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Abstract. Bianchi type-I cosmological model for a cloud of a string with bulk viscosity 

is investigated in Lyra geometry. To get a deterministic model of universe, we assumed a 
unique form of constant deceleration parameter (CDP). Also, the bulk viscosity is presented as 
a linear combination of two positive constants �� & �� with Hubble parameter i.e � = �� +
��� and studied the results resemblance with the constant and variable bulk viscosity in three 
different cases. Also, we conclude that the displacement vector used in Lyra geometry is 
vanishing in late time. The physical acceptability of the model is investigated. 

1. Introduction 
In the last few decades, there has been considerable interest in alternative theories of 
gravitation. One of the most interesting among all is the scalar-tensor theory proposed by Lyra 
[1]. This bears a remarkable resemblance to Weyl’s geometry [2]. In subsequent 
investigations, Sen [3] and Sen & Dunn [4] formulated a new scalar-tensor theory of 
gravitation and constructed an analogy of the Einstein field equations based on Lyra’s 
geometry. He investigated that the static model with finite density in the context of Lyra 
manifold is similar to the static model in Einstein’s general relativity. Halford [5] has 
developed a cosmological theory in Lyra’s geometry, which introduced to the non-static 
perfect fluid model. Rao et al.,[6] have presented Bianchi type II,VIII and IX string 
cosmological models with bulk viscosity in Lyra geometry. The cosmological models which 
have some relevance to the present work was carried out by   Nayak et al.,[7],Pradhan et al., 
[8-9], Ram et al., [10], kandalkar et al., [11], Dubey [12], and so forth. 
 
       As we know, Bulk viscosity plays a vital role in cosmology and contributes to the 
accelerated expansion of the universe known as the inflationary phase. The effects of 
viscosity on the evolution of cosmological models and the role of viscosity in avoiding the 
initial big bang singularity have been studied by several authors [13-15]. Nowadays, String 
cosmology has been a subject of considerable interest since cosmic strings are topologically 
stable in the early the universe and it arises during the phase transition after big-bang 
explosion as the temperature goes down below some critical temperature as predicted by 
grand unified theory. The string theory is also useful to describe an event at the early stage of 
evolution of the universe in a lucid way. Cosmic strings play a significant role in the structure 
formation and evolution of the universe. The presence of string in the early universe has been 
explained by [16-18]. 
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Motivated from the above studies, in this paper, we tried to investigate a Bianchi type-I 
universe filled with a bulk viscous fluid within the framework of Lyra geometry with time-
dependent displacement vector field without assuming the barotropic equation of state for the 
matter field. The organization of the paper is as follows. In Section 2, we present the metric 
and Einstein’s field equations. In Section 3, we deal with the solution of the field equations. 
We first show that the field equations are solvable for any arbitrary scale function. Thereafter, 
we obtain exact solutions of the field equation by assuming a power-law form of a scale factor 
and the bulk viscosity coefficient is directly proportional to the energy density of the matter. 
In Section 4, we discuss the physical and dynamical behaviours of the universe. Section 5 
summarizes the main results presented in the paper. 
 
 

2. Metric and Field Equations 
 
We consider Bianchi type-I space-time in the form  
                              ��� = −�	� + ∑ �����,                       (1) 
where the metric potentials are functions of cosmic time t alone. 
The field equations in the normal gauge for Lyra manifold as obtained by Sen (1957) is  
                              �

� − �
� ��

� + �
� ���� − �

� ��
����� = −��

�                    (2) 

Where, the geometrized unit 8πG=1,c=1 and �� is the displacement field vector defined by 
       �� = (0,0,0, �(	))         (3) 
and other symbols have their usual meaning as in Riemannian geometry. 
 The energy momentum tensor for string cloud distribution is given by  

��� = (� + �̅)���� + �̅��� − λ����,        (4) 
where � = �� + λ is the energy density for a cloud of strings for particles attached to them, �̅ 
is the effective pressure, �� is the rest energy density of particle,  �� is the four velocity vector 
of the particles, λ is the string tension density, �� is a unit vector representing the direction of 
string so that ��≠ 0,�� = �� = �� = 0.The vectors �� and �� satisfy the conditions 

���� = −�� �� = −1 ��� ���� = 0.        (5) 
Choosing �� as defined below  

�� = (���, 0,0,0) .        (6) 
The effective pressure �̅ and isotropic pressure p are related by 

 �̅ = � − �Ɵ.                                              (7) 
Where ξ is the bulk viscous coefficient and Ɵ is the expansion scalar. In the particle density of 
the configuration is denoted by ��, then 

� = �� + λ            (8) 
The Einstein modified equations (2) together with equation (4) for the metric leads to the 
following form 

�̈
� + "̈

" + �̇"̇
�" + �

� �� = − �̅ − λ,          (9) 
"̈
" + $̈

$ + "̇$̇
"$ + �

� �� = − �̅ ,                   (10) 
$̈
$ + �̈

� + $̇�̇
$� + �

� �� = − �̅                                 (11) 

and          $�̇̇
$� + �̇"̇

�" + "̇$̇
"$ − �

� �� = −ρ.                                  (12) 
The energy conservation equation gives the following equation 

�̇ + (� + �̅ ) %$̇
$ + �̇

� + "̇
"' + λ $̇

$ = 0 .                                           

(13) 
After a straightforward calculation of the conservation of R.H.S of equation (2), we get 
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                                                              �̇ + � %$̇
$ + �̇

� + "̇
"' = 0 .                                             (14)

    
As the energy conservation equation in Lyra’s manifold is satisfied only on giving some 
special condition on the displacement vector � as shown above. 
The spatial volume is given by * = �-/ = ��  ,                                     (15) 
where �(t) is a scale factor. 
The expressions for scalar expansion and shear scalar are 

                                              Ɵ = �;�
� =  

$̇
$ + �̇

� + "̇
"        (16) 

                             and         2� = �
� 2��2�� = �

� 3%$̇
$'� + %�̇

�'� + %"̇
"'�4 − �

5Ɵ
� .                    (17) 

where  2�
� = �

� 6��;∝��∝ + ��;∝��∝8 − �
� 9���.  

Here the projection tensor ��� has the form 
                                                            ��� = ��� − ����        (18) 
The Hubble parameter H and the mean anisotropy parameter are defined as  

                                                    3� = 9 =  $̇
$ + �̇

� + "̇
"                                                                (19) 

                                             ∆= �
� ∑ %>?�>

> '���@�                                                                      (20) 

Where ��, i=1(2)3 represents the directional Hubble parameter in the direction of the 
coordinate axis. For the metric (1), the directional Hubble parameters along different 

directions are defined as �A = $̇
$ , �B = �̇

�  ��� �C = "̇
". 

The deceleration parameter D which is defined as 

                                                    D = − EË
ĖF .                     (21) 

The deceleration parameter D indicates whether the universe inflates or not. The positive sign 
stands for decelerating model whereas the negative sign D indicates inflation. 
3. Solution of the Field Equations 
To get a stable solution to the highly non-linear five differential equations (9)-(13) containing 
the eight unknown variables A, B, C, �,ρ, p, λ and � we assumed two additional conditions 
given below. To treat the model in a good manner here we assume that the shear tensor is 
proportional to expansion scalar Ɵ, which leads to the relation 

� = (-/)G                                  (22) 
Where m is a positive constant. 
Also, we assume that the deceleration parameter is considered as a constant 
                                                    i.e. D = −1 + �

H.                                                                  (23) 

Where n is a constant. It is obvious that the deceleration parameter is negative for n<0 and 
n>1 and is positive for 0<n<1. 
As the viscosity as a linear combination of constant and Hubble parameter which is expressed 
in   
                                                             � = �� + ���                                                                    (24) 
Equation (23) immediately gives the average scale factor  
                                                             � = (I�	 + I�)H                     (25) 
with the help of (15), equation (25) reduces to 

                                                            � = (I�	 + I�)JKL
KMN                    (26) 

Equation (10)-(11), (22) and (26) together gives  

                                            - = (I�	 + I�) JL
F(KMN)O�� %�P(�NQR�F)NMJL

�N(�H��) '     (27) 
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                                  / = (I�	 + I�) JL
F(KMN)O�� %�P(�NQR�F)NMJL

�N(���H) '     (28) 

Now the Hubble parameter H can be calculated using (19) and (26)-(28) as  

                                                           � = H�N
�NQR�F

                                                (29) 

On integrating equation (14) we get  
 
                                                            � = �����                     (30) 
where �� is integrating constant and represents the initial displacement vector. 
 

S = �H�NFT5GFH��GFR�GHRG��HR�U
�(GR�)F(�NQR�F)F + �H(�P��N)

(�NQR�F)JLMN                   (31) 

�̅ = �H�NFT�GF��HGF��H��GR�U
�(GR�)F(�NQR�F)F + V

(�NQR�F)WL  ,                               (32) 

                 where X = − T��NF�JFR��PU
��NF  

� = YHF�N(�GR�N)
�(GR�)F(�NQR�F)F + V

(�NQR�F)WL ,                                 (33) 

� = �̅ + �9  

� = �H�NFT�GF��HGF��H��GR�U
�(GR�)F(�NQR�F)F + V

(�NQR�F)WL + �H�N(Z[�NQRZ[ZN�N)
(�NQR�F)F  ,            (34)

  
                            \ = �̅

],   

\ = �H�NFT�GF��HGF��H��GR�U(�NQR�F)WLR�V(GR�)F(�NQR�F)F
YHF�N(�GR�N)(�NQR�F)WLR�V(GR�)F(�NQR�F)F  .                 (35) 

 

 
 

Fig.1:Variation of EoS versus cosmic time t for n=1.2, I� = 1.16, I� = 0.3, I� =
0.3 and I� = 2.1  with different m.  
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Fig. 2: Variation of equation of state versus cosmic time t for m=0.4,  I� = 1.16, I� =
0.2, I� = 0.3 and I� = 2.1  with different n. 

 
 
Fig.3: Variation of effective pressure versus cosmic time t for n=1.2, I� = 1.16, I� =
0.2, I� = 0.3 and I� = 2.1  with different m.  
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Fig.4: Variation of effective pressure versus cosmic time t for m=0.4,  I� = 1.16, I� =
0.2, I� = 0.3, and I� = 2.1  with different n. 

 

 
 
  
Fig.5: Variation of effective pressure versus cosmic time t for n=1.2,  I� = 1.16,  I� = 0.2 
, I� = 0.3 and I� = 2.1 with different m.  

 
Fig.6: Variation of effective pressure versus cosmic time t for m=0.4,  I� = 1.16, I� =
0.2, I� = 0.3 and I� = 2.1  with different n.  
 
 
4. Results and discussion 
  In summary, we have considered Bianchi type-I space-time governed by the fluid with a 
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of state parameter oscillates with a high pick in the positive side. But it remains negative for 
late time, which is consistent with the recent observational evidence. Later on, one can 
noticed that the effective pressure is negative with initial singularity and approaches to zero, 
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and approaches to zero later on. Here we conclude that both the assumed cases give nearly 
similar results. i.e., the model is independent of the choices of m and n.  Finally, we 
concluded that the model represents an anisotropic universe. Moreover, the gauge function 
diverges initially and later it approaches to zero which is the result as expected. In view of 
above obtained results we may conclude that the model presented here can be acceptable at 
all. Also, the presence of bulk viscosity is to bring a change in perfect fluid model and it plays 
an important role in the early evolution of the universe. 
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