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pour obtenir le grade de Docteur ès sciences, mention physique
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Abstract

The quest for Dark Matter is one of the most exciting domains in Physics. Among the many
candidates proposed to explain its nature, Weakly Interacting Massive Particles have been the
most supported in the last decades, because of their success in a natural explanation of the cur-
rent Dark Matter abundance and their ubiquitous presence in models addressing the hierarchy
problem. Other candidates that have been attracting some attention recently are Primordial
Black Holes, which would have formed in the early history of the universe. In this Thesis we
touch on both frameworks for the explanation of Dark Matter. As for WIMP candidates, we
discuss the interplay between their experimental searches and theoretical frameworks. On the
side of Effective Field Theories, we propose a method to use them consistently for the recast of
collider searches. On the side of simplified models, in the presence of apparent gauge anoma-
lies at low energies we highlight the enhanced reach of indirect searches. In the last part of this
Thesis we illustrate a model for the generation of PBHs relying on a feature already present in
the Standard Model, the metastability of the Higgs vacuum. Another signature of this remark-
able property of the Standard Model could be the generation of a background of gravitational
waves. The observation of either of these signatures would represent a spectacular confirma-
tion of the metastability of the Higgs vacuum.
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minosa: e se cercassimo casa insieme?”, e ancora oggi, tra un “alè” e un “fiuu”, ci sosteniamo
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Tansella, Marcello Spera, Sara Riccò, Giulia Cusin, Giuseppe Fanizza, Margherita Boselli, Tommaso
Colombo, Tommaso Brotto, Giuseppe Licari e Davide Lombardo. Grazie a voi non mi sono mai sentito
lontano da casa.

v



vi Acknowledgements

Ringrazio profondamente la mia famiglia, per avermi sempre incoraggiato a perseguire il
meglio e per avermi sostenuto in ogni momento.

Il ringraziamento finale va a Margherita, per tutto l’amore e il sostegno che mi ha dato, per
la fiducia nel futuro che mi sa regalare, e per essere sempre al mio fianco.



Members of the Jury

Prof. Antonio Riotto
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Résumé

Un des plus grands mystères dans notre compréhension de l’univers est la composition de plus
de 80% de la matière dans le cosmos. Depuis près d’un siècle, nous avons accumulé beaucoup
de preuves que le composant essentiel de la matière est invisible. Dès les premières obser-
vations de galaxies et amas de galaxies, jusqu’aux plus récentes mesures du fond diffus cos-
mologique (CMB) et des structures à grande échelle dans notre univers, nous avons développé
un cadre cohérent de la présence d’un élément additionnel tout au long de l’histoire du cos-
mos. Ce composant est appelé matière noire, car il n’émet pas de lumière, et son existence se
manifeste seulement à travers de ses effets gravitationnels.

L’hypothèse qu’une modification de la Relativité Générale, notre théorie de la gravité, puis-
se expliquer ces effets est désormais abandonnée par la plupart des physiciens, à cause de son
échec dans la description des structures à grande échelle. On peut affirmer qu’une nouvelle
composante doit être incluse dans le contenu de l’univers à côté de la matière ordinaire dans
la forme de gaz et étoiles. Une possibilité plausible qui fût investiguée est que cette matière
non lumineuse pourrait se trouver dans la forme d’objets astrophysiques connus, comme des
astéroı̈des, planètes ou naines blanches, appelés conjointement Massive Astrophysical Com-
pact Halo Objects (MACHOs). Les observations de phénomènes de lentillage gravitationnel
dans les dernières décennies ont rejeté cette hypothèse.

La possibilité la plus soutenue et la plus enthousiasmante à cause de ses implications pour
la physique des interactions fondamentales est que la matière noire soit une nouvelle particule.
Une idée très attractive est de mettre en relation la solution de ce problème du modèle cos-
mologique avec autres problèmes du Modèle Standard de la Physique des particules. Deux
parmi eux en particulier contiennent d’excellents candidats pour la matière noire. Le pre-
mier est le problème de la hiérarchie entre l’échelle de masse de l’interaction électrofaible et
de l’interaction gravitationnelle, qui amène à plusieurs propositions de particules massives in-
teragissant faiblement (WIMPs), et le deuxième est le problème de CP fort, qui suggère une
nouvelle particule légère et faiblement couplée appelée axion.

Les WIMPs ont été sûrement le candidat plus soutenu dans la communauté, à cause d’une
coı̈ncidence extrêmement suggestive. Le mécanisme habituel permettant à une particule, ini-
tialement en équilibre thermique dans l’Univers primordial, d’atteindre une abondance con-
stante, s’avère, dans le cas de la matière noire, coı̈ncider précisément avec les échelles de cou-
plage et de masse attendus pour une particule qui résoudrait le problème de la hiérarchie. Une
force d’interaction comme celle d’une WIMP offre de bonnes possibilités pour la recherche
de ce candidat avec trois classes d’expériences. Les recherches directes essayent de révéler
l’interaction d’une particule de matière noire avec un détecteur; les recherches indirectes cher-
chent des produits d’annihilation de la matière noire parmi les rayons cosmiques; enfin, les
collisionneurs de particules pourraient produire des particules de matière noire, qui s’échap-
peraient du détecteur en laissant une tranche d’énergie manquante dans l’événement.

Du côté théorique, une pléthore de modèles contiennent de bons candidats WIMP de ma-
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tière noire, ce qui a motivé l’utilisation de théories de champ effectives (EFTs) pour l’exposition
des résultats des recherches expérimentales. Chaque modèle peut être décrit à énergies faibles
par une EFT, contenant seulement les degrés de liberté plus légers qu’une certaine valeur d’é-
nergie appelé “cutoff”, et l’effet de physique à hautes énergies est inclus au travers d’opérateurs
effectifs non renormalisables. Le grand avantage est qu’avec un nombre limité de paramètres
une EFT peut décrire n’importe quelle théorie complète qui ait le même spectre de masse aux
énergies faibles. Leur limite est que, dans les recherches aux collisionneurs, le régime de va-
lidité en énergie des EFTs risque d’être dépassé. Cela motiva dans ce contexte l’introduction
de modèles simplifiés pour la présentation des résultats expérimentaux. Ces théories contien-
nent non seulement le candidat de matière noire, mais aussi les particules médiatrices de son
interaction avec le Modèle Standard.

D’autres candidats de matière noire qui ont reçu beaucoup d’attention récemment sont
les trous noirs primordiaux (PBHs). Ces trous noirs ne viendraient pas des stages finaux
d’évolution d’une étoile massive, mais se seraient formés il y a très longtemps dans l’histoire
de l’univers, par l’effondrement de grandes surdensités de matière. L’intervalle possible pour
leurs masses s’étend de la masse d’astéroı̈des (concentrés dans une taille subnucléaire) jusqu’à
des centaines de masses solaires. Ils seraient observables à travers l’effet de lentillage gravita-
tionnel comme les MACHOs, mais aussi lors d’événements de fusionnement de trous noirs ou
de leur émission de rayons γ, en dépendant de leur masse.

Cette Thèse contient dans le Chapitre 1 une exposition détaillée des preuves de l’existence
de la matière noire sur des échelles largement différentes dans l’univers, et des mécanismes
principaux grâce auxquels la matière noire pourrait avoir rejoint son abondance actuelle dans
l’histoire du cosmos. Nous passons ensuite en révue les candidats principaux qui ont été pro-
posés et les progrès des recherches expérimentales de matière noire sous la forme de WIMP.

La deuxième partie de cette Thèse concerne les cadres théoriques proposés pour l’exposition
des recherches expérimentales. Dans le Chapitre 2 nous analysons la question de la validité des
EFTs à l’échelle d’énergie des collisionneurs de particules, et nous proposons une méthode con-
servative mais cohérente pour leur utilisation dans ce contexte. Dans le Chapitre 3 nous nous
concentrons sur les modèles simplifiés et les recherches indirectes. Parmi les modèles utilisés
par les collaborations expérimentales pour l’exposition de leurs résultats, plusieurs contiennent
des anomalies de jauge. Nous soutenons que cela n’implique pas que la théorie soit simplement
incohérente, mais que cela pourrait être vu comme une caractéristique intéressante du modèle:
même le Modèle Standard est anomal, lorsque considéré à énergies inférieures à la masse du
quark top. Nous montrons que les propriétés de ces théories impliquent une large annihilation
de matière noire en bosons vecteurs du Modèle Standard, ce qui amplifie les possibilités de
détection indirect de matière noire au dessus d’un TeV.

Dans la troisième partie de la Thèse nous nous focalisons sur les PBHs. Nous proposons
dans le Chapitre 4 un nouveau mécanisme pour leur production, qui dépend d’une caractéri-
stique déjà présente dans le Modèle Standard extrapolé à hautes énergies: notre configuration
du vide du potentiel du champs de Higgs est métastable. Si le champs de Higgs avait exploré
la région instable vers la fin de l’époque inflationnaire, alors une possible empreinte pourrait
être la génération de PBHs. Une autre empreinte de ce mécanisme, que nous discutons dans
le Chapitre 5, est la génération d’un fond stochastique d’ondes gravitationnelles, qui pourrait
être révélé par des expériences comme Advanced Ligo et LISA. Nous calculons le spectre de
puissance et le bispectre de ce signal, afin de caractériser ses propriétés. L’observation d’une
de ces empreintes représenterait une confirmation unique de la remarquable instabilité du vide
du Modèle Standard.



Summary

One of the greatest mysteries in our understanding of the universe is what composes nearly the
80% of matter. Since nearly a century, we have been accumulating evidences that the essential
component of matter in the universe is invisible to our eyes, at least through light. From the
first observations of galaxies and galaxy clusters, until the most recent measurements of the
Cosmic Microwave Background and of the Large Scale Structures in our universe, we have
built up a consistent picture, although not detailed yet, of the presence of an extra ingredient
of matter along the cosmic history. This component is called Dark Matter, for the reason that it
does not emit light, and its existence manifests itself only through gravitational effects. There
is no particle of the Standard Model of fundamental interactions that could compose this extra
component, not even the neutrino.

The hypothesis that a modification of General Relativity, our current theory of gravity, could
account for these effects, is pushed aside by most physicists today, because of its inability to
account consistently for all evidences for the existence of Dark Matter. We can affirm that some
new component has to be added to the content of the universe, together with the ordinary mat-
ter in the form of gases and stars. A plausible possibility which was investigated is that this non
luminous matter could be in the form of astrophysical known objects, as asteroids, planets or
white dwarves, collectively called Massive Astrophysical Compact Halo Objects (MACHOs).
The observations of lensing phenomena in the last decades have discarded this hypothesis.

The most supported and exciting hypothesis for its implications for the physics of funda-
mental interactions is that Dark Matter is formed of an unknown particle. Several directions
have been proposed by the community of cosmologists and particle physicists, and the search
for Dark Matter is now one of the most active domains in Physics. An attractive idea is to
link the solution of this problem of our cosmological model with other issues of the Standard
Model of particle physics. Two of them in particular lead naturally to excellent Dark Matter
candidates. The first is the problem of the hierarchy between the mass scales of the electroweak
interactions and of the gravitational force, which brings to various proposals of Weakly Inter-
acting Massive Particles (WIMPs), and the second is the strong CP problem, which points to a
new light and weakly coupled particle called axion.

The WIMPs have been by far the most supported candidate in the community, because of
an extremely suggestive coincidence. The standard mechanism, called freeze out, by which
a particle initially in thermal equilibrium in the early universe can reach after a certain time a
fixed abundance, turns out to yield the observed quantity of Dark Matter precisely for the range
of couplings and masses which are expected for a particle addressing the hierarchy problem.
This remarkable fact, dubbed WIMP miracle, has rightly motivated many efforts both in the
theoretical and experimental communities.

An interaction strength as the one of a WIMP offers good possibilities for the search of this
candidate through three classes of experimental searches. The first one is direct detection, in
which a large and sensitive detector tries to reveal the interaction with an incoming Dark Matter
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particle. The detector is located underground, in order to shield it from cosmic rays and sources
of undesired noise. The second class is indirect detection, which includes all the observations
of the sky that look for annihilation (or decay) events of Dark Matter particles into ordinary
particles. The outcome could be the production of γ rays, charged cosmic rays as electrons or
protons and their antiparticles, or neutrinos. The difficulty of such a search is to distinguish
the signal from the cosmic ray background, which is difficult to estimate with a high precision.
Finally, also particle colliders allow to search for the possible production of Dark Matter pairs,
which would escape unobserved from the detector. This event could be tagged by looking for
a large amount of missing energy recoiling against a visible object, which at the Large Hadron
Collider could be a jet, an electroweak boson or a heavy quark.

Within the theoretical community, lots of different frameworks have addressed the WIMP
hypothesis, from supersymmetry to models with extra dimensions, or models where the Higgs
boson is a composite state. Each of these classes contains in turn many specific theories, often
containing more than one Dark Matter candidate each. This plethora of full theoretical models
for the description of Dark Matter have motivated the use of Effective Field Theories (EFTs)
for the recast of the results of experimental searches. Any model can be described at low en-
ergies by an EFT, containing only the degrees of freedom lighter than a given energy cutoff,
and incorporating the effect of physics at higher energies through effective non-renormalisable
operators. The big advantage is that the number of possible EFTs is limited, so that any model
displaying a gap in the spectrum can be mapped into an EFT with a limited number of param-
eters. In the context of collider searches, there is the risk though of reaching energy scales close
to or above the cutoff, violating the validity regime of the EFT. This has motivated the intro-
duction of simplified models for the recast of collider searches. These models contain not only
the DM candidate, but also the particles mediating its interactions with the Standard Model.

Other possible Dark Matter candidates which have recently gained attention are Primordial
Black Holes (PBHs). These black holes would not have arisen as the final stage of the life
cycle of massive stars, but would have formed very early in the cosmological history by the
collapse of large overdensities of matter. Their possible mass range extends from the mass of
asteroids (compressed within the size of a nucleus) to hundreds of solar masses. They would
be observable not only through lensing similarly to MACHOs, but also through black hole
merging events or γ rays, depending on their mass.

This Thesis contains in Chapter 1 a detailed discussion of the evidences for the existence of
Dark Matter on vastly different scales in the universe, and of the main mechanisms by which
Dark Matter could have reached its current abundance in the cosmological history. We then
review the main candidates which have been proposed and the progress of the experimental
searches for WIMP Dark Matter.

The second part of the Thesis deals with the theoretical frameworks proposed for the re-
cast of experimental searches. In Chapter 2 we analyse the issues with the validity of EFTs at
collider energy scales, and we propose a conservative but robust method to use them for the
recast of collider searches. The simulation of the signal, to be performed for the recast of the
experimental bound, can be limited to the subset of events for which the total energy involved
is below the cutoff of the EFT, which should be treated as a free parameter. This allows to
obtain a consistent EFT bound, which has the virtue of being very general and easily convert-
ible into a corresponding model completion. We also show that the use of simplified models
for the recast of missing energy searches eventually reduces to the addition, on top of the EFT
signal, of the resonant production of the mediator between dark and ordinary matter, which is
better constrained by other experimental searches. In Chapter 3 we focus on simplified models
and indirect searches. Within the set of simplified models used by experimental collaborations,
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some of them are anomalous, which means that the charge assignments under a new gauge
interaction are such that the theory cannot be extrapolated to very high energies. We argue that
this should not imply that the theory is just inconsistent, but it could be seen as an interesting
feature of the model. Even the Standard Model of particle physics is anomalous, if we consider
it below the mass scale of the top quark. We analyse the features of these apparently anomalous
models, and we show that a very interesting consequence is an enhanced annihilation rate of
Dark Matter particles into Standard Model vector bosons, which largely improves the reach of
indirect searches for Dark Matter masses above the TeV.

In the third part of this Thesis we focus instead on PBHs. We propose in Chapter 4 a new
mechanism for the generation of the large overdensities which could seed their generation, re-
lying on a feature already built in the Standard Model: the instability of the Higgs vacuum.
An important prediction of the Standard Model, if it is extrapolated to high energies assuming
no contributions of new physics, is that our vacuum configuration of the Higgs potential is
metastable: we do not live in an absolute minimum of the potential. If the Higgs field probed
the unstable region towards the end of the inflationary epoch, then a possible signature could
be the generation of PBHs. Another signature of this mechanism, which we discuss in Chap-
ter 5, is the generation of a stochastic background of gravitational waves, which could be de-
tectable by current and planned experiments as Advanced LIGO and LISA. We compute both
the power spectrum and the bispectrum of this signal, in order to characterise their properties.
The confirmation of either of these signatures could represent a unique confirmation of the
remarkable feature of the vacuum instability of the Standard Model.





The effort to understand the universe
is one of the very few things that lifts human life

a little above the level of farce,
and gives it some of the grace of tragedy.

– Steven Weinberg
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Part I

The existence of Dark Matter

1





1

Evidences and candidates for Dark
Matter

In this Chapter we review the many evidences of the existence of Dark Matter (DM) and the
main proposals about its nature.

In Sec. 1.1 we discuss the observations pointing to the presence of DM on a broad range of
scales in our Universe. This increasing amount of evidence led physicists and astronomers to
propose various alternative explanations, along two possible directions. A first option could be
a modification of our model for gravity on the galactic scale, leading to the proposal of MOND
reviewed in Sec. 1.2.1. The other possibility amounts to adding other components of matter.
This could be ordinary non-luminous matter, either in form of astrophysical remnants called
MACHOs (Sec. 1.2.2) or Primordial Black Holes (Sec. 4.4). The most variegated and studied
scenario is that DM is made of some yet unknown particle (Sec. 1.4), with the most supported
candidate over the last decades being a Weakly Interacting Massive Particle (WIMP).

The first two proposal (MOND and MACHOs) are now discarded, whereas Primordial
Black Holes have been receiving an increasing attention during the last years thanks to the
latest experimental progresses. The option that the DM is composed of a new particle is by far
the one which opens most avenues of investigation, and offers the possibility to solve at the
same time other problems of the Standard Model (SM) of particle physics.

Given the focus of the Chapters 2 and 3, in this introductory Chapter we illustrate in more
detail WIMP DM. We review the production mechanisms of WIMP DM in the early universe
(Sec. 1.3), the main candidates addressing other problems of the SM (Sec. 1.4.1), and their ex-
perimental searches (Sec. 1.5). We postpone a detailed introduction to Primordial Black Holes
to Section 4.4.

There are many excellent reviews on DM in the literature. For a detailed historical outline,
see Ref. [13]. Comprehensive reviews which focus both on observational evidences and experi-
mental probes for DM are Refs. [14–20], whereas for reviews on the possible candidates for DM
one can see Refs. [21, 22].

1.1 Evidences for the existence of Dark Matter

The observational evidences can be classified depending on the typical scale at which the effects
of DM are manifest: from the galactic (Sec. 1.1.1) to intergalactic (Sec. 1.1.2) and cosmological
scales (Sec. 1.1.3).

3
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The impressive amount of evidences accumulated over almost a century on so widely dif-
ferent scales in the universe leaves no doubt about the existence of DM. Historically (due to
the reach of the observations) we first understood the existence of DM from observation on
intergalactic and galactic scale in the 1930s. If we had though to highlight the most striking
evidence for DM in the form of an extra component of matter (either new particle(s) or PBHs),
this would be the observation of the Cosmic Microwave Background (CMB) and its interplay
with the Large Scale Structures (LSS) that we see in the universe.

1.1.1 Observations on galactic scales

The first observations of non-luminous matter were done by Oort in 1932. His measurements of
the brightest stars in the Milky Way suggested that part of the gravitational mass of the galaxy
was missing if one only considered those stars, and this fact brought him to claim that the disk
of the galaxy was composed for two thirds by “dark matter” including stars less luminous
than the Sun, and gas and dust in the interstellar medium. Many years later, in 1959, Kinman
observed some deviations in the velocities of the globular clusters contained in the Milky Way
with respect to what expected from a pure disk mass model, and already suggested a linearly
rising mass distribution beyond the disk.

Also the observations of the spiral galaxy nearest to us, M31 (Andromeda), done by Babcock
in 1939, suggested that the ratio between gravitational and luminous mass was increasing in
the outer regions of the galaxy. Later measurements of the rotation curve of this galaxy in 1957
and 1975 showed a flat region. The studies were deepened in the following years, in particular
by Vera Rubin, who showed that, for a large sample of spiral galaxies, the rotation curve of
stars inside the galaxy did not fall off as predicted by Keplerian gravity, but kept a flat profile
for a large distance outside the main disk. Since the radial velocity, in the approximation of
a circular motion and spherical symmetry, is given by v =

√
GM(r)/r (where G = 6.67 ×

10−11 N ·m2kg−2 is the gravitational constant and M(r) is the gravitational mass contained
inside a sphere of radius r centered in the barycentre of the galaxy) these results imply a dark
matter mass density proportional to r−2 within a large region outside the main disk of the
galaxy. Fig. 1.1 shows an example of a measured rotation curve.

1.1.2 Observations on intergalactic scales

One year after Oort (1933), Fritz Zwicky measured the velocities of galaxies within the Coma
galaxy cluster, and deduced that the gravitational mass contained in the cluster was hundreds
of times greater than the luminous mass. Among the few possible explanations, he also quoted
Oort’s proposal of “dark matter”.

The large set of observations gathered from the early ’30s to the end of the ’80s provided
plenty of evidence that, in the framework of general relativity, a large part of the mass inside
and surrounding galaxies is not interacting through electromagnetic or nuclear interactions. An
important probe for the distribution of dark matter is the observation of gravitational lensing,
i. e. the study of images of far galaxies bent or replicated because of the passage of light near
a very massive galaxy cluster. This kind of observations have showed that the most massive
clusters are largely dominated by dark matter, with ratios of gravitational to luminous matter
of the order of some hundreds.

An important and suggestive evidence came in 2006 with the observation of the so called
Bullet Cluster [26]. This system is composed of two primary galaxy concentrations, which
passed through each other ≈ 100 Myr ago. As a result of this collision, the various com-
ponents of the two galaxy clusters (dark matter, X-ray emitting plasma, and galaxies visible
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Figure 1.1: Rotation curve of stars in the galaxy NGC 3198 as a function of the radial distance.
The dotted, dashed and dash-dotted lines are respectively the contributions of gas, disk and
dark matter to the gravitational mass contained in the galaxy (figure taken from [23], with
original data reported in [24, 25]).

in the optical spectrum) underwent different interactions with the components of the other
cluster. While the intergalactic gas slowed down during the collision because of its electro-
magnetic interactions, the dark matter components passed through each other without signifi-
cant consequences, showing that they can interact only gravitationally or through a very weak
self-interaction. The stars contained in galaxies very rarely collide, given the large distances be-
tween them. Under these conditions, the outcome of the collision is a displacement between the
barycentres of the hot gas distribution (visible in the X-ray spectrum by the Chandra satellite)
and the dark matter distribution (which can be inferred by the analysis of the weak gravita-
tional lensing of background structures). The result is displayed in Fig. 1.2.

Figure 1.2: Images of the Bullet cluster. In the left panel, a colour optical image showing the
galaxies, which make up only a few percent of the mass of the cluster. In the right panel,
an X-ray image from the Chandra telescope, showing where the bulk of the gas in the clus-
ter is located. In both panels, the green contours show the mass distribution inferred from
gravitational lensing [26].

This spectacular observation is very important, because it allows to constrain the strength of
dark matter self-interactions, and because it is an argument against the proposals of modified
gravitation (Sec. 1.2.1). Indeed, if one rejects the dark matter hypothesis, it is hard to explain
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without contradicting very basic assumptions on the nature of gravity why the weak gravita-
tional lensing points to a barycentre displaced with respect to the centre-of-mass of the ordinary
matter distribution. A more recent and comprehensive analysis [27] listed 72 similar systems,
reinforcing the strength of this evidence for the existence of DM and deriving an upper limit of
σself

DM/mDM < 0.47 cm2/g on the self-interaction of DM.

1.1.3 Observations on cosmological scales

The most indisputable evidences for the existence of DM are probably those coming from the
study of the universe on cosmological scales.

The observations of the Cosmic Microwave Background (CMB), from the first experiments
able to resolve small angular scales (Maxima, Boomerang in 2000 and WMAP in 2003) until
the recent measurements by Planck in 2015, have progressively confirmed the so called ΛCDM
paradigm of cosmology to an impressive level of accuracy. The small anisotropies (at a level of
∼ 10−5) in the nearly homogeneous black body spectrum of microwave radiation at 2.7 K tell
us a great deal of information about the components of the universe around the recombination
epoch.

The power spectrum of these anisotropies, as a function of the angular scales (or equiva-
lently of the multipole ` in a multipole expansion) is shown in Fig. 1.3.
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Figure 1.3: Power spectrum of angular anisotropies in the local temperature of the CMB as
measured by Planck (from [28]).

The oscillating shape of the spectrum is determined by the Baryon Acoustic Oscillations (BAO)
in the plasma of coupled baryon and photons until the recombination. These sound waves
evolve under the effect of gravitational attraction and radiation pressure, and at the decou-
pling time these oscillations are “frozen” in the baryon fluid, which does not propagate sound
waves after decoupling from radiation. The precise positions and heights of the peaks in the
power spectrum are highly sensitive to the cosmological parameters, and in particular to the
DM and baryon energy densities ΩCDM ≡ ρCDM/ρc, Ωb ≡ ρb/ρc, where ρc = 3H2M2

P is the
critical density for a flat universe and MP is the reduced Planck mass 1/

√
8πG. The books

[29–32] offer detailed expositions of this topic. The fit shown with a red line in Fig. 1.3 has only
six free parameters, and is in astonishing agreement with the data. The inferred values for the
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energy densities of DM and baryons are [33]

ΩCDMh2 = 0.1197± 0.0022

Ωbh2 = 0.02222± 0.00023
(1.1)

where h = H/(100 km s−1 Mpc−1) ∼ 0.7 is the rescaled Hubble parameter. Therefore the DM
energy density is 25.7% of the total, and is roughly 5 times more abundant than the baryon one
(5.8%). The remaining vacuum energy density is the 68.5% of the total.

Baryons decouple from photons at recombination (at a redshift z ∼ 1100− 1400, 380 kyr
after the end of inflation), whereas DM already decoupled from the thermal bath much earlier
(whatever is the mechanism that fixes its abundance). This is crucial for the formation of struc-
tures [32, 34], as we are going to see now (we will come back to this point in Chapter 4). The
density fluctuations of the radiation fluid (and thus also of baryons, as long as they are coupled
to photons) oscillate with constant amplitude for each mode, they do not grow. On the con-
trary, the density fluctuations in both the DM1 and baryon fluids are frozen in the super Hubble
regime (i. e. when the corresponding mode k < H), and after they enter the Hubble radius they
slowly grow as ln a (a being the scale factor) if the universe is still Radiation Dominated (RD),
otherwise they grow faster, as a, during the phase of Matter Domination (MD).

Let us consider modes k > keq ∼ 0.1 h Mpc−1, keq being the Hubble radius at the time teq
of equality (zeq ∼ 3400, teq = 60 kyr after the end of inflation) between radiation and total
matter. On these scales, the perturbations in the CDM sector begin to grow as ln a as soon as
DM decouples from the thermal bath (see Fig. 1.4a), and DM slowly starts to form structures.
In the meantime baryons and photons are coupled, so that baryon perturbations have constant
amplitude. When baryons decouple from radiation, their amplitudes start growing as a, but
given that DM is 5 times more abundant than baryons, the latter feel the gravitational attrac-
tion of protostructures made of DM. Therefore the amplitude of baryon perturbations quickly
catches up with the DM perturbations. The overall effect of DM is then to increase the power
spectrum of baryon perturbations on small scales. This is shown in Fig. 1.4b, which shows
the matter power spectrum for fixed Ωtot = 1, ΩΛ = 0.7 and for different values of ΩCDM,
Ωb. In particular, without the presence of DM the baryon perturbations could not have grown
enough on the scales relevant for galaxy formation until the recent epoch of vacuum energy
domination, during which perturbations stop growing. In conclusion, without the presence of
DM which decoupled from the thermal bath much earlier than recombination (and by fixing
the other parameters of ΛCDM), the structures in which we live could not have formed.

An important distinction between the DM candidates concerning their effect on Large Scale
Structure (LSS) formation is based on their free-streaming length. For Hot Dark Matter (HDM),
this is comparable to the scale of galaxy clusters, which implies that it has been relativistic
through most of the cosmic history. This scenario is strongly constrained as it poorly enhances
the formation of structure, and the current bound is that HDM can constitute no more than 1%
of ΩDM. The SM left-handed neutrinos νL constitute indeed a subdominant HDM component,
with an energy density Ωνh2 = (∑ mνi )/93 eV ∼ 10−3 − 10−2.

If the free-streaming scale of DM is smaller than the typical galactic scale, then the matter
power spectrum would be suppressed on scales smaller than 102 kpc because of the higher
kinetic energy which causes the escape of DM from gravitational wells. In this case, the DM
would decouple before the QCD phase transition, and is called Warm Dark Matter (WDM).

1We specialise the discussion for a moment to Cold Dark Matter, that is DM which is non relativistic when it
decouples from the SM thermal bath. At the end of this section we explain this distinction more in detail.
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(a) Evolution of density perturbations for two
modes k = 0.01 Mpc−1 and k = 1 Mpc−1

(from [34]).
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(b) Matter power spectrum in the linear theory for
fixed ΩΛ = 0.7 and Ωm = 0.3, and varying ΩCDM/Ωb
(adapted from [35]).

Figure 1.4: Impact of (Cold) DM on the matter power spectrum at scales k & keq. Baryon
perturbations on scales smaller than k−1

eq would have increased much less without the presence
of DM.

Cold Dark Matter (CDM) has a negligible free-streaming length on cosmological scales, and
is the paradigm which is most in agreement with observations. WIMPs and axions are typical
examples of CDM candidates.

There are hints in the direction of WDM from the discrepancy between the low number of
satellite galaxies observed in the Universe with respect to the predictions of CDM simulations:
this phenomenon, the so-called missing satellite problem, is still under discussion, but seems to
favour the WDM case. Another problem of the CDM paradigm is the predicted steep profile
for the dark matter density near the centre of galaxies (cuspy halo problem), because of the lower
velocity profile which binds more particles to the bottom of the potential. It is difficult to check
this prediction experimentally, and more importantly to understand the impact of baryonic
physics which is hard to include in CDM simulations. The current impression from numerical
simulations is that the feedback of baryonic interactions helps to alleviate both the missing
satellite and the cuspy halo problem.

1.2 Attempted (and excluded) explanations for Dark Matter

1.2.1 MOND: MOdified Newtonian Dynamics

The evidences for DM on galactic scales (Sec. 1.1.1) come from an inconsistency between the
observations and the Newtonian model for the gravitational interaction. In analogy to similar
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crises faced by astronomy in the past (discovery of Neptune as “dark matter”2, and preces-
sion of the perihelion of Mercury explained through a modification of gravity), a possibility
is that the radial velocities of stars far from the centre of the galaxy are higher than expected
because they are subject to a gravitational force stronger than the Newtonian one. This was
the perspective of the proposal by Milgrom in 1983 of MOND (MOdified Newtonian Dynam-
ics) [36], which postulated the following equation for the motion of a test particle subject to a
gravitational field −~∇ΦN :

µ̃

( |a|
a0

)
a = −~∇ΦN , µ̃(x)→

{
1 for x → ∞ ,
x for x → 0 ,

(1.2)

where a0 ≈ 10−10 m s−2 is a preferred scale of acceleration. Outside the mass distribution of
a galaxy, |~∇ΦN | = GMb/r2, where Mb understands only the baryonic mass. Eq. (1.2) implies
the Newtonian limit for a > a0, whereas for weak gravitational fields (a � a0) the acceleration
is the geometric mean of the Newtonian one and a0. As a consequence, Eq. (1.2) predicts a flat
rotation curve for galaxies. The emergence of this typical acceleration scale a0, below which the
effects of DM are relevant, was found to be predictable also within ΛCDM [37]. Eq. (1.2) would
explain the empirical Tully-Fisher correlation: observations suggest with increasing evidence
[38] that the total baryonic mass of a disk galaxy is proportional to the fourth power of the
asymptotic rotation velocity. MOND predicts this kind of correlation, whereas the DM scenario
has to rely on N-body simulations to estimate this dependence, still without contradicting it in
principle.

Eq. (1.2) clearly cannot be treated as a fundamental law, and can only be conceived as an
effective description of some underlying theory. A relativistic formulation that reduces to the
MOND equation in the weak field limit was proposed by Bekenstein in 2004 [39], and is called
TeVeS (Tensor-Vector-Scalar theory). In this formulation, one needs to introduce a timelike 4-
vector field Uα, together with a scalar field φ. This model manages to reproduce the additional
lensing far from the centres of galaxies, which is needed to reconcile the observations with the
visible matter content of galaxies. The TeVeS formulation gives a viable theoretical framework
leading to the MOND equation (1.2). The main problems of this modified gravity approach are
the following three [40].

First of all, MOND does not explain well the dynamics of galaxy clusters as the Bullet cluster
(Sec. 1.1.2). We can argue that the DM paradigm explains more successfully than MOND the
dynamics of galaxy clusters. Also the spectrum of the CMB anisotropies is hardly reproduced.
The height of the third peak, in particular, should be very small in a baryon dominated model
that lacks the extra gravitational force supplied by dark matter.

Finally, and most importantly, TeVeS gives completely different predictions about the power
spectrum of matter perturbations, as shown in Fig. 1.5. In the ΛCDM paradigm, the peaks of
the BAO are highly suppressed as the baryons fall into the potential wells created by dark
matter, while in a model without DM the oscillations should be as apparent in the baryonic
matter distribution as in the CMB.

1.2.2 MACHOs: Massive Astrophysical Compact Halo objects

To explain the strong hierarchy between the gravitational and luminous mass in galaxies, the
most straightforward proposal is that we do not correctly model the population of low mass

2In the 18th century, the observations of the motion of Uranus were in contrast with the Newtonian laws applied
to the known content of the Solar system; the proposal of introducing a new ingredient to the matter components,
i. e. the introduction of a new planet, led to the discovery of Neptune.
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Figure 1.5: The matter power spectrum extracted from the data of the Sloan Digital Sky Sur-
vey (red points with error bars), compared with the predictions of the ΛCDM model (black
line), a no dark matter model with Ωb = 0.2, ΩΛ = 0.8 (blue dashed line), and the TeVeS
predictions (blue solid line). The TeVeS model, which amplifies the perturbations with respect
to the dashed line prediction, reaches the amount of inhomogeneities needed for the structure
formation, but is in total disagreement with respect to the observed power spectrum, where
the BAO are highly suppressed (from [40]).

stars, stellar remnants and planetary mass bodies [16]. Compact astronomical bodies that con-
stitute a significant component of the mass of the galaxy are referred to as Massive Astrophys-
ical Compact Halo Objects (MACHOs). Their luminous faintness or opacity prevents us from
searching for MACHOs in direct imaging, leaving as the only probe the search for their gravita-
tional effects, in particular the gravitational lensing that they induce. In the case of the images
of single stars, the passage of a massive lensing body has the effect of a brightening of the star
on a time scale related to the mass and velocity of the intervening object, and typically ranges
between a few weeks and a year.

Various experiments in the past two decades have investigated the number density of MA-
CHOs in the Milky Way with a mass around 10−7 − 1 M� through this effect of microlensing:
the MACHO project, OGLE (Optical Gravitational Lensing Experiment) and EROS (Expérience
pour la Recherche d’Objets Sombres). None of them found conclusive evidence, and they
placed upper limits on the fraction of ΩCDM under the form of MACHOs in the mass regime of
(10−7 ÷ 30) M�, where M� denotes the mass of the Sun.

Because of these bounds, the proposal of DM in the form stellar and planetary remnants
was progressively discarded. Primordial Black Holes constitute a DM candidate with similar
prospects for detection through microlensing, but they could have a priori any mass. Further-
more, their particular nature opens up many other possible observational probes. We describe
in detail this scenario in Section 4.4.

1.3 Production mechanisms of DM in the early universe

In this section, we discuss the main mechanisms by which dark matter could have been pro-
duced in the universe after the end of the inflation (the so-called reheating phase), and has
reached the current abundance.
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1.3.1 Freeze out

Freeze out is the simplest mechanism that fixes the abundance of a species in an expanding
universe [29, 41, 42].

If two particles, say A and χ, can interact with each other through the reaction AA � χχ,
then, when initially the Universe is very hot (at temperatures T � mA, mχ), the two species an-
nihilate into each other maintaining the chemical equilibrium. When T drops below the higher
of the two masses, say mχ, then the number density nχ of χ, in the hypothesis that χ remains
in thermal equilibrium, must follow the non-relativistic equilibrium Boltzmann distribution
nχ,eq ∼ e−mχ/T. Hence, the particles χ annihilate into particles A so as to follow the Boltzmann
distribution.

Therefore, nχ should drop to zero as the Universe cools down, unless the reaction χχ→ AA
at a certain point becomes inefficient. This will happen indeed because of the expansion of the
Universe, which dilutes the concentration of non-relativistic particles proportionally to a−3.
When the annihilation rate nχ〈σv〉 (where 〈σv〉 is the thermally averaged cross section for the
reaction χχ → AA) decreases below the Hubble rate, the annihilation of the χ particles will
substantially cease. The consequence is that nχ keeps the same value it had at the moment of
the freeze out, when nχ〈σv〉 ≈ H. The particle χ could be the dark matter candidate, and A
could represent SM particles (or other particles belonging to the dark sector and unstable on
cosmological scales).

The quantitative study of freeze-out requires the Boltzmann equations, a set of differen-
tial equations that describe the evolution of the number densities of interacting species in an
expanding universe. In the case we are discussing, the equation for nχ reads

dnχ

dt
= −3Hnχ − 〈σv〉

(
n2

χ − n2
χ,eq

)
. (1.3)

The first term on the right hand side of Eq. (1.3) accounts for the dilution due to the expansion,
the second term comes from the χχ→ AA process, while the third one comes from the opposite
reaction AA→ χχ. This equation can be solved numerically, with the result shown in fig. 1.6.

Let us denote quantities evaluated at the freeze out time with a subscript f . The freeze-
out condition n〈σv〉 = H, together with the Friedmann equation for a radiation dominated
Universe H2 ∼ T4

f /M2
P, brings to

nχ f ∼
T2

f

MP〈σv〉 . (1.4)

It is customary to define x ≡ m/T, and the yield Y ≡ n/s, where s is the entropy density of the
Universe, which goes as Y ∼ nT−3 ∼ na3 and is equivalent to the comoving number density.
The thermal relic density of χ is then (the subscript 0 denotes present-day quantities)

Ωf.o.
DM

=
mχnχ0

ρc
=

mχT3
0

ρc

nχ0

T3
0
∼ mχT3

0
ρc

nχ f

T3
f
∼ x f T3

0

ρc MP

1
〈σv〉

, (1.5)

where the first approximation follows from Yf = Y0 and s f = s0 (isoentropic expansion of the
universe) with the approximation g∗ f ≈ g∗0 [29], and in the last passage we used Eq. (1.4).

If we impose ΩDM ∼ 0.3 in Eq. (1.5), and we assume that the coupling constant g between
χ and A is of the order of the EW coupling, on dimensional grounds 〈σv〉 ∼ g4/(16π2m4

χ) and
mχ turns out to be in the range 100 GeV – 1 TeV. Then, a weakly interacting particle with a
weak scale mass (which is the most straightforward requirement to solve the gauge hierarchy
problem) naturally leads to the correct relic abundance. This exciting coincidence was called
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Figure 1.6: Comoving number density (nχa3) of a stable species X during the process of ther-
mal freeze out, as a function of x = mX/T. The larger is the cross section for the process
χχ→ AA, the lower is the thermal relic density of χ.

WIMP miracle, where WIMP stands for Weakly Interacting Massive Particle, and motivated in
the last decades a wide belief that the most likely particle candidate for dark matter is a WIMP.

An important point in this result is that the thermal relic density is mainly dependent on the
cross section σ, rather than on the mass mχ, which appears in Eq. (1.5) only through x f , which is
typically of the order of 20 for a WIMP candidate and does not vary much for different choices
of mχ. Moreover, this mechanism is independent of the early thermal history of the Universe
and of the interactions at high energy scales.

1.3.2 Freeze out and decay

A slightly more sophisticated mechanism with respect to the freeze out might offer a viable
option to get the correct relic abundance, even if the particle χ undergoing the freeze out had a
mass slightly above the weak scale (for example around 1 TeV), or it were electrically charged,
but unstable on long time scales because of extremely weak interactions (e. g. gravitational
ones).

This mechanism, which opens many possibilities from the particle physics point of view,
goes under the name of freeze out and decay. In this case, the species χ undergoes the freeze out
mechanism yielding a thermal relic density Ωχ. Then, because of very weak interactions (as
gravitational ones), χ can further decay to some particle Ψ. If this coupling is weak, the effect
of Ψ on the freeze out of χ is negligible. The result at late times is that the species χ nearly
disappears, leaving a relic density for Ψ given by (if each χ produces only one particle Ψ)

ΩΨ =
mΨ

mχ
Ωχ . (1.6)

If we now specialise this general framework, by assuming that χ is a WIMP (now with a more
relaxed constraint on mχ), and that mΨ is comparable or slightly lower than mχ, then Ψ turns
out to have the correct relic abundance to be the DM candidate: a name used to denote this
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species is superWIMP, as it should interact super-weakly and have a mass of the order of the
weak scale. In this case, since χ is unstable and is not the DM particle, it does not need to be
neutral (see also Sec. 1.4.2).

If the decay channel of χ includes, together with Ψ, some Standard Model (SM) particles,
a limit on the lifetime of χ comes from the requirement that it does not decay after the nucle-
osynthesis, in order not to introduce a late time production of SM particles that could influence
the nucleosynthesis in a way incompatible with observations.

1.3.3 Freeze in

The production mechanism called freeze in can be seen in some sense as the opposite with
respect to the freeze out mechanism, in particular for its implications on the properties of the
dark matter candidate. It was originally proposed in [43] (in relation to a model with a scalar
singlet S interacting with the Higgs boson via a quartic term), and independently discussed in
full detail in [44]. See [45] for a recent review.

In this framework one assumes that the dark matter candidate χ is thermally decoupled
from the thermal bath at early times, because of its feeble interactions. Another assumption
is that the initial number density of χ is negligible, for example because after reheating the
reactions that produce χ in the final state are inefficient. Although the interactions with the
thermal bath are feeble, χ is still produced, with a yield which turns out to be inversely pro-
portional to the temperature T, and therefore increasing in time. Then the number density of χ
keeps growing until the temperature drops below mχ, and the reactions that produce χ become
kinematically disfavoured. From that moment on, the number density of χ will substantially
remain frozen because the interaction rate will be lower than the Hubble rate.

The most relevant feature of this mechanism is that nχ is greater for higher couplings of χ
to the thermal bath, contrarily to the freeze out case (see Fig. 1.7).
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Figure 1.7: Evolution of the relic yield Y for the freeze out mechanism (solid coloured lines)
and freeze in via a Yukawa interaction (dashed coloured), deviating from the equilibrium
density (solid black). The arrows indicate the effect of increasing the coupling strength for the
two processes (adapted from [44]).
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We now estimate the yields expected for two possible renormalisable interaction terms, to
show that they turn out to be decreasing with temperature (and hence increasing with time).
The yield, being an adimensional quantity must be the ratio of the two dimensionful quantities
which are involved, the decay rate Γ (for a three field interaction, or n〈σv〉 for a two-to-two
particles scattering) and the Hubble rate H ∼ T2/MP.

For a Yukawa interaction λψ1ψ2χ among three fields with masses m1 > m2, mχ, the decay
rate in the rest frame of ψ1 must be ΓRF ∼ λ2m1. The corresponding rate in the comoving frame
can be obtained by dividing for the boost factor T/m1; then Yχ ∼ Γ/H ∼ λ2m2

1MP/T3. By
evaluating the yield for the temperature T ≈ m1 at which the production is dominant (with
respect to later times when T < m) we get

Yχ ∼ λ2 MP

m1
. (1.7)

In the case of the quadrilinear interaction Lint = λχ2ψ2
1, at early times the corresponding cross

section will be proportional to λ2/T2 for dimensional reasons (when the two species are rela-
tivistic, T & m1, mχ), nχ ∼ T3 and Yχ ∼ n〈σv〉H−1 ∼ λ2MP/T which gives a final yield (for
T ≈ m1) of the same order as before, Yχ ∼ λ2MP/m1.

Even if the details of the freeze in mechanism and of the calculation of the relic density
change from case to case, the relevant point that emerges from this estimates is that the yield
predicted by this mechanism has opposite features with respect to the one predicted by freeze
out. We can estimate the latter from Eq. (1.4) by inserting 〈σv〉 ∼ λ2/m2

χ and T ∼ mχ:

YFO ∼
1

λ2
mχ

MP
. (1.8)

We can see that the two mechanisms generally yield the correct relic abundance of dark matter
for different regimes of the mass scales and interaction couplings (see Fig. 1.8).

Figure 1.8: Schematic picture of the relic abundances due to freeze in and freeze out as a
function of coupling strength (from [44]).

We conclude by observing that the yield predicted by the freeze in mechanism mainly de-
pends on the particle (ψ1 in our notation) which produces the dark matter particle χ, while
the prediction from the freeze out depends on χ. Moreover, the comparison between the two
results shows that, in order to get ΩDM ≈ 0.3, the coupling constant must be of the order of the
ratio between the weak scale and the Planck mass, λ ∼ v/MP: therefore, freeze in candidates
are likely to arise in theories where small couplings arise at linear order in the weak scale. For
a further discussion about possible candidates from supersymmetry or extra dimensions, see
[44].
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1.3.4 Asymmetric dark matter

The mechanisms we have discussed until now give relic abundances of dark matter that de-
pend on microscopic quantities related to the interaction and couplings of the dark sector. For
example, we have seen that in the freeze out mechanism ΩDM depends in first approximation
only on the annihilation cross section for the process χχ→ AA.

In our Universe the densities of dark matter and baryonic matter are comparable, ΩDM ≈
5Ωb (Eq. 1.1), and they always kept this ratio given that their energy densities scale both as a−3

as the Universe expands. Then, the production mechanisms for the two species brought to sim-
ilar yields even if they took place at different times, and with completely different dynamics.
This is a quite surprising coincidence if we assume the freeze out mechanism for dark matter
and some different scenario for baryogenesis: this can be an accident, or could be discussed on
anthropic grounds, or could be the dynamical result of two related production mechanisms for
the two species. The latter framework goes under the name of asymmetric dark matter. This idea
was proposed some time ago [46–48], and then regained much consideration in recent years
(see for example [49, 50] and the reviews [51, 52]).

Baryogenesis (see [53] for a review) is related to the asymmetry between the amount of
matter and antimatter in the Universe. This asymmetry is quantified by the difference between
baryon and antibaryon number densities over the photon number density, η = (nb − nb̄)/nγ,
and is experimentally measured as 6× 10−10. In order to explain dynamically this asymmetry,
the Sakharov conditions have to be fulfilled: baryogenesis must have happened out of the
thermal equilibrium, and there must be interactions that violate the baryon number B and C,
CP transformations.

One of the most promising options to solve this problem is to link it to another problem
of the SM, the masses of neutrinos. If we add the right-handed neutrinos to the SM with a
Majorana mass term and Yukawa couplings to the lepton and Higgs doublet, then the total
leptonic number L is violated, and non-perturbative phenomena could have communicated an
L violation to the baryonic sector during the leptogenesis [54, 55].

Independently from the mechanism that explains a slight initial asymmetry between baryons
and antibaryons in the early Universe, later annihilations of baryon and antibaryons remove
the symmetric part of the two components (decaying eventually into photons), leaving only
the asymmetric part, until this reaction is efficient. The result of this process is indeed that the
component which had a slightly smaller number density nearly disappears.

At this point, it is clear that the coincidence of the orders of magnitude of ΩDM and Ωb is
unexpected. Starting from these considerations, many production mechanisms for dark matter,
similar to the baryogenesis paradigm, stem out. As general features of this mechanism, we can
list the following ones. An asymmetry between particle and antiparticle number density is
initially created in the visible and/or the dark sector, at the same time or at different ones. For
the dark sector, this requires some CP violating process which must also violate the quantum
number that makes DM stable. Some process communicates the asymmetry between the two
sectors and then decouples, freezing their amounts. Then the symmetric components, in each
of the two sectors, must finally annihilate away through some efficient reaction. In analogy
with the SM, this could happen in the dark sector through the annihilation of particle and
antiparticle into the vector mediators of some dark force, or maybe through higher dimension
operators. The final result is that the annihilations of dark matter leave only the asymmetric
component which turns out to have a number density comparable to Ωb.

It is interesting to notice that, within this framework, indirect searches are generically irrel-
evant because the annihilation processes cannot occur for the relic DM particles in absence of
their antiparticles.
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1.4 Particle candidates for Dark Matter

1.4.1 WIMPs: Weakly Interacting Massive Particles

As we have discussed in Sec. 1.3.1, the freeze out mechanisms presents a WIMP miracle, i. e. it
naturally predicts a correct ΩDM for a weakly interacting particle with a mass of the order of the
weak scale. The requirement that there are new particles at the weak (or TeV) scale (with some
non-negligible interaction with the Standard Model) is the most straightforward one to solve
the hierarchy problem. The coincidence that two very different problems at the microscopic
and the macroscopic scale pointed to the same prediction has motivated for some decades a
strong belief in the particle physics community that this should be the common solution to
both problems.

Furthermore, the mass scale and the interaction strength (comparable to the weak one of
the SM) of the WIMP motivate the hope of an accessible detection (at least with respect to other
classes of candidates) with some of the methods described in Sec. 1.5, because the freeze out
mechanism offers a lower bound on the interaction rate with the SM.

1.4.1.1 Candidates from supersymmetry

Supersymmetry (SUSY) is a vast field, which emerged back in the ’70s in the study of string
theories, and has motivated a large activity in the following decades. The key property of
supersymmetric theories is the extension of the usual spacetime and gauge symmetries by a
symmetry linking bosonic and fermionic fields. It is impressive that some of the most critical
problems of the SM, as the hierarchy problem, or dark matter, or the inclusion of quantum
gravity can find in SUSY respectively a solution, a WIMP (and a SuperWIMP) candidate, and
a possible connection to supergravity and superstring theories. Moreover, the unification of
gauge couplings at a scale M ∼ 1016 GeV featured by the simplest supersymmetric extension
of the SM, the Minimal Supersymmetric Standard Model (MSSM), offers a significant hint for
Grand Unified Theories (GUT) at high scales.

We refer to the excellent reviews [56–58] for a detailed introduction to SUSY and MSSM.
Ref. [14] discusses at length the properties of Supersymmetric Dark Matter.

We do not enter here into the details of model building for supersymmetric theories, and
we recall a result which is relevant for our discussion on SUSY candidates for DM. In the con-
struction of a supersymmetrised version of the SM, it turns out that, without the imposition
of some discrete symmetry, there could appear terms in the Lagrangian (in particular, in the
superpotential) which violate the B and L symmetries. These are highly constrained by exper-
iments, so that the solution is to impose a Z2 symmetry, called matter parity, which forbids
these terms to appear. This symmetry can be equivalently rephrased in terms of the R-parity.
Its quantum numbers for each field are given by (−1)3B−L+2s, where s is the spin. The result
is that all the SM fields have an R-parity number equal to +1, and all their supersymmetric
partners (which are fermionic for SM bosons, and viceversa, and are typically denoted with a
tilde) have a −1. This has important physical consequences: the lightest particle with R-parity
equal to −1 cannot decay into lighter particles because otherwise it would violate R-parity,
therefore it is absolutely stable. This is exactly the type of discrete symmetry that can make the
DM candidate stable on cosmological scales. Therefore, the MSSM predicts a DM candidate if
the Lightest Supersymmetric Particle (LSP) is electrically neutral.

We now review the possible candidates in supersymmetric theories.
The prototypical SUSY candidate for DM is the lightest neutralino. This is the name given
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to each of the mass eigenstates which arise as a mixing of the four neutral fermion fields3 B̃,
W̃0, H̃0

d and H̃0
u. These fields have the same quantum numbers, therefore the mass eigenstates

(usually denoted4 by χ̃0
i , i = 1, . . . , 4) are a mixing among them. The lightest neutralino can be

the LSP, depending on the overall mass spectrum of the full model.
The other important DM candidate is the gravitino, the spin-3/2 superpartner of the gravi-

ton in supergravity theories. Its mass is related to the the supersymmetry breaking scale F
(which has mass dimension 2) by mG̃ = F/(

√
3MP). Depending on the masses of the gravitino

and the neutralino, the lightest between them is the LSP. As discussed in section 1.4.2, the
gravitino is likely to be a SuperWIMP candidate, i. e. a very weakly interacting candidate that
decoupled from the thermal bath in the early universe through the mechanism of the freeze out
and decay described in Sec. 1.3.2.

Other two possible SUSY candidates for DM are now excluded because of experimental
constraints. The sneutrino is the scalar superpartner of the neutrino, and is potentially a viable
DM candidate because it is a colour singlet and is electrically neutral. The constraint from LEP
on the invisible Z decay width rules out a sneutrino lighter than mZ/2, and its interactions
via the Z boson yield scattering cross sections with nucleons too large to escape the constraints
from direct searches. Extended models with right-handed neutrinos may reopen the possibility
of sneutrino dark matter by lowering the interaction cross section. Finally, another DM candi-
date could be an electrically neutral R-hadron, the supersymmetrised versions of the hadrons
of the SM, built up of squarks and gluinos. They are a candidate of Strongly Interacting Mas-
sive Particles (also called SIMP). They are basically ruled out by the strong constraint from the
Earth heat flow: when the dark matter capture rate in Earth is efficient, the rate of energy depo-
sition by dark matter self-annihilation products would grossly exceed the measured heat flow
of Earth. These limits exclude a nucleon-DM cross section higher than around 10−34 − 10−33

cm2 [59], severely restricting the chances that this could be the DM candidate.

1.4.1.2 Lightest Kaluza-Klein particle

Another important class of DM candidates is given by the so-called Lightest Kaluza-Klein par-
ticles, which arise in models with extra dimensions with respect to the usual four spacetime
dimensions.

The ancestor of these models is the unfruitful attempt made by Kaluza in 1919 and im-
proved by Klein in 1926, with the intention to unify gravity and electromagnetism. Extradi-
mensional models returned to be amply studied at the end of the 1990s with more emphasis
on phenomenology. An important paper by Arkani-Hamed, Dimopoulos and Dvali (ADD) in
1998 [60] suggested that spacetime can have more than 4 dimensions and all the SM particles
be confined to a four-dimensional submanifold, referred to as a 3-brane. The only fundamental
force whose interactions spread in the extra dimensions is gravity, and in the higher dimen-
sional spacetime general relativity holds. The limit on the size of the extra dimensions would
be fixed by the experimental tests on Newton’s law of gravitation, which are now probing the
µm scale. In this proposal, the weakness of gravitational forces is due to the leak of gravity into
the extra dimensions, and the hierarchy problem is translated into the problem of the discrep-
ancy between the large size of the extra dimensions and the value of the Planck length.

Shortly after, the Randall-Sundrum model [61, 62] proposed to enlarge spacetime to a 5-
dimensional anti-de Sitter space time, with the SM particles still confined to a 3-brane. The

3In the MSSM, due to the properties of the superpotential, one has to introduce two Higgs doublets Hu and Hd.
4Due to the (well motivated) widespread belief in the ’80s and the ’90s that the SM could be completed by a

SUSY theory at the weak scales, also DM was nearly identified with the neutralino in the community. This explains
the common notation χ for the DM particle, which we do not contravene in this Chapter.
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weak scale is generated from the Planck scale through an exponential hierarchy, arising from
the background metric: in this way, only a modest fine-tuning is required with respect to what
is needed in ADD model.

These proposals encouraged many phenomenological investigations of models of extra di-
mensions, also called Kaluza-Klein (KK) models. See [63, 64] for some reviews on this subject.
The common feature of these models is the presence of towers of discrete levels of excited
states with respect to the ordinary SM particles, due to the quantisation of the momentum of
the fields (gravitons, or in some cases also the SM particles) along the extra dimensions. The
first level of excited states can be produced at energies of the order of 1/R, where R is the ra-
dius of compactification of the extra dimension, which ranges from the order of the meV−1 (≈
mm) in ADD models, to the TeV−1 (≈ 10−18 m) when ordinary particles can propagate in the
extra dimension, or even to M−1

P .
The excited KK states are in general not stable, since they can decay to states of lower energy.

The discrete Z2 symmetry that ensures the stability of the Lighest KK Particle (LKP) is the
Kaluza-Klein parity, a discrete symmetry related to the conservation of momentum along the
extra dimension. This symmetry remains unbroken in a some specific class of models named
Universal Extra Dimensions (UED) [65], where also the SM fields can propagate to the extra
dimensions. This symmetry allows for the LKP, if it is electrically neutral with interactions of
a strength comparable to that of the electroweak force, and if the extra dimension has a size of
the order of the TeV−1 , to be the DM candidate.

Depending on the details of the models, there a few particles which could be the LKP.
Among the most plausible candidates we cite the KK partners of the photon and of the graviton.
We refer the reader to [66, 67] for reviews on DM candidates in this class of theories.

1.4.1.3 Minimal Dark Matter

The two classes of model that we have just discussed (SUSY and extra-dimensional models)
are strongly motivated by the hierarchy problem. An alternative approach is to focus just on
the DM problem, and to add to the SM the minimal set of ingredients and assumptions. The
proposal of Minimal Dark Matter (MDM), originally formulated in [68], and further developed
in [69–72], adopts the perspective that the DM stability could be ensured not by ad-hoc discrete
symmetries (as R-parity, or the KK parity) but by accidental symmetries.

In the SM the baryon number conservation (which renders protons stable) is just an acci-
dental symmetry of the most generic renormalisable Lagrangian that is admissible given the
SM charges. Analogously, in the MDM scenario one adds to the SM a (scalar or spinor) multi-
plet X with suitable charge assignments such that one of the components of X does not admit
renormalisable operators leading to its decay and is a stable DM candidate.

The requirements on X are that it does not introduce Landau poles in the running of the
coupling constants before the Planck scale MP, that the DM component X 0 is absolutely stable
and neutral under SU(3)c (given the bounds from the Earth heat flow cited in Sec. 1.4.1.1) and
U(1)EM, and that X has a vanishing hypercharge (to prevent a tree level vector coupling with
the Z boson which contradicts the null detections of direct searches).

Quite remarkably, it turns out that there is only one multiplet respecting all these conditions:
a fermionic 5-plet of SU(2)L. Once the multiplet is fixed, the only free parameter of the model
is the tree-level mass MX of the multiplet. The various components get small mass splittings
due to their self-energy diagrams with SU(2)L boson loops. The neutral component turns out
to be the lightest state (which is crucial for its stability) with a mass splitting with X± of 166
MeV. The mass MX is constrained by requiring the correct relic abundance via freeze out. The
proper calculation takes into account the coannihilations with the charged components of X ,
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the Sommerfeld enhancement, which is the amplification (for attractive interactions) of the
annihilation cross section of X 0X 0 in presence of a light mediator [69], and the formation of
bound states [72]. The final result for the fermionic 5-plet is MX = 11.5 TeV.

The high energy searches of this DM candidate, either at a future collider or at a storage ring
of nuclei which could interact with the DM around us, are very difficult. A clear signature could
come from the production of X± and its decay to X 0, but unfortunately their mass splitting is
just above mπ± , allowing for a large branching ratio X± → X 0π±. This reduces the free path
of X± to a few cm, and suppresses the cleaner decay channel X± → X 0e±νe. Direct searches
have better chances to detect the MDM candidate, which interacts with nucleons at one loop,
and the model is within reach of future experiments [73].

The most relevant constraints on MDM come from γ ray searches, in particular from HESS
observations of γ ray lines from the Galactic Centre [71], and put this model under serious
pressure. Possible generalisations which rescue this scenario could be to assign a tiny electrical
charge to X (millicharged DM), or to lower the cutoff below MP, and to allow the DM to be
stable on cosmological times but not absolutely stable [74].

1.4.2 SuperWIMPs

SuperWIMP candidates are related to the production mechanism of freeze out and decay, de-
scribed in Sec. 1.3.2. From the observational point of view, the extremely weak interactions
of this candidate tend to disfavour the hope of detection. Nevertheless, the interesting point
about this production mechanism is that it reduces the requirements about its producer, which
in this scenario can be a more generic WIMP with a mass above the TeV and does not need to
be neutral, since it is not the DM candidate.

The classic example of a superWIMP is a weak scale gravitino G̃, the spin-3/2 partner of
the graviton (see Sec. 1.4.1.1). In this case the role of the WIMP is played by the Next to Light-
est Supersymmetric Particle (NLSP), which can be a charged slepton, or the sneutrino, or the
chargino, or the neutralino. Other candidates of superWIMP include axinos (the supersym-
metric partners of axions), and graviton and axion states in extra-dimensional models.

1.4.3 Sterile Neutrinos

Also the models addressing the problem of neutrino masses offer an attractive DM candidate:
the right-handed neutrinos νR. These fermions would be gauge singlets, and therefore it would
be possible to write a Majorana mass term for them, in addition to the Yukawa couplings to the
left-handed lepton doublet LL and the Higgs SU(2)L doublet H. The corresponding Lagrangian
for the so-called νMSM (Neutrino Minimal Standard Model) is (by a superscript c we denote
the conjugate SU(2)L doublet and Lorentz spinors)

LνMSM = LSM −YνLLHcνR − 1
2 M(νR)cνR . (1.9)

The mass eigenstates for the neutrinos, after electroweak symmetry breaking, are a mixture
of νL and νR; let us call the corresponding eigenvalues mν and MN , and the corresponding
eigenstates ν and N. In the simplest model addressing the smallness of the neutrino masses
with respect to the other SM particles, the type-I see-saw mechanism, M� Yνv and the the mass
of the heavy neutrinos (or sterile neutrinos, given that they interact with the SM only through
the small mass mixing) is

MN ≈ M ≈ Y2
ν v2

2mν
. (1.10)
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Another option is to get a sterile neutrino mass of the order of a few keV, by postulating tiny
Yukawa couplings, of the order of 10−10, a value which is some orders of magnitude below the
smallest Yukawa coupling in the SM (Ye ≈ 3 · 10−6). This option is motivated by the possibility
of solving through this minimal modification of the SM three great puzzles such as neutrino
masses, dark matter and baryogenesis [75–77]. A keV sterile neutrino is a candidate of Warm
Dark Matter (WDM, see Sec. 1.1.3), so it could possibly alleviate some alleged problems in the
predictions of CDM for the Large Scale Structures.

In this scenario, the lightest sterile neutrino, say N1, is the dark matter candidate. Given its
low mass, the main physical decay channel appears only at one loop through the small mixing
with νL (see Fig. 1.9). The overall result is a decay N1 → νLγ, with a peculiar experimental
signature given by the observation of an X-ray with defined energy MN/2. This is indeed the
experimental search that has the best possibilities to probe this scenario.

N νL e∓

W±

νL

γ

N νL

W±

γ

νLe∓

Figure 1.9: Feynman diagrams at one loop for the decay of a sterile neutrino N into a photon
and a left-handed neutrino νL. The cross on the fermionic line denotes the νL component of
the mass eigenstate N, which is a mixture of νL and νR.

1.4.4 Axions

The most important and well-motivated DM candidates together with WIMPs are axions and
Axion-Like Particles (ALPs). The QCD axion was introduced as a solution to the strong CP
problem [78–80]. The QCD Lagrangian should include a Chern-Simons term

LθQCD =
θ

32π2 Tr GµνG̃µν , (1.11)

where Gµν is the gluon field strength tensor and G̃µν = 1
2 εµνρσGρσ is its dual tensor, and the

trace runs over the colour indices. This term is a four-divergence,

Ga
µνG̃a µν = ∂µ

[
εµνρσ

(
Ga

νGa
ρσ −

gs

3
fabcGa

νGb
ρGc

σ

)]
, (1.12)

so that at the classical level it would be unphysical, but this is not the case at the quantum level
in a non-Abelian gauge theory, due to the presence of instantons.

The operator in Eq. (1.11) violates parity and time reversal, but not charge conjugation,
therefore it violates CP. Another source of CP violation in the SM comes from the Yukawa
matrices Yu, Yd which generate quark masses after EW symmetry breaking. By performing a
chiral global rotation on the quarks, we can change the coefficient in front of Eq. (1.11), so that
the physical combination is just

θQCD = θ + arg det (YuYd) . (1.13)

By mean of a chiral rotation, we can make the Yukawa matrices real while changing the value
of the coefficient of GG̃, and the physically relevant coefficient is θQCD.
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This term has some measurable effects, the most notable being a contribution to the neutron
electric dipole moment dn = 3 · 10−16θQCD e·cm. The null detection of this static neutron dipole
moment brings to the experimental limit |dn| < 3× 10−26 e·cm, which implies |θQCD| . 10−10.
The absence of an explanation in the SM for the tiny value of this dimensionless parameter is
the strong CP problem (see [81, 82] for reviews).

The Peccei-Quinn solution of this problem is to make this coefficient dynamical. One in-
troduces a U(1)PQ global chiral symmetry, under which some quarks are charged, which is
broken spontaneously by a complex scalar field ϕ. A simple possibility is to write a poten-
tial V(ϕ) = λ(|ϕ|2 − f 2

a /2)2, so that 〈ϕ〉 = ( fa/
√

2) exp(ia/ fa). The field a is the Goldstone
boson of U(1)PQ, and it is called axion, while fa is the axion decay constant. Let us assume
that the mixed anomaly between U(1)PQ and SU(3)c is non vanishing (because of the SM
quarks or new heavy quarks charged under SU(3)c), with an anomaly coefficient C given by
Cδab = 2 Tr QPQTaTb where Ta are the SU(3)c generators. Then we can perform a local chiral
rotation of the quarks with an angle a/ fa and, due to the anomaly, the action changes into

S→ S +

ˆ
d4x

C
32π2

a
fa

Tr GµνG̃µν . (1.14)

This implies that we can reabsorb θQCD into the axion field a by just performing a chiral
rotation. A key point is that the axion Lagrangian is shift invariant at tree level, a being the
Goldstone boson of U(1)PQ. The last ingredient to solve the strong CP problem comes from
the calculation at the non-perturbative level of the axion potential. In the dilute instanton gas
approximation, one finds that the vacuum energy depends on a as E(a) ∝ 1− cos(Ca/ fa). The
periodic potential for the axion is minimised at a = 0 (mod 2π). This is the Peccei-Quinn-
Weinberg-Wilczek solution of the strong CP problem: the axion field brings dynamically the
coefficient in front of the GG̃ term to 0.

We now discuss the phenomenological consequence of the existence of the axion. For more
detailed reviews on the axions and their experimental probes, one can see Refs. [83–88].

Its mass turns out to be (from now on, we redefine fa/C → fa)

ma ≈
mπ fπ

fa
= (6 µeV) ·

(
1012 GeV

fa

)
. (1.15)

For a value of fa around the TeV we get ma ∼ keV, while for higher values of fa around the
GUT scale we obtain ma ∼ 10−9 eV. The couplings of the axion to matter are all suppressed
by f−1

a ; therefore, if the axion decay constant is large enough, it is extremely hard to detect its
interactions with matter. Axions can then be extremely light and weakly coupled to the SM.
Similar fields arise very generically in string theory, and are called Axion-Like Particles (ALPs).

ALPs would be a DM candidate in the form of a scalar condensate oscillating around its
minimum. Depending on the value of ma, it could have various effects on galactic and cosmo-
logical scales. Recently, the hypothesis that DM could be constituted of ultralight ALPs with
a mass 10−22 eV and a de Broglie wavelength of about 1 kpc has been receiving increasing
attention [89].

Many astrophysical and cosmological probes constrain the parameter space of axions. Their
interaction with the SM which is most relevant from the phenomenological point of view is the
one with photons, through the coupling

Laγγ = − gaγ

4
a Fµν F̃µν ∝

a
fa
~E · ~B . (1.16)

The coupling of the axions to photons implies for example the emission of axions by stars and
exploding supernovæ, which offers some important constraints from the cosmological side.



22 1. Evidences and candidates for Dark Matter

From the experimental side, Eq. (1.16) tells that the passage of an axion in a very strong mag-
netic field can bring to its conversion in a photon. This is the phenomenon exploited by various
current experiments (like ADMX and CAST), and at the core of many recent proposals. We
show in Fig. 1.10 a recent summary of the current constraints on ALPs in the plane (ma, gaγ).
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Figure 1.10: Current constraints on ALPs in the (ma, gaγ) plane. The grey constraints come
from purely laboratory results, the blue ones are related to helioscopes (experiments aiming
to detect axions from the Sun) and stellar physics, and the green ones refer to haloscopes
(experiments looking for axions constituting the DM in the halo) and cosmological arguments.
The yellow band refers the favoured region for the QCD axion. The figure is taken from [88],
to which we refer for the description of the constraints.

In Fig. 1.11 we show a summary of the proposed and planned experiments dedicated to ALPs,
which are going to cover most of the relevant parameter space for the QCD axions in the range
ma = 10−8 − 1 eV. The number of proposed experiments testifies the remarkable interest at-
tracted by the field of axion searches in recent years.

For the sake of this Thesis, we do not enter into the details of the vast domain of axions
searches and axion cosmology, and we refer in particular to the excellent recent reviews [86,
88].

We conclude this section with a brief summary about the cosmological production of axions.
The hypothesis of a standard thermal relic production with Ωa ≈ ΩCDM requires ma ∼ 80 eV,
which would imply a decay time for a→ γγ too short on cosmological scales. Therefore, some
other production mechanism for the axion must take place: we can distinguish two possible
cases, depending on whether the breaking of U(1)PQ happens before inflation or after its end.
In any of these cases, axions behave as cold dark matter, even if their mass is tiny, because they
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Figure 1.11: Forecasts for the sensitivity of planned and proposed experiments to measure
the coupling gaγ, shown in the plane (ma, gaγ fa(2π/αem)

√
Ωa/ΩCDM), where Ωa is the axion

energy density. The colour code is the same as in Fig. 1.10. The figure is taken from [88], to
which we refer for the description of the various experiments.

are produced out of the thermal equilibrium with a low energy distribution.
Before the breaking of U(1)PQ, the axion mass is negligible. If U(1)PQ is spontaneously

broken before inflation, each of patches of spacetime with a different value of 〈a〉 inflated to a
region larger than our observable Universe, which displays an homogeneous 〈a〉. In that case,
the relevant contribution of axions came when QCD effects became relevant, at an energy scale
around 1 GeV. At this point, the field a rolls from its initial value ai towards the true minimum,
where it begins to oscillate and contributes to the local energy density as non-relativistic matter;
this phenomenon is called vacuum realignment. The current axion energy density is then

Ωa ' 0.15
(

fa

1012 GeV

)7/6 ( ai

fa

)2

. (1.17)

If the PQ phase transition occurs after the end of inflation, then our observable Universe should
consist of a mixture of many patches with different expectation values 〈a〉. Along their bound-
aries there could lie topological defects as domain walls or axionic strings, with observable
effects. Which of these two scenarios could have been realised in nature depends on the in-
terplaty between the PQ scale fa and the Hubble rate during inflation, which is currently con-
strained to be HI . 4 · 1014 GeV from the measurements of the tensor-to-scalar ratio r [90].

1.5 WIMP searches

In this Section, we summarise the possible experimental searches for WIMP dark matter, dis-
tinguishing three broad categories: direct, indirect and collider searches.



24 1. Evidences and candidates for Dark Matter

1.5.1 Direct searches

Direct searches try to detect the interaction of DM particles of our galaxy with a detector on
the Earth. The relative motion of the Earth with respect to the Milky Way imply a relatively
large flux of DM particles through our planet. Hence one of the possible experimental searches
for DM consists in monitoring a large detector made of a specific material with high density,
in order to maximise the cross section of a DM particle with one of the nuclei of the detector
[91]. The expected signal is extremely low, and can be observed only if the background of
cosmic rays and other sources is minimised: this is accomplished by putting the detectors
underground, usually in mines or inside a mountain under a thick layer of rock. This choice
reduces the background from cosmic rays with respect to the surface of the Earth at the order
of one over a thousand. In order to quantify the expected number of events, many inputs from
different research fields must be specified. Refs. [92–96] offer detailed reviews on the subject of
direct detection.

The flux of DM particles depends both on the local density and on the velocity distribution
of DM (see e.g. [97] for a detailed discussion). The Standard Halo Model describes an isotropic,
isothermal sphere with an energy density profile ρ(r) ∝ r−2. The local DM energy density
is usually taken equal to ρ0 = 0.3 GeV/cm3. The velocity distribution corresponding to the
Standard Halo Model is the Maxwell distribution, truncated at an escape velocity vesc, above
which a DM particle is not gravitationally bound to the Milky Way. The traditional value is
vesc = 650 km/s, and Ref. [98] updated this value to 498 km/s < vesc < 608 km/s at 90%
CL, with a median of vesc = 544 km/s. The standard deviation for the velocity distribution of
DM particles is typically assumed to be σv = 220/

√
2 km/s. The velocity of DM particles in

the detector frame is the sum of the peculiar DM velocity and of the Sun’s velocity of about
220 km/s with respect to the centre of the Milky Way, with a small contribution due to the
motion of the Earth with respect to the Sun. The astrophysical dependencies are the most
relevant uncertainties for direct detection. Their impact on the final constraints was studied in
Refs. [99–101] and more recently in Ref. [102].

In direct detection experiments, a careful choice of the material of the detector must be
done. Indeed, the larger are the atomic number and the spin of the nucleus, the more the
event rate is increased respectively for spin-independent and spin-dependent cross sections
with DM, i. e. cross sections that do not depend (or do) on the spin of the nuclei. Furthermore,
materials with higher density maximise the cross section of the interaction, and then of course
the larger is the detector and the more targets are offered to an incoming WIMP. Last but not
least, the cost of the material is one of the key expenses for the experiment, so that a balance
between all these different properties has to be sought. The recoil energy left by a scattered
DM particle is measured through the heat deposition, and ionisation or scintillation signals.
Some examples of the materials chosen to be highly sensitive to spin-independent searches are
liquid xenon (in particular XENON1T and LUX), germanium (CDMS, EDELWEISS, CoGeNT),
calcium tungstate (CRESST), sodium iodide (DAMA). For spin-dependent interactions, it is
convenient to choose materials containing fluorine, which has a non-zero intrinsic spin: some
examples of these experiments are PICO, COUPP and SIMPLE.

The key quantity for a direct detection experiment is the energy threshold for the detection
of a signal. The experiments listed before aim at the detection of the recoil of a WIMP with a nu-
cleus (nuclear recoil), and they are sensitive to a recoil energy of roughly a keV. The expression
of the recoil energy for the scattering of an incoming DM particle with mass mχ with a nucleus
of mass mN depends on the reduced mass of µN = mχmN/(mχ + mN), and is maximum for
mχ ∼ mN . For lighter DM particles, the recoil energy would be too small, so that the sensitivity
of direct detection experiments quickly degrades for mχ below some GeV. For heavier DM par-
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ticles, µN saturates to mN , but the reach of the exclusion limit weakens because the DM flux is
proportional to nχ = ρ0/mχ: for a fixed energy density, the heavier are the DM particles the less
abundant they are. These two considerations explains the shape of direct detection bounds.

The evaluation of the scattering rate on the detector requires the elastic scattering cross
section between DM and the nucleus. This cross section can be derived from the microscopic
theory through the following steps [103–105].

First, we compute the differential cross section for the scattering between a parton (a quark
or a gluon) and DM from the microscopic theory. This can be safely computed by using an ef-
fective field theory (EFT) approach, if the WIMP mass is not comparable to mass of its mediator
with the SM, because of the non-relativistic environment of the process.

Then one must convert the microscopic cross section for the parton-DM interaction to a
cross section between a nucleon (a neutron or a proton) and DM. This is done by using the
hadronic matrix elements, i. e. the matrix elements for the operators containing quark or gluon
fields, with the introduction of the form factors, experimentally measured functions that de-
pend on the momentum exchanged in the interaction.

Eventually, from the cross section between DM and a nucleon we can obtain the scatter-
ing cross section with the nuclei by mean of the nuclear wavefunctions, which are measured
experimentally by nuclear physicists. The final result is parametrised in terms of a basis of
non-relativistic matrix elements between the DM χ and the nucleus N, which are classified ac-
cording to the Galilean invariants for the process: the spins~sχ,~sN , the transverse DM velocity
~v⊥ and the exchanged momentum~q. There are two of these operators which are not suppressed
by the DM velocity, and are usually taken as benchmarks for the presentation of the exclusion
results, respectively for spin-independent (SI) and spin-dependent (SD) scattering:5

χχqq , χγµχqγµq → ONR
1 ≡ 1 χγµγ5χqγµγ5q → ONR

4 ≡~sχ ·~sN . (1.18)

In Fig. 1.12 we show the current limits on the SI cross section of nucleon and DM from various
experiments, and in Fig. 1.13 we show the analogous limits for a SD cross section. Due to the
strong enhancement with the atomic number of the nucleus for the SI scattering, where all the
nucleons interact coherently with the DM, these bounds are six orders of magnitude stronger
than the SD scattering.

Fig. 1.12 (left) shows also the expected contribution from the neutrino background from the
Sun, the interaction of cosmic rays with the Earth’s atmosphere and from astrophysical sources
like Supernovæ. This contribution will be a limitation for the current detectors, because this
background it is indistinguishable from a DM signal. The only solution to go beyond this
barrier in the sensitivity is to design experiments which are sensitive to the direction of the
incoming neutrino (or DM particle).

In recent years, the theoretical community has been devoting a lot of effort to the design
of new techniques for the next generations of direct detection experiment. The main goals are
lowering the energy threshold by considering events different from nuclear recoils, in order to
improve the reach for DM masses in the range keV-GeV, or measuring the direction of the in-
coming particle leaving a signal in the detector. Physical phenomena which could be exploited
to lower the threshold include electronic recoils from ionization events [115–117], electronic
excitation and de-excitation with the consequent photon emission [115, 118], molecular disso-
ciation with the production of ions, and finally phonon or heat production [115, 119], electron
scattering in semiconducting materials [117, 120–122], in Dirac materials [123], in superfluids

5Notice that, due to the effect of the Renormalisation Group flow, even if at scale some effective operator has
a vanishing coefficient it could be generated at a lower scale. In particular, operators which are absent at the
electroweak scale could be generated at the low-energy scale which is relevant for direct detection [106–110].
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Figure 1.12: Left: upper limits on the spin-independent scattering between WIMP and nu-
cleon, with the expected background from neutrino scattering [111]. Right: the most updated
spin-independent limits from Xenon1T [112].
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Figure 1.13: Recent compilation [113] of the upper limits on the spin-dependent scattering
between WIMP and protons assuming pure proton coupling. The strongest bounds currently
come from PICO-60 [114].

[124, 125] and in superconductors [126–128], brehmsstrahlung in low recoil energy nuclear scat-
terings [129]. Searches in the low mass range could have directional sensitivity if performed
with 2D graphene targets, as recently proposed in [130]. Radically new proposals include the
study of tracks left by DM particles in ancient minerals [131].

1.5.2 Indirect searches

Indirect techniques are based on the search of radiation produced in DM annihilations in the
universe. The flux of the radiation produced by these annihilations is proportional to the an-
nihilation rate Γann, which in turn depends on the square of the DM density, Γann ∝ n2

DM.
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Therefore the most promising directions to look at, in order to maximise the probability of de-
tecting the products of these interactions, are the regions where DM accumulates, which are
also called in this context amplifiers. Examples of such DM-dense environments on which we
are commenting later are the Galactic Centre, dwarf Spheroidal Galaxies (dSph), and the Sun.

Independently of the primary annihilation channel of the DM pair, the subsequent decay
chain leads to the production of a variety of SM final states, and in particular γ rays, pro-
tons and antiprotons, electrons and positrons, and neutrinos. This is shown schematically in
Fig. 1.14. If the DM mass is above a few hundreds GeV, then the radiation of EW bosons is not
suppressed by the boson masses, and the electroweak corrections enhance the production of
secondary annihilation products [132].

Figure 1.14: Example of a DM annihilation process (two DM particles χχ into e+e−) producing
a final state with many SM decay products thanks to electroweak corrections (from [133]).

Electrically charged decay products of DM are deviated by the electric and magnetic fields
present in the galaxy, and the uncertainties in the models for the diffusion of cosmic rays can
impact the exclusion bounds relying on the observations of charged cosmic rays as p± and e±.
The latest measurements of charged cosmic rays come from the AMS-02 experiment, hosted
by the International Space Station. Their measurement of the fluxes of cosmic rays in the e±

[134, 135] and p-p [136] channels ignited an intense discussion in the community, due to alleged
excesses of antiparticles measured in the high energy tail of the spectrum. In the case of the an-
tiproton excess, detailed analyses of the model assumed for the cosmic ray propagation showed
that the measurements were in not in significant tension with the expected background [137].
In the case of the positron excess, there is a general consensus about a disagreement between
the measurement and the expectation, but various astrophysical explanations have been pro-
posed. In particular, a nearby population of pulsars could produce both primary and secondary
positrons [138–141], or they could be created in the shock region of a supernova remnant [142].

The indirect search of DM annihilations through the observation of γ rays leads to one of
most stringent and solid constraints of the field, from the observations of Fermi-LAT of dwarf
Spheroidal Galaxies (dSph) [143, 144]. These satellite galaxies of the Milky Way, being quite
poor in stars and rich in DM, represent a perfect focus for the observation of DM annihilations
into photons. Fermi-LAT measured the γ ray continuum spectrum, without detecting any
excess and imposing a bound on the annihilation cross section of DM into SM particles leading
to a spectrum of photons in the final decay products. The uncertainties on the integrated DM
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density for these objects is very limited [16], so that these constraints are robust.
The Fermi-LAT satellite, together with the terrestrial telescope HESS, have also observed

the centre of the Milky Way in the γ-ray spectrum, to look for spectral lines corresponding
to photons generated as primary annihilation products of DM. Also in this case, the absence
of excesses leads to exclusion limits that we use for a recast in Chapter 3. These constraints,
focussing on a rather small region around the centre of the galaxy, are more sensitive to the
assumed DM profile around the centre, as we discuss in Section 3.4.3.1. Despite this uncer-
tainty, these constraints can be important for mDM & O(100) GeV if the DM can annihilate
significantly to γγ or Zγ for example.

Also the Fermi observations lead in 2009 to a claim of detection of a signal, pointing to-
wards a 30-50 GeV DM particle and yielding a photon spectrum similar to the one generated
by annihilations into bb quarks [145, 146]. The presence of the excess was confirmed by the
Fermi collaboration, and later analyses proposed various possible astrophysical explanation
for this signal. The suggestions include a population of unresolved millisecond pulsars [147–
150], enhanced Compton emissions from recent cosmic ray outburst [151–153], a space depen-
dence of the parameters describing the cosmic ray propagation [154], or a reexamination of the
density of cosmic ray accelerators [155, 156]. Another claim of detection came in 2014 from the
observation of an unidentified spectral line in the X-ray spectrum from some galaxy clusters
[157, 158]. This very weak line lies at an energy of 3.57 keV, which is argued not to correspond
to any atomic transition in the galactic plasma, and it is proposed to come from the decay of
a sterile neutrino into γνL (see Fig. 1.9). Other groups objected that this spectral line could be
due to chlorine and potassium emission lines [159, 160] or challenged the analysis technique of
the original papers [161–164].

The debate on these measurements of charged cosmic rays, γ and X rays is still ongoing,
and there are supporters of the DM explanation, but we can say that no conclusive evidence of
a DM observation has been made so far by indirect searches.

Another important constraint in the low DM mass region (mDM . 10 GeV) comes from the
measurement of the CMB. DM annihilations into (primary or secondary) photons during the
recombination epoch can impact on the temperature and polarisation anisotropy of the CMB.
The Planck measurements did not find evidences for these features, leading to the constraints
reported in [33].

We show in Fig. 1.15 the recast performed in Ref. [165] of the constraints from the obser-
vations of the CMB by Planck (Fig. 1.15a), of dSph by Fermi-LAT (Fig. 1.15b) and of e± fluxes
from AMS (Fig. 1.15c). For each of these bounds, the recast of Ref. [165] (which recomputes the
fluxes and does conservative assumptions when needed) assumes in Fig. 1.15 a 100% branch-
ing ratio of DM annihilations into a given pair of SM particles, and computes the secondary
fluxes of photons (or e± respectively). The black line shows, for comparison, the annihilation
cross section predicted by the standard freeze-out mechanism.

Another possibility is to look for the annihilations coming from the Sun: DM travelling in
the solar system can lose some of its kinetic energy when scattering off a nucleus in the Sun,
and remain bound to the solar gravitational potential. Its number density nDM then begins to
increase with respect to the average galactic one. This is counterbalanced by the annihilation
of DM particles, proportional to n2

DM
6. This process eventually reaches an equilibrium, when

the capture rate of DM particles in the Sun (whose nuclei are mainly free protons) is equal
to (twice of) their annihilation rate into SM particles. Among the final annihilation products,
neutrinos are the only particles that can escape from the centre of the Sun and be detected by

6The evaporation of DM particles from the Sun, that is the escape from the gravitational potential well of the
fastest DM particles, is negligible for mDM & 10 GeV.
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Figure 1.15: Upper limits at 95% C.L. on the thermally averaged annihilation cross section of
DM particles, assuming for each line a 100% BR in the indicated channel (figures taken from
[165]). The black dashed line show the predicted cross section for a thermal relic [166].

experiments. Hence, a possible search consists in looking for unexpected fluxes of neutrinos
coming from the centre of the Sun. When neutrinos interact with matter via a charged EW
current, they convert into a charged lepton which (if energetic enough) produces a Cherenkov
cone of radiation when travelling in water. This is the principle used by neutrino detectors,
whose sensitive target is a huge tank of water (as SuperKamiokande) or a large volume of ice in
Antarctica (IceCube). Especially when the converted lepton is a muon (rather than an electron),
the track of the produced cone is better reconstructed, due to lower energy loss of the muon
via brehmsstrahlung. This allows a precise determination of the direction of the incoming
neutrino, which is crucial to disentangle this signal from the background of neutrinos produced
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from the showers of cosmic rays in the terrestrial atmosphere. We show in Fig. 1.16 the latest
limits coming from the IceCube [167] and SuperKamiokande [168] experiments. These bounds
constrain the elastic scattering cross section between DM and protons. The reason is that, when
assuming that the number density in the Sun has reached an equilibrium, one is imposing
the equality of the annihilation and the capture rate. Therefore the bound on the number of
annihilation processes in the Sun measured by neutrino telescopes directly translates into a
limit on the capture rate, as if the Sun were acting as a direct detection experiment with a good
sensitivity to SD cross section.
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Figure 1.16: Upper exclusion limits on the SD scattering cross section of DM with protons
from IceCube and SuperKamiokande (figures taken from [167]).

1.5.3 Collider searches

Another option to investigate the origin of DM is trying to detect its possible production at
particle colliders. In this section, we focus on the search of DM at LHC, with the detectors
ATLAS and CMS.

Because of the very weak interaction with ordinary matter, DM is expected not to leave
any track in the detectors and to escape from them undetected. Therefore, its experimental
signature is a rather large amount of missing transverse energy7 (/ET), in presence of another
recoiling visible object as one or more jets [169, 170], a photon [171, 172] an electroweak boson
[173, 174], a heavy quark [175–177] or a Higgs boson [178, 179]. None of these analyses has
found any evidence of physics beyond the SM so far. In Fig. 1.17 we draw some representative
Feynman diagrams for the production of /ET with a hard jet or photon emitted from the initial
state.

The main SM background for these searches comes from the events where the missing trans-
verse momentum is due to Z → νν, or W → `ν if the lepton is misidentified as a jet, or it is
not isolated, or it is emitted out of the geometric acceptance region. This background could be
reduced in principle in an e+-e− collider, where the total energy of the collision can be tuned
far from the resonant production of the Z and the colliding particles could be polarised (in or-
der to suppress the cross sections for the weak interactions); this cannot be done in a hadronic

7This quantity is defined as /ET ≡ |/~pT|, where /~pT is the opposite of the sum, over all the reconstructed particles,
of their momenta projected onto the plane orthogonal to the beam direction.
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Figure 1.17: Typical Feynman diagrams for the production of DM at LHC with an additional
jet or photon from the initial state radiation. Notice that the gluon or photon of the final state
could be radiated by some mediator particle exchanged in the DM-SM effective vertex.

collider as the LHC, where the initial energy and polarisation of the colliding partons cannot
be constrained.

It is typically assumed that the DM candidate is produced in pairs, due to some discrete
symmetry like a Z2 parity. This is natural to expect due to the stability of DM on cosmological
scales: indeed, in the presence of such a discrete symmetry, the lightest particle with a given
quantum number for that symmetry is absolutely stable. This is what happens for example
in supersymmetry with the R-parity (Sec. 1.4.1.1) and in extra-dimensional models with the
Kaluza-Klein parity (Sec. 1.4.1.2).

We notice that the observation of missing particles at colliders would just reveal that some
particles weakly interacting with the SM were produced, but this would not be yet an evidence
that this could be the DM candidate. In case of a positive detection by the experimental collab-
orations, further studies (or even further collider experiments) are needed to understand the
mass and the lifetime of that particle, in order to confirm its viability as a DM candidate. In
many conceivable scenarios of a WIMP DM with some mediators with the SM, the direct search
of these mediators could have more chances to detect a signal than the search for the DM pair
in the form of /ET. We will come back to this point also in Chapter 2.

We now discuss the recast of the null results obtained by the experimental collaborations,
focussing for concreteness on the /ET plus monojet searches. The result obtained by the analysis
is an upper limit on the cross section for the production of j + /ET for each of the signal regions
considered by the analysis, which usually differ by the imposed cut on the pT of the leading jet
and the /ET. This exclusion limit can then be recast within a particle physics model, to obtain
exclusion limits on a suppression scale or a coupling.

In the first experimental analyses performed at the LHC, the ATLAS and CMS collabora-
tions chose to recast the searches within Effective Field Theories (EFT), following what done
for example by Refs. [180–198].

In the EFT framework, one considers the lowest dimensional effective operators that de-
scribe the interaction of DM pairs with SM particles, in particular quarks and gluons in the
context of LHC searches. The free parameters of the EFTs are just the DM mass, an interaction
scale typically denoted by Λ or M∗ which appears in front of the effective operator to adjust
the overall mass dimension, the relative coefficients of the operators under consideration, and
the cutoff scale Mcut of the theory (see Sec. 2.1).

The big advantage of the EFT framework is that with a finite set of parameters one can
describe in absolute generality any underlying completion. The only limitation is that the ef-
fective description is valid as long as the energy scale of the process under consideration is
below the cutoff Mcut. This condition is safely satisfied in low energy environments as direct
and indirect searches, whereas at the typical collider energies this requirement fails unless the
cutoff is at least a few TeV. This caveat was considered and taken into account in Refs. [185, 187,
189, 192, 193, 195, 197–203], and it was studied systematically in the series of papers [204–206],
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nicely summarised in [133].
These considerations led the experimental community to reconsider their choice of the EFT

for the recast of DM searches, and to adopt simplified models. In these theories, one adds on top
of an effective description the first degrees of freedom that would show up at the cutoff scale.
In other words, simplified models contain with a minimalistic approach the DM candidate and
its mediator(s) with the SM, still keeping a certain level of generality but introducing some
larger model dependence with respect to EFTs. Simplified models were already being used
for the recast of SUSY searches. In the context of DM, after some early papers in which they
were introduced [207–210], the experimental and theoretical communities began to interact in
order to agree on a set of representative simplified models [10, 11, 211–214]. These are now
used in the recasts of the experimental DM searches, whenever the effective vertex for the DM
and the related SM particles allows to propose a straightforward completion into a simplified
model. As an example, we can cite an effective vertex χγµγ5χqγµγ5q made of two axial vector
bilinears for DM and quark currents: it readily suggests a vector mediator between the two
currents (although other completions are possible, see Sec. 2.3).

During the same period of time, it was also proposed to use the effective theories for the
recast by properly accounting for their limited validity range, via a truncation method. This
procedure allows to derive in a consistent way the exclusion limits within the EFTs. We discuss
in detail in Chapter 2 the method proposed in Ref. [1] (summarised also in [12]) and further
discussed in [215–217]. A similar method, with some further assumptions, was proposed in
[205], and has been implemented in many subsequent experimental analyses when a simpli-
fied model reinterpretation was readily available. In some cases, for example for the effective
vertex with two photons and two DM particles [218], such a completion is not evident and the
experimental collaborations used the slightly more general prescription of Ref. [1]. We con-
clude this section by showing in Figs.1.18 and 1.19 the most recent preliminary results of DM
searches at colliders, performed by ATLAS and reinterpreted within Z′ simplified models.
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Figure 1.18: Compilation of mono-X (X standing for jet, photon, EW boson), dijet, dilepton
searches performed by ATLAS, reinterpreted within a simplified model with a vector Z′ me-
diator and Dirac DM with the couplings specified in the plots. The couplings are assumed to
be vectorial, implying a spin-independent proton-DM elastic cross section. The collider reach
within these assumptions is compared to the reach of the direct searches listed in the legend.
In particular, in the left plot it is assumed that the Z′ does not couple to leptons, whereas the
right plot assumes a coupling g` = 0.01 (from [219]).
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Figure 1.19: The same as in Fig. 1.18, for the case of axial couplings of the Z′ to SM fermions,
leading to a spin-dependent proton-DM elastic cross section.
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2

Consistent recast of collider searches
within Effective Field Theories

In this Chapter, based on Ref. [1], we discuss how to consistently use Effective Field Theories
(EFTs) to set universal bounds on heavy-mediator Dark Matter at colliders, without prejudice
on the model underlying a given effective interaction. We illustrate the method for a Majo-
rana fermion, universally coupled to the SM quarks via a dimension-6 axial-axial four-fermion
operator. We recast an ATLAS mono-jet analysis and show that a considerable fraction of the
parameter space, seemingly excluded by a naı̈ve EFT interpretation, is actually still unexplored.
Consistently set EFT limits can be reinterpreted in any specific underlying model. We provide
two explicit examples for the chosen operator and compare the reach of our model-independent
method with that obtainable by dedicated analyses. The important conclusion that we draw
from this comparison is that the improved reach of the simplified model with respect to the
EFT is driven by the resonant production of the mediator between DM and SM, which is much
better constrained by direct searches of the mediator. The method we propose is simple and
general, and it has been applied recently also in the context of EFTs describing physics beyond
the SM in the electroweak sector.

2.1 Effective Field Theories and their regime of validity

After the discovery of a Higgs boson compatible with the SM, and the non-detection so far of
new particles at the LHC, searches for WIMP DM (discussed in Section 1.5.3) are becoming a
central theme for the LHC general purpose experiments. The WIMP miracle receives further
support from the fact that WIMPs are ubiquitous in new physics models of EW symmetry
breaking, as we have seen in Sections 1.4.1.1 and 1.4.1.2. This is an appealing and intensively
explored possibility, but WIMP DM might well originate from a completely unrelated sector.
Moreover, we currently have no idea of how the complete EW symmetry breaking sector looks
like, thus there is not much we can say a priori on the specific properties of WIMP DM.

In the situation described above, a general and model-independent exploration appears
mandatory. Commitment to specific benchmark models (or classes of benchmark models)
should be treated as an accessory step in the interpretation. The goal is to search for WIMP
DM in a comprehensive way, leaving no unexplored corners in theory space.

In the case of heavy-mediator DM, this program can be carried out, at least to some extent.
The working hypothesis is that the DM candidate X interacts with the SM through the exchange

37
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of one or more particles, called mediators, whose mass is well above the mass mDM of the DM
particle. This assumption is motivated by the present lack of evidence for new particles at the
LHC, but it is not the only possibility. The case in which the mediator is a SM particle, such as
a weak or the Higgs boson, is equally plausible and deserves equal attention. Light and very
weakly coupled mediators can be also conceived.

Focusing on the heavy-mediator case for the rest of this Chapter, it is relatively easy to set
up a model-independent strategy for DM searches. We can exploit the fact that the dynamics
of the DM particle can be universally described, in the appropriate kinematical regime, by a
low-energy EFT Lagrangian[180–198], invariant under the SM gauge group and the Lorentz
group:

LEFT = LSM + LX + Lint . (2.1)

In the above equation, LSM denotes the SM Lagrangian, LX is the free Lagrangian for the DM
particle X, andLint contains the operators describing the DM interactions with the SM particles,
plus possible additional interactions in the DM and SM sectors. If we knew the true microscopic
DM theory, these operators could be computed by integrating out the mediators. However,
their form is universal and the lack of information on the mediator dynamics merely prevents
us from computing the value of their coefficients, which are thus free input parameters of the
EFT.

The allowed operators in Lint can be classified according to their mass dimension d, for
different hypotheses on the DM quantum numbers. In many relevant cases the DM quantum
numbers forbid renormalisable interactions with d ≤ 4, and the lowest-dimensional operators
have d = 5, 6. For the physics to be considered in this Chapter, we can assume that the d = 5
operators are negligible and the leading operators have d = 6:

Lint =
1

M2∗
∑

i
ciOi , (2.2)

where the sum runs over all d = 6 operators Oi allowed by the symmetries, ci are dimension-
less coefficients and the overall effective coupling strength is parametrised by a dimensionful
coupling 1/M2

∗.
While the EFT can be formally defined independently of any consideration about its micro-

scopic origin, its range of applicability and thus its physical relevance depend on the underly-
ing theory. Namely, the EFT provides an accurate description of the underlying model only for
elementary scattering processes taking place at a low enough centre-of-mass energy Ecm, be-
low a certain critical scale Mcut usually called the EFT cutoff. This cutoff is determined by the
mass of the mediators in the microscopic theory but it is unknown from the viewpoint of the
EFT and it should thus be treated as a free parameter, on the same footing as those introduced
above.

The EFT is then characterised by at least three parameters:
• the DM mass mDM;
• the scale M∗ of the interaction;
• the cutoff scale Mcut.

If a single operator appears in Eq. (2.2), the corresponding dimensionless coefficient can be
absorbed in M∗, otherwise the EFT parameters also include the ci coefficients. With these free
parameters, the EFT faithfully reproduces the predictions of any microscopic theory for all
processes taking place at Ecm < Mcut. Given that the effective operators in Eq. (2.2) may have
many possible microscopic origins, exemplified by the plethora of models in the literature, this
simplification is particularly useful.
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Notice that Mcut and M∗ are logically independent parameters, however they can be ap-
proximately related by

Mcut = g∗ M∗ (2.3)

where g∗ is a suitably defined coupling strength of the underlying microscopic theory. The
simplest way to motivate the above equation is the analogy with the Fermi theory of weak
interactions, where the cutoff Mcut is the mass of the W boson (the mediator in this context),
g∗ is the SU(2)L gauge coupling gw and 1/M2

∗ is the Fermi constant GF: they indeed obey
Eq. (2.3) up to numerical factors. Alternatively, the physical meaning of g∗ can be appreciated
by noticing that the EFT interaction strength is given, for processes taking place at a given
centre-of-mass energy Ecm, by the dimensionless combination E2

cm/M2
∗. At the mediator scale,

i.e. the cutoff scale Mcut, this strength becomes M2
cut/M2

∗ = g2
∗, providing further justification

for interpreting g∗ as the typical mediator coupling. Using Eq. (2.3) to re-express M∗ in terms
of g∗ will be important in Section 2.2, in order to draw the current limits on a plane suited for
theoretical interpretation.

The EFT can be straightforwardly used to predict the cross-sections for a number of relevant
reactions, namely the DM annihilation in the Early Universe, which determines the thermal
relic density, the present-day annihilation, which controls indirect detection, and the DM scat-
tering on nucleons, which direct search experiments try to detect. Indeed, all these reactions
take place at safely small Ecm and therefore, up to subtle effects that might be encountered in
the relic density calculation, the EFT predictions are automatically trustable. If collider searches
could be added to the list, we would reach the truly remarkable conclusion that all the exper-
imental information on heavy-mediator DM can be simultaneously interpreted and compared
in a completely model-independent fashion, with no prejudice on the specific nature of the me-
diator and of its couplings to DM and to the SM. However, the usage of the EFT at colliders is
problematic, because the energy of the reaction in which the DM is produced is not necessarily
smaller than Mcut, and this risks to invalidate the EFT predictions. The effect is quantitatively
amplified by the requirement of extra hard objects (e.g., one jet), in addition to the pairs of DM
particles, for the signal to be triggered and disentangled from the background. This problem
has been discussed at length in the recent literature (see e.g. Refs. [185, 187, 189, 192, 193, 195,
197–206]), the goal of the present article is to illustrate a simple and practical solution.

The basic observation is that the processes for DM production at colliders can be split into
two kinematically distinct classes, characterised by a centre-of-mass energy below and above
Mcut, respectively. The former class defines our theoretical signal, and its rate is accurately pre-
dicted by the EFT. The latter would instead require the knowledge of the microscopic theory
and its contribution to the cross-section is thus unpredictable within the EFT. Under certain
conditions, to be described below, the second class can be simply ignored and an experimental
limit can be set on the signal defined, as explained above, by the DM production reaction re-
stricted to Ecm < Mcut. This is possible if the experimental search is performed as a counting
experiment in one or several signal regions, defined by a certain set of cuts on the visible final
state particles. The low and high Ecm processes both contribute to each signal region, but in a
purely additive way, since low and high Ecm regions are quantum-mechanically distinguish-
able and do not interfere. Therefore a lower bound on the expected cross-section is obtained by
considering only the “well-predicted” signal events, namely those restricted to the Ecm < Mcut
region. If the result of the search is negative, an exclusion upper bound σexc is set on the cross-
section, which we can interpret through the inequality

σS
EFT

∣∣∣
Ecm<Mcut

≤ σS
true < σexc , (2.4)
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where σS
true denotes the “true” signal as it would be computed in the unknown microscopic

theory. Regardless of what the latter theory is, the restricted EFT signal σS
EFT systematically

underestimates the cross-section and thus provides a conservative, but correct, exclusion limit.
This is shown schematically in Fig. 2.1.

Mcut Ecm

dσ

dEcm

Näıve EFT

s-channel mediator

t-channel mediator

EFT
∣∣
Ecm<Mcut

Figure 2.1: Illustrative sketch of Eq. (2.4). The differential cross section dσ/dEcm for a process
like qq→ XX is shown for a generic EFT (black line) and two corresponding UV completions,
one with a mediator exchanged in the s-channel which can be resonantly produced (red line)
and one with an hypothetical t-channel mediator which cannot be resonantly excited in the
range shown here (blue line). By the definition of Mcut, the three lines must coincide below
Mcut. The grey shaded area, corresponding to σS

EFT|Ecm < Mcut, is by construction smaller
than the cross section σS

true in the completion of the EFT, whatever this is.

Similar approaches have been applied recently in the context of EFTs describing the effects
of new physics beyond the SM in the electroweak sector [220–225] or in QCD [226].

The rest of the Chapter is organised as follows.
In Section 2.2 we illustrate our limit-setting strategy in the explicit example of a four-

fermion operator obtained as the product of axial currents involving the SM quarks and a
SM-singlet Majorana fermion DM. This choice is partly motivated by the fact that direct and
indirect detection experiments have a poor sensitivity to this operator, thus collider searches
are expected to be the most sensitive ones, but the same method can be applied to all other
operators. We quantify the reach of current collider searches by recasting the ATLAS mono-
jet [227], and show how the latter can be presented in a theoretically useful way. Besides the
methodological proposal, the important physics point is that, from the general EFT viewpoint,
the present collider bounds on DM have not yet probed the most plausible region of parameter
space. To access such region, we need not only more energy and luminosity, as expected in the
forthcoming runs of the LHC, but also improvements in the experimental analyses.

In Section 2.3 we describe another relevant feature of our strategy, the fact that the limits set
in the EFT can be straightforwardly re-interpreted as constraints on any specific microscopic
model. This is because the EFT parameters can be computed in the underlying microscopic
theory and expressed in terms of the fundamental parameters of the latter (for previous dis-
cussions of the interplay between EFT and underlying microscopic models in DM searches at
colliders, see again Refs. [185, 187, 189, 192, 193, 195, 197–206]). We consider two representative
models, Model A and Model B, which both give rise to the same axial-axial effective operator,
and compare the limits derived from the EFT with those obtainable from a dedicated interpreta-
tion of the mono-jet search within the two models. Since our signal cross-section systematically
underestimates that of the microscopic theory, we obtain conservative limits. We find that these
limits differ significantly from those obtained in the full models only in the kinematical region
where the mediators can be resonantly produced. In such a case, however, more comprehen-
sive experimental strategies, complementing the event selection used for heavy-mediator DM
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searches with other selections that can take full advantage of the resonant production of the
mediators (single or in pairs, with one or more jets in the event), should be able to provide
stronger bounds. We end this section by discussing two aspects of our simple and practical
approach that can be helpful for the comparison with a similar but more model-dependent
approach put forward in [205, 206].

In Section 2.3.2 we resume two refinements of the study of [1]. Ref. [215] performs a detailed
recast of the experimental analysis by simulating the showering and hadronisation processes,
and more importantly analyses (together with the companion Ref. [216]) the implications for
DM model building of the fact that collider searches (recast within EFTs) are now able to con-
strain only strongly coupled theories. Ref. [217] describes how it is possible to extend this
procedure to a more sophisticated experimental analysis, which goes beyond the so called cut-
and-count procedure and relies on the shape of the kinematical distributions.

We finally present our conclusions in Section 2.4. Some back-up material is collected in three
appendices. Appendices 2.A and 2.B provide details on Model A and Model B, respectively.
Appendix 2.C collects the approximate analytical formulae used to draw the relic density con-
straint in some of the figures.

2.2 Limit-setting strategy

For the present study, we assume that the DM particle is a Majorana fermion, singlet under the
SM gauge group and represented by a self-conjugate four-component spinor X = Xc, whose
free Lagrangian reads

LX =
1
2

X (i/∂ −mDM) X . (2.5)

As for the interactions between X and the SM particles, we just choose a representative example
to illustrate our limit-setting strategy, assuming that they can be described, in the low-energy
limit, by the single1 axial-axial four-fermion operator2

O = − 1
M2∗

(
Xγµγ5X

)
(

∑
q

qγµγ5q

)
, (2.6)

where the sum is over all quark flavours (q = u, d, c, s, t, b), the dimensionless coefficient c has
been re-absorbed in the definition of M∗, and the overall minus sign is purely conventional in
the present context. This effective operator mediates DM pair-production at the LHC, a process
which is however undetectable and impossible to trigger because of the lack of visible objects in
the final state. Searches are performed by considering extra visible emissions (see Section 1.5.3).
Below we restrict our attention to the mono-jet searches, because they currently show the best
sensitivity, but our considerations also apply to the other channels.

2.2.1 ATLAS mono-jet recast

Searches for a jet plus missing transverse energy (/ET) have been performed at the LHC by
the ATLAS and CMS collaborations (see Refs. in Section 1.5.3). We focus here on the ATLAS

1Radiative corrections may generate additional operators [106–110], this can be important when comparing with
direct dark matter searches but does not play a role in the present context.

2This operator is twice the M6 operator in [184], and formally coincides with the D8 operator in [186], which is
often taken as a benchmark for experimental searches. Notice however that we are dealing with a Majorana spinor
normalised as in Eq. (2.5), while D8 involves a canonically normalised Dirac spinor.
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analysis in Ref. [227] because it is particularly suited to illustrate the general point we would
like to make.

The search is performed as a counting experiment in four overlapping signal regions (SR),
with pre-selected events characterized by /ET > 120 GeV, one jet with pjet

T > 120 GeV, |η| < 2
and at most one additional jet with pT > 30 GeV and |η| < 4.5. If found, the second jet is asked
to be separated in the azimuthal direction from the ~p miss

T by a cut ∆φ > 0.5. Additional re-
quirements, namely on the primary vertex reconstruction and on the absence of extra jets with
anomalous charged/calorimetric composition, are not directly relevant for our study, since
their impact crucially depends on the detector response, which we cannot simulate. The four
signal regions SRi (i = 1, 2, 3, 4) are defined by increasingly strong cuts on /ET and on pjet

T . The
results are presented as upper bounds, σi

exc, on the visible cross-section in each region. The SR
definitions and the exclusion limits are summarized in Table 2.1.

signal region SR1 SR2 SR3 SR4
pjet

T and /ET >120 >220 >350 >500
σexc [pb] 2.7 0.15 4.8 10−2 1.5 10−2

Table 2.1: Signal region definitions (cuts expressed in GeV) and 95% CL limits from Ref. [227].

We reinterpret these limits as follows. The expected signal in each SR is expressed as

σSRi = σ× Ai × εi , (2.7)

where σ denotes the total signal cross-section defined as in Eq. (2.4), Ai is the geometric cut
acceptance, as obtained from a leading-order parton-level simulation, and the efficiency εi is the
correction due to showering, hadronisation and detector effects. Acceptances and efficiencies
depend on the DM mass mDM and on the cutoff Mcut, while the operator scale M∗ only enters
the total cross-section as an overall factor 1/M4

∗. We compute the parton-level quantities σ and
Ai by MadGraph 5 [228] simulations, while we estimate the εi corrections by matching with
the limits on the D8 operator scale reported in Ref. [227]. In practice, we simulate the same
D8 operator signal considered in Ref. [227] (i.e. Mcut = ∞ in Eq. (2.4)), we compute σ × Ai
and we determine εi such as to reproduce the ATLAS limit on the effective operator scale as a
function of the DM mass. Actually, since only the third SR is used by ATLAS to set the limit,
only ε3 can be obtained in this way. The same efficiencies are used for the other SRs, although
we see no reason why the efficiency should stay the same in all the regions. The result of
this procedure gives rather small efficiencies, of around 60%, approximately constant over the
whole DM mass range. We verified that this considerable signal loss is mainly due to the fact
that our simulation does not include the showering-level production of extra jets, a significant
fraction of which are vetoed in the ATLAS event selection. Notice that the efficiencies for our
signal might be significantly different from those estimated in the naı̈ve EFT because, although
based on the same effective operator D8 of Eq. (2.6), our signal is constrained by Mcut to the
low invariant mass region, thus it is expected to have different kinematical distributions. A
complete simulation in different regions of mDM and Mcut, including showering and matching,
would be needed for an accurate analysis, but goes beyond the aim of the present illustrative
example.

Under the assumptions explained above, the expected signal takes the form

σSRi(M∗, mDM, Mcut) = σ(M∗, mDM, Mcut)× Ai(mDM, Mcut)× ε

=

[
1 TeV

M∗

]4

× σ(mDM, Mcut)× Ai(mDM, Mcut)× ε , (2.8)
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where the overall scaling of the cross section with M∗ has been factored out and the result
expressed in terms of a reference cross-section σ computed for M∗ = 1 TeV. The reference
cross-section times the acceptances are obtained by MadGraph 5 [228] simulations of DM pair
plus one parton production, duly restricted by the hard jet kinematical cuts that define each SR.
/ET cuts are automatically imposed because the jet and the missing transverse momentum, i.e.
the transverse momentum of the DM pair, are back-to-back in our parton-level sample. For our
illustrative parton level analysis, an advantage of choosing the analysis performed in Ref. [227]
is that the cuts applied on pjet

T and /ET are identical for each SR (see Table 2.1). This is always
the case at a parton level analysis, whereas different values of pjet

T and /ET in an event can only
occur when properly simulating the showering and hadronisation processes. A more detailed
simulation of the signal (with the same truncation procedure that we describe) to account for
these effects was performed in Ref. [215].

The theoretical restriction Ecm < Mcut, which ensures the validity of the EFT description
as explained in Section 2.1, should be imposed as a cut on the total invariant mass of the hard
final states of the reaction, namely as

[
p(DM1) + p(DM2) + pjet]2

< M2
cut . (2.9)

For our parton level simulation this is equivalent to a cut
√

ŝ < Mcut on the total partonic
centre-of-mass energy, however when going to the showered and matched level one should be
careful not to cut on

√
ŝ but on the variable in Eq. (2.9), with pjet the leading jet four-momentum.

A scan is performed in the (mDM, Mcut) plane for each SR and the values of σ× Ai are used
to construct two-dimensional interpolating functions. A significant dependence on mDM is only
found for mDM & 80 GeV, while for smaller values σ× Ai is basically constant in mDM. Once
the signal cross-sections are known, the 95% CL limits are imposed as constraints

σSRi(M∗, mDM, Mcut) < σi
exc , (2.10)

out of which the 95% CL allowed regions are immediately found in the three-dimensional
parameter space (M∗, mDM, Mcut). The limits from the various signal regions can be studied
separately or combined. For our illustrative purposes, the combination will be performed by
just taking the overlap of the four allowed regions. The results of this simple limit-setting
procedure are discussed in the following section.

2.2.2 Results and discussion

At fixed mDM and Mcut, the ATLAS limits in Eq. (2.10) become lower bounds on the scale M∗,
reported in Fig. 2.2 as functions of mDM and for different values of Mcut =350, 450, 600, 800,
1250, 2000, 8000 GeV. The four boxes in the figure correspond to the four different signal re-
gions.
The upper line in each plot, Mcut = 8 TeV, corresponds to the naı̈ve EFT limit, obtained with-
out imposing any restriction on the centre-of-mass energy of the hard scattering.3 The limit
deteriorates for decreasing Mcut because of two distinct effects. The first one is that the total
reference cross-section σ decreases, because it is restricted to a smaller kinematical range. This
effect is unavoidable and ultimately due to the fact that the EFT cannot be trusted above its cut-
off: trying to extrapolate the EFT above Mcut would be inconsistent, and this is precisely why

3The naı̈ve EFT limit in SR3 differs from the ATLAS result on the D8 operator by a 4
√

2 factor, which reflects the
factor 2 enhancement of the cross-section for a Majorana DM particle with respect to the Dirac case considered in
Ref. [227], if the same operator is used and the normalisation in Eq. (2.5) taken into account.
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Figure 2.2: 95% c.l. lower bounds on M∗, as functions of mDM, for some representative values
of Mcut (in GeV), for the four signal regions of Ref. [227].

we restrict our signal to the Ecm < Mcut region. The second effect is that the acceptances are
also reduced, because the kinematical distributions of the restricted signal become softer, thus
for decreasing Mcut it becomes increasingly difficult to pass the cuts on pjet

T and on /ET. Being
dependent on the selection, this effect could be mitigated by softer cuts, compatibly with the
minimal /ET trigger requirement and with the fact that the SM background rapidly increases in
the softer region. These considerations show that our signal is kinematically different from the
naı̈ve EFT prediction: an optimized limit in all Mcut regions would require a dedicated analy-
sis, which however goes beyond the scope of the present study and can be properly performed
only by the experimental collaborations.

Going back to our results in Fig. 2.2, we notice that for large Mcut the best limits are obtained
from the SRs with harder cuts, namely from SR2, SR3 and SR4, which all have comparable
reach. The low-cut region SR1 is instead not competitive with the other ones. The situation
changes for low Mcut, because the cut acceptances decrease faster in the SR with harder cuts
than in those with softer ones, and the limits start being dominated by the latter. For instance,
when Mcut goes below 500 GeV or so, the strongest M∗ bound starts coming from SR1, while
the other SRs are no longer sensitive.

The behaviour of the limits as functions of mDM is also easily understood. When mDM is
lowered much below Mcut and the kinematical cuts, the cross-section becomes independent of
mDM and the limit saturates. The limit deteriorates as mDM increases, because the latter starts
having a negative impact on the energy budget of the reaction. The limit eventually disappears
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above a certain threshold, which corresponds to the region where the DM particle is too heavy
to be produced with a centre-of-mass energy below Mcut. The minimal centre-of-mass energy
is given by

Emin
cm = pjet

T +

√(
pjet

T

)2
+ 4 m2

DM , (2.11)

where pjet
T is the common jet and /ET cut of each SR, out of which the mass threshold is then

found to be 4

mmax
DM =

Mcut

2

√

1− 2
pjet

T
Mcut

. (2.12)

We thus see once again that soft SRs are favoured for low Mcut, not only because they produce
better M∗ limits, but also because they have an extended reach in the DM mass.5

The combined limits from all four SRs, obtained as the intersection of the allowed regions as
described above or equivalently by taking the strongest M∗ bound at each point, are displayed
in the left panel of fig. 2.3.

Figure 2.3: Our combination of the lower bounds on M∗. Left: As a function of mDM, for
the same representative values of Mcut as in fig. 1. The dashed grey line is the relic density
constraint. Right: As a function of Mcut, for some representative values of mDM (in GeV).

The main conclusion we can draw is that the naı̈ve EFT limit is fairly accurate when Mcut
is significantly above 1 TeV, while it considerably overestimates the actual exclusion for lower
values of Mcut. As an equivalent way to express the same information, the right panel of fig. 2.3
shows the limit on M∗ as a function of Mcut for some fixed representative values of mDM: 0, 100,
250, 500, 750, 1000 GeV. This representation is perhaps more convenient, as the dependence on
mDM is rather smooth, and significant only in a limited range. Furthermore, it gives an idea of
the search reach in the low Mcut region. For reference, the dashed line on the left-hand panel of
Fig. 2.3 shows the constraint from the relic density (under-abundant below the line and over-
abundant above it), computed with the approximate analytical formulae for the EFT collected
in Appendix 2.C.

The plots described above summarise the experimental situation in a simple and concise
way, however they do not tell us how much of the theoretically allowed parameter space has

4The threshold effectively occurs for lower values of mDM when Mcut gets close to the LHC threshold of 8 TeV,
because of the rapid large-x decrease of the parton distribution functions.

5Formally, low pjet
T improves the mass reach for any value of Mcut. However, at large Mcut the threshold has a

very poor sensitivity to the actual value of pjet
T and all SRs have practically the same reach.
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been actually tested and how much is still unexplored. Namely, it is hard to establish a priori
the reasonable Mcut values, and whether the corresponding M∗ limit should be regarded as a
strong or a weak one. We can do better if we remember that Mcut and M∗ are actually connected
by Eq. (2.3). Clearly, we do not know what g∗ is, but we do have some control on its value.
We definitely know that it must be g∗ < 4π, since taking it larger would make the EFT non-
perturbative below the cutoff. This implies an upper bound on Mcut for any given M∗. In
principle, there is no lower bound on g∗, it could be arbitrarily small pushing Mcut to smaller
and smaller values. However, in a WIMP-like scenario we definitely expect g∗ ∼ gw ∼ 1, to
implement the WIMP miracle recalled in the introduction. Values of g∗ of order unity, and not
radically smaller than that, should thus be considered as plausible benchmarks.

The exclusion limits at fixed g∗, in the (mDM, Mcut) plane, are shown by the coloured solid
lines in fig. 2.4, for the representative values g∗ = 1.8, 2, 4, 6, 4π. The black solid line is the limit
one would obtain in the naı̈ve EFT.

Figure 2.4: The solid lines enclose the excluded regions in the plane (mDM, M∗), for some
representative values of g∗, combining the four signal regions of ref. [227]. The black line is
the limit one would obtain with the naı̈ve EFT. The grey triangle is theoretically forbidden
because of the self-consistency requirement M∗ > 2mDM/g∗, for g∗ = 4π. The dashed lines
show, with the same colour code as for the solid lines, how the grey triangle expands for
smaller values of g∗.

We stress that closed excluded regions are obtained in this case, a fact that can be under-
stood in the following terms. For a given mDM, the limit must disappear at sufficiently large M∗,
because the signal cross-section rapidly decreases for increasing M∗. However, the limit must
also disappear for too low M∗, because at fixed g∗ lowering M∗ means lowering Mcut = g∗M∗,
which deteriorates and eventually kills the signal and the acceptances. There also exist values
of mDM where these two competing effects do not allow to obtain an exclusion for any value
of M∗, which is why the curves close on the right. As a consequence, there are values of g∗ for
which no limit on M∗ can be set, not even for mDM = 0.

Our finding is quantitatively impressive: with the experimental results available so far, a
satisfactory exploration of the parameter space has been possible only for g∗ above 4 or 6: the
reference value g∗ = 1 is not excluded, and the smallest coupling we are sensitive to is g∗ ∼ 1.8.
Making progress in this direction would require more energy and integrated luminosity at the
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LHC, as expected in the forthcoming runs, but also improving the sensitivity to the small Mcut
region as explained above. Indeed, the lower exclusion limits, in the low mDM region, are
predicted by Eq. (2.11) to occur near g∗M∗ = Emin

cm ' 2pjet
T , where we take the lowest possible

value for pjet
T , corresponding to 120 GeV for SR1 of [227]. This shows once again the importance

of keeping the first signal region at the lowest pjet
T and /ET values compatible with the trigger

and background conditions.
As a last comment, we remind the reader that not all the points in Fig. 2.4 are theoretically

allowed within the EFT framework. We are working here under the assumption of heavy-
mediator DM, which means, as explained in the introduction, that mDM should be well below
Mcut, or at least mDM < Mcut/2, because otherwise there is no hope for the DM being produced
within the range of validity of the EFT. This leads to the constraint M∗ = Mcut/g∗ > 2mDM/g∗.
For g∗ = 4π this produces the grey theoretically forbidden region in Fig. 2.4. For g∗ < 4π
the boundary of the grey triangle moves as indicated by the dashed lines, with g∗ specified by
the same colour code as for the solid lines. However, Eq. (2.11) guarantees that (in contrast
with what we would obtain in the naı̈ve EFT), the experimentally excluded region can at most
approach the theoretically excluded one. Indeed, the closeness of the solid lines to the corre-
sponding dashed lines gives a measure of how much the available EFT parameter space has
been explored for the different values of g∗.

2.3 Simplified model reinterpretation

In the previous section we consistently derived from experimental data universal bounds on
the EFT defined by the operator (2.6), as functions of the three relevant mass parameters (M∗,
mDM, Mcut). We now show how such bounds can be re-interpreted in any specific microscopic
model underlying the chosen effective interaction. Since it collects only the contribution to
the (positive-definite) signal cross-section coming from the kinematical region Ecm < Mcut,
where by definition the EFT is reliable, and it sets to zero the contribution corresponding to
Ecm > Mcut (see Fig. 2.1), our prescription for using consistently the EFT leads to underesti-
mating the signal cross-section. We then expect our bounds to be systematically more conser-
vative than those obtained by the direct comparison of a specific microscopic model with the
experimental data. The aim of the present section is to perform a quantitative comparison of
the limits derived with the two methods and to comment on the interpretation and practical
consequences of any significant difference in the results.

We consider two illustrative simplified models, characterized by quite different dynamics
at the mediator scale, but nevertheless giving rise to the same leading effective operator (2.6)
in the low-energy EFT.

In Model A, DM annihilation into quark-antiquark pairs and the inverse process occur via
the s-channel exchange of a spin-1 Z′ boson of mass mZ′ , coupled to the axial-vector currents
of quarks and DM with strengths gq and gX, respectively. Very similar simplified models were
discussed in refs. [191, 229–232].

In Model B, the same processes occur via the t/u-channel exchange of color-triplet scalars of
mass m̃, with the same gauge quantum numbers as the squarks q̃ of supersymmetric extensions
of the SM, but with a universal Yukawa coupling of strength gDM to quarks and DM. Very
similar simplified models were discussed in refs. [233–238]. We have collected some useful
details on the two models in Appendices 2.A and 2.B, respectively.

Before comparing the interpretation of the experimental results in the EFT and in the two
simplified models, we display in Fig. 2.5 the tree-level Feynman diagrams contributing to the
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Figure 2.5: Feynman diagrams describing the jet + /ET DM signal at hadron colliders for models
A (Z′ mediator) and B (q̃ mediator) considered in the text.

three hard partonic processes associated with the scattering pp→ jet + MET:

(I) : q(p1) + q(p2)→ X(p3) + X(p4) + g(k) ; (2.13)
(II) : q(p1) + g(p2)→ X(p3) + X(p4) + q(k) ; (2.14)

(III) : q(p1) + g(p2)→ X(p3) + X(p4) + q(k) . (2.15)

The symbols in brackets label the four-momenta of the corresponding particles. Process I is de-
scribed by diagram A1 in Model A, by diagrams B1 and B4 in Model B. In the case of diagrams
A1 and B1, it is understood that we should add the corresponding diagrams with the gluon ra-
diated from the antiquark rather than from the quark line. Process II is described by diagrams
A2 and A3 in Model A, and by diagrams B2, B3 and B5 in Model B, plus those obtained by
exchanging the momenta p3 and p4 of the Majorana DM fermion X. Process III is described
by the same diagrams of process II, with the prescription that all the arrows on the quark and
squark lines should be reversed.

The limits from our consistent EFT analysis and directly from the simplified models are
obtained as follows. In the EFT, we compute the EFT parameters in each simplified model and
we just apply the constraints derived in the previous section. The scale M∗ of the effective
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operator (2.6) is given by

M∗ =
mZ′√gq gX

(Model A) , M∗ =
2 m̃
gDM

(Model B) . (2.16)

The cutoff scale Mcut, at which the EFT description loses its validity, is identified with the medi-
ator mass Mmed, i.e. with mZ′ in Model A and with m̃ in Model B. Then, after this identification,
the effective coupling g∗ is:

g∗ =
√

gq gX (Model A) , g∗ =
gDM

2
(Model B) . (2.17)

To extract limits directly in the simplified models, we recast the ATLAS mono-jet analysis of
ref. [227] as in Section 2.2.1, with the only difference that now the signal cross-section is com-
puted in the complete simplified model, i.e. with the diagrams in Fig. 2.5 and with no Mcut
restriction, for any value of Mmed and of mDM. For each point of the simplified model param-
eter space, the expected signal rate is computed in each SR and the corresponding exclusion
limits are applied.

For Model A, the result in the full model is illustrated by the purple lines in Fig. 2.6, as an
exclusion limit on M∗ as a function of Mmed ≡ mZ′ , for two representative values of mDM ≡ mX
and for two postulated values of the (width/mass) ratio of the mediator: ΓZ′/mZ′ = 1/8π
(solid) and ΓZ′/mZ′ = 1/3 (dashed). We will see below that using the (mZ′ , M∗) plane to
represent the result suffers from an important limitation. Furthermore, M∗ is not a natural
variable for the simplified model, where it is a derived quantity rather than a fundamental
parameter. In this context, other ways of representing the limits could be more effective. The
choice of the (mZ′ , M∗) plane is however convenient for comparing these results with the EFT
limits and with other studies of Model A, such as those in Refs. [187, 200]. In the figure, our
consistent EFT limits, as reinterpreted in Model A, are represented by blue solid lines, while the
black dashed horizontal line shows the naı̈ve EFT limit, formally obtained by sending Mcut to
infinity for fixed M∗. For reference, the orange lines correspond to the correct relic abundance
for a thermal freeze out, computed here with the approximate analytical formulae for Model A
reported in Appendix 2.C.

First, we can visually check that our consistent EFT limits are actually correct model inde-
pendent constraints, as they lie systematically below those obtained by working directly with
the simplified model. Notice that this is not true for the naı̈ve EFT limits, which overestimate
the exclusion for very low mediator mass. Second, we observe that the limits obtained directly
in Model A are slightly stronger that the EFT ones, and that this effect is considerably ampli-
fied for a moderately light mediator in the case of the smaller ΓZ′/mZ′ ratio. The reason for
this behaviour is that the simplified model cross-section can get significantly enhanced with
respect to the EFT one, leading to a stronger bound, only thanks to the resonant production
of the mediator, which can only take place if the latter is light enough. Furthermore, the res-
onant enhancement is of order π mZ′/ΓZ′ , and this is why it is more pronounced for a narrow
mediator.

These considerations are made quantitative by the solid and dashed red lines in Fig. 2.6,
with the same conventions as before. These lines represent the limits on the simplified model
obtained by computing the signal rate restricting the invariant mass of the Z′ propagators
within two widths from its pole mass. The fact that the red lines are so close to the purple
lines representing the “true” limit, when they are both significantly above the blue line, con-
firms that the resonant production is what drives the enhancement. It also suggests that in
this kinematical region DM searches in the simplified model should be actually regarded as
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Figure 2.6: 95% CL limit on M∗ for Model A, as a function of mZ′ , for mX = 50 GeV (left)
and mX = 250 GeV (right). The horizontal dashed line corresponds to the limit obtained in
the naı̈ve EFT. The blue line gives the limit consistently extracted in the EFT with Mcut =
mZ′ . All the other lines refer to the full model, and assume either ΓZ′ = mZ′/(8π) (solid) or
ΓZ′ = mZ′/3 (dashed). The purple lines show the limits obtained in the full model. The red
lines corresponds to the resonant production of the mediator. The orange lines correspond to
the correct relic abundance for a thermal freeze-out, computed according to the formulae for
Model A reported in appendix 2.C. From the top left to the bottom right, the increasingly dark
grey shaded areas correspond to ΓZ′/mZ′ > 1/(8π), 1/3, 1 and to g∗ > 4π.

mediator searches, and the results reported as limits on σ(pp → Z′)× BR(Z′ → XX). Also, Z′

resonant production followed by the decay into quark-antiquark pairs, leading to a peak in the
di-jet invariant mass distribution, may be a complementary signal to be looked for [239], with
or without the extra jet: in such a case, we would obtain a limit on σ(pp→ Z′)× BR(Z′ → qq).
We will comment further on this in the conclusions.

We now turn to the aforementioned limitation of the (mZ′ , M∗) plane, which was already
noticed for example in Ref. [200], but we find important to emphasise. Model A has four
parameters: mDM, mZ′ , gq, gX. In Fig. 2.6, the DM mass is set to a fixed value and each point
of the plane uniquely determines mZ′ and M∗. Then also the product gq gX is fixed by the
left-hand side of eq. (2.16), namely

gq gX =
m2

Z′

M2∗
. (2.18)

Only one combination of the two couplings is left free at this point, and it might seem a good
idea to fix it point-by-point to fit the values of ΓZ′/mZ′ that were assumed in drawing the purple
lines in the figure. However, we must take into account that, for fixed gqgX, the accessible
values of ΓZ′/mZ′ are bounded from below:

ΓZ′

mZ′
= α g2

q + β g2
X ≥ gqgX

√
4αβ =

m2
Z′

M2∗

√
4αβ , (2.19)

where α and β are suitably defined coefficients (see Appendix 2.A) that do not depend on gq and
gX, and have only a mild dependence on the spectrum through phase space. This means that
the (mZ′ , M∗) plane is divided into regions, whose boundaries are curves (or, approximately,
straight lines), where ΓZ′/mZ′ is always larger than a certain value. Some representative re-
gions are displayed as grey shaded areas in Fig. 2.6: from the top left to the bottom right, they
correspond to ΓZ′/mZ′ > 1/(8π), 1/3, 1. The fourth and darkest region at the bottom right
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corresponds to g∗ =
√gqgX > 4π, where neither the EFT nor the simplified model admit a

consistent perturbative description. In the neighbouring region where ΓZ′/mZ′ > 1, the EFT
can still be consistently used, but the same does not apply to the chosen underlying simplified
model: the fact that ΓZ′/mZ′ > 1 is telling us that in such strong coupling regime the simple
mediator interpretation of the origin of the effective interaction breaks down. Even in the per-
turbative regime, the direct simplified model lines are obtained by assuming a given ΓZ′/mZ′ ,
thus they become inconsistent on the right of the boundary of the corresponding ΓZ′/mZ′ re-
gion, because they cannot be associated to any physical point of the simplified model parameter
space. On the left plot, for instance, we should have stopped drawing the purple and red solid
lines corresponding to ΓZ′/mZ′ = 1/(8π) where they cross the boundary between the white
and the very light grey region, at mZ′ ∼ 600 GeV. Similarly, we should have stopped the purple
and red dashed lines, corresponding to ΓZ′/mZ′ = 1/3, where they cross the boundary of the
two light grey regions, at mZ′ ∼ 1.1 TeV. The only justification for keeping them is that the lim-
its on the width are theoretical constraints, while the actual location of the curves is the result
of the experimental analysis, which might improve its sensitivity in the future. When this will
happen the exclusion curves will move up and will exit more and more out of the inconsistent
regions. As far as current data are concerned, however, this observation shows that the DM
limits are actually rather poor, especially in the region of narrow mediator width, which corre-
sponds to a weakly-interacting particle. But after all, this is exactly what we concluded from
our exploration of the EFT parameter space: ‘small’ g∗ effective couplings of order one are still
unconstrained. Here we have just verified that the simplified model can not help us much in
this respect.

Figure 2.7: The same as in fig. 2.6, but for model B. The only difference is that, from top left to
bottom right, the two diagonal lines correspond to Γq̃/m̃ = 1/8π, 1/3, and the grey areas to
Γq̃/m̃ > 1 and to g∗ = gDM/2 > 4π.

Very similar considerations apply to Model B, whose bounds are depicted in Fig. 2.7. Also
in this case the enhancement of the limit obtained directly in the simplified model is mostly
due to the resonant production of the mediator, which can occur even in the so-called ‘t-channel
mediator’ case if an extra jet is emitted in the final state. This process corresponds (see diagrams
B.3 and B.5 in fig. 2.5) to an associated DM-q̃ production followed by the q̃ decay into DM plus
jet. A second point worth stressing for Model B is that the issue with the (m̃, M∗) plane is even
more severe than in Model A, because the model has only three parameters, therefore after
fixing mDM, m̃ and M∗ the (width/mass) ratio of the mediator is fixed. In this case, fig. 2.7
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shows two lines corresponding to Γq̃/m̃ = 1/8π, 1/3, a grey area where where Γq̃ > m̃, and a
dark grey area where g∗ = gDM/2 > 4π. The only physical points of the four exclusion curves
derived in Model B (purple and red, solid and dashed) are those at the intersection with the
lines corresponding to the assumed value of Γq̃/m̃, marked as full purple dots.

2.3.1 Comparison with other approaches in the literature

We are not the first to address the issues related with the naı̈ve use of the EFT for DM in
kinematical regimes extending beyond its range of validity: as already mentioned, they have
been studied at length in the literature [185, 187, 189, 192, 193, 195, 197–206]. In particular,
Refs. [204–206] proposed a criterion (subsequently adopted in most DM searches at LHC, as
discussed in Sec. 1.5.3) to estimate how sensitive the naı̈ve limits on M∗ are to the unsafe region
of the EFT and how much they deteriorate if the latter region is excluded from the analysis.
Below we discuss two aspects of our approach in a way that can be helpful for the comparison
with this previous literature.

The first point to be discussed concerns the choice of the kinematical variable to be used for
discriminating the safe EFT region from the unsafe one. From the EFT viewpoint, the natural
variable is clearly the hard scale of the process, Ecm: this was our choice. However, within
specific ‘mediator’ models, or more precisely classes of models, another possible choice is the

variable Qtr, as proposed in Refs. [204–206]. Qtr = +
√
|Q2

tr| is defined as the maximal virtuality
of the mediator propagator, computed over the Feynman diagrams contributing to the partonic
DM production process under study. Since Qtr < Ecm, using Qtr to define the safe kinematical
region of the EFT means gaining signal cross-section, thus obtaining a stronger and still reliable
limit. Notice that, since the definition of Qtr depends on whether the mediator propagates in
the s or in the t channel in the two-body annihilation qq ↔ XX, Qtr is not suited for setting a
model-independent limit. However, one might still consider the two possibilities in turn and
set separate limits for the two cases of s- and t-channel mediation. While this does not exhaust
all possibilities6, it might be still worth doing if it considerably enhances the reach.

To explore the exclusion reach of this method and compare it with ours, we start by recall-
ing the expressions for Qtr in Models A (s-channel) and B (t-channel), corresponding to the
diagrams in Fig. 2.5 and the conventions in Eqs. (2.13)–(2.15). In Model A, for both process
I and process II (the kinematics of III is identical to that of II, so it does not need a separate
discussion), Qtr is just the invariant mass of the DM pair

Q2
tr = (p3 + p4)2 = (p1 + p2 − k)2 (AI, AII) . (2.20)

In model B, instead, we have to consider process I and II,III separately. In the case of process I,
Qtr reads 7

Q2
tr = max

{
(p1 − k− p4)2 = (p3 − p2)2 , (p1 − p4)2 = (p3 − p2 + k)2 ,

(p1 − k− p3)2 = (p4 − p2)2 , (p1 − p3)2 = (p4 − p2 + k)2} (BI) , (2.21)

while for process II,III we have

Q2
tr = max

{
(p1 − p3)2 = (p4 − p2 + k)2 , (p3 + k)2 = (p1 + p2 − p4)2 ,

6The effective interaction might well be generated by the combined exchange of s- and t-channel mediators, or
by radiative effects not falling in any of these two categories.

7Notice that, if in Model B we had assumed a Dirac DM particle, only half of the conditions in Eqs. (2.21)
and (2.22) should have been imposed. Therefore, the model dependence of this strategy depends on the assump-
tions made both on the mediator (s-channel or t-channel) and on the nature of the DM particle (Dirac or Majorana
fermion, complex or real scalar).
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(p1 − p4)2 = (p3 − p2 + k)2 , (p4 + k)2 = (p1 + p2 − p3)2} (BII) . (2.22)

Notice that the subprocesses are quantum-mechanically distinguishable and therefore it makes
sense to adopt a different definition of Qtr for each of them.

Figure 2.8: Limits on M∗ as functions of Mmed obtained for Models A and B with three dif-
ferent methods. The purple lines are derived in the full models, assuming two representative
values of the ratio Γmed/Mmed: 1/(8π) (solid) and 1/3 (dashed). The solid blue line is derived
in the EFT with our method as described in the text. The solid green line is derived in the EFT
by imposing the condition on Qtr proposed in Refs. [204–206]. Upper plots: Model A. Lower
plots: Model B.

The result of the comparison is displayed in Fig. 2.8, where we show the limits on M∗ as
functions of Mmed, obtained for Models A (upper plots) and B (lower plots) with three differ-
ent methods. The purple and blue lines represent the full model and our approach to the EFT,
respectively, namely the same curves as in Figs. 2.6 and 2.7. The green line is also derived in
the EFT, but with the cut Qtr < Mcut instead of Ecm < Mcut. In the limit of heavy mediators,
all the lines coincide as expected. The differences are in the region of relatively light mediators,
where the EFT limit obtained with Qtr has, as expected, a better reach in M∗ than our method.
However, in our view the improvement is not sufficiently significant, especially when com-
pared with that obtainable in the full simplified model, to motivate the use of Qtr rather than
Ecm. Our recommendation is thus to stick to the simple and model-independent version of our
method, possibly trying to extend the reach by the direct search of the mediator which, as de-
scribed in the previous section, is the sole responsible of the improved reach of the simplified
model.

A second aspect to be mentioned is that the consistent EFT limits in the (mDM, M∗) plane, at
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fixed g∗, cannot be inferred from those obtained in the naı̈ve EFT by just performing a rescaling
of M∗. Indeed such a rescaling cannot lead to closed exclusion curves such as those we obtained
in Fig. 2.4. One might be tempted to consider a rescaling here because the EFT cross-section is
proportional to 1/M4

∗, so that the reduction of the cross-section caused by the kinematical cut
might be reabsorbed into an effective M∗. Namely, one might consider defining the ratio8

R(M∗, mDM, g∗) =

σ(M∗)
∣∣∣
Qtr<Mcut=g∗M∗

σ(M∗)
, (2.23)

where σ denotes the signal cross-section computed in the naı̈ve EFT for a given signal region.
At fixed g∗ and mDM, R is a function of M∗, which tends to one for sufficiently high M∗ and to
zero for sufficiently low M∗, because of the effect of the kinematical cut illustrated in Eq. (2.11).
Given that R measures the reduction of the cross-section with respect to the naı̈ve EFT, one
might think of getting the limit on M∗ at each mDM, call it M̃∗, starting from the limit obtained
in the naı̈ve EFT, call it MEFT

∗ , and solving the implicit equation

M̃∗ =
[

R
(

M̃∗, mDM

)] 1
4 MEFT

∗ . (2.24)

The effective operator scale M̃∗ obtained in this way is the one that reproduces, in the EFT with
the cut on Qtr, the same signal cross-section that was needed for setting the bound at MEFT

∗ in
the naı̈ve EFT. Namely, Eq. (2.24) is equivalent to

σ
(

M̃∗
) ∣∣∣

Qtr<Mcut=g∗M̃∗
= σ

(
MEFT
∗
)

, (2.25)

where we have exploited the fact that in the naı̈ve EFT σ(M∗) simply scales as 1/M4
∗.

The above method for obtaining M̃∗ is more elaborate than directly comparing the exper-
imental limit on the cross-section with the prediction of the kinematically restricted EFT, as
we suggested in section 2.1. Furthermore, the rescaling method might obscure the fact that
Eq. (2.25), or equivalently Eq. (2.24), has either zero (which means that no limit can be set) or
two solutions for M̃∗, but it never has only one. The behaviour of the restricted EFT cross-
section, compared with the naı̈ve EFT, is pictorially represented in Fig. 2.9.

The cross-section vanishes before approaching M∗ = 0, because of the cut Qtr < g∗M∗.
Therefore there are two values of M∗ for which the cross-section equals the experimental limit,
which means that the excluded region has one upper but also one lower limit in M∗, differ-
ently from the naı̈ve EFT as depicted in the figure. Therefore, the true limit cannot be set by
just rescaling the naı̈ve EFT exclusion curve. The quantitative impact on the excluded regions
in the (mDM, M∗) plane, for different values of g∗, was already displayed in Fig. 2.4 for our
kinematical requirement Ecm < g∗M∗.

2.3.2 Further developments of this method in the literature

In this Section we briefly comment on some later developments of the method proposed in this
Chapter.

The starting point of the discussion of Refs. [215, 216] is the result that the recast of DM
searches within the EFT can constrain, as for the current status of experimental bounds, only
effective couplings g∗ > 1, as we have seen in Section 2.2 and in particular in Fig. 2.4. This

8Using Qtr or Ecm makes no difference for the point we want to make here.
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M∗

σ

EFTEFT
∣∣∣
Ecm<g∗M∗

Experimental limit

Figure 2.9: A pictorial representation of how the bounds on M∗ depend on the prescription
for computing the signal in the EFT. The signal cross-section is displayed as a function of M∗,
for fixed g∗ and mDM. The black and the blue lines correspond to the naı̈ve EFT and to our
consistent prescription, respectively. The horizontal purple line represents the experimental
limit. The resulting excluded interval for M∗ is reported near the horizontal axis for the two
prescriptions.

implies that the EFT can be useful to constrain only strongly coupled models. Even more,
an effective description has to be sought in these cases, due to the failure of a perturbative
description.

A concern could arise when considering the consistency of a description in which DM is a
light and weakly coupled particle arising from a strongly interacting sector. This is the outcome
though if there is an approximate global symmetry which protects the DM mass from large
corrections. An example of this mechanism in the SM is the pion, which is a composite state
emerging from strongly coupled QCD, and whose mass is small due to the approximate chiral
symmetry SU(2)V × SU(2)A broken by the small u, d quark masses.

Ref. [216] analyses the scenarios which could realise a similar mechanism in relation to the
dark sector. DM could then be a scalar pseudo-Goldstone boson of a non-linearly realised sym-
metry, or a composite fermion with chiral symmetry, or the Goldstino of non-linearly realised
supersymmetry. Having these completions in mind, the authors then identify the relevant
effective operators allowed by symmetries, and perform in Ref. [215] a recast of the ATLAS
monojet search at

√
s = 8 TeV with 20.3 fb−1 of integrated luminosity. They use the same

prescription proposed in this Chapter, and simulate more carefully the signal, by including
hadronisation and showering effects. The final results they obtain are qualitatively similar to
what showed in Fig. 2.4.

In Ref. [217] the concern is the adaptation and improvement of the strategy exposed in this
Chapter to the case in which the experimental analysis exploits the information contained in
the kinematical distributions of the measured samples. A cut-and-count analysis, as the one
performed in [227] and recast in this Chapter, has the advantage of being straightforward to
recast in a preferred model. In order to obtain the bound, indeed, it is sufficient to impose the
acceptance cuts of the analysis, count the surviving events and compare this number to the
measured one. Clearly this procedure does not make use of the large amount of information
contained in the sample of the events passing the analysis cuts, and both the latest experimental
searches of Run 1 and the current ones at Run 2 of LHC rely on the comparison of the shapes
of the /ET distributions of signal and background.

This poses a problem though for a consistent use of the EFT. The signal in a full model is the
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sum of the events S predicted in the truncated EFT (consisting of the events when Ecm < Mcut)
plus the events ∆ for which Ecm > Mcut. Given that the latter contribution ∆ is unknown, how
can we consistently use only the former contribution S to get a sensible constraint? The final
result of the rigorous and detailed discussion of Ref. [217] is remarkably simple. Put in plain
terms, a consistent procedure is to compare, for each bin i of the histogram of the relevant kine-
matical distribution (say /ET), the signal of the truncated EFT (call it Si) plus the correspond-
ing SM background Bi and the observed number of events Oi. If the bin is overfluctuating,
Si + Bi < Oi, then an extra contribution ∆i from the signal events for which Ecm > Mcut could
help alleviate the tension between model and observation, so it has to be ignored in the com-
putation of the likelihood function L, given that the goal is to compute a conservative robust
bound. If instead the bin is underfluctuating, Si + Bi > Oi, then it should be included in the
likelihood as usual. Notice that the discarded overfluctuating bins, although they are not in-
cluded in L, are still to be considered among the degrees of freedom of the χ2 distribution by
which compatibility or incompatibility is established.

The procedure described in Ref. [217] is suitable for a recast of an exclusion limit (in case of a
discovery, the procedure is not adequate) for any theory in which part of the signal contribution
is unknown (and positive, as it is the case for a truncated EFT and the events lying beyond its
regime of validity).

2.4 Conclusions

We described a simple strategy to set robust and model-independent limits on heavy-mediator
DM at the LHC. Our method is based on the generic form of the operators in the EFT containing
only the DM and the SM particles, with no assumptions on the underlying dynamics. However,
it also takes into account the presence of a cutoff scale Mcut above which the EFT loses its
validity. Mcut must be regarded as one of the free parameters of the EFT, on the same footing
as the DM mass mDM and the effective interaction scale M∗. We have to do so if we aim at
a comprehensive exploration of the whole range of theoretical possibilities. The parameter
Mcut can be traded for g∗, the typical coupling strength at the mediator scale. As explained
in Section 2.1, g∗ can be defined in the EFT alone, and further characterised for any assumed
underlying model.

We applied our method explicitly to the ATLAS mono-jet search of Ref. [227], obtaining the
exclusion contours in the (mDM, M∗) plane shown in Fig. 2.4, for fixed representative values
of g∗. We believe that this kind of plots illustrates the current experimental situation in an
accurate and comprehensive way, providing a fair assessment of the LHC sensitivity to heavy-
mediator DM. At the moment, we are only sensitive to large values of g∗, while the region
g∗ ∼ 1, which is arguably the most natural one for WIMP DM, is still largely untested. Making
progress requires higher energy and luminosity, but also an optimisation of the experimental
search strategies. As pointed out in section 2.2, our signal is kinematically different from that
of the naı̈ve EFT, in particular it is characterised by softer /ET and pjet

T distributions. The reach
of the searches would then benefit from a sensitivity improvement in the soft region.

In Section 2.3 we considered two different simplified models, both giving rise to the same
effective operator considered in Section 2.2. We compared our EFT limits, reinterpreted in the
two models, with those obtained from a dedicated comparison of the experimental bounds
with the prediction of the two models, reaching two main conclusions. First, the limits set
within the simplified models can be considerably stronger than the EFT ones, but only because
of the resonant production of the mediator, which enhances the simplified model cross-section.
Therefore, a DM search performed within a simplified model (in the only interesting region
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where the limit is potentially stronger than in the EFT) is actually not a search for DM, but a
search for the mediator, and as such it should be interpreted. The canonical σ×BR limit as a
function of the mediator mass appears to be the best option for presenting the experimental
results. The second conclusion is that the current experimental sensitivity is still rather poor,
even when working within a simplified model. In particular the region of weak coupling,
i.e. narrow mediator, is mostly unexplored, in accordance with what we found in our EFT
analysis. We finally discussed two aspects of our approach, to facilitate the comparison with
the recent literature. We found that the usage of the variable Qtr in place of Ecm to define the
safe kinematical region of the EFT does not improve the sensitivity significantly enough to pay
back for the increased model-dependence. We also remarked that just rescaling the naı̈ve EFT
limit does not account for the impossibility, within mono-jet searches, of excluding arbitrarily
low values of M∗ at fixed mDM and g∗.

In summary, we have found that the LHC sensitivity to the heavy-mediator DM hypoth-
esis is still limited and wide regions of the parameter space still wait to be explored. On the
experimental side, improving the analysis in the soft region would be of great help. On the
phenomenological side, more comprehensive methods should be elaborated to cover each dif-
ferent region of the parameter space with the most suitable strategy. Non-resonant DM signals
are well described by the EFT which, as outlined in this Chapter, when consistently used pro-
vides a robust model-independent way to approach the problem. Within specific models, this
needs to be supplemented by resonant mediator searches, which however should be performed
by exploiting fully the predictive power of the assumed mediator dynamics. This means taking
into account all the mediator production mechanisms (single and/or pair) and all its possible
decay modes, including the one to visible objects which might give complementary informa-
tions.

2.A Model A: axial-vector mediator

We collect here some details on the first of the two simplified models considered in the text,
Model A. Previous discussions of very similar models can be found in Refs. [191, 229–232].
The mediator is a neutral vector boson Z′, singlet under the SM gauge group, with mass mZ′ ,
a universal axial coupling gq to quarks, no renormalisable couplings to leptons, and an axial
coupling gX to the Majorana DM fermion X of mass mX. Since the model is introduced for
purely illustrative purposes, without making reference to an underlying more fundamental
theory, we introduce an explicit Z′ mass term and we neglect Z-Z′ mixing, as well as anomalies
and their cancellation mechanisms.

The model Lagrangian is

LA = LSM + LX + LZ′ + LA
int , (2.26)

LZ′ = −1
4

Z′µνZ ′ µν +
1
2

m2
Z′Z
′
µZ ′ µ , (2.27)

LA
int = Z′µ

(
gq ∑

q
qγµγ5q + gXXγµγ5X

)
≡ Z′µ Jµ

Z′ , (2.28)

where LSM is the SM Lagrangian, LX is the free Lagrangian for X in (2.5), Z′µν = ∂µZ′ν − ∂νZ′µ,
and the sum in (2.28) runs over all quark flavours (q = u, d, c, s, t, b). The model has four
parameters,

gq , gX , mZ′ ≡ Mmed , mX ≡ mDM , (2.29)
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which can all be taken to be real and positive (in principle, gq and gX could have either sign,
but this is not relevant for the present study).

Notice that the choice of a purely axial interaction, universal for all quark flavours, is crucial
to generate the effective interaction (2.6) from (2.28) in the low-energy limit. At leading order
in E/mZ′ � 1, the approximate solution of the Z′ equations of motion is

Z ′ µ = − 1
m2

Z′
Jµ
Z′ ,

which substituted in (2.26) gives

LA
EFT = − g2

X
2m2

Z′
(Xγµγ5X)(Xγµγ5X) (2.30)

−
g2

q

2m2
Z′

∑
q

(qγµγ5q) ∑
q

(qγµγ5q) (2.31)

− gqgX

m2
Z′

(Xγµγ5X) ∑
q

(qγµγ5q) . (2.32)

The effective interaction term (2.32) between the SM quarks and the DM field reproduces the
one in (2.6) as long as

M∗ =
mZ′√gq gX

. (2.33)

Notice also that integrating out the heavy Z′ generates two additional four-fermion operators,
(2.30) and (2.31). However, (2.30) is subject only to very mild constraints from the limits on
DM self-interactions. The four-quark operator (2.31) can be probed by the searches for contact
interactions [197, 240], but can be parametrically suppressed by choosing gX > gq for fixed g∗.

At tree-level, and including only two-body decays, the total decay width of the Z′ is

ΓZ′ =
mZ′

12π


2g2

X

(
1− 4m2

X
m2

Z′

)3/2

+ ∑
q

3g2
q

(
1−

4m2
q

m2
Z′

)3/2

 , (2.34)

with the obvious modifications if some of the final states are not kinematically accessible.

2.B Model B: coloured scalar mediators

We collect here some details on the second of the two simplified models considered in the
text, Model B. Previous discussions of very similar models can be found in Refs. [233–238]. In
Model B, the interactions between the SM quarks and the DM particle X are mediated by three
families of degenerate complex scalars of mass m̃, with the same gauge quantum numbers of
the corresponding left- and right-handed quarks. Since they are identical to the squarks of su-
persymmetric extensions of the SM, we denote them with the same symbols, (ũiL, d̃iL, ũiR, d̃iR),
where i = 1, 2, 3 are family indices. Similarly, the Majorana fermion X mimicks, although in the
simplified fashion specified by its interactions below, the lightest neutralino of supersymmetric
models.

The model Lagrangian reads

LB = LSM + LX + Lq̃ + LB
int , (2.35)
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Lq̃ =
3

∑
i=1

[
(∂µũiL)†(∂µũiL) + (∂µd̃iL)†(∂µd̃iL) + (∂µũiR)†(∂µũiR) + (∂µd̃iR)†(∂µd̃iR)

− m̃2
(

ũ †
iLũiL + d̃ †

iLd̃iL + ũ †
iRũiR + d̃ †

iRd̃iR

)]
+ . . . , (2.36)

LB
int = −gDM

[
3

∑
1=1

(
ũiL uiL + d̃iL diL + ũiR uiR + d̃iR diR

)
X + h.c.

]
, (2.37)

where LSM and LX are the same as in Model A, and the dots in (2.36) denote the squark gauge
interactions, generated by promoting ordinary derivatives to SM covariant derivatives. Notice
that the mass degeneracy and the universality of the Yukawa couplings among quarks, squarks
and DM evade the typical problems of supersymmetric models with flavour-changing neutral
currents. The model has three parameters,

gDM , m̃ ≡ Mmed , mX ≡ mDM , (2.38)

which can all be taken to be real and positive (gDM can be complex, but it can be chosen to be
real and positive by absorbing its phase into a redefinition of the squark fields).

As for Model A, we can derive the EFT by solving the classical equations of motion for the
squarks in the low-energy limit E� m̃:

ũiL = − gDM

m̃2 XuiL , ũiR = − gDM

m̃2 XuiR , d̃iL = − gDM

m̃2 XdiL , d̃iR = − gDM

m̃2 XdiR . (2.39)

Substituting into LB yields

LB
EFT =

g2
DM
m̃2

3

∑
i=1

[
(XuiL)(uiLX) + (XuiR)(uiRX) + (XdiL)(diLX) + (XdiR)(diRX)

]

= − g2
DM

4 m̃2

(
Xγµγ5X

)
[

3

∑
i=1

(
uiγµγ5ui + diγµγ5di

)]
, (2.40)

where for the second equality we have used the Fierz identities and the fact that when X is a
Majorana spinor XγµX = 0. The effective interaction term (2.40) between the SM quarks and
the DM particle reproduces the one in (2.6) as long as

M∗ =
2 m̃
gDM

. (2.41)

At tree-level, and assuming m̃ > mX + mq, where q is the corresponding quark, the decay
width of the generic q̃ is

Γq̃ =
m̃

16π
g2

DM

√

1 +
(m2

q + m2
X)2

m̃4 − 2
m2

q + m2
X

m̃2

(
1−

m2
q

m̃2 −
m2

X
m̃2

)
. (2.42)

2.C Formulae for the relic density

We collect here the approximate analytical formulae used for the calculation of the relic density
in the EFT (Fig. 2.3), in Model A (Fig. 2.6) and in Model B (Fig. 2.7), before requiring that it
reproduces the recent precise determination by the Planck collaboration [33] (for our purposes,
the latter can be rounded to ΩDMh2 = 0.12 with negligible error). They can be straightforwardly
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derived from the existing literature (see e.g. [29, 41]). Up to terms of order 1/x f , where x f is
the value of x = mX/T at freeze-out:

ΩDMh2 ≈ 1.07 · 109 (GeV)−1 x f
√

g∗ MP
1

16 m2
X

(
a + 3b

x f

) , (2.43)

where h is the dimensionless Hubble parameter, g∗ ∼ 100 is the number of relativistic degrees
of freedom, MP ' 2.4× 1018 GeV is the reduced Planck mass, mX is the mass of the DM particle
in GeV, and

x f = ln(λ)− 1
2

ln[ln(λ)] + ln
[

1 +
6b
a

1
ln(λ)

]
, (2.44)

λ = 0.038
2√
g∗

MP mX

(
a

16 m2
X

)
. (2.45)

In the EFT, introducing the dimensionless parameters αq = mq/mX,

a = ∑
q

96
π

(
mX

M∗

)4

α2
q

√
1− α2

q , (2.46)

b = ∑
q

4
π

(
mX

M∗

)4 (
8− 16α2

q + 11α4
q

) (
1− α2

q

)−1/2
, (2.47)

where the sums run over the quark flavours whose mass is below mX.
In the two models underlying the EFT, we introduce two additional dimensionless param-

eters, β = mX/Mmed and γ = Γmed/Mmed, to account for the finite mass Mmed and width Γmed
of the mediator. Then in Model A (Z′ mediator)

a = ∑
q

96
π

g2
qg2

X

β4
√

1− α2
q

(4β2 − 1)2 + γ2 α2
q

(
1− 8β2 + 16β4

)
, (2.48)

b = ∑
q

4
π

g2
qg2

X
β4

√
1− α2

q [(4β2 − 1)2 + γ2]2

{
(8− 16α2

q + 11α4
q)(1 + γ2)

−8β2
[
(8− 16α2

q + 14α4
q) + 3α2

q(2− α2
q)γ2

]

+16β4
[
(8− 16α2

q + 26α4
q) + 3α2

q(4− 3α2
q)γ2

]

+ 768 β6(β2 − 1) α4
q

}
, (2.49)

and in Model B (q̃ mediator)

a = ∑
q

6g4
DM
π

β4
√

1− α2
q

(1 + β2 − α2
qβ2)2 + γ2 α2

q , (2.50)

b = ∑
q

g4
DM
4π

β4

√
1− α2

q

[
(1 + β2 − α2

qβ2)2 + γ2
]3

{
(8− 16α2

q + 11α4
q)(1 + γ2)2

+4β2(1− α2
q)(4− 18α2

q + 11α4
q)(1 + γ2)

+2β4(1− α2
q)2[(8− 48α2

q + 33α4
q) + (8− 24α2

q + 11α4
q)γ2]
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+4β6(1− α2
q)3(4− 10α2

q + 11α4
q)

+ β8(1− α2
q)4(8 + 11α4

q)
}

. (2.51)





3

Dark Matter interactions with the
Standard Model through an anomalous
Z′

In this Chapter, based on Ref. [2], we study a model with a Dark Matter (DM) candidate whose
interactions with baryonic matter are mediated by a heavy anomalous Z′. We emphasise that
when the DM is a Majorana particle, its low-velocity annihilations are dominated by loop sup-
pressed annihilations into the gauge bosons, rather than by p-wave or chirally suppressed an-
nihilations into the SM fermions.

Since the Z′ is anomalous, these kinds of DM models are effective field theories (EFTs)
with a well-defined cutoff, where heavy spectator fermions restore gauge invariance at high
energies. We describe these EFTs, estimate their cutoff and properly take into account the effect
of the Chern-Simons terms one obtains after the spectator fermions are integrated out.

The result is that, while for light DM collider and direct detection experiments usually pro-
vide the strongest bounds, the bounds at higher masses are dominated by indirect detection
experiments, due to the strong annihilation into W+W−, ZZ, Zγ and possibly into gg and γγ.
We emphasise that these annihilation channels are generically significant because of the struc-
ture of the EFT, and therefore these models are prone to strong indirect detection constraints.
We select some particular Z′ models for illustration, but the results apply to any U(1)′ theory
with arbitrary charge assignments.

3.1 Introduction

As a framework for the recast of DM experimental searches at colliders, the communities of
theorists and experimentalists have progressively embraced in the last years the simplified
models. A typical simplified DM model extends the SM by a DM candidate as well as a media-
tor that communicates between the SM and dark sectors. The approach is usually minimalistic
in the number of assumptions: rather than building a self-consistent theory, the goal is to in-
clude in the description the first degrees of freedom which would show up at the cutoff of
the effective low energy Lagrangian. The choice of considering simplified models for the re-
cast of collider searches, was motivated by the discussion about the limited validity of an EFT
description for DM in a high energy environment as the LHC [200, 204–206].

Even though it is hard to believe that any simplified model accurately describes all physics
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beyond the SM, the essential idea is that the key ingredients that determine the experimental
signatures related to the DM should be captured correctly by these models. For these purposes
simplified models must be able to make proper predictions for the thermal relic abundance,
direct detection experiments, neutrino and γ ray telescopes, and collider experiments. In this
Chapter, we will investigate this requirement in the context of simplified models with spin-1
mediators.

The idea that the interaction between the SM particles and DM is mediated by a heavy
neutral spin-1 boson, that we will further call Z′, is not new. Refs [191, 209, 231, 241–249]
form just a partial list of the related contributions. In this Chapter we concentrate on a Ma-
jorana fermion DM candidate whose interactions with the SM are mediated by a heavy Z′,
corresponding to a symmetry that appears to be anomalous at the electroweak scale. Anomaly
cancellation at high scales is necessary for the overall consistency of the theory, as well as for
more practical purposes like the calculation of the couplings of the Z′ to the SM gauge bosons,
which largely determine the DM signatures in indirect detection experiments. Moreover, many
of the Z′ models employed in describing the results of LHC searches, including the “axial” Z′

model, are anomalous [213, 250]. All such “anomalous” theories must descend from the UV
complete ones, where the anomalies are either cancelled by spectator fermions [251], or via the
Green-Schwarz mechanism [252–254]. As has been recently shown in Ref. [255], these specta-
tor fermions can be potentially responsible for non-trivial collider signatures and can be more
easily accessible at the LHC than the DM itself.

In this Chapter we will take a different approach. In fact, it is not always necessary to anal-
yse a full UV-complete model to make important predictions for DM signatures in relevant exper-
iments. In particular, we are interested in the anomalous Z′ couplings to the SM gauge bosons.
These couplings determine the annihilation cross sections of DM into SM gauge bosons, affect-
ing the γ ray fluxes from dSph and the Galactic Centre, as well as signals in neutrino telescopes.
To calculate these observables, it is sufficient to consider an EFT with the anomalous Z′ after
the heavy spectators have been integrated out.

In fact, EFTs with low-energy anomalies from integrating out heavy chiral fermions have
been considered as early as the 1980s, mostly in the context of the SM without the top quark [256,
257]. Indeed the SU(2)L×U(1)Y electroweak symmetry is anomalous in the absence of the top
quark and should be analysed as an effective field theory with extra degrees of freedom, with
couplings which compensate for the loss of gauge invariance at the 1-loop level. This approach
was further generalised by Preskill in Ref [258]. More recently, the influence of anomalous Z′

couplings to the SM gauge bosons has been studied in the context of DM [207, 243, 259–261].
Here we essentially take the same approach. We formulate simplified models of DM with

anomalous Z′ mediators as consistent effective field theories with a cutoff Λ. We will show, in
agreement with the results of [258], that this cutoff can be much heavier than the mass of the
Z′ and therefore the non-decoupling effects of the heavy spectators can be efficiently captured
by the EFT, without explicitly considering these fermionic degrees of freedom. As expected,
this EFT uniquely determines the couplings between the heavy Z′ and the SM gauge bosons in
which we are interested [262, 263].

Because we are considering an EFT, we will find that some of our amplitudes, including
χχ → VV, where χ is the DM particle and V is a SM gauge boson, grow quadratically with
energy. This should not be surprising, as the EFT necessarily contains higher dimensional
operators, without which gauge invariance is lost. The growth of such amplitudes is tamed
at the scale Λ, where the spectator fermions appear. Similar physics was considered also in
Ref. [264], which appeared simultaneously with Ref. [2], with a focus on energies around the
MeV scale.
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In this Chapter we explicitly calculate the annihilation rates of the dark matter into SM
gauge bosons and estimate the bounds associated with these rates. We choose as examples
three anomalous Z′ models, that illustrate some generic patterns. We emphasise that while
the concrete bounds are always model dependent, the techniques that we illustrate here are
completely generic and can be used in any EFT with an anomalous Z′ mediator.

We find that for DM heavier than ∼ 200 GeV, these higher dimensional operators dictate
that DM annihilation at low velocities is dominated by final states involving gauge bosons.
This results in considerable bounds from indirect detection experiments. At larger velocities,
such as at DM freeze-out, p-wave annihilation into fermions overcomes these operators, which
are loop suppressed, and so the DM relic abundance calculation is mostly unaffected by the
requirement of anomaly cancellation. We also compare our new indirect detection constraints
with direct detection and collider limits. We find that for heavy DM, γ ray and neutrino tele-
scopes (depending on the concrete model) provide the strongest bounds on anomalous Z′ sim-
plified DM models.

The remainder of this chapter is organised as follows. In Section 3.2, we describe the ef-
fect of integrating out heavy fermions in a consistent theory, yielding an EFT with apparent
anomalies at low energy scales. We focus on the induced loop level operators corresponding
to these anomalies, and show that the maximum EFT cutoff can be significantly larger than the
Z′ mass. Then in Section 3.3 we specialise to the case of simplified models of DM and moti-
vate a selection of toy models which serve to illustrate the effects of the higher dimensional
operators on physical observables. Section 3.4 contains the experimental bounds on these sim-
plified models, paying particular attention to the impact of loop-induced DM annihilation to
gauge bosons on indirect detection constraints. We briefly discuss some limitations of our anal-
ysis in Section 3.5, including the assumption that the spectator fermions are heavy. Section 3.6
contains our conclusions. Most analytical results of our calculations are contained in the fi-
nal appendices. Appendix 3.A contains a derivation of the Ward identities for the SM gauge
bosons, accounting for the spontaneous breaking and the non-Abelian nature of the SM gauge
group. Appendix 3.B collects the results for the effective vertices with the Z’ and the SM gauge
bosons.

3.2 Low-Energy Effective Theory

In this section we will review the construction of an EFT for a new gauge group which appears
to be anomalous at low energies. New couplings need to be introduced to restore the gauge
invariance of the full theory. We will also see how the couplings between the exotic and SM
gauge bosons should be calculated, from anomaly considerations. We will closely follow the
original work by Preskill [258] (as well as slightly more detailed handwritten notes [265]). We
also borrow some results from more recent works [266, 267] that made practical use of these
results in a slightly different context of MSSM augmented with anomalous Z′s.

The EFTs that we are describing here can be thought of as descending from a fully gauge in-
variant theory with a spontaneously broken gauge symmetry, after some heavy fermions have
been integrated out. Given that these fermions are chiral and get masses from gauge symmetry
breaking, like the fermions in the SM, the theory below the scale of the heavy fermions appears
to be anomalous. In fact, this is exactly what happens in the SM if we integrate out the heav-
iest fermion of the SM, the top quark [268, 269]. Although the full SM is perfectly anomaly
free, as one would expect from a consistent gauge invariant theory, integrating out the top
leaves both the hypercharge and the SU(2)L symmetries anomalous, as well as giving rise to a
SU(2)L ×U(1)Y mixed anomaly. We will return back to the example of the SM in Sec. 3.5 and
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Fig. 3.13, where we use it as a concrete example to discuss the limit of validity of this effective
description.

The basic procedure of cancelling the anomalies in this low energy EFT comes at the price of
introducing non-renormalizability. To see this in a working example, we first consider the sim-
plest possible case of a U(1)′ anomalous Abelian theory in Sec. 3.2.1, and we move in Sec. 3.2.2
to the phenomenologically relevant case of mixed anomalies in a SU(N)×U(1)′ gauge theory.

3.2.1 Anomalous U(1)′ gauge theory

We first consider an anomalous U(1)′ theory, where the triangle diagrams with fermion loops
(similar to the ones in Fig. 3.2, with three Z′ bosons on the external legs) are non-vanishing.
Since the theory is anomalous, gauge invariance is lost and the effective action Γ under a U(1)′

gauge transformation Z′µ → Z′µ + ∂µω/g′ has the following variation:

δωΓ =
g′2

48π2

(
∑

i
Q3

i

) ˆ
d4x ω Z′µνZ̃′µν , (3.1)

where Z′µν is the field strength associated with Z′ and Z̃′µν = 1
2 εµνρσZ′ρσ is its dual tensor. Here

g′ stands for the “gauge” coupling of the U(1)′ and the sum runs over all the fermions that are
charged under the U(1)′. This transformation simply manifests the fact that in an anomalous
theory the gauge invariance is lost.

In our example, the U(1)′ gauge invariance can be easily restored by introducing a scalar a
that transforms under a gauge transformation as a → a + v ω, where v stands for the scale of
the U(1)′ breaking, or, equivalently v ≡ mZ′/g′. Then, the transformation (3.1) can be restored
by introducing the following term:

L = − g′2

48π2

(
∑

i
Q3

i

)
a
v

Z′µνZ̃′µν . (3.2)

Even though (3.2) appears to cancel the anomaly with a new degree of freedom a, this term
is just a Wess-Zumino counterterm that we have added to the action and a is not a genuine
degree of freedom. First, it is worth noticing that in spite of the form of Lagrangian term (3.2),
the total Lagrangian is independent of the field a and depends only on its derivative ∂µa. This
becomes manifest if we perform a rotation on the fermions ψi → e−iQia/vψi.1 While such a
rotation eliminates the term (3.2), the path integral measure transforms non-trivially under this
rotation (as shown by Fujikawa [270]), inducing a term in the effective action that looks like
∼ (∂µa)ψ†σ̄µψ.

The kinetic term of the field a, which should also be gauge invariant, is of the form

L =
1
2

(
∂µa− g′vZ′µ

)2
(3.3)

Even if we start from a theory that does not have this term, it is induced radiatively by the
diagrams in Fig. 3.1.

This Lagrangian is nothing but a U(1) theory that has been higgsed via a Stückelberg mech-
anism. In the unitary gauge the scalar degree of freedom a can be set (locally) to zero at any

1Here we use the two-component notation for fermions. In four-component notation, Ψi → eiQi aγ5/vΨi and the
variation of the action is proportional to the axial vector current, δΓ ∼ (∂µa)(Ψiγ

µγ5Ψi).
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+ +

Figure 3.1: Kinetic term for the field a and the mass term for the Z′ gauge boson induced by
the radiative corrections in the U(1) anomalous theory. Note that each blob corresponds to
the couplings (3.2) and is therefore naturally of the size of the fermionic triangle loop.

point in space, leaving us simply with an effective theory of the massive gauge bosons with
anomalous fermionic field content.

Of course, our effective theory cannot be extrapolated to infinitely high energies, and the
calculability requirement sets the cutoff of the theory. In any non-unitary gauge, the presence
of the cutoff is evident from the term (3.2) of mass dimension 5 in the Lagrangian, while in
the unitary gauge we can see it from the bad UV behavior of the two-point function of the Z′

(Fig. 3.1). In order to estimate the cutoff of the effective theory, we should remember that loop
effects, similar to those that produce the term (3.3) (see Fig. 3.1), will also produce terms that
look like

∼ 1
(4πv)p−2

1
vp−2

(
∂µa− g′vZ′µ

)p
(3.4)

for every power p ≥ 2. In order to have a consistent EFT, each order in the perturbative
expansion (3.4) should be smaller than its predecessor such that the expansion is valid.2 Taking
this requirement into account (see [258] for the details of this derivation) one finds the following
cutoff estimation of the EFT:

Λ ∼ 64π3mZ′

g′3
∣∣∑i Q3

i

∣∣ . (3.5)

3.2.2 Mixed anomalies in a SU(N)×U(1)′ gauge theory

Now we extend this logic to models with more complicated gauge symmetries and mixed
anomalies between the U(1)′ and non-Abelian gauge groups. This is exactly the situation in
which we are interested, where the anomalous Z′ couples to the DM, and the mixed anomaly
will eventually determine the strength of its interaction with the SM gauge bosons.

The treatment of the mixed anomalies will follow a similar logic to one we used in the
previous Section. Let us consider the case of a mixed anomaly SU(N)2 ×U(1)′

∑
i

tr(tatbQi) = A δab (3.6)

where ta are the generators of SU(N), and a, b = 1, . . . , N2− 1. The matrix element between the
Z′ and the SU(N) gauge bosons Gµ ≡ Ga

µta is nominally divergent, signalling that the theory
is non-renormalisable, because there is no tree level coupling between the Z′ and the SU(N)
gauge bosons.

In this case the form of the anomalous transformation is slightly less straightforward to de-
rive. However, it can be obtained by invoking the Wess-Zumino consistency condition [271].
Under U(1)′ and SU(N) transformations with transformation parameters ω1 and ωN ≡ ∑a ωa

Nta,

2While we will hereafter dub this expansion as a “loop expansion”, it is important to keep in mind that the
couplings from Eq. (3.2) and the fermion loop are of the same order of magnitude.
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respectively, the action transforms as:

δω1 Γ = C1
g2

N
8π2A

ˆ
d4x ω1 tr

(
GµνG̃µν

)
(3.7)

δωN Γ = CN
g′1gN

4π2 A
ˆ

d4x Z̃′µν tr
(
ωN∂µGν

)
(3.8)

Note that we have only kept the components of the transformations that correspond to the
mixed anomaly, and their sum is fixed by the Wess-Zumino consistency condition to be C1 +
CN = 1. In particular, the presence of the mixed anomaly means that we cannot simultaneously
have SU(N)×U(1)′ gauge invariance, since either C1 or CN must be non-zero. Conversely, the
orthogonal combination C1− CN is unconstrained. This combination depends on the countert-
erms that we introduce in the effective action, analogous to the Wess-Zumino term of Eq. (3.2).
In the SU(N)×U(1)′ model we are considering, the full Lagrangian after the introduction of
the Stückelberg field a and the relevant counterterms reads3

L =
1
2

(
∂µa−mZ′Z′µ

)2
(3.9a)

− 1
2

bZ′Z′Z′a Z′µνZ̃′
µν − 1

2
bZ′GGa Ga

µνG̃a µν (3.9b)

+dZ′GGZ′µ Ga
ν G̃a µν . (3.9c)

The first term in (3.9a) is the same anomaly-induced mass term for the Z′ that we have seen
in Eq. (3.3). The Wess-Zumino terms of (3.9b) restore the U(1)′ gauge invariance in the La-
grangian. Their coefficients bABC are physical and are proportional to the mixed anomalyAABC,

bABC ∼ 1
mZ′
AABC , (3.10)

AABC = ∑
f

(
QA

fL
QB

fL
QC

fL
−QA

fR
QB

fR
QC

fR

)
. (3.11)

The last line in (3.9c) contains the generalised Chern-Simons couplings: these terms are un-
physical and they are not gauge invariant neither under U(1)′ nor SU(N). They are a local
counterterm which allows to cancel the variation of the action for a SU(N) or a U(1)′ transfor-
mation, so they parametrise how we distribute the mixed anomaly.

The coefficients C1, CN in Eqs. (3.7-3.8) can be modified by adjusting the coefficients of the
Wess-Zumino terms in Eq. (3.9b) and of the generalised Chern-Simons couplings in Eq. (3.9c).
In an arbitrary SU(N)×U(1)′ gauge theory, there is no a priori motivation to choose particu-
lar values of C1 and CN , which can be used, in particular, to insist that the anomaly preserves
either U(1)′ or SU(N) gauge invariance. However, in the SM augmented with the anoma-
lous Z′ the situation is different. While we expect that at the scale Λ, or below, the spectator
fermions restore the full gauge invariance, we should also insist that even below the specta-
tor fermion scale the SM electroweak gauge group is exactly gauge invariant. Otherwise, the
anomaly would affect the electroweak gauge group. This requirement will set for us the co-
efficient in front of the generalised Chern-Simons counterterm and consequently the value of
the combination C1 − CN . Indeed, using the freedom to set C1 − CN we can always choose the

3If we were dealing with a U(1) × U(1)′ symmetry, we would also get analogous terms which are relevant
for the U(1) × U(1)′2 anomaly: a Wess-Zumino term − 1

2 bZ′Z′Ba Z′µν B̃µν and a generalised Chern-Simons term

dZ′Z′BZ′µBνZ̃′
µν

.
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counterterm such that either C1 = 0, namely require the U(1) gauge invariance, or CN = 0,
which would mean that the SU(N) is gauge invariant. In the SM with the Z′, we require that
the gauge transformations of the SU(2)L ×U(1)Y vanish, but not of the U(1)′.

This requirement of gauge invariance under the electroweak group is crucial for the calcu-
lation. It further removes any ambiguities in the calculation of the Z′ vertex with a pair of SM
gauge bosons. We now outline this calculation. For illustrative purposes we will assume for
the moment an unbroken electroweak symmetry with massless fermions.

p1

p3

p2q + p2

q

q− p3

Z′

G

G

+
p1

p3

p2

q + a + p3

q + a− p2

q + aZ′

G

G

Figure 3.2: Diagrams relevant for the Z′GG vertex function calculation. The integration vari-
able q of one diagram can be shifted with respect to the other by an arbitrary momentum
a.

The calculation of the Z′GG vertex function involves the calculation of the pair of diagrams
shown in Fig. 3.2, where we understand the sum over all the fermions charged under the U(1)′

and the relevant SM gauge group. In an anomaly free theory one can always shift the inte-
gration momentum of one diagram with respect to the other by an arbitrary momentum aµ,
without changing the finite answer. This is no longer true in an anomalous theory. As we
will immediately see the momentum shift a is not arbitrary in our setup, and in fact for a given
generalised Chern-Simons counterterm it is completely determined by the required gauge in-
variance of the EW group. Choosing a value for the dABC coefficients in Eq. (3.9c) is completely
equivalent to a shift in the integration variable qµ → qµ + aµ.

Our objective is to make sure that only the gauge transformation of the effective action with
respect to the U(1)′ does not vanish, which is equivalent to the requirement that the Ward
(Slavnov-Taylor) identities for the EW gauge group hold. Namely, in the case of unbroken
SU(2)L ×U(1)Y we get

pµΓµνρ
3-point = 0 (3.12)

where pµ is the momentum of the SM gauge boson, which would correspond to p2 and p3 in
Fig. 3.2.

When we are dealing with the mixed anomaly, the expression that one gets in (3.12) is aµ-
dependent. Because the anomalies do not cancel out, each separate term of Γµνρ

3-point is nominally
linearly divergent. Therefore, because of the freedom to shift the integration momentum by aµ,
we expect the Ward identity to take the form

pµΓµνρ
3-point ∼

ˆ
d4q
[

f µνρ(qσ + a′σ)− f µνρ(qσ)
]

, (3.13)

with the leading term of f µνρ in q causing the linear divergence of the integral. The shift mo-
mentum a′ is a linear combination of a and the external momenta. After expanding the first
term we find that the result does not vanish, and reduces to a surface term (see [265] and [267,
App. D.1] for further details)

2iπ2a′σ lim
q2→∞

q2qσ f µνρ(q) , (3.14)
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which is finite and a-dependent. There is no choice of aµ to set the Ward identities in Eq. (3.13)
to zero simultaneously for all three incoming momenta pi in Fig. 3.2. However, there is always
a choice of aµ that preserves the Ward identities of the electroweak gauge group. This is exactly the
choice we will proceed with.

It is also worth noting that there is in fact a one-to-one correspondence between the gen-
eralised Chern-Simons counterterm (and, consequently C1 − CN combination in Eqs. (3.7) and
(3.8)) and the momentum shift a that we are required to choose. If we choose the countert-
erm such that CN vanishes, and consequently, the effective action is invariant under the SU(N)
transformation (that we identify with the EW group transformation), we will not need any
momentum shift between the two diagrams to restore gauge invariance. This is because the
counterterm is imposing EW gauge invariance already. On the other hand, if we are not enforc-
ing gauge invariance at the Lagrangian level with an appropriate generalised Chern-Simons
counterterm, we are obliged to do it by choosing a non-trivial momentum shift, so that eventu-
ally all the three (and higher) point functions of the theory are well defined. In all of our further
calculations we will set the counterterm to zero and calculate the necessary momentum shift to
restore gauge invariance.

Finally, in the SM the electroweak symmetry is broken and we consider the effects of the
breaking, including fermion masses and the contributions from the Nambu-Goldstone bosons
of SU(2)L × U(1)Y, in our explicit calculation in Sec. 3.4. In principle, we use exactly the
same procedure that we have described before, except that when calculating the Ward iden-
tities, we have to include the contribution of the Goldstone boson and possible contributions
due to the non-Abelian nature of SU(2)L. We derive in Appendix 3.A the appropriate Ward
(Slavnov-Taylor) identities for the SM gauge bosons. In any case, eventually the spontaneous
electroweak symmetry breaking is a minor effect that does not change the picture conceptually.

3.3 Dark Matter Models with Heavy Anomalous Z′

In this section we describe in more detail the dark matter models with Z′ mediated interactions
that we will consider. As we outline these models, we will make no requirement that the low-
energy fermion content of our theory cancels all the gauge anomalies. This is a common step in
the DM literature, which typically assumes that extra fermions, resolving anomaly cancellation,
appear at high scales. Below the mass scale of these fermions we get an effective field theory
similar to the one that we have formulated in the previous section.

We begin with a SM singlet Majorana fermion χ that couples axially to the gauge boson Z′

of some new U(1)′ symmetry. The choice of this setup is mostly motivated by the null results
of DM direct detection experiments. The vectorial couplings of the Majorana fermion to the
Z′ are naturally precluded and therefore the scattering in the direct detection experiments is
either spin-dependent or velocity-suppressed at tree level. The spin and velocity independent
interactions are often negligible. Because the DM is not charged under the SM gauge groups, it
has no impact on the mixed anomalies, in which we are mostly going to be interested in order
to calculate the DM annihilations into SM particles.

While Majorana particles, being real fields, cannot be charged under an exact Abelian group,
they can couple to the gauge boson if the gauge group is broken. In the latter case the fermions
get their masses via the Higgs mechanism (e.g. via couplings like ∼ Φψψ), or, in the case of
vector-like fermions, as a result of mixing with other singlet fermions. Because of the possible
mixing effects, the coupling of Z′ to DM does not need be equal to the coupling to the SM.

In general, the U(1)′ will be anomalous without the introduction of additional fermions
besides χ. Indeed, gauging any flavor-universal symmetry other than B− L, Y-sequential or
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linear combination thereof, leads to mixed anomalies between the gauge groups of the SM and
the new U(1)′. These must be resolved by new fermions with non-trivial SM charge. Here we
do not try to build a full UV-complete model (for explicit attempts to do this see e.g. [251, 255]),
as for our purposes the only relevant quantities are the anomaly coefficients in the EFT that
solely include the SM, χ, and Z′. At sufficiently high energies, above the cutoff Λ (see Sec. 3.2),
all gauge anomalies must cancel.

As we are interested in the effects of anomalies, it is interesting to consider explicit models
and discern the phenomenological importance of the effects of the Z′ couplings to the gauge
bosons. The first model we will be concerned with is one where the SM fermions are axially
charged under U(1)′. In choosing this particular case we are mostly motivated by the vast ex-
isting literature on DM simplified models, that usually assumes a U(1)′ with pure axial charges
as a standard benchmark point [213, 231, 250]. This choice however comes with its own obvi-
ous shortcoming, that eventually renders it somewhat non-generic compared to the landscape
of other options.

For a SM fermion f the usual SM Yukawa coupling y f H f̄ f is gauge invariant only if the
Higgs doublet also has dark charge [272]. If H is charged under U(1)′, in turn, then the Z′

acquires at least some mass from electroweak symmetry breaking and mixes with the Z. This
Z-Z′ mixing is constrained by electroweak precision, and even though it can be viable if the
Z′ mass is heavier than a few TeV [8], we prefer to avoid these complications, which would
defocus us from the goal of showing the phenomenological impact of anomaly-induced inter-
actions. If we assume that the SM Higgs is not charged under the U(1)′, the only option is to
promote the Yukawa couplings to U(1)′ spurions, by writing the Yukawa terms as

( 〈Φ〉
M∗

)2n

ỹ f H f̄ f , (3.15)

where 〈Φ〉 is the vacuum expectation value of a field Φ that spontaneously breaks U(1)′, M∗ is
some suppression scale dictated by the UV completion, and n is the ratio of the fermion axial
U(1)′ charge to the Φ charge. In this framework, the natural size of the Yukawa couplings is
driven by the size of 〈Φ〉/M∗. Although this approach is generally consistent with the small-
ness of the SM Yukawas, it becomes difficult to reproduce the top Yukawa coupling in this
way. To “fix” this problem we assume that the top quark couples vectorially to the Z′. The other
fermions are taken to have axial couplings, except for the neutrinos which necessarily have

purely left-handed couplings. We will further call this particular symmetry U(1)
′ ct

V
ax .

As with the scalar that could be responsible for a DM Majorana mass term, the partic-
ular characteristics of the scalars that generate SM fermion Yukawas are not relevant to the
interactions at hand. For our purposes, the only other effect of the scalars which acquire U(1)′-
breaking vacuum expectation values is to provide mass to the Z′.4 We simply parametrise these
effects by a mass term 1

2 m2
Z′(Z′)2, and generally ignore the details of the scalar sector from here

on.5

In order to summarise these considerations and to fix our notation, we show here the newly
added terms to the Lagrangian:

LDM = −1
4

Z′µνZ′ µν +
1
2

m2
Z′Z
′ 2
µ +

1
2

χ(i/∂ −mχ)χ+

4For more comments on the possible relevant effects of the U(1)′-breaking Higgs see [247].
5As we have mentioned, another possibility to deal with the fermion masses problem would be to charge the SM

Higgs under the U(1)′ and deal with the Z− Z′ mixing similarly to [8]. See also [273] for some important insights
on this framework.
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+
1
2

gχZ′ µχγµγ5χ + gZ′Z′µ ∑
f

f
(

g f
Vγµ + g f

Aγµγ5

)
f , (3.16)

where the coupling of the Z′ to the SM fermions f is given by gZ′ times the charges g f
V and g f

A,
which are given in Table 3.1, and gχ is the coupling to the Majorana DM χ.

The predictions of this “modified axial model” U(1)
′ ct

V
ax are not generic. If we do not link the

solution of the flavour problem with the DM theory (which is possible but by not necessary)
by assuming that the Yukawa couplings are spurions for the U(1)′, and we insist that the SM
Higgs is uncharged under the new force, the charges of the SM fermions must be vector-like
under U(1)′. This implies that the mixed anomalies with the U(1)EM and SU(3)c must vanish.
At sufficiently large DM masses this strongly suppresses the γγ and gg annihilation channels
of the DM, but does not qualitatively change other channels. As an example of this model we
choose U(1)′B+L, which is simply one representative point in a large class of models.

Finally we choose to also show a leptophilic model (for this purpose, U(1)′L). This choice
is special because we have no constraints from the LHC and direct detection, and all the con-
straints come from indirect detection searches.6

SU(3)c SU(2)L U(1)Y U(1)B−L U(1)
′ ct

V
ax U(1)′B+L U(1)′L(

νe
L

eL

)
,
(

ν
µ
L

µL

)
,
(

ντ
L

τL

)
1 2 − 1

2 −1 −1 +1 +1

(eR)C, (µR)C, (τR)C 1 1 1 +1 −1 −1 −1
(

uL
dL

)
,
(

cL
sL

)
3 2 1

6 + 1
3 −1 + 1

3 0

(uR)C, (cR)C 3 1 − 2
3 − 1

3 −1 − 1
3 0

(dR)C, (sR)C 3 1 1
3 − 1

3 −1 − 1
3 0

(
tL
bL

)
3 2 1

6 + 1
3 −1 + 1

3 0

(tR)C 3 1 − 2
3 − 1

3 +1 − 1
3 0

(bR)C 3 1 1
3 − 1

3 −1 − 1
3 0

Higgs Φ 1 2 1
2 0 0 0 0

Table 3.1: Charges of the SM matter content under some choices of U(1)′ that we further
analyse in this Chapter.

Taking all this into account we present the charges of the SM fields under the new U(1)′s
in Table 3.1. For comparison, we also show B− L, which is anomaly free and does not require
any extra terms in the effective action.

Since our axial vector model features flavour non-universal Z′ quark couplings, we paren-
thetically consider here the flavour constraints on this kind of Z′. Even though the axial-Z′

couplings are diagonal in the flavour basis, the quark rotations that diagonalise the Yukawa

6Strictly speaking, this model is not totally invisible to direct detection experiments due to radiative couplings to
the hadrons (for works along these lines see [274]). However the effect is expected to be so small that we disregard
it here.
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matrix generally induce off-diagonal couplings between quark mass eigenstates [10]. To es-
timate the size of the associated flavour-changing neutral currents (FCNCs), we must make
assumptions about the structure of the quark rotations. Note that the only measured misalign-
ment between the quark flavour and mass eigenstates is from the CKM matrix VCKM, which

is a combination of the two left-handed quark rotations. Conversely, the U(1)
′ ct

V
ax model only

contains non-universality in the right-handed up-quark sector. Of course, if the mixing angles
in the RH sectors are completely anarchical, the structure that we discuss is not viable. How-
ever, this is not the only option, especially if we take into account the hierarchical structure of
VCKM. First, FCNCs may be completely avoided if the right-handed quark flavour and mass
eigenstates are identical (this would invoke either a fine-tuning or some other structure that
would explain the vanishing rotation angles).

Alternatively, let us assume that the flavour structures of the RH and LH quark sectors
are similar, such that the product of the rotations between the up- and down-type RH quark
U(1)’ flavour and mass eigenstates is ∼ VCKM. Then, since the non-universality is only in the
third generation, the Z′ c̄RuR coupling will go as ∼ Vub∗

CKMVcb
CKM, which is quite small, without

dangerous consequences for D mixing. Non-universal couplings in the down-type sector are
also induced at the loop level, leading to effects such as B− B mixing.

Finally we note that a kinetic mixing term BµνF′µν, where B and F are the U(1)Y and U(1)′

field strengths respectively, is fully allowed by the symmetries of the theory. Sizable kinetic
mixing can lead to observable effects that are interesting but separate from those caused by
the triple gauge vertices induced by anomalies. We henceforth assume negligible mixing, and
concentrate on the anomalous couplings among the SM and U(1)′ gauge bosons.

3.4 Application to Dark Matter Models

In this section we present the main results of this Chapter. First, we will use the results of
Sec. 3.2 to explicitly calculate the annihilation cross sections of DM particles into SM gauge
bosons. In the following subsections we show the prospects for the direct and indirect detec-
tion, as well as LHC searches. We will emphasise the complementarity of these searches to
properly analyse the possible parameter space of these models.

3.4.1 Annihilation cross sections into the SM gauge bosons

The objective in this Section is to explicitly calculate these relevant annihilation cross sections
that arise at the one-loop level. To begin, we outline the calculation of the coupling between
three gauge bosons induced by anomalies, starting with the Z′-γ-γ vertex. We take a single
fermion f of electric charge Qem

f to run in the loop diagrams of Fig. 3.2, whose amplitude we
write as εµ(p1)ε∗ν(p2)ε∗ρ(p3)Γµνρ. Note that we use p1 for the Z′ momentum, while the momenta
p2, p3 stand for the photon momenta. If the fermion’s U(1)′ coupling is vectorial, then by
Furry’s theorem the vertex vanishes. Without loss of generality we assume a Z′ f f̄ vertex with
strength igZ′γ

µ(g f
V + g f

Aγ5) with the understanding that only g f
A will contribute.7 As described

in Sec. 3.2, contracting the external gauge boson momenta with the triangle amplitude gives
non-vanishing results due to surface terms (see [265, 267] for further calculation details). The

7Note that this parametrization is completely generic and suitable for analyzing any anomalous Z′. If we turn
back to the models we have outlined in Sec. 3.3, we see that in those particular models all the SM fermions have
either gV = 0 or gA = 0, but this is not guaranteed for a generic Z′.
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resulting Ward identities depend, as explained in Sec. 3.2, on the loop momentum shift a:

(p1)µΓµνρ =
gZ′e2g f

A(Qem
f )2

8π2 ενραβaα(p1)β (3.17a)

(p2)νΓµνρ =
gZ′e2g f

A(Qem
f )2

8π2 εµραβ(a + 2p3)α(p2)β (3.17b)

(p3)ρΓµνρ =
gZ′e2g f

A(Qem
f )2

8π2 εµναβ(a− 2p2)α(p3)β (3.17c)

At this stage we can either tune the (Wess-Zumino and) generalised Chern-Simons term
of Eq. (3.9) to get rid of any aµ dependence in these expressions or, alternatively, set the gener-
alised Chern-Simons term to zero and find an appropriate momentum shift to maintain the nec-
essary Ward identities. We choose the latter recipe to resolve this problem. We make the phe-
nomenologically motivated choice of retaining U(1)EM gauge invariance, which corresponds
to the requirement that Eqs. (3.17b) and (3.17c) vanish. This, in turn, may be accomplished by
setting a = 2(p2 − p3), yielding the Ward identities

(p1)µΓµνρ =
gZ′e2g f

A(Qem
f )2

2π2 ενραβ(p2)α(p3)β

(p2)νΓµνρ =(p3)ρΓµνρ = 0

(3.18)

Next, to calculate the relevant cross section, we write the most general form of the amplitude
using the standard Rosenberg parametrization [275]

Γµνρ =
gZ′e2g f

A(Qem
f )2

π2

(
I1εανρµ(p2)α + I2εανρµ(p3)α

+ I3εαβνµ(p2)ρ(p2)α(p3)β + I4εαβνµ(p3)ρ(p2)α(p3)β

+ I5εαβρµ(p2)ν(p2)α(p3)β + I6εαβρµ(p3)ν(p2)α(p3)β

)
(3.19)

where Ii, 1 ≤ i ≤ 6 are form factors to be computed. By dimensional analysis, the effect of any
divergences must be in I1 and I2, while the remaining form factors are finite. We thus use the
Ward identities of Eq. (3.18) to fix the divergent form factors, and calculate the others explicitly.
The final result is [267]

I1(p2, p3; m f ) = (p2 · p3)I3(p2, p3; m f ) + p2
3 I4(p2, p3; m f )

I2(p2, p3; m f ) = −I1(p3, p2; m f )

I3(p2, p3; m f ) = −C12(p2
3, p2

1, p2
2, m2

f , m2
f , m2

f )

I4(p2, p3; m f ) = C11(p2
3, p2

1, p2
2, m2

f , m2
f , m2

f ) + C1(p2
3, p2

1, p2
2, m2

f , m2
f , m2

f )

I5(p2, p3; m f ) = −I4(p3, p2; m f )

I6(p2, p3; m f ) = −I3(p2, p3; m f )

(3.20)

where the C functions are Passarino-Veltman loop functions [276]. When there are multiple
fermions charged under both electromagnetism and U(1)′, Eq. (3.19) is readily generalised by
summing over the available loop fermions.

The above vertex may now be used to calculate physical observables. For instance, the
amplitude for DM annihilation to photons immediately follows, and the resulting cross section
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takes a rather compact form8

σ(χχ→ γγ) =
α2

emg2
χg4

Z′

π3

m2
χ

√
s

m4
Z′

√
s− 4m2

χ

∣∣∣∣∣∑f
c f

AN f
c (Qem

f )2
[
2m2

f C0(0, 0, s, m2
f , m2

f , m2
f ) + 1

]∣∣∣∣∣

2

,

(3.22)
where the explicit form of the Passarino-Veltman function involved is

C0(0, 0, s, m2
f , m2

f , m2
f ) =

1
2s

log2




√
s(s− 4m2

f ) + 2m2
f − s

2m2
f


 . (3.23)

The +1 term inside the squared brackets of the sum in Eq. (3.22) represents precisely the
anomaly coefficient. If this is zero, then at high s the cross section goes roughly as 1/s2. If
the anomaly coefficient is different from zero, then at high s the cross section is constant: this
anomalous behaviour will be tamed of course at the cut-off scale of this effective description,
where the heavy fermions restore the gauge invariance.

The result of Eq. (3.22) should be compared to the cross section for DM annihilation to
fermions,

σ(χχ→ f f̄ ) =
g2

χg4
Z′ N f

c

3πs
(
(s−m2

Z′)
2 + Γ2

Z′m
2
Z′
)

√√√√ s− 4m2
f

s− 4m2
χ

{
g f 2

V (s− 4m2
χ)(s + 2m2

f )

+ g f 2
A

[
s(s− 4m2

χ) + 4m2
f

(
m2

χ

(
7− 6

s
m2

Z′
+ 3

s2

m4
Z′

)
− s
)]}

. (3.24)

The key difference between these cross sections is that the annihilation to photons (if the
anomaly coefficient is not vanishing) remains constant with increasing centre-of-mass energy,
unlike the annihilation to fermions which eventually falls as 1/s.

We calculate the form factors for the annihilations into the rest of the gauge bosons, using
exactly the machinery that we have shown here. The starting point in order to guarantee the
invariance under the SM gauge group is the imposition of the Ward identities, which we derive
in Appendix 3.A. After having fixed the momentum shift, following the procedure sketched in
Sec. 3.3, one can compute explicitly the diagrams, with the results collected in Appendix 3.B.
For simplicity we take the Z′ width to be ΓZ′ = mZ′/10 throughout our calculations. This
choice only affects the extent of the influence of resonant effects in our results.

Before we present the results, it is instructive to see how the annihilation cross sections σv
scale with the kinetic energy of the fermions for fixed DM mass. We show this scaling within

8Notice that, in order to get the expression in Eq. (3.22) without spurious effects on the Z′ resonance, one needs
to properly apply the complex mass scheme to treat the cross sections. The replacement of the mass m2

Z′ → m2
Z′ −

imZ′ΓZ′ must be performed in all occurrences of m2
Z′ at the amplitude level [277]. In particular, the Z′ propagator

(with a momentum p flowing along its virtual line) in the unitary gauge reads

−i
p2 − (m2

Z′ − imZ′ΓZ′ )

(
ηµν − pµ pν

(m2
Z − imZ′ΓZ′ )

)
. (3.21)

This ensures the needed cancellations to recover the expression of Eq. (3.22) with a contact interaction Z′γγ [278,
279]. The physical reason why there is no feature corresponding to the physical production of a Z′ is that the
Landau-Yang theorem [280, 281] forbids the decay of an on-shell massive vector boson into two identical massless
vector bosons, due to Bose and Lorentz symmetry.
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the EFT on Fig. 3.3 (we use for this illustration the U(1)
′ ct

V
ax model). While the cross sections into

the fermions fall at the high energies as 1/s (as one would expect), the annihilations into the
gauge bosons stay constant as a function of s, signalling an inevitable breakdown of unitarity
at high energies. This breakdown is expected from the way we have formulated our EFT in
Sec. 3.2, in particular because of the higher dimensional interactions that we were forced to
introduce. Of course these cross sections are tamed at the scale where the spectator fermions
show up. This can in turn happen at or below the scale Λ as defined in Eq. (3.5) (modulo
replacing the Abelian anomaly by a mixed one).

Note also that unitarity will often dominate the exact bound on the cutoff Λ, although it
will often be of order (3.5). For example, a simple back-of-the-envelope estimation leads us to
the conclusion that the unitarity of the model depicted on Fig. 3.3 will break down at a scale
∼ 100 TeV. In this sense the very right side of this plot is not meaningful and the physics there
should be described by a full UV complete theory rather than the EFT.

eV keV MeV GeV TeV PeV

10-36

10-32

10-28

10-24

→Ann. in the Sun

→Milky Way Halo

→Freeze-Out

Figure 3.3: Annihilation cross sections in the U(1)
′ ct

V
ax model as a function of the DM kinetic

energy within the EFT that we describe. The blue curves indicate gauge boson final states
that receive contributions from anomalies. Annihilations into heavy quarks, light quarks, and
leptons are shown in green, red, and yellow, respectively. Kinetic energies corresponding to
DM in the Sun, the Milky Way halo, and at freezeout are indicated. Note that above the scale
∼ 100 TeV the EFT cannot give the correct solution due to the inevitable unitarity breakdown.

Note also the difference between the fermions that couple axially and ones that couple vecto-
rially to the Z′. While annihilations into the former final states (in this particular example, all
the SM fermions except the top) are constant at low energies, the latter in this range scale as v2,
and therefore linearly with the kinetic energy. This can also be clearly observed in Eq. (3.24).

Another important lesson that we learn from Fig. 3.3 is the dominance of the various chan-
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nels in different physical situations. For example, the velocity is still high enough during the
thermal freeze-out to render the annihilation into the gauge bosons unimportant, such that the
relic abundance is determined almost completely by the annihilations into the fermions. How-
ever at lower velocities (annihilation in the Galactic halo or at the centre of the Sun) the entire
signal is essentially determined by the radiative annihilations into the gauge bosons.

Finally let us notice, that even in the models where the respective mixed anomaly vanishes,
the annihilation channels into the gauge bosons are induced by finite radiative corrections.
However, because these contributions do not grow with energy, they are much smaller than
the anomaly-augmented annihilations, and can be neglected.

3.4.2 Relic abundance

We first briefly comment on the DM relic abundance, if we assume that the DM is the thermal
relic (which might or might not be the case). WIMP freezeout typically happens near x =
mχ/T ≈ 25, with the particular decoupling temperature only logarithmically sensitive to the
annihilation cross section. The annihilation channels which determine the relic abundance are
thus the modes which dominate at a DM velocity of

√
3/x ∼ 1/3. From Fig. 3.3, we see that DM

annihilation to fermions is primarily responsible for setting the relic abundance. Consequently,
the impact of anomalies in the DM relic density calculation is minimal. We thus expect the
values of the couplings and masses that reproduce the observed DM abundance to be similar
to previous calculations in the literature, see e.g. [282].

3.4.3 Indirect detection

Today very little kinetic energy is available for DM annihilation because the typical velocity
of a DM particle in the Milky Way halo is ∼ 10−3. In our models the gauge boson modes can
dominate the annihilations, and so the DM can be probed through searches for annihilation to
gg, W+W−, γγ, Zγ and ZZ.

We illustrate this point in Fig. 3.4, where we show the cross sections for the various annihi-
lation channels of DM in our galaxy as a function of the DM mass mχ.9 If the DM is relatively
light, mχ . 10 GeV, the BRs are dominated by the fermionic channels, particularly bb̄. How-
ever at sufficiently high DM masses the gg (if the mixed anomaly of the U(1)′ with the SM does
not vanish) and W+W− channels dominate the annihilations at such low DM velocities, and
therefore the indirect detection signatures. We also point out the importance of the γγ (when
present) and Zγ annihilation channels. Although the latter channels are suppressed compared
to the W+W−, the photon emission is monochromatic, leading to the prediction of a γ ray line.

3.4.3.1 Gamma ray continuum searches

We first consider limits from the continuum γ ray spectrum, where the strongest current bound
comes from dSph Fermi-LAT observations [143, 283] and, for TeV scale DM masses, from HESS
observation of the continuum emission from the Galactic Centre [284].

These bounds depend on the products of DM annihilation, as different SM particles yield
distinct photon spectra. In order to apply the γ ray limits, we thus consider the annihilation
branching ratios to different final states. At low DM mass, the fermionic annihilation channels
are dominant, as seen in Fig. 3.4.

9The absence of enhancement in the gauge boson BRs on the Z′ resonance is due to the Landau-Yang theorem,
which implies a suppression factor ∼ m2

V/m2
Z′ in the amplitude for an on-shell vector boson V ∼W, Z.
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Figure 3.4: Top: Annihilation cross sections of DM into all the SM channels as a function of the

DM mass mχ in the U(1)
′ ct

V
ax model. The DM velocity is taken to be 220 km/s, characteristic

of the Milky Way halo. The curves are coloured as in Fig. 3.3. Bottom: same for the U(1)′B+L
model. The quark lines all overlap on the red line. The branching ratios of the U(1)′L model
are analogous to the ones of U(1)′B+L, without the quark channels.

We start by discussing the U(1)
′ ct

V
ax model, where all fermionic channels are chirally sup-

pressed (except tt̄, which is velocity suppressed), and the bb̄ and τ+τ− annihilations are more
common than those into light fermions. In practice, the limits on annihilations to bb̄ and τ+τ−

are quite close to one another [143]. Similarly, DM annihilations to charm quarks produce sim-
ilar photon spectra as to up quarks [285], for which the limits are in turn close to those for
annihilations to bb̄. We thus choose to compare the total fermionic annihilation cross section to
the Fermi-LAT limit on DM annihilating to bottom quarks for DM masses below approximately
200 GeV.

At larger DM masses, the gg, W+W− and ZZ channels take over. Again, since the resulting
γ ray spectra from these annihilation modes are similar, we simply compare the total bosonic
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annihilation cross section to the Fermi-LAT limit on DM annihilations to W+W− (which gives
a slightly weaker bound than gg). Finally, in the resonance region mχ ≈ mZ′/2, fermionic
annihilations take over again and we switch back to comparing the total annihilation cross
section to the bb̄ limit from Fermi-LAT once more. Throughout, we assume that χ makes up all
of the observed DM.

In the U(1)′B+L and U(1)′L models the procedure is analogous, with the notable difference
that the gg channel disappears. At low DM masses the annihilations to fermions, which now
couple vectorially to the Z′, are velocity suppressed.

We show the bounds on the suppression scale mZ′/
√gZ′gχ in the three models as a function

of the DM mass in Fig. 3.5. These bounds are insensitive to the choice of DM profile [143]. The

bound on the U(1)
′ ct

V
ax model is significantly stronger than those on the B + L and L models

because of the dominance of the gg annihilation channel, which is prolific in γ rays due to its
secondary production of pions. As the mixed anomaly of the latter two U(1)s with the colour
group vanishes, the annihilations into gg in these models are much more modest.

The mediator mass by itself has little effect on the bounds except in the resonance region:
what matters is the effective scale mZ′/

√gZ′gχ. Note that if the DM is significantly heavier than
the mediator mass, the coupling gχ should be sufficiently small to avoid unitarity constraints
on the DM self-scattering [247].

We show the HESS continuum Galactic Centre bounds in Fig. 3.5, assuming three different
DM profiles (see Sec. 3.4.3.2 for more details). For each profile we compute the integrated J fac-
tor between 0.3° and 1° around the direction of the Galactic Centre using the tables from [285]
and scale the HESS bound appropriately.

3.4.3.2 Gamma ray line searches

Given the potential for annihilation to γγ or Zγ through anomalies, we now discuss the im-
pact of γ ray line searches on our benchmark models, as performed by Fermi-LAT [286] and
HESS [287]. Fermi-LAT is typically sensitive to photons below several hundred GeV in energy,
while HESS, being a terrestrial telescope, has the best sensitivity for much more energetic γ
rays.

The bounds from line searches generally depend on the DM halo profile, and so we will
show their variation when different profiles are considered; for an overview of DM halo pro-
files see for instance Ref. [19]. Fermi-LAT optimises the signal region of interest to maximise the
bound depending on the profile, for several different halo shape choices. For instance, the op-
timal bound is obtained for a region subtending 16° around the Galactic Centre for the Einasto
profile, but 90° for an isothermal profile. HESS only shows limits for the Einasto profile, using
a signal region of radius 1°. We choose to show bounds for Einasto, isothermal and Burkert
DM halo profiles, by rescaling the Fermi-LAT and HESS limits using the ratios of J factors for
different profiles over the signal regions of interest [285]. In the case of Fermi-LAT, we obtain
the limit for a Burkert profile by rescaling the constraint for an isothermal profile, as these halo
shapes are both relatively cored.

We further calculate the expected annihilation cross section to photons and compare with
the Fermi-LAT and HESS γ ray line search bounds, computed as described above for different
halo profiles. We notice that even if the γγ channel is absent (up to finite terms that we neglect
here) because of the vanishing mixed anomaly with the U(1)EM, as is the case for U(1)′B+L
and U(1)′L, the Zγ channel can be present, because it is controlled by the mixed anomaly with
the hypercharge. Most monochromatic photons come from DM annihilation to γγ when it is
present, as the Zγ mode is less common and provides half as many photons per annihilation.
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Figure 3.5: Limits from continuum γ ray emission on the three models we consider. Top:
bounds from Fermi-LAT observations of dSphs [143, 283]. Bottom: bounds from HESS obser-
vation of the Galactic Centre [284], for three choices of the DM profile distribution.

In the U(1)
′ ct

V
ax we include the Zγ channel above mχ & 140 GeV, where the difference in energies

between photons from γγ and Zγ annihilations is expected to be below the resolution of Fermi-
LAT; that of HESS is worse. For simplicity, below this threshold we ignore annihilations to Zγ,
which should not significantly affect our final results due to the lower cross section for this
channel.

The resulting constraints are presented in Fig. 3.6, and they illustrate the impact of the
anomalies on indirect detection constraints. Conversely, anomaly-free models often do not
face strong limits from γ ray line searches, due to suppressed annihilation cross sections to
photons. In the two models U(1)′B+L and U(1)′L, where only Zγ contributes to the signal, the
final bound is weaker, but still non-negligible for a DM mass of a few TeV. The limits are quite
sensitive to the choice of halo profile, particularly for HESS which presents limits for a γ ray
line search in a very narrow region around the Galactic Centre. As expected, the best limits are
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obtained for the cuspy Einasto profile.

10
1

10
2

10
3

10
4

100

500

1000

2000

3000

Figure 3.6: Limits from Fermi-LAT [286] and HESS [287] searches for γ ray lines. Below
(above) DM masses of 500 GeV, Fermi-LAT (HESS) provides the constraint. The choice of
mediator mass affects only the resonance region mχ ≈ mZ′/2.

3.4.3.3 Neutrino telescopes

We finally consider DM annihilation to neutrinos in the Sun, and the associated bounds from
three years of observations of IceCube [288]. In particular, annihilations to W+W−, ZZ and
τ+τ− produce high-energy neutrinos which are tightly constrained, while annihilations to bb̄
are less strongly limited because of the softer neutrino spectrum. To obtain the limit on the over-
all annihilation cross section, and hence on the scale of DM-SM interactions, we must convolve
the various IceCube limits on different annihilation channels with the annihilation branching
ratios in the model, as we did above for the continuum γ ray bounds.

For DM that is captured in the Sun, the typical kinetic energy is of the same order as the
temperature at the centre of the Sun, 107 K ∼ keV, which corresponds to negligible velocity for
DM heavier than the MeV scale. This velocity is typically slightly smaller than the DM velocity
in the Milky Way halo, and the annihilation cross sections are similar to those shown in Fig. 3.4.

The IceCube bounds on annihilations into bb̄ are weaker than the bounds on annihilations
into τ+τ− by 2-3 orders of magnitude. Therefore at low DM mass τ+τ− annihilations always

provide the most constrained source of neutrinos, even in the U(1)
′ ct

V
ax model when bottom

quarks are the main products of DM annihilation.
At higher masses, W+W− and ZZ annihilations face bounds from IceCube that are nearly

as strong as τ+τ− [288], and annihilations to Zγ produce half as many neutrinos as ZZ. Thus
we use the stronger of the bounds on annihilations to τ+τ− and W+W−, ZZ, Zγ, scaling the
IceCube limits by the appropriate branching ratios and assuming that the neutrino spectra for
these channels are all similar to that for W+W−.

The translation of the IceCube bounds on the SD DM-proton scattering cross section σSD
p
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to bounds on the EFT scale mZ′/
√gZ′gχ requires some care about the form factor assumed for

DM capture in the Sun. When providing a bound on σSD
p , IceCube assumes that DM and the

SM interact through the NR operator ONR
4 (according to the standard notation, see e. g. [73,

289]). This is indeed the operator that arises in the U(1)
′ ct

V
ax model, but for the U(1)′B+L model,

the leading interaction is the SI velocity-suppressed operatorONR
8 . To convert between bounds

on these operators, we use the capture form factors provided by [289]. In the leptophilic model
U(1)′L the DM capture rate is negligible, given the small momentum exchange between DM
and free electrons in the Sun, and the suppressed loop interaction with nucleons, so IceCube
bounds do not apply.

The results are shown in Fig. 3.7. Because the IceCube bounds are sensitive to the branching

ratios of DM annihilations rather than to the absolute annihilation cross sections, in the U(1)
′ ct

V
ax

model the bounds are weakened due to the large branching ratio into gluons, which yield
a negligible neutrino spectrum. In the U(1)′B+L model, while there are no annihilations into
gluons, the velocity-suppressed capture rate results in an even looser bound. We will see in
the next section that in this model, direct detection bounds are much stronger due to coherent
enhancement of the spin-independent scattering cross section.
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Figure 3.7: Bounds due to IceCube [288] searches for neutrinos originating from DM annihi-
lations in the Sun, on the models we consider.

3.4.4 Colliders and direct detection

In addition to the above indirect detection searches which can be significantly affected by the
presence of anomalies, simplified models of DM face complementary constraints from collider
and direct detection experiments. In order to present a complete account of the limits on the
models we consider, here we discuss these bounds and compare them to the exclusions derived
previously that rely on anomalies.

At the LHC, the main probes of simplified DM models are missing energy-based searches,
such as monojets and monophotons, and direct searches for the mediator decaying to SM par-
ticles.
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The stronger constraints from direct Z′ searches come from searches for dilepton reso-
nances. We use the combined 8 + 13 TeV CMS dilepton analysis [290]. Because the resonant
mediator searches do not involve the DM-mediator coupling, their reach cannot be presented
in terms of the DM-SM interaction suppression scale without additional assumptions. Instead,
we choose to show in Fig. 3.8 the upper limit on the U(1)′ coupling as a function of the me-
diator mass. The bound on the U(1)′B+L model is rescaled to account for the different charge
of light quarks in this model. In the leptophilic model U(1)′L the LHC bound does not apply,
since the production of Z′ at the LHC is absent at tree level. The conclusion is that, if the Z′ is
kinematically accessible at LHC (couples to both light quarks and leptons), the bound from the
dilepton searches would push us to very low Z′ couplings to SM fermions.
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Figure 3.8: Bounds from resonant dilepton searches on a Z′ at LHC from the 8 + 13 TeV

combined analysis [290], presented in the gZ′ -mZ′ plane for U(1)
′ ct

V
ax and U(1)′B+L (whereas

U(1)′L is practically unconstrained at an hadronic collider).

We also rescale the limits of the 8 TeV CMS monojet search [291] for Majorana DM and show
the results in Fig. 3.9.10 For DM below the TeV scale, monojets provide the dominant bound on
the models that we consider.

The LHC monojet analysis clearly does not apply in the U(1)′L model, for which we rely on
the recast done in [187] of the monophoton + missing transverse energy searches performed by
the DELPHI collaboration at LEP [292, 293]. Due to the lower energy reach of LEP, the exclusion
limit extends up to mχ ∼ 100 GeV.

Two models, out the three we consider, also produce direct detection signatures. The

U(1)
′ ct

V
ax model mainly produces spin-dependent interactions because of the axial couplings11.

The most powerful direct detection bound for our purposes comes from PICO [114], and is
shown in Fig. 3.10. The bound is comparable to the monojet exclusion limit, and is superseded
by Fermi-LAT observations of dSph at DM masses around 500 GeV.

The U(1)′B+L model induces instead a spin-independent and velocity-suppressed interac-

10While more recent searches are available, they are more difficult to recast for our purposes. The inclusion of
13 TeV results would improve the monojet limits at light DM mass in Fig. 3.9, while leaving the situation unchanged
for DM heavier than several hundred GeV.

11Spin-independent direct detection is in principle induced at loop level [106]. However, for typical DM and
mediator masses in our region of interest the associated cross section is small enough to be safely ignored.
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Figure 3.9: Bounds from the CMS monojet search [291] (for the models U(1)
′ ct

V
ax and U(1)′B+L),

and the monophoton search performed by DELPHI and recast in [187] for the U(1)′L model.

tion. The most recent experimental bound comes from XENON-1T [294]. The collaboration
provides a limit obtained assuming that the interaction between DM and nuclei occurs via the
canonical spin-independent operator Oq

1 = (χχ)(qq) in the EFT of the DM. In our case the
dominant interaction is Oq

6 = (χγµγ5χ)(qγµq) rather than Oq
1 [104, 295, 296]. We perform a

recast by means of the tables provided by [73]. The result is shown in Fig. 3.11. The exclusion
limit from direct detection is the most powerful for mχ up to a few TeV, where it is superseded
by γ ray line searches only if we assume a cuspy profile of the DM density distribution like
Einasto.

3.4.5 Summary of results

The combinations of all the constraints described above are shown in Figs. 3.10, 3.11 and 3.12

respectively for the three models U(1)
′ ct

V
ax , U(1)′B+L and U(1)′L.

Indirect detection provides the strongest bounds at large DM mass, driven by loop annihi-
lations of DM to gauge bosons. Depending on the choice of halo profile, either the HESS γ ray
line search or the Fermi-LAT dSph continuum γ ray spectrum analysis is most constraining in
this regime, depending in ultimate analysis on whether the gg channel is anomaly-induced or
not. For models where there is no mixed anomaly between the Z′ and U(1)EM, the γ ray line
searches are only weakly constraining. For lighter DM, monojets and/or direct searches still
provide the tightest bound on the interaction scale. Notice that in the leptophilic model U(1)′L
these constraints are absent, as is the IceCube bound, and the monophoton searches performed
at LEP have a lower reach in mχ. In this model, the only limits above LEP are provided by γ
ray searches.

The limits are practically independent of the mediator mass. Consequently, the dilep-
ton searches presented on Fig. 3.8 should be considered as an orthogonal bound to those in
Fig. 3.10. For very heavy mediators, on the other hand, only large couplings can currently be
constrained. However, future experiments will probe regions of our model which can more nat-
urally accommodate a Z′ weighing several TeV, and at such mass scales resonant LHC searches
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lose sensitivity quite rapidly.
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Figure 3.10: Combined limits from indirect detection, collider, and direct detection bounds on

the U(1)
′ ct

V
ax model with a 3 TeV mediator. For heavy DM, the anomaly-induced annihilations

to gauge bosons lead to strong indirect detection bounds. Some of the indirect detection limits
are sensitive to the halo profile, and for these the impact of choosing different halo profiles is
shown.

3.5 Comments on the Validity of Our Results

Throughout our discussion, we have assumed that anomalies are cancelled by fermions that
are sufficiently decoupled so as to be effectively infinitely heavy for the processes that they
mediate. Since the main effects of the Wess-Zumino terms are in DM annihilation, this corre-
sponds to m f � mχ. It is instructive to ask how our results change as the anomaly-cancelling
fermions are brought closer to the DM mass.

Let us illustrate this point with the particular example of DM annihilation in a U(1)′ model
where the charge of every SM fermion is equal to its usual hypercharge. Above the scale of
the heaviest SM fermion, the top quark, there are no mixed U(1)′-SM anomalies. Below the
top mass, however, anomalies should appear and induce Wess-Zumino terms. At some point,
where the DM becomes sufficiently lighter than the top mass, the EFT should give a good
approximation to the full anomaly-free theory.

We compare these two calculation methods in Fig. 3.13, by varying the mass of the DM. The
solid curve in Fig. 3.13 shows the annihilation cross section, calculated in the full UV complete
theory, while the dashed line stands for the EFT calculation. By comparing the two curves, we
see that the anomaly-cancelling fermions can be treated as having infinite mass so long as they
are at least 2-3 times heavier than the centre-of-mass energy of the process being studied. In



86 3. Dark Matter interactions with the Standard Model through an anomalous Z′

10
1

10
2

10
3

10
4

100

200

500

1000

2000

5000

Figure 3.11: The same as in Fig. 3.10, shown for the U(1)′B+L model.
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Figure 3.12: The same as in Fig. 3.10, shown for the U(1)′L model.

principle it is a very optimistic conclusion, that suggests that as long as the spectator fermions
are not at the scale of the DM, our results are valid.



3.6. Conclusions 87

10
1

10
2

10
3

10
-25

10
-24

10
-23

10
-22

10
-21

10
-20

Figure 3.13: The effect of decoupling the top quark in a sequential hypercharge model. The
green (solid) curve shows the cross section for DM annihilation to photons with mt = 175 GeV,
while the red (dashed) curve shows the same cross section with an infinite top quark mass. In
general, anomaly-induced effects rise with energy until the mass scale where the anomaly is
resolved.

We also notice that in this particular example we have chosen the mass of the Z′ to be
very high, 10 TeV. The scale of validity of the effective “anomalous” theory, which lies around
2− 3 mtop if the DM is light, is quite uncorrelated with mZ′ , showing again that the scale of the
Z′ plays no role in setting the validity range of the effective theory.

3.6 Conclusions

Simplified models of DM are frequently used to present experimental results, yet the most com-
mon spin-1 mediator models often contain anomalies. While these may be resolved at high
scales through the introduction of additional chiral fermions, in this work we have demon-
strated that this is not without consequence. Integrating out heavy fermions generates Wess-
Zumino and generalised Chern-Simons terms, whose derivative couplings can create signifi-
cant effects at high energies despite the loop suppression.

In particular, mixed anomalies cause couplings between the Z′ and the SM gauge bosons.
These interactions affect DM annihilation through the Z′, and mostly impact on indirect de-
tection probes of DM. We have evaluated the resulting bounds for a selection of U(1)′ pos-
sibilities. If a new U(1)′ has vector couplings, the only anomaly-induced terms involve the
SU(2)L bosons, and so the annihilation cross sections tend to be smaller. This leads to weaker
constraints from indirect detection searches involving photons.

We have compared bounds from indirect detection with those from direct detection and
colliders. We find that γ-ray searches can often provide the most stringent limits on heavy
DM, with either continuum or line searches being more constraining depending on the choice
of halo profile. For intermediate masses between a few hundred GeV and 1 TeV, IceCube can
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provide bounds comparable to direct searches if the scattering cross section with protons is
SD. At small DM mass, direct detection is more effective at limiting a Z′ which couples to
quarks. Monojet and monophoton bounds can also constrain lighter DM, and while resonance
searches are not directly comparable, dileptons still provide the best bounds if the mediator is
kinematically accessible at the LHC and couples to quarks and leptons.

While most of our calculations assumed that the fermions which cancel anomalies are com-
pletely decoupled, we also considered the effect of restoring gauge invariance at smaller scales.
As long as the anomalies persist up to energies that are a few times higher than the DM mass,
which is the relevant energy scale for annihilation, our results remain completely valid.

In our study we have assumed that DM is a Majorana fermion, in part to emphasise our
new indirect detection limits over the usual direct detection bounds, which are strong for spin-
independent interactions that arise when the DM and quarks both couple vectorially to the Z′.
It would nevertheless be interesting to examine the interplay between direct and indirect detec-
tion bounds in more general models. For instance, if the DM is a Dirac fermion with a vector
U(1)′ coupling but the SM quarks couple axially under U(1)′, the leading spin-independent
direct detection interaction is velocity-suppressed. Dressing such an interaction with Higgses
yields a pure vector interaction, but as the main effect involves a top loop, it can be avoided
if the top does not couple to the Z′. On the other hand, if the top does carry U(1)′ charge but
the light quarks do not, the SU(3)2

c ×U(1)′ anomaly could be relevant for collider searches as
there is no tree-level DM production from light quark initial states.

In characterizing the sensitivities of DM searches, models that are employed to show exper-
imental results should be consistent with theoretical considerations. In addition to the recently
well-studied requirement that such models provide unitary scattering amplitudes, we have
shown here how gauge invariance necessitates the inclusion of additional interactions beyond
the minimal Lagrangian of generic simplified DM models. We look forward to future develop-
ments in this direction as searches for DM continue.

3.A Ward Identities for non-Abelian spontaneously broken gauge
theories

In this Appendix, we derive the Ward identities (more properly called Ward-Takahashi identity
for Abelian groups and Slavnov-Taylor identities for non-Abelian groups) for the SM gauge
bosons. For a more rigorous derivation, see [297].

We specialise to the calculation of the effective vertex Z′VV (V being a SM gauge boson) at
one loop, in order to fix the value of the momentum shift aµ of the loop momentum between
the two diagrams as shown in Fig. 3.2. In Fig. 3.14 we show with Feynman diagrams the final
results for the Ward identities we are interested in.

Preliminary definitions We are interested in the three-point functions Γµνρ

Aa Ab Ac for three gauge
bosons Aa µ(x), Ab ν(y), Ac ρ(z):

Γµνρ

Aa Ab Ac =
δ

δAa
µ(x)

δ

δAb
ν(y)

δ

δAc
ρ(z)

W

∣∣∣∣
V=0

, (3.25)

where by V = 0 we mean that all the fields have to be set to 0 after taking the functional
derivatives.

The procedure to derive the Ward identities for the EW bosons is the following: we write an
infinitesimal SU(2)L ×U(1)Y transformation, and we impose the invariance of the generating
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γ, g kν
Z′µ

γρ(k′)

γν(k)

= 0

Z kν
Z′µ

γρ(k′)

Zν(k)

±i mZ

Z′µ

γρ(k′)

φ0(k)

= 0

W± kν
Z′µ

W∓ρ (k′)

W±ν(k)

∓mW

Z′µ

W∓ρ (k′)

φ±(k)

±i g
Z′µ W3

ρ (k + k′)
= 0

Figure 3.14: Ward Identities for the calculation of the one-loop vertices of the Z′ with the SM
vector bosons. The φi fields are the Goldstone bosons. In the fermion loops, we understand
the sum of the diagrams with the propagators in clockwise and counter-clockwise directions.

functional of the connected Green functions W for a transformation along one of the generators
of the gauge symmetry. We further take functional derivatives with respect to Z′µ and to the
third vector boson of the amplitude.

SU(2)L×U(1)Y infinitesimal gauge transformations We want to express infinitesimal SU(2)L×
U(1)Y transformations in terms of the mass eigenstate basis. Let us denote the bases for the
gauge bosons and the generators before the EW symmetry breaking as

{W1, W2, W3, B} , {ω1, ω2, ω3, ωB} (3.26)

and in the mass basis as
{

W+, W−, Z, A
}

, {ω+, ω−, ωZ, ωA} , (3.27)

with the usual relations between the bosons in the unbroken and broken phases:

W± =
W1 ∓ iW2
√

2
, Z = cWW3 − sWB , A = sWW3 + cWB ,

ω± =
ω1 ∓ iω2
√

2
, ωZ = cWω3 − sWωB , ωA = sWω3 + cWωB ,

(3.28)

where cW and sW are cosine and sine of the Weinberg angle.
Let us consider first the effect of a SU(2)L×U(1)Y transformation on the electroweak gauge

bosons. The effect of an infinitesimal SU(2)L gauge transformation is δWa = ∂ωa− g f abcωbWc,
where g is the SU(2)L coupling constant f abc are the structure constants of the gauge group,
which in the basis (3.26) are given by the Levi-Civita tensor, f abc = iεabc. We now rewrite
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these transformations in the basis (3.27). As an intermediate step, we express them in the basis
{W+, W−, W3, B} in order to highlight some terms containing ω+ which will be relevant later:

δW+ = ∂ω+ + gω+W3 − gω3W+ (3.29a)

δW− = ∂ω− − gω−W3 + gω3W− (3.29b)

δW3 = ∂ω3 −gω+W− + gω−W+ (3.29c)

δB = ∂ωB (3.29d)

The final result in the mass basis of Eq. (3.27) is

δW+ = ∂ω+ + ω+(gcWZ + eA)− gcWωZW+ − eωAW+ (3.30a)

δW− = ∂ω− −ω−(gcWZ + eA) + gcWωZW− + eωAW− (3.30b)

δZ = ∂ωZ − gcWω+W− + gcWω−W+ (3.30c)

δA = ∂ωA − eω+W− + eω−W+ (3.30d)

where e = gsW is the electric charge.
We now turn our attention to the transformation of the Higgs doublet, which we parametrise

as

Φ =

(
φ+

v+h+iφ0
√

2

)
. (3.31)

Under an infinitesimal SU(2)L ×U(1)Y transformation it becomes

Φ′ = exp
{

igωa σa

2
+ ig′

1
2

ωB
}

Φ '
[

1 + i

(
1
2 (gcW − g′sW)ωZ + eωA 1√

2
ω+

1√
2
ω− − 1

2 gZωZ

)]
Φ , (3.32)

where g′ is the U(1)Y coupling constant and gZ =
√

g2 + g′2 = g/cW. The result for the
variations of the components of the Higgs doublet is

δφ+ =
i
2

(gcW − g′sW)ωZφ+ + ieωAφ+ +
i
2

gvω+ +
i
2

g
(
h + iφ0)ω+ (3.33a)

δh = −g Im(ω−φ+) +
1
2

gZωZφ0 (3.33b)

δφ0 = gRe(ω−φ+) −1
2

gZvωZ − 1
2

gZωZh (3.33c)

Also the fermion doublets of the SM transform under SU(2)L ×U(1)Y, but they are not con-
tributing to the Ward identities for the Z′VV vertices.

Ward identity for the photon in the Z′γγ, Z′Zγ vertex We start from the standard case of
the Ward identity for the photon, associated to the unbroken U(1)EM gauge symmetry. We
perform a SU(2)L ×U(1)Y transformation in the ωA(y) direction, and we write all the terms
arising from the variation of the generating functional W :

δωAW =

ˆ
d4y ωA(y)

[
−∂ν

δW

δAν
− eW+

ν

δW

δW+
ν

+ eW−ν
δW

δW−ν
+

(
ieφ+ δW

δφ+
+ h.c.

)
+ [fermions]

]
,

(3.34)
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where the last term includes the contribution from fermions, and we understand the depen-
dence on y of all the functions in the integrand. If we impose the invariance of the Lagrangian
under SU(2)L × U(1)Y, the integrand in Eq. (3.34) vanishes. We now take two functional
derivatives with respect to Z′µ and Aρ, and we set all the fields to 0. In the final result con-
taining the three-point function for Z′γγ, only the first term of Eq. (3.34) survives and gives the
familiar Ward-Takahashi identity

∂

∂yν
Γµνρ

Z′γγ = 0 . (3.35)

The same identity holds for the photon in the Z′Zγ vertex. Thus, only the term highlighted in
yellow in Eq. (3.30d) from the variation δA contributes to the Ward identity for this amplitude.

Ward identity for the Z boson in the Z′ZZ, Z′Zγ vertices The procedure is the same outlined
for the photon. In this case, in the final result there is another non-vanishing contribution, apart
from the familiar one originating from the term highlighted in red in Eq. (3.30c). Due to the EW
symmetry breaking and the non-vanishing vev v/

√
2 of the Higgs, there is a term (highlighted

in red) in Eq. (3.33c) proportional to v and containing the function ωZ with no other fields. This
leads to an extra term in the Ward identity for the Z boson, proportional to the Z mass. By a
calculation completely analogous to the one of Eq. (3.34) one finds

∂

∂yν
Γµνρ

Z′Zγ + imZΓµρ

Z′φ0γ
= 0 , (3.36)

where Γµρ

Z′φ0γ
is the three-point function of Z′µ(x)φ0(y)Aρ(z). The Feynman rule for the 1-loop

fermion contribution in Fig. 3.14 contains a ± sign in front of this Goldstone term because of
the Feynman rule for the vertex f γ5 f φ0, which has a + (−) sign for upper (lower) components
of the SU(2)L doublet. The same Ward identity of Eq. (3.36) holds also for the Z′ZZ vertex.

Ward identity for the W± boson in the Z′W+W− vertex Let us consider now the Ward iden-
tity for W+ boson in the Z′W+W− vertex. The standard term coming from the variation δW+

is highlighted in blue in Eq. (3.29b). A term containing the Goldstone boson contribution and
proportional to mW comes from the term highlighted in Eq. (3.33a). Moreover, in this case, there
is also another term: the contribution in blue in Eq. (3.29c) for the variation δW3 is proportional
to ω+W−, so that when we derive with respect to W− ρ we cancel the field and we get a non-
vanishing piece in the Ward identity. This is a two-point function Γµρ

Z′W3 of the Z′µ and the W3 ρ

boson:
∂

∂yν
Γµνρ

Z′W+W− −mZΓµρ
Z′φ+W− − gΓµρ

Z′W3 = 0 . (3.37)

A completely analogous equation holds for the W− boson, with an opposite sign for the Gold-
stone boson contribution and the two-point function.

Ward identity for the gluon in the Z′gg vertex In the 3-point function Z′gg of the Z′ with
gluons, by imposing the SU(3)c invariance with the same procedure described before, one gets
a Ward-Takahashi identity equal to the standard one for photons:

∂

∂yν
Γµνρ

Z′GaGa = 0 . (3.38)

Of course, given that SU(3)c is unbroken there is no Goldstone boson piece. The non-Abelianity
of SU(3)c does not introduce extra terms in 3-point function for Z′gg: the reason ultimately
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relies on the fact the two final gluons carry the same colour index, and the structure constants
are completely antisymmetric, so that no pieces survive in the derivation in the Ward identity
for Z′µGa νGa ρ. Notice that in the basis {W+, W−, W3} the SU(2)L structure constants are not
completely antisymmetric, so that there is no inconsistency between the two results.

3.B Effective triple gauge boson couplings

Eq. (3.19) gives the effective Z′-γ-γ vertex. Here, we provide the form of this vertex for other
gauge boson channels.

The calculation of the Z′-g-g vertex is the same as for Z′-γ-γ up to a colour factor and
coupling constants:

Γµνρ
Z′gg =

2
Nc

(
gs

eQem
f

)2

Γµνρ
Z′γγ (3.39)

The final cross section for χχ→ gg is then multiplied by the number of gluons N2
c − 1.

For massive gauge bosons, we include the Goldstone amplitude in the Ward identities,
as described in Sec. 3.2. Unlike the photon and gluon cases, a triangle vertex arises even if
the U(1)′ coupling of the loop fermion is vector-like, because the weak interactions violate
parity. Similarly to the Z′ coupling to fermions, we write the Z-fermion-fermion vertex as
i g

cW
γρ(gZ

V + gZ
Aγ5). Then, the Z′-Z-γ vertex is given by

Γµνρ
Z′Zγ =

gZ′N2
c geQem

f (g f
V gZ

A + g f
AgZ

V)

π2cW

(
IZγ
1 εανρµ(p2)α + IZγ

2 εανρµ(p3)α

+ IZγ
3 εαβνµ(p2)ρ(p2)α(p3)β + IZγ

4 εαβνµ(p3)ρ(p2)α(p3)β

+ IZγ
5 εαβρµ(p2)σ(p2)α(p3)β + IZγ

6 εαβρµ(p3)σ(p2)α(p3)β

)
(3.40)

where the form factors, in terms of those in Eq. (3.20), are

IZγ
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3 IZγ
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IZγ
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2 IZγ
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6 (p2, p3; m f )

− g f
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V
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f C0(p2
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f , m2

f , m2
f )

IZγ
3 (p2, p3; m f ) =− Iγγ
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IZγ
4 (p2, p3; m f ) =− Iγγ
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5 (p2, p3; m f ) =− Iγγ

5 (p2, p3; m f )

IZγ
6 (p2, p3; m f ) =− Iγγ

6 (p2, p3; m f )

(3.41)

The Z′-Z-Z vertex is

Γµνρ
Z′ZZ =

gZ′N2
c g2
[
2g f

V gZ
V gZ

A + g f
A

(
(gZ

V)2 + (gZ
A)2
)]

π2c2
W

(
IZZ
1 εανρµ(p2)α + IZZ

2 εανρµ(p3)α

+ IZZ
3 εαβνµ(p2)ρ(p2)α(p3)β + IZZ

4 εαβνµ(p3)ρ(p2)α(p3)β

+ IZZ
5 εαβρµ(p2)σ(p2)α(p3)β + IZZ

6 εαβρµ(p3)σ(p2)α(p3)β

)
(3.42)
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where the form factors are

IZZ
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3 (p2, p3; m f ) + p2
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f , m2
f )
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2 IZZ
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IZZ
3 (p2, p3; m f ) =− Iγγ
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IZZ
4 (p2, p3; m f ) =− Iγγ

4 (p2, p3; m f )

IZZ
5 (p2, p3; m f ) =− Iγγ

5 (p2, p3; m f )

IZZ
6 (p2, p3; m f ) =− Iγγ

6 (p2, p3; m f )
(3.43)

For the Z′-W+-W− vertex, we assume that two fermions run in the loop whose left-handed
components are related by SU(2)L, with the up-type fermion having mass m f and coupling
vectorially to the Z′, −igZ′γ

ν. Then, regardless of whether the down-type fermion coupling to
the Z′ is vector or axial, i.e. −igZ′γ

ν or igZ′γ
νγ5, the vertex is given by

Γµνρ
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gZ′N2
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4π2

(
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+ IWW
5 εαβρµ(p2)σ(p2)α(p3)β + IWW

6 εαβρµ(p3)σ(p2)α(p3)β

)
(3.44)

where the form factors are
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4
A cosmological signature of the Higgs
instability: Primordial Black Holes as
Dark Matter

The potential of the Standard Model Higgs boson develops an instability at large scales for the
central measured values of the top and Higgs masses. This remarkable feature has spurred a
lot of investigation on its possible impact on the early universe, with the hope to get insight
on Physics at scale inaccessible at colliders through cosmological considerations. A cosmolog-
ical signature of this instability could be that the dark matter is under the form of Primordial
Black Holes (PBH) seeded by Higgs fluctuations during inflation. This chapter, based on the
papers [3] and [4] and on further material contained in [5], illustrates this mechanism.
Section 4.1 summarises the results about the instability of the Higgs vacuum and its impact
on the Early Universe, and sketches the mechanism we describe in the rest of the chapter.
Section 4.2 describes in detail the dynamics of the mechanism we envisage during and after
inflation. Section 4.3 contains analytical estimates of the curvature perturbations. In Section 4.4
we offer a general discussion of PBHs, starting from their motivation and describing their for-
mation, experimental constraints and giving an overview of the models in the literature. In
Section 4.5 we resume the illustration of the mechanism we propose, showing the mass func-
tion of PBHs that can be generated with this mechanism, and sections 4.6 and 4.7 address the
issues of homogeneity and fine tuning. Section 4.8 contains the conclusions, and the final ap-
pendices contain additional material.

4.1 Instability of the Standard Model Higgs vacuum

It has been known for a long time that the Standard Model (SM) Higgs potential develops an
instability at large field values [298–309]. For the current central values of the Higgs and top
masses, the quartic coupling λ in the Higgs potential becomes negative for Higgs field values
& 1011 GeV, 1 making our electroweak (EW) vacuum not the one of minimum energy. The
running of λ up to the Planck scale was updated with the input of the measured Higgs mass
mHiggs = 125.15± 0.24 GeV in [309] and is shown in Fig. 4.1.
Despite the metastability condition of our present electroweak vacuum, its lifetime against de-
cay both via quantum tunnelling in flat spacetime or thermal fluctuations in the early Universe

1For a discussion on how to assess the instability scale in a gauge-independent way, see Ref. [310].
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Figure 4.1: Running of the quartic coupling λ for the central measured values of mtop, mHiggs
and αS reported in the legend, with bands corresponding to (±3σ) deviations in these values
(from [309]).

is by far longer than the age of the Universe [307–309, 311]. Fig. 4.2 shows in the (mHiggs, mtop)
plane the lifetime of the EW vacuum for each point in the parameter space.
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the different regions corresponding to (±1σ) variations in αS. The green region features an
absolutely stable vacuum. In the unstable red region, λ turns negative at a scale low enough to
make the lifetime of the EW vacuum shorter than the age of the Universe, whereas the yellow
region corresponds to metastable vacua with a lifetime longer than the age of the Universe.
The red lines and labels mark the value of the instability scale Λ at which V(h) becomes
negative (from [309]).
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It is remarkable that we happen to live precisely in the metastable region, the narrow strip
dividing the stable and unstable regions of the parameter space. This picture can change of
course in presence of Physics Beyond the Standard Model (BSM) interacting with the EW sec-
tor. Still, given the current lack of evidence for such states, it is worth considering the SM valid
up to the Planck scale and asking what are the implications of the instability during the early
universe.

We have seen that the risk of tunnelling beyond the barrier today is completely negligible.
The situation is different during primordial inflation [312], the early stage during which the
Universe expands exponentially and light fields may be quantum mechanically excited. As-
suming that the inflationary stage starts with a vanishing vacuum expectation value of the SM
Higgs, if the effective mass of the Higgs field is smaller than the Hubble rate H during infla-
tion, quantum excitations of the Higgs field push it away from its minimum [313]. The classical
value (the long wavelength mode) of the Higgs field randomly walks receiving kicks of the or-
der of∼ ±(H/2π) each Hubble time and can surmount the potential barrier and fall deep into
the unstable side of the potential [313–323].

At the end of inflation, patches where this happened will be anti-de Sitter regions, and they
are lethal for our universe as they grow at the speed of light [324]. From this result, one can
derive upper bounds on H, which depend on the reheating temperature TRH and on the Higgs
coupling to the scalar curvature or to the inflaton [324–332].

The upper bound on H depends on TRH because, for sufficiently large values of TRH, patches
in which the Higgs field probes the unstable part of the potential can be recovered thanks to the
thermal effects after inflation. Indeed, the mass squared of the Higgs field receives a positive
correction proportional to T2 in such a way that in those would-be dangerous regions the Higgs
field can roll back down to the origin and be safe. This happens because, thanks to the thermal
interactions with the surrounding plasma, the Higgs potential receives a correction of the form
[324]

VT '
1
2

m2
Thc

2 , m2
T ' 0.12 T2 e−|hc|/(2πT) (4.1)

(a fit that is accurate for h . 10 T in the region of interest and includes the effect of ring resum-
mation). If the temperature at reheating is large enough, T2

RH & λh2
e, where he is the value of

the Higgs when inflation ends, then the patch is rescued and the Higgs starts oscillating (with
a relativistic equation of state) around the current electroweak vacuum where it will settle after
a while.

While some take this as motivation for the presence of new physics to change this feature,
this is not necessarily a drawback of the SM. The physical implications of living in a metastable
electroweak vacuum are fascinating and have far-reaching consequences for cosmology. This
has triggered much activity in a field that involves inflationary dynamics, the physics of pre-
heating, the interplay between Higgs properties and observables of cosmological interest, etc.
In spite of this richness, a word of warning is in order: the energy scale of this physics is very
high and we have no smoking-gun signature (comparable to proton decay for GUTs) that the
electroweak vacuum metastability is actually realised in nature (with the exception of the vac-
uum decay itself!).

One reasonable question to ask is how can we probe, even if indirectly, the SM Higgs vac-
uum instability. In this chapter we argue that there might be a cosmological signature of this
feature: the very presence of dark matter (DM) in our universe. We argue that the origin of DM
does not need physics beyond the SM: DM may be due to primordial black holes seeded by the
perturbations of the Higgs field generated during the last stages of inflation. The black holes
may provide the seeds for structure formation [333, 334].
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The picture we envisage is the following. During inflation there are patches where the
Higgs has been pushed by quantum fluctuations beyond the potential barrier and is classically
rolling down the slope. Higgs fluctuations do not contribute significantly to the total curvature
perturbation ζ which is ultimately responsible for the anisotropies in the Cosmic Microwave
Background (CMB). Higgs perturbations instead grow to relatively large values in the last e-
folds of inflation, which are irrelevant for observations in the CMB. When inflation ends and
reheating takes place, these regions are rescued by thermal effects and the Higgs rolls down
to the origin of its potential. At later times, the Higgs perturbations reenter inside the Hubble
radius and, if they are large enough, they provide high peaks in the matter power spectrum
which give rise to PBHs. We show that these PBHs can provide the DM we see in the universe
today. A schematic representation of the evolution of the Higgs background throughout the
whole mechanism is shown in Fig. 4.3.

t

hc

t∗ tend

Λ

−Λ

beyond the barrier

≈
≈

Figure 4.3: Evolution of the Higgs field background hc during inflation and reheating.

Within an anthropic attitude, one could say that the electroweak SM instability is beneficial to
our own existence as DM is necessary to form structures. In the absence of other DM candi-
dates, the SM would be able to provide the right DM abundance. As discussed below, although
the parameter choices needed for PBH formation might seem finetuned, they would be moti-
vated anthropically. In particular, this mechanism offers an anthropic explanation of why the
electroweak vacuum is metastable (but near-critical, very close to being stable).

4.2 Dynamics of the Higgs background and fluctuations

4.2.1 Quantum fluctuations during inflation

During inflation, which is necessary to explain the anisotropies in the cosmic microwave back-
ground radiation as well as to provide the seeds for the large-scale structure, the Higgs field is
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subject to quantum fluctuations as any other field lighter than the Hubble rate H [313]. We are
agnostic about the details of the model of inflation and the origin of the curvature perturbation
responsible for the CMB anisotropies, which we call ζst. This ζst might be caused by a single
degree of freedom [312] or by another mechanism such as the curvaton [335]. Also, we take
a constant Hubble rate H during inflation and suppose that it ends going through a period of
reheating characterised by a reheating temperature TRH. Of course, one can repeat our calcula-
tions for a preferred model of inflation. We suppose that H is large enough to have allowed the
SM Higgs to randomly walk above the barrier of its potential to probe the potentially danger-
ous unstable region. As a representative value we take H ' 1012 GeV, and the running of λ(h)
that we assume, corresponding to the parameters listed in Eq. (4.43), is shown in Fig. 4.4. We
postpone to section 4.5 the discussion about our choice for the running of λ.
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Figure 4.4: Running of λ that we consider in [3] (blue dashed line), together with its central
and extremal values [307–309].

In the first phase the Higgs has an initial value much smaller than the instability scale Λ. How-
ever, if it is lighter than the Hubble rate H, the background value hc of the Higgs field keeps
receiving each Hubble time kicks of the order of±(H/2π) and walks randomly. This dynamics
is described by the Langevin stochastic equation [313]

..
hc + 3H

.
hc + V ′(hc) = 3Hη , V(hc) ' −

1
4

λh4
c , (4.2)

where dots represent time derivatives and primes field derivatives, η is a Gaussian random
noise with

〈η(t)η(t′)〉 =
H3

4π2 δ(t− t′) (4.3)

and λ > 0 runs logarithmically with the field scale. During inflation, λ should in fact be
evaluated at a scale µ given by µ2 ' h2

c + H2 [323], but this is not particularly relevant for our
scenario where hc & H. A typical value (for hc & 1012 GeV) is λ ' 10−2.

The Langevin equation (4.2) can be rewritten in a more transparent way by introducing the
derivatives with respect to the number of e-folds N = ln a/ai, so that dN = Hdt and

d2hc

dN2 + 3
dhc

dN
+ V ′(hc) = 3η , 〈η(t)η(t′)〉 =

(
H
2π

)2

δ(t− t′) , (4.4)
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from which it is clear that the stochastic jumps are of order H/2π and happen on average every
Hubble time.

4.2.2 Quantum to classical transition of the Higgs background

If the Hubble rate is large enough, the Higgs field can climb over the maximum of the potential
[313–324]. The Higgs background continues its random walk as long as the quantum diffusion
is not counterbalanced by the classical drift, that is the displacement predicted by the equations
of motion (4.2) without classical noise:

..
hc + 3H

.
hc + V ′(hc) = 0 , (4.5)

In order to make any prediction deterministic and not subject to probability arguments, we
are interested in the regime in which the dynamics of the zero mode of the Higgs is dominated
by the classical motion rather than by the randomness of the fluctuations. We require therefore
that in a Hubble time, ∆t = 1/H, the classical displacement of the Higgs

∆clhc '
.

hc ∆t ' −V ′(hc)

3H2 , (4.6)

is larger (in absolute value) than the quantum jumps

∆qh ' ±
(

H
2π

)
. (4.7)

This implies that, inside the inflating region, hc must be bounded from below for the classical
regime to take over:

h3
c &

3H3

2πλ
. (4.8)

We call t∗ the initial time at which the Higgs starts its classical evolution. In this estimate we
assume that the motion of the Higgs is friction dominated, that is

..
hc . 3H

.
hc. This is true as

long as h2
c . 3H2/λ. If so, the Higgs is slowly moving for a sufficient number of e-folds.

In our numerical solution of the equations of motion, we take as initial value h∗ ≡ hc(t∗)
the value which satisfies Eq. (4.8) with an equality sign, and we assume the initial velocity to
be zero,

.
hc(t∗) = 0. In reality, both of these quantities have a probability distribution around

these central values. We assume these specific values as illustrative for our mechanism. The
issue of initial conditions is further discussed in Section 4.6.

The evolution of the classical value of the Higgs can be obtained from Eq. (4.5) if we assume
a constant λ and neglect the second derivative term, and reads

hc(t) ' h∗
[1− 2λh2∗(t− t∗)/3H]1/2 . (4.9)

When hc starts to accelerate and friction gets subdominant, hc rapidly increases. If we neglect
the friction term, we get a solution (see Appendix 4.A for more details) which goes as

hc(t) '
√

2√
λ

1
(tp − t)

, (4.10)
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where tp is the time when the Higgs hits the pole, something that happens in a finite time. We
can rewrite the solution (4.9) in terms of the number N of e-folds till the end of inflation and
the final value he of the classical Higgs field at the end of inflation:

hc(N) ' he

(1 + 2λh2
e N/3H2)1/2 , (4.11)

We focus on those patches where classicality takes over during the last stages of inflation,
say the last 20 e-folds or so. Despite the Higgs negative potential energy, these regions keep
inflating as long as the total vacuum energy during inflation is larger, that is, for

3H2M2
P &

λ

4
h4

c , (4.12)

where MP = 2.4 · 1018 GeV is the reduced Planck mass.

4.2.3 Excitation of the Higgs fluctuations

Meanwhile, Higgs fluctuations are generated. Perturbing around the slowly-rolling classical
value of the Higgs field and accounting for metric perturbations as well, the Fourier transform
of the perturbations of the Higgs field satisfy the equation of motion (in the flat gauge)

δ
..
hk + 3Hδ

.
hk +

k2

a2 δhk + V ′′(hc)δhk =
δhk

a3m2
P

d
dt

(
a3

H

.
hc

2
)

, (4.13)

where a is the scale factor and the last term accounts for the backreaction of the metric pertur-
bations [335, 336]. We have numerically checked that this term in Eq. (4.13) is negligible.

The term proportional to V ′′(hc) in Eq. (4.13) has a negative sign, and acts as a driving term
for the Higgs fluctuations. In other words, the Higgs background excites a tachyonic instability
for its fluctuation. For each given mode, as soon as its physical wavelength becomes larger than
the Hubble radius in the last e-folds of inflation, δhk rapidly grows driven by the rolling down
of the Higgs field.

The perturbations are born in the Bunch-Davies vacuum, so we take as an initial value the
corresponding solution in the sub-Hubble regime, and a vanishing initial velocity:

δhk =
1

a
√

2k
eikη

(
1 +

i
kη

)
η'− 1

aH , k�aH
−→ δhk =

1

a
√

2k
e−

ik
aH . (4.14)

The Higgs perturbations will be responsible for the formation of PBHs. In fact, we should
deal with the comoving curvature perturbation ζ which is gauge-invariant and reads (still in
the flat gauge)

ζ = H
δρtot

.
ρtot

. (4.15)

We can rewrite this expression in terms of the Higgs perturbation ζh ≡ H δρh/
.
ρh, with δρh =

ρ(hc + δh) − ρ(hc), and the inflaton perturbation ζst ≡ H δρinfl/
.
ρinfl, where the superscript st

stands for standard:

ζ = H
δρinfl + δρh

.
ρtot

=

.
ρinfl
.
ρtot

ζst +

.
ρh
.
ρtot

ζh . (4.16)

We assume ζst is conserved during inflation on super-Hubble scales and, for simplicity, that
there is no energy transfer with Higgs fluctuations. The splitting of Eq. (4.16) highlights that
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on large scales the dominant contribution is the standard one, whereas for the wavelengths
leaving the Hubble radius the last 20 e-folds or so of inflation, the gauge-invariant comoving
curvature perturbation ζ(x) is dominated by the Higgs perturbations.

The dimensionless power spectrum of the curvature perturbation is then defined as

Pζ =
k3

2π2 |ζk|2 . (4.17)

This is the crucial quantity for the computation of the PBH mass function. In the next subsec-
tions we solve numerically the system of coupled equations of motion for hc and δhk, whereas
in Section 4.3 we estimate analytically Pζ(k).

4.2.4 Dynamics after inflation: reheating

At the end of inflation at the time te, the vacuum energy which has driven inflation gets con-
verted into thermal relativistic degrees of freedom, a process dubbed reheating. For simplicity,
we suppose that this conversion is instantaneous (instantaneous reheating), in such a way that
the reheating temperature is TRH ' 0.5 · (H MP)1/2, obtained by energy conservation and tak-
ing the number of relativistic degrees of freedom to be about 102. For our representative value
of H = 1012 GeV, we obtain TRH ' 1015 GeV. Again, one can redo the computation within a
favourite model of inflation. Generically, the mechanism we describe tends to require a rather
fast reheating process, in order for the thermal corrections to help rescuing quickly the Higgs
field.

As we have seen in Section 4.1, due to the thermal effects, the Higgs potential receives ther-
mal corrections such that the potential is quickly augmented by the thermal contribution of
Eq. (4.1) [324]. This is due to the energy transfer between the long wavelength Higgs perturba-
tions and the thermal plasma, as the effective Higgs mass suddenly jumps to its thermal value
induced by the interactions with the plasma.

If the maximum temperature is larger than the value of the Higgs he ≡ hc(te) at the end of
inflation, or more precisely if

T2
RH & λh2

e , (4.18)

the corresponding patch is thermally rescued and the initial value of the Higgs immediately af-
ter the end of inflation coincides with he. The classical value of the Higgs field starts oscillating
around the origin, see Fig. 4.5. The Higgs fluctuations oscillate as well with the average value
remaining constant and the amplitude slowly increasing for a fraction of e-folds.

After the end of inflation, the long wavelength Higgs perturbations decay after several
oscillations into radiation curvature perturbation which, being radiation now the only compo-
nent, will stay constant on super-Hubble scales (see section 4.3 for a more detailed discussion).

The Higgs damping rate is negligible during the inflationary phase. At zero tempera-
ture the Higgs width can be roughly estimated by the decay in the bb channel, so that γh ∼
y2

bmh/(8π) ∼ y2
b

√
λhc/(8π) . 10−2H � H. The Higgs damping rate at finite temperature is

instead [337]

γh ∼
3g4T2

256πmT
∼ 10−3T , (4.19)

where g is the SU(2)L coupling constant. This value has been derived by noticing that for
a thermal Higgs mass mT ' 0.34 T, the one-loop absorption and direct decay channels for
quarks and gauge bosons are forbidden, and the damping occurs through two-loop diagrams
involving gauge bosons.



4.3. Analytical estimates of the comoving curvature perturbations 105

05101520 -1
10

-2

10
0

10
2

10
4

10
6

10
8

Figure 4.5: Evolution of H, T, hc, δhk during the last e-folds of inflation, for k = 50 k∗. The
region of hc beyond the top of the potential barrier is shaded gray.

A proper inclusion of the Higgs damping rate would be rather simple for the background
(by including a factor +γh

.
hc in the equations of motion), whereas the study of perturbations by

properly accounting for the damping rate is much more complicated [338]. It is reasonable to
apply the sudden decay approximation, which amounts to assuming that the Higgs field decays
instantaneously after a time γ−1

h into radiation. Therefore, we have evaluated the value of the
curvature perturbation a small fraction of e-fold after te.

The final outcome of this mechanism are large adiabatic perturbations on small scales (k >
k∗ = a(t∗)H).

4.3 Analytical estimates of the comoving curvature perturbations

In this section we offer some analytical insight of the numerical results presented in Fig. 4.5
and 4.8. We analyse the dynamics of the Higgs background and fluctuations first during infla-
tion, and then during the subsequent thermal phase. The main results are that the fluctuations
δhk, during their tachyonic excitation in the inflationary phase, grow as the speed of the back-
ground

.
hc, and the formula (4.33) for the final power spectrum of curvature perturbations,

which eventually determines the PBH mass function.

4.3.1 Curvature perturbations during inflation

In order to estimate analytically ζk (Eq. 4.15) and then Pζ , it is useful to find a relation between
the behaviour of the Higgs fluctuations δhk and the background hc. If we consider for δhk the
super-Hubble regime, where the term proportional to k2 in Eq. (4.13) is negligible, and we take
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the time derivative of the Eq. (4.5) assuming a constant Hubble rate, we get

(
.

hc)
..
+ 3H (

.
hc)

.
+ V ′′(hc)

.
hc = 0 ,

..
δhk + 3H

.
δhk + V ′′(hc)δhk = 0 .

(inflation, super-Hubble) (4.20)

We see that
.

hc and δhk solve the same equation on scales larger than the Hubble radius k� aH.
Therefore the two quantities must be proportional to each other during the evolution and on
super-Hubble scales:

δhk(t) = C(k)
.

hc(t) . (inflation, super-Hubble) (4.21)

The growth of δhk is therefore dictated by the growth of
.

hc. To find the function C(k) we can
start from the solution for δhk: perturbations are born with the standard Bunch-Davies vacuum,
and deep in the sub-Hubble regime we find the solution (4.14). By matching this sub-Hubble
solution at Hubble crossing k = a(tk)H with the ansatz of Eq. (4.21) for the super-Hubble
regime we find

C(k) =
H

.
hc(tk)

√
2k3

, (4.22)

where tk is the time when the mode with wavelength 1/k leaves the Hubble radius.
Using Eq. (4.5) and (4.13) (again with the negligible last term dropped), one then obtains

δρh(k� aH) =
.

hcδ
.
hk + V ′(hc)δhk = C(k)

.
hc

[ ..
hc + V ′(hc)

]
= −3HC(k)

.
h

2
c . (4.23)

Since
.
ρh =

.
hc(

..
hc + V ′(hc)) = −3H

.
hc

2, one can easily show (and we have checked it numeri-
cally) that during inflation and on super-Hubble scales ζh reaches the plateau

ζhk (k� aH) = H
δρhk

.
ρh

= HC(k) =
H2

√
2k3

.
hc(tk)

. (4.24)

This is the quantity which gives the largest contribution to ζ in the last few e-folds before the
end of inflation.

Within our approximation of constant energy density of the inflaton,
.
ρinfl = 0 and

.
ρtot =

.
ρh,

so that ζ = ζh and (to avoid a heavy notation, we denote Pζ ≡ Pζk , Pζh ≡ Pζhk
)

Pζ(te) = Pζh (te) =
k3

2π2 |ζk(te)|2 =

(
H
2π

)2
(

H
.

hc(tk)

)2

. (inflation) (4.25)

4.3.2 Curvature perturbations during reheating

Similarly to what we have done in the previous subsection, we would like to derive a relation
between δhk and hc or its derivatives in order to estimate analytically Pζ . The derivation of
Eq. (4.20) used the constancy of the Hubble rate during inflation, which does not hold during
the reheating phase. Nevertheless, given that the leading term in the Higgs potential is the
thermal correction of Eq. (4.1) which is quadratic in hc, we can see that during this phase δhk is
directly proportional to hc (we write explicitly H(t) in the following to distinguish it from the
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constant Hubble parameter H during inflation, and we neglect the decay term as explained in
Section 4.2.4):

..
hc + 3H(t)

.
hc + m2

T hc = 0 ,
..

δhk + 3H(t)
.

δhk + m2
T δhk = 0 .

(reheating, super-Hubble) (4.26)

Therefore during the reheating phase δhk(t) tracks hc(t),

δhk(t) = D(k) hc(t) . (reheating, super-Hubble) (4.27)

To estimate the constant D(k) we can apply Eq. (4.27) at the time te, and by continuity we can
use the relation (4.21) to get

D(k) =
δhk(te)

hc(te)
= C(k)

.
hc(te)

hc(te)
=

H√
2k3

.
hc(te)

hc(te)
.

hc(tk)
. (4.28)

The perturbations in the energy density come from the Higgs sector, and we can rewrite them
as

δρtot = δρh =
.

hc
.

δhk + m2
Thcδhk = D(k)(

.
hc

2 + m2
Th2

c) = 2D(k)ρh . (4.29)

Another important observation is that the Higgs field during the thermal phase and before
decaying follows the equation of state of a radiation component,

.
ρh = −4H(t)ρh, because of the

time dependence of the time dependence of the Higgs mass through the temperature. Indeed,
up to fast oscillations of frequency T, the classical Higgs field scales like hc(a) ∼ 1/a ∼ T, and
one can check that, when averaging over some oscillations,

〈
.

hc
2〉 = 〈m2

Th2
c〉, (4.30)

and therefore

mT(t) ∼ T(t) ∼ a−1(t) =⇒ .
mT/mT = −H(t) ,

.
ρh =

.
hc

..
hc + m2

T

.
hchc + mT

.
mTh2

c = −3H(t)
.

hc
2 − H(t)m2

Th2
c

averaging−→ .
ρh = −4H(t) ρh .

(4.31)
With the use of Eqs. (4.28), (4.29), (4.31) we obtain the total curvature perturbation:

ζ(tdec) =H(t)
δρtot(tdec)

.
ρtot(tdec)

= H(t)
.
ρh(tdec)
.
ρtot(tdec)

δρh(tdec)
.
ρh(tdec)

= H(t)
ρh(tdec)

ρtot(tdec)

δρh(tdec)
.
ρh(tdec)

=

=− rh(tdec)

4
δρh(tdec)

ρh(tdec)
= − rh(tdec)

2
D(k) = − rh(tdec)

2
H√
2k3

.
hc(te)

hc(te)
.

hc(tk)

(4.32)

where we have introduced the energy fraction of the Higgs field rh = ρh/ρtot.
In particular, notice that ζh during inflation does not coincide with the value during reheat-

ing (Eq. 4.24), signalling that ζh is not conserved during the transition. This is not surprising,
as the Higgs interacts with the hot plasma to suddenly acquire a plasma mass and therefore is
not an isolated fluid. The final power spectrum reads

Pζ(tdec) =
k3

2π2 |ζk(tdec)|2 =
r2

h(tdec)

4

(
H
2π

)2
( .

hc(te)

hc(te)
.

hc(tk)

)2

. (reheating) (4.33)
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4.4 Primordial Black Holes as Dark Matter

Primordial Black Holes (PBH) constitute a class of DM candidates which was proposed many
decades ago but was rather overlooked until recently, when they have attracted more attention
at the dawn of the Gravitational Wave (GW) era. They are Black Holes (BH) which originated
not from the latest stages of collapse of stars in recent epochs, but in the early history of the
Universe from overdensities of the matter fluid. Their phenomenology would be rather similar
to the one of MACHOs (discussed in Section 1.2.2), but with some other important peculiar
features and a much wider (a priori) possible mass range. Today PBHs represent a testable
candidate for DM with many prospects for their detection through various phenomena, and
the existence of light PBHs could allow the detection of the Hawking-Bekenstein radiation.

Section 4.4.1 introduces PBHs and highlights the motivations for their study. In Section 4.4.2
we summarise their formation process, and in Section 4.4.3 we discuss the current constraints.
Section 4.4.4 briefly collects the main proposed models for the generation of a PBH population.

4.4.1 Motivations and prospects for Primordial Black Holes

The first proposals for PBH date back to the early history of Cosmology: in 1966 Zel’dovich and
Novikov discussed the fate of regions with large overfluctuations in the density contrast [339,
340], and in 1971 Hawking discussed properties of PBHs of Planckian mass [341]. Curiously,
Hawking’s paper predates his proposal of BH evaporation of 1974, which gave immediately an-
other motivation for the study of PBH: the evaporation process (by the emission of the so-called
Hawking-Bekenstein radiation) is completely negligible unless the BH mass is . 10−17M�, a
mass range which is only attainable if the BH is of primordial origin. Then, in 1975, Chapline
advanced the idea that PBHs could be a DM candidate [342].

The phenomenology of PBHs and the collapse of relativistic fluids in a FLRW universe
have been studied in the last decades, with alternate phases of interest, until the recent dawn
of the GW era, when they attracted a big deal of attention. The direct observation by the LIGO
collaboration of the GWs emitted during the merging of two BHs of masses ∼ 30M� in 2015
[343] has opened many new exciting directions for the exploration of BHs through the detection
of GWs, reviving the activity in the field of PBHs. For recent comprehensive reviews on PBHs,
see [344–346].

The existing observational bounds on PBH populations in the Universe, exposed in Sec-
tion 4.4.3, are conspicuous in many mass ranges, but leave still some windows open for PBHs
to constitute the totality of DM. In the forecoming years we can expect significant progress
in the reconsideration and improvement of observational constraints in various mass ranges,
and in the study of the formation of Large Scale Structures seeded by PBHs [347]. These ef-
forts could allow us to definitively exclude PBHs as a DM candidate, or to accumulate soon a
significant amount of evidence in their favour.

We can identify at least two clear smoking gun signatures of the existence of PBHs. As a
first possibility, BH at a redshift z & 30 would have arisen before the formation of the first
stars. Alternatively, a BH with mass. 1 M� (at any epoch) cannot have originated from stellar
evolution because of the Chandrasekar limit for the minimum mass required for the gravita-
tional attraction to overcome the electron degeneracy pressure. Observing BHs with one of
these features would be an indisputable evidence for PBH.

Currently, an arguable hint in favour of PBHs comes from the observations of SuperMassive
Black Holes (SMBH), with masses around 105 − 1010 M�, located in the centre of galaxies at
redshifts up to around 10. SMBH with masses of the order of billions of solar masses are
considered too heavy to form within the age of the universe from the collapse of matter at the
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centre of galaxies, unless one can explain how to get heavy enough seeds for their formation.
The observation of SMBHs so back in the past (at z . 6) further corroborates the hypothesis that
they could seed from heavy PBHs, although the issue is far from being settled. In particular,
Intermediate Mass Black Holes (IMBH) with masses 10− 104 M� could act as seeds for SMBHs
in galactic nuclei [347] (see [348] for a review on IMBH).

The (progenitor) BHs observed by LIGO and Virgo so far lie between 8 and 40 M�, which
approximately coincides with the sensitivity window of the instruments. This mass range is
expected for astrophysical BHs [349], so that we cannot claim so far that the BHs observed
by LIGO are primordial, although it is an intriguing possibility [350]. A possible evidence
for PBHs could be the observation of merging bodies with mass in the ranges [2, 5] M� or
[50, 130] M�, which do not comprise neutron stars and astrophysical BHs [351]. Objects within
these mass ranges would be either primordial or the outcome of mergers of astrophysical BHs,
and in the latter case they should display a high spin on average (due to the conservation of an-
gular momentum). PBHs, on the contrary, are generically expected to have a nearly vanishing
spin, having arisen from the collapse of a distribution of matter without a significant vorticity.

We refer to Section 4.4.3 for other prospects for the detection of PBH through other physical
mechanisms.

4.4.2 Formation of Primordial Black Holes

PBHs form from overdensities of order one of the density contrast on small scales, much larger
than its average value 10−5 on the scales that we probe through the Cosmic Microwave Back-
ground (CMB). For an overview of some proposals for the amplifications of perturbations on
small scales, see Section 4.4.4. Once these large perturbations are generated during the infla-
tionary phase, they remain outside the Hubble radius until the corresponding mode crosses
again the Hubble radius during the radiation dominated epoch following the reheating phase.
After inflation, the Hubble radius grows and the perturbations generated during the last e-folds
of inflation are the first to reenter the horizon. If they are large enough, they collapse to form
PBHs almost immediately after horizon reentry, as sketched in Fig. 4.6. A region of the size of
the Hubble radius then decouples from the background expansion, and due to the large spatial
curvature the matter contained within that region collapses to form a PBH.

N = ln a

phys. scale H−1

CMB

k−1
PBH

∼ 60 ∼ 40–17 tform

tend

Figure 4.6: PBH form when the corresponding scale enters the Hubble radius during the RD
era.
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The assessment of the criterion for collapse involves a study of the evolution of perturbations
in a FLRW universe filled by a relativistic fluid [344, 345], and a full treatment has to include to
shape in the physical space of the density profile of the perturbation [352, 353].

As a simplified rule of thumb for collapse, which approximates reasonably the results of a
more detailed analysis, current literature sets a critical threshold ∆c to be overstepped by the
density contrast ∆(x) ≡ (ρ(x)− ρ)/ρ, ρ being the average energy density. The density contrast
expressed on comoving slices can be written in terms of the gauge invariant comoving curva-
ture perturbation ζ(x) (defined in Eq. 4.15) as (at linear order in ζ, and during the radiation
era)

∆(x) =
4

9a2H2∇
2ζ(x) , (4.34)

where a is the scale factor and H is the Hubble rate. Typically ∆c ∼ 0.45 [354]. The emergence
of a rather sharp threshold is a result of the balance between the gravity force needed for the
collapse and the pressure of radiation: an overdense region just below threshold will eventually
lose most of its matter if there is no collapse [355].

The mass of a PBH at formation is then computed as the mass contained within a sphere of
radius H−1, up to an efficiency factor γ, which is estimated analytically to be 0.2 [356]:

MPBH = γ
4π

3
ρH−3 , (4.35)

ρ being the energy density at the collapse time. This can be rewritten in terms of the comoving
wavenumber k corresponding to the scale of the collapse, or the number N of e-folds before the
end of inflation when k leaves the Hubble radius as [357, 358]

MPBH = 5 · 10−16 M�
( γ

0.2

)( g(Tf )

106.75

)− 1
6
(

k
7 · 1013 Mpc−1

)−2

=

=
( γ

0.2

) 1013 GeV · He

H2
k

e2(N−37.9)M�

(4.36)

where g(Tf ) is the number of relativistic degrees of freedom at the temperature of the formation
time of the PBH, Hk is the Hubble rate at the time when the mode k exits the Hubble radius (that
is a(tk)Hk = k) and He is the Hubble rate at the end of inflation. From Fig. 4.6 and Eq. (4.36) we
can see that a PBH generated at a scale k−1 is more massive if the mode k re-enters the horizon
later at RD, or equivalently if it left earlier the Hubble radius during inflation.

The number of PBHs which are generated depends on the probability of exceeding the
threshold ∆c. For simplicity, we assume that the probability distribution for ∆ is Gaussian,
although non-Gaussian deviations usually play an important role given that we look at the tail
of the distribution [359]. We define the formation rate β(M), which is the mass fraction of the
universe which ends up into PBHs at the time of formation, as the probability that the density
contrast ∆(k) exceeds ∆c (the one-to-one correspondence between M and k is established by
Eq. 4.36):

β(M) =

ˆ ∞

∆c

d∆√
2π σ∆

e−∆2/2σ2
∆ ' σ∆

∆c
√

2π
e−∆2

c /2σ2
∆ , (4.37)

where in the last step we have taken the limit ∆c � σ∆ (typically, for the formation of PBHs,
σ∆ ∼ O(10−2)).

Within the Gaussian approximation, the only parameter involved in the distribution func-
tion of ∆ is the variance σ∆, the variance of the density contrast smoothed with a Gaussian
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window function W(q, R) = exp[(qR)2/2] at a scale R = k−1:

σ2
∆

(
M(k)

)
=

ˆ ∞

0
d ln q W2(q, R)P∆(q) =

ˆ ∞

0
d ln q

16
81

(q
k

)4
e−(q/k)2Pζ(q) , (4.38)

where the last step follows from Eq. (4.34).
After their formation, PBHs behave as matter and their energy density scales just as a−3,

whereas the average energy density in the rest of the universe decreases as a−4 until the time
teq of matter-radiation equality. After teq, the energy fraction of PBHs stays constant. The
resulting abundance of PBHs per logarithmic mass interval (d ln M) is [360] (the value of Ωmh2

is replaced by the value (1.1) measured by Planck)

fPBH(M) =
ΩPBH(M)

ΩCDM
=

ρPBH

ρm

∣∣∣∣
teq

Ωmh2

ΩCDMh2 =

=
β(M)

1.6 · 10−16

(
ΩCDMh2

0.12

)−1 ( γ

0.2

) 3
2
(

g(Tf )

106.75

)− 1
4
(

M
5.0 · 10−16 M�

)− 1
2

.

(4.39)

The total contribution of PBHs to the energy density of the universe is (without accounting for
the PBHs lighter than ∼ 10−18 M� which have completely evaporated, see Sec. 4.4.3)

ΩPBH = ΩCDM

ˆ
d ln M fPBH(M) . (4.40)

Apart from evaporation, which is completely negligible for MPBH & 10−16M�, there are two
phenomena which transform the PBH mass function at late times. The first effect is the merging
of BHs, which shifts and spreads to higher values the mass function without changing the
total abundance. Another important phenomenon is the accretion of radiation and matter into
BHs, which increases the abundance (and shifts to higher values the mass function). These
two effects can affect importantly the mass function, with an increase of the abundance and a
shift to higher masses up to a few orders of magnitude, but accounting for them seems hardly
feasible without numerical simulations.

4.4.3 Constraints on Primordial Black Holes

In this section we quickly review the main current constraints on the PBH mass function, col-
lected in Fig. 4.7. See also [345] for a recent review.

The bounds of Fig. 4.7 refer to a monochromatic PBH mass function: for the realistic case of
an extended mass function, the constraints are slightly modified by a slight attenuation of the
dips, and a moderate increase in the transition regions between adjacent bounds [344, 361, 362].
Moreover, PBHs are expected to be created in clusters, given that they arise from rare peaks of
the density contrast, and an overdense region on a large scale hosts more easily many higher
subpeaks which can form PBHs. As long as observational constraints are concerned, clustering
of PBHs could alleviate many bounds [363].

Evaporation The evaporation of BHs through the Hawking-Bekenstein radiation is described
semiclassically as the physical emission of particles generated through virtual pair creation
around the event horizon at the expenses of the BH mass. The emitted radiation has a black-
body spectrum with a temperature going as 1/MBH, corresponding to a peak at a wavelength
of about 16 times the Schwartzschild radius. The emitted power is proportional to 1/M2

BH, so
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Figure 4.7: Experimental constraints on monocromatic PBH spectra (see the text for details):
In yellow, the observations of extra-galactic γ-ray background; in blue, micro- and milli- lens-
ing observations from Eros, Kepler, Subaru HSC; in green, dynamical constraints from White
Dwarves and Ultra-Faint Dwarf galaxies; in orange, constraints from the CMB (adapted from
[360]).

this process turns out to be completely negligible unless MBH . 10−16 M�, corresponding to a
wavelength . 10−13 m, in the γ-ray band for emitted photons. As mentioned in Section 4.4.1,
because of the tiny emittance power, the evaporation process is observable only for extremely
light BHs, whose origin can only be primordial.

The evaporation time (proportional to M3
BH) is shorter than the age of the universe for

MPBH . 10−19 M�: PBHs below this mass wouldn’t exist any more today. In the range
10−19 M� . MPBH . 10−16 M� the emitted power would be sizeable today, and we could
detect a contribution to the extragalactic γ-ray background. The null results in this direction
from the observations of EGRET and Fermi-LAT were recast in [364]. Ref. [365] obtained similar
bounds from the analysis of the e± fluxes measured by the satellites Voyager-1 and AMS.

In principle, the collapse of an overdense region could lead to a final exotic GR configu-
ration different from a Schwartzschild BH, in particular without an event horizon, so that the
evaporation process would be suppressed [366]. Apart from this speculative scenario, given the
robustness of the theoretical prediction of the Hawking-Bekenstein radiation, we can consider
this constraint very solid.

CMB constraints If PBHs were affecting their environment significantly between their for-
mation time and recombination, they could have influenced the CMB that we observe. During
the RD epoch though, PBHs do not accrete much due to the radiation pressure, unless the PBH
is a few orders of magnitude heavier than M�. Updated analyses of the effects due to the in-
terference of the PBH accretion activity on the CMB were performed in [367–370] and yield the
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bound shown in Fig. 4.7, which identifies an upper mass ∼ 102 M� for the PBHs to constitute
the totality of DM. This and other constraints reinforce the upper limit of about 103M� for the
PBHs to constitute a significant fraction of DM.

Lensing A phenomenological signature that PBHs share with MACHOs (discussed in Sec-
tion 1.2.2) is the lensing of light coming from background objects. During the passage of a PBH
close to the line of sight to a distant object, it gravitationally deflects the light rays so that more
of them reach the observer. The result is an amplification of the apparent magnitude of the
object, which reaches a peak when the PBH gets closest to the line of sight and then gradually
decreases, until the lensed object reaches its normal magnitude. The time dependence of the
apparent magnitude takes the name of Alcock-Paczynski curve.

The time duration of this process is directly proportional to the Einstein radius rE ∼
√

rSD
where rS = 2GMPBH is the Schwartzschild radius of the lens and D is the distance to the lens
(assumed to be comparable to the distances to the lens and between lens and source). Indeed,
only light rays within rE from the lens are deflected appreciably. Therefore, the observation
time (together with the distance of the survey) determines the mass range probed by experi-
ments aiming at observing lensing events. To give an idea of the orders of magnitude, PBHs
with MPBH ∼ (10−5− 1) M� require an observation time ranging between seconds and weeks,
and for MPBH ∼ 10− 100 M�, years of observation are required.

In Fig. 4.7 we show the main lensing constraints. Two of these experiments had a sensitivity
for millisecond lensing events. The EROS experiment, designed for the search for MACHOs,
observed stars in the Large and Small Magellanic clouds (at 50− 60 kpc from us) [371], and
Kepler aimed at near stars within 1 kpc [372]. The (unfortunately short) observations of the
satellite Subaru HSC of microsecond lensing of stars in M31, at 770 kpc from us, were used in
[373] to constrain the range 10−11− 10−6 M�. The dot-dashed line blue in Fig. 4.7 is a more con-
servative bound, and the dotted blue line comes from an extrapolation from the Panchromatic
Hubble Andromeda Treasury (PHAT) catalogues [374] in the disk region. Another lensing
bound that we do not show in Fig. 4.7 comes from the observation of type IA supernovae, and
constrains the abundance of PBHs above 1 M� [375, 376]

All of the previous observations were performed in the optical light window. The ob-
servations of the Fermi-GRB (Gamma-Ray Burst monitor) of γ-ray bursts of known redshift
look for femtosecond lensing events, and were used in [377] to constrain the low mass range
10−15 − 10−17 M�. Recently, this derivation has been questioned by Ref. [378]. They analyse
in detail two effects; the finite size of the sources, and the breakdown of geometrical optics
when assuming that light rays follows two paths around the lens. As a result, current measure-
ments do not constraint the PBH abundance, but we could achieve the required sensitivity in
the future [378].

An important phenomenon which was unaccounted for in the recast of the constraints by
Subaru is the so called wave effect [379, 380]. If the wavelength λ of the observed light is
smaller than the Schwartzschild radius rS of the lenses, then geometrical optics ceases to be a
good approximation, and the diffraction of light from the small lens gives small or vanishing
magnification of the source. One could wonder why rS is a relevant quantity in this context,
given that the deflected images of the source travel at a distance rE � rS from the lens. The
reason is the following, and has to do with the expression of the Einstein radius rE ∼

√
rSD.

We denote by D the distance from us to the lens, which we assume for simplicity to be of the
same order as the distance between lens and source. The lensed rays travelling at opposite
sides of the lens, can be seen as a double slit interference experiment. The first maxima of the
diffracted pattern are at angles θ1 ∼ λ/rE, rE being the distance of the slits. The deflected rays
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form an angle θS ∼ rE/D with respect to the line to the PBH. If this angle is much larger than θ1,
then the interference pattern is not resolvable, the wave effects of light diffusion are negligible
and the background objects are magnified by the PBH. If instead θS < θ1, then the interference
pattern is appreciable, and the geometrical optics approximation breaks down. The condition
for magnification θS & θ1 implies λ . r2

E/D ∼ rS. For the Subaru HSC observations, the
wavelength of visible light corresponds to the Schwartzschild radius for MPBH ∼ 10−11 M�,
and therefore we remove the constraint below that value.

Dynamical constraints The presence of PBHs in the galaxy could interfere with the life cycle
of stars. PBHs would be rather sparse in the galaxy: even for PBHs as light as 10−16 M� (the
mass of an asteroid, or of Mount Everest), whose rS ∼ 10−13 m is of subnuclear size, there
would be a few in our Solar system. The heavier they were, the sparser they would be.

In the low mass range, PBHs could be dense enough to encounter along their motion White
Dwarves (WD), compact stars which could be dynamically heated by PBHs and explode as
supernovae too often to account for the observed WD density [381]. This prevents PBHs of
mass 10−14 − 10−13 M� from forming all of DM.

Neutron Stars (NS), much denser than WD, would trap PBHs within a longer time through
multiple oscillation around the NS. This happens more easily if the velocity of the PBHs is
small. It was suggested [382] that NS could offer a probe of the presence of PBHs in the cores of
globular clusters, where the velocity dispersion is typically O(10) km/s. The bound obtained
in [382], falling in the range 10−14− 10−10 M�, assumed a DM density in globular cluster which
102 to 104 larger than the average 0.3 GeV/cm3 in the halo. For more conservative estimates
this bound would disappear, so we do not show it in Fig. 4.7.

For PBHs heavier than stars, another constraint comes from the observed properties of
stars in Ultra-Faint Dwarf (UFD) galaxies around the Milky Way and Andromeda. Stars in
UFD would intermittently interact gravitationally with PBHs, gaining kinetic energy. From the
study of their kinematic properties of stars in known UFD, Ref. [383] obtained exclusion limits
above O(10) M�.

4.4.4 Models for the generation of Primordial Black Holes

As mentioned in Section 4.4.2, PBHs require a large power spectrum (of order 10−2) of the co-
moving curvature perturbations on small scales. The most recent measurements from Planck
[33] of the power spectrum at CMB scales (k ∼ 10−4 − 10−1 Mpc−1) constrain it rather ac-
curately to be nearly flat and slightly red-tilted (in excellent agreement with the inflationary
prediction): at 68% confidence level, and with a pivot scale k∗ = 0.05 Mpc−1, we parametrise it
as

Pζ = As

(
k
k∗

)ns−1+ 1
2! αs ln(k/k∗)

,

As = 2.1 · 10−9 ,
ns = 0.968± 0.006 ,
αs = −0.003± 0.007 .

(4.41)

In order to enhance the curvature perturbations generated by the inflaton field within a slow-
roll regime, one would need to deviate consistently from the flatness of the power spectrum, in
particular with a large αs at large k, in a way which is incompatible with the standard simplest
inflationary models. Therefore, the models proposed for PBH formation either introduce a
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feature in the inflaton potential to deviate from the slow-roll prediction during some interval
of time, or rely on other fields to generate the curvature perturbation on smaller scales.

In the following we briefly review the proposals along these directions. It is worth stressing
that the final PBH abundance, being so sensitive to the tail of the probability distribution of
the density contrast (and exponentially sensitive to σ∆, see Eq. 4.37), has to be fine-tuned as a
function of the parameters or initial conditions of the model. This is a generic feature of all of
the models presented in the following.

Higgs instability In this Chapter 4 we illustrate in detail the proposal of Ref. [3], which ex-
ploits a mechanism already built in the SM to produce large perturbations: the instability of the
vacuum of the Higgs potential. If the Higgs field probed the unstable region towards the end of
the inflationary epoch (sourced by some other field), and was rescued back in time during the
thermal phase (in the sense explained in Section 4.2.4), then a tachyonic instability of the Higgs
perturbation is excited. The risk of creating through this mechanism some undesired anti-de
Sitter regions close to our observable universe is avoided by the proposal of Ref. [4], illustrated
in Section 4.7. This proposal has the attractive feature that its basic ingredient is already present
within the SM extrapolated to high energies.

Inflection point in the inflaton potential Another direction in the model building scenario is
introducing an inflection point in the inflaton potential. When φ approaches that point, in the
equations of motion of the inflaton field

..
φ + 3H

.
φ + V ′(φ) = 0 , (4.42)

the last term becomes negligible:
.
φ becomes very small, and the slow-roll regime temporar-

ily ceases. This phase is also called ultra-slow roll regime. During this phase the curvature
perturbations grow importantly. The physical quantity to look at after inflation are the energy
perturbations δρ/ρ, which are properly rewritten as a gauge invariant quantity through the
comoving curvature perturbation ζ = H δρtot/

.
ρtot (in the flat gauge). ζ is not conserved on

super-Hubble scales, and if the inflaton φ is the main component for both δρtot and ρtot we can
rewrite ζ ' H δφ/

.
φ ∼ H2/

.
φ. It is clear then that, if the inflaton velocity decreases, the gauge

invariant curvature perturbations are amplified.
Various models have been proposed to realise this inflection point. One of them relies on

Higgs inflation [384, 385], where a non-minimal coupling of the Higgs to gravity determines in
the Einstein frame a Higgs potential suitable for slow-roll inflation (for the non-unitarity issues
of this theory see [386–388]). Ref. [389] studies the case of Higgs critical inflation [390–392],
arising when the SM parameters yield an inflection point in the Higgs potential (although the
parameters needed for this to happen would deviate of about 3 standard deviations from their
central measured values [393]).

Alternatively, inflection points were obtained by coupling the inflaton to the Ricci scalar
[357]. Other inflationary models displaying inflection points in the inflaton potential are moti-
vated within string theory (see for example [394, 395]) and supergravity [396].

Impact of quantum diffusion An important specification about the predicted mass functions
within all the models discussed so far concerns the impact of the quantum diffusion. Quantum
fluctuations of any (effectively massless) scalar field during the inflationary epoch can affect
the initial conditions, or the evolution of the inflaton during the ultra-slow roll phase (when
by definition the classical evolution becomes subleading). The result is that the mass function
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has itself a probability distribution, and nearby patches in the universe display a different PBH
abundance [397]. This is not a problem by itself, since in any case the PBH distribution is gen-
erally clustered on large scales [398], but it is an important ingredient for an accurate estimate
of the final PBH abundance.

Double inflation Another possibility for violating temporarily the slow roll conditions is to
have two stages of inflation.

This can be achieved with a single field, if this starts at large values with chaotic inflation,
and then reaches the origin where a small negative mass term allows a second new inflationary
phase [399].

With multi-scalar inflation, various possibilities arise for building models of double infla-
tion. One of the first models proposed involves hybrid inflation: after a first inflationary phase
driven by the inflaton field, its effective mass becomes negative due to the coupling with the
curvaton field, and the trajectory in the field space starts to bend in the direction of the latter.
Between these two phases of inflation, if the potential is flat enough, the slow roll conditions
are violated and the seeds for PBHs could be generated [400]. Similar models of double infla-
tion have been proposed also in the framework of supergravity and were dubbed hybrid new
inflation [401–403].

Alternatively, the curvature perturbations can be the sum of a flat contribution on all scales
from the inflaton field (which is the sole responsible for the inflationary epoch) and a larger
contribution at small scales from a curvaton field [404, 405].

Other proposals Finally, we mention some proposals going in different directions.
The seeds for PBHs could come from localised solutions of a scalar field, called oscillons.

These long lived configurations can arise at the end of the inflationary era, and the denser
ones can eventually collapse into a PBH. The scalar field responsible for the oscillons could
be the inflaton itself [406] or another scalar field, as any of the ones appearing for example in
supersymmetry [407].

If the SM is extended by axions (in order to solve the strong CP problem, see Sec. 1.4.4)
and the corresponding Peccei-Quinn U(1) symmetry is broken after inflation, then the collapse
of domain walls could seed the generation of a small population of PBHs with masses 104 −
107 M� [408]. The DM in this case would be constituted of axions, but the presence of these
massive PBHs could explain the issues about SMBH exposed in Sec. 4.4.1.

Another proposal discusses the effects induced by a long-range attractive force, stronger
than the gravitational force in the early universe, mediated by a light scalar. The interactions
between heavy particles interacting through these force could lead to nonlinear dynamics, and
eventually to their collapse and the generation of PBHs [409].

4.5 Generation of Primordial Black Holes through the Higgs insta-
bility

After having introduced the subject of Primordial Black Holes in the previous Sec. 4.4, we
resume from Sec. 4.3 the illustration of the mechanism for the generation of PBHs through
the SM Higgs instability. The Higgs contributes to the curvature perturbation with a peak at
small scales, when there are about 20 e-folds to go till the end of inflation. During the radia-
tion phase that immediately follows the end of inflation, the Higgs decays communicating its
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perturbations to the curvature perturbation now in the form of radiation. The final curvature
perturbation is therefore flat on large scales, but has a peak at small scales.

The numerical result for the power spectrum computed for the case showed in Fig. 4.5 is in
agreement with the analytical estimate of Eq. (4.33) an is shown in Fig. 4.8.
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Figure 4.8: The power spectrum Pζ(k) defined in Eq. (4.17), where k is expressed in units of
k∗ = a(t∗)H.

As illustrated in section 4.4, from the power spectrum we can compute with Eq. (4.38) the
variance of the density contrast σ∆(k) which is the key ingredient to compute the abundance of
PBHs (Eq. 4.39) generated when the corresponding modes re-enter the Hubble radius during
the radiation dominated era. The variance of the density contrast σ∆ is shown in Fig. 4.9.
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Figure 4.9: Variance of the density contrast as a function of the mass of the PBH generated at
the corresponding scale k (Eq. 4.36), for the case considered in [3].

Fig. (4.10) shows the resulting mass spectrum of PBHs today, computed with the Eqs. (4.37)
and (4.39).
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Figure 4.10: Spectrum of PBHs at formation generated by the mechanism we discuss (solid
red refers to S3 = 0 in Eq. (4.44), and dashed lines to S3 = ±1), superimposed with the
experimental constraints on PBHs (see Fig. 4.7 for details).

The position of the peak in the PBH mass spectrum is set by the mode k∗ that exits the Hubble
radius during inflation when the Higgs zero mode starts its classical evolution. To be on the
safe side we ask that the interesting range of PBH masses is large enough to avoid the bounds
from evaporating PBHs by the present time. This requires the dynamics to last about 18 e-folds
before the Higgs field hits the pole in Eq. (4.10). Interestingly this can be achieved in the SM for
realistic values of the Higgs and top masses and αs: In our numerical example we use

mHiggs = 125.09 GeV, mtop = 172 GeV, αs = 0.1184 (4.43)

and we choose correspondingly N∗ = 18.8435, whereas h∗ = 6.11 H is fixed by requiring the
classical and quantum jumps in Eq. (4.8) to be equal.

In our findings we have not included the fact that the mass of the PBH is not precisely the
mass contained in the corresponding horizon volume, but in fact obeys a scaling relation with
initial perturbations [410] or the fact that the threshold is shape-dependent [411]. Furthermore,
we have not accounted for the fact that the threshold amplitude and the final black hole mass
depend on the initial density profile of the perturbation [352, 353, 412]. We estimate that the
first two effects change the abundance by order unity. The third effect would require a thor-
ough study of the spatial correlation of density fluctuations. Nevertheless, we have included
in Fig. (4.10) the possible effect of non-Gaussianity in the PBH mass function. To estimate the
impact of non-Gaussianity is not an easy task, as one needs to evaluate the second-order con-
tribution to the comoving curvature perturbation ζ2. Some steps towards the calculation of the
non-Gaussian contributions are collected in section 4.C. A rough estimate based on Ref. [413]
gives ζ2 = O(1)ζ2

1 and therefore we include in Fig. (4.10) two bands corresponding to S3 = ±1,
where S3 = 〈∆3〉/σ4

∆ is the skewness which appears in the modification of the arguments of the
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exponential in Eq. (4.37) via the shift [414]

ν2 → ν2
[

1− S3
σ∆

3

(
ν− 2− 1

ν2

)]
, ν ≡ ∆c/σ∆ . (4.44)

The shift in the final abundance is not negligible, but we stress that there will be a set of pa-
rameters in our model which can provide the right final abundance. We also stress that the
primordial abundance of PBHs depends in a very sensitive way on the value of t∗, keeping
fixed all the other parameters. This does not come as a surprise as the function β(M) is expo-
nentially sensitive to ν. In this sense the anthropic argument based on the necessity of having
DM would justify a tuned initial PBH abundance. As a final warning, one should keep in mind
that (as in any model for the generation of PBHs) splitting the metric into background and
perturbations might be questionable for large perturbations.

From the time of equality to now, the PBH mass distribution will slide to larger masses
due to merging. While the final word can only be said through N-body simulations, one can
expect merging to shift the spectrum to higher masses even by orders of magnitude [364, 415]
and to spread the spectrum, but maintaining the abundance. Accretion, on the other hand,
increases both the masses and the abundance of PBHs as DM. On the other side, both merging
and accretion help to render the PBHs more long-living. To roughly account for an increase
of the current abundance by a representative factor 102 because of accretion, we have properly
set the abundance at formation time to be ΩPBH/ΩDM ∼ 10−2 (higher values can be achieved).
It would be certainly interesting to analyse these issues in more detail and account for the
fact that the abundance of PBH has to be of the right magnitude during standard Big Bang
Nucleosynthesis.

The choice of parameters of Eq. (4.43) allows the slow roll of the Higgs beyond the barrier
to last enough time so that the corresponding PBH mass function lying above the bounds from
black hole evaporation. For a different choice of the parameters related to the running of λ, it
is possible to shift the PBH mass distribution even to a window of sublunar masses 10−14 −
10−11 M�, unbounded by current observations (see Section 4.4.3). This is achieved for example
for m(−2σ)

top and m(+1σ)
Higgs , where the superscripts denote the number of standard deviations from

the current LHC combination [416–418]

mtop = 172.47± 0.5 GeV, mHiggs = 125.09± 0.24 GeV. (4.45)

The corresponding PBH mass function is shown in Fig. 4.11.

4.6 Homogeneity of the Higgs field and fine-tuning

As any other model of inflation which creates PBHs out of spiked perturbations at small scales,
the scenario we have described is fine-tuned. Indeed, the mass fraction (4.37) is exponentially
sensitive to the variance of the density contrast. Small variations of it lead to too small or too
large PBH abundances. Moreover, the mechanism needs fine-tuning to avoid the overshooting
of the Higgs into the dangerous AdS vacuum. In Ref. [3] the fine-tuned choice of the parameters
has been motivated anthropically. Structures can form through the dark matter under the form
of PBHs and life can develop only in those regions which survive the AdS catastrophe and are
saved by the thermal effects. In this sense, the electroweak SM instability is a bonus.

A natural question to ask is how large is the patch for which we can assume exact homo-
geneity, that is the same initial conditions. The Higgs field is subject to quantum fluctuations
during the inflationary epoch, so that its evolution is a random walk at temporal and spatial
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Figure 4.11: Spectrum of PBHs for m(−2σ)
top and m(+1σ)

Higgs (see Figs. 4.10 and 4.7 for details).

steps of order H−1. At each Hubble time, a region of the size of the Hubble radius H−1 makes a
jump whose amplitude is distributed according to a Gaussian with average zero and deviation
H/(2π). In the meanwhile these regions get stretched by the expansion, and within the next
Hubble time new fluctuations on the same physical scale H−1 will arise on top of the previous
ones, whose typical scale has now become e · H−1.

Regions which start this random walk together at the beginning of inflation will eventually
display uncorrelated values, but this process takes time after their separation scale exits the
horizon. The correlation length ` is then of the order of the particle horizon [419]:

H−1 � `� H−1eHti , (4.46)

where ti is the time from the beginning of inflation. This is shown schematically in Fig. 4.12.
Therefore it is correct to assume that the Higgs background has approximately the same initial
conditions on an exponentially large region. On scales of order of the Hubble radius, though,
hc displays small inhomogeneities of order H/(2π) ' 0.16 H.

The abundance of PBHs is sensitive to the initial condition of the Higgs field h∗ at the time
when classicality takes over, that is ∼ 20 e-folds before the end of inflation. Small deviations
from h∗, δh∗ ' (10−3 − 10−2)H lead to a too tiny value of the PBH abundance or to a fall into
anti de Sitter. This variation is smaller than the quantum fluctuations ∼ 0.16 H which arise on
length scales ∼ H−1 during the first e-folds of evolution of the Higgs field. This gives a small
probability ∼ 10−2 for each Hubble volume that the initial condition stays close to h∗.

Since our observed universe (corresponding to a number of e-folds of about 60) contained
at that time about∼ [exp(60− 20)]3 = exp(120) Hubble volumes, one might naively think that
the total probability will be therefore ∼ 10−2 exp(120). This is not correct as one is not interested
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Figure 4.12: Fluctuations of the background value of a scalar field in de Sitter space (adapted
from [420]).

in the probability of simultaneous production of PBHs in all Hubble size domains2. The prob-
ability though applies to the counting of regions with might end up not being saved by the
thermal effects. If one of those ∼ exp(120) regions is not saved, it will expand after inflation
and eventually engulf our entire universe. For each of these regions, in Ref. [421] (which re-
peated, confirmed and reported the results of Ref. [3]) it was argued that the probability for the
Higgs to be saved is of order 1/2. The reason is that, in the regions that give an abundance of
PBHs of the order of ΩDM, the Higgs field reaches a final value hc(te) very close to the critical
value not to create a dangerous AdS bubble. A small overfluctuation of h∗ or its initial velocity
.

hc(t∗) would push then hc(te) into the AdS regime. Thus, in Ref. [421] it is argued that the
probability that none of the ∼ exp(120) regions makes an AdS bubble is 2− exp(120).

In [3], it was already explicitly stated that the choice of parameters needed for PBH for-
mation, although fine-tuned, would be motivated anthropically. The relevant issue is then the
following: is∼ 2− exp(120) really a small number from the point of view of the multiverse and an-
thropic argument? In fact, once one accepts the anthropic principle, the reasonable question is
what one should multiply the tiny probability for? Within the eternal inflation/multiverse, one
should use the volume-weighted physical probability which, unlike the comoving probability
distribution, takes into account the overall growth of the volume of the universe: inflationary
growth rewards parts of the universe with respect to others. If one assumes a comoving proba-
bility point of view, a sample is assumed to be typical and then general properties are deduced.
However, distributions looking atypical from an analysis based on the comoving probability,
can be common when using the physical probability (and vice versa). We might well live in a
region of the global universe which looks unusual if judged so using the comoving probability
[422]. In other words, there might be a number of universes much bigger than ∼ 2exp(120) to
probe.

As an example, we can refer to Ref. [423] where it is estimated that the number of universes
in eternal inflation is proportional to the exponent of the entropy of inflationary perturbations,
exp(exp(3N)), where N is the number of e-folds of slow-roll post-eternal inflation. If we as-
sume that our observed universe originates from only 60 e-folds of exponential expansion, one
gets [423]

N = number of universes ∼ 101077
. (4.47)

2In this sense, the production of PBHs as dark matter through our mechanism suffers from a fine-tuning of the
order of δh∗/(

√
2π(H/2π)) =

√
2π(δh∗/H) ' (10−3 − 10−2) obtained assuming a Gaussian distribution for the

Higgs field. This fine-tuning is typical of all mechanisms giving rise to PBHs through inflation.
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This is incomparably larger than the numberN of universes needed to find, with a probability
of order one, n = exp(120) adjacent regions which have not fallen into AdS. This probability
can be approximated as 2−nN , which gives N & 2exp(120) ∼ 104·1051

. In chaotic inflation where
the number of e-folds is typically 1012 one gets [423]

N ∼ 1010107

. (4.48)

As scary as it might seem, the small probability quoted in Ref. [421] takes an (exponentially)
enormous advantage of this number of universes and what seems unnatural in fact might turn
out to be natural.

Furthermore, if one wishes to estimate the probability of survival of our universe, it should
also be remembered that luckily we live again in a period when the cosmological constant
dominates. It can be easily calculated that the particle horizon in our universe from now until
infinity will expand by just one third with respect to its current value. From that moment on,
our universe will be screened against AdS bubbles.

Leaving aside these considerations which might render the reader (and us) uncomfortable
for the lack of any firm quantitative arguments, in the following Section 4.7 we propose a natu-
ral solution to the fine-tuning problem. As mentioned above, the fine-tuning caused demand-
ing the right abundance of PBHs is only ∼ (10−3 − 10−2). The problem arises when discussing
the fine-tuning needed to save all the Hubble volumes when there are about 20 e-folds to go.
So, one just needs a (reasonable) solution which will eliminate the presence of the AdS regions
altogether without altering the attractive properties of the scenario, i.e. that the PBHs are ge-
nerated by the SM Higgs and that dark matter is made of SM particles. This is what we will
discuss in the next Section.

4.7 Getting rid of the AdS regions altogether

As stressed in [3] the mechanism to produce PBHs, which today form the dark matter without
resorting to any dark matter particle beyond the Standard Model, relies on the instability of the
electroweak vacuum, so that the Higgs perturbations can grow during inflation. This dynamics
is totally built within the Standard Model. On the other hand, to get rid of the fine-tuning
caused by the dangerous AdS vacua, one can simply alter the form of the Higgs potential at
energies much larger than the instability scale, thus without altering the nice features of the
mechanism [4].

Let us then suppose that at energy scales much larger than the instability scale ∼ 1011 GeV,
there are new particles whose interaction with the Higgs can change the sign of the quartic
coupling from negative to positive again, thus stabilising the Higgs potential. As a simple case,
add a complex scalar field S with potential [424]

V = λS

(
|S|2 − ω2

2

)2

+ 2λHS

(
|S|2 − ω2

2

)(
|ϕH |2 −

v2

2

)
, (4.49)

where S is the additional singlet (with vacuum expectation ω) and ϕH the SM Higgs doublet
(with vacuum expectation v). The interaction term in Eq. (4.49), generates a threshold contri-
bution δλ = −λ2

HS/λS to the Higgs quartic λ(h) above a scale ∼ mS [424]. Moderate values of
λHS and λS can produce a δλ large enough to bring λ(h) to be positive for h & mS =

√
λSω. In

such case the Higgs potential displays a true minimum at h ∼ mS.
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For our purposes we consider the case mS ∼ O(TRH). In this way, even if the Higgs jumps
beyond the barrier early during inflation, it will stop at its true minimum and thermal effects
at reheating rescue the Higgs, bringing it back towards the electroweak vacuum.

We show in Fig. 4.13 the running of λ corresponding to mS = 2 · 1015 GeV, and λSH = 0.05,
λS = 0.3. We stress that there is no fine-tuning here: we can allow relative variations of order
(10− 20)% for mS, and the only requirement for λSH and λS is that they yield λ(h & mS) > 0,
corresponding to |δλ| & 0.008.
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Figure 4.13: Running of the Higgs quartic coupling λ with the introduction of an extra scalar
(dashed blue line), together with the central and marginal values within the SM [307–309].

We repeat the analysis performed in the previous sections [3], with the same choice of the
Hubble rate H = 1012 GeV and parameters in Eq. (4.43). The Higgs field starts its classical
evolution beyond the barrier at 1011 GeV from a value h∗ at the time t∗ (corresponding to N∗
e-folds till the end of inflation). We solve the equations of motion for the Higgs background
hc and its perturbations δhk, and compute the power spectrum Pζ of the comoving curvature
perturbation ζ.

The outcome is the following. Let us fix for the moment h∗, and denote by N∗ the initial
time which would give the right abundance of PBHs without the presence of S. By including
S, the Higgs potential does not change for h < mS, so that for N∗ ≤ N∗ the evolution of
the Higgs is not altered with respect to what was discussed in the previous sections [3]: for
N∗ < N∗, the final Pζ is too small to seed PBHs. For N∗ > N∗, the Higgs field reaches its
minimum at mS before the end of inflation, and starts oscillating around it3. In the meantime,
the tachyonic excitation of the Higgs fluctuations ceases, and δhk oscillates around zero with
the same frequency as hc. The evolution for this case N∗ > N∗ is shown in Fig. 4.14.
The redshift of δhk during this phase (in which the Higgs behaves as a matter fluid) slowly
reduces the amplitude of ζ as a−3/2, and Pζ decreases as a−3 during the oscillation of hc around
its true minimum.4 The final value of Pζ for the mode k∗ = a(t∗)H (which exits the Hubble
radius at N∗) is shown in Fig. 4.15.

3The Higgs mass in this true minimum is typically larger than H.
4Throughout this Chapter we assume for simplicity a constant Hubble rate during inflation, in order not to

specify an inflation model. This implies
.
ρtot =

.
ρh during inflation. This approximation works less well during the
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Figure 4.14: Evolution of hc and its perturbation δhk for the case N∗ > N∗ (or equivalently
h∗ > h∗; see the text for details).
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Figure 4.15: Power spectrum Pζ as a function of the starting value N∗, for a fixed h∗ = 6.11 H.
The green line corresponds to a PBH abundance roughly of order unity, and the grey lines,
yielding no PBHs, correspond to the cases shown in Fig. 4.16.

Notice that the previous discussion proceeds in the same way if we fix a generic N∗ and identify
what h∗ leads to the right PBH abundance without the presence of S. For h∗ ≤ h∗ the evolution
is the same described in Ref. [3], whereas for h∗ > h∗ the curvature perturbation is slowly

oscillating phase in which the Higgs behaves as matter, and ρh ∼ a−3. In any case the qualitative behaviour of Pζ

shown in Fig. 4.15 and 4.16 would be the same: the slope of Pζ for N∗ > N∗ in Fig. 4.15 would be steeper, without
altering our conclusions.
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reduced at the end of inflation.
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Figure 4.16: Power spectrum Pζ as a function of the starting values N∗, h∗. The grey regions
do not yield PBHs, and the green region corresponds to a non-negligible PBH abundance.

Fig. 4.16 shows the final power spectrum Pζ in the plane of the initial values (N∗, h∗). On
the lower left corner of the plot we have the same situation as in the previous sections [3],
with a strong variation of the final Pζ even for per mille variations of N∗ and h∗. On the right
and upper side of the plot we find the region which would have fallen into AdS without the
threshold correction on λ at mS. If λ is pushed to positive values at a scale close to TRH, then
the Higgs is always rescued and there are no AdS regions which could form. Moreover, the
dependence of Pζ on N∗ is much milder on the right side of Fig. 4.16, and a second region
leading to the right PBH abundance is found. We highlight all the region corresponding to
Pζ(k∗) ∼ (0.02− 0.04): although values larger than∼ 0.02 yield a too large PBH abundance, we
recall the argument exposed previously. The formation rate of PBH is a probabilistic quantity
and says nothing about the distribution of such BHs in space. Even if some patches lead to a
larger abundance they could be compensated by regions without PBH. These inhomogeneities
occur at very small scales and do not constitute a problem as the PBHs are generated anyway
strongly clustered [415].

4.8 Conclusions

For the current central values of the Higgs and top masses, the Standard Model Higgs potential
develops an instability at a scale of the order of 1011 GeV. We show that a cosmological signature
of such instability could be dark matter in the form of primordial black holes seeded by Higgs
fluctuations during inflation.

We can highlight three points as the most relevant, were this scenario realised in nature.
First, the SM would be capable of explaining DM by itself (supplemented by a period of infla-
tion that is well motivated by other reasons). This has a double side: the SM provides a DM
candidate in the form of PBHs and also provides the mechanism necessary to create the PBH
seeds during inflation via the quantum fluctuations of the Higgs field in the unstable part of the
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Higgs potential. Both aspects (DM candidate and PBH generation mechanism) go against the
common lore that physics beyond the SM is needed to explain DM. In fact, if this scenario were
correct, the Higgs field would not only be responsible for the masses of elementary particles
but also for the DM content of our universe.

Second, the PBH generation mechanism gives an anthropic handle on Higgs near-criticality
which would be explained as needed to get sufficient DM so that large enough structures can
grow in the universe.

Finally, the PBHs responsible for DM would represent a conspicuous cosmological signa-
ture of the actual existence of an unstable range in the Higgs potential at large field values.

In this scenario, no physics beyond the Standard Model should be invoked to explain the
dark matter in our observed Universe, but anthropic arguments are necessary to explain the
fine-tuning on the initial conditions. We show then how such fine-tuning can be naturally
avoided by coupling the Higgs to a very heavy scalar with mass� 1011 GeV that stabilises the
potential in the deep ultraviolet, but preserving the basic feature of the mechanism which is
built within the Standard Model.

4.A Dynamics of the Higgs hitting the pole

To understand Eq. (4.10) one solves the equation

..
hc − λh3

c = 0, (4.50)

Taking the initial conditions hc(0) = h0 and
.
hc(0) =

.
h0, and using the fact that there is an

integral of motion
1
2

.
hc

2 − λ

4
h4

c = −E =
1
2

.
h

2
0 −

λ

4
h4

0, (4.51)

one finds the solution

hc(t) = h0α0 cn
(

i
√

λh0α0 t + cn−1(1/α0, 1/2), 1/2
)

, (4.52)

where cn(z, k) is one of the Jacobian elliptic functions and

α0 ≡

1− 2

.
h

2
0

λh4
0




1/4

. (4.53)

The function cn(ix, 1/2) has poles at x = K(1/2) with residue −i
√

2, where

K(k) =

ˆ π/2

0

dθ√
1− k sin2 θ

. (4.54)

Around the pole the classical value of the Higgs can therefore be approximated by Eq. (4.10)
with

tp =
1√

λh0α0

[
K(1/2) + i cn−1(1/α0, 1/2)

]
. (4.55)
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4.B Energy densities and their perturbations in the thermal phase

In this Appendix we follow the evolution of the perturbations during the reheating phase,
which we consider for simplicity to be instantaneous (happening for instance in hybrid models
in which a heavy waterfall field releases its vacuum energy providing a fast transition from
inflation to radiation), and the subsequent radiation phase. To model the sudden transition
from inflation to radiation one can imagine that the equations of motion of the Higgs and its
perturbations possess a time-dependent term taking care of the fast appearance of the plasma
correction to the potential under the form of the m2

Th2 term. By continuity, hc(te) = hc(TRH),
.

hc(te) =
.

hc(TRH), δh(te) = δh(TRH), and δ
.
h(te) = δ

.
h(TRH), where te is the time at the end of in-

flation and TRH is the time at the beginning of reheating. Assuming a fast reheating essentially
amounts to saying that te ' TRH. Across this time boundary, energy is also conserved. At the
end of inflation the energy density is

ρe = ρinf + ρh,e , (4.56)

with
ρinf = 3H2M2

P ρh,e =
1
2

.
hc(te)2 + V0(he) . (4.57)

During the instantaneous reheating, ρinf is used up in reheating the plasma (populated through
the inflaton decays). The total energy density at TRH is

ρRH = ρpl + ρh,RH . (4.58)

In the plasma rest-frame
ρpl = ω− P, (4.59)

where P is the plasma pressure (equal to minus the free-energy density [29, p. 66]) and

ω = T
∂P
∂T

(4.60)

is the enthalpy density. We also have ρh,RH =
.
h

2
c,RH/2 + V0(hc,RH), with hc,RH ≡ hc(TRH). It is

more convenient to arrange the splitting between plasma and Higgs background energies in a
different way, by first separating a pure radiation part in ρpl by writing

P = Pγ −VT(hc, T) (4.61)

and
ω = ωγ − T

∂VT

∂T
, (4.62)

where Pγ = π2g∗T4/90, ωγ = 2π2g∗T4/45 and VT(hc, T) is the field-dependent thermal con-
tribution of the plasma to the Higgs potential. Then, we assign this potential term to the Higgs
energy density and write

ρpl =
π2

30
g∗T4 − T

∂VT

∂T
, ρh,RH =

1
2

.
h

2
c,RH + V0(hc,RH) + VT(hc,RH, T). (4.63)

The reheating temperature can be obtained from ρe = ρRH, which gives (neglecting ρh with
respect to ρinf)

TRH '
(

90
π2g∗

)1/4√
HMP . (4.64)
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The small fluctuations in the Higgs background cause small fluctuations in TRH:

VT '
1
2

m2
Th2

c =
1
2

κT2h2
c =⇒ δT ' 15κhc

2π2g∗T
δh� δh . (4.65)

By matching the fluctuations in the energy density across te ' TRH, that is, δρe = δρRH, we
obtain

δ

[
1
2

.
h

2
c,e + V0(hc,e)

]

h
=

[
2π2

15
g∗T3δT − 2κT2hc,RHδhRH

]

pl
+ δ

[
1
2

.
h

2
c,RH + V0(hc,RH) +

1
2

κT2h2
c,RH

]

h

= δ

[
1
2

.
h

2
c,RH + V0(hc,RH)

]

h
, (4.66)

where in the last equality we have used the result for δT above, which leads to a cancellation
of the κT2hcδh terms. This consistency check confirms that the splitting between the radiation
and Higgs energy density of Eq. (4.63) holds also at the perturbation level:

δρh,e = δρpl + δρh,RH . (4.67)

Leaving aside Hubble friction, the energy density of plasma and Higgs background field
are not conserved separately. We can still split the energy conservation equation

.
ρtot = 0 in a

plasma and a Higgs one, taking into account Higgs decays into the plasma and write

.
ρh = (∂ρh/∂hc)

.
hc = (�hc + V ′)

.
hc = −γh

.
hc

2
, (4.68)

with V = V0 + VT, and γh ' 10−3T the Higgs decay width, while
.
ρpl = +γh

.
hc

2
. The right-hand

side in Eq. (4.68)) introduces a friction term in the equation of motion for the Higgs field that
is initially subleading in comparison with the Hubble friction term that it should also include,
but is important for the late time behaviour of the Higgs condensate.

4.C Some considerations about the Non-Gaussianity

In this appendix we offer some considerations about the non-Gaussianity of the perturbations.
To evaluate the non-Gaussianity at the instant at which the perturbations re-enter the Hub-

ble radius we proceed as follows. During the radiation phase, we have

ρh = ρh + δρh,1 +
1
2

δρh,2 = m2
Th2

c + 2m2
Thcδh1 + m2

Tδh2
1, (4.69)

so that
δρh,2

ρh
=

1
2

(
δρh,1

ρh

)2

= 8ζ2
h,1, (4.70)

where we have used again the fact that (in the flat gauge)

− ζh,1 = H
δρh,1

.
ρh

= H
δρh,1

−4Hρh
= −1

4
δρh,1

ρh
. (4.71)

The total gauge-invariant curvature perturbation at second-order is [338, 413, 425, 426]

− ζ2 = ψ2 − 2
δρh,1

.
ρ

(ψ1 + 2H
.
ψ1) + H

δρh,2
.
ρ
− 2

H
.
ρ

2 δ
.
ρh,1δρh,1
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+ H2 (δρh,1)2

.
ρ

2

( ..
ρ

H
.
ρ
−

.
H
H2 − 2

)
, (4.72)

where we have assumed that on small scales only the perturbation of the Higgs field is relevant.
Having defined rh = ρh/ρ =

.
ρh/

.
ρ and using the fact that during the radiation phase

.
H =

−2H2,
.
ρ = −4Hρ and

..
ρ = −6H

.
ρ, we find (using again the flat gauge)

− ζ2 = −2rh(1− rh)ζ2
h,1 = −2

1
rh

(1− rh)ζ2
1, (4.73)

where we have used the relation δ
.
ρh,1 = −4Hδρh,1. A similar computation gives

− ζ2,h = (−2 + 8− 6) ζ2
h,1 = 0 (4.74)

and therefore the Higgs perturbation is Gaussian. This is important for what comes later on.
One can ask about the non-Gaussianity during inflation. Writing h = hc + δh1 + δh2/2, the

equation for δh2 on super-Hubble scales is

δ
..
h2 + 3Hδ

..
h2 + V ′′δh2 + V ′′′ (δh1)2 = 0, (4.75)

from which one deduces that, if δh1(t, x) = C(x)
.

hc(t), then

δh2(t, x) = C2(x)
..
hc(t). (4.76)

During inflation the gauge-invariant second-order Higgs curvature perturbation is

− ζh,2 = ψ2 − 2
δh1

.
hc

(ψ1 + 2H
.
ψ1) + H

δh2
.

hc

− 2
H
.

hc2
δ

.
h1δh1 + H2 (δh1)2

.
hc2

( ..
hc

H
.

hc

−
.

H
H2 − 2

)
, (4.77)

In the flat gauge one finds

− ζh,2 = −2ζ2
h,1 (during inflation). (4.78)

Another way of finding the result (4.73) is the following. In the absence of interactions, the
Higgs and radiation have a conserved curvature perturbation [427]

ζi(x) = −ψ(t, x) +
1
3

ˆ ρi(t,x)

ρi(t)

dρ̃i

ρ̃i + P̃(ρ̃i)
, (i = γ, h). (4.79)

Let us assume that the Higgs decays on a uniform (total) density hypersurface corresponding
to γh = H, being γh the decay rate of the Higgs. On this hypersurface one has

ργ(tdec, x) + ρh(tdec, x) = ρ(tdec) (4.80)

and also ζ = −ψ given that δρtot = 0 in this gauge. On the other hand, the local Higgs and
radiation densities on such decay surface are inhomogeneous (we understand the arguments
(t, x) of ζ, ζi)

ζγ = ζ +
1
4

ln
ργ(t, x)

ργ(t)
,
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ζh = ζ +
1
4

ln
ρh(t, x)

ρh(t)
, (4.81)

and therefore

ργ(t, x) = ργ(t)e−4(ζ−ζγ),

ρh(t, x) = ρh(t)e−4(ζ−ζh). (4.82)

Since the total density is uniform on the decay surface one finds

(1− rh)e−4ζ + rhe−4(ζ−ζh) = 1, (4.83)

where we have assumed that on small scales ζγ = 0. Solving for ζ one finds

ζ± = ±1
4

ln
(

1− rh + rhe4ζh
)

. (4.84)

In practice, the solution corresponding to ζ− can be disregarded as one is interested in large
values of ζ when dealing with the primordial black holes. Expanding at first order ζ+ one finds
ζ = rhζh and at second-order one recovers the relation (4.73).

Now, the relation (4.84) allows to compute the non-perturbative probability function for
the quantity ζ, by using the relation P(ζ+)dζ+ = P(ζh)dζh. One can first find P(ζh) and then
integrate it from a critical value

ζh(ζc) =
1
4

ln
(

rh − 1 + e4ζc

rh

)
(4.85)

in order to find the mass fraction of the primordial black holes at formation time. Typical values
in the literature for ζc go from 0.1 to 1.3 [428]. The fact that P(ζh) is Gaussian considerably
simplifies the computation: the primordial mass fraction βprim(M) of the universe occupied by
primordial black holes formed at the time tM is therefore given by

P(ζ > ζc) = βprim(M) =

ˆ
ζc

dζ P(ζ) =

ˆ
ζh(ζc)

dζh√
2π σζh

e−ζ2
h/2σ2

ζh =

ˆ
ζh(ζc)

dζ1√
2π σζ1

e−ζ2
1/2σ2

ζ1 ,

(4.86)
where in the last step we have introduced the Gaussian order of the total curvature perturbation
ζ1 = rhζh. The last formula, which is an exact result, gives an improvement of the usual
approximated Gaussian formula by the simple replacement of the threshold from ζc to ζh(ζc).
For ζc ' 0.5 and rh ' 0.01, one finds the new threshold to be ζh(ζc) ' 1.6, which seems to
signal that non-Gaussianity makes more difficult to produce PBHs. We write “seems” because
it is by now accepted in the literature that ζ(x) is not the best variable to describe the PBH
mass fraction at formation [428]. The density contrast ∆(x) is more suitable. This however
makes more difficult to gauge the importance of the non-Gaussianity due to the presence of
the Laplacian operator. One might evaluate the density contrast at Hubble crossing, so that
∆(x) ' (4/9a2H2)∇2ζ(x) ' 4/9ζ(x) and then use the relation among ζ(x) and the Gaussian
ζh(x). Another approach might be to compute the Laplacian identifying the PBHs with the
peaks of the distribution and therefore dropping the gradients of the fields.

Notice that one should also include another source of non-Gaussianity coming from the
non-linear mapping between h(TRH) and h(te). This certainly calls for a more thorough analysis
to assess the impact of the non-Gaussianity onto the PBH mass distribution.
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A cosmological signature of the Higgs
instability: Gravitational Waves

In Chapter 4 we have illustrated a possible cosmological signature of the instability of the Higgs
potential in the Standard Model. If the Higgs field probed the unstable region towards the end
of inflation, then its fluctuations on small scales grew considerably and, if large enough, they
could have sourced the creation of Primordial Black Holes.

In this chapter, based on [5], we discuss another independent signature of this phenomenon:
the production of gravitational waves sourced by Higgs fluctuations generated during infla-
tion. We fully characterise the two-point correlator of such gravitational waves by computing
its amplitude, the frequency at peak, the spectral index, as well as their three-point correlators
for various polarisations. We show that, depending on the Higgs and top masses, either LISA
or the Einstein Telescope and Advanced-Ligo, could detect such stochastic background of grav-
itational waves. In this sense, collider and gravitational wave physics can provide fundamental
and complementary informations. Furthermore, the consistency relation among the three- and
the two-point correlators could provide an efficient tool to ascribe the detected gravitational
waves to the Standard Model itself. Since the mechanism described in this chapter might also
be responsible for the generation of dark matter under the form of primordial black holes, this
latter hypothesis may find its confirmation through the detection of gravitational waves.

For an introduction to the instability of the Higgs potential in the Standard Model and its
implications in the Early Universe, together with a summary of the mechanism we envisage,
we refer the reader to Section 4.1. In Section 5.1 we summarise the content of this chapter.
Section 5.2 introduces the equation of motion and its solution for gravitational waves sourced
at second order by the scalar perturbations. These results are used in Sections 5.3 and 5.4 to
compute the power spectrum and bispectrum of this stochastic background of gravitational
waves. Section 5.5 collects our numerical results for the power spectra generated by the Higgs
instability. In Section 5.6 we conclude, and the final appendices contain further details of our
calculations.

5.1 Gravitational waves as a signature of the Higgs instability

The recent detection of gravitational waves sourced by a spiralling binary system made of
two ∼ 30M� black holes [343] has initiated the era of Gravitational Wave (GW) cosmology
[345] and opened a new window to investigate the very early stages of the evolution of the

131
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Universe [429]. In particular, the Laser Interferometer Space Antenna (LISA) project [430], as
well as the Einstein Telescope (ET) [431], Advanced-Ligo [432], and the Cosmic Explorer [433]
at larger frequencies, will search for the stochastic gravitational wave background produced
from different mechanisms, possibly identifying a primordial origin.

In Chapter 4 we discussed the generation of Primordial Black Holes (PBH) as a possible
probe of one of the most fundamental properties of the Standard Model (SM) of weak interac-
tions: the SM Higgs instability at high energies [3]. In this chapter we propose that a second
signature of the SM instability might be a stochastic background of gravitational waves po-
tentially detectable by the space-based interferometer LISA. Indeed, if there are large Higgs
perturbations generated during the last stages of inflation, responsible or not for the PBHs as
dark matter, they inevitably act as a (second-order) source of primordial gravitational waves at
horizon reentry. The goal of this chapter is therefore to:

1. characterize the two-point correlator (power spectrum Ph, its tilt as well as the frequency
at the peak) of gravitational waves induced by the first-order Higgs perturbations. Para-
metrically one expects Ph ∼ P2

ζ at Hubble crossing and therefore one can reach values
of Ph as large as 10−4; the spectral tilt is also particularly interesting as the GW spectrum
usually covers a large range of frequencies. The study of the detectability of the spec-
tral index of a generic GW background with energy density ΩGW( f ) = A( f / f∗)nT can
be found in Ref. [430] as a function of the frequency at the peak. For a signal peaked at
f∗ ∼ 0.05 Hz and A ∼ 10−12 one could constrain nT . O(1) and nT & O(7) 1;

2. calculate the three-point correlator (bispectrum Bh) of the gravitational waves induced
by the first-order Higgs perturbations. Parametrically one expects Bh ∼ P3

ζ at Hubble
crossing. The detectability of a non-Gaussian signal in the primordial gravitational waves
at interferometers is discussed in Ref. [434] and LISA should be sensitive to it. This is
of fundamental importance since a consistency relation between the three-point and the
two-point correlators may represent a way to distinguish the origin of the signal.

We will see that

1. the energy density ΩGW of the GWs generated by the Higgs fluctuations is typically of the
order of 10−8 at the peak. The latter is reached at frequencies ranging from 10−2 to 10 Hz.
This should allow either LISA or ET and Advanced-Ligo to detect the signal. Further-
more, as the frequency at the peak depends sensitively on the Higgs and top mass, this
will provide complementary and fundamental information to be crossed with the ones
provided by colliders with the possibility of either confirming or ruling out the origin of
the GW signal;

2. the spectral index of the signal will have a characteristic behaviour: blue with nT ' 3
for frequencies below the peak, and red with nT ' −0.6 for frequencies above the peak
frequency;

3. the bispectrum, in the case in which the two-point correlator is detectable by LISA, is
mainly peaked in the so-called folded and equilateral configurations. Summing up all
polarisations we find the characteristic consistency relation (k1k2k3)2Bh ∼ 103 P3/2

h . This

1For a frequency at the peak of fCMB ∼ 7.7 · 10−17 Hz, present CMB data already provide an upper bound
on the amount of GWs, ΩCMB

GW , generated during inflation and one can write the GW energy density ΩGW =

ΩCMB
GW ( f / fCMB)nT , being nT the spectral tilt. A limit of nT . 0.35 can be obtained for the best LISA configura-

tion with six links, five million km arm length and a five year mission [430].



5.2. Equation of motion and its solution for Gravitational Waves 133

consistency relation should be relevant when identifying the origin of a detected signal
and possibly give the chance to connect it to the idea that the very same Higgs fluctuations
have originated the dark matter under the form of PBHs.

5.2 Equation of motion and its solution for Gravitational Waves

Our goal is to evaluate the amount of gravitational waves produced during the radiation phase
by the SM Higgs perturbations which in turn owe their origin to the previous period of infla-
tion. The correct formalism to evaluate the contribution to the generation at second-order of
tensor modes from first-order scalar perturbations has been first discussed in [435–438]. The
first two parts of this section follow quite closely the notation of Appendix A of [405]. Our
convention for the signature of the metric is (− + ++), so that the perturbed metric in the
conformal Newtonian gauge reads

ds2 = −a2(1 + 2Φ)dη2 + a2
[
(1− 2Ψ)δij +

1
2

hij

]
dxidxj, (5.1)

where Φ, Ψ are the Bardeen potentials and the tensor perturbations hij are transverse and trace-
less: ∂ihij = hii = 0. In absence of anisotropy in the stress-energy tensor, we have Φ = Ψ
(including stress gives only a small correction [438]). Furthermore, one can rewrite hij in terms

of the basis
{

e(+)
ij , e(×)

ij

}
of polarisation tensors as follows

hij(η, x) =

ˆ
d3k

(2π)3

[
h(+)

k (η)e(+)
ij (k) + h(×)

k (η)e(×)
ij (k)

]
eik·x. (5.2)

The polarisation basis is given by

e(+)
ij (k) =

1√
2

[
ei(k)ej(k)− ēi(k)ēj(k)

]
, (5.3)

e(×)
ij (k) =

1√
2

[
ei(k)ēj(k) + ēi(k)ej(k)

]
, (5.4)

where ei(k) and ēi(k) are two three-dimensional vectors orthonormal to k, and the normalisa-
tion factor guarantees that e(+)

ij e(+)
ij = e(×)

ij e(×)
ij = 1, e(+)

ij e(×)
ij = 0.

5.2.1 Equation of motion of GWs

The equation of motion for the GWs is obtained by extracting the tensor component of the
Einstein equations expanded up to second order in perturbations

h′′ij + 2Hh′ij −∇2hij = −4Tij
lmSlm, (5.5)

where ′ denotes the derivative with respect to conformal time, H = a′/a is the conformal
Hubble parameter, Slm is the source term defined below in Eq. (5.11). The projector Tij

lm acting
on the source term selects its transverse and traceless part. We define it in Fourier space (and
usê, when needed, to denote quantities in the conjugate space) as

T̂ij
lm(k) = e(+)

ij (k) e(+)lm(k) + e(×)
ij (k) e(×)lm(k). (5.6)
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Our convention for the Fourier transform is the following:

Slm(η, x) =

ˆ
d3k

(2π)3 Ŝlm(η, k)eik·x, (5.7)

so that the equation of motion (5.5) reads, for each polarisation mode s = (+), (×),

hs
k
′′(η) + 2H hs

k
′(η) + k2hs

k(η) = Ŝ s(η, k), (5.8)

where Ŝ s(η, k) ≡ −4 es,lm(k)Ŝlm(η, k). The method of the Green function yields the solution

hs
k(η) =

1
a(η)

ˆ η

dη̃ gk(η, η̃) a(η̃) Ŝ s(η̃, k), (5.9)

where the Green function gk(η, η̃) for a radiation-dominated (RD) Universe is

gk(η, η̃) =
sin [k(η − η̃)]

k
θ(η − η̃), (5.10)

θ being the Heaviside step function.

5.2.2 The source term for GWs

The source term Ŝij for GWs appearing in Eq. (5.5) arises at second order in the scalar pertur-
bation Ψ [435]

Sij = 4Ψ∂i∂jΨ + 2∂iΨ∂jΨ−
4

3(1 + w)
∂i

(
Ψ′

H + Ψ
)

∂j

(
Ψ′

H + Ψ
)

, (5.11)

where w is the equation of state of the fluid permeating the Universe at a given epoch. Since the
generation of GWs occurs mainly when the relevant modes re-enter the Hubble radius, which
for the modes of our interest happens deeply into the RD era, we specialise to w = 1/3. We
rewrite the source in Fourier space, introducing

Ψ̂(η, k) =

ˆ
d3x Ψ(η, x) e−ik·x (5.12)

so the right hand side of Eq. (5.8) becomes (we omit the temporal dependence for brevity)

Ŝ s(η, k) = 4
ˆ

d3 p
(2π)3 es,ij(k)pi pj

[
2Ψ̂(p)Ψ̂(k− p)+

+

(
Ψ̂(p) +

1
H Ψ̂′(p)

)(
Ψ̂(k− p) +

1
H Ψ̂′(k− p)

) ]
. (5.13)

The expression inside squared brackets is explicitly symmetric under the exchange of p and
k− p.

The scalar perturbation Ψ(η, k) is directly related to the gauge invariant comoving curva-
ture perturbation by Ψ = 2

3 ζ [312]. We define then the transfer function T(η, k) through the
relation

Ψ̂(η, k) =
2
3

T(η, k)ζ(k), (5.14)
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and its expression is given in the RD era by

T(η, k) = T (kη), T (z) =
9
z2

[
sin(z/

√
3)

z/
√

3
− cos(z/

√
3)

]
. (5.15)

We can rewrite the source term (5.13) as

Ŝ s(η, k) =
4
9

ˆ
d3 p

(2π)3 es(k, p) f (p, |k− p|, η) ζ(p)ζ(k− p), (5.16)

where we have introduced

es(k, p) ≡ es,ij(k)pi pj =

{
1√
2

p2 sin2 θ cos 2φ for s = (+),
1√
2

p2 sin2 θ sin 2φ for s = (×),
(5.17)

where (p, θ, φ) are the coordinates of p in a spherical coordinate system whose (x̂, ŷ, ẑ) axes are
aligned with (e(k), ē(k), k), and

f (k1, k2, η) ≡ 4
[

2T(η, k1)T(η, k2) +

(
T(η, k1) +

1
HT′(η, k1)

)(
T(η, k2) +

1
HT′(η, k2)

)]
.

(5.18)

5.2.3 A compact expression for GWs with a numerical integration over time

Let us rewrite the solution for the GWs hs
k(η) by collecting the results of (5.9), (5.10), (5.16)

hs
k(η) =

1
a(η)

ˆ η

dη̃
sin(kη) cos(kη̃)− cos(kη) sin(kη̃)

k
a(η̃)·

· 4
9

ˆ
d3 p

(2π)3 es(k, p) f (p, |k− p|, η̃)ζ(p)ζ(k− p) =

=
4
9

ˆ
d3 p

(2π)3
1

k3η
es(k, p)ζ(p)ζ(k− p)·

·
[ˆ η

kdη̃ (kη̃)
(

sin(kη) cos(kη̃)− cos(kη) sin(kη̃)
)

f (p, |k− p|, η̃)

]
,

(5.19)

where we have expressed the scale factor in terms of conformal time during RD, a(η̃)/a(η) =
η̃/η.

The tensor modes begin to be generated at the time at which the wavelength 1/k re-enters
the comoving Hubble radius. The transfer function (5.15) decays as η−2, so that the generation
of tensor modes is completed within a time which is a few orders of magnitude larger than k−1,
around η ∼ O(103)k−1. Therefore the extrema of the integral over η̃ in Eq. (5.19) are η̃ = k−1

and the current time η � O(103)k−1, so that we can approximate it to η̃ → ∞.
The dimensionless expression contained in square brackets in Eq. (5.19) can be computed

analytically, in order to facilitate the calculation of the two- and three-point functions. We
denote

x =
p
k

, y =
|k− p|

k
, (5.20)

and we use the dimensionless time variable τ ≡ kη̃, and we input the Hubble rate H = aH =
η−1 during RD. We can then rewrite Eq. (5.19) as

hs
k(η) =

4
9

ˆ
d3 p

(2π)3
1

k3η
es(k, p)ζ(p)ζ(k− p)

[
Ic(x, y) cos(kη) + Is(x, y) sin(kη)

]
, (5.21)



136 5. A cosmological signature of the Higgs instability: Gravitational Waves
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Figure 5.1: Domain for the variables x = p/k, y = |k− p|/k allowed by the triangular in-
equality, superimposed with the (d, s) coordinates defined in Eq. (5.24).

where we have introduced two functions, Ic and Is, that can be computed analytically (the
reader can find the analytical result in Appendix 5.A)

Ic(x, y) =

ˆ ∞

1
dτ τ(− sin τ) · 4

{
2T (xτ)T (yτ) +

[
T (xτ) + xτ T ′(xτ)

][
T (yτ) + yτ T ′(yτ)

]}
,

Is(x, y) =

ˆ ∞

1
dτ τ(cos τ) · 4

{
2T (xτ)T (yτ) +

[
T (xτ) + xτ T ′(xτ)

][
T (yτ) + yτ T ′(yτ)

]}
.

(5.22)
The domain in the (x, y) plane is shown in Fig. 5.1: it consists of the configurations allowed by
the triangular inequality applied to the triangle formed by the vectors k, p, k− p, and is given
by

(x + y ≥ 1) ∧ (x + 1 ≥ y) ∧ (y + 1 ≥ x). (5.23)

It is useful to introduce two auxiliary variables (d, s) in terms of (x, y), which simplify the
expression of Ic, Is for the purpose of an analytical integration,

d =
1√
3
|x− y|, s =

1√
3

(x + y), (d, s) ∈ [0, 1/
√

3]× [1/
√

3, +∞) (5.24)

This redefinition of domain is illustrated in Fig. 5.1.
The result for the analytical calculation of the integrals Ic, Is for each point (d, s) is shown in
Figs. 5.2 and 5.3.
We observe that the numerical value of Ic(d, s), Is(d, s) is nearly independent of d = |x −
y|/
√

3. More interestingly, the integrals Ic, Is are spiked for a value of s ∼ 1 corresponding
to p + |k − p| ∼

√
3k. The reason for this is that the integrands of Ic and Is are products

of trigonometric functions of τ times a rational function of τ, and the oscillating behaviour
determines cancellations in the final result. Only for p + |k − p| ∼

√
3k there appear some
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Figure 5.2: 3D plots of Ic (upper plot) and Is (lower plot), defined in Eq. (5.22), as a function of
(d, s) (Eq. (5.24)).
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Figure 5.3: Behaviour of the integrals Ic, Is, defined in Eq. (5.22), as a function of s (Eq. (5.24)),
for the two extremal values of d = |x− y|/

√
3.
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terms in the integrand with the square of a trigonometric function and thus with a definite
sign, and this increases the final result. Notice that the factor

√
3 is simply due to the factor√

w appearing in the arguments of the transfer function of Eq. (5.15), and not to geometrical
reasons.

5.3 The Power Spectrum of Gravitational Waves

In this section we present the generic derivation of the two-point function and the power spec-
trum of gravitational waves. This result has been already derived and exposed in Refs. [435–
438]. The goal of the present section is to match it with our notation, and to prepare an anal-
ogous derivation of the three-point function of GWs in the next section. In Sec. 5.5 we will
use the formulæ obtained here to calculate the power spectrum and the three-point function of
GWs generated in our scenario.

5.3.1 Two-point function of GWs

We begin by writing the definition of two-point function, with the use of Eq. (5.21)

〈hr(η, k1)hs(η, k2)〉 =

=

(
4
9

)2 ˆ d3 p1

(2π)3

ˆ
d3 p2

(2π)3
1

k3
1k3

2η2
er(k1, p1)es(k2, p2)

〈
ζ(p1)ζ(k1 − p1)ζ(p2)ζ(k2 − p2)

〉
·

·
[

cos(k1η)Ic(x1, y1) + sin(k1η)Is(x1, y1)
][

cos(k2η)Ic(x2, y2) + sin(k2η)Is(x2, y2)
]
, (5.25)

where xi = pi/ki, yi = |ki − pi|/ki. To evaluate the four-point function of the curvature pertur-
bation ζ we proceed as usual, noting that at leading order it is a Gaussian variable defined by
the dimensionless power spectrum Pζ

〈ζ(k1)ζ(k2)〉 ≡ (2π)3δ(3)(k1 + k2)
2π2

k3
1
Pζ(k1), (5.26)

and the four-point function of ζ of the first line of (5.25) has two possible non-vanishing con-
tractions for k1, k2 6= 0. The two contributions give the same result, given that they correspond
to each other up to a shift p2 → (k2 − p2), which is a symmetry of Eq. (5.25), see Appendix 5.B
for details. We can evaluate then Eq. (5.25) for any of the two configurations, and multiply the
final result by 2. After integrating over p2 one gets

〈hr(η, k1)hs(η, k2)〉 =

= (2π)3δ(3)(k1 + k2) · 2
(

4
9

)2 ˆ d3 p1

(2π)3
1

k6
1η2

er(k1, p1)es(k1, p1)
2π2

p3
1

2π2

|k1 − p1|3
Pζ(p1)Pζ(|k1−p1|)·

·
[

cos2(k1η)Ic(x1, y1)2 + sin2(k1η)Is(x1, y1)2 + sin(2k1η)Ic(x1, y1)Is(x1, y1)
]
. (5.27)

Let us refer to a system of spherical coordinates (p1, θ, φ) oriented around the axis k1, and
denote x ≡ x1 = p1/k1, y ≡ y1 = |k1 − p1|/k1. In these variables one has

p1 = (k1x, cos−1 ((1 + x2 − y2)/2x
)

, φ) . (5.28)

We perform the following change of integration variables
ˆ

d3 p1 −→ k3
1

¨
S

dx dy x2 y
x

ˆ 2π

0
dφ, (5.29)
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where S is the infinite strip shown in Fig. 5.1. The integral over φ can be easily solved an-
alytically, and selects only some of the possible couples of polarisations (r, s) to give a non-
vanishing result. With the use of Eq. (5.17) we obtain

ˆ 2π

0
dφ er(k1, p1)es(k1, p1) =

k4
1

2
x4
[

1− (1 + x2 − y2)2

4x2

]2

· π δrs. (5.30)

By collecting the results of the last three equations we get the final expression for the two-point
function of GWs:

〈hr(η, k1)hs(η, k2)〉 =

= (2π)3δ(3)(k1 + k2)δrs 2π2

k3
1
· 2
(

4
9

)2 1
k2

1η2

¨
S

dx dy
x2

8y2

[
1− (1 + x2 − y2)2

4x2

]2

·

Pζ(k1x)Pζ(k1y)
[

cos2(k1η)I2
c + sin2(k1η)I2

s + sin(2k1η)IcIs
]
, (5.31)

where for brevity we do not write the arguments of the functions Ic(x, y) and Is(x, y), de-
fined in Eq. (5.22) and plotted in Figs. 5.2 and 5.3. The integrand is explicitly symmetric under
exchange of x and y. From Eq. (5.31) and the definition of the power spectrum of GWs

〈hr(η, k1)hs(η, k2)〉 ≡ (2π)3δ(3)(k1 + k2) δrs 2π2

k3
1
Ph(k1) (5.32)

we can extract Ph(η, k):

Ph(η, k) =
4
81

1
k2η2

¨
S

dx dy
x2

y2

[
1− (1 + x2 − y2)2

4x2

]2

Pζ(kx)Pζ(ky)·

·
[

cos2(kη)I2
c + sin2(kη)I2

s + sin(2kη)IcIs
]
. (5.33)

5.3.2 The energy density of GWs

In this section we derive the expression for the energy density of GWs, and its fraction ΩGW
relative to the critical energy density. The energy density of GWs is [439]

ρGW(η, x) =
M2

P
16a2(η)

〈
1
2

(
h′ij
)2

+
1
2
(
∇hij

)2
〉
' M2

P
16a2(η)

〈(
∇hij

)2
〉

, (5.34)

where the overlines denote an average over time. This expression for the energy density can
be rewritten in terms of the power spectrum of GWs as follows

ρGW(η) =

ˆ
d ln k ρGW(η, k), (5.35)

ρGW(η, k) =
M2

P
8

(
k

a(η)

)2

Ph(η, k). (5.36)

We can then define the density parameter of GWs per logarithmic interval of k,

ΩGW(η, k) =
ρGW(η, k)

ρcr(η)
=

1
24

(
k
H(η)

)2

Ph(η, k). (5.37)
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The expression for the power spectrum that we have computed in the previous section holds
only during the RD era. The energy density of GWs decays as radiation, so we can easily esti-
mate the fraction of energy density of GWs in terms of the current energy density of radiation
Ωr,0 and ΩGW(η f , k) at a generic time η f towards the end of the RD era:

ΩGW(η0, k) = Ωr,0 ΩGW(η f , k) =
Ωr,0

24
k2

H(η f )2Ph(η f , k). (5.38)

We can collect the results of Eqs. (5.33) and (5.38), plug H(η f ) = 1/η f (valid through RD), and
perform a simplification for the average over time justified by the fact that kη � 1

cos2(kη)

η2 ∼ sin2(kη)

η2 ∼ 1
2

1
η2 ,

sin(2kη)

η2 ∼ 0. (5.39)

We finally obtain the current energy density of GWs

ΩGW(η0, k) =
Ωr,0

972

¨
S

dx dy
x2

y2

[
1− (1 + x2 − y2)2

4x2

]2

Pζ(kx)Pζ(ky)
[
Ic(x, y)2 + Is(x, y)2] .

(5.40)

5.4 Bispectrum of Gravitational Waves

In this section we compute the bispectrum (three-point function) of GWs. Let us start from the
solution (5.21) for GWs, and write the three-point function as
〈

hr(η, k1)hs(η, k2)ht(η, k3)
〉

=

=

(
4
9

)3 ˆ d3 p1

(2π)3

ˆ
d3 p2

(2π)3

ˆ
d3 p3

(2π)3
1

k3
1k3

2k3
3η3

er(k1, p1)es(k2, p2)et(k3, p3)·

·
〈

ζ(p1)ζ(k1 − p1)ζ(p2)ζ(k2 − p2)ζ(p3)ζ(k3 − p3)
〉[

cos(k1η)Ic(x1, y1) + sin(k1η)Is(x1, y1)
]
·

·
[

cos(k2η)Ic(x2, y2) + sin(k2η)Is(x2, y2)
][

cos(k3η)Ic(x3, y3) + sin(k3η)Is(x3, y3)
]
, (5.41)

where xi = pi/ki and yi = |ki − pi|/ki. The details of the calculation of the six-point function
of the curvature perturbation ζ are given in Appendix 5.B. We have eight possible contractions
for ki 6= 0 that yield the same contribution to the bispectrum. We can evaluate the three-
point function for any of these configurations and multiply by eight the result: we choose the
configuration shown in Fig. 5.4. The three-point function (5.41) becomes then (we understand
that p2 = p1 − k1, p3 = p1 + k3, and y1 = x2, y2 = x3, y3 = x1):
〈

hr(η, k1)hs(η, k2)ht(η, k3)
〉

= (5.42)

= (2π)3δ(3)(k1 + k2 + k3) 8
(

4
9

)3
π3
ˆ

d3 p1
1

k3
1k3

2k3
3η3
·

· er(k1, p1)es(k2, p2)et(k3, p3)
Pζ(p1)

p3
1

Pζ(p2)

p3
2

Pζ(p3)

p3
3

[
cos(k1η)Ic

(
p1

k1
,

p2

k1

)
+ sin(k1η)Is

(
p1

k1
,

p2

k1

)]
·

·
[

cos(k2η)Ic

(
p2

k2
,

p3

k2

)
+ sin(k2η)Is

(
p2

k2
,

p3

k2

)] [
cos(k3η)Ic

(
p3

k3
,

p1

k3

)
+ sin(k3η)Is

(
p3

k3
,

p1

k3

)]
.

The polarisation tensors defined in Eq. (5.17) involve the angles θi, φi (shown in Fig. 5.4 for
i = 1) which identify pi in spherical coordinates around the axis ki.
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Figure 5.4: Geometrical configuration for the contraction (i) of the 6-point function of ζ writ-
ten in Eq. (5.63).

With reference to Fig. 5.4, the vectors ki in blue are given and we can choose a reference frame
such that

k1 =
(
k1x, k1y, 0

)
, k2 =

(
k2x, k2y, 0

)
, k3 = (−k3, 0, 0) ; (5.43)

the quantities `, r, and α in green are a convenient choice of cylindrical coordinates as integra-
tion variables, ˆ

d3 p1 −→
ˆ +∞

−∞
d`
ˆ +∞

0
r dr
ˆ 2π

0
dα ; (5.44)

the quantities marked in red give the expressions to plug in Eq. (??),

p1 = (r cos α, r sin α, `) ,
p2 =

(
−k1x + r cos α,−k1y + r sin α, `

)
,

p3 = (k3 + r cos α, r sin α, `) ,

p2
i sin2 θi = p2

i −
|pi · ki|2

k2
i

, sin φi =
` ki

|pi × ki|
.

(5.45)

Eqs. (??), (5.17), and (5.22), with the replacements listed in (5.43), (5.44), (5.45), contain all the
ingredients for the numerical calculation of the bispectrum Brst

h of GWs, defined as
〈

hr(η, k1)hs(η, k2)ht(η, k3)
〉
≡ (2π)3δ(3)(k1 + k2 + k3) Brst

h (k1, k2, k3). (5.46)

Out of the eight possible polarisations (r, s, t) of the three-point function, four of them van-
ish due to parity arguments applied to the polarisation tensors, in analogy to what happens
for the two-point function, see Eq. (5.30). Among the terms contained in Eq. (??), the only
ones which are odd under the parity transformation ` → −` (that is, a parity transformation
with respect to the plane containing k1, k2, k3) are the polarisation tensors e×, and all other
terms are even. This implies that the only four non-vanishing polarisation combinations for
the three-point functions are

(+ + +), (+××), (×+×), (××+). (5.47)
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5.5 Numerical results for the Energy Density and Bispectrum of GWs

5.5.1 Energy density of GWs

We devote this section to the results of the numerical integration for the scalar power spectra
Pζ(k) obtained for a few illustrative cases of the mechanism discussed in Chapter 4. We rewrite
for convenience the energy density of GWs of Eq. (5.40) in terms of the variables (d, s) defined
in Eq. (5.24) as

ΩGW(η0, k) =
Ωr,0

36

ˆ 1√
3

0
dd
ˆ ∞

1√
3

ds
[

(d2 − 1/3)(s2 − 1/3)

s2 − d2

]2

·

· Pζ

(
k
√

3
2

(s + d)

)
Pζ

(
k
√

3
2

(s− d)

)
[
Ic(d, s)2 + Is(d, s)2] , (5.48)

where the functions Ic, Is are defined in Eq. (5.22) and are plotted in Figures 5.2 and 5.3.
We consider the running of the quartic Higgs coupling λ for some sample points in the pa-

rameter space (mtop, mHiggs) denoted by the number of standard deviations from the measured
central values. We have taken the current LHC combination [416–418]

mtop = 172.47± 0.5 GeV, mHiggs = 125.09± 0.24 GeV. (5.49)

The corresponding running of the quartic Higgs coupling λ is shown in Fig. 5.5.
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Figure 5.5: Running of the quartic Higgs coupling λ for the masses mtop, mHiggs listed in
Eq. (5.49).

Each of these points defines therefore a different Higgs potential, for which we run an evolution
of the Higgs field completely analogous to what was described in Chapter 4, by keeping a fixed
Hubble rate H = 1012 GeV. This evolution leads to the creation of PBH during the radiation
dominated era, with a peak in the mass function for scales of the order of k∗, the mode that
leaves the Hubble radius at the time t∗ when the classical evolution of the Higgs field starts, as
described in the Introduction. The corresponding Pζ has basically the same shape in all these
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cases, and what changes is the reference scale k∗ for the enhancement of the power spectrum
as we show in Fig. 5.6.2
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Figure 5.6: The power spectrum of the comoving curvature perturbation during the radiation
phase obtained in Ref. [3] for the masses mtop, mHiggs listed in Eq. (5.49).

The final result for the power spectra of GW is shown in Fig. 5.7, together with the comparison
with the projected sensitivity of proposed future experiments. The sensitivity curve for LISA is
estimated on the basis of the proposal [440]: the proposed design (4y, 2.5 Gm of length, 6 links)
is expected to yield a sensitivity in between the ones dubbed C1 and C2 in Ref. [441]3. We also
include the projected design sensitivity for Advanced LIGO + Virgo from Ref. [442], and the
estimated sensitivity for the proposed Einstein Telescope (ET) [443, 444].

The GW power spectra are shown for different combinations of the values of the Higgs and
top masses where the symbols m(±nσ)

Higgs and m(±nσ)
top indicate their values ±nσ away from their

central values. A GW power spectrum for values of the Higgs boson mass mHiggs = 125.09 GeV
(the current central value) and mtop = 171.47 GeV, is well within the reach of LISA. To relate
the amount of GWs and the PBH abundance at formation following the proposal of Chapter 4,
one can use the relation MPBH ' 50M�(10−9Hz/ f )2. In Fig. 5.7, we have used that relation to
translate the frequencies of the GW signal in terms of the peak mass of the PBH distribution.

One fundamental information to be drawn from Fig. 5.7 is that the frequency at the peak
depends in a sensitive way on the Higgs and top masses, ranging from 10−2 to about 10 Hz,
see Table 5.1. Therefore, according to the Higgs and top masses, the signal falls either within
the LISA or the ET and Advanced-Ligo sensitivity curves. This implies that a detected signal
can be cross-checked with the information obtained through colliders, thus either confirming
or ruling out its Standard Model origin.

We draw the attention of the reader that our results for the GW power spectra in Fig. 5.7
are sensitive to the value of the Higgs field at the beginning of its classical dynamics. A per
mille change in such a value can lead to variations of the power spectrum of the curvature

2If the same mechanism is supposed to give rise to PBHs, then these power spectra yield a final abundance
ΩPBH/ΩCDM ranging between 10−3 and 10−1 when no accretion is included [3].

3We thank G. Nardini for clarifying discussions about this point.
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Figure 5.7: Power spectra of GWs for the scalar power spectra generated by the mechanism
discussed in Chapter 4, compared with the estimated sensitivities for LISA, the Einstein Tele-
scope, and the design sensitivity of Advanced LIGO + Virgo. The Higgs and top mass values
are mHiggs = 125.09± 0.24 GeV and mtop = 172.47± 0.5 GeV.

perturbation by (2− 4) orders of magnitude. However, from Fig. 5.7 it is clear that we can still
afford a change in Pζ of three orders of magnitude.

5.5.2 The spectral tilt of GWs at low and high frequencies

As we have mentioned in the introduction, the spectral tilt of the GW spectrum is a very in-
teresting observable as GWs cover a large range of frequencies. For instance, writing the GW
energy density as ΩGW = ΩCMB

GW ( f / fCMB)nT , being nT the spectral tilt and fCMB ∼ 7.7 · 10−17

Hz the CMB frequency, a limit of nT . 0.35 can in principle be obtained for the best LISA
configuration with six links, five million km arm length and a five year mission [430].

If the scalar power spectrum Pζ(k) is vanishing or negligible for k smaller than some scale
k∗, and approximately constant for k > k∗ as in our case, then at small k we have ΩGW ∼ k3.
Indeed, in this case Pζ(kx) in Eq. (5.48) for k� k∗ selects s & 1/k in the integral over s, so that
the tail at high s of Ic,s(d, s) is picked up and it goes as 1/s2 (see Fig. 5.3). The resulting overall
integral is therefore of order ˆ

1/k

ds
s4 ∼ k3. (5.50)

As for the spectral tilt at k � k∗, the integral over s in Eq. (5.48) is peaked at s ∼
√

3 due to
the spike in Ic,s(d, s) (see Fig. 5.3) and the dependence on k comes from Pζ(kx)Pζ(k(

√
3− x))

which has a spectral tilt equal roughly to twice the spectral index of Pζ . In our case, Pζ(k) ∼
k−0.35 and ΩGW(k) turns out to go as ∼ k−0.6. For a narrow scalar power spectrum Pζ(k), we
would expect by similar arguments a spectral index ∼ +4 at small k and a quite sharp cutoff at
high k.
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The final parametrisation of the GW spectrum induced by the Higgs fluctuations is there-
fore

ΩGW( f ) ' 3 · 10−8
(

f
f∗

)nT

with nT =

{
3 for f < f∗,
−0.6 for f > f∗.

. (5.51)

m(xσ)
top m(yσ)

Higgs f∗(Hz)

(0σ) (−2σ) 40.0
(0σ) (0σ) 21.8
(0σ) (+1σ) 13.0
(0σ) (+2σ) 7.74

(−1σ) (0σ) 2.02
(−1σ) (+1σ) 0.80
(−2σ) (0σ) 0.015
(−2σ) (+1σ) 0.0038

Table 5.1: Values of f∗ defined in Eq. (5.51) for each of the cases considered in Fig. 5.7.

The values of f∗ for the cases we consider are listed in Table 5.1. The parametrisation of
Eq. (5.51) is useful to deduce its detectability by LISA. The investigation of a generic GW
background whose energy density is parametrised as ΩGW( f ) = A( f / f∗)nT can be found in
Ref. [430] where it was imposed that the signal-to-noise ratio is larger than 10, see Fig. 2 of
Ref. [430]. It seems that for the case of Higgs mass mHiggs = 125.09 GeV and mtop = 171.47
GeV not only the amplitude of the gravitational waves from Higgs perturbations, but also its
spectral index can be measured with accuracy, opening the possibility of a full identification of
the underlying mechanism.

Were GWs found, the value of the frequency f∗ would allow to identify the approximate
position of the instability scale ΛI of the Higgs potential, defined by V(ΛI) = 0. The instability
scale ΛI can be identified by the relation

ΛI ' 3 · 1011
(

f∗
Hz

)−0.65

GeV, (5.52)

obtained by the numerical fit shown in Fig. 5.8.
We stress that this relation is robust in the sense that the frequency changes very little even
when the overall amplitude of the GW signal decreases due to a variation of the initial condition
of the classical Higgs field. It is remarkable that a measurement of the frequency of the GW
signal can be directly related to such a high energy scale.

5.5.3 The three-point correlator of GWs and its consistency relations

In this subsection we present our findings for the three-point correlator of the GWs. As men-
tioned in the introduction, the community has already started discussing the detectability of
such non-Gaussian signal at interferometers [434]. The ultimate reason for measuring the GW
bispectrum is to exploit the correspondence between the three-point and the two-point correla-
tors in order to discriminate the different mechanisms which give rise to a GW signal hopefully
measured by LISA.
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Figure 5.8: Instability scale Λ of the Higgs potential as a function of the peak frequency of the
GW power spectrum f∗.

We defined the bispectrum Brst
h (k1, k2, k3) (the temporal dependence on η is understood) in

Eq. (5.46). We also define a dimensionless normalised shape Srst
h (k1, k2, k3) in order to cancel

the time scaling of GWs as 1/η [see Eq. (5.21)]:

Srst
h (k1, k2, k3) = k2

1k2
2k2

3
Brst

h (k1, k2, k3)√
Ph(k1)Ph(k2)Ph(k3)

, (5.53)

where Ph(k) is the dimensionless power spectrum defined in Eq. (5.32). As for the oscillatory
behaviour of the two- and three-point functions, we consider their envelope in time. We replace
then the oscillating function in squared brackets in the solution (5.21) by its envelope

Ic(x, y) cos(kη) + Is(x, y) sin(kη)→
√
Ic(x, y)2 + Is(x, y)2 , (5.54)

both for Bh and Ph in Eq. (5.53).
We show the numerical results for the bispectrum by fixing the value of k3 and by ordering

the momenta as k1 ≤ k2 ≤ k3. Figs. 5.9 and 5.10 show contours of Sh(k1, k2, k3) in the plane
(k1/k3, k2/k3) for two values of k3 close to the maximum ofPζ(k) (shown in Fig. 5.6). We choose

the case (m(−2σ)
top , m(0σ)

higgs), as it falls into the window detectable by LISA, but we notice that the
result is identical for the other cases, given that the shape of the power spectrum is identical, up
to a rescaling of the momenta (k1, k2, k3). We also notice that the normalised shape defined in
Eq. (5.53) is invariant under rescaling of the scalar power spectrum Pζ(k). In Fig. 5.9, together
with the separate plots for each polarisation, we also show their sum in the lower two plots,
both with contours and with a three-dimensional plot.
From these numerical results we observe several features. First of all, we remind the reader
that there are traditionally several configurations one can analyse:

• the local one where the signal is peaked for squeezed configurations k1 � k2 ' k3;
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Figure 5.9: Normalised shapes of GWs [defined in Eq. (5.53)] for the spectrum in the case
(m(−2σ)

top , m(0σ)
higgs). Here k3 is fixed to be 2k∗, corresponding to 0.04 Hz. The upper four plots

show the four non-vanishing polarisations listed in Eq. (5.47). The two plots at the bottom
show the sum over all the polarisations.

• the equilateral configuration peaks for equilateral configurations k1 ' k2 ' k3 for which
the strongest correlations between fluctuation modes happen when they cross the horizon
approximately at the same time;

• the folded configuration for which the signal is boosted for k1 + k2 ' k3;

• the orthogonal configuration (k1 ' k2) which creates a signal with a positive peak at the
equilateral configuration and a negative peak at the folded configuration.
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Figure 5.10: Same as Fig. 5.9, for k3 = k∗, corresponding to 0.02 Hz.

The signal is peaked in different configurations according to the polarizations. There seems to
be however a tendency of the signal to peak for folded and equilateral configurations. This does
not come as a surprise as the GWs are generated at Hubble crossing and the source depends on
spatial gradients of the comoving curvature perturbations and this tends to enhance the signal
when the scales involved are not too different. As a rule of thumb we can propose the following
consistency relation for the largest signals

S+++
h = O(−600) for folded configurations,

S+××
h = O(−600) for equilateral configurations.

(5.55)

As for the signal summed for all the polarizations, the results are presented in the lower plot of
Fig. (5.9). From it we can estimate

∑
pol

Sh = O(−1000) for equilateral configurations. (5.56)

The bispectrum therefore offers a distinct tool to confirm the nature of the origin of the GW
signal, once the two-point correlation is measured by LISA (or other experiments).
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5.6 Conclusions

In this Chapter we have characterized the GW signal possibly originated by physics of the
Standard Model and its inherent instability scale appearing in the Higgs scalar sector. In this
sense, GW physics allows a test, albeit indirect, of the behaviour of the Standard Model at large
field values. The source of the GWs is generated by the Higgs perturbations created during a
primordial epoch of inflation and amplified during the phase in which the Higgs probes the
unstable part of the potential.

The energy density ΩGW can be as large as 10−8 and therefore measurable either by LISA
or by the ET and Advanced-Ligo, the amplitude being sensitive to the initial conditions of
the Higgs classical dynamics. Which experiment turns out to be relevant is dictated by the
frequency at the peak of the signal, which in turn depends on the Higgs and top masses. This
is indeed a bonus. The more knowledge from collider physics is collected on these masses, the
more one could confirm or disprove the hypothesis that these GWs come from Standard Model
physics.

We have also characterized the signal in terms of its spectral index as well as three-point
correlator. The latter is particularly relevant as it allows to check the consistency between the
three- and the two-point correlators and thus offers a way to discriminate among the primordial
mechanisms generating the stochastic background of GWs.

We close with some comments. The mechanism described in this paper makes use of the
fact that we identify our observed Universe as one of those regions which have been thermally
saved during the reheating stage following inflation after the Higgs has probed the unstable
part of its potential during inflation. The choice of the parameters might therefore seem fine-
tuned. However, anthropic arguments come to the rescue as the very same dynamics might
create the dark matter of the Universe under the form of PBHs [3]. Put in other words, if
the dark matter has to be ascribed to the Standard Model, then one should also detect the
corresponding GW signal.

5.A Analytical results for the functions Ic, Is

We write down the analytical formulæ for the integrals Ic, Is defined in Eq. (5.22):

Ic(d, s) =
288

(s2 − d2)3

{ [
2c1 + (5 + d2)s1

]
s sin s−

[
2c1 + (5 + s2)s1

]
d sin d

+
[
(1 + d2)c1 + (5 + d2 − 2s2)s1

]
cos s−

[
(1 + s2)c1 + (5 + s2 − 2d2)s1

]
cos d

+
1
8

(s2 + d2 − 2)2 [Si(1 + d) + Si(1− d)− Si(1− s)− Si(1 + s)− πθ(s− 1)]
}

, (5.57)

where c1 ≡ cos(1) ' 0.54, s1 ≡ sin(1) ' 0.84 and Si(x) is the sine integral function;

Is(d, s) =
288

(d2 − s2)3

{ [
−2s1 + (5 + d2)c1

]
s sin s−

[
−2s1 + (5 + s2)c1

]
d sin d

+
[
−(1 + d2)s1 + (5 + d2 − 2s2)c1

]
cos s−

[
−(1 + s2)s1 + (5 + s2 − 2d2)c1

]
cos d

+
1
8

(s2 + d2 − 2)2 [Ci(1 + d) + Ci(1− d)−Ci(|1− s|)−Ci(1 + s)]
}

, (5.58)

where Ci(x) is the cosine integral function.
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5.B Four and Six-Point Functions of the Curvature Perturbation

5.B.1 Four-point function of the curvature perturbation

The four-point function of the curvature perturbation ζ in the first line of Eq. (5.25) has two
possible non-vanishing contractions for k1, k2 6= 0:

(i)
〈

ζ(p1)ζ(k1 − p1)ζ(p2)ζ(k2 − p2)
〉

(ii)
〈

ζ(p1)ζ(k1 − p1)ζ(p2)ζ(k2 − p2)
〉

(obtained from (i) by p2 → (k2 − p2) )
(5.59)

The two contractions (i), (ii) correspond to the configuration of momenta shown in Fig. 5.11.
The sum of the contractions (i) and (ii) gives

p 1
k 2
−
p 2 p

2k
1 −

p
1

k1
k2

(i)
p 1

k
1 −

p
1

p 2
k
2 −

p
2

k1
k2

(ii)

Figure 5.11: Geometrical configurations for the non-vanishing contractions of the two-point
function listed in Eq. (5.59).

〈
ζ(p1)ζ(k1 − p1)ζ(p2)ζ(k2 − p2)

〉
=

= (2π)6δ(3)(k1 + k2)
[
δ(3)(k2 + p1− p2) + δ(3)(p1 + p2)

]2π2

p3
1

2π2

|k1 − p1|3
Pζ(p1)Pζ(|k1− p1|).

(5.60)

The two contributions give the same result, given that they correspond to each other up to a
shift p2 → (k2 − p2), which is a symmetry of Eq. (5.25). To check the symmetry of the whole
integral under the exchange of p, k− p, it is important to observe that, for a generic function f ,

ˆ
d3 p es,ij(k)pi pj f (k− p) f (p) =

ˆ
d3 p̃ es,ij(k)(ki − p̃i)(k j − p̃j) f (p̃) f (k− p̃) =

=

ˆ
d3 p̃ es,ij(k) p̃i p̃j f (p̃) f (k− p̃), (5.61)

since es,ij(k) is transverse to k.
We can evaluate then Eq. (5.25) for any of the two configurations, and multiply the final result
by 2, to get Eq. (5.27) after integration over p2 with a Dirac delta so that p2 = p1 − k1, and
k2 = −k1.
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5.B.2 Six-point function of the curvature perturbation

To calculate the six-point function of ζ that appears in (5.41) we have eight possible contractions
for ki 6= 0, listed in Eq. (5.62). This total number of eight can be understood as the product of
four choices for the contraction of ζ(p1) times the number of contractions for the remaining
four ζ’s, that is two. All these contractions yield the same contribution to the bispectrum,
thanks to the invariance of Eq. (5.41) under the exchange of the subscripts 1 and 2 and under
pi → ki − pi, as shown in Eq. (5.61) and (5.22).

(i)
〈

ζ(p1)ζ(k1 − p1)ζ(p2)ζ(k2 − p2)ζ(p3)ζ(k3 − p3)
〉

(5.62)

(ii)
〈

ζ(p1)ζ(k1 − p1)ζ(p2)ζ(k2 − p2)ζ(p3)ζ(k3 − p3)
〉

(obtained from (i) by p1 → (k1 − p1) )

(iii)
〈

ζ(p1)ζ(k1 − p1)ζ(p2)ζ(k2 − p2)ζ(p3)ζ(k3 − p3)
〉

(obtained from (i) by p3 → (k3 − p3) )

(iv)
〈

ζ(p1)ζ(k1 − p1)ζ(p2)ζ(k2 − p2)ζ(p3)ζ(k3 − p3)
〉

(obtained from (i) by p2 → (k2 − p2) )

(v)
〈

ζ(p1)ζ(k1 − p1)ζ(p2)ζ(k2 − p2)ζ(p3)ζ(k3 − p3)
〉

(obtained from (i) by 1↔ 2 )

(vi)
〈

ζ(p1)ζ(k1 − p1)ζ(p2)ζ(k2 − p2)ζ(p3)ζ(k3 − p3)
〉

(obtained from (i) by p1 → (k1 − p1) and 1↔ 2 )

(vii)
〈

ζ(p1)ζ(k1 − p1)ζ(p2)ζ(k2 − p2)ζ(p3)ζ(k3 − p3)
〉

(obtained from (i) by p3 → (k3 − p3) and 1↔ 2 )

(viii)
〈

ζ(p1)ζ(k1 − p1)ζ(p2)ζ(k2 − p2)ζ(p3)ζ(k3 − p3)
〉

(obtained from (i) by p2 → (k2 − p2) and 1↔ 2 )

In Fig. 5.12 we show the resulting geometrical configurations for the six momenta pi, (ki − pi),
projected on the plane of the triangle formed by the ki. Notice indeed that all the contractions
result in a common factor δ(3)(k1 + k2 + k3). The labels of the vectors are printed only for the
contraction (i) to facilitate the reading.

p1

k3
− p3

p
2

k
1 −

p
1

p
3

k
2 −

p
2

k 1

k
2

k3

(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

Figure 5.12: Geometrical configurations for the eight non-vanishing contractions of the three-
point function listed in Eq. (5.62).

We can evaluate the three-point function for any of these configurations and multiply by eight
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the result. We choose the contraction (i), which is equal to

〈
ζ(p1)ζ(k1 − p1)ζ(p2)ζ(k2 − p2)ζ(p3)ζ(k3 − p3)

〉
= (2π)9δ(3)(k1 + k2 + k3)·

·
(
2π2)3 Pζ(p1)

p3
1

Pζ(p2)

p3
2

Pζ(p3)

p3
3

δ(3)(p1 + k3 − p3)δ(3)(k1 − p1 + p2). (5.63)

We then proceed to the integration of the three-point function over the conjugate momenta. The
Dirac deltas in Eq. (5.63) fix the geometrical configuration of the six momenta ki, pi as shown
in Fig. 5.4. We can integrate over d3 p2 and d3 p3 in Eq. (5.41) with the last two Dirac deltas in
(5.63). The result is (??) and the remaining integral in d3 p1 has to be evaluated numerically.
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