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1 Introduction

A possibility of existence of high-rank nuclear symmetries related to the geometric prop-
erties, usually understood as some deformations of nuclei, has been shown several yearsago [1]. One of the most reach symmetry is the tetrahedral/octahedral symmetry whichcan produce large shell gaps in the single particle spectra because of the characteristicfor these point groups four—fold degeneracy. Large degeneracy of the energy spectrumincreases the average level spacing [2, 3]. This leads to the specific tetrahedral—magicshell—closures for nucleon numbers 32, 40, 56, 64, 70, 90—94, 112, and 136—138.

There were several experiments related to the problem of ‘tetrahedral’ nuclei per—formed. For example see Ref.[4, 5]. In the Rare Earth nuclei such as 152'156Gd, l541*156Dy,164Er, 164Yb, but also in the Actinides in 230‘234U, there were found some interesting prop—erties suggesting existence of searched symmetries, however, the results are not unique[6, 7].
The word avuné’rpta (symmetry) comes from Greek language: ova (’together’) andMEpV (’measure’)- Before the contemporary physics the symmetry was rather related tosuch notions as beauty, perfectness, harmony or ‘proper proportions’. The contemporarymeaning of the symmetry concept was invented more or less in Renaissance.

2 Space—time versus intrinsic symmetries
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Figure 1: Platonic solids: tetrahedron, cube, octahedron, icosahedron, dodecahedron.

o the first type describes these intrinsic properties of the physical body which are
independent of the space and time structure, e. g. the symmetries related the iSOSpin,
conservation of the electric charge, conservation of the particle number and so on
The corresponding symetry group we denote here as GC,

9 the second type is determined by the geometric properties of the physical body
One of the most important geometric feature is shape of the body. These kinds
of symmetries leads to the so called intrinsic groups consisted of the geometric
transformations constructed in the intrinsic frame of the body. In this paper the
intrinsic groups are labelled by the bar symbol over the group name, e.g. G.

In this lecture we are interested only in the second kind of the intrinsic symmetries.
In case of a nucleus (non—relativistic description), let us assume, that this nucleus is

considered in the the coordinate frame in which center of mass is fixed in the position
space. The remaining non—relativistic space—time symmetry is the orthogonal group 0(3).
Every nuclear collective Hamiltonian has to be invariant in respect to this orthogonal
group 0(3). However, the nucleus can have additional geometric intrinsic symmetry
group which is a subgroup of the corresponding intrinsic orthogonal group G C 0(3). It
implies that, in the case of non-relativistic description of a nucleus the general intrinsic
symmetries collected in the group Gin, can be considered as the direct product:

Gin: : a X Gc- (1)

Historically, the most known symmetries are related to the geometric symmetries of some
solids invented by Platon (428 - 347 BC). In three dimensional space there is known 5
Platonic solids which are the regular, convex polyhedrons. They are constructed from
the faces which are congruent, regular polygons: triangles, squares or pentagons. These 5
Platonic solids are called: tetrahedron, cube, octahedron, dodecahedron and icosahedron,
see Fig. 1

The proof of existence of only five Platonic solids is based on the Euler’s formula:

V+F=E+a (@

where V, F, E denote the total number of V 2 vertices, F : faces and E = edges. There
is an open question: do exist the nuclear Platonic solids in the Universe? We will have
this problem in our mind in the following text.

Many scientists was and still is fascinated by the notion of symmetry. One of the
first was Johannes Kepler who believed in symmetry and proposed the palnetary model
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Figure 2: The Kepler’s planetary model, http:// en.wikipedia.org/wiki/ FilezKepler-solar—
system—2.png.
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)

Figure 3: Point groups chains.

built from the Paltonic solids Similarly, in the contemporary physics we are searching for
elementary particles, nuclear magic numbers, universal properties of matter etc., using the
symmetry building block called the irreducible representations of the symmetry groups.

Above we have mentioned that there is an open problem about existence of nuclei
having symmetries of Platonic solids. These symmetries are related to the so called
point groups consisted of transformations which leave one or more points of the three
dimensional space unchanged. The most important is a set of 32 point groups shown
on the Fig- 3. The dashed line denote not-invariant subgroup. Adding translations to
point groups one gets 230 crystalographic Space groups, 14 Bravais’ lattices and 7 crystal
lattices.

Because of relatively large degeneration of the energy spectra of the Hamiltonians
invariant in respect to the tetrahedral and octahedral symmetries, both the tetrahedral
and octahedral groups are the first candidates for analysis of nuclear point symmetries.
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Figure 4: The tetrahedral surfaces for three different values of the deformation parameters
0:32 = 0.1, 0.2 and 0.3, respectively.

In the simplest case, the tetrahedrally invariant shapes are generated by the defor-
mation tensor (132, where the deformation parameters are identified with the expansion
coefficients of the nuclear surface:

Monti <35) = Re (1+ 2 ORV/mm: 635))
M1

The examples of the simplest tetrahedrally invariant surfaces are determined, eg. by the
following equation

R(a; 9, $5) = Ro(1+ (1320/32f5la (£5) + Y3,—2(91¢)) ' (4)

The equation (3) allows to write down equation for different shapes of a nucleus clas—
sified in respect to the multipolarity A.

Usually it is assumed that the dipole parameters 031,, describe a shift of the surface.
It is only an approximation which has to be always verified in a given application. In
Fig. (5) there is presented an effect of the dipole deformation on the quadrupole shape.
In the right figure it is seen that the dipole deformation not only shifts the surface but it
also change its shape. In the figures below only the nonzero parameters are explicitely
written in their captions. One of the problems related to the above parametrization of
the nuclear surface is that for larger deformations one can get quite unphysical surfaces,
an example of such pure quadrupole surface are presented in Fig. (6) On the other hand,
the regular quadrupole shapes are of the expected form, see Fig. (7).

3 Collective variables

The deformation parameters of the nuclear surface can be used as the collective variables,
like in the Bohr type collective models. However, one can obtained the more general
description assuming q1,q2 and q3 are curvelinear coordinates in R3. Then the most
general equation of the nuclear surface can be written as

Qk = Qk(uiv) Where k = 1: 213a (5)
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Figure 5: The shape for 0:20 = —1.50 (left) and the shape for am = 1.50, ago 2 ——1.50
(right).

Figure 6: The monster quadrupole shapes, 0.220 = —5.50 (left), 0510 = 9.0, (1’20 = —5.50
(right)

Figure 7: The regular quadrupole shapes, 0:20 2 0.30 (left), 0:20 = —0.3 0:22 = 0.3 (right).
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where (a, v) E S C R2 are two real continuous parameters.
Assume the functions q), 6 [12(8) are square integrable functions where the compact

subset S C R2 of variables parametrizes the surface 1n the space of a single-nucleon.
Let the set of the three vectors {en(u, v)} gives the orthonormal basis in the spaceL§(.S)

(enlem) = /du3dv;p(u,v)en(u,v)*em(u,v) = 6mm, (6)
S

where p(u, v) 2 0 is the appr0priate weight function.
Using of this basis allows for expansion of the surface (5) in the following form

1)) = 2 an), em, 11). (7)

The basis should be chosen to have a physical meaning determined by a set of commuting
physical observables A), where l -— 1, 2, ,7" i. e.

Agen(u,v) = agn€n(fl,’U), for all Z = 1,2,. . . ,r. (8)

In this case, the expansion coefficients

om: [Edudwwme.(u.v)*qr(u.v) (9)
can be used as new variables describing the nuclear surface in terms of the observables
{A1}-

The very well known example of this procedure is the description of the nuclear surface
with the expansion (3). In this case one needs to identified the variables in the three
dimensional space with the spherical variables {q1—— r, (12—— 6, q3 = q5} and asume u ::
6,1; = d). The equation of the surface '1" — R(6, Q5) 6 L2(SO(2)) can be expanded into
eigenfunctions of the angular momentum observables A1: J2 and Ag-— J2, where J2
is square of the total angular momentum and J, denotes its third component. In this
case the basis cum, '0) = n(6, <35) consists of the spherical harmonic functions. As the
result one obtains the equation (3). In practice, in the nuclear physics, the equation of
the nuclear surface written in the laboratory frame (in this case we label the deformation
parameters with the superscript (lab),a :b))( usually has the additional coeflicient c0190”)
in front of the equation (3), which allows to satisfy the volume conservation condition for
the nuclear matter. The reality of the radius AR(6, q‘J), its invariance in respect to the
space rotations R(Q) and the space inversion C,- leads to the standard relations for the

abexpansion coefficients o:( u):

(again) )* : @0017)
p.0 Reality of the surface: ,,_ ,1.

This condition can be obtained by making use of the reality of the radius r : R(6, <16)
and properties of the spherical harmonic functions

R(O.’ (£ab).6 ¢)__ R*(a(£cib).6 qb)

:a(jf)*y,,,(9 a): :a;‘°b(— 1)#1/,_,,(9 a). (10)
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o Rotational prOperties of the surface: RmMES”: 211’ D3, (9)agffii’), where Dfi,H(Q)
denotes the Wigner functions of the rotation group and the Operator R(Q) represents
the rotation operator parametrized with the Euler angles 9 = (91, {22, Q3).

This condition follows from the transformation prOperties of the spherical harmonic
functions and invariance of the radius r 2 R09, 63) of the surface in respect to the
space inversmn:

Hammad); 6, 6) = RM“)- 6 6)
6(6)}116‘0666) = R (616)6001610){6 6})
2 R0 (1+ 2 (HQ)will?) R(Q)YA,#(6, 65))

230(1+Z(R(n)a§fif”) :Dm{Di/MU? 6)) (11)

Comparing the equation of the surface before and after rotation results in the trans
formation properties of the deformation parameters in respect to the space rotation.

0 Space inversion transformation: C CIUGM—— (—1)’\agf:b).
This property follows directly from the properties of the spherical harmonics and
invariance of the radius :

(jam(Iab)_6 .35)—_ R(a(£ab),6 Q5)

06111 “a” 6 6): R011+\;63‘:.b*(— 1)"m(6 6)) (12)

As above. comparing both expressions before and after the transformation of the
surface gives the transformation properties of the deformation parameters.

These properties show that the deformation parameters (collective variables) a are
the covariant components of the Spherical tensor of the rank )1 (tensor in respect to the
rotation group 80(3)). The important property of these tensors is existence of the scalar
product of two tensors. Let 5) and 7h be the tensor of the same multipolarity, then the
scalar product is defined as

(lab)
A11

6A ' WA : Z: gnpnAm (13)
“1/

where the metric tensor is generated by the Clebsch—Gordan coeflicients of the rotation
group (Aim/\wd/W)

9W 2 V2A + 1(/\;1)\1/|00) = (*1)“5;V- (M)
The scalars (rotational invariants) obtained in this way play an important role in de—
scription of nuclear collective motion. For example, the total multipole deformation of a
nucleus 18 proportional to the multiplication operator 6;

61661“) = swat”). (15)
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Figure 8: The spin orientation probability for a rotating system. The chosen wave functions
are proportional to some combinations of the Wigner functions: IL N DRIQHZ) — Dir,~2(Q) (left)
and w ~ DiI3(Q)— Dim—3(9) (right)

where
a; b) (Jab) (lab) (IFMIQ

ABA—q— a 05A : Z: (ii/Mr i(—1 :0” a (16)
,uu

This kind of invariants is important in construction of the collective Hamiltonians. For
example, the classical harmonic oscillator Hamiltonian

1 lab lab) 1 HHim = 2 [TBA {'1} ) O} ‘i‘ gBAwwABA] (If)

is constructed from such invariants and finally it is invariant in respect to the rotation
group as it is required in physics.

4 Intrinsic frame

The classical rotation is well understood phenomenon in which the orientation of a bodv
is changing with time. Contrary, the quantum rotation allows to determine only the
probability of a given orientation and there is no time variable in the wave function. The
quantum rotation can be presented in the graphical form as the surface drawn by the end
of the vector pointing out in the same direction as the spin of a rotating body and its
lentgh equal to the probability of finding a given orientation of the spin see Fig (8) .

The notion of the quantum rotational motion allows to define the rotating intrinsic
frame e. g. the body fixed frame for the collective variables {aW(Hub }. The corresponding
colective variables 1n the intrinsic frame we denote by {am};)They can be obtained by the
quantum rotation of the laboratory collective variables {GAE(2)} with the rotation operator
fire) A

oz), 2 Emmy”) (18)
assuming, in addition, that the rotation group 80(3) 9 RM) parameters, repesented by
the Euler angles Q = (91,92,823), are considered as a part of intrinsic variables. The
intrinsic variables 05A are invariant in respect to the laboratory rotations 12(9). It is
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important to notice that inclusion of the Euler angles into the set of intrinsic variables
makes this set of variables redundant, 3 variable more than needed. It implies that, the
definition of the intrinsic frame requires three additional conditions which recover the
same number of variables in both frames

FAQ, 9) = 0, where k = 1, 2, 3 (19)

In this way one can obtain a new description of a physical system, e.g. a nucleus, in which
the rotational motion can be directly described by the Euler angles.

5 Intrinsic groups
There is an intersting question: how to investigate symmetries of a nucleus in the intrinsic
frame. A part of symmetries, eg. trnaslational symmetry are not seen in the intrinsic
frame. Due to the general principles, the nuclear Hamiltonian has to be invariant in
respe“-r*i r»..— !.11r:= riri la- r;,:-ii.;ii gin—nip Cit-3'} defined :11 Lire iaiitoratnrfu' frame. [in the other hand.
it is r rim l-l'.‘ uni-lens should have seine gerirrzezrica] SfEIIlIIIE-EI'H'JS rria-ireri tr» its

Rigid; The i.1111:3122uriii.:ir_-'.--.".ens .|"=.:r:11' .i::g “-“-. inrrizm'ic symmetry group have to he {is 'r.-r.-u.'_i in:-
iu.“ li'lll'lIiL-EiL' :1';-'LT-."il'.'. ii: group inc-Jr}: Liiei'r? 1::- |-::iL‘-1rn r1“; notion 43f mfi My; righi 52:11? ,3.“ii

El 1 I-I I ' r --'-|- ---- 1-- I‘d-‘1: - I — -- . 1 I -.- - - |' I Iilll: Err-iii“! .‘114.::£I1':10b:.1. ill]: irTlE’cL 1m: Lm-z-Tni'i l'-_'r Litiilip 111E flu Willi-“1‘: Hiliilifili" :Erf_ifl]__35 ‘fi-‘tilf‘EL. m
{an a". in ilar: :ii::'zir.~:r- irarne.

A convenient definition was formulated in [15] in the following form:
for each element 9 of the group G, one can define a corresponding operator fi in the group
linear space £0 as:

§|S> = n), for all l5) E Co, (20)
where all elements inside the ket vectors 5' = dc egg, here (39 are the complex numbers,
form a group algebra of the group G.

In this definition the notion of the group linear space LG is used. This space is defined
as the linear space spanned by all possible formal linear combinations of the elements of
the group G

EC = {[S) : IS) = 2099, where cg E C}. (21)
96G

TI. iur iii-i LEE-1r: 1.11": grr=ii:- algrri";2'ri mentioned above, but, it is important that the elements of5,; 3:1 are in hr- ..3'4'szisirir-reii only as vectors, not as the elements of the group algebra.
The grniip fi'il'Il'Lf'ii by This collection of the operators g? is called the intrinsic group Gi'cia.r-.':'i To the? groin: CE.
One of the most important prOperty of the intrinsic group G is that this group com-mutes with its partner group G

[G, G] = 0. (22)
The groups G and G are antyisomorphic. The required anti—isomorphism between thepartner groups G and G is given by

9150 3 G —-> G, Where 6150(5) = 9 and (sci???) = ¢5G(§')¢5G(£7)- (‘23)
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This prOperty suggests that the partner groups G and G have a lot of common properties
as e.g. similar structure of representations, decompositions of the Kronecker products, the
Clebsch—Gordan coefficients and many others.

As an example let us consider a relation among representations of both groups. Be—
cause the partner groups commute one can find common basis Ik) for representations
of the group G and the group G. The representations are defined as:

glk> = 2AM)'IPmk> (24)

arms = ZAELZo)lk’> (25)
kl

To compare both representation one can use as the basis the generalized projection oper—
ators (elements of the group linear space £9)

|Pmk> = d%([2— Z Afliorg, (26)
where dim[P] denotes the dimension of the representation F and card(G) is the number
of elements in the group G. This allows to calculate (25)

glFmk) dim[_(F_r[]MZA

g’eG
d F]

c—airI:ll([(:)Cilwgflqg99, _l)

I oil—21%) é; Amk'm AHA z: Akkrlg)7ak) (27)

where Agngnlg) are matrix elements of the representation P of the group G, Comparing
both expression one can see that the matrices of both representations are related. The
representations of the intrinsic group are transposed representations of the partner group

553(5) = Aims?) (28)

A bit different are definitions of irreducible tensors in respect to the laboratory group G
and the intrinsic group G. By definition the irreducible tensors in respect to the laboratory
group G transform as

gT(l-‘)g“—1 =2 A(TI;)(g)1"£(r). (29)

The tensors in respect to the intrinsic group G, due to the anti-isomorphism between both
groups, have to be defined in the following way

9‘1 =ZA§P(g-1)Tfm. (30)
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As an example} let us consider the action of the intrinsic group in the collective space
consisted of the square integrable functions of the deformation parameters and the Euler
angles. The intrinsic rotation operators 1%(§1, fig) 6 80(3): X 80(3)Q (the indices a and Q
Show the variables which are affected by the corresponding group) are defined as follows

R(glag2)f(ai 9) = f({§la}a Q¢G(g2)—1)7 (31)

where gl 6 SO(3)Oz and g2 E SO(3)Q. The action of the group SO(3)a onto the deformation
variables is a bit non—standard and is given by the following equation

910M: 2 133',“w91) _1)a)~p" (32)

The intrinsic group 80(3) corresponding to the ‘laboratory’ rotation group 80(3) de—
fined in the laboratory frame consists of all rotations Rfij, g) for which the deformation
parameters and the Euler angles are rotated with the same angles.

The required anti-isomorphism between the partner groups 80(3) and 80(3) is given
by (23).

It is important to notice that, in general, not all transformations (g1, {32) 6 80(3) ><
80(3ln

(£71392): (05:9) —> (a’,Q’) (33)
are allowed in the intrinsic frame. They are allowed if they do not break the conditions
which define the intrinsic frame (19)

(fii:§2)Fk(CI,Q) = Fk(§1a,99§1)= 0, where k = 1,2,3. (.34)

For example, in the case of the quadrupole colective variables 0:2 with the standard Bohr
condition which define the intrinsic frame: 032:1 : 0 and 0:22 2 032-2, the allowed intrinsic
rotations R(§1,§2) e SO(3)Q >< 80(3)Q have to fulfil the following conditions

R(§1, 60)012i1 I 0 and R(§1,€G)0522 = 1%(911 8G)052—21 (35)

where the second argument represents the unit element of the group SO(3)Q. The Bohr
conditions allow for the arbitrary rotations 92 E SO(3)Q.

Using the conditions (35) the allowed rotations of the deformation parameters a have
to satisfy the following equations

DEW?) ——

(
Dandfifll + 03m

Dos (
D32,_2(§I1> + D%,_2(

I) 0
r1)=0
I)=0
I)=D—22(911)+ D§2(g1—1)' (36)

In this case, the octahedral point group 50, C SO(3)Q acting only on the variables a
provide the solution of the set of equations (36).
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6 Uniqueness of quantum states
In practice, the transformation to the intrinsic frame is not a one-to—one function. For
the further purpose it is useful to define a group of intrinsic transformations Ii 6 GS:

(0619) 5 (0539’): (37)
where a = {05“,} and which leave invariant the corresponding laboratory coordinates:

aaablm', Q’) = a(f”b)(a, Q),
Fk(a',9') = FAQ/,9) = 0, fOI‘ k =1,2,3, (38)

where affablm, Q) = R(Q'1)a, see (18).
The group as we call the symmetrization group.
The symmetrization group decomposes the collective manifold into orbits of physically

equivalent points. Let the function @(fab) denotes a state vector of a nucleus in the
laboratory frame. The corresponding state vector in the intrinsic frame has to fulfil the
obvious equation

Ma, Q) = @(‘ab)(a<‘ab)) (39)
which represents the fact that the wave function of the physical system written in the
laboratory frame has to be a well and uniquelly defined function.

However, after the transformation of the intrinsic variable with the elements of the
symmetrization group we do not change the laboratory state vector

ins: e“) = @(‘“b)(a“”b)). (40)

This implies the uniqueness condition for the states in the intrinsic frame

111(0’, 9’) = @(afll). (41)

This is a very well known but not fully solved problem in the collective models of the
Bohr type.

In principle, there are two possibilities to achieve uniqueness of transformation from
the laboratory to the intrinsic frame:

a first, one can define the appropriate region of the intrinsic collective variables in
which the transformation from the laboratory to intrinsic frame is a one-to—one
function,

0 second, one can allow for the whole range of collective variables but then one needs
to fulfil the symmetrization condition for physical states. The symmetrization con—
dition can be expressed as invariance of the intrinsic state vectors in respect to all
transformations h 6 CS,

hlll(a, Q) = @(a,9), (42)

where the group é, is the symmetrization group.
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As an example, let us came back to the very well know example of the quadrupole variables
(0120,0122, Q) with the Bohr conditions which define the intrinsic frame (35).

Using the conditions (35) one can see that the allowed rotations of the deformation
parameters 01 have to satisfy Eqs._(_36) which are fulfilled by the rotations belonging to
the octahedral point group 00 C SO(3)a. The required invariance of the transformation
formula from laboratory to the intrinsic frame (38) implies that both rotations (91, g2)E
OD, x on have to be rotations about the same angles 19—— (91,62,193) , i..e g1—— 91(9)
and g2-— 92(9). This considerations suggest that the symmetrization group is equal to
the octahedral group G, =0 C 00, x 09 transforming simultaneously the deformation
parameters and the Euler angles by the same rotation. Because the quadrupole variables
are invariant in respect to the space inversion this transformation should be formally
added to the symmetrization group, in this way one obtains GS ——Oh

Obviously, instead of the standard Bohr conditions the following alternative definition
of the intrinsic frame can be used:

0 the collective variables are now chosen as (0:20, (121,9),

0 the conditions which define the intrinsic frame (variables) are now assumed as

F1’2(CY, Q) = 052:1:2 = 0 and F3(Q’, Q) = Q21 + 032_1 2 0. (43)

These definitions lead to the equations for allowed rotations and the symmetrization
group:

Dizo(9) 0

D:2,91( )— Biz-1(9) = 0

Dfol9) + D:1,0(9) = 0
Dil19)1,1—1(9) = D31_1(9)— [3311(9) (44)

The allowed rotations are now given by D20, >< S——O(3 )Q. The symmetrization group, in
turn, is given by much smaller group D2 C D20, X D29 than in the previous case.

We see that using of different condition defining the intrinsic frame lead to formally
different structure of the colective spaces.

This considerations born an interesting question. Do both sets of collective variables

set 1-1 0201 0522 = 02-2, 052m = 0: (45)

describe the same set of shapes? D0 are they physically equivalent?
To answer these questions one needs to check if there exists the one-to—one relation

between both frames. The required transformation is given by

1 r0’20 L *50201 (47)

. 1 3 I . I
0322 = eXp(_2361) (E \ga20 + 30321) . (4:8)
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where the rotation angle 91 can be calculated from the following formula

1 30/21 cos(261) = §\/;05’20 51119603

In fact, the angles (91,62,193 parametrize the rotation which transform the second set of
variables into the first one.

7 An example of a symmetry structure of the collective
configuration space

Let us denote by Xauab), Xa and X09 the configuration Spaces consisted of: a) the labo—
ratory variables aaab), b) the intrinsic deformation parameters a and c) the full intrinsic
configuration space: respectively.

Let us consider again the case of the collective space consisted of Bohr variables
((1203 (122) which are equivalent to the popular polar parametrization of nuclear shapes
(6, 7), where

0:20 = Beosy and (122 = ~6— sin y. (50)\/§
The symmetrization group 6 (inversion omitted) is generated by the following rotations
R1 = 02y,1_22 = (742,129, = R(7r/2,7r/2,1r), where q denote the rotation by the angle
27r/n around the q axis.

To find the region of uniquenes of transformation from the laboratory to the intrinsic
frame one needs to construct the orbits obtained from the action of the symmetrization
group Gs = 6 onto the full intrinsic configuration space X09. In our case the orbits are
represented by the following sets

orb(6918017039'0) : {(63719) : (6:759) =§<6017019C01 g E (—j} ' (51)

Every orbit consists of 24 elements of the configuration space X09 which correspond to
the same laboratory deformation. Here, we have used the polar parametrization of the
quadrupole variable due to the simpler action of the octahedral group on these variable
than on the 0120,0522 themselves

A A 2% a
976 = 6, 9'7 6 {iii fl? - 163)}, ’6 =1,2,3, 99 = 99- (52)

Formally, to have one-to—one transformation from the laboratory to the intrinsic frame
one needs to construct the following quotient of the collective configuration space Xag:

X59 = XaQ/orb(6), (53)

where two points of the collective magnifold (6’, 7’, Q’) and (6”, 7”, Q”) belong to the same
equivalent class of intrinsic points if both points belong to the same orbit, i.e.

(flan/39,) = (18”371’39”) m0d(0rb(6))

iff there exists the point (60,70,810) E XQQ
such that (6",7’, 9’), (6", 7”, Q") E orb(6; Bo, 70: 90). (54)
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Figure 9: 6 equivalent regions, each region consists of 4 orbits of the symmetrization group
O

The above construction leads to a problem with the notion of the angular momentum
operators because in the configuration space X39 for the fixed shape the Euler angles
are restricted to a subset of the full range of the angles, e.g. the points (6,7,9) and
(,8, 7, {202(1), where q = 3:, y, 2 represent a nucleus of the same shape and the same space
orientation in respect to the laboratory framea though the Euler angles are different.

To recover the angular momentum as the physical observable one needs to join some
orbits in such a way to obtain the full range of angles. This can be achieved by the
appropriate restriction of the symmetrization group. The restricted symmetrization group
00 x 19, where the symbol 19 denotes the trivial group consisted of the unit element
only} allows to construct the new 6 elements orbits

orb(6a X iQi1801’70190) =
471'{(6011190) :1 = 11111110 — 9311,1110 — ‘3‘» (-55)

and subsequently the collective configuration Space in which the Euler angles have the
required physical range

Bohr — _ -X11 ——XQQ/Orb(OQ X 19). ('06)
1117111111111: '11; 1111.4 11:11 1111' 11g11111 41111111 11111 11111111i1311 1.1:9111111'11r111a111-j111 from 1.11111 111111111111 :'.1r1'
1.11 1311? 11111111111: 511111211. 1.111 1i111 111311-11 1111111. £11 1.31111 111151.- .11111-' 11.1: 111111 24' 1111111111 111 7.1111

I

EZEUF‘FF {ii-'13” "“13‘5'71-‘31‘1‘111111 11:: 11111 Join; [1.3111 1111 111= _|:-:1L11'_11 11-:_1r1 frf1I11E. 11111:: i 111.1111.
T1135 ”1"5-“1131-‘5 LIE-i? 11113-111 '111-1 I1ni12111e11e.~1.~2 111 11:11.11 1"_l1'il'..1_1.-1.‘1-. 1111111131211 The 11111111111111?11111.1 1.111:- '::11r'::1;111' 5'1‘::.-1'.-1-;-s 1111111111115 11111 1111111 1111111111111: [1111111115 1114'. 11111111113 1.11 obtain 1:11

1111' 1.11115? 1'11111 11111.
The same considerations one can performe for the example of the alternative Choice

of the collective variable (0120,0121). In this case the symmetrization group 52 (inversion
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ommited) consists of the following rotations {60, C723, 02y, C722}. The orbits (4 elements
each) can be written as

0Tb(52;d2015121,§j) = {(é201é21afi)1(d201é211Q02yC—722):
(5520: _&211 9021]): ((1201 _'&217 9027.)} (57)

In this case we have a very simple action of the group Operations onto the collective
magnifold

0231020 : Q20: 0’ : $1 ya 2i CZGQQI = —a211 G, : y: Zi

Despite of this again one needs to join orbits in such a way to recover full range of
a_ngles to have well defined angular momentum quantum numbers. The restricted group
D2 D x 19 leads to a set of two elements orbits

orbmgga >< imamaglm = {(amamfi) : (121 = M21}. (59)
And the corresponding collective configuration space is given by

XAuer = Xflg/orb(52.Gt x i) 2

U U U {( 0:20 0:21, o) (0120: —a21,§2)}. (60)
C1206R c121 ElR+ 9680(3

Finally we get NOT INVERTIBLE (1 to 2)-transformation from the laboratory to the
intrinsic frame. This is a typical situation in practical applications.

An alternative way to describe the space of quantum states is to use the space of square
integrable functions «p: Xag —+ C with symmetrization condition for quantum states 1L1.
However, it is important to notice that, in this case, the arguments of the quantum states
(collective functions) run over the full configuration space X619.

8 Symmetrization
An idea expressed in the last sentences of the previous section requires a bit more detailed
analysis of a structure of the space of states. The physical state space consists of all the
functions d): X09 —> (C which fulfil the symmetrization condition

IC = Wail) :fia = a, for 3.119 e G}. (61)
The collective Hamiltonians 7% are generally defined in the wider space Kw“ consisted of
all square integrable functions, not only symmetrized. In fact, to have physical solutions
one needs to restrict, in some way, the Hamiltonian ’H to the physical subspace 1C
There are two possible procedures:

col! -

ll. Projection. First the Hamiltonian ’H is projected onto the physical space IC:
H1: PKHPK. Second one needs to solve it in the space of symmetrized fumtions
KI. An important notice: in this case the Hamiltonian 71(1-— PK’HPK has the
symmetry provided by the symmetrization group G_.,..
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2. Selection. First, one can solve the Hamiltonian ”H in the full (in general not
symmetrized) space of states K360” and afterward one needs to choose the solutions
belonging to the space of symmetrized states 1C.

An open question is which procedure is physical?
To show differences and similarities between both approaches one needs to define the

projection operator onto the scalar representation of the symmetrization group G3) in the
space 1C: 1

15 Z -—T 2. 62K card(Gs) 2: g ( )
96G:

The first procedure ‘Projection’ creates a new Hamiltonian from the original one

7121 E Pgilfix (63)
7i1ILIJ1;U> = Elwlqllw)’ (64)

In this case the action of the projection Operator Pglklllw) = I‘l’lw) 6 2C is closed within
the physical state space.

The Hamiltonian H1 can be expressed in terms of its eigenvectors and eigenvalues by
making use of the spectral theorem

in = ZEi;ul‘1’1;u><‘1’1;vl- (65)
'I'TAs it was mentioned earlier. iilr. nriiiiiltoiiiiin i-r’; has the intrinsic symmetry which is not

smaller than the symmetrization gruug‘: Er. Fit-iireiiiiies it can have even a larger symmetry
group. It happens indepeiideniir mi tii-ii Hj'iiiirir-rrf: of the original Hamiltonian 7%.

The second procedure ‘Selection’ requires first to solve the original Hamiltonian Gift in
the full (in general not physical) space of states Kim“

Mill-n) = Ema). (66)
The next step is to choose the solutions which fulfil the symmetrization condition (42).
Let us dentoe these eigenstates of (66) by llllgm) and the corresponding eigenenergies E,1
by E2311

PKIIIJETI) = ilp2rn> E [@2;R>IC- (67)
This ESE-1': of iii-i: flyinruetrired stares. air-i {he l.f=I'['r.rEI.T*-:I]'llfiilii:2_ eigEiie-iut-rgies allow to construct
1' i"|."-' it“? SPEC-TEL} T.i1"3£'u1‘-'31:'3 1 tin:- ei'i'er-L:=.'r= i-iamiitmiiaii which .Fuiiiiee Fi‘rf- required conditions:
its {lift-it"i—J is chased wiiinrz the piiysicai suitérpavr: if and it is invariant in respect to the
F}'i'|':[ifil‘iE-‘difffli group. This. Effeuirtit'ig- Hafl‘llitfllljflfl H; can be. atrium-3n down as

H2 = E :E2mi‘1’2;n)m(‘1’2;ni- (58)
7'1

Both Hamiltonians 7-21 and 3% can be related. Let us assume that the kets lkllgm) E [C
are the symmetrized eigenvectors of the full Hamiltonian ’H, then

fil‘l’anbc = E2;n|q}2;n)}C :> 3L2liql2‘.'ri.>i’C = E2;n|‘ll2;n>}C (69)
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and the solutions obtained from the second procedure are also the solutions which we
obtain from the first procedure.

However, the OPPOSITE property is not TRUE.
To show this conjecture let us consider the eigenstates of the effective Hamiltonian H1

72111111...) = E1-ul‘1’1-ul (70)
Then in general putting the projection operator Pg (it projects onto the physical sub-
space) and QK—— 1 — PK, into Eq. (70) one obtains

Hl‘l'iw) = {721+(151c7ilQ1c + QKHPIC) + QKHQK}I\P1;V) =

Elwlmlw) + Qflfilwlwl 7’é culls/>1 (71)
where c is the proportionality coefficient.

We see that the projected hamiltonian H1 can provide more solutions than the‘ gener—
ating Hamiltonian H used with the second procedure. It means that both symmetrization
procedures are not equivalent and can lead to different physical quantum models.

One needs to notice that the ‘Selection’ procedure is used in the standard Bohr—like
colective nuclear models.

As a pattern/example let us consider the Bohr Hamiltonian in the case of quadrupole
variables 6,7, Q

3Qfiohr : 3L21.1111(431 ’7) + fir-011(9) + fivrbaa ’71 Q): (72)

where the vibrational part of the Hamiltonian is

. _fi21 8 48 1 8 6 2}- = — 3 -— + + V , 7311.1. E{—64 36 .95 V32 511137) a sum 7) a? 13 B ( 1
the “rigid” rotation part is given by

flrot = H: —' (74)
2:1; 1 2 ,‘73

and the coupling part which describes discrepances beetween the terms with the con—
stant moment of inertia and the hydrodinamical moment of inertia which depends on the
vibrational variables 6, ”y is of the following form

. 1 _,r_:-' -
3"(Ur : ‘F— E . ‘1'. ... .I.- .--:+-- I- _ Hrot- (75)4 .

86 k:1,2,3"]“'

This is not the difficult exercise to check that the vibrational sub-Hamiltonian has an
octahedral symmetry:

Sym(HMb): Oha- (76)
It is sufficient to check invariance of the vibrational sub—Hamiltonian with respect to the
generators of the group 61m, represented by the following rotations

R15 R(0,7r,0)= (18,1) —> (5/7),
R2:— R(010 71/2): (5,7) -> (61 -’1),
R3 5 RW? 31/2 Tr): (fiav)—>(fiar-W/3)- (77)

106



The easiest way to proceed is to notice that the sub-Hamiltonian Tim-5w , 7) = slime/6,3, 3/6
is a function of invariants of the group am.

In a similar way one can find the symmetry of the rotational sub—Hamiltonian. It has
simple, dihedral symmetry acting on the Euler angles of the system

Syn-1(Hrot) : fiZhfl- (78)

This group has two generators which transform the collective variables and the angular
momenta operators in the following way

023;: (537)—>(fi37)3 JEAJEJ

C722: (6.7) —> (6,7), J? —> JE- (79)
Similarly as in the previous case the rotational sub-Hamiltonian 772,049) = HWUI, Jy, J2)
is a function of the invariants of the dihedral group 52mg. The coupling term 7-21,, has a
bit more complicated symmetry group represented by the direct product of two groups
which, in fact does not contain the symmetrization groups as a subgroup:

5M X 52,59 25 6h. (80)

The last property, that the symmetrization group is not a symmetry of the Bohr Hamilto—
nian shows that the Bohr Hamiltonian can be treated only as the generating Hamiltonian
which after either the ‘Projection’ or ‘Selection’ symmetrization procedure can be con—
verted into the physical quantum Hamiltonian in the intrinsic frame. Traditionally, the
‘Selection’ symmetrization procedure is used.

8.1 Summary
In this short lecture we wanted to show the main ingredients which allow to prepare
description of a physical system in the intrinsic frame. In this introduction to the problem
of physics in the intrinsic frames, to make the lecture as simple as possible, we have used
only the rotation intrinsic frame. However, a generalization to other kinds of the intrinsic
frames is traightforward.
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