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Abstract

It has been recently definitively established that the development of Extensive Air
Showers (EAS) which are induced in the Earth’s atmosphere by impinging cosmic
particles from the outermost space is accompanied by the emission of radio waves.
This phenomenon is experimentally investigated by the LOPES experiment, co-
located at Karlsruhe Institute of Technology (KIT) with the EAS detector array
KASCADE-Grande using traditional detection techniques.

The LOPES experiment is an absolutely amplitude calibrated array of radio an-
tennae for observing radio waves from EAS in the frequency range of 40-80 MHz.
The KASCADE-Grande array provides the trigger information and experimentally
determined parameters of the associated EAS observed in the energy range of 1016−
1018 eV. The studies are focussed to understand and clarify the phenomena of EAS
radio emission, in particular in view of an eventual large scale application of a cor-
responding detection technique, like in LOFAR (Low Frequency Array for which
LOPES is a prototype station) and for the Pierre Auger Observatory.

Until summer 2006, all 30 antennas were equipped in the east-west polarization
direction only, measuring a single polarization of the radio emission. The data of
this LOPES set-up provided the possibility for a detailed investigation of correlations
of the radio signal with basic EAS parameters like arrival direction, particle energy
and mass of the primary. The results enable studies of the radio signal on a single
EAS event basis, in particular of its lateral extension. Nevertheless, the north-
south polarization component is required for an improved understanding of the radio
emission signal and for a verification of the geo-synchrotron effect as the dominant
mechanism of radio emission in air showers.

The focus of the present work are measurements and analyses of the polarization
of the radio signals from EAS. Investigations of the radio pulse height in corre-
lation with EAS parameters, including an adequate parametrization of the pulse
height per single polarization in east-west and north-south direction, respectively,
have been performed. The studies of the lateral distribution per single event and
per single polarization of the electric field are helpful for an improved understanding
of the shower development. The polarization vector was finally reconstructed by
observations with dual polarization antennae which are configured for both polar-
izations of signals recorded at the same place and simultaneously for the east-west
and north-south direction. Comparisons with theoretical studies complete the inves-
tigations. The geo-synchrotron emission process is confirmed as the radio emission
mechanism in cosmic ray air showers. In addition, it could be found that a not
negligible contribution to the total signal stems from another emission process. It
is most probably induced by the negative charge excess during the shower develop-
ment. This contribution mainly modifies the North-South polarization component
of the dominant geo-synchrotron induced signal.
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Zusammenfassung

Polarisations-Messungen der Radiostrahlung von Luftschauern der
Kosmischen Strahlung

Vor kurzem konnte definitiv geklärt werden, dass die Entstehung ausgedehnter Luft-
schauer kosmischer Strahlung einhergeht mit einer Emission von Radiosignalen.
Dieses Phänomen wird derzeit unter anderem mit dem LOPES-Experiment am
Karlsruher Institut für Technologie (KIT) untersucht, welches innerhalb einer De-
tektoranlage für ausgedehnten Luftschauer, KASCADE-Grande, aufgebaut ist.

KASCADE-Grande benutzt zur Beobachtung von Luftschauern herkömmliche Mess-
methoden mit Teilchendetektoren. Das LOPES Experiment ist ein Netz von kalib-
rierten Radioantennen, das die Radiosignale der ausgedehnten Luftschauer bei 40-
80 MHz vermisst. Das KASCADE-Grande Experiment liefert dazu den Trigger sowie
wichtige experimentell bestimmte Parameter des assoziierten Luftschauers in einem
Energiebereich von 1016−1018 eV. Die Untersuchungen sind darauf ausgerichtet, die
Radioemission ausgedehnter Luftschauer besser zu verstehen und die Möglichkeiten
einer großangelegten Anwendung dieser Nachweistechnik in anderen Experimenten
wie LOFAR (Low Frequency Array für das LOPES eine Prototyp Station darstellt)
und für das Pierre-Auger-Observatorium zu untersuchen.

Bis zum Sommer 2006 waren 30 Antennen nur für eine Detektion der Polarisation
in Ost-West-Richtung ausgerüstet. Die Resultate ermöglichten die Analyse der Ra-
diosignale auf Basis einzelner Ereignisse, insbesondere auch der lateralen Verteilung
des Radiosignals. Trotzdem bleiben einige Fragen offen, solange nur die Ost-West-
Polarisation beobachtet wird, da diese emittierte Radiosignal nicht vollständig er-
fasst. Für ein umfassendes Verständnis ist zusätzlich eine Messung der Nord-Süd-
Polarisations-Komponente erforderlich.

Der Fokus dieser Arbeit liegt auf der Messung und Analyse der Polarisation der
Radiosignale aus ausgedehnten Luftschauern. Untersuchungen der Höhe des Ra-
diopulses in Korrelation mit den Schauerparametern, einschließlich einer adäquaten
Parameterisierung der Pulshöhe für die einzelnen Polarisationsrichtungen, wurde
durchgeführt. Studien der lateralen Verteilung für einzelne Ereignisse und der Polar-
isationsrichtung des elektrischen Feldes verbessern das Verständnis der Luftschauer-
entwicklung. Schliesslich wurde der Polarisationsvektor mit speziellen Antennen
analysiert, die eine Sensitivität sowohl in Ost-West als auch Nord-Süd-Richtung
aufweisen, gemessen. Vergleiche mit theoretischen Überlegungen komplettieren die
Untersuchungen. Dabei konnte der Geo-Synchrotron Effekt als dominanter Emis-
sionsmechanismus für das Radiosignal aus augedehnten Luftschauern bestätigt wer-
den. Zusätzlich konnte gezeigt werden, dass es zusätzlich zum geo-magnetischen
Effekt einen weiteren, nicht vernachlässigbaren Beitrag zum Radiosignal gibt, der
vermutlich auf den im Luftschauer erzeugten negativen Ladungsüberschuss zurück zu
führen ist. Dieser Beitrag zur Radioemission modifiziert vornehmlich die Nord-Süd
Polarisationskomponente des durch den Geo-Synchrotron Mechanismus erzeugten
Signales.



Content

1 Introduction 1

2 Extended Air Showers 5

3 Radio emission of EAS 7

4 The LOPES experiment 9

4.1 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.3 Data selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.4 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.5 The results of LOPES-30 . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Polarization studies 23

5.1 Theoretical motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Monte Carlo simulations . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Measurements & Analysis 35

6.1 Experimental Investigations . . . . . . . . . . . . . . . . . . . . . . . 35

6.2 First events measured with LOPES-pol . . . . . . . . . . . . . . . . . 37

6.3 Investigations of the CCbeam signal . . . . . . . . . . . . . . . . . . . 37

6.3.1 Study of the CCratio
beam . . . . . . . . . . . . . . . . . . . . . . . 41

6.4 Radio pulse parametrization . . . . . . . . . . . . . . . . . . . . . . . 49

6.5 Lateral distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.5.1 Comparison between simulation and measured data . . . . . . 59

6.6 Polarization vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7 Summary and Outlook 75

7.1 Research & Development for large scale application . . . . . . . . . . 77



ii Content

A Parametrization 79

A.1 Method: Iterative procedure . . . . . . . . . . . . . . . . . . . . . . . 79

A.2 Pulse height estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.3 Unit vector cross product ~v × ~B . . . . . . . . . . . . . . . . . . . . . 82

B Measured data and simulation 85

Bibliography 103



1. Introduction

Our Earth is continuously bombarded by cosmic particles from the space, most
abundantly by high energy protons and heavier nuclei of various atoms, with an
intensity of about 1000 particles/m2 · s integrated over all directions, and with en-
ergies up to about 1020 eV. After all, the highest energy reasonably well claimed is
at 3 · 1020 eV (Fly’s Eye, 1993). The cosmic ray energy density, integrated over all
energies, is approximately 1 eV/cm3, in the same order as that of the starlight (0.6
eV/cm3) and of the galactic magnetic field (0.2 eV/cm3). If we include in the term
”prime cosmic rays” the neutrino radiation and the still undiscovered gravitational
waves, cosmic rays are the only messengers from outside the solar system in addi-
tion to electromagnetic waves observed in all wavebands. Primary cosmic rays are
dominantly charged particles and are deflected by the irregular magnetic fields in
space, eventually with exception at highest energies, so that in general the origin is
obscured. From astrophysical point of view the basic questions are: ”Where are they
coming from? How are they accelerated to highest energies? How do they propa-
gate through the space?”. When entering into the Earth’s atmosphere, cosmic ray
particles produce secondary radiation by collisions with the air nuclei, producing the
full zoo of subnucleonic particles, of electrons and photons. The cosmic radiation
phenomenon has been discovered by Victor Hess, [1, 2], in his celebrated balloon
ascents in 1911/12. Since that time the studies of cosmic rays have gained fascinat-
ing aspects. In addition to the intrinsic interest in this phenomenon of nature, as
a subject of science it combines astrophysical messages with information of particle
physics. Despite a lapse of time of nearly 100 years since discovery, their origin and
accelerator mechanisms are still largely a matter of conjecture. The energy spectrum
of primary cosmic rays comprises more than 12 orders of magnitude in the energy
scale. The spectrum follows an overall power law (∝ E−2.7) with various district
changes of the spectral index, most conspicuously around 3 ·1015 eV , called the knee
(see Fig. 1.1). The part above the knee exceeds till recently, when the LHC [3] was
not yet in operation, the highest energies available at artificial accelerators. The
flux of the primary cosmic ray falls from 1 particle/cm2 · s to 1 particle /km2 · yr
at high energies. The steeply falling spectrum of primary cosmic rays implies that
the particle flux at higher energies is too low for direct measurements by detectors
carried by balloon or satellite flights.
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Figure 1.1: Cosmic ray energy spectrum from direct and indirect measurements of cosmic
rays [4].

The standard method above E ' 1014 eV is the observation of Extended Air Show-
ers (EAS) induced by high energy particles when penetrating the atmosphere. EAS
are particle cascades which develop by repeated collisions of the primary and fast
secondary cosmic rays with air molecules, propagating to ground as an extended
avalanche of electron - positron pairs and gamma rays, of muons and hadronic par-
ticles, laterally largely extended and able to be registered by particle detectors at
ground. The EAS phenomenon has been discovered by Auger et al. in 1938 [5] and
independently by Kohlhörster and colleagues [6]. Through the movement of these
particles further detectable effects of the EAS are induced: Cherenkov radiation
and fluorescence in air. All these EAS components are used for detailed detection
procedures.

In 1964 Jelley et al. [7] observed also radio pulses from EAS, and this radiation has
been subsequently studied in several research centres [8], even with triggering by a
conventional array [9]. Jelly et al. used an array of dipole antennas, sensitive in the
range of 40 MHz, operated in coincidence with Geiger counters. From the beginning
two main mechanisms have been considered to contribute to EAS radio emission:
Askaryan-type Cherenkov radiation due to a charged particle moving through the
dielectric media air faster than the velocity of light [10] and emission arising from the
deflection of charged particles in the geomagnetic field (synchotron radiation) [11]. In
the 70’s, however, the radio measurements lost their vital interest. This was probably
due to the limited electronic facilities in those days, the lack of reproducibility of the
results and insufficient knowledge in interpreting the data. As a consequence, the
method was not pursued for longer time, and the historic results came into question.
However, for studies of the emission mechanism, in particular investigations whether
radio emission is generated in air by the interaction of the EAS avalanche with the
Earth’s magnetic field (coherent geosynchotron emission [12] were revived at the
beginning of this 21st century, in particular with experimental studies of the LOPES
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experiment which has definitively established and rediscovered the radio emission
from EAS in 2005 [13]. LOPES is an array of dipole antennas with digital electronics,
operated together with the conventional detector array KASCADE-Grande [14].
Compared to the historical experiments, it provides an order of magnitude increase
in bandwidth and time resolution, effective digital filtering methods, and for the
first time true interferometric imaging capabilities. Sophisticated simulations of
radio emissions have been developed during recent years, e.g. the Monte Carlo code
REAS [15], and help in the understanding of the full radio signal of cosmic ray air
showers.

Radio techniques can help in the understanding of high energy cosmic rays, which
can cover the range of 1018 − 1019 eV thought to represent the transit from galactic
to extragalactic sources of cosmic rays. A large hybrid detector area with full expo-
sure and good angular resolution is required, and thus radio techniques can play a
important role in the field of the extensive air shower observations.

In particular, polarization of the radio emission initiated by the secondary charged
particles of the air shower in the Earth’s magnetic field is of importance. The
polarization characteristics can tell about the air shower dependencies with respect
to the radio signal, e.g. azimuthal dependencies. The radio signal is polarized into
the direction of the shower axis and of the Earth’s magnetic field. Knowledge of the
shower direction given by its azimuth, zenith and the geomagnetic angle (the angle
between the shower axis and the Earth’s magnetic field) are of main importance in
testifying the radio emission mechanism. Thus, the polarization measurements allow
the recording of the most complete part of the radio signal which can therefore be
fully compared with the corresponding simulations.

The present work is in context with the LOPES experiment and reports about first
studies of the polarization features of the EAS radio pulses. After a sketch of the
background, the LOPES experiment will be described and the signal reconstruction
and data analysis will be outlined. Results on the observed polarization features are
communicated and discussed.
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2. Extended Air Showers

When a primary cosmic ray particle of sufficiently high energy penetrates into the
Earth’s atmosphere it loses the energy by a series of subsequent collisions with
multiple production of secondary particles. On average a proton (with mean free
path length of ca. 80 g/cm2) will interact more than 12 times before it reaches sea
level. The secondary particles are mainly neutral and charged π and K, but also
heavier mesons, hyperons and antinucleons. The π0s decay immediately into γ rays
which soon produce e+ − e− pairs which subsequently produce bremsstrahlung to
create further pairs. In this way the γ rays induce avalanches of electromagnetic
particles whose numbers quickly increase until their energy has dropped so far that
ionization losses and Compton scattering become important (see Fig. 2.1). The
charged π± and other hadrons either decay into high energy µ± (and neutrinos) or
interact further, producing more secondary hadrons. The π± interact only weakly
within the atmosphere and have a relatively long lifetime due to the relativistic time
dilation. They reach ground level with high probability.

The longitudinal development of an extended air shower (EAS) is characterized by
a rapid increase of the number of particles up to a flat maximum and then of an
exponential decline. There is approximately a logarithmic dependence of the height
of maximum Xmax on energy. The maximum is near sea level for high energy EAS,
but about 6000 m in altitude for 1015 eV primaries. At sea level mostly showers are
observed, which are dying out; at detector installations mounted at high altitude the
observed EAS are ”younger”. Through the interaction of primary cosmic rays with
nitrogen and oxygen nuclei of the atmosphere (thickness ca. 1000 g/cm2) an EAS
of charged and neutral particles is produced with three dominant components: (1st)
electromagnetic particles with an equilibrium of electrons, positrons and γ quanta;
(2nd) the penetrating µ component; (3rd) the hadronic core.

In the EAS the energy of the rare primary particle on top of the atmosphere is dis-
tributed to millions of secondary particles which move like an extended ”pancake”,
hundreds of meters wide and a few meters thick. The different components have a
different lateral distributions. The EAS particles are traditionally detected and their
intensity is measured by extended arrays of detectors, installed on ground. Such a de-
tector array is KASCADE-Grande [17, 18] installed in Forschungszentrum Karlsruhe,
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Figure 2.1: Air shower development in the Earth’s atmosphere [16].

now KIT (Karlsruhe Institute of Technology), Campus North. The measurements
with arrays of charged particle detectors provide the basic EAS parameters:

(i) the location where the shower axis intersects the ground;

(ii) the lateral distributions of the various components and integrated the total
number of the particles of various components, called the shower sizes;

(iii) the azimuth and zenith angles of the shower incidence deduced from the tilt of
the shower ”disk” as it passes through the detectors.

There is a number of different EAS observables defined with specific observations
like the time distributions of the arriving particles [19]. It is a general goal to relate
the EAS observables to the energy and mass of the indirectly observed primary
particle from the cosmos. For that extensive Monte Carlo simulations of the EAS
development have to be invoked [16].

The EAS development is accompanied with different effects in the atmosphere. The
fast moving charged particles induce Cherenkov light [20, 21] in the atmosphere
which provides relevant information, when being observed under favorable condi-
tions. Another detection technique is based on the observation of nitrogen fluo-
rescence [22], mainly efficient at higher energies. This technique is applied at the
Pierre Auger Observatory [23, 24]. The advantage of Cherenkov and fluorescence
light observations is that they inform about the longitudinal development of the
EAS, differently from traditional ground level observations which only provide the
(more or less detailed) actual status of the lateral development of the EAS. A further
detection technique is on the horizon with observations of the radio emission from
EAS. This the general subject of the present work.



3. Radio emission of EAS

The interest in radio emission from EAS originates from Gurgen Askaryan in 1962 [10]
who called attention of the fact that any electromagnetic cascade in a gaseous, liquid
or solid dielectric material rapidly develops a net charge asymmetry due to electron
scattering and positron annihilation processes. When the shower front carrying the
charge excess is moving through the dielectricum with a velocity faster than the
speed of light in the medium, it emits Cherenkov radiation. This Askaryan effect is
dominant in dense media.

Radio emission from Extended Air Showers has been discovered in the sixties of the
last century [7], but because of the technical difficulties to detect unambiguously
the radio pulses and uncertainties of the data handling, the pioneering experiments
practically stopped in the seventies. The basic understanding followed the view that
the continuously produced e+ − e− pairs get separated by the geomagnetic field
(see Fig. 3.1), giving rise to a transverse current in the shower. In a frame moving
along with the shower, the electrons and positrons drift in opposite directions. The
transverse current induces dipole radiation, which results by Lorentz-boosting in a
strong forward-peaked radiation, timely compressed into an electromagnetic pulse,
as shown in Fig 3.2.

Figure 3.1: Electrons and positrons separated in the geomagnetic field.
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Figure 3.2: Example of a radio pulse coherently registered by the LOPES antennas [25].
Calibrated, up-sampled traces of an example event, after correction for geometrical delays
are shown. The radio pulse induced by a cosmic ray air shower can clearly be distinguished
from the background noise.

Coherence is achieved since the shower in its densest regions is not wider than a
wavelength around 100 MHz and at a few km height the phase shift due to the lateral
extent of the shower for an observer on the ground is still less than a wavelength up
to some 100 m from the shower core. Most of the electrons in the shower are actually
concentrated within a region smaller than this, and we may ignore an emission from
larger radii. At radio frequencies the wavelength (about few meters) is larger than
the size of the emitting region and the emission should be coherent. The flux of the
radiation must quadratically grow with the number of particles rather than linearly.

Though already pointed out in the seventies [8] as a possible mechanism, the coherent
geosynchotron effect [26] has found more detailed attention as the origin of radio
emission of EAS [12, 13] only in recent years, and it has been proposed as the
main mechanism for radio wave generation in EAS. The emission is explained to be
arising by the deflection of the electrons and positrons in the Earth’s magnetic field,
inducing synchrotron radiation. This effect has been recently studied in detail by
Monte Carlo simulations [15].

In the following the LOPES experiment is described, which is motivated to establish
unambiguously the existence of radio emission from EAS and to study the gross
features of the phenomenon. This recent revival of the interest is coupled with the
advent of advanced electronic devices for detection.



4. The LOPES experiment

4.1 Layout

The LOPES experiment is a digital antenna array, sensitive in the frequency regime
between 40-80 MHz, designed as a prototype for the astronomical digital telescope
LOFAR (LOw Frequency ARray) complemented all across Northern Europe. It
is located at the site of the KASCADE-Grande experiment at Forschungszentrum
Karlsruhe (now: Karlsruhe Institute of Technology (KIT), Campus North), which
provides the well-calibrated trigger information with cosmic ray air showers proper-
ties, needed for the reconstruction of the radio pulses. KASCADE-Grande is a tradi-
tional particle detector array (KArlsruhe Shower Core and Array DEtector-Grande)
measuring the air showers in the primary energy range from 1014 to 1018 eV. The
LOPES antennas are triggered by the particle detectors, first of the original KAS-
CADE experiment [27], later on also of the KASCADEGrande set-up [18]. The
latter allows the extend of studies to higher energies of the EAS primaries.

In Fig. 4.2, the KASCADE-Grande array is shown. The KASCADE experiment [28]
detects the electrons, photons and muons outside the core region of extensive air
showers in 252 detector stations on a rectangular grid of 13 m spacing, hence form-
ing an array of 200× 200 m2. The array is organized in 16 clusters of 4× 4 stations
each, and the LOPES event selection is invoked when an 10/16 cluster trigger from
the array is available. An access to measurements of higher energy air shower parti-
cles is possible with the Grande array due to the large number of scintillation stations
covering an area of approximate 700×700 m2 (0.5 km2) next to the KASCADE array
in order to operate together. As an extension of the KASCADE experiment running
successfully since 1996, the Grande array has been realized by 37 stations located in
hexagonal grids with an average distance of 140 m [14, 29]. Each Grande station is
equipped with 10 m2 of scintillation counters and the electronic components. A cen-
tral data acquisition station (DAQ) collects the data from all stations and generates
a valid experiment trigger. The signals are sent to it via 700 m long coaxial cables.
In the DAQ, the analog signals of all 37 stations are digitized corresponding to the
energy deposited in each station. The Grande array is divided for trigger purposes
into hexagons of 7 stations (6 on the perimeter and 1 in the center), forming in total
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18 clusters. The Grande event selection is invoked whenever a 7/7 (7 stations out of
7 of one hexagon have been fired) trigger coincidence from Grande is present. For
exploring further applications of the radio technique at the Pierre Auger Observa-
tory, inside the field the LOPESSTAR (a Self Trigger Array of Radio detectors for
LOPES [30]) test arrangement has been installed (see Fig. 4.2). A beacon antenna
(see Fig. 4.3) can also be seen placed nearly at the center of the KASCADE-Grande
array, which is used in the phase-delay calibration of the LOPES antenna.

The LOPES experiment was built to study whether radio emission from cosmic ray
induced air showers is unambiguously detectable and to which extent it provides
useful aspects for modern cosmic ray experiments. Compared with the historical
experiments [8], it has an order of magnitude increase in bandwidth and time reso-
lution, with effective digital filtering methods, and for the first time true interfero-
metric imaging capabilities. The electric field of the radio emission is coherent and
the good correlation of an air shower emitted pulse with the shower’s geomagnetic
angle suggests that the emission originates from the interaction of the EAS with the
Earth’s magnetic field.

The goal of LOPES is first the proof-of-principle with an understanding of charac-
teristic features of the radio signal and of the emission mechanism. For this measure-
ments of the polarization of the radio waves play an important role (see Chap. 6).
The particular aims of the LOPES experiment are the following:

(i.) understanding the correlations of the recorded radio signal with the parameters
of the observed EAS;

(ii.) exploring the sensitivity to the direction of shower incidence (i.e. angular
dependence);

(iii.) exploring the dependence of the recorded radio signal on the energy and mass
of the primary;

(iv.) verifying the suggested geo-synchrotron emission mechanism;

(v.) exploring the aspects for large scale application of the radio detection technique;

The antennas for LOPES are of short dipole type with an inverted V shape (Fig. 4.1).
It consists of commercial PVC pipes holding the active parts. The radiator is con-
sisting of two 102 cm long copper cables reaching from the top down at two sides
of the pyramid. The layout of the LOPES antennas inside the KASCADE-Grande
array is displayed in Fig. 4.2.

The LOPES experiment started its measurements in 2004 initially with 10 anten-
nas, LOPES-10 arranged in the east-west polarization direction only [31, 32]. The
antennas were devised for recording the radio emission of air showers generated in
the Earth’s atmosphere. After one year of taking data, the team of LOPES experi-
ment has proved the existence of short radio pulse-like emission originating in EAS,
see [13]. Later on, the array was extended by 20 more antennas forming LOPES-
30, see [33, 34]. By the end of 2006, the set-up has changed to dual-polarization
measurements, LOPES-pol, see [35]. The studies of this work are focussed on the
polarization of the radio emission, comprising the measurements and their analysis.
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Figure 4.1: A LOPES antenna at the site within the field of the particle detector array
KASCADE-Grande.

4.2 Calibration

The array of 30 digital radio antennas has an absolute amplitude calibration [36]
in order to estimate the electric field strength of the short radio pulse generated
by air showers. To perform the calibration, a commercial calibrated radio source is
used as emitter at the top of each LOPES antenna which is measuring an artificially
triggered event. All environmental effects like ground characteristics, atmospheric
temperature and the set-up systematics are included. The emitter is a movable
bi-conical reference antenna which is linearly polarized and has a nearly constant
directivity near its principal axis. We perform several calibration campaigns per year.
Because of the changes in the atmospheric conditions antennas might be sensitive to
difference in temperature and humidity. The calibration data are analysed and the
absolute amplitude factor is being calculated per individual antenna channel (see
Fig.4.4(a)), considered afterwards in the calibration table of the LOPES/LOFAR
software tools which is used in data analysis for the pulse height reconstruction.
Having the absolute amplitude value, we obtain the field strength in the range of
0-100 µV/m/MHz, which is comparable with the simulated radio pulse by a Monte
Carlo code based on sophisticated electrodynamics calculation.

Besides the amplitude calibration, each single antenna has a time accuracy of 1 ns [25].
We use a transmitting reference antenna, a Beacon, which continuously emits sine
waves at known frequencies (63.5 MHz and 68.1 MHz), and a pulse generator which
emits a pulse at a fix known time. For LOPES, as a digital interferometer, the rela-
tive delay timing between the different antennas is of importance (e.g. Fig. 4.4(b)),
because the absolute time of an air shower event has to be precisely known for
the matching between LOPES events and the corresponding KASCADE-Grande
events. Variations of the relative delays between the antennas can be detected and
corrected for, at each recorded event by measuring the phases at the beacon frequen-
cies (e.g. Fig. 4.4(c)). Thus having both, the amplitude and timing calibration, the
instrumental delay corrections are applied to measured data. This allows a proper
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Figure 4.2: Layout of the KASCADE-Grande particle detector array at Forschungszentrum
Karlsruhe. Included are: the LOPES antennas in the dual-polarization set-up, the self-
triggering designed LOPESSTAR antennas and the beacon antenna. The circle, left side
up corner, represents the KASCADE selected area. The rectangle middle side represents
the Grande selected area.

Figure 4.3: The beacon dipole antenna used used to monitor the timing from LOPES
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of the times when a calibration pulse is received, which has a height of about 1 V and
is fed directly into the antenna cables. The relative delay is mainly caused by different
cable lengths. (c) Phase differences between two antennas at both beacon frequencies.
The absolute value of the phase differences is not of relevance; the changes are of about
1.5 ns (∼ 35◦) between summer and winter.
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Figure 4.5: (a) Layout of the selected KASCADE events within 90 m radius, and the
LOPES antennas. Circles represent the shower cores falling inside KASCADE. Triangles
represent the LOPES antennas. (b) Two dimensional shower size distribution (of 976
entries) with electron number Ne and muon number Nµ as reconstructed by KASCADE.
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Figure 4.6: (a) Layout of the selected Grande events (circles) at about 100 m distance
from the LOPES antennas (triangles). (b) Two dimensional shower size distribution (of
417 entries) with electron number Ne and muon number Nµ as reconstructed by Grande.
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Table 4.1: KASCADE and Grande trigger/event selection

Data selection for zenith angle less than 40 deg.
Info KASCADE Grande
Events 976 444
Energy/eV 1016.5 - 1017.8 1017 - 1018.5

Area/m circle of 90 m radius rectangle (-140, -340, -200, -440)

reconstruction of the field strength coherently seen in all non-flagged antennas at a
precise time of about -1.8 µs, as shown in Fig. 3.2 of Chap. 3.

4.3 Data selection

The data selected for further processing of observed radio emission prefer EAS of pri-
mary energies around 1017 eV. That means EAS triggered by the KASCADE-Grande
array, are considered with electron sizes Ne > 105 and muon numbers Nµ > 106. Fur-
thermore the cores of EAS of interest must fall into a fiducial area (see Figs. 4.5(a)
and 4.6(b)) i.e with a circular area of 90 m radius inside the KASCADE field or
for the Grande array within a distance > 100 m from the LOPES antenna array
with zenith angles of incidence ≤ 40◦. For some special consideration also EAS with
angles of incidence > 40◦ are considered [37].

Two different selections are indicated by Figs. 4.5 and Figs. 4.6 and Table 4.1.
Fig. 4.5(a) shows the distribution of the EAS cores within the chosen fiducial area
of the KASCADE array, whenever 10 of 16 detector clusters have fired. Fig. 4.6(a)
displays the distributions within a rectangle area outside the LOPES antenna array
(about 100 m away). Whenever the trigger coincidence from the stations 9, 10, 13
which are located inside the chosen fiducial Grande array occurs, the trigger from
Grande takes place. Figs. 4.5(b) and 4.6(b) present the corresponding correlated
Ne − Nµ distributions (in the case of Grande, Ne is extracted from the relation
(Nch −Nµ)).

4.4 Reconstruction

The standard reconstruction procedure for the analysis of air shower events with
radio emission is implemented in the current version (C++ based) of the LOPES
analysis software. It is implemented as part of the LOFAR software tools. It in-
cludes the correlation of the LOPES and KASCADE-Grande events with a selection
of showers of high energy. The signals experience a Fast Fourier Transformation
(FFT), a filtering for the effective wave band (43-74 MHz), correction of instru-
mental properties, suppression of narrow band radio frequency interference (RFI),
up-sampling, and a inverse FFT. Finally by interferometric crosscorrelation a beam
in the direction of the EAS incidence is formed.

Radio waves are propagating electromagnetic waves in vacuum or in matter. They
consist of electric and magnetic field components which oscillate in phase perpen-
dicular to each other and perpendicular to the direction of propagation. Practically,
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a LOPES antenna sensitive to a certain direction of polarization of the electric field
receives an electromagnetic wave (a radio signal) and transforms it into an electric
signal (an impulse). It is amplified with a low noise amplifier and is processed with
a first filter. The signal is sent via coaxial cable (100 m or 180 m long) to an RCU
(Receiver and Conversion Unit) where it is amplified and filtered in the frequency
band of 40-80 MHz. Analog data are digitised (1 Gbit/s) and optically transmitted
to a memory buffer (TIM Module), where they are selected out by the trigger signal
feeding for further storage a central data acquisition (DAQ) PC. A unique global
time is used to match synchronized events. These events passed the trigger condi-
tion: 10 out of 16 clusters to be fired for KASCADE, and cluster numbers 9, 10,
13 to be fired in coincidence for Grande. Only events of the highest energies (above
1016.5 eV) are of interest for LOPES. Although the triggered events (∼ 2 per min.)
are of relatively high primary energy, a detectable radio signal is not expected in the
all candidate events. For the events of interest one makes a selection based on air
shower parameters, like if the shower cores are fallen inside a reliable fiducial area
(see Fig. 4.2), large shower sizes. The LOPES events are combined with air shower
candidate events based on a unique time-stamp. These results are listed. The list
is used as input for the pulse height reconstruction. The reconstruction procedure
results finally in the quantified pulse height.

For the reconstruction of the radio signal, we first apply a Fourier transformation
to the signal traces in the time domain (to a spectrum in the frequency domain),
where main part of the signal processing takes place. Particularly, instrumental de-
lays of the different antennas have to be known with good accuracy. Small errors
in the relative delays described by the antenna responses degrade the coherence of
the signal (see Fig. 4.4(b)). Furthermore, each single antenna has an absolute am-
plitude calibration and a phase-delay calibration (see Sec. 4.2). Thus, the relative
delays between antennas can be corrected and the coherence of the pulse can be
achieved. The absolute amplitude calibration leads to frequency-dependent amplifi-
cation factors (see Fig. 4.4(a)) which represent the amplification of the electronics
and the time delay as major corrections for each antenna signal response. By these
calibration procedures variations between different antennas are corrected. These
corrections are applied to the measured signal, resulting in the true electric field
strength which can be compared to the values predicted by simulations (which will
be discussed in the following Chapters). Nevertheless, for LOPES as a digital in-
terferometer, the relative timing between the different antennas is of importance,
and the absolute time of an air shower event has to be known for the matching of
LOPES with KASCADE-Grande events. Remaining differences are estimated to be
about 20% in amplitude, which provides a first estimate of a systematic uncertainty
in the measurements.

Since various noise components are present at the LOPES experiment, we have to
correct for the narrow band RFI which occupies only few channels in the frequency
band of 40-80 MHz, while a short pulse (tens orders of nanoseconds) of an EAS
emitted signal is spread over all frequency channels. So by flagging the channels
with RFI one can greatly reduce the background noise without affecting the air
shower pulse much. After RFI suppression the noise level inside our frequency band
is nearly flat [38]. However, to maintain the DAQ system of LOPES we monitor the
mean noise level from all antennas (see Fig. 4.7). Thus, antennas are flagged in case
of one of the following conditions:
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(a) Good antenna response (b) Bad antenna response

Figure 4.7: The graphical overview shows colour coded the mean noise level in all LOPES
antennas (x-axis: antenna number from 1 to 30) for one day (y-axis: 1 hour per bin).
The left panel shows a day of well operating antennas. The right panel shows a day with
problems at the power supply of DAQ 9902 and a low signal recorded at Ant.28 for two
hours.

(i.) They have an unusual amount of noise, i.e. their noise level is significantly larger
than those of the other antennas; e.g., they are standing next to the KASCADE
muon tracking detector and the shower core falls on top it. In this case lots of
particles penetrate the shielding of the detector and the detector generates a large
amount of RFI.

(ii.) They have an extremely small signal, e.g. because they were not connected or
badly connected;

(iii.) They have bad timing, because of calibration failure. Thus, we make the
pulse height reconstruction more reliable from the detector view point, once none of
the considered antennas are dominantly affected by the noise or any other technical
difficulty.

The radio signal is filtered by a band-pass filter and digitized with 12-bit ADCs
(sampling rate 80 MHz), allowing afterwards 2nd Nyquist sampling of the signal.
The response of the analogue electronics to a short pulse is an oscillation over a short
time period. The major contribution to this oscillation comes from the band-pass
filter: filtering of the lower frequencies causes an oscillation around zero amplitude,
while the finite bandwidth broadens the pulse. If such a signal is sampled at 80 MHz
(12.5 ns) some of this fine-structure is not visible any more. As the interferometric
beam forming is sensitive to this fine structure it is useful to reconstruct the full
structure by up-sampling (e.g., at 640 MHz as used for this analysis) and block
averaging, which helps in improving accuracy of the pulse height. This is done
by zero-padding method in the frequency-domain, i.e. by constructing an artificial
dataset with a higher sampling frequency (and thus larger bandwidth) and then
filling the frequency bins for which data are available with the measured data and
all other bins with zeros. After applying the Fourier-transformation back into the
time domain one has the correct interpolation of the data. The beam forming is done
into the direction of the air shower given by KASCADE or Grande trigger source,
depending on the shower selection. The beam forming is optimized by three shower
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Figure 4.8: Example of a measured event, for which the reconstructed field strength (left
panel) and the CCbeam (right panel) are shown. The CCbeam is fitted with a Gaussian
function (light-blue line), which gives the height of the peak. The coherence of the radio
signal can be observed in the range of -1.8 and -1.7 ns. The background noise visible later
in the spectrum (after -1.7 ns) is caused by the excitation of the particle detectors at the
place where the shower falls.

parameters: azimuth, elevation (90◦ − zenith), and radius of curvature. The radio
wave front of an air shower is not expected to arrive as a plane wave on the ground,
since it has some curvature. During the reconstruction procedures the radius of
curvature is taken into account by iterating a free parameter and the pulse height
is evaluated on a small grid around the direction given by the KASCADE-Grande
experiment until the pulse height is maximized. The position at which the pulse
height has a maximum is then used as the starting point for a simplex maximization
routine. This routine adjusts the three direction parameters, so that the pulse height
is achieved. Practically, data from pair of antennas are multiplied, the resulting
values are averaged, and then the square root is taken while preserving the sign. We
call this the cross-correlation beam or CCbeam [38]:

cc(t) = ±
√√√√

∣∣∣∣∣
1

NP

N−1∑
i=1

N∑
j>i

si(t)sj(t)

∣∣∣∣∣ (4.1)

where N is the number of antennas, NP the number of pairs of antennas, si(t) the
field strength of antenna i, and t the time-bin index. The negative sign is taken if
the sum had a negative sign before taking the absolute values, and the positive sign
otherwise. The advantage of the CCbeam is that a peak from a coherent pulse always
has a positive sign (e.g. Fig. 4.8). Basically, the CCbeam is the radio observable of
importance used in the further analysis.

4.5 The results of LOPES-30

The results of the LOPES experiment in the former configuration, preceding the
studies of the polarization features, do already reveal the influence of geomagnetic
angle pointing to the geomagnetic origin of radio emission from EAS. The geomag-
netic angle is the angle between the axis of EAS incidence, deduced from the data of
the observation of the cohabited particle detector array, and the direction v of the
geomagnetic field vector, given by the local magnetic declination and inclination. At
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the site of LOPES the Earth magnetic field is directed to the South (φ = 180◦ and
θ = 25◦). Thus showers incident from South do experience only a relatively small
Lorentz force.

There appears a correlation of the radio pulse height (CCbeam) with the primary
particle energy inferred from EAS array data, additionally dependent from the geo-
magnetic angle and the distance from the shower axis. The average radio pulse height
displays nearly a linear dependence of the primary particle energy [39], indicating
the coherence of radio emission (see Fig. 4.9(a)). Even more, the radio pulse can be
estimated by using the EAS observables only, as follows:

εEW = 11 · (1.16− cos(α)) · cos(θ) · exp(
−R

236m
) · ( Ep

1017eV
)0.95 [µV/m/MHz] (4.2)

where the shower direction is defined by the geomagnetic angle α and the zenith
angle θ; D is the distance from observer to the shower axis, and Ep the energy of the
primary. Fig. 4.9(b) displays the correlation of the pulse height with geomagnetic
angle α resulting from the analysis of the east-west polarized component only (as
observed by LOPES-30). Maybe this is the reason for the not yet well explained
phenomenological dependence of the radio pulse with (1− cos(α)).

Fig. 4.9(c) shows the results of the analysis of the field strength of an individual
shower reconstructed from a single antenna. The lateral distribution follows an ex-
ponential decrease: ε = ε0 · exp(−R/R0) [40]. The scale parameter R0 is determined
phenomenologically and has a value of 100-200 m. Still no evidence is found for a
correlation of R0 with an EAS parameter. It has been shown [32] that the radio
signal is detectable up to 500 m for EAS up to the primary energy of about 1018 eV.
It was proven, the radio technique is capable to measure very inclined showers of
zenith angles larger than 50◦, even at large distances from the shower cores [41, 37].
It should be mentioned that various studies [42, 43] have been directed to the in-
fluences of the strong electric fields of a thunderstorm, which imply considerable
disturbances for the radio detection of EAS. Furthermore, the directional accuracy
of radio antennas is in the order of v 1◦ [44]. The reconstruction of the arrival
direction with LOPES is in agreement with the KASCADE reconstruction.
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(a) Average pulse height vs. estimated EAS energy

(b) Average pulse height vs. geomagnetic angle
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Figure 4.9: Some of the results of LOPES-30 [39, 40, 45]
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5. Polarization studies

5.1 Theoretical motivation

Many researches have been concentrated on the understanding of coherent Cherenkov
radio emission from the charge excess developing in high energy EAS [10]. The dis-
tinct influence of the geomagnetic angle on observed radio emission features, how-
ever, points to an alternative dominant mechanism, associated with the acceleration
of charged EAS particles gyrating in the Earth’s magnetic field: The geo-synchotron
mechanism [12]. Positively and negatively charged particles are bent in opposite
directions in a magnetic field and emit coherently synchrotron radiation. This is,
in principle, a well understood effect and has to be applied to the specific geome-
try of developing air showers in the Earth’s atmosphere. Thus it has been pointed
out [46, 47, 48] that in a simplified consideration the synchrotron electric field pro-
duced near the axis of particle motion is to first order proportional to the cross
product ε ∝ ~v× ~B, where ~v is the direction of the EAS motion and ~B the geomag-
netic field. There are various emission models, following the geomagnetic scheme,
worked out in detail by Monte Carlo simulations [49, 46, 26, 15]. Corresponding
Monte Carlo codes have been developed: The sophisticated Code REAS is based
on ref. [26] and is usually combined with the air shower Monte Carlo simulation
program CORSIKA [50, 51].

During the shower development an evolution of charge excess occurs (i.e. over abun-
dance of e− as e+ annihilates with high probability), which leads to an additional
radio emission (expected to be of ≈ maximum 10-20% of the geomagnetic emission).
According to the simulations, the radio emission generated by the geo-synchotron
mechanism is expected to be highly linearly polarized, perpendicular to the shower
axis and the geomagnetic field. The simulations usually present the signal for two
polarization directions of the electric field which clearly depend on the location of
the observer relative to the shower axis; the closer the observer to the shower core,
the stronger the radio signal, showing linear polarization. For a given zenith angle
the polarization is directly related to the azimuth of shower incidence (i.e. the ge-
omagnetic angle, the angle between the shower axis and the Earth magnetic field).
Fig. 5.1 shows a simulated raw pulse of an air shower of azimuth 135◦, zenith 44.5◦
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Figure 5.1: A simulated radio signal

initiated by a proton primary particle of energy 1017.5 eV. The observer is at the
shower core, and thus the north-south and east-west polarization components are
of similar strength and arrive mostly synchronously (a) showing a perfectly linearly
polarized pulse shape (b). In the center regions where the emission is strongest,
the polarization vector points in the direction perpendicular to the air shower and
magnetic field axis.

The angle between the shower axis and the Earth magnetic field (see Fig 5.2), i.e.
the so-called geomagnetic angle (top panel) increases with increasing zenith angle.
For large zenith angles (in Karlsruhe) large geomagnetic angles are obtained mainly
for showers arriving from the Northern hemisphere (bottom panel).

Assuming the simplified ~v × ~B model [52], Fig. 5.3 shows the calculated azimuthal
variation of the relative contributions of the NS and EW components, including their
ratio (|~v× ~B|NS/|~v× ~B|EW ), for showers of 5 difference zenith incidence angles (θ =
10◦, 20◦, 30◦, 40◦, 65◦). Fig. 5.4 displays the dependence of PNS

v and PEW
v projections

as well as their ratio P ratio
v related to geomagnetic angle α. The maximum amplitude

in each NS and EW polarization component is nearly 1, with generally a larger
contribution in the EW direction. However, the remaining part is expected from the
vertical component which is not treated here because of the LOPES set-up sensitive
only to the EW and NS polarization directions of the electric field. Therefore,
the ratio between the NS and EW polarization components is also displayed in
order to have a quantity which shows only the polarization characteristics and is
independently of amplitude or other shower parameters. The projections of the
vector shows a very different behaviour with α and φ. The larger the zenith angle
the clearer the feature characteristics become. In particular, when θ =65◦ (i.e. the
vector projection is parallel with the Earth’s magnetic field) the increase in the range
of the geomagnetic angle is clearly seen. In the case of P ratio

v , characteristic features
are observed too. With respect to the φ correlations, mainly showers arriving from
the North (270 < φ < 90◦) are expected and fewer showers from the South (φ =
170◦), for θ < 40◦, while a decrease in the geomagnetic dependency for α > 30◦ is
seen. We need to mention, that the simplified geomagnetic model dependency with
the air shower geometry is treated independently of the primary energy or any other
shower parameters.
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Concluding the considerations of the polarization characteristics, based on the ~v× ~B
model, we summarize that showers with the strongest signals will be registered
perpendicular to the Earth magnetic field: from Northern directions for the EW
polarization component and from East and West directions for the NS polarized
signal. For a 65◦ inclined shower the contribution of the amplitude in the EW po-
larization direction becomes nearly 100%, while in the NS component the emission
contribution is about 80% for showers coming from East or West (missing contri-
bution to 100% is related to the vertical polarization component). It confirmed by

data, this characteristic ~v × ~B -amplitude behaviour would give a strong indication
of the geomagnetic origin of the radio emission from EAS.

5.2 Monte Carlo simulations

Full Monte Carlo simulations have been performed on a sample of 41 events (com-
piled in Table.5.1) for a detailed understanding of the radio signal in its polarizations.
Thus, in order to have the radio signal simulated in EW and NS polarization di-
rections, certain azimuth, zenith, energy (1017.5 eV) and mass (in this case, proton)
of the primary are given. The simulation procedure consists of several steps: 1st,
the shower development in the Earth’s atmosphere is performed with the CORSIKA
code [50], which provides detailed information about electrons (e−) and positrons
(e+) developed in the atmosphere; 2nd, the radio emission of the air shower is treated
with the REAS3 code [15], which implements the geo-synchrotron model [26] by
treating the emission as synchrotron-like radiation from the relativistic secondaries
(e−, e+) deflected in the Earth’s magnetic field. Additionally, REAS3 contains also
contribution from the charge excess; 3rd, the simulated amplitude is filtered with
the REASplot code in the frequency band of 43-76 MHz (the effective band of the
LOPES experiment) per each EW and NS polarization component.

The aim here is to study whether the simplified geomagnetic model |~v × ~B| can
explain the behaviour of the full simulation of the radio emission, which also in-
cludes the charge excess. For detailed investigations, the simulated amplitude of a
single LOPES Antenna (e.g. Ant-1) is compared with the ~v × ~B -amplitude. Ant-
1 is located at about 80 m distance to the North-West direction from the shower
core (see Table 5.1) located at the center of the KASCADE experiment, where the
LOPES antennas are. From the (frequency-filtered) simulated amplitude on each
polarization component of the electric field in dependence with the azimuth angle
(see Fig. 5.5) it is see that for the EW polarization direction the highest amplitude is
for showers coming from the North and South, and for the NS polarization direction
the highest amplitude is mainly for showers coming from East and West directions
(with a small contribution also from North and South, see top panel). From the
correlation of the amplitude with the geomagnetic angle α, the increase of the signal
amplitude in the EW polarization component with increasing α is observed. A dif-
ferent effect is seen in the NS component (i.e. a decrease for α > 45◦). The widths
of the distributions are large, because of covering a large range of zenith angles (θ
= 0◦ - 60◦), e.g. Fig. 5.5 (top panels). From the ratio of the amplitude (ratio =
εNS/εEW , see Fig. 5.5, bottom panels) almost the same characteristic features are

observed as for the simplified geomagnetic (~v × ~B) model; for ratio > 0, dominant
detection is expected from the NS polarization component and for ratio < 0, dom-
inant detection is expected for the EW polarization component. Larger error bars
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Figure 5.2: Top: Sketch of the axis of an air shower and of the Earth magnetic field
of Northern Europe (φ = 180◦ and θ = 25◦). Included are the representative angles:
azimuth (φ), zenith (θ) and geomagnetic angle (α). Bottom: An analytical calculation of
geomagnetic angle for the full range of azimuth (0◦ - 360◦) is applied. The dependence
for different zenith (θ) angles is shown. One can see the geomagnetic angle increases with
increasing zenith angle for same azimuth (more clearly seen in the Northern hemisphere).
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Figure 5.3: ~v × ~B model: relative contributions for the polarization components north-
south (top panel), east-west (middle panel), and their ratio (bottom panel) vs. the azimuth
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Figure 5.5: Correlation of the simulated (with REAS3 code, 80 m distance from shower
core, left side - top panels) and analytical calculated (in terms of Pv = ~v× ~B, right side - top
panels) amplitude with azimuth and geomagnetic angles per polarization. The comparison
between their amplitude ratio is shown at bottom panels. The error bars show the rms
(root mean square) of the distribution inside the bin.
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for which case is observed that for incoming showers from Northern and Southern hemi-
spheres, as well as for vertical showers (θ = 0◦), the polarization vector given by the ~v× ~B
-amplitude projected to the North direction is zero, while the simulated corresponding
amplitude is not. Lila circles show all events; black circles depict events of non-arrival
directions from North and South.
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Table 5.1: Input for REAS3 simulation of air shower radio emission. All showers are
imitated by primary protons of an energy of 1017.5 eV.

Input REAS3
No. Elevation [deg.] Azimuth [deg.]
1 90 0
2 64.1581 180
3 64.1581 135
4 64.1581 90
5 64.1581 45
6 64.1581 0
7 64.1581 315
8 64.1581 270
9 64.1581 225
10 53.1301 180
11 53.1301 135
12 53.1301 90
13 53.1301 45
14 53.1301 0
15 53.1301 315
16 53.1301 270
17 53.1301 225
18 44.427 180
19 44.427 135
20 44.427 90
21 44.427 45
22 44.427 0
23 44.427 315
24 44.427 270
25 44.427 225
26 36.8699 180
27 36.8699 135
28 36.8699 90
29 36.8699 45
30 36.8699 0
31 36.8699 315
32 36.8699 270
33 36.8699 225
34 30 180
35 30 135
36 30 90
37 30 45
38 30 0
39 30 315
40 30 270
41 30 225
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are seen for showers coming from around South direction, i.e. hemisphere parallel
with the geomagnetic field direction. Moreover, in the ~v × ~B -ratio is observed that
for showers coming from North and South directions, including also vertical showers
(θ = 0), the amplitude is zero for the NS polarization direction only. However, this
is not the case in the simulation, where a small contribution for the nS component
is seen, even if the ~v × ~B model predicts it to be zero.

The ratio between the simulated amplitude and the ~v× ~B -amplitude, e.g. ε/Pv, per
polarization is displayed in Fig 5.6. It can be seen there is not a well agreement for the
complete data-set on both approaches (i.e. simulation and simplified geomagnetic
model (bottom panel)). However, good correlation between their individual ratio
(ε, Pv) is found (see top panel). This is the sign that, generally, the amplitude in
term of ratio is in agreement between the simplified model and the full simulation.
In few case, the relative contribution of the NS polarization component is not in
agreement. In Fig. 5.7 are shown the distributions of the relative amplitude as
given by simulation and by simplified geomagnetic model, where εT =

√
ε2
EW + ε2

NS,

P T
v =

√
P 2

EW + P 2
NS. This is the only way to compare the amplitude as ~v× ~B, where

the pure geometry is used. Good agreement between ~v × ~B and full simulation is
seen in the EW polarization direction, but different situation is found for the NS
polarization (for events with certain shower geometry). It is observed that for the
incoming showers from the Northern and Southern hemispheres the contribution
of the ~v × ~B -amplitude is close to zero, while for the simulation is not. Also for
vertical showers (i.e. θ = 0◦) the contribution of ~v × ~B -amplitude is zero in North-
South. From the scatter plot between the normalized amplitudes per polarization
component to the total amplitude, one can see that the contribution for the NS
polarization is lower compared to the EW polarization. Moreover, in the simulations,
showers coming from the North and South directions are detected in both EW and
NS polarization directions. This contradicts, however, the ~v × ~B -model.

Concluding the theoretical investigations, almost the same feature characteristics are
seen in the distributions of the simulated amplitude of a single LOPES antenna as
for the simplified geomagnetic model. There is however an exceptional case for ver-
tical showers as well as for showers coming from the North and South hemispheres.
The correlation of the simulated amplitude (of each EW and NS polarization compo-
nent of the electric field) with the azimuth and geomagnetic angles of the air shower

predicts same feature characteristics as for the ~v × ~B -model (of which polarization
vector is projected to each EW and NS polarization component, independently).
Both approaches (simulation and model) describe remarkably well the angular dis-
tributions in both EW and NS polarization directions. Their results are almost in
agreement when comparing their individual ratio of the amplitudes (NS/EW), e.g.
Fig. 5.6, top panel. Same geomagnetic effect is treated in cases, except of the charge
excess consideration in the Monte Carlo simulation only. It predicts detection in the
NS polarization direction even from showers coming from Northern and Southern
hemispheres, while the NS projection of the ~v× ~B -polarization vector becomes zero,
but the relative contribution is in the order of 10% (see Fig. 5.7). However, both
models support the role of geomagnetic effect in the radio emission mechanism of air
showers and help in the interpretation of the measured radio signal. Detailed com-
parisons between measurements and these two analytical approaches are discussed
in the following Chapter.
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6. Measurements & Analysis

The studies of this work are focused to an improved knowledge of the radio signal.
Of particular interest are the polarization characteristics. This is possible because
of the well-known determination of EAS observables provided by the KASCADE-
Grande experiment and the polarization measurements performed by the LOPES
experiment. By measuring the east-west and the north-south components of the
electric field, the geomagnetic effect of the emission is tested. Dependencies of the
reconstructed CCbeam in each polarization direction on shower parameters like arrival
direction, distance to shower axis or primary energy will be discussed in the following
Sections, as well as the lateral extent of the field strength over the distance. Finally,
for the first time for LOPES, the polarization vector of a dual-polarized antenna is
examined.

6.1 Experimental Investigations

The radio signal is generally present in both components with a definite mutual
relation predicted by the theoretical studies. In order to establish the emission
mechanism and to increase the sensitivity of the measurements, in 2006 LOPES-
30, sensitive to the east-west polarization component only, has been reconfigured to
enable dual-polarization measurements by the following arrangement: 10 antennae
were directed to be sensitive to the east-west (EW) polarization component, 10
antennae to north-south (NS) direction, while 5 antennae were devised with channels
sensitive to both, EW and NS directions at the same place, recording at the same
time both polarizations of the electric field (see Fig. 6.1). The usual observable we
deduce from the measurements is the CCbeam (see Sec. 4.4).

Fig. 6.2 shows the total field strength seen by a dual-polarized LOPES antenna
as a function of the angle between the polarization axes of the bi-conical reference
source (used in the absolute amplitude calibration) and the LOPES antenna [36].
Each polarization direction is measured individually during the same campaign by
varying the polarization angle of the reference antenna in steps of 10 degrees, and
thus rotating the reference source in a vertical position at 11 m height on top of each
LOPES antenna. No crosstalk between the channels was found. The results obtained
proof that LOPES antennae are suitable for such polarization measurements.
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Figure 6.1: Layout of LOPES-pol inside the KASCADE-Grande area (see Fig. 4.2).
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Figure 6.2: Fraction of the total field strength seen by each linearly polarized LOPES
antenna as a function of the polarization angle β. Points: experimental data, solid line:
data fit by a sinβ-function which fits very well data.
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The experimental observation of this variation allows a verification of the situation
discussed in Chapter 5. Detailed investigations of both, measured and simulated
polarization components of the electric field are discussed in this Chapter.

6.2 First events measured with LOPES-pol

As an example, Fig. 6.3(a) shows one of the first events detected by LOPES in the
dual-polarization configuration in December 2006. The KASCADE shower recon-
struction results in a primary energy of 1018 eV, a geomagnetic angle (the angle
between the shower axis and the Earth magnetic field) of 83◦, an azimuth angle
of 51◦ (i.e. coming from North-East), and a zenith angle of 66◦ for this particular
event. The shower clearly shows signals recorded in both polarization directions of
the electric field. The north-south (NS) and the east-west (EW) polarization com-
ponents are of similar strength and arrive almost synchronously, as expected for a
linearly polarized pulse. The figure shows the value of the reconstructed CCbeam

which describes the average of the electric field strength for the mean distance from
the shower axis.

As another example, Fig. 6.3(b) shows an event detected in December 2006 with a
primary energy of 3 · 1017 eV, a geomagnetic angle of 77◦, an azimuth angle of 333◦

(i.e. coming from North, North-West), and a zenith angle of 54◦. The shower shows
different signals recorded in the EW and NS polarization directions. The observed
differences are, however, explained by the individual projection of the ~v × ~B model
to the EW and NS polarization directions (see Figs. 5.3, 5.4). For showers arriving
from the North, we expect a higher signal amplitude detected in the EW polarization
direction, and a lower signal in the NS polarization component.

These two selected events clearly show the capability of the LOPES experiment
in recording the radio emission in both, the EW and NS polarization components.
However, these events are very inclined, i.e. zenith angle > 54◦, geomagnetic angle
> 77◦. They are good candidates for seeing the physical effects, but not very suited
for the standard analysis, due to large zenith angles. The EAS reconstruction by
the KASCADE-Grande experiment is of high accuracy for small zenith angles, e.g.
θ < 40◦, only. Standard reconstruction of the radio signal requires events with
accurate EAS reconstruction and thus, the geometry of the input showers is restricted
to a range of zenith angles between 0-40 degrees.

6.3 Investigations of the CCbeam signal

The purpose of the CCbeam analysis is to examine dependencies of the measured
radio signal on each polarization direction, independently, with respect to the air
shower observables provided by the KASCADE-Grande experiment. As discussed in
Sec. 4.4, from the reconstruction of the radio signal we obtain the quantified radio
pulse height, the so called CCbeam, which is calculated per individual polarization,
EW and NS directions, separately. Here is important that for each single event, the
air shower geometry is the same for the reconstruction of the field strength in each
polarization component.

As not every selected air shower event is accompanied by a radio pulse recorded by
the LOPES experiment, one has to select the reliable events by validating the follow-
ing aspects: existence of a pulse, coherence of the pulse and position in time of the
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Figure 6.3: (a) First events seen with the dual-polarization set-up. One of them was
registered by the end of Dec ’06, of a primary energy of 1018 eV coming from North-East.
One can clearly see very high radio signals recorded in both polarization directions, which
prove the detection in both polarizations at the same time. (b) Another event example
registered as well by the end of Dec ’06, of a primary energy of 3 · 1017 eV coming from
North North-West. One can clearly see a dominant signal recorded in the EW polarization
direction only. Both events have geomagnetic angles α > 70◦, and thus the amplitude of
the signal is rather high (in agreement with the α dependency of ~v × ~B model). The full
lines indicate the CCbeam of each polarization and the dotted lines the applied Gaussian
fit, respectively.
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Figure 6.4: Energy and zenith distributions of the KASCADE and Grande event selections;
included are all triggered and selected events, the east-west and north-south detected
events, as well as events with detection in both EW and NS polarizations (shown by
different colour and line style).
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pulse in all antennae. Quantification of these parameters, so that the classification
can be done automatically, seems not to be easy. One possibility is to classify all
selected events by eye as good or bad, but it turned out not to be the most effective
way, when the number of events is high. For the analysis in the present work, a cut
on the radio observable CCbeam > 1 µV/m/MHz, including a required signal-to-
noise ratio (SNR = CCbeam/RMS(CCbeam) > 4) of the field strength reconstructed
in each polarization direction is applied. Fig. 6.4 shows the energy and azimuthal
distributions of the KASCADE and Grande selected air showers. Included are all
triggered and selected events, the east-west and the north-south detected events in
radio (i.e. CCbeam reconstructed in each polarization direction), as well as events
with detection in both polarization components. The mean zenith angle from the
distributions of the KASCADE selected events is about 21◦ and for the Grande se-
lected events (which are more than 100 m distance from the LOPES antenna array)
is about 27◦.

As the KASCADE data-set consists mostly of events with primary energy below
1017 eV, the expected signal strength is relatively low, and the SNR has large vari-
ations depending on the shower geometry and the core position (close to or far
from the LOPES antenna array) of the selected KASCADE or Grande events (see
Figs. 4.5, 4.6). Thus, for the present analysis of the radio signal a high primary
energy (Ep > 1017 eV) is required to avoid any threshold (mainly in radio) effects
on lower energies. No cut on other shower observables is considered, except for the
fact that both KASCADE and Grande selections are performed for zenith angles
below 40 degrees. Within these quality cuts of EAS observables, the air shower
reconstruction by the particle detectors is of high accuracy.

Mainly due to the energy cut, from 976 KASCADE triggered and selected events,
only 159 events passed all cuts of radio observables (i.e. SNR and CCbeam) with good
reconstruction in the EW polarization component and 151 with good reconstruction
in the NS polarization component (see Figs. 6.4, 6.5) respectively. 124 events are
detected in both polarization components. Not all of these final selected events
have a coherent signal, though high primary energy (Ep > 1017 eV) is considered
(see Fig. 6.6). There are missing events because of the cut on the SNR. In the
KASCADE selection, the shower cores are too close to the radio antennae, therefore
the background noise is high. On the other hand, in the Grande selection (427 events
in total) are also missing events (because of the low signal at large distances), even
though there is access to higher energy, i.e. above 1017 eV. The advantage of the
Grande shower selection is that it allows investigation of distant events. Though,
with the large distance between the antennae and the shower axis the recorded field
strength is lower, therefore the efficiency is lower.

Polarization (the focus of this work) is the key to study the radio emission mechanism
in air showers. It contributes to an improved knowledge of the emitted radio signal.
It is directly related to the shower geometry, which is described by the azimuth,
zenith and geomagnetic angles. For the two event selections we have generated a
sky-map implemented on the air shower angles of azimuth and zenith, which allows
to examine the direction of the incoming EAS per polarization. Such sky-maps are
shown in Figs. 6.7, 6.8, where both event selections are displayed. It proves that in
Karlsruhe, the EW-oriented LOPES antennae are sensitive to showers mainly com-
ing from the North direction, i.e. maximum of the field strength is registered for
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Figure 6.5: Reconstructed pulse height (uncorrected for e.g., incident direction, distance
to shower axis, primary energy), with error on the mean, for KASCADE showers in each
polarization (east-west (159 ev.) and north-south (151 ev.)) with SNR above 4, field
strength above 1 µV/m/MHz, and primary energy above 1017 eV. Same distributions
with azimuth and geomagnetic angles are shown in the right panels, but the error bars
show the rms (root mean square) of the quantities.)

showers coming from the Northern hemisphere (see color code: red), and less sensi-
tive for showers coming from the South (270◦ > φ > 90◦); the NS-oriented antennas
are more sensitive to incoming air showers from the West and East hemispheres.
The dependencies of the polarized field strength (CCbeam reconstructed in each po-
larization component) with azimuth and geomagnetic angles of the air shower are
displayed in Fig. 6.5, which reflect the same feature characteristics. The amplitude
of the signal is higher for large geomagnetic angles, what obviously is directly related
to the azimuth angle for the given range of zenith angle (θ = 0◦ - 40◦), as given by
the KASCADE array, for which the air shower reconstruction accuracy is pretty
high. Systematic differences between the two polarization components are observed.
For the EW polarization component a field strength increase is seen in the North
direction, as well as in the South, but with a larger rms because of less statistics
(see the azimuthal dependences). The same is true for the geomagnetic angle; a field
strength increase is observed with higher geomagnetic angles (i.e. above 30 degrees)
for the EW polarization component, but a slightly different distribution for the NS
polarization component is found. These characteristics seen in the measured data
are in agreement with the analytical calculations and support the geomagnetic effect
in the radio emission mechanism.

6.3.1 Study of the CCratio
beam

In considering polarization aspects of the measured radio signal we analyze the
CCratio

beam (i.e. CCNS
beam/CCEW

beam, the ratio between the relative pulse height recon-
structed in the NS polarization direction versus the pulse height reconstructed in the
EW direction). The ratio is adopted to be independent of the total field strength and
primary energy or mass, when looking for its dependencies with the EAS geometry.
From detailed examinations of the pulse height ratio, it is found that dependencies



42 6. Measurements & Analysis

)µ́lg (N
5.6 5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4

lg
 (

E
n

e
rg

y
/e

V
)

16.6

16.8

17

17.2

17.4

17.6

17.8

18

18.2

18.4

-1 -0.5 0 0.5 1 1.5 2

-0.5

0

0.5

1

1.5

2

lg (CCbeam EW /µV/m/MHz)

lg
 (

C
C

b
e

a
m

 N
S

 /
µ

V
/m

/M
H

z)

(a) The KASCADE data-set

)µ́lg (N
5.6 5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4

lg
 (

E
n

e
rg

y
/e

V
)

16.6

16.8

17

17.2

17.4

17.6

17.8

18

18.2

18.4

lg (CCbeam EW /µV/m/MHz)

-1 -0.5 0 0.5 1 1.5 2

lg
(C

C
b

e
a

m
 N

S
 /

µ
V

/m
/M

H
z)

-1

-0.5

0.5

1.5

(b) The Grande data-set

Figure 6.6: Scatter plots of primary energy versus total muon number (left panels). Scatter
plots of the reconstructed radio pulse height in the EW polarization direction versus NS,
respectively (right panels). Black points represent the events with pulse height above
zero (956 events for (a) and 406 events for (b)). Pink points represent the events with
CCbeam > 1 µV/m/MHz, SNR > 4 and Ep > 1017 eV (resulting in 124 events with
detection in both polarization (a) and 141 for (b) respectively).
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Figure 6.7: Sky-map, as azimuth relative to zenith, of EW (top) and NS (bottom) detection
of KASCADE showers. The color code represents the reconstructed pulse height in each
polarization, with values larger than 1 µV/m/MHz; the red color represents the largest
value of the CCBeam.
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Figure 6.8: Sky-map of azimuth relative to zenith of EW (top) and NS (bottom) detection
of Grande showers. The color code represents the reconstructed pulse height (CCbeam) in
each polarization (i.e., CCNS

beam and CCEW
beam), with values larger than 1 µV/m/MHz; the

red color represents the largest value of the CCbeam.
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on azimuth and geomagnetic angle are of main relevance. There seems to be a char-
acteristic dependency between the CCratio

beam and the shower geometry (see Fig. 6.9),
which we will try to explain it with the simplified geomagnetic model. In these
investigations included are only showers which are detected in both polarization
directions (in difference to Fig. 6.5).

The CCratio
beam values of measured data show characteristic dependencies with geo-

magnetic and azimuth angle, not in agreement with a uniform distribution (bottom
panels, open circles). The large scatter of measured values of CCratio

beam in dependency
with azimuth angle reflect the systematic uncertainty in the measurements. But,
the width of the distributions also express the different zenith angles (from 0◦ to
40◦) for the ratios in dependency with the geomagnetic angle.

For the CCratio
beam assumption, 99 events with detection in both polarization directions

are used. They are also simulated with the REAS3 code based on their corresponding
air shower parameters (e.g. α, θ,Nµ, Ne, Ep). Comparison between their simulation
results with the measured data will be discussed in Sec. 6.5 with respect to the lat-
eral distribution per individual event and per individual polarization, as the CCbeam

calculation of the simulated events is not possible yet (e.g. due to non-properly
treated noise behaviour in the beam-forming process). All 99 events have a good ra-
dio detection in both (EW and NS) polarization directions and allow proper physical
investigations for primary energies above 1017 eV .

The observed characteristic features in the CCratio
beam distribution of the measured

events can be explained by the assumed simplified geomagnetic model (see Fig. 6.9),
based on a pure shower geometry via the Lorentz force approximation (see Sec. 5.1).

The simplified Pv = ~v × ~B model is incorporating the shower direction ~v and the
geomagnetic field ~B (see Appendix). The polarization vector is projected to each
polarization component (i.e. the east-west (PEW

v ) and north-south (PNS
v ). The ratio

of the values (P ratio
v = PNS

v /PEW
v ) shows that: for P ratio

v > 1, dominant detection
is expected for the PNS

v projection, and for ratio P ratio
v < 1, dominant detection

is expected for the PEW
v projection (see Fig. 5.3). The visible positive maxima

corresponding to the zenith angles of 30, 40 and 60 degrees occur because of the
incoming direction of the radio wave relative to the Earth magnetic field (i.e. radio
wave parallel to the Earth magnetic field). The larger the geomagnetic angle, for a
given zenith angle, the larger the Pv -amplitude.

In Chapter 5, by using a sample of simulated events, we have seen that the ~v × ~B
model does not describe the full radio emission, especially for the NS polarization
component. To check whether the ~v× ~B expected relations, or their same deviations,
are also seen in the measured data, we calculate the P ratio

v in terms of the Pv-
amplitude for each individual measured event (Fig. 6.9, bottom panels, full circles).
Thus, we apply the simplified model to the measured shower geometry of the 99
KASCADE events which has signal detected in both polarization components of
Ep > 1017 eV. The characteristic dependencies of P ratio

v with azimuth as well as with
the geomagnetic angle are obvious. Same figure (bottom panels, open circles) shows
the distribution of the measured events in their CCratio

beam. Comparable qualitative
behaviours are observed in their main characteristics, despite of the fact that the
widths of the distributions per bin (error bars) are large in the experiment, as well as
they include the dependencies of the amplitude (per polarization) on zenith angle,
primary energy and distance, which is not the case for the P ratio

v . In addition,
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Figure 6.10: Top panel: Scatter plot between the ratio of ~v × ~B -amplitude and of mea-
sured amplitude (ratio=NS/EW polarization directions). Bottom panel: Ratio between
the reconstructed measured radio signal (in the EW polarization) and ~v × ~B -amplitude
(projected to the EW polarization direction): Y-axis. Same but for the NS polarization
direction: X-axis. Each circle represent a shower. The pink ones are the showers from
the North and South directions, or with θ < 10◦. It is obvious that black points fit better
to Pv. Showers from North and South, predictions of NS-oriented antennae, are not in
agreement with the Pp -model, i.e. considering pure geomagnetic origin of the signal.
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concerning the CCbeam values of the measurement, the EW-oriented antennae could
catch some fraction from the NS and vertical components of the signal, and otherwise
for the NS-oriented antennae. Thus, some small uncertainty from these aspects of
the measurement has to be aware of.

Concluding the dependencies of the CCbeam values, reconstructed for each polariza-
tion direction of the electric field (EW and NS), the field strength in the different
polarization direction has a different dependence on the geomagnetic field direc-
tion: the signal is linearly polarized mainly in the direction perpendicular to the
air shower and magnetic field axis (at least at central regions of high emission), in
good agreement with the analytical calculations (see Fig. 6.9, top panels, i.e. the
comparison between measured data and application of the Pv to measured shower
geometry using its separate projection for EW and NS polarization components).
In particular, from the CCratio

beam which is independent of EAS observables, we com-
pare the polarization characteristics relative to the shower geometry, e.g. azimuth
and geomagnetic angles. They agree well with the responses of the simplified ge-
omagnetic ~v × ~B model. From the scatter plot of P ratio

v versus the CCratio
beam (e.g.

Fig. 6.10, top panel) one can see that there is a good agreement for showers coming
from East and West (black circles). But, there is a deviation for showers coming
from North and South directions (and for more vertical showers with θ < 10◦). In
the bottom panel of Fig. 6.10 is observed that the deviation in the ratio is mainly
due to a disagreement in the NS polarization component. Looking now to the in-
dividual polarization contributions relative to the total amplitude (Fig. 6.11, where
CCT =

√
CC2

EW + CC2
NS, P T

v =
√

P 2
EW + P 2

NS), one can see that showers coming
from the North and South directions are not in agreement with the Pv expectations.
It means, we see in data a contribution to the signal not stemming from geomagnetic
origin, as in the Pv expectations only this source of emission is considered.

The Grande shower selection is not used for this investigation as only few events
have reliable good reconstruction of the radio signal. This is reasoned by the large
mean distance to the shower axis, though they allow access to high primary energy
(i.e. > 1017 eV ).

With the results obtained so far, the prediction of polarization characteristics of the
emission generated in the geomagnetic emission scenario is directly tested. How-
ever, major part of the radio emission process seems to underline the geomagnetic
effect. The understanding of these polarization dependencies are mandatory for the
interpretation of the experimental measurements.

6.4 Radio pulse parametrization

Already, from the previous studies of measurements with all 30 LOPES antennae
sensitive in the east-west polarization direction only [39], the dependencies of the
CCbeam were established on the following shower observables: the angle of incidence
(i.e. the geomagnetic angle α), the distance to the shower axis D, and the primary
energy Ep. These well-reconstructed shower parameters by the particle detector
array KASCADE-Grande are considered in the parametrization of the radio signal
(see equation 4.1, Sec. 4.5). They are obtained by applying different fit functions in
three iterative steps. A linear fit to the angle of incidence, an exponential decay fit
to distance, and a power low fit to the energy were established. In each fit the other
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dependencies are cancelled by the division of the fit result from the previous iteration
step. The fit functions are chosen in order to have one parameter as common factor
for all events, and thus they can be used to account for an unknown systematic offset
from the uncertain antenna calibration at that time.

Compared to the old considerations [39], in the present analysis of dual-polarization
measurements, first the LOPES system is well calibrated and in addition the sim-
plified geomagnetic model ~v × ~B is used in the parametrization of the radio signal
for the shower direction (in which the azimuth, zenith and the geomagnetic angles
of the shower are accounted for), instead of a 1 − cos(α) dependence as was previ-
ously considered for the east-west polarization measurements. The distributions of
the EAS observables, e.g. azimuth angle, zenith and geomagnetic angle, as well as
the Pv value for the events included in the present studies (KASCADE sample) are
displayed in Fig. 6.12, where the EW (dotted line) and NS (continuous line) polariza-
tion components are shown. The geomagnetic angle has values in the range of 0-60
degrees, because of the restricted zenith angles in the range of 0-40 degrees. A dif-
ferent azimuthal distribution per polarization can also be observed, i.e. an increase
around the North and a decrease in the South for the EW polarization component,
and vice-versa for the NS polarization component. The magnetic field has an im-
portant influence on the polarization characteristics of the radio emission. The EW
projection of the polarization vector Pv is favored because of the 0.5 Gauss v 70◦

inclined magnetic field present in Europe (whereas a 0.3 Gauss horizontal magnetic
field is present in the equatorial region). The effect is visible in the Pv distribution
per polarization, i.e. the maximum of the EW projection can reach values close to
1, whereas the maximum for the NS projection is already reduced to 0.6.

The individual projection of the polarization vector on each polarization direction is
now taken into account for the parametrization of the radio signal. With the CCbeam

reconstructed independently for each individual polarization direction, the following
function is considered for the east-west and north-south direction respectively in
the parametrization of the signal: f(PEW

v , D, Ep) and f(PNS
v , D,Ep) respectively.

The parametrization function incorporates the three main shower dependencies, in
respect to the direction (Pv), distance (D), and energy of the primary particle (Ep).
For the three-step parametrization procedure see Appendix A. The pulse height
(CCbeam) can be parametrized with the measured shower geometry provided by
the KASCADE-Grande experiment. The KASCADE event selection is favoured,
because it allows the well-reconstructed shower parameters of cores fallen inside the
LOPES antenna array, for which a low mean distance to the shower axis is available,
and therefore a coherent radio signal can be reconstructed.

In Fig. 6.13 the result after the third final iteration of the parametrization is shown.
Each polarization is treated separately. First, the CCbeam is normalized with the
distance to shower axis (D) and the primary energy (Ep), and applying a linear
function to the Pv signal dependence gives a index of v 0.7 (top panel). Second,
the CCbeam is normalized with Pv and the primary energy (Ep), and fitted with an
exponential function resulting in a scale parameter of v 200 m (middle panel). Third,
the CCbeam is parametrized with Pv and distance to shower axis (D), and fitted with a
power law function where a slope of v 0.9 is obtained. The associated fit parameters
per polarization are listed in Table 6.1, including their uncertainties. Not all the
events are included in the power law fit, because of the energy threshold of Ep >
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Figure 6.12: Distributions of the EAS observables (azimuth, zenith and geomagnetic an-
gles; 228 events in the EW polarization direction and 223 in the NS) used in the calculation
of the unit cross product vector: ~v × ~B for both polarization components of the electric
field (east-west: dotted line, and north-south: continuous line) are displayed.

1017 eV, which is related to the efficiency problem of the LOPES antennae located too
close to the KASCADE particle detectors (i.e. close to the shower core the noise level
is high, because of the possible activation of some nearby electronics). The error bars
for the single events include 20% systematic uncertainty of the amplitude calibration
as well as the 20% systematic uncertainty of the primary energy estimation by the
KASCADE experiment. With the help of these found dependencies, which are very
similar for both polarization components, the radio pulse height can be estimated for
each EW and NS polarization directions, for given shower parameters. Combining
the parametrizations (results compiled in Table 6.1), for the radio pulse height a
formula (which incorporates the shower dependencies) is established per individual
polarization, as follows:

εEW = 1.17 · (|PEW
v |+ 0.67) · exp(

−D

209.7m
) · ( Ep

1017eV
)0.90[

µV

mMHz
] (6.1)

εNS = 1.89 · (|PNS
v |+ 0.55) · exp(

−D

156.4m
) · ( Ep

1017eV
)0.95[

µV

mMHz
] (6.2)

where Pv, D,Ep are the free variables which represent the air shower properties,
given by the KASCADE experiment. The only difference in the estimation of the
two equations concerns the polarization aspects. For the pulse height estimation
in the EW polarization direction, the measured field strength reconstructed in this
direction, and respectively the PEW

v projection, including the shower parameters,
are applied. The same procedure is applied for the pulse height estimation in the
NS polarization direction: the measured pulse height is reconstructed in the NS
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Figure 6.13: Parametrized CCbeam in the east-west (dotted line) and north-south (contin-
uous line) polarization directions in correlation with Pv = |~v × ~B|, D,Ep. Pv is the vector
model, D the distance to shower axis, and Ep the primary energy. The KASCADE shower
observables are used here. See Appendix for the parametrization procedure. The error
bars for the single events include systematic uncertainties of the calibration procedure.
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Figure 6.14: Estimated signal amplitude per polarization using the KASCADE shower
selection. Radio signal reconstructed in EW and NS polarization directions together with
shower parameters, like primary energy, distance to showers axis and ~v × ~B -polarization
vector projected to each EW and NS polarization components are used for primary energy
> 1017.2 eV (49 KASCADE events per polarization component, while for Grande: 26
events are in EW and 17 in NS). Statistical errors are seen per event.

Table 6.1

Summary of the fit results
Info (3-steps) (Fit func.) (Fit res.)EW : a/b (Fit res.)NS: a/b

εD,Ep a1 · |~v × ~B| 0.67±0.09/0.99±0.04 0.65±0.14/1.08±0.04

εPv ,Ep a2 · e−R
b2 1.66±1.14/209.7±61.5 2.27±1.12/156.4±30.5

εPv ,D a3 · Eb3
p 1.05±1.08/0.90±0.1 1.09±1.08/0.95±0.1

polarization direction, and the polarization vector is projected into the NS direction
PNS

v respectively, including the shower parameters.

By assuming a pure geomagnetic emission the ~v × ~B -model should contain both
aspects: shower geometry and polarization. The important characteristics of the
radio emission (e.g. the dependence on the primary particle energy, the dependence
on the mean distance to shower axis (in this case, mean distance from LOPES
antennae), the dependencies of the Pv vector) are all counted in the radio pulse
estimation per individual polarization, i.e. the formulas 6.1, 6.2 which deliver the
calibration of the radio emission. Considering the different polarizations (given by
the theory of geomagnetic origin of the radio emission) the two calibration formulas
agrees to each other within their uncertainties. This agreement is a clear hint, that
the geomagnetic emission is the dominant factor for generating the radio signal.

But, even when Pv is zero we have measured a signal, which is not expected by the
Pv -model. Therefore, it appears a discrepancy between the prediction and what
we actually see in the measured data. The slope of the fit applied to the PEW,NS

v

for each polarization direction is nearly 0.6, for which the theory predicts it to be
zero. In addition, even after the parametrization, the scatter of the events is still
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Figure 6.15: Profiles of the relative contribution of the estimated radio signal relative
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Figure 6.17: Field strength and CCbeam of three ’Grande’ events with Ep > 1017.7 eV .



6.4. Radio pulse parametrization 57

large (see Fig. 6.13). This either is related to the relatively low statistics in our data
of high energetic events > 1017 eV (i.e. we are affected by threshold and efficiency
effects, despite the absolute amplitude and timing calibration of our antennae. Or,
the Pv model does not fully describe the emission mechanism. Another hint to this,
is that the scale parameter of the lateral distribution is slightly different. This will
be studied in more detail in the next Section.

The radial distance in both polarization cases is given by an exponential decay, and
the resulting scale parameters in our parametrization corresponds to ∼ 209 m for the
EW polarization and to ∼ 156 m for the NS polarization respectively. In the previous
work of parametrizing the radio signal on a single (EW) polarization direction only,
using LOPES-30 data, the scale parameter was found to be in the order of 236 m,
and a power law index of the primary energy dependence of about 0.95 (see [39]).
The scaling of the CCbeam with the primary particle energy is approximately linear,
following a power low ∝ E0.90

p for the EW polarization component and ∝ E0.95
p for

the NS polarization component respectively. An approximately linear scaling of the
emission with energy of the primary particle is expected for coherent emission [15].
In the coherent regime, the field strength directly scales with the number of emitting
particles. The dependence on shower zenith angle is more complexly treated now
within the Pv model, than a simple (1 − cos(α)) · cos(θ) approach by [39], or the
sin(α) · cos(θ) approach by [8]. Thus the obtained formulas per polarization are
difficult to be compared directly with the previous results. In addition, uncertainties
regarding the absolute amplitude calibration of the historical data remain.

Having analysed the qualitative dependence of the radio signal on EAS observ-
ables, the derived equation for the estimated radio signal of KASCADE showers
(Ep > 1017 eV ) can be applied to any other shower data-set, if the shower geom-
etry is known. In Fig. 6.14 the comparison between the measured radio signal in
its CCbeam reconstructed value and the estimation of same events is shown (left
panel). For the KASCADE selection it is seen that the parametrization was domi-
nated by the smaller CCbeam -amplitudes. But for higher values, the parametriza-
tion seems not to be describing very well the measurements. The relative difference
between the estimated pulse height and the measured-reconstructed values are dis-
played in Fig. 6.15 for each single shower dependency used in the parametrization
(e.g. Ep, D, Pv). No significant differences are found, as the data are in agreement
with the zero line for both polarization components.

The Grande event selection allows access to large mean distances to the shower axis,
and thus the ability of the radio technique in recording distant events is tested, i.e.
> 100 m mean distance from the center of the shower core to the LOPES antenna
array. Therefore, the efficiency energy of Grande detectors is higher compared with
the efficiency energy of KASCADE showers limited to 1017 eV, the good radio de-
tection rate is decreased for Grande showers because of the bad signal-to-noise ratio
with the increased distance from the shower core to the observer. The radio signal
is mainly incorporated in the noise, and thus a signal can be hardly distinguished
as radio detected (e.g. by using a signal-to-noise ratio) if the primary energy is
not sufficiently high. However, at Fig. 6.17 three event examples are shown with
their field strength and quantified CCbeam shown per polarization (EW and NS
components). First event (two upper panels) shows detections in both polarization
components. Second event (two middle panels) shows detection only in the EW
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polarization component. Third event (two bottom panels) shows detection only in
the NS polarization component. Considering the arrival direction, this behaviour
is in agreement with the ~v × ~B expectation (see Fig 5.3). The incoming showers
are from the North-West, North and South directions respectively, of zenith angles
∼ 40 degrees and of Ep > 1017.7 eV . They are the best candidates in radio detected
Grande events, which clearly show coherent radio signal in a single or in both polar-
ization components (depending on the shower direction) with a corresponding high
CCbeam value. Such good radio (distant) detected events in Grande are not suffi-
cient in statistics for a pulse height parametrization, as it is performed by using the
KASCADE showers. Thus, the Grande events of primary energies above 1017.2 eV
and high SNR > 6 are used to test the pulse height estimation from the KASCADE
showers (see Figs. 6.14, 6.16). A systematic underestimation of the field strength
(CCbeam) using formulas 6.1, 6.2 is seen for the Grande events. The reasons for this
can be due to a different experimental behaviour of the lateral distribution function
for large distances, or the resolution of the parametrization is not properly enough.
Nevertheless, the statistics for Grande events are too low for a deeper investigation.

6.5 Lateral distribution
For this issue we examine the lateral distribution of the signal, recorded in each
(EW and NS) polarization directions. Due to a precise amplitude and phase-delay
calibration of each LOPES antenna, and because of the good-reconstruction infor-
mation about EAS obtained from the particle detector array KASCADE-Grande,
we can study in detail with high accuracy the field strength seen in each individual
antenna as function of distance to the shower axis on an event-by-event basis. The
lateral distribution can be described by the decay of an exponential function, i.e.
ε = ε0 × exp(−D/R0), as derived from simulation studies [51]. This results in two
fit parameters: R0, the scale parameter (i.e. the slope of the distribution) and ε0,
the extrapolated field strength at the shower core at observation level. The lateral
distributions can also be fitted with a power law function [40], which seems to over-
estimate the field strength close to the shower axis. Of particular interest is the scale
parameter which describes the amount of signal decrease as function of distance to
the shower axis, and its dependence on parameters of the EAS. Knowledge of the
lateral extension with respect to polarization contributes to the understanding of
the emission mechanism of the radio signal, as indicated by simulations [53]. In
addition, the lateral characteristics can be related to important physical quantities,
such as the energy or mass of the primary particle.

While the CCbeam is an average property over the measured radio signal in all
LOPES antennae, the present research requires the investigation of the field strength
recorded in individual antennae. Therefore, we use up-sampled data with a zero-
padding method, to extend time series or spectra. The up-sampling method [40] is
performed to reconstruct the original form of the signal between the sampled data
points (12.5 ns spacing, 80 MHz frequency). Zeros are added in one domain and
after Fourier-Transformation an interpolated series is obtained in the other domain.
The zero-padding is applied in the frequency domain and gives a band-limited in-
terpolation in the time domain. The up-sampling algorithm increases the sampling
frequency artificially by a given factor (in this case to 640 MHz, with 1.5625 ns).

Moreover, when looking at the lateral profiles with an antenna-by-antenna and event-
by-event basis, the question to be answered here is the following: does the form of
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the lateral distribution for the EW polarization component differ from the NS polar-
ization component? Despite considerations of measured events, from the KASCADE
event selection (see Sec. 4.3) a sample of 99 LOPES events with signal recorded in
both polarizations are simulated with the REAS3 Monte Carlo code. This allows
the investigation of the lateral profiles for each polarization direction (EW and NS),
for shower cores located close to the LOPES antenna array (within 90 m radius).

In Figs. 6.18 three different events are shown with the recorded field strength and
the corresponding lateral profiles per polarization. The first event shows a dominant
signal recorded in both polarization directions, the second event shows a domi-
nant signal recorded only in the north-south polarization direction, and the third
event shows a dominant signal only in the east-west direction respectively. Within
them, three different cases of radio signal detection concerning the dual-polarization
measurements are emphasized. Each case, shows a different lateral profile per po-
larization for the corresponding detection. The applied exponential fit function is
estimated for each individual event and for each polarization respectively. Also for
these examples, it can be seen that there is a flattening tendency in the lateral extend
for both EW and NS polarization components, separately.

For the fitting procedure of the lateral profiles, a minimum number of 6 antennae
with a signal-to-noise ratio > 3 for each individual antenna is required, including
good quality of the fit (given by the relation χ2/NDF v 1). The fit results (R0, ε0)
for the selected events are investigated for each polarization component. Showers
with values of extrapolated field strength ε0 between 0-100 µV/m/MHz, and values
of scale parameter R0 between 10-1000 m are selected as ”good” candidates for
the investigations discussed in the next Section. 86 events in the EW polarization
component and 79 in the NS polarization component respectively, survived these
requirements. No further cuts on EAS observables are applied, neither on energy of
the primary particle, nor on the geometry of the shower.

6.5.1 Comparison between simulation and measured data

A sample of 99 LOPES events with recorded radio signal containing east-west and
north-south polarization components are discussed. Not discussed are the events for
which the applied exponential fit was not valid in east-west or in north polarization
direction only, because of high noise level relative to the radio signal. The shower
direction, particle number (Ne and Nµ), shower core position, and the primary en-
ergy of these (measured) selected events are used as input for REAS3 simulation of
the radio emission. Protons are used as primary particles. To compare the simu-
lation results with measured data, REASplot is used in order to filter the effective
frequency band of the LOPES experiment (43-76 MHz). The output obtained from
REASplot gives information about the maximum amplitude seen in each individual
LOPES antenna, including the distance from single antenna to the shower axis for
a corresponding arrival time. Results from both, simulation and measured data are
called together for the fitting procedure of the lateral extend per polarization com-
ponent. From the 99 successfully simulated showers, 86 events have ”good” lateral
fits in the EW polarization direction and 79 in the NS polarization direction respec-
tively, while 71 events have good fits for both polarization at the same time per
event-by-event basis. Their lateral distributions are studied for both polarization
components (see Appendix B).
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Figure 6.18: 1st event example, top panel (φ = 281◦, θ = 38.9◦, εEW
0 = 20.19, REW

0 =
457.9, εNS

0 = 23.3, RNS
0 = 302) with radio detection dominant in both polarization di-

rections. 2nd event example, middle panel (φ = 245◦, θ = 42.5◦, εEW
0 = 8.3, REW

0 =
614.2, εNS

0 = 40, RNS
0 = 446.7) with radio detection dominant mainly in the NS polariza-

tion direction. 3rd event example, bottom panel (φ = 352◦, θ = 37.5◦, εEW
0 = 58, REW

0 =
477.9, εNS

0 = 17.8, RNS
0 = 222.3) with radio detection dominant mainly in the EW polar-

ization direction.
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Figure 6.19: Distributions of the field strength ε0 and scale parameter R0 from the lateral
distribution of the sample of LOPES measured and simulated events. Black-dashed-line:
entries of the simulation, and blue(red)-continuous-line: entries of the measurement. Both
polarization directions are displayed (east-west: top panels, north-south: bottom panels)

The fit parameters, ε0 and R0, as results of the exponential function (ε = ε0 ×
exp(−D/R0)), are taken into account for the investigations. Comparing the extrap-
olated field strength (see Fig. 6.19) there is an remarkable agreement between the
individual distribution of both polarization components, though measurements have
a larger tail to higher field strength. Regarding the scale parameter, one can see
that for simulations R0 has a mean value of about 100 m, while measurements indi-
cate values of R0 of about 200 m. Again, the tendency for flatter measured lateral
distribution, compared to simulations, is true for both polarization components.

In Fig. 6.20, the relation of ε0 with R0 for both, simulation and data, for each
polarization direction, is shown. ε0 values of both simulation and measured data
have about similar order of magnitude. This is true for events detected in both
polarization directions. It is different for showers detected in only one polarization
component. When the simulation predict a low ε0 in one polarization direction (i.e.
below the threshold for detection), the measurements give a higher ε0. This is due
to the influence of the noise level on the reconstruction procedure. Values of R0

are larger for measurements as well as larger errors of the fit occur. Also the flat
events (large R0) are not seen in simulations. No dependency between R0 and mean
distance to the shower axis is found (see Fig. 6.20, bottom panels).
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Figure 6.20: Relation of ε0 (top left panel) with R0 (top right panel) of east-west and
north-south polarization directions, for both, measurement (pink) and simulation (black)
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simulation (black) and measured (pink) data, per polarization (east-west: bottom left
panel, north-south: bottom right panel). No correlation between them is seen.
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Figure 6.21: Relation of ε0 (top panels) and R0 (bottom panels) between simulation and
measured data, per polarization direction (east-west: left panels and north-south: right
panels). Good correlation of ε0 between simulation and measured data is seen in the east-
west polarization direction, with more scatter in the north-south, except that in measured
data the scale parameter R0 has larger values than 400 m (bottom panels), which can
reflect the scatter seen in ε0.
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open-circles represent the measured data and black open-circles the simulation data (both
for the EW polarization direction). Included is also the distribution of the fit results (top
panel). The statistical error bars are included. 20% error of the primary energy estimated
by the KASCADE array is considered in simulations.



66 6. Measurements & Analysis

 [m]0R
0 200 400 600 800 1000

-1

-0.5

0

0.5

1

1.5

2

2.5

3

SIM NS
DATA NS

lg(Energy/eV)

 -1

-0.5

0

0.5

1

1.5

2

2.5

3

lg(Energy/eV)

 [
m

]
0

 
R

0

200

400

600

800

1000

16.6      16.8         17         17.2      17.4       17.6         17.8     

16.6      16.8         17         17.2      17.4       17.6         17.8     

V
/m

/M
H

z)
µ [

0
lg

(∈
V

/m
/M

H
z)

µ

 

[
0

lg
(∈

Figure 6.24: Same as Fig. 6.23, but for the NS polarization component.
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In Fig. 6.21 the parameters of the fits for measurements and simulations are directly
compared. It is clearly seen, that the simulations agree better with data in the EW
polarization direction compared to the NS polarization direction.

The detection efficiency of LOPES antennae is significantly increased for shower
cores within 90 m radius inside the antenna array at the KASCADE array. Thus,
only KASCADE showers were used for comparisons with simulations. Since most
of the non-reliable lateral profiles are having a large value of R0 (fitting into the
noise level makes R0 large), a cut on the scale parameter was required. Events with
scale parameter higher than 500 m show large systematics compared with the lower
statistical errors of the scale parameter for values in the range of 100-200 m. This
aspect is confirmed by the large corresponding values of the field strength seen in
each antenna, e.g. for values of R0 higher than 100 m, while for values lower than
100 m a tendency to flattening is observed instead (see Fig. 6.22). The flattening
related to the high values of the scale parameter can be explained by the noise. The
primary energy and the incoming shower direction might play an important role in
this particular case. If we look now at the distribution of the fit parameters (ε0 and
R0, see Fig. 6.22), by applying several cuts on the primary energy, one can see that
for e.g. Ep > 1017.4, high value of ε0 gives low value of R0, with low error bars per
single event.

In Figs. 6.23, 6.24 the distributions of ε0 and R0 with primary energy are shown, as
well as their intrinsic correlation (top panel) for simulation and data. An interesting
feature is the obvious correlation of the ε0 with R0, at least for small R0 values at a
part of the measured events in both polarization directions. A clear dependence of
ε0 with primary energy is found (middle panel). However, no dependence for R0 is
observed (neither in simulation, nor in data: bottom panel). It should be claimed
again, that the comparison between simulations and data lead to a better agreement
for the EW polarization component than for the NS polarization component, where
definitely a higher field strength is measured than expected. As the EW polarization
component is more sensitive to the geomagnetic origin of the signal, and NS polar-
ization component has a higher sensitivity to the charge excess contribution to the
total signal, this can be another hint that this part is underestimated in the REAS3
simulations.

In conclusion, there is no major difference between simulation and measurement
regarding the extrapolated field strength for each polarization component separately.
The new definition of the start- and end-point in the particle track [54], which is
assumed now in the current version of REAS3, seems to fit much better with the
measurements than the old version of REAS2 [40]. Additionally, a dependence
between ε0 and R0 can be observed in the measurement, but not in the simulation.
A dependence of ε0 on energy for both polarization components is found in both
simulations and measurements. However, no dependence for R0 is found, neither on
the primary energy nor on the mean distance to shower axis. Overall, lower values
for R0 are found in the simulations (in both polarization directions), with mean
value of about 126.4 m in NS and 118.2 m in EW respectively. Besides the usual
exponential decay behaviour of the applied fit on the lateral extend, a flat profile for
a few showers is found in data and for first time also in simulations (see Appendix B,
e.g. Fig. B.1, panels 5,6 from top down). This phenomena is not fully understood,
though may be explained by the low distance to the shower axis, as it is the case for
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these selected events (triggered by the KASCADE array). The same features were
also observed in the previous studies of LOPES-30 measurements of the east-west
polarization direction for the electric field only [40].

6.6 Polarization vector

This analysis is dedicated to directly examine the polarization of the signal at an-
tenna level. Within the LOPES-pol set-up 5 antennae with sensitivities for both
polarizations (EW and NS) are installed at the same place. This allows the record
of the radio signal in both polarization components at the same place and at the
same time. From the reconstruction of the radio signal (including up-sampling) the
maximum field strength of each individual antenna (for each polarization direction)
is obtained for individual events. In addition to the lateral distribution analysis,
here also the sign (+ or -) of the field strength is considered. By this, we can gain
information on the polarization direction Pdirectivity = tan−1(FSNS/FSEW ) and its

magnitude (Pmagnitude =
√

FS2
EW + FS2

NS) respectively. For all selected events we
calculate these values for all 5 antennae (i.e. 10 channels). For the recorded signals
in both (EW and NS) polarization directions a signal-to-noise ratio larger than 2 is
required. The KASCADE event sample is used for this analysis. Either the positive
or negative maximum of the highest absolute value of the radio signal is used in
further calculations, e.g. in Figs. 6.25, 6.26.

Fig. 6.25 shows the distribution of the field strengths, of the magnitude and direc-
tivity of the polarization vector, and of the distance of the antennae to the shower
center. No special behaviour in these distributions are found, except that due to the
requirement of a minimum field strength for detection not the full range of directiv-
ity is populated. Fig. 6.26, left panel, shows the correlation of the NS with the EW
polarization components of the measured field strength (pink colour), including their

individual prediction as given by the ~v× ~B -model (green colour), which shows values
close to zero (while measured data does not). Same figure, right panel, shows the
correlation between the field strength reconstructed in the NS and EW polarization
directions divided by the total amplitude (≡ Pmagnitude). One can clearly see the four
quadrants of the circle, which describe the ∓ sign of the signal. The vector direc-
tivity is defined with zero degree at the positive X-axis and going counter-clockwise
to 360 degree. The signal sign of measured data is uniformly distributed along all
quadrants, while this is not true in the case of ~v× ~B -directivity (mainly distributed
along the - + and - - quadrants).

Fig. 6.27 displays the sky maps (as function of azimuth and zenith angles) of the
field strength recorded in EW and NS polarization components respectively, where
the information of the radio (±) and the height of the field strength is combined.
We observe that for the EW polarization component positive signs are dominating
for showers coming from the North direction, and for the NS polarization component
positive signs are dominant in East and West directions.

The sign of the field strength was already studied by the CODALEMA experi-
ment [46], where the simplified geomagnetic model ~v × ~B was assumed. The ~v × ~B
-unit vector predicts that for the EW polarization detection, a signal with posi-
tive sign is expected to be dominant for showers coming from the Northern part of
the geomagnetic angle (in Karlsruhe), and negative sign for showers coming from
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the Southern part. For the NS polarization detection, signal with positive sign is
expected to be dominant for showers coming from East, and signal with negative
sign to be dominant for showers coming from West. This behaviour get’s even a
bit clearer by looking to Fig. 6.28, where the number of signals with positive and
negative signs are displayed in dependence with the azimuth angle of the incoming
showers.

In Figs. 6.29 6.30 the dependencies of the vector magnitude and the directivity of
the data is compared with expectations of the ~v × ~B -model. In the model only the
geometry of the measured events is taken into account, and thus its vector magnitude
and directivity are calculated (see Chapter 5). For all plots, the corresponding
profiles (with the rms of quantities) are plotted on top of the scatter points. The
clear correlation of the vector magnitude with the primary energy is seen in Fig. 6.29
(right hand, 4th panel from top). A power law is fitted to the profile of the primary
energy, which results in a slope of index v 1. There is no dependence, as expected,
between vector directivity and energy of the primary particle (see Fig. 6.30).

If one compare now the dependence of the vector magnitude with the azimuth, zenith
and geomagnetic angles in measured data, there are some hints for similar features
compared to the model. But the spread, showing the influence of the amplitude in the
measured data, is too large to make any conclusive statement. Also, the position of
the shower core to the dual-polarized antennae may play a role here. The correlations
of the ~v× ~B -model’s magnitude and directivity applied to shower geometry are well
understood, if one remembers that ~v × ~B describes only the dependencies of the
geomagnetic emission on the shower geometry, as follows:

(i.) the magnitude does not correlate with energy of the primary particle;

(ii.) the magnitude increases with geomagnetic angle;

(iii.) the magnitude is larger for showers coming from North (also from South);

(iv.) the magnitude depends dominantly on azimuth and slightly on zenith angle;

(v.) the directivity concentrates on the angular range from 90◦ to 270◦;

(vi.) the directivity does not depend on the energy of the primary particle, zenith
and geomagnetic angle;

(vii.) the directivity depends on azimuth angle where a flip in the sign is observed
for events coming from South (parallel to Earth magnetic field)

The surprisingly clear dependence of the ~v × ~B -directivity on the azimuth angle is
not seen in the data. The uncertainty assigning the sign to the maximum measured
amplitude in the individual antenna signal is probably too large (≈ 20%) for de-

tailed comparisons. But, due to these clear dependencies in the ~v × ~B -model, such
an analysis can be very promising in justifying the emission mechanism and needs
further more detailed investigation.
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Figure 6.25: Histograms (from left to right) of reconstructed field strength, calculated
vector magnitude, vector direction, and distance to the shower axis. KASCADE showers
with energy larger than 1017 eV as seen by the 5 dual-antennae.
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Figure 6.26: In the scatter plot, left panel, the signal recorded in the EW polarization
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definition the maximum value is one. In the right panel, the field strength in the NS
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Figure 6.27: Sky maps of the events seen by the 5 dual antennae, with the sign ± of the
field strength. A cut on absolute values of the field strength (recorded in EW and NS
polarization components) larger than 2 µV/m/MHz was applied, in order to avoid biased
events with field strength values close to the noise.
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north-south detection the positive sign in dominant in the west.



72 6. Measurements & Analysis

Azimuth [deg.]

100 150 200 250 300 350

lg
(M

a
g

n
it

u
d

e
)

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Zenith [deg.]

10 15 20 25 30 35 400      50     

lg
(M

a
g

n
it

u
d

e
)

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

lg
(M

a
g

n
it

u
d

e
)

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

lg
(M

a
g

n
it

u
d

e
)

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0      5

0      10    20      30       40     50      60     70
Geomagnetic angle [deg.]

 17 17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8 17.9   

lg(Energy/eV)

lg
(M

a
g

n
it

u
d

e
)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

lg
(M

a
g

n
it

u
d

e
)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

lg
(M

a
g

n
it

u
d

e
)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

lg
(M

a
g

n
it

u
d

e
)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Azimuth [deg.]

100 150 200 250 300 350
Zenith [deg.]

10 15 20 25 30 35 400      50     0      5

0      10    20      30       40     50      60     70
Geomagnetic angle [deg.]

 17 17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8 17.9   

lg(Energy/eV)

vxB

vxB

-> ->

-> ->

Figure 6.29: The vector magnitude (i.e. Pmagnitude =
√

FS2
EW + FS2

NS) of measured data
is shown in dependency with the air shower angles (e.g. φ, θ, α, including the primary
energy Ep > 1017 eV . A power law function is applied to the binned data (red full
circles) plotted on top of the scatter points (blue open circles) with a index ∼ 1 (4 top
panels). Same dependences but as application to the ~v× ~B -amplitude. Clear dependencies
with azimuth and geomagnetic angle are seen instead, with much spread in the zenith
dependency, because of θ = 25◦ which is similar with the incidence or the Earth magnetic
field.
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Figure 6.30: Same as Fig. 6.29, but for the vector directivity (Pdirectivity =
tan−1(FSNS/FSEW )) applied to measured field strength (4 top a panels), as well as to
~v × ~B -model
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7. Summary and Outlook

By coincident measurements of LOPES and the KASCADE-Grande experiment
valuable characteristics of the radio signal is investigated, e.g. the dependence on
primary energy, direction and distance to shower axis. Radio detection of extensive
air showers is an important issue because it can help in the understanding of the
energy spectrum and mass composition of high energy cosmic rays, see [55]. The
aim of this thesis was to understand and investigate the radio signal, analysing re-
lated dependencies with shower parameters in respect to the polarization issue. In
particular, the knowledge of the polarization characteristics is mandatory for the
interpretation of experimental measurements to verify the geomagnetic origin of the
radio emission initiated by the atmospheric showers.

The LOPES experiment was performing dipole measurements for about 3 years, from
end of 2006 until end of 2009. From the large number of events detected in both
polarization directions two shower selections on both, KASCADE and Grande trig-
ger information, were used in this studies for energy of the primary above 1017 eV.
With the pulse height reconstructed independently for each polarization direction,
east-west and north-south, valuable knowledge of the radio signal was obtained with
respect to the polarization aspects. Instrumental corrections (e.g. calibration of
amplitude, phase and time), radio frequency interference narrow band RFI suppres-
sions, Fourier transforming data to frequency domain are considered in the standard
pipeline reconstruction. A beam forming is performed into the direction to the
shower axis. The used radio observable in the EAS investigations is the so-called
cross correlated beam (the CCbeam). But, to be independent of the amplitude, the
pulse height ratio was also studied (the recorded signal in the north-south polariza-
tion direction versus the signal recorded in the east-west direction). Investigating
this ratio in individual showers allowed us to study the polarization characteristics of
the signal independent of primary energy and distance of the antennas to the shower
axis, i.e. in particular the dependence of the polarization on the direction of the in-
coming primary particle. Correlations of the pulse height ratio of both polarization
components with the azimuth, as well as with the geomagnetic angle were compared
with predictions of a first order approximation of models based on a geomagnetic
origin of the emission, as well as with full simulations.
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The dependence on the primary energy, direction of the incoming shower axis (by its
azimuth, zenith and geomagnetic angle) and distance to shower axis were used in the
parametrization of the radio pulse on each polarization direction. This allows the
estimation of the radio pulse by integrating in a formula only the parameters of the
measured shower geometry (in the LOPES case, EAS information provided by the
KASCADE-Grande particle detector array). The lateral extent of the field strength
seen in each antenna as distance to the shower axis could be fitted by an exponential
function. The fit results were investigated and no correlation between the scale
parameter of the lateral profile with any EAS observables could be found. For the
first time, the estimation of the polarization vector per dipole LOPES antenna was
possible now. The dependence of the vector magnitude with the primary energy was
found, with the index of the fitted power law with index close to 1.

The emission is polarized in the direction perpendicular to the air shower axis and
geomagnetic field. The polarization characteristics follow a behaviour described by
a unit polarization vector: ~v × ~B. The absolute amplitude of the electric field in a
first approximation can be considered to be proportional to the Lorentz force. As
the polarization measurements are required for the full measurement of the radio
signal, detailed comparisons between measurements and simulations of radio emis-
sion were performed. Having analysed the full Monte Carlo simulation of the radio
emission (which includes the charge excess), as well as the simplified geomagnetic
model (which treats the pure shower geometry), it allowed us to compare both with
measured data. Analysing a sample of simulated events, we could find a disagree-
ment between the REAS3-simulated amplitude and the ~v× ~B -amplitude, concerning
showers coming from the North and South directions and of vertical showers. Thus,
REAS3 predicts detection in both polarization directions (EW and NS), while the

~v × ~B model gives zero amplitude in the NS polarization component. Comparing
both approaches with the measured data, for which we have access to full azimuth
(φ = 0◦− 360◦) and zenith (θ = 0◦− 40◦) angles, we found that indeed there is valid
detection in both polarization directions for showers arriving mainly from North
directions. This behaviour is also confirmed by investigating the pulse height ratio
(NS/EW polarization components).

Summarising, four different analysis were performed for related investigations toward
polarization aspects, as follows:

(i) CCbeam dependencies: Looking for shower dependencies on the amplitude of the
EW and NS polarized signals. The result here is that generally, predictions of a
pure geomagnetic origin of the radio emission are confirmed (in particular for the
EW polarization component), but there are some deviations (in particular for the NS
polarization component) which can be linked to a contribution from charge excess
in the shower.

(ii) CCbeam parametrization: Verifying whether NS and EW polarization components
have same ”calibration”. The result is that generally, yes, they are similar if one takes
into account the ~v× ~B polarization dependence of the geomagnetic effect. First hints
seen so far are that for large distances the exponential function does not describe
well the lateral distribution function (LDF).

(iii) Lateral distribution: Verifying whether NS and EW polarization components
have same LDF (analysis on a single-antenna basis). The result shows similarities
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between the two polarization components, except of the fact that in the case of
the NS polarization component the deviation to the simulation is larger than in the
EW polarization component. This can be interpreted as hint that the contribution
from non-geomagnetic emission (e.g. by charge excess) is slightly underestimated in
simulations (in this case, performed with the REAS code).

(iv) Polarization vector (analysis on a single-antenna basis): Looking if the geomag-
netic effect describes the polarization features. From comparison with theoretical
predictions, the ~v× ~B -model clearly shows azimuthal dependencies (for both, vector
magnitude and its directivity), while this is not obvious in measured data. The un-
certainty assigning the sign to the maximum measured amplitude in the individual
antenna signal (≈ 20%) is probably hampering more detailed comparisons. Further
experiments will have a better sensitivity to the polarization vector. Than such
analysis will be very convincing, as the simplified geomagnetic model expectations
are very promising for distinguishing different radio emission mechanisms.

In conclusion, the geomagnetic effect is dominant, but definitely there is additional
contribution (most probably from the charge excess induced during the shower de-
velopment in the Earth’atmosphere), where the amount of this contribution is still
an open question. The reason to looking for all these investigations (more quantita-
tively than qualitatively) is that the radio signal is not fully understood, i.e. there
is always a large uncertainty if the models or expectations are really true. However,
the geo-synchrotron effect proposed as the main emission mechanism in the radio
emission initiated by the atmospheric showers could generally be confirmed by the
clear dependence of the recorded radio signal on the ground and the geometry of the
shower. The dependence of both polarization components of the signal, east-west
and north-south, independently (as well as of their ratio), is seen in the correlation
with the azimuth and geomagnetic angles. This verifies the geomagnetic effect as
(mainly) dominant mechanism in the radio emission mechanism.

7.1 Research & Development for large scale appli-

cation

The digital interferometry (e.g. LOPES, the pioneer experiment in the radio tech-
nique) is the re-discovered technique which is being used in a modern generation of
the air shower experiments. Traditional ground particle detector, optical telescope
and digital interferometry all together play an important role in measuring cosmic
ray air showers, yielding separate and complementary observations. A digital ra-
dio antenna records the radio flashes of charged cosmic particles produced in the
air shower. Due to the interaction with the Earth’s magnetic field electrons and
positrons as the main part of the shower body produce the radio flashes, which may
be measured 24h a day.

The LOPES experiment was proposed to test the properties of air shower radio
emission, and it has been proven so far that it can be used for the measurement of
high energy cosmic rays. Its objectives are to understand the recorded radio pulse
and correlate it with air shower parameters, understand the emission mechanism and
pave the way for the use of the radio technique in current and future experiments.
For applications at the Pierre Auger Observatory, inside LOPES we have developed
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LOPESSTAR (a Self Trigger Array of Radio detectors for LOPES [30]). Preliminary
tests of self triggered antennas have been done, at both sides by LOPES and by the
Pierre Auger Observatory. The possibility to use LOPES as a self-triggering antenna
system is now investigated at the South part of the Pierre Auger Observatory (by
AERA - an Auger Engineering Radio Array [56]). Besides this, at AERA different
antenna types provided by the French-pioneer CODALEMA [47] and by the Dutch-
designed LOFAR astronomical telescope array [57] are also tested. For example,
the good directional accuracy reachable with radio interferometers will significantly
improve clustering studies in search for point sources [57].

Once we have understood how the radio techniques works, how to handle the in-
strumental effects in the detailed digital processing (the reconstruction) of the radio
signal, we open a new window in measurements of the most energetic particles com-
ing from the Universe. Furthermore, we improve and optimize the hardware of the
radio technique for large scale application in ultra high-energy cosmic ray experi-
ments, like Pierre Auger Observatory and LOFAR. First approaches using the radio
technique at the Pierre Auger Observatory and at a first LOFAR station are in
progress. The highly important experience for such applications will be provided by
the LOPES measurements. With the unique opportunity to have the LOPES radio
antenna array placed inside the traditional and well-developed particle detector array
KASCADE-Grande, LOPES allows the most valuable information of the radio signal
achieved so far. Valuable dependencies of the radio signal with the EAS observables
were found. A very promising area involves composition studies. The number of
electrons integrated over the entire shower, revealing the primary particle energy, is
difficult to determine with particle detectors: only a small fraction of these electrons
reach the ground, due to their short absorption length. Muons, on the other hand,
reach the ground largely unharmed, and their number is higher for showers produced
by an iron nucleus compared to proton-induced, or even γ-induced, showers. Hence,
a super-hybrid (combined radio and muon-detector, including fluorescence) detector
array could determine the spectrum and composition of energetic cosmic rays.

Besides of the fact that inclined air showers provides a larger range of geomagnetic
angles, they allow the vertical polarization component to be recorded. Taking this
aspect into account, the polarization configuration of the LOPES antennas has been
changed. Tests of a new design of three-pole antennas are under investigations at the
LOPES site. The three-pole antenna configuration, and thus incorporating all three
polarization components of the electric field (east-west, north-south and vertical)
allows the measurement of the full signal. This follows as the fourth configuration
in the life-time of the LOPES experiment.



A. Pulse height parametrization

A.1 Method: Iterative procedure

For the parametrization of the pulse height, an iterative procedure is being used on
the three dependencies for the EAS observables: the incoming shower direction by
the simplified geomagnetic model, the distance from observer to shower axis, and
the primary energy. With all the EAS information provided by the KASCADE-
Grande experiment, now we can estimate the radio pulse on each singe polarization
directions, east-west and north-south. The step-by-step procedure is presented here
in three steps. The results of the third step are used in the final pulse height
estimation.

First iterative step, I

I.a. ”Pv = ~v × ~B” approach

Y = ε
′
= CCEW

beam ×
1017 eV

Ep

;

X = PEW
v ;

Fitfunction : FB1 = Y = a + bX;

Assumption : qB1 + sB1X;

Fitresults : qB1 = a1, sB1 = b1;

Notes:
α is the angle between the shower axis and the Earth’s magnetic field;
CCEW

beam is the reconstruction of the pulse height into the east-west direction;
Ep is the estimated primary energy by KASCADE-Grande;
a1 and b1 are the result parameters of the linear fit of the function FB1 applied to
data.
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I.b. ”Mean distance” approach

Y = ln(ε
′ × FB1 → Eval(0.45)

FB1 → Eval(fabs(PEW
v ))

)

X = D[m];

Fitfunction : FD1 = Y = a−X/b;

Assumption : sD1 −X/RD1;

Fitresults : RD1 = b2, sD1 = ea2

Notes:
D is the distance from observer to the shower axis;
a2 and b2 are the result parameters of the exponential fit of the function FD1 applied
to data.

I.c. ”Primary energy” approach

Y = log10(ε
′ × FB1 → Eval(0.45)

FB1 → Eval(fabs(PEW
v ))

× exp FD1 → Eval(100m)

exp FD1 → Eval(D)
);

X = log10(Ep/1017)[eV ];

Fitfunction : FE1 = Y = a + bX;

Assumption : sE1 × EpE1 ;

Fitresults : pE1 = b3, sE1 = 10a3

Notes:
Ep is the estimated primary energy by KASCADE-Grande;
a3 and b3 are the result parameters of the linear fit proportional to a power low
function which describes the energy dependence.

Second iterative step, II Obs: same fit function as Iterative normalization I

II.a. ”~v × ~B” approach

Y = ε
′ × FE1 → Eval(1017eV )

FE1 → Eval(Ep)
× exp FD1 → Eval(100m)

exp FD1 → Eval(D)
;

X = PEW
v ;

Fitfunction : FB2

II.b. ”Mean distance” approach

Y = log(ε
′ × FE1 → Eval(1017eV )

FE1 → Eval(Ep)
× FB2 → Eval(0.45)

FB2 → Eval(fabs(PEW
v ))

);

X = D[m];

Fitfunction : FD2
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II.c. By primary energy:

Y = log10(ε
′ × FB2 → Eval(0.45)

FB2 → Eval(fabs(PEW
v ))

× exp FD2 → Eval(100m)

exp FD2 → Eval(D)
);

X = log10(Ep/1017)[eV ];

Fitfunction : FE2

Third iterative step, III Obs: same fit function as Iterative normalization II

III.a. ”~v × ~B” approach

Y = ε
′ × FE2 → Eval(1017eV )

FE2 → Eval(Ep)
× exp FD2 → Eval(100m)

exp FD2 → Eval(D)
;

X = PEW
v ;

Fitfunction : FB3

III.b. ”Mean distance” approach

Y = log(ε
′ × FE3 → Eval(1017eV )

FE2 → Eval(Ep)
× FB3 → Eval(0.45)

FB3 → Eval(fabs(PEW
v ))

;

X = D[m];

Fitfunction : FD3

III.c. ”Primary energy” approach

Y = log10(ε
′ × FB3 → Eval(0.45)

FB3 → Eval(fabs(PEW
v ))

× exp FD3 → Eval(100m)

exp FD3 → Eval(D)
);

X = log10(Ep/1017)[eV ];

Fitfunction : FE3

A.2 Pulse height estimation

With the results from iterative step III, one can estimate the radio pulse height.
Same procedure of the estimation of the pulse height is used for both polarizations,
independently, by using the |~v × ~B|NS-unit cross product vector projected in the
north-south and east-west directions, separately, as follows:

This case: (b1 6= 0)

ε = (a1 · a2 · a3) · (|PEW,NS
v |+ a1

b1

) · e
−R0

b2 · ( Ep

1017eV
)b3

µV

m ·MHz

Other case: (b1=0)

ε = (a1 · a2 · a3) · |PEW,NS
v | · e−R

b2 · Eb3
p

µV

m ·MHz
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(a) The cross-product (b) The right-hand rule

Figure A.1: The cross-product in respect to the right-handed rule

A.3 Unit vector cross product ~v × ~B

The simplified geomagnetic model, |~v× ~B|, is treated as a unit cross product in the
spherical coordinate system; the |~v| vector is representing the shower direction (by

its azimuth and zenith angles), and the | ~B| vector the Earth’s magnetic field (by its
azimuth and zenith angles) at the LOPES experiment location in Karlsruhe.

~v =




vx

vy

vz


 =



|v| · sin(θ) · cos(φ)
|v| · sin(θ) · sin(φ)

|v| · cos(θ)




~B =




Bx

By

Bz


 =



|B| · sin(θ) · cos(φ)
|B| · sin(θ) · sin(φ)

|B| · cos(θ)




~v × ~B =




vy ·Bz − vz ·By

vz ·Bx − vx ·Bz

vx ·By − vy ·Bx


 =




Px

Py

Pz


 =




North− South
East−West

V ertical




In mathematics, the cross product is a binary operation of two vectors in a three-
dimensional Euclidean-space that results in another vector which is perpendicular
to the plane containing the two input vectors A.1(a). The vector direction is given
by the right-hand rule and its magnitude equal to the area of the parallelogram that
the vectors span A.1(b).

The cross product has the following properties:

a(b× c) = (ab)× c = b× (ac);

a× (b + c) = a× b + a× c;
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(a + b)× c = a× c + b× c

a× b = −b× a

Order is important in the cross product. If the order of operations changes in a cross
product the direction of the resulting vector is reversed.

Recently, there have been suggestions, see [58], [48], that in addition to the po-
larization characteristics, also the absolute amplitude of the electric field in a first
approximation can be considered to be proportional to this Lorentz force. Thus the
vector magnitude and its directivity can be calculated as follows:

Magnitude =
√

P 2
x + P 2

y ;

Directivity = tan(θ) = tan−1(Py/Px);

hence,

Px = P × cos(θ), Py = P × sin(θ)
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B. Lateral profiles



86 B. Measured data and simulation
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Figure B.1: Lateral distribution of single events of Ep > 1017 eV. Left side: EW polariza-
tion. Right side: NS polarization. Blue: measurement. Red: Simulation.
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Figure B.2: Lateral distribution of single events of Ep > 1017 eV. Left side: EW polariza-
tion. Right side: NS polarization. Blue: measurement. Red: Simulation.
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Figure B.3: Lateral distribution of single events of Ep > 1017 eV. Left side: EW polariza-
tion. Right side: NS polarization. Blue: measurement. Red: Simulation.
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Figure B.4: Lateral distribution of single events of Ep > 1017 eV. Left side: EW polariza-
tion. Right side: NS polarization. Blue: measurement. Red: Simulation.



90 B. Measured data and simulation
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Figure B.5: Lateral distribution of single events of Ep > 1017 eV. Left side: EW polariza-
tion. Right side: NS polarization. Blue: measurement. Red: Simulation.
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Figure B.6: Lateral distribution of single events of Ep > 1017 eV. Left side: EW polariza-
tion. Right side: NS polarization. Blue: measurement. Red: Simulation.
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Figure B.7: Lateral distribution of single events of Ep > 1017 eV. Left side: EW polariza-
tion. Right side: NS polarization. Blue: measurement. Red: Simulation.
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Figure B.8: Lateral distribution of single events of Ep > 1017 eV. Left side: EW polariza-
tion. Right side: NS polarization. Blue: measurement. Red: Simulation.
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Figure B.9: Lateral distribution of single events of Ep > 1017 eV. Left side: EW polariza-
tion. Right side: NS polarization. Blue: measurement. Red: Simulation.
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Figure B.10: Lateral distribution of single events of Ep > 1017 eV. Left side: EW polar-
ization. Right side: NS polarization. Blue: measurement. Red: Simulation.
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distance R [m]
0 20 40 60 80 100 120 140 160 180 200

V
/m

/M
H

z]
µ

 [∈
fi

el
d

 s
tr

en
g

th
 

-110

1

10

 / ndf 2χ  4.745 / 13
 0∈  1.781± 7.627 
    0R  101.4± 210.2 

 / ndf 2χ  4.745 / 13
 0∈  1.781± 7.627 
    0R  101.4± 210.2 
 / ndf 2χ  0.6281 / 28
 0∈  1.445± 7.823 
    0R  10.37± 78.77 

 / ndf 2χ  0.6281 / 28
 0∈  1.445± 7.823 
    0R  10.37± 78.77 

 / ndf 2χ  4.745 / 13
 0∈  1.781± 7.627 
    0R  101.4± 210.2 
 / ndf 2χ  0.6281 / 28
 0∈  1.445± 7.823 
    0R  10.37± 78.77 

SIM000078
GT      1201634613

  0E   eV
   φ o 308.8
 θ o 23.31

 / ndf 2χ  4.745 / 13
 0∈  1.781± 7.627 
    0R  101.4± 210.2 
 / ndf 2χ  0.6281 / 28
 0∈  1.445± 7.823 
    0R  10.37± 78.77 

distance R [m]
0 50 100 150 200

V
/m

/M
H

z]
µ

 [∈
fi

el
d

 s
tr

en
g

th
 

-110

1

10

 / ndf 2χ  9.221 / 13
 0∈  1.384± 4.286 
    0R  1.086e+04±  1848 

 / ndf 2χ  9.221 / 13
 0∈  1.384± 4.286 
    0R  1.086e+04±  1848 
 / ndf 2χ  2.357 / 28
 0∈  0.9968± 5.452 
    0R  11.95± 85.23 

 / ndf 2χ  2.357 / 28
 0∈  0.9968± 5.452 
    0R  11.95± 85.23 

 / ndf 2χ  9.221 / 13
 0∈  1.384± 4.286 
    0R  1.086e+04±  1848 
 / ndf 2χ  2.357 / 28
 0∈  0.9968± 5.452 
    0R  11.95± 85.23 

SIM000078
GT      1201634613

  0E   eV
   φ o 306.3
 θ o 22.95

 / ndf 2χ  9.221 / 13
 0∈  1.384± 4.286 
    0R  1.086e+04±  1848 
 / ndf 2χ  2.357 / 28
 0∈  0.9968± 5.452 
    0R  11.95± 85.23 

distance R [m]
0 20 40 60 80 100 120 140 160 180 200 220

V
/m

/M
H

z]
µ

 [∈
fi

el
d

 s
tr

en
g

th
 

1

10

210

 / ndf 2χ  14.44 / 13
 0∈  21.23± 51.47 
    0R  7.228± 40.49 

 / ndf 2χ  14.44 / 13
 0∈  21.23± 51.47 
    0R  7.228± 40.49 
 / ndf 2χ  0.671 / 28
 0∈   1.67± 9.124 
    0R  14.53± 94.78 

 / ndf 2χ  0.671 / 28
 0∈   1.67± 9.124 
    0R  14.53± 94.78 

 / ndf 2χ  14.44 / 13
 0∈  21.23± 51.47 
    0R  7.228± 40.49 
 / ndf 2χ  0.671 / 28
 0∈   1.67± 9.124 
    0R  14.53± 94.78 

SIM000079
GT      1201656718

  0E   eV
   φ o 295.9
 θ o 10.89

 / ndf 2χ  14.44 / 13
 0∈  21.23± 51.47 
    0R  7.228± 40.49 
 / ndf 2χ  0.671 / 28
 0∈   1.67± 9.124 
    0R  14.53± 94.78 

distance R [m]
0 20 40 60 80 100 120 140 160 180 200 220

V
/m

/M
H

z]
µ

 [∈
fi

el
d

 s
tr

en
g

th
 

-110

1

10

 / ndf 2χ  4.668 / 13
 0∈  2.252± 5.343 
    0R  139.7± 197.1 

 / ndf 2χ  4.668 / 13
 0∈  2.252± 5.343 
    0R  139.7± 197.1 
 / ndf 2χ  1.367 / 28
 0∈  0.6395± 3.648 
    0R     19± 111.2 

 / ndf 2χ  1.367 / 28
 0∈  0.6395± 3.648 
    0R     19± 111.2 

 / ndf 2χ  4.668 / 13
 0∈  2.252± 5.343 
    0R  139.7± 197.1 
 / ndf 2χ  1.367 / 28
 0∈  0.6395± 3.648 
    0R     19± 111.2 

SIM000079
GT      1201656718

  0E   eV
   φ o 291.0
 θ o 8.704

 / ndf 2χ  4.668 / 13
 0∈  2.252± 5.343 
    0R  139.7± 197.1 
 / ndf 2χ  1.367 / 28
 0∈  0.6395± 3.648 
    0R     19± 111.2 

distance R [m]
0 20 40 60 80 100 120 140 160 180

V
/m

/M
H

z]
µ

 [∈
fi

el
d

 s
tr

en
g

th
 

-110

1

10

 / ndf 2χ  5.637 / 13
 0∈  1.916± 7.628 
    0R  131.5± 213.6 

 / ndf 2χ  5.637 / 13
 0∈  1.916± 7.628 
    0R  131.5± 213.6 
 / ndf 2χ  0.2901 / 28
 0∈  1.744±  10.2 
    0R  36.11± 140.7 

 / ndf 2χ  0.2901 / 28
 0∈  1.744±  10.2 
    0R  36.11± 140.7 

 / ndf 2χ  5.637 / 13
 0∈  1.916± 7.628 
    0R  131.5± 213.6 
 / ndf 2χ  0.2901 / 28
 0∈  1.744±  10.2 
    0R  36.11± 140.7 

SIM000080
GT      1201947328

  0E   eV
   φ o 23.72
 θ o 26.03

 / ndf 2χ  5.637 / 13
 0∈  1.916± 7.628 
    0R  131.5± 213.6 
 / ndf 2χ  0.2901 / 28
 0∈  1.744±  10.2 
    0R  36.11± 140.7 

distance R [m]
0 20 40 60 80 100 120 140 160

V
/m

/M
H

z]
µ

 [∈
fi

el
d

 s
tr

en
g

th
 

1

10

210

 / ndf 2χ  13.32 / 13
 0∈  93.33± 157.9 
    0R  5.102±  25.2 

 / ndf 2χ  13.32 / 13
 0∈  93.33± 157.9 
    0R  5.102±  25.2 
 / ndf 2χ  1.126 / 28
 0∈  1.067± 6.354 
    0R  57.89±   180 

 / ndf 2χ  1.126 / 28
 0∈  1.067± 6.354 
    0R  57.89±   180 

 / ndf 2χ  13.32 / 13
 0∈  93.33± 157.9 
    0R  5.102±  25.2 
 / ndf 2χ  1.126 / 28
 0∈  1.067± 6.354 
    0R  57.89±   180 

SIM000080
GT      1201947328

  0E   eV
   φ o 22.10
 θ o 28.33

 / ndf 2χ  13.32 / 13
 0∈  93.33± 157.9 
    0R  5.102±  25.2 
 / ndf 2χ  1.126 / 28
 0∈  1.067± 6.354 
    0R  57.89±   180 

distance R [m]
0 50 100 150 200

V
/m

/M
H

z]
µ

 [∈
fi

el
d

 s
tr

en
g

th
 

1

10

210

 / ndf 2χ  11.23 / 13
 0∈   1.53± 4.699 
    0R  218.4± 248.8 

 / ndf 2χ  11.23 / 13
 0∈   1.53± 4.699 
    0R  218.4± 248.8 
 / ndf 2χ  3.562 / 28
 0∈  0.2762± 1.429 
    0R  98.28± 209.9 

 / ndf 2χ  3.562 / 28
 0∈  0.2762± 1.429 
    0R  98.28± 209.9 

 / ndf 2χ  11.23 / 13
 0∈   1.53± 4.699 
    0R  218.4± 248.8 
 / ndf 2χ  3.562 / 28
 0∈  0.2762± 1.429 
    0R  98.28± 209.9 

SIM000082
GT      1203081949

  0E   eV
   φ o 332.2
 θ o 19.42

 / ndf 2χ  11.23 / 13
 0∈   1.53± 4.699 
    0R  218.4± 248.8 
 / ndf 2χ  3.562 / 28
 0∈  0.2762± 1.429 
    0R  98.28± 209.9 

distance R [m]
0 20 40 60 80 100 120 140 160

V
/m

/M
H

z]
µ

 [∈
fi

el
d

 s
tr

en
g

th
 

-110

1

10

 / ndf 2χ  7.494 / 13
 0∈  2.228± 6.612 
    0R  72.37± 137.5 

 / ndf 2χ  7.494 / 13
 0∈  2.228± 6.612 
    0R  72.37± 137.5 
 / ndf 2χ  0.7002 / 28
 0∈  0.932± 5.098 
    0R  137.7± 255.8 

 / ndf 2χ  0.7002 / 28
 0∈  0.932± 5.098 
    0R  137.7± 255.8 

 / ndf 2χ  7.494 / 13
 0∈  2.228± 6.612 
    0R  72.37± 137.5 
 / ndf 2χ  0.7002 / 28
 0∈  0.932± 5.098 
    0R  137.7± 255.8 

SIM000082
GT      1203081949

  0E   eV
   φ o 330.0
 θ o 17.81

 / ndf 2χ  7.494 / 13
 0∈  2.228± 6.612 
    0R  72.37± 137.5 
 / ndf 2χ  0.7002 / 28
 0∈  0.932± 5.098 
    0R  137.7± 255.8 

distance R [m]
0 20 40 60 80 100 120 140 160

V
/m

/M
H

z]
µ

 [∈
fi

el
d

 s
tr

en
g

th
 

1

10

210

 / ndf 2χ  4.644 / 13
 0∈  2.993± 13.06 
    0R  103.8± 194.1 

 / ndf 2χ  4.644 / 13
 0∈  2.993± 13.06 
    0R  103.8± 194.1 
 / ndf 2χ  1.606 / 28
 0∈  1.043± 5.126 
    0R  20.38± 94.46 

 / ndf 2χ  1.606 / 28
 0∈  1.043± 5.126 
    0R  20.38± 94.46 

 / ndf 2χ  4.644 / 13
 0∈  2.993± 13.06 
    0R  103.8± 194.1 
 / ndf 2χ  1.606 / 28
 0∈  1.043± 5.126 
    0R  20.38± 94.46 

SIM000084
GT      1203795386

  0E   eV
   φ o 313.3
 θ o 27.25

 / ndf 2χ  4.644 / 13
 0∈  2.993± 13.06 
    0R  103.8± 194.1 
 / ndf 2χ  1.606 / 28
 0∈  1.043± 5.126 
    0R  20.38± 94.46 

distance R [m]
0 20 40 60 80 100 120 140 160

V
/m

/M
H

z]
µ

 [∈
fi

el
d

 s
tr

en
g

th
 

1

10

210

 / ndf 2χ  9.441 / 13
 0∈  105.2± 163.7 
    0R  5.296± 24.69 

 / ndf 2χ  9.441 / 13
 0∈  105.2± 163.7 
    0R  5.296± 24.69 
 / ndf 2χ  1.797 / 28
 0∈  1.199± 5.848 
    0R  18.06± 88.64 

 / ndf 2χ  1.797 / 28
 0∈  1.199± 5.848 
    0R  18.06± 88.64 

 / ndf 2χ  9.441 / 13
 0∈  105.2± 163.7 
    0R  5.296± 24.69 
 / ndf 2χ  1.797 / 28
 0∈  1.199± 5.848 
    0R  18.06± 88.64 

SIM000084
GT      1203795386

  0E   eV
   φ o 314.5
 θ o 28.55

 / ndf 2χ  9.441 / 13
 0∈  105.2± 163.7 
    0R  5.296± 24.69 
 / ndf 2χ  1.797 / 28
 0∈  1.199± 5.848 
    0R  18.06± 88.64 

distance R [m]
0 20 40 60 80 100 120 140 160 180

V
/m

/M
H

z]
µ

 [∈
fi

el
d

 s
tr

en
g

th
 

1

10

210

 / ndf 2χ  9.233 / 13
 0∈  13.41± 27.46 
    0R  11.46± 47.38 

 / ndf 2χ  9.233 / 13
 0∈  13.41± 27.46 
    0R  11.46± 47.38 
 / ndf 2χ  0.4532 / 28
 0∈  3.094± 16.65 
    0R  18.59± 96.76 

 / ndf 2χ  0.4532 / 28
 0∈  3.094± 16.65 
    0R  18.59± 96.76 

 / ndf 2χ  9.233 / 13
 0∈  13.41± 27.46 
    0R  11.46± 47.38 
 / ndf 2χ  0.4532 / 28
 0∈  3.094± 16.65 
    0R  18.59± 96.76 

SIM000085
GT      1203816816

  0E   eV
   φ o 289.8
 θ o 29.77

 / ndf 2χ  9.233 / 13
 0∈  13.41± 27.46 
    0R  11.46± 47.38 
 / ndf 2χ  0.4532 / 28
 0∈  3.094± 16.65 
    0R  18.59± 96.76 

distance R [m]
0 20 40 60 80 100 120 140 160 180

V
/m

/M
H

z]
µ

 [∈
fi

el
d

 s
tr

en
g

th
 

-110

1

10

 / ndf 2χ  4.008 / 13
 0∈  1.937± 3.798 
    0R  598.1± 357.1 

 / ndf 2χ  4.008 / 13
 0∈  1.937± 3.798 
    0R  598.1± 357.1 
 / ndf 2χ   2.13 / 28
 0∈  1.178± 6.288 
    0R  23.39± 108.2 

 / ndf 2χ   2.13 / 28
 0∈  1.178± 6.288 
    0R  23.39± 108.2 

 / ndf 2χ  4.008 / 13
 0∈  1.937± 3.798 
    0R  598.1± 357.1 
 / ndf 2χ   2.13 / 28
 0∈  1.178± 6.288 
    0R  23.39± 108.2 

SIM000085
GT      1203816816

  0E   eV
   φ o 287.7
 θ o 29.84

 / ndf 2χ  4.008 / 13
 0∈  1.937± 3.798 
    0R  598.1± 357.1 
 / ndf 2χ   2.13 / 28
 0∈  1.178± 6.288 
    0R  23.39± 108.2 

Figure B.11: Lateral distribution of single events of Ep > 1017 eV. Left side: EW polar-
ization. Right side: NS polarization. Blue: measurement. Red: Simulation.
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Figure B.12: Lateral distribution of single events of Ep > 1017 eV. Left side: EW polar-
ization. Right side: NS polarization. Blue: measurement. Red: Simulation.
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Figure B.13: Lateral distribution of single events of Ep > 1017 eV. Left side: EW polar-
ization. Right side: NS polarization. Blue: measurement. Red: Simulation.
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Figure B.14: Lateral distribution of single events of Ep > 1017 eV. Left side: EW polar-
ization. Right side: NS polarization. Blue: measurement. Red: Simulation.
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Figure B.15: Lateral distribution of single events of Ep > 1017 eV. Left side: EW polar-
ization. Right side: NS polarization. Blue: measurement. Red: Simulation.



101

distance R [m]
0 20 40 60 80 100 120 140 160 180 200

V
/m

/M
H

z]
µ

 [∈
fi

el
d

 s
tr

en
g

th
 

-110

1

10

 / ndf 2χ  6.528 / 13
 0∈  1.747± 5.658 
    0R  118.9± 171.9 

 / ndf 2χ  6.528 / 13
 0∈  1.747± 5.658 
    0R  118.9± 171.9 

 / ndf 2χ  26.79 / 28
 0∈  0.04285± 0.1988 
    0R  180.3± 315.8 

 / ndf 2χ  26.79 / 28
 0∈  0.04285± 0.1988 
    0R  180.3± 315.8 

 / ndf 2χ  6.528 / 13
 0∈  1.747± 5.658 
    0R  118.9± 171.9 

 / ndf 2χ  26.79 / 28
 0∈  0.04285± 0.1988 
    0R  180.3± 315.8 

SIM000127
GT      1223448915

  0E   eV
   φ o 215.7
 θ o 38.27

 / ndf 2χ  6.528 / 13
 0∈  1.747± 5.658 
    0R  118.9± 171.9 

 / ndf 2χ  26.79 / 28
 0∈  0.04285± 0.1988 
    0R  180.3± 315.8 

distance R [m]
0 20 40 60 80 100 120 140 160

V
/m

/M
H

z]
µ

 [∈
fi

el
d

 s
tr

en
g

th
 

-110

1

10

 / ndf 2χ  5.069 / 13
 0∈  0.5476± 4.134 
    0R  2.931e+12± 1.162e+09 

 / ndf 2χ  5.069 / 13
 0∈  0.5476± 4.134 
    0R  2.931e+12± 1.162e+09 

 / ndf 2χ  2.204 / 28
 0∈  0.3525± 2.079 
    0R  26.94± 136.7 

 / ndf 2χ  2.204 / 28
 0∈  0.3525± 2.079 
    0R  26.94± 136.7 

 / ndf 2χ  5.069 / 13
 0∈  0.5476± 4.134 
    0R  2.931e+12± 1.162e+09 

 / ndf 2χ  2.204 / 28
 0∈  0.3525± 2.079 
    0R  26.94± 136.7 

SIM000127
GT      1223448915

  0E   eV
   φ o 211.9
 θ o 38.33

 / ndf 2χ  5.069 / 13
 0∈  0.5476± 4.134 
    0R  2.931e+12± 1.162e+09 

 / ndf 2χ  2.204 / 28
 0∈  0.3525± 2.079 
    0R  26.94± 136.7 

distance R [m]
0 20 40 60 80 100 120 140 160

V
/m

/M
H

z]
µ

 [∈
fi

el
d

 s
tr

en
g

th
 

1

10

210

 / ndf 2χ  2.199 / 13
 0∈  2.931± 13.29 
    0R  154.8± 236.4 

 / ndf 2χ  2.199 / 13
 0∈  2.931± 13.29 
    0R  154.8± 236.4 
 / ndf 2χ  0.334 / 28
 0∈  1.357± 8.008 
    0R  36.84± 144.7 

 / ndf 2χ  0.334 / 28
 0∈  1.357± 8.008 
    0R  36.84± 144.7 

 / ndf 2χ  2.199 / 13
 0∈  2.931± 13.29 
    0R  154.8± 236.4 
 / ndf 2χ  0.334 / 28
 0∈  1.357± 8.008 
    0R  36.84± 144.7 

SIM000129
GT      1224661649

  0E   eV
   φ o 351.4
 θ o 37.73

 / ndf 2χ  2.199 / 13
 0∈  2.931± 13.29 
    0R  154.8± 236.4 
 / ndf 2χ  0.334 / 28
 0∈  1.357± 8.008 
    0R  36.84± 144.7 

distance R [m]
0 20 40 60 80 100 120 140

V
/m

/M
H

z]
µ

 [∈
fi

el
d

 s
tr

en
g

th
 

1

10

210

 / ndf 2χ  11.53 / 13
 0∈  43.06± 101.5 
    0R  4.556±  28.3 

 / ndf 2χ  11.53 / 13
 0∈  43.06± 101.5 
    0R  4.556±  28.3 
 / ndf 2χ  0.9505 / 28
 0∈  0.9737± 5.876 
    0R  61.66± 189.6 

 / ndf 2χ  0.9505 / 28
 0∈  0.9737± 5.876 
    0R  61.66± 189.6 

 / ndf 2χ  11.53 / 13
 0∈  43.06± 101.5 
    0R  4.556±  28.3 
 / ndf 2χ  0.9505 / 28
 0∈  0.9737± 5.876 
    0R  61.66± 189.6 

SIM000129
GT      1224661649

  0E   eV
   φ o 348.2
 θ o 39.03

 / ndf 2χ  11.53 / 13
 0∈  43.06± 101.5 
    0R  4.556±  28.3 
 / ndf 2χ  0.9505 / 28
 0∈  0.9737± 5.876 
    0R  61.66± 189.6 

distance R [m]
0 20 40 60 80 100 120 140 160 180 200 220

V
/m

/M
H

z]
µ

 [∈
fi

el
d

 s
tr

en
g

th
 

-110

1

10

 / ndf 2χ  11.57 / 13
 0∈  1.202± 4.401 
    0R  651.7±   490 

 / ndf 2χ  11.57 / 13
 0∈  1.202± 4.401 
    0R  651.7±   490 
 / ndf 2χ  0.915 / 28
 0∈  0.9049±  4.52 
    0R  10.78± 85.18 

 / ndf 2χ  0.915 / 28
 0∈  0.9049±  4.52 
    0R  10.78± 85.18 

 / ndf 2χ  11.57 / 13
 0∈  1.202± 4.401 
    0R  651.7±   490 
 / ndf 2χ  0.915 / 28
 0∈  0.9049±  4.52 
    0R  10.78± 85.18 

SIM000131
GT      1225584988

  0E   eV
   φ o 55.94
 θ o 15.80

 / ndf 2χ  11.57 / 13
 0∈  1.202± 4.401 
    0R  651.7±   490 
 / ndf 2χ  0.915 / 28
 0∈  0.9049±  4.52 
    0R  10.78± 85.18 

distance R [m]
0 50 100 150 200

V
/m

/M
H

z]
µ

 [∈
fi

el
d

 s
tr

en
g

th
 

1

10

210

 / ndf 2χ  10.63 / 13
 0∈  1.982± 5.739 
    0R  63.29± 124.5 

 / ndf 2χ  10.63 / 13
 0∈  1.982± 5.739 
    0R  63.29± 124.5 
 / ndf 2χ  1.962 / 28
 0∈  0.2693± 1.244 
    0R  10.24± 79.59 

 / ndf 2χ  1.962 / 28
 0∈  0.2693± 1.244 
    0R  10.24± 79.59 

 / ndf 2χ  10.63 / 13
 0∈  1.982± 5.739 
    0R  63.29± 124.5 
 / ndf 2χ  1.962 / 28
 0∈  0.2693± 1.244 
    0R  10.24± 79.59 

SIM000131
GT      1225584988

  0E   eV
   φ o 46.49
 θ o 15.17

 / ndf 2χ  10.63 / 13
 0∈  1.982± 5.739 
    0R  63.29± 124.5 
 / ndf 2χ  1.962 / 28
 0∈  0.2693± 1.244 
    0R  10.24± 79.59 

Figure B.16: Lateral distribution of single events of Ep > 1017 eV. Left side: EW polar-
ization. Right side: NS polarization. Blue: measurement. Red: Simulation.
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