on subsequent bunches). 
As he said, the result is applicable for time t "large compared with 
the duration of the direct 'fields produced by the particle“. We are 
here, rather, interested in the short-time effects, so we must consider 
what this limitation implies. 

If the conductivity of the pipe is reasonably large*, the 
"direct fields" of a particle may in good approximation be obtained by 
making a relativistic transformation of the static field of a point 
charge in a pipe. We may say, roughly, that the static field will ex- 
tend in z a distance of about +b from the particle, and that the 
transformed field will extend about rb/y. Robinson's result, Eq. (8), 
then applies for times t greater than t where 

0 

to = k (9) 

For times between -to and +to , the wake field will rise in some 
smooth way from zero the value given by Eq. (8). The complete wake 

will then be roughly as shown in Fig. 1. 

In a typical electron storage ring we might have y = lo3 
or more, and b 2 10 cm less; so t = 3 x lo-l1 set or less. On the 0 
other hand, for storage rings whose r.f. systems are operated with a 
relatively low harmonic number (as at AC0 and Adone), the bunch length 
is typically = low9 set . So the separation between any two particles 
is generally much greater than t and the detailed form of the wake 

0 

field for t < t o is of little importance. In fact, since in evalu- 
ating w we take an average of p(.r - T') and of (T' - .c)p(.c' - T) , 
we shall make only a negligible error by taking that p is given by 

Eq. (8) for all values of its argument. ,We shall, therefore, make this 
approximation in calculating W. 

* We also limit consideration to a straight pipe, as Robinson and others 
have done. 
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Fig. 1. The wake function. 

Fig. 2. The time variation of n and P- 
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IV. RESULTS FOR THE RESISTIVE-WALL WARE 

We now wish to evaluate w for the wake-function of Eq. (8). 
The time dependence of the wake function applies, of course, to the 
time delay (T' - .c) between the arrival of any two particles at 
each point of the orbit, which has in turn a slow variation with time. 
Let's write for each pair of particles (T' - .c) = rl , where by a suit- 
able choice of the origin of t we can make Eq. (2) become 

n = R sin wst . 

Then we take our wake-function as 

with 

D 2 rOc =- 
GE+ ' 

and where O(n) is the unit step function. We can, further, write 
W as 

(10) 

(12) 

(13) 

where v and rip are the time averages of p and qp . 

The quantities n and p vary with time as shown qualitatively 

in Fig. 2. Evidently, 

J 
Ts/4 

p(r~)dt = 2D 
S Tsfi J 

Ts/4 
dt 

0 0 (sin w t)li2 * 
S 

(14) 

-7- 



So, recalling that usTs - 2~ , we get that 

clD 
pm- 

Illit 
, 

where the constant c 1 is defined by 

a/2 

J dx 
c1 = 

= 2.6 
sin1j2x 

0 

Similarly, we find that 

c2D& 
9p=y 

with c2 a constant defined by 

r/2 

c = 
2 J sin1/2xdx : 1.2 

0 

We get, then, that for each pair of particles, 

w=D 
I 
5 

2rwo 
UE , 

Jii - ic2wo cc 
I 

where R depends on J, := +' - $ through Eq. (3). 

R(Q) = 2A sin * 
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We are now ready to evaluate AU u as given in Eq. (7). Let's 

first write 

(21) 

where then CL ~ is the frequency shift of mode I.I and BP is its ex- 

ponential growth constant. From Eqs. (7), (19), and (20) we get that 

where K ~ is the number defined by 

K =cl lJ J 
0 

and that 

where J ~ is the number defined by 

JP = c2 ( [sin 5 ]1'2 cos p$d$ 
0 

(22) 

(23) 

(24) 

(25) 
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The numbers K and J IJ u can be calculated with a little work; 
we find for the first few: 

0 + 13.6 + 2.9 
1 + 4.3 - 0.57 

2 + 3.2 - 0.21 

For larger values of u the K are all positive and the J are 
IJ u 

,negative, while for both the magnitudes continue to decrease monotoni- 
cally with increasing u . 

Finally, the dependence on machine parameters will be clearer 
if we substitute for D the expression of Eq. (12); we get 

K 
a =- IJ rOc N 

lJ 21/2~5/2 (u&i2 yw Al&3 
0 

and 

21j2J 
8, = - IJ rOc & /2N 

d/2 (p~)l/~ ayb3 

(26) 

(27) 

It is perhaps also worth writing down the ratio of B to a 
IJ 1-I 

1128) 

For electron storage rings this ratio is generally of the order of, or 

less than, 1. 
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V. MAGNITUDE OF THE EFFECT AND CONCLUSIONS 

We now estimate the magnitude of the resistive-wall, head-tail 
effect for a typical electron storage ring such as Adone. Suppose we 
take 

rOc 
= 8.4 x 10'7m2sec'1 

I.la = 2.0 set - mm2 

A = 10mgsec 

b = 3 x 10e2m 

5 = - 1.5 

a = 0.06 

W ' = 6 x 107secw1 
0 

Y alO3 

N = 6 x lOlo 

The typical vacuum chamber is not cylindrical so our results are not 
strictly applicable, but for an estimate of the magnitudes we are taking 
a typical small dimension (usually vertical) of the chamber. The number 
of particles corresponds to a 30 milliampere circulating current in one 
bunch. With these parameters we get 

a z - 420 set-l 
0 

B 2 + 240 set-l 
0 

The real frequency shift a0 is less than 10V5 of the betatron 
frequency and would probably not be directly observable. The imaginary 

part, B. , is antidamping for the lowest mode --assuming the chromaticity 
5 to be negative as taken-- but seems too small to account for the ob- 
served instability. If we neglect Landau damping we would predict a 
growth time-constant, l/B, of 4 milliseconds at the design current of 
30 milliamperes, or of 120 milliseconds at a current of 1 milliampere. 
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The observed instability appears at currents as low as 1 milliampere or 

less, and appears to have a growth constant of about 10 milliseconds. 
Further, the observed instability has equally low thresholds for horizon- 
tal instabilities for which one would expect the effective b3 to be 
more than an order of magnitude greater (and the 13 correspondingly 
less). 

Any consideration of the threshold should, of course, take 
into account the effects of radiation damping and Landau damping, which 

'was not done here. At the observed threshold current of about 1 milli- 
ampere at Adone (at y - 103) the predicted growth constant for the head- 
tail effect is about 0.12 set , which is only a little less than the radi- 
ation damping time-constant (0.3 set). But the Landau damping effects 
are much stronger. A detailed calculation has not been carried out, but 
if we assume a spread.in v-values of about 10m4 due to machine non- 
linearities, a rough estimate of the Landau damping gives a threshold 
current of about one ampere for the vertical oscillations. 

In summary, it appears that the head-tail effect with the 
resistive-wall mechanism is too small to explain the instabilities ob- 
served in Adone. 
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APPENDIX 

LIST OF SYMBOLS 

T 

w 
S 

A 

R 

T 
S 

w 
0 

5 

a 

P (t) 

G  

JI 

u 

2 
lJ 

a v 
AU IJ 
r 

0 

: 

: 

. . 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

. . 

: 

Synchrotron oscillation coordinate, the arrival 
time at any azimuth measured with respect to the 
arrival time of a synchronous particle. 

Synchrotron oscillation (angular) frequency 

Amplitude of synchrotron oscillation of the 
time-of-arrival. 

Phase Displacement of synchrotron oscillation 
of the time-of-arrival. 

Amplitude of oscillation of the difference of 
the times-of-arrival of two particles. 

Period of synchrotron oscillations, 2a/ws . 

Angular frequency of unperturbed betatron 
oscillations. 

Chromaticity, (E/v) dv/dE . 

Momentum compaction; logarithmic rate of change 
of rotation period with energy. 

Time development of the short-term wake force. 

The average wake-field perturbation. 

o-o', the difference for two particles. 

Mode number (integer 0, 1, 2...). 

Time varying (complex) amplitude of the beta- 
tron oscillations in mode u . 

Z 1-I at t= 0 for the particles at I$ = 0 . 

The (complex) frequency shift for mode IJ . 

Classical electron radius 
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C : Velocity of light. 

PY (J : Permittivity and %conductivity of wall material. 

b : Radius of vacuum chamber. 

: E/moc2 . 

n : 1 T -T . 

.D : Coefficient of resistive wall wake function. 

Cl9 CP : Definite integrals. 

a : Real part of AUK , the (real) frequency shift of 
u mode u . 

%  
: Negative imaginary part of 

growth constant of mode u . 
AUK , the exponential 

K J  
P' IJ : Definite integrals. 
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7 

8 
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9 
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