
Work supported in part by US Department of Energy contract DE-AC02-76SF00515

The Geant4 Visualisation System

J. Allison a,∗, M. Asai b, G. Barrand c, M. Donszelmann b,

K. Minamimoto d, J. Perl b, S. Tanaka e, E. Tcherniaev f,
J. Tinslay b

aUniversity of Manchester, UK
bStanford Linear Accelerator Center (SLAC), USA

cIN2P3/LAL, Orsay, France
dInstitute for Computational Fluid Dynamics, Tokyo, Japan

eRitsumeikan University, Japan
fEuropean Organization for Nuclear Research (CERN), Switzerland

Abstract

The Geant4 Visualisation System is a multi-driver graphics system designed to
serve the Geant4 Simulation Toolkit. It is aimed at the visualization of Geant4

data, primarily detector descriptions and simulated particle trajectories and hits. It
can handle a variety of graphical technologies simultaneously and interchangeably,
allowing the user to choose the visual representation most appropriate to require-
ments. It conforms to the low-level Geant4 abstract graphical user interfaces and
introduces new abstract classes from which the various drivers are derived and that
can be straightforwardly extended, for example, by the addition of a new driver.
It makes use of an extendable class library of models and filters for data repre-
sentation and selection. The Geant4 Visualisation System supports a rich set of
interactive commands based on the Geant4 command system. It is included in the
Geant4 code distribution and maintained and documented like other components
of Geant4.

Key words: Simulation, Particle interactions, Geometrical modelling, Graphics,
Visualisation, Ray Tracing, DAWN, HepRep, OpenGL, Open Inventor, VRML,
Software engineering, Object-oriented technology, Distributed software
development
PACS: 07.05.Tp, 13, 23, 89.20.Ff

∗ Corresponding Author. Address: School of Physics and Astronomy, The Univer-
sity of Manchester, MANCHESTER M13 9PL, UK. Telephone: +44-161-275-4170.
Fax: +44-161-273-5867. E-mail: John.Allison@manchester.ac.uk

SLAC-PUB-12909

October 2007

1 Introduction

The Geant4 Visualisation System is a component of the Geant4 Simulation
Toolkit [1], a body of C++ code that incorporates a vast amount of knowledge
about the interaction of particles with matter, used in a wide variety of ap-
plications, including the simulation of particle physics experiments, medical
physics and space vehicle design. It was always intended that the Geant4

code distribution should include a visualisation system whose primary pur-
pose was to facilitate the application developer in designing applications and
studying the simulated particle interactions. To that end, two basic interfaces
were designed, together known as the Graphics Interface. The Geant4 Vi-
sualisation System is an extensive and versatile system comprising a set of
classes implementing this interface.

It should be stressed that Geant4 may be linked with any visualisation sys-
tem that complies with the Graphics Interface (described below), and so-
phisticated developers may provide their own in their own project’s software
framework. To assist this, a whole set of models, for geometrical volumes,
axes, text, trajectories, etc., has been written using only the basic graphics
interface; the models, therefore, may be re-used with any visualisation system.
Geant4 may also be linked without a visualisation system at all, for exam-
ple, for batch processing. In that case, if code remains that uses the Graphics
Interface, care must be taken that the thread of control does not pass through
it. A simple way of doing that for users is recommended and described below.

On the other hand, most users will wish to use the provided visualisation sys-
tem, at least at some time in the development of their application. It is this
provided system that we refer to as the Geant4 Visualisation System.
We hope its features will make it attractive to the user. It supports multiple
simultaneous graphics technologies each with several variants — 20 distinct
drivers at the last count — ranging through: dumb terminal output; immediate
non-interactive displays; highly interactive displays with their own graphical
database; off-line browsers; pipe-connected or network-connected (sockets) dis-
plays; with a variety of features which sometimes focus on a particular quality
such as: interactivity; speed; quality of printed output; perhaps highlighting
different aspects of simulation, such as: the geometry shapes; geometry hier-
archy; particle tracks and interactions. Moreover, the user can switch graphics
drivers without losing information about the content, style or viewpoint of the
view. Utilities are provided that can decompose the more complex solids and
primitives that advanced drivers may handle as native objects into simpler
primitives for less advanced drivers. Appendix A lists the currently available
graphics drivers.

The features of the Geant4 Visualisation System are not fixed. They are

2

evolving with time in response to user demand. Activity in the development
of the Geant4 Visualisation System is still at a high level and new features
are being continuously added. However, it has reached a significant level of
maturity to an extent that was thought to justify documenting its design at
this time. The basic design is unlikely to change. Nevertheless, this paper
represents the current snapshot and the user should keep up with Geant4’s
release notes. In particular, a user can obtain a good impression of its features
by browsing the interactive commands either within an interactive application
or as described in the User Guide for Application Developers [2]. A good in-
troductory presentation is maintained at the SLAC web site [3]. The snapshot
described in this paper corresponds to Geant4 Version 9.0 (June 2007).

2 Structure of the paper

The aim is to make a technically accurate and complete description of the
graphical components of Geant4 for readers interested in its design and for
developers requiring to understand its workings. It is not a user manual; for
that, the user should consult the Geant4 User Guides accessible from the
Geant4 web page [1] or the introductory presentation [3]. Nevertheless, Sec-
tions 4 (Graphical representations) and 6 (The G4VVisManager user interface)
are relevant to application programming, while Sections 8 (The Geant4 Vi-
sualisation System), 9 (Visualisation commands) and 10 (Available graphics
drivers) give a good insight into the Geant4 Visualisation System’s philoso-
phy and capabilities. The average Geant4 user might find it better to skip
Sections 5 and 7, which are more relevant to a developer of the visualisation
system.

Description proceeds in a logical order, by which we mean later sections refer
to earlier ones in a use-relationship that corresponds closely to the Geant4

category dependencies. After an Overview, we begin with a description of the
low-level graphical representations category, which includes the basic graphical
objects that are ultimately processed by the graphics drivers. Next, we describe
the two main interfaces, G4VGraphicsScene and G4VVisManager, that are
available to the Geant4 programmer. The former is for Geant4 toolkit
developers only. The latter would typically be used by an application developer
writing code to draw hits.

Section 7 introduces the concept of models and filters. Only in Section 8 is the
Geant4 Visualisation System itself finally described. Section 9 outlines the
all-important visualisation commands. Finally, the currently available graphics
drivers are show-cased in Section 10.

Many details are relegated to extensive appendices.

3

Graphics Interface
G4VVismanager G4VGraphicsScene

G4VSceneHandler G4VViewer

G4...SceneHandler G4...Viewer

G4Scene

G4VModel

G4ViewParameters

G4PhysicalVolumeModel

G4Axes, etc...

G4VisManager

G4GraphicsSystemList

G4VisExecutive

G4VisFilterManager<G4VHit>

G4VisFilterManager<G4VTrajectory>

G4VisModelManager<G4VTrajectoryModel>

G4VisStateDependent (friend)

Geant4 Visualisation System

Fig. 1. The Geant4 Visualisation System class diagram. G4GraphicsSystemList
contains the factories for the scene handlers and viewers. G4Scene holds scene mod-
els. The G4VisModelManager and the G4VisFilterManagers create and manage
trajectory and hit models and/or filters.

3 Overview

The Geant4 Visualisation System consists of the Geant4 Visualisation
Manager, G4VisManager, associated managers, so-called scene handlers that
convert the scene of Geant4 objects into graphics system-specific data, and
viewers that actually render a scene to a window or file. Figure 1 shows the
class diagram, including the abstract bases classes from which they are de-
rived. The user may instantiate any number of scenes and attach them to any
number of various types of scene handler. Thus various scenes can be viewed
in various ways. At any given time only one viewer is active, for actions such
as drawing trajectories or changing viewpoint, but a change of scene triggers
the refreshing of all views of that scene.

The user typically interacts with the system through commands such as /vis/scene/create
— see Section 9. The user may also be called upon to write code to represent
hits in terms of the basic graphical representations (Section 4). In fact, he
or she may write code to draw anything to the current view at any time, for
example, at the end of event or even at the end of each tracking step. If the
visualisation system’s effect on tracking performance is an issue, it may be
disabled so that drawing is bypassed and enabled again when desired.

The “workhorse” of the Geant4 Visualisation System is OpenGL. Nearly all
computers are delivered with this already installed. It gives fast, immediate
graphics and its graphical database (display lists) is exploited for rapid view

4

manipulation. But other drivers are available — see Section 10 — for produc-
ing high quality PostScript or interfacing to highly interactive browsers. There
is even one driver that uses Geant4’s own tracking algorithms to produce
photo-realistic images — this is also useful for testing the tracking algorithms
and, by comparing with other viewers, for ensuring that they accurately rep-
resent the geometry that Geant4 is navigating.

4 Graphical representations

This low-level category provides some basic graphical representations of com-
mon Geant4 objects — G4Circle, G4Polyhedron, G4Polyline, G4Polymarker,
G4Scale, G4Square and G4Text — the so-called graphics primitives. G4Polyhedron
has constructors for most geometry solids; those that do not must use a gen-
eral constructor. G4Polyhedron also supports so-called Boolean operations —
union (addition), intersection and subtraction — which allows polyhedral rep-
resentation of the equivalent Geant4 solids, G4UnionSolid, G4IntersectionSolid
and G4SubtractionSolid.

This category also includes G4AttDef and G4AttValue, C++ implementations
of HepRep [4] objects that may be used to pass generic information to the
visualisation system. They and their use are described in Appendix J.

The basic graphical representations inherit G4Visible which has a G4VisAttributes
pointer. G4VisAttributes may be similarly attached to geometry volumes
through G4LogicalVolume. This is shown in the class diagram of Figure 2.
Attributes that may be assigned in this way include: colour, drawing style, vis-
ibility and G4AttDef/Values — see Table 1. Note the flags and parameters for
forcing drawing style, etc. If set, those attributes are expected to take prece-
dence over the current defaults in the graphics system. “Auxiliary edges” refer
to polygon edges of a polyhedral representation that are in a surface (curved
or planar); they are not real edges and would normally not be drawn. Set
this, for example, of you wish to ensure that a sphere is visible in wireframe
mode. Similarly, the precision with which a circular edge can be specified by
the number of polygon edges. This is recommended for volumes containing
only a small angle of circle, for example, a thin tube segment. The User Guide
for Application Developers [2], Section 8.3, Visualisation Attributes, describes
their use in detail. Issues surrounding the use of G4VisAttributes for the
toolkit developer are addressed in Appendix C.

5

G4Circle

G4Visible G4LogicalVolume

G4VisAttributes

G4VMarker G4Polyhedron G4Polyline

G4VisAttributes

G4Scale G4Text

G4Square G4PolyMarker

Fig. 2. The class diagram of graphics primitives and related classes, showing their
relationship to G4VisAttributes.

G4bool fVisible; Visibility flag

G4bool fDaughtersInvisible; Make daughters invisible.

G4Colour fColour;

LineStyle fLineStyle;

G4double fLineWidth; Units of ”normal” device line
width, e.g., pixels for screen, 0.1
mm for paper.

G4bool fForceDrawingStyle; To switch on forced drawing style.

ForcedDrawingStyle fForcedStyle; Value – wireframe/surface/etc.

G4bool fForceAuxEdgeVisible; Force drawing of auxiliary edges.

G4int fForcedLineSegmentsPerCircle; Forced lines segments per circle.

G4double fStartTime, fEndTime; Time range.

const std::vector<G4AttValue>*

fAttValues

For picking, etc.

const std::map<G4String,G4AttDef>*

fAttDefs

Corresponding definitions.

Table 1
Visualisation attributes (G4VisAttributes).

5 The G4VGraphicsScene low-level interface (also known as the scene
handler interface)

This is intended only for toolkit developers or users who provide their own
visualisation system; it is used only by (a) the geometry category for describing

6

class G4VGraphicsScene {

public:

virtual void PreAddSolid (const G4Transform3D& objectTransformation,

const G4VisAttributes& visAttribs) = 0;

virtual void PostAddSolid () = 0;

virtual void AddSolid (const G4Box&) = 0;

virtual void AddSolid (const G4Cons&) = 0;

virtual void AddSolid (const G4Tubs&) = 0;

virtual void AddSolid (const G4Trd&) = 0;

virtual void AddSolid (const G4Trap&) = 0;

virtual void AddSolid (const G4Sphere&) = 0;

virtual void AddSolid (const G4Para&) = 0;

virtual void AddSolid (const G4Torus&) = 0;

virtual void AddSolid (const G4Polycone&) = 0;

virtual void AddSolid (const G4Polyhedra&) = 0;

virtual void AddSolid (const G4VSolid&) = 0; // For solids not above.

virtual void AddCompound (const G4VTrajectory&) = 0;

virtual void AddCompound (const G4VHit&) = 0;

virtual void BeginPrimitives

(const G4Transform3D& objectTransformation = G4Transform3D()) = 0;

virtual void EndPrimitives () = 0;

virtual void BeginPrimitives2D () = 0;

virtual void EndPrimitives2D () = 0;

virtual void AddPrimitive (const G4Polyline&) = 0;

virtual void AddPrimitive (const G4Scale&) = 0;

virtual void AddPrimitive (const G4Text&) = 0;

virtual void AddPrimitive (const G4Circle&) = 0;

virtual void AddPrimitive (const G4Square&) = 0;

virtual void AddPrimitive (const G4Polymarker&) = 0;

virtual void AddPrimitive (const G4Polyhedron&) = 0;

};

Fig. 3. The G4VGraphicsScene low-level interface.

shapes and (b) by models (see below). A good impression of the functionality
of the interface can be gained from a comment-stripped C++ class definition
shown in Figure 3. It is dominated by Add... methods for (a) some specific
solids and a general solid, (b) two special (compound) objects (trajectory
and hit), and (c) the graphics primitives. Details of its use are described in
Appendix B. Its place in the class hierarchy is shown in Figure 1 in Section
8.1.

Concrete instances of this class are called scene handlers in the parlance
of the Geant4 Visualisation System. Each scene handler is specific to the
underlying graphics technology.

6 The G4VVisManager user interface

The first thing to notice — see Figure 4 — is the static method GetConcreteInstance.
This returns zero unless the concrete object has been instantiated and is avail-
able. The user must protect drawing code as follows:

G4VVisManager* pVVisManager = G4VVisManager::GetConcreteInstance();

if(pVVisManager) {

7

class G4VVisManager {

public:

static G4VVisManager* GetConcreteInstance ();

virtual void Draw (const G4Circle&,

const G4Transform3D& objectTransformation = G4Transform3D()) = 0;

virtual void Draw (const G4Polyhedron&,... // ...as above.

virtual void Draw (const G4Polyline&,...

virtual void Draw (const G4Polymarker&,...

virtual void Draw (const G4Scale&,...

virtual void Draw (const G4Square&,...

virtual void Draw (const G4Text&,...

virtual void Draw2D (const G4Text&) = 0;

virtual void Draw (const G4VHit&) = 0;

virtual void Draw (const G4VTrajectory&, G4int i_mode = 0) = 0;

virtual void Draw (const G4LogicalVolume&, const G4VisAttributes&,...

virtual void Draw (const G4VPhysicalVolume&, const G4VisAttributes&,...

virtual void Draw (const G4VSolid&, const G4VisAttributes&,...

virtual void GeometryHasChanged () = 0;

virtual void DispatchToModel (const G4VTrajectory&, G4int i_mode = 0) = 0;

virtual G4bool FilterTrajectory(const G4VTrajectory&) = 0;

virtual G4bool FilterHit(const G4VHit&) = 0;

protected:

static void SetConcreteInstance (G4VVisManager*);

static G4VVisManager* fpConcreteInstance; // Pointer to real G4VisManager.

};

Fig. 4. The G4VVisManager user interface.

pVVisManager->Draw(circle);

...

so that the thread of control does not pass through the interface if the visu-
alisation manager does not exist or is not ready. (It may come as a surprise
that one may link an application without a concrete implementation of a used
interface; it is indeed possible, but, in that case, the user must ensure that the
thread of control does not pass through.) All drawing code in the Geant4

examples is protected like this. The novice examples can be built and run
without a concrete visualisation manager by setting the environment variable
G4VIS NONE.

This interface consists largely of Draw methods for basic graphical represen-
tations. A typical concrete visualisation manager would hand the drawing to
the scene handler:

void ConcreteVisManager::Draw

(const G4Circle& circle,

const G4Transform3D& objectTransformation) {

sceneHandler->BeginPrimitives(objectTransformation);

sceneHandler->AddPrimitive(circle);

sceneHandler->EndPrimitives();

}

where *sceneHandler is an object that conforms to the G4VGraphicsScene

interface. An important point to note is that this gives the visualisation man-
ager the opportunity of managing multiple scene handlers, which is its reason

8

for existing alongside the G4VGraphicsScene low-level interface.

There are also Draw methods for hits and trajectories. The scene handler has
the opportunity of dealing with them or handing them back to the user written
drawing methods (G4VHit::Draw and G4VTrajectory::DrawTrajectory), which
typically decompose the drawing into basic graphical representations. DispatchToModel
is used by the default implementation of G4VTrajectory::DrawTrajectory
to hand the drawing of trajectories back again to the visualisation manager 1 .
This invocation sequence gives the user total control over the drawing of hits
and trajectories and preserves backwards compatibility, while, in the default
case, allowing the visualisation manager to select drawing models. This is
discussed in detail in Appendix E. FilterTrajectory and FilterHit are in-
tended for use by DispatchToModel, but is offered in this interface for general
use. Trajectory models and filters are described in detail in Appendices H and
I.

Also there are Draw methods for volumes and solids. Thus geometry solids
can be used like basic graphical representations to represent hits, for example.
Again, as described above, the scene handler has the opportunity of dealing
with them or handing them to objects that decompose them into basic graphi-
cal representations. Note that the G4VisAttributes specified in the argument
overrides any attributes previously assigned to the volume, so that, for exam-
ple, the user can record the energy deposited in a sensitive volume and colour
it according to energy.

Finally, GeometryHasChanged is invoked by the run manager to inform the
visualisation manager that the geometry has changed.

7 Models and filters

Models are objects that decompose the target into basic graphical represen-
tations through the Graphics Interface. There are two 2 types:

• Scene models Derived from G4VModel, these are designed to be compo-
nents of a viewable scene (Section 8.4).

• Trajectory models Derived from G4VTrajectoryModel, these are selected
by the visualisation manager and used when trajectory drawing has been
requested.

1 It is anticipated that a similar mechanism for specialised hits will be introduced
in future.
2 Hits models may be added in future.

9

G4AxesModel Models the basic graphical representation, G4Axes,
at x, y, z with length

G4CallbackModel Template class for a user-defined function that will
be invoked if the model is added to the scene. This
can be done with the G4VUserVisAction facility. See
the User Guide for Application Developers [2], Sec-
tions 8.8.7 and 8.8.8.

G4HitsModel Extracts hits from the hits collections of this event.

G4LogicalVolumeModel Models the volume and immediate daughters in its
own coordinate system, with Boolean components,
voxels, and readout geometry, if requested and if any.

G4PhysicalVolumeModel The work-horse of geometry representations – see
text.

G4ScaleModel Models the basic graphical representation, G4Scale.

G4TextModel Models the basic graphical representation, G4Text.

G4TrajectoriesModel Extracts trajectories from the trajectory container.

Table 2
Models.

Filters, for both trajectories and hits, are derived directly from G4VFilter or
indirectly via G4SmartFilter, which is itself derived from G4VFilter. They
allow the visualisation manager to decide, on the basis of trajectory or hit
parameters, whether to draw or not.

7.1 Scene models

Most scene models use only the G4VGraphicsScene low-level interface because
(a) it is available through the void DescribeYourselfTo(G4VGraphicsScene&)

function and (b) it is more efficient, but they may, in fact, use either of the basic
graphics interfaces. This relies on the visualisation manager being consistent
in its communication with the current scene handler. The rule is: calls to the
G4VVisManager user interface must not occur inside a Begin/EndPrimitives

sequence, as that would cause nesting of Begin/EndPrimitives sequences,
which is not supported.

Table 2 lists current scene models. They inherit the abstract base class G4VModel,
which has textual descriptions, extent and position/orientation (transform)
and, in particular, a pointer to modeling parameters (Table 3), if required.
Modeling parameters are used, for example, to communicate culling policy.

The main task of a scene model is to describe itself to the scene handler

10

const G4VisAttributes*

fpDefaultVisAttributes;

DrawingStyle fDrawingStyle; Wireframe, surface, hidden line, etc.

G4bool fCulling; Culling requested.

G4bool fCullInvisible; Cull (don’t Draw) invisible objects.

G4bool fDensityCulling; Density culling requested. If so...

G4double fVisibleDensity; ...density lower than this not drawn.

G4bool fCullCovered; Cull daughters covered by opaque mothers.

G4double fExplodeFactor; Explode along radius by this factor...

G4Point3D fExplodeCentre; ...about this centre.

G4int fNoOfSides; ...in polygon circle approximation.

const G4Polyhedron*

fpSectionPolyhedron;

For generic section (DCUT).

const G4Polyhedron*

fpCutawayPolyhedron;

For generic cutaways.

const G4Event* fpEvent; Event being processed.

Table 3
Modeling parameters.

through the G4VGraphicsScene low-level interface by implementing the vir-
tual method void DescribeYourselfTo(G4VGraphicsScene&). It then lends
itself to the concept of a scene, which is an object that is defined by a list of
models. This is discussed in Section 8.4.

Of particular mention is G4PhysicalVolumeModel. It models a given physical
volume and its daughters to a specified depth. It operates the culling policy
defined in the modeling parameters, so that, for example, volumes marked in-
visible are not drawn. Culling also extends to covered daughters (to economise
on the rendering of objects that will never be seen) and density (so that, for
example, volumes made of air are removed). The G4PhysicalVolumeModel
descends and traverses the geometry hierarchy and selects solids to pass to
the scene handler. It keeps a record of: the current depth in the geometry tree
relative to the given physical volume; the current physical volume; the current
logical volume; and the drawn path, i,e., the path of parent-child relationships
excluding culled volumes. If the scene handler needs any of this information,
for example to obtain textual tags or build its own scene graph (to use Open
Inventor parlance), it is necessary to make a dynamic cast:

G4PhysicalVolumeModel* pPVModel =

dynamic_cast<G4PhysicalVolumeModel*>(fpModel);

if (pPVModel) {

11

tag = pPVModel->GetCurrentPV()->GetName();

...

} else {

// Not from a G4PhysicalVolumeModel.

...

Section G discusses the building of drawn scene graphs. Note that it is al-
ways possible that the solid does not come from a G4PhysicalVolumeModel

(perhaps it is a volume representing a hit) in which case it must be treated
differently, with no place in the geometry hierarchy.

Note also that the above requirement to make a dynamic cast deals with the
possibility that that the current object is not generated by a model at all — for
example, it may come direct from user code, in which case the scene handler
must ensure fpModel itself is zero.

7.2 Trajectory models

Trajectory models do not have direct access to the scene handler, so must use
the G4VVisManager user interface.

A trajectory model governs how an individual trajectory is drawn. Concrete
models inherit the G4VTrajectoryModel interface. They are typically invoked
by the visualisation manager when a trajectory requests through DispatchToModel,
but may be invoked directly by the user in the Draw method of the trajectory
or elsewhere.

A growing set of trajectory models is provided in the code distribution, for
example G4TrajectoryDrawByCharge and G4TrajectoryDrawByParticleID.
To facilitate management they are registered via G4VModelFactory described
below. They are supported by a command structure. More information is given
in Appendix H.

The user may write his or her own trajectory model. As a way of implementing
a personal way of drawing trajectories, it is preferred over the old (but still
supported) way of writing the DrawTrajectory method of the trajectory. The
trajectory model must be registered directly with the Geant4 Visualisation
Manager (Section 8.1) with G4VisManager::RegisterModel(G4VTrajectoryModel*).

7.3 Filters

Filters have a similar design to trajectory models. A good set is provided in the
code distribution for both trajectories and hits, registered via G4VModelFactory

12

and supported by a command structure. Like trajectory models, the user may
write a personal filter, derived from G4VFilter or G4SmartFilter, and regis-
ter it with the Geant4 Visualisation Manager. More information is given in
Appendix I.

7.4 G4VModelFactory

G4VModelFactory is an abstract base class for factories that create models,
filters and associated messengers. Concrete instances of this class are intended
for use by the visualisation manager in its management of models and fil-
ters. (Scene models are handled in a different way, namely as components of
G4Scene — see Section 8.4.)

G4VModelFactory assumes the model has an associated messenger 3 . In this
case, there must be a mechanism to generate both models and their associated
messengers. This is the role of G4VModelFactory. Concrete factories inheriting
from G4VModelFactory are responsible for creating a concrete model and a
concrete messenger. To help ensure a type-safe messenger-to-model relation-
ship, the messengers should inherit G4VModelCommand. More information is
given in Appendix I.

8 The Geant4 Visualisation System

We are now in a position to describe the Geant4 Visualisation System, which
makes use of all the components and features of the above sections. It provides
visualisation drivers, some of which exploit external graphics technologies.

A wide variety of user requirements went into the design of the Geant4

Visualisation System, for example (to quote closely from the original docu-
mentation [2]):

• very quick response in surveying successive events;
• high-quality output for presentation and documentation;
• flexible camera control for debugging detector geometry and physics;
• selection of visualisable objects;
• interactive picking of graphical objects for attribute editing or feedback

to the associated data;
• highlighting incorrect intersections of physical volumes;

3 A messenger defines and executes user commands. For information about Geant4

commands and the design of messengers, see the User Guide for Application Devel-
opers [2].

13

• co-working with graphical user interfaces.
Because it is very difficult to respond to all of these requirements with

only one built-in visualiser, the Graphics Interface (defined, you will re-
call, as the two basic interfaces, G4VGraphicsScene and G4VVisManager),
was developed to support multiple graphics drivers over several comple-
mentary graphics technologies to satisfy a wide variety of users’ needs. Here
the term graphics technology means either an application running as a
process independent of Geant4 or a graphics library to be compiled with
Geant4. A concrete implementation of the G4VGraphicsScene low-level
scene-handler interface, together with its viewers, is called a visualisation
driver or graphics driver. This may use a graphics library directly, com-
municate with an independent process via pipe or socket, or simply write
an intermediate file for a separate viewer.

8.1 The Geant4 Visualisation Manager

G4VisManager implements the G4VVisManager user interface. It manages mul-
tiple graphics drivers and defines three more concepts: the scene (G4Scene,
Section 8.4); the scene handler (base class G4VSceneHandler, itself a sub-
class of G4VGraphicsScene, Section 8.5); the viewer (base class G4VViewer,
Section 8.6). Figure 1 shows the class structure.

Note there is no restriction on the number or type of scene handlers or viewers.
There may be several scene handlers processing the same or different scenes,
each with several viewers showing, for example, the same scene from differing
viewpoints. It maintains a concept of current graphics driver factory,
current scene, current scene handler and current viewer.

G4VisManager is a singleton. It is also an abstract class. The reason for this is
that the instantiation of specific drivers must be done in the user domain to
avoid circular linking dependencies. Also, only the user knows which graphics
technologies are actually available on the computer running the application.
To facilitate this, the code distribution includes G4VisExecutive, described
in the next section.

A friend class, G4VisStateDependent, notifies G4VisManager at the beginning
and end of each run and each event. At the end of event, trajectories, etc., if
requested, are drawn.

At the end of a run, the G4VisManager asks the run manager to keep the last
event of the run (unless the user has already independently issued a request to
keep events), so that trajectories, etc., get redrawn when viewers are refreshed
or changed. It will, if requested as an end of event action, ask to keep an
arbitrary number of events, which can be accumulated (overlaid) or reviewed

14

one by one at the end of the run.

In its role as a manager, G4VisManager naturally provides several administra-
tive and access functions that could, in principle, be used to program visuali-
sation actions. However, a great deal of intelligence has been programmed into
the built-in visualisation commands, described in Section 9, and it is strongly
recommended that users interact with the Geant4 Visualisation Manager via
these commands. This can be done in code, for example:

G4UImanager::GetUIpointer()->ApplyCommand("/vis/viewer/refresh");

or, more usually, through the command line of the (graphical) user interface.
(A typical Geant4 application is script driven; it is straightforward to add
application-specific commands to the built-in command set).

The Geant4 Visualisation Manager also operates a verbosity policy based on
a simple 7 level graded system:

enum Verbosity {

quiet, // Nothing is printed.

startup, // Startup and endup messages are printed...

errors, // ...and errors...

warnings, // ...and warnings...

confirmations, // ...and confirming messages...

parameters, // ...and parameters of scenes and views...

all // ...and everything available.

};

This can be established at construction or with the command /vis/verbose,
which responds to a digit or the first letter of the enum names (q,s,...). By
default, the verbosity level is warnings, but a novice user is recommended to
specify confirmations, which prints comforting messages.

8.2 G4VisExecutive

G4VisExecutive is used in all Geant4 examples. It implements two virtual
functions, RegisterGraphicsSystems and RegisterModelFactories. It is
implemented as a .hh-.icc combination that is designed to be included in
the users’ code:

#ifdef G4VIS_USE

#include "G4VisExecutive.hh"

#endif

...

#ifdef G4VIS_USE

G4VisManager* visManager = new G4VisExecutive;

15

visManager->Initialise();

#endif

...

#ifdef G4VIS_USE

delete visManager;

#endif

Initialise calls RegisterGraphicsSystems and RegisterModelFactories.

A typical fragment of code from RegisterGraphicsSystems is:

#ifdef G4VIS_USE_OPENGLX

RegisterGraphicsSystem(new G4OpenGLImmediateX);

RegisterGraphicsSystem(new G4OpenGLStoredX);

#endif

and from RegisterModelFactories:

RegisterModelFactory(new G4TrajectoryDrawByChargeFactory);

RegisterModelFactory(new G4TrajectoryDrawByParticleIDFactory);

Notice the use of C-pre-processor macros. The standard make files set these
macros if the corresponding environment variables are set. See Appendix A
for a list of currently supported drivers and environment variables needed, if
any. Note that the Configure script in the standard code distribution sets
these environment variables on response to simple questions. Thus the user
can control which graphics drivers are linked and instantiated. If any are set,
the standard make files set G4VIS USE (it should not be set by the user). If
G4VIS NONE is set, G4VIS USE is not set, so the above code would build an
application without a visualisation system.

8.3 Graphics Driver Factories

The graphics driver is defined by its scene handler and viewer. The Geant4

Visualisation Manager instantiates scene handlers and viewers via “factories”,
which are sub-classes of G4VGraphicsSystem. It is objects of this class that are
the argument of RegisterGraphicsSystem described in the previous section.
Each such object is a factory for graphics-technology-dependent scene handlers
and viewers. Details for the toolkit developer are given in Appendix D.2

16

8.4 Scenes

Objects of class G4Scene consist of a list of scene models for physical vol-
umes, axes, hits, trajectories, etc. (scene models are described in Section 7).
Scene models are distinguished by their lifetime: run-duration for physical
volumes, axes, etc.; end-of-event for hits, trajectories, etc. For example, the
visualisation manager selects end-of-event models for processing when noti-
fied by the state manager, via G4VisStateDependent, that event processing
is complete.

The scene has an extent (G4VisExtent), which is updated by the scene when
a new model is added (each model itself has an extent), and a “standard”
target point; these are used to define the standard view — see Section 8.6.
In addition, the scene keeps flags which indicate whether end-of-event objects
should be accumulated or refreshed for each event or run.

8.5 Scene handlers

G4VSceneHandler implements the G4VGraphicsScene low-level interface and
is itself an abstract base class for a specific scene handler, whose job is to
process the scene, i.e., convert it into graphics-technology-specific code for its
viewers.

Each scene handler has an attached scene, as shown in Figure 1. When a
viewer is required to render a view, it asks the scene handler to process the
scene. In the parlance of scene handlers, this is called a kernel visit, since
it involves querying objects, such as volumes and trajectories, that are in
the Geant4 kernel. By maintaining a simple flag, fReadyForTransients, the
G4VSceneHandler base class distinguishes between permanent objects, i.e.,
those generated by run-duration models and transient objects generated by
end-of-event models or anything that the user draws via the G4VVisManager

user interface 4

A scene handler may maintain a graphical database, so that a simple change
of view parameters, such as a change of viewpoint, does not require a kernel
visit. A driver without a graphical database will need to trigger a kernel visit
for any change of view parameters. It is the viewer’s job to decide when a
kernel visit is needed — see Section 8.6.

When a scene handler uses a graphical database, it is required to distinguish
between permanent and transient information, so that the visualisation man-

4 Unless as a user action, as described in Section 8.8.

17

ager may, at end of event, for example, clear and remake just the transient
part. Thus the event may be changed without having to redraw the detector.
This is described further in Appendix F.

G4VSceneHandler imposes some minor additional rules on the concrete sub-
classes. These are described in Appendix D.3.

8.6 Viewers

G4VViewer defines the abstract base class for specific viewers. Their job is to
create windows or files and identify where and how the final view should be ren-
dered. Each has view parameters (G4ViewParameters, Section 8.7) which
specify viewpoint direction, type of rendering (wireframe or surface), etc. It
is the viewer’s responsibility, noting the scene’s extent and target point, to
choose a camera position and magnification that ensures that the scene is au-
tomatically and comfortably rendered in the viewing window. This is then the
standard view, and any further operations requested by the user — zoom,
pan, etc. — are relative to this standard view. The class G4ViewParameters

has utility routines to assist this procedure; it is strongly advised that toolkit
developers writing a viewer should study the G4ViewParameters class, whose
header file contains much useful information (also preserved in the Software
Reference Manual [5]).

The viewer is messaged by the visualisation manager when the user issues
commands, such as /vis/viewer/refresh. This invokes methods such as
SetView, ClearView and DrawView. A detailed description of the call se-
quences is given in Appendix E.

As mentioned above, it is the viewer’s job to trigger a kernel visit. This is done
in DrawView; details are given in Sections D.4 and E.1. For file-writing viewers,
a kernel visit is preceded by a file re-wind or re-write. Some circumstances that
may trigger a kernel visit are shown in Table 4.

8.7 View parameters

View parameters, such as camera direction, drawing styles (wireframe/surface),
etc., are held by G4ViewParameters. Each viewer holds a view parameters ob-
ject and a default object (for use in the /vis/viewer/reset command). The
view parameters can be set for each viewer independently by interactive com-
mands as described below. They are quite extensive — 38 at the current count
— and a full list is given in Figure D.3.

18

With/without graphical database

Circumstance With Without

/vis/viewer/refresh no yes

Next event no (but event gets re-
freshed by vis manager)

yes

Window exposure no yes

Simple change of view params no yes

Drastic change of view params yes yes

/vis/viewer/rebuild yes yes

Table 4
Some circumstances that may trigger a kernel visit for drivers with or without a
graphical database.

8.8 User Actions

It is possible to write a sub-class of G4VUserVisAction and register it with
the Geant4 Visualisation Manager with SetUserAction. It is activated by
adding a call-back model to the run-duration list of the scene with the com-
mand /vis/scene/add/userAction, thereby promoting Draw messages to
permanent status. A typical use would be to draw a application-specific logo
that would be automatically re-drawn as required.

9 Visualisation commands

The Geant4 Visualisation Manager is controlled by Geant4 commands.
There are over 100 currently available in the /vis/ command directory and
new ones appear continually as new features are added. The user may keep
up to date and see the detailed specifications simply by browsing with help

or ls or accessing the User Guide for Application Developers [2], Section 7.1,
Built-in commands.

The visualisation commands separate into several broad categories. Here is a
selection (without parameters) to indicate the breadth available:

• Global These control overall behaviour.
/vis/enable

/vis/disable

/vis/verbose

/vis/reviewKeptEvents

19

• Compound These simply invoke other commands. They represent com-
monly occurring situations
/vis/drawTree

/vis/drawView

/vis/drawVolume

/vis/open

/vis/specify

• Scene Create scenes, control actions, add models (geometry volumes, axes,
trajectories, etc.).
/vis/scene/create

/vis/scene/endOfEventAction

/vis/scene/endOfRunAction

/vis/scene/list

/vis/scene/notifyHandlers

/vis/scene/select

/vis/scene/add/axes (hits, logo, text, trajectories, volume,...)

• Scene handler Create graphics driver-specific scene handlers and attach
scenes.
/vis/sceneHandler/attach

/vis/sceneHandler/create

/vis/sceneHandler/list

/vis/sceneHandler/select

• Viewer A large number of (nearly 40) commands to control the appearance
of views. For example:
/vis/viewer/clear

/vis/viewer/create

/vis/viewer/refresh

/vis/viewer/zoom

/vis/viewer/set/style

/vis/viewer/set/viewpointThetaPhi

...

• Geometry These allow the user to change the visualisation attributes of
geometry volumes interactively, for example:
/vis/geometry/set/colour

...

• Driver specific Some graphics drivers have their own additional commands
in the following directories:
/vis/ASCIITree/

/vis/heprep/

/vis/rayTracer/

/vis/ogl...

• Modeling and filtering These control the display of models, for example:
/vis/modeling/trajectories/create/drawByCharge

/vis/modeling/trajectories/drawByCharge-0/set

/vis/filtering/trajectories/create/particleFilter

/vis/filtering/trajectories/particleFilter-0/add

...

20

Driver family Advantages Disadvantages

DAWN High quality PostScript; so-
phisticated rendering algo-
rithms.

(Separate) rendering process
can be CPU intensive.

HepRep (With good browser) highly
interactive; able to modify
and/or select geometry com-
ponents, tracks and hits.

Wireframe only (no photore-
alistic rendering).

OpenGL Fast, immediate graphics;
picking of geometry and
trajectory information.

Limited to pixel resolution.

OpenInventor Excellent view manipulation;
geometry selection; picking of
geometry and trajectory in-
formation.

Library installation.

RayTracer Photorealistic rendering using
Geant4 tracking

CPU intensive.

Tree Simple and fast way of seeing
the geometry hierarchy.

Text only.

VRML Excellent view manipulation. Fixed scene.

Table 5
Features of the graphics drivers available in the Geant4 code distribution.

10 Available graphics drivers

The following graphics drivers are currently included in the Geant4 code
distribution. Table 5 summarises their features. See Appendix A for details
about how to invoke.

10.1 The DAWN family

Two drivers exploit the DAWN browser [10], a high quality renderer, includ-
ing hidden line and hidden surface removal, that produces a PostScript file
for publication quality papers and presentations. The first, DAWN, commu-
nicates with the DAWN browser by USB sockets; the browser must be on
standby as a daemon, either locally or remotely. This is a good way of doing
remote browsing. The second, DAWNFILE, writes to file, as HepRep (below).
A new file is written for every invocation of ShowView, which is on the issue of
/vis/viewer/update or, depending on the scene actions, at the end of each
event or run. The DAWN browsers may be invoked automatically in such cases

21

Fig. 5. DAWN view of demonstration detector with trajectories.

by making “dawn” available in the PATH (Unix parlance) and Figure 5 is a
typical result.

10.2 The HepRep family

These two drivers are typical of file writing drivers. Information is written to
file in the HepRep format [4] suitable for browsing by a number of browsers,
notably HepRApp [7], WIRED4 [8] and FRED [9]. A new file is written for
every invocation of ShowView, which is on the issue of /vis/viewer/update
or, depending on the scene actions, at the end of each event or run.

Figures 6 and 7 show typical windows opened by the HepRApp browser. It
offers many useful features, including:

• picking items and displaying associated information (attributes);
• selecting items by the value of any attribute (cutting);

22

Fig. 6. A HepRApp view of a HepRep file.

Fig. 7. Picked data from HepRApp with a HepRep file.

• displaying items as an interactive acyclic graph (tree), which allows to user
to control:
· the visibility of volumes;
· the visibility of trajectories;

23

10.3 The OpenGL family

Most operating systems provide the basic but powerful graphics technology,
OpenGL. If not, it can be obtained freely over the Internet. Consequently
OpenGL has become the “workhorse” of the visualisation system. It has the
advantage of being fast (most computers have OpenGL-based graphics accel-
erators) and showing the results of an action immediately on screen.

For each window system — X, Xm and Win32 — there are two graphics
drivers: an “immediate” driver that simply draws to screen; and a “stored”
driver that builds a graphical database (display lists) as it draws, thus allowing
fast re-drawing on change of viewpoint, zoom factor, etc. The stored driver
reverts to immediate mode in the case of memory overload.

Figure 8 shows a window in the OpenGL stored Xm (OGLSXm) viewer. Xm
is the common Motif window manager/toolkit for the X-Windows system and
allows characteristic Motif-like interaction, as can be seen by the array of
buttons on the top window bar. (Xm can also be obtained freely over the
Internet as lesstif or OpenMotif.) Actions include rotation, zoom, panning,
etc.

10.4 The Open Inventor family

Open Inventor is a C++ object-oriented wrapper for OpenGL. It too is freely
available over the Internet. It supports extremely sophisticated interaction,
as can be seen from Figure 9. Geometry and track information is printed
on picking. It also implements a geometry hierarchy representation whereby
only the top-most visible volume is drawn; clicking on this volume makes it
invisible and reveals its daughters. Thus, the user can reveal successive levels
of detail interactively. This feature works best when drawing in surface style.
The implementation of this feature is discussed in Appendix G.

It is also possible to write IV files for off-line browsing.

10.5 The Ray Tracer family

The Ray Tracer uses Geant4’s own particle tracking system to trace optical
rays. It is not only a test bed for the tracking system but also a way of get-
ting photo-realistic renderings of the detector. By its nature, it is compute
intensive. It differs from all the other graphics drivers in that it ignores the
user-specified scene and simply renders the geometry “world”. Thus, for ex-

24

Fig. 8. OpenGL view of the LISA spacecraft.

ample, it does not support trajectories. It does, however, respect the view
parameters, and a viable procedure is to use OpenGL or Open Inventor to
obtain a desired viewpoint, then:

/vis/open RayTracer

/vis/viewer/set/all <previous-viewer>

/vis/viewer/refresh

RayTracerX allows users of the X-Windows system to view the scene as it is
progressively refined.

The Ray Tracer, via its own built-in commands, also allows the user to specify
attenuation, distortion, shadows, etc. Figure 10 shows some results.

10.6 The Tree family

This is a set of pseudo-graphics drivers that interpret the geometry hierarchy
as an ASCII (text) representation. It is useful for seeing the hierarchical ge-

25

Fig. 9. Open Inventor view of a world of various shapes.

ometry structure and is a way of obtaining the names, volume, density and
mass of the geometrical objects. A compound command /vis/drawTree is
available for this. Figure 11 shows an extract of a typical result.

10.7 The VRML family

Finally, the VRML family, like the DAWN family, writes to file or commu-
nicates via sockets to a VRML browser. Most Web browsers have VRML
(Virtual Reality Modeling Language) plug-ins; free plug-ins or stand alone
browsers may be obtained over the Internet.

11 Summary

We have described the Geant4 Visualisation System, a sophisticated imple-
mentation of the Geant4 graphics interface. Its power lies in being able to
render Geant4 objects — volumes, trajectories, etc. — in a number of dif-

26

Fig. 10. A Ray Tracer rendering.

"aTwistedBox-phys":0 / "aTwistedBox-log" /

"aTwistedBox"(G4TwistedBox),

360000 cm3, 1.782 mg/cm3, 360000 cm3, 641.52 g

Calculating mass(es)...

Overall volume of "expHall_P":0, is 8000 m3 and the

daughter-included mass to unlimited depth

is 76422.564 kg

Fig. 11. A fragment of the geometry tree shown by the ASCIITree driver for ver-
bosity 15.

ferent ways with a variety of graphics technologies. By selectively using the
graphics driver’s graphical database or, failing that, rebuilding from Geant4’s
in-memory information, the Geant4 Visualisation System produces uniform
representations in all graphics technologies. Over and above that, most graph-
ics drivers supply “value-added” features. Together they form a formidable set
of tools to aid the application developer and the detector designer and enable
the physicist to visualise the physics processes initiated by particles in matter.

Being in C++ and written to abstract interfaces, the visualisation system is
capable of being continually improved and augmented. The Appendices give
the detail needed by the toolkit developer who wishes to add a new graph-
ics driver or model or filter, or incorporate Geant4 into a specific graphics

27

framework. Further information is available in the Toolkit Developers Guide
[6].

12 Acknowledgments

Over the life of the Geant4 Visualisation System there have been several
significant contributions from developers that have moved on to other things.
We would particularly like to mention and thank for their pioneering work:
Joe Boudreau, University of Pittsburgh and Jeff Kallenbach, formerly of Fermi
National Laboratory, for their contribution to the Open Inventor driver; Andy
Walkden, as the major part of his Ph.D. project at the University of Manch-
ester, for the foundation work on the OpenGL drivers, particularly the Motif
extensions, which introduce interactive control of the view. This work is sup-
ported in part by the U.S. Department of Energy under contract number
DE-AC02-76SF00515.

28

Appendices

A Visualisation Drivers

Table A.1 shows the currently available visualisation drivers. Depending on
the graphics libraries available on a particular system, the installer must define
some G4VIS BUILD... C-pre-processor macros, such as G4VIS BUILD OPENGLX DRIVER,
so that the code for a particular driver is compiled (and inhibit compilation
if the graphics libraries are not present). The make files distributed with the
code interpret similarly named environment variables whose names conform
to any defined by the “Environment ID” in Table A.1 and define the appro-
priate C-pre-processor macro during installation. A configuration script sets
the environment variables in response to the installer’s replies to a series of
questions.

The visualization system allows an application developer to instantiate the
factory for any installed driver with code such as

visManager->RegisterGraphicsSystem(new G4OpenGLImmediateX);

A class G4VisExecutive is provided, as described above, that provides such
code under control of G4VIS USE... C-pre-processor macros. Again, the make
files distributed with the code interpret similarly named environment vari-
ables and the configuration script sets all that may be set for a particular
installation.

Once the factory has been instantiated, the drivers (i.e., scene handlers and
viewers) can be instantiated with commands such as /vis/open or /vis/scenehandler/create
giving the “Nickname” shown in the table as a parameter to the command.

B The G4VGraphicsScene low-level interface (also known as the scene
handler interface)

This is intended only for toolkit developers or users who provide their own
visualisation system; it is used only by (a) the geometry category for describing
shapes and (b) by models. A comment-stripped C++ class definition is shown
in Figure 3 in Section 5.

There are rules for invoking the functions of this interface:

• PreAddSolid, AddSolid and PostAddSolid must be invoked in that se-

29

Class name Environment ID Nickname

G4ASCIITree Needs none ATree

G4DAWNFILE ” DAWNFILE

G4HepRep ” HepRepXML

G4HepRepFile ” HepRepFile

G4RayTracer ” RayTracer

G4VRML1File ” VRML1FILE

G4VRML2File ” VRML2FILE

G4FukuiRenderer DAWN DAWN

G4OpenGLImmediateX OPENGLX OGLIX

G4OpenGLStoredX ” OGLSX

G4OpenGLImmediateWin32 OPENGLWIN32 OGLIWin32

G4OpenGLStoredWin32 ” OGLSWin32

G4OpenGLImmediateXm OPENGLXM OGLIXm

G4OpenGLStoredXm ” OGLSXm

G4OpenInventorX OIX OIX

G4OpenInventorWin32 OIWIN32 OIWin32

G4RayTracerX RAYTRACERX RayTracerX

G4VRML1 VRML VRML1

G4VRML2 ” VRML2

Table A.1
Visualisation drivers. The “Environment ID” defines the environment variable for
the standard make files, e.g., an environment ID OPENGLX means the environ-
ment variable G4VIS BUILD OPENGLX DRIVER must be set for building libraries and
G4VIS USE OPENGLX must be set when building the application. (Note that the
Configure script in the standard code distribution sets these on response to simple
questions.) The “Nickname” is the parameter used in the commands /vis/open or
/vis/sceneHandler/create, e.g., /vis/open OGLIX.

quence. The transformation and visualization attributes must be set by the
call to PreAddSolid, which then apply to the solid passed to AddSolid

(only one AddSolid is allowed). A possible default implementation is to re-
quest the solid to provide a G4Polyhedron or similar primitive — see, for
example, G4VSceneHandler in the Visualization Category.

• A sequence of calls to AddPrimitive must be sandwiched between calls to
BeginPrimitives and EndPrimitives or BeginPrimitives2D and EndPrimitives2D.
A sequence is any number of calls that have the same transformation.

30

• For Begin/EndPrimitives2D, the x,y coordinates of the primitives passed
to AddPrimitive are interpreted as screen coordinates, −1 < x, y < 1. The
z-coordinate is ignored.

Note that objectTransformation is the transformation which transforms the
coordinates of the object into its location in the world (top-level) coordinate
system. It is not a transformation of coordinate systems (which is the inverse).
Also note that visAttribs must be supplied for solids through PreAddSolid,
whereas the attributes for basic graphical objects are to be obtained through
their GetVisAttributes method.

In the Geant4 Visualisation System, G4VGraphicsScene is extended by the
class G4VSceneHandler. Concrete instances of the latter class are called scene
handlers in the parlance of the Geant4 Visualisation System. Each scene
handler is specific to the underlying graphics technology. Any implementation
of G4VSceneHandler may assume the above rules have been adhered to by the
users. How this is exploited, and additional features of G4VSceneHandler, are
discussed in Section D.3.

C Visualisation Attributes

The class G4VisAttributes is introduced in Section 4. A list of attributes is
shown in Table 1. Note that the visualisation attributes include (and should
not be confused with) pointers to general attributes, G4AttDef and G4AttValue,
that may be used for additional information about an object — see Appendix
J.

The following considerations need to be taken into account by the designer/implementer
of a scene handler.

All drawable objects are required to have a method:

const G4VisAttributes* GetVisAttributes() const;

A drawable object might be:

• a “visible” (i.e., inheriting G4Visible), such as a polyhedron, polyline, cir-
cle, etc. (note that text is a slightly special case — see below), or

• a solid whose attributes are held in its logical volume.

31

C.1 Finding the applicable attributes

This is an issue for all scene handlers. The scene handler is where the colour,
style, auxiliary edge visibility, marker size, etc., of individual drawable objects
are needed. The attributes might have been set in PreAddSolid, or might be
attached the the drawable object, or might not be set at all. In the last case, the
pointer will be zero and the scene handler must obtain the default attributes
from the viewer. A utility function G4VViewer::GetApplicableVisAttributes
is provided, so, when dealing with primitives, the scene handler should obtain
the attributes as follows:

const G4VisAttributes* pVisAtts =

fpViewer->GetApplicableVisAttributes(polyline.GetVisAttributes());

This is taken into account in the utility function that provides colour:

const G4Colour& colour = GetTextColour(visible);

where visible is the appropriate drawable object — polyhedron, circle, square,
etc.

Once the applicable attributes have been found, G4VSceneHandler provides
utility functions that obtain some of the less straightforward quantities needed
for drawing, for example, where parameters may be overridden (forced) or
modified by the visualisation attributes:

G4double GetLineWidth(const G4VisAttributes*);

G4ViewParameters::DrawingStyle GetDrawingStyle (const G4VisAttributes*);

G4bool GetAuxEdgeVisible (const G4VisAttributes*);

G4int GetNoOfSides(const G4VisAttributes*);

Other utility functions interrogate a marker and return the appropriate quan-
tity and MarkerSizeType, based on the applicable visualisation attributes:

G4double GetMarkerSize (const G4VMarker&, MarkerSizeType&);

G4double GetMarkerDiameter (const G4VMarker&, MarkerSizeType&);

G4double GetMarkerRadius (const G4VMarker&, MarkerSizeType&);

Their use is illustrated in some of the following sections.

C.2 Text

Text is a special case because it has its own default attributes:

const G4VisAttributes* pVisAtts = text.GetVisAttributes();

if (!pVisAtts)

32

pVisAtts = fpViewer->GetViewParameters().GetDefaultTextVisAttributes();

and as above, there is a utility function for colour that takes this into account:

const G4Colour& colour = GetTextColour(text);

C.3 Solids

For specific solids, the G4PhysicalVolumeModel that provides the solids also
provides, via PreAddSolid, a pointer to its attributes. If the attributes pointer
in the logical volume is zero, it provides a pointer to the default attributes in
the model, which in turn is (in the Geant4 Visualisation System) provided by
the viewer’s attributes (see G4VSceneHandler::CreateModelingParameters).
So the attributes pointer is guaranteed to be pertinent.

If the concrete driver does not implement AddSolid for any particular solid,
the base class converts it to primitives (usually a G4Polyhedron) and again,
the attributes pointer is guaranteed.

C.4 Drawing style

The drawing style is normally determined by the view parameters but for
individual drawable objects it may be overridden by the forced drawing style
flags in the attributes. A utility function is provided that accounts for this:

G4ViewParameters::DrawingStyle drawing_style = GetDrawingStyle(pVisAtts);

C.5 Auxiliary edges

Similarly, the visibility of auxiliary/soft edges is normally determined by the
view parameters but may be overridden by the forced auxiliary edge visible
flag in the attributes. Again, a utility function is provided:

G4bool isAuxEdgeVisible = GetAuxEdgeVisible (pVisAtts);

C.6 Polygon approximation

For visualisation of volumes with edges that are (a part of) a circle, the circle
is represented by an N-sided polygon. The default is 24 sides or segments. The
user may change this for all volumes in a particular viewer at run time with

33

/vis/viewer/set/lineSegmentsPerCircle; alternatively it can be overridden for
a particular volume by the forced line segments per circle parameter in the
attributes. A utility is provided that respects this:

G4int lineSegmentsperCircle = GetNoOfSides (pVisAtts);

C.7 Marker size

These are an extra property of markers, i.e., objects that inherit G4VMarker
(circles, squares, text, etc.), over and above visualisation attributes. However,
the algorithm for the actual size is quite complicated and a utility function is
provided:

MarkerSizeType sizeType;

G4double size = GetMarkerSize(text, sizeType);

sizeType is world or screen, signifying that the size is in world coordinates
or screen coordinates respectively.

D Creating a new graphics driver

To create a new graphics driver for Geant4, it is necessary to implement a
new set of three classes derived from the three base classes, G4VGraphicsSystem,
G4VSceneHandler and G4VViewer.

D.1 A useful place to start

A skeleton set of classes is included in the code distribution in the visualisation
category under subdirectory visualisation/XXX (but they are not default-
registered graphics drivers 5). There are several sets of classes, described in
more detail below. A recommended approach is to copy the files that best
match your graphics technology to a new subdirectory with a name that suits
your graphics technology. Then

(1) Change the name of the files (change the code — XXX or XXXFile, etc.,
as chosen — to something that suits your graphics technology).

(2) Change XXX similarly in all files.

5 To do this, simply instantiate and register, for exam-
ple: visManager->RegisterGraphicsSystem(new G4XXX) before
visManager->Initialise().

34

(3) Change XXX similarly in name := G4XXX in GNUmakefile.
(4) Add your new subdirectory to SUBDIRS and SUBLIBS in visualisation/GNUmakefile.
(5) Look at the code and use it to build your visualisation driver. You might

also find it useful to look at ASCIITree (and VTree) as an example of
a minimal graphics driver. Look at FukuiRenderer as an example of
a driver which implements AddSolid methods for some solids. Look at
OpenGL as an example of a driver which implements a graphical database
(display lists) and the machinery to decide when to rebuild. (OpenGL
is complicated by the proliferation of combinations of the use or not of
display lists for three window systems, X-windows, X with motif (interac-
tive), Microsoft Windows (Win32), a total of six combinations, and much
use is made of inheritance to avoid code duplication.)

(6) If it requires external libraries, introduce two new environment variables
G4VIS BUILD XXX DRIVER and G4VIS USE XXX (where XXX is your choice
as above) and make the modifications to:
• source/visualization/management/include/G4VisExecutive.icc

• config/G4VIS BUILD.gmk

• config/G4VIS USE.gmk

You may use the following templates in the XXX sub-category to help you get
started writing a graphics driver. (The word “template” is used in the ordinary
sense of the word; they are not C++ templates.)

• G4XXX, G4XXXSceneHandler, G4XXXViewer Templates for the simplest pos-
sible graphics driver. These would be suitable for an “immediate” driver,
i.e., one which renders each object immediately to a screen. Of course, if
the view needs re-drawing, as, for example, after a change of viewpoint, the
viewer requests a re-issue of drawn objects.

• G4XXXFile, G4XXXFileSceneHandler, G4XXXFileViewer Templates for a
file-writing graphics driver. The particular features are: delayed opening of
the file on receipt of the first item; rewinding file on ClearView (to simulate
the clearing of views and prevent the duplication of material in the file);
closing of the file on ShowView, which may also trigger the launch of a
browser. There are various degrees of sophistication in, for example, the
allocation of filenames — see FukuiRenderer or HepRepFile.

These templates also show the use of a specific AddSolid function whereby
the specific parameters, for example, the dimensions of a G4Box, can be
accessed.

• G4XXXStored, G4XXXStoredSceneHandler, G4XXXStoredViewer Templates
for a graphics driver with a store/database. The advantage of a store is that
the view can be refreshed, for example, from a different viewpoint, without a
need to recompute. It is up to the viewer to decide when a re-computation
is necessary. They also show how to distinguish between permanent and
transient objects — see also Section F.

• G4XXXSG, G4XXXSGSceneHandler, G4XXXSGViewer Templates for a sophis-

35

ticated graphics driver with a scene graph. The scene graph, following Open
Inventor parlance, is a tree of objects that dictates the order in which the ob-
jects are rendered. It obviously lends itself to the rendering of the Geant4

geometry hierarchy. For example, the Open Inventor driver draws only the
top level volumes unless made invisible by picking. Thus the user can unwrap
a branch of the geometry level by level. This has performance benefits and
gives the user significant and useful control over the view. These classes show
how to make a scene graph of drawn volumes, i.e., the set of volumes that
have not been culled. (Normally, volumes marked invisible are culled, i.e.,
not drawn. Also, the user may wish to limit the number of drawn volumes
for performance reasons.) The drivers also have to process non-geometry
items and distinguish between transient and permanent objects as above.

D.2 The G4VGraphicsSystem base class

This is a factory for scene handlers and viewers. Its constructor should invoke
the full base-class constructor that specifies name, nickname, description and
“functionality”. The last is intended to indicate the type of graphics driver
and is defined by the following:

enum Functionality {

noFunctionality,

nonEuclidian, // e.g., tree representation of geometry hierarchy.

twoD, // Simple 2D, e.g., X (no stored structures).

twoDStore, // 2D with stored structures.

threeD, // Passive 3D (with stored structures).

threeDInteractive, // 3D with "pick" functionality.

virtualReality // Virtual Reality functionality.

};

A typical constructor is:

G4OpenGLImmediateX::G4OpenGLImmediateX():

G4VGraphicsSystem ("OpenGLImmediateX",

"OGLIX",

" Dumb single buffered X Window, No Graphics Database."

"\n Advantages: does not gobble server memory."

"\n good for drawing steps and hits."

"\n Disadvantages: needs G4 kernel for re-Draw."

"\n cannot take advantage of graphics accelerators.",

G4VGraphicsSystem::threeD) {}

It is required to implement:

virtual G4VSceneHandler* CreateSceneHandler (const G4String& name) = 0;

36

virtual G4VViewer* CreateViewer (G4VSceneHandler&, const G4String& name) = 0;

and typical implementations are:

G4VSceneHandler* G4OpenGLImmediateX::CreateSceneHandler(const G4String& name) {

G4VSceneHandler* pScene = new G4OpenGLImmediateSceneHandler (*this, name);

return pScene;

}

G4VViewer* G4OpenGLImmediateX::CreateViewer

(G4VSceneHandler& scene, const G4String& name) {

G4VViewer* pView =

new G4OpenGLImmediateXViewer((G4OpenGLImmediateSceneHandler&)scene, name);

if (pView) {

if (pView->GetViewId() < 0) {

G4cerr << "G4OpenGLImmediateX::CreateViewer: error flagged by negative"

" view id in G4OpenGLImmediateXViewer creation."

"\n Destroying view and returning null pointer."

<< G4endl;

delete pView;

pView = 0;

}

}

else {

G4cerr << "G4OpenGLImmediateX::CreateViewer: null pointer on"

" new G4OpenGLImmediateXViewer." << G4endl;

}

return pView;

}

Notice the use of GetViewId to signal an error in the creation of the viewer.
Also, if the viewer needs access to its specific scene handler, this can be done
with the cast in the viewer construction. (Perhaps a more modern approach
would be to use a dynamic cast in the viewer when required.)

D.3 The G4VSceneHandler base class

This conforms to and extends the G4VGraphicsScene low-level interface —
see Figures 3 and D.1 in Sections 5 and B. The implementer may assume
that the rules of invocation described in Section B have been adhered to. In
summary, these are:

• PreAddSolid, AddSolid and PostAddSolid must be invoked in that se-
quence

• A sequence of calls to AddPrimitive must be sandwiched between calls to

37

class G4VSceneHandler: public G4VGraphicsScene {

...methods of G4VGraphicsScene plus...

virtual void BeginModeling ();

virtual void EndModeling ();

virtual void ClearStore ();

virtual void ClearTransientStore ();

const G4Colour& GetTextColour (const G4Text&);

const G4Colour& GetTextColor (const G4Text&);

G4double GetLineWidth(const G4VisAttributes*);

G4ViewParameters::DrawingStyle GetDrawingStyle (const G4VisAttributes*);

G4bool GetAuxEdgeVisible (const G4VisAttributes*);

G4int GetNoOfSides(const G4VisAttributes*);

G4double GetMarkerSize (const G4VMarker&, MarkerSizeType&);

G4double GetMarkerDiameter (const G4VMarker&, MarkerSizeType&);

G4double GetMarkerRadius (const G4VMarker&, MarkerSizeType&);

G4ModelingParameters* CreateModelingParameters ();

...plus some access functions.

};

Fig. D.1. The G4VSceneHandler extended base class

BeginPrimitives and EndPrimitives or BeginPrimitives2D and EndPrimitives2D..

Certain pairs of virtual methods must be extended rather than over-ridden.
This simply means that the polymorphic method of the concrete scene handler
must explicitly invoke the base class method. For example:

void MyXXXSceneHandler::BeginModeling () {

G4VSceneHandler::BeginModeling ();

...

}

void MyXXXSceneHandler::EndModeling () {

...

G4VSceneHandler::EndModeling ();

}

Here is a complete list of methods with a similar requirement:

BeginModeling EndModeling

PreAddSolid PostAddSolid

BeginPrimitives EndPrimitives

BeginPrimitives2D EndPrimitives2D

ClearStore

ClearTransientStore

The pair of additional functions Begin/EndModeling bracket the processing of
the run-duration part of the scene, which allows the scene handler to initialise
and consolidate, respectively, the processing of permanent objects. The scene
handler base class maintains a flag fReadyForTransients, which is false

only within the Begin/EndModeling scope.

38

As stated in Section 7.1 — and worth repeating here — is that if the scene
handler needs any information from a model, for example to obtain textual
tags or build its own scene graph, it is necessary to make a dynamic cast:

G4PhysicalVolumeModel* pPVModel =

dynamic_cast<G4PhysicalVolumeModel*>(fpModel);

if (pPVModel) {

tag = pPVModel->GetCurrentPV()->GetName();

...

} else {

// Not from a G4PhysicalVolumeModel.

...

Note that the above requirement to make a dynamic cast deals with the possi-
bility that that the current object is not generated by a model — for example,
it may come direct from user code - in which case fpModel itself will be zero.

Section G discusses the building of drawn scene graphs. Note that it is al-
ways possible that the solid does not come from a G4PhysicalVolumeModel

(perhaps it is a transient volume representing a hit) in which case it must be
treated differently, with no place in the geometry hierarchy.

The pair ClearStore and ClearTransientStore were designed for scene han-
dlers that have their own graphical database/scene graph/store. Scene han-
dlers that write files must emulate the clearing of the store by rewinding (or
rewriting) the output file.

The tricky issue of building a database that can handle all possible function
invocation sequences is discussed in Section E. For convenience, the scene han-
dler base class maintains a flag fProcessingSolid, which is true only within
the Pre/PostAddSolid scope. At the same time, the permanent and transient
parts of the database must be distinguished, so the ClearTransientStore

clears only the transient part. Transients are described in Section F. The
building of a scene graph is discussed in Section G. These issues are reflected
in design of the templates XXXStored and XXXSG described in Section D.1.

D.4 The G4VViewer base class

Figure D.2 shows that a minimum of three functions are required to be imple-
mented by any concrete viewer — SetView (to interpret the view parameters,
Figure D.3), ClearView and DrawView. Section E describes in detail the cir-
cumstances under which these functions are called.

Other functions also play important roles:

39

class G4VViewer {

public:

G4VViewer (G4VSceneHandler&, G4int id, const G4String& name = "");

virtual ~G4VViewer();

virtual void Initialise();

virtual void SetView() = 0;

virtual void ClearView() = 0;

virtual void DrawView() = 0;

virtual void ShowView();

virtual void FinishView();

const G4VisAttributes* GetApplicableVisAttributes

(const G4VisAttributes*) const;

void SetNeedKernelVisit (G4bool need);

void NeedKernelVisit();

void ProcessView();

...

};

Fig. D.2. The essential G4VViewer interface.

DrawingStyle fDrawingStyle; // Drawing style.

G4bool fAuxEdgeVisible; // Auxiliary edge visibility.

RepStyle fRepStyle; // Representation style.

G4bool fCulling; // Culling requested.

G4bool fCullInvisible; // Cull (don’t Draw) invisible objects.

G4bool fDensityCulling; // Density culling requested. If so...

G4double fVisibleDensity; // ...density lower than this not drawn.

G4bool fCullCovered; // Cull daughters covered by opaque mothers.

G4bool fSection; // Section drawing requested (DCUT in GEANT3).

G4Plane3D fSectionPlane; // Cut plane for section drawing (DCUT).

CutawayMode fCutawayMode; // Cutaway mode.

G4Planes fCutawayPlanes; // Set of planes used for cutaway.

G4bool fExplode; // Explode flag.

G4double fExplodeFactor;

G4int fNoOfSides; // ...if polygon approximates circle.

G4Vector3D fViewpointDirection;

G4Vector3D fUpVector; // Up vector. (Warning: MUST NOT be parallel

// to fViewpointDirection!)

G4double fFieldHalfAngle; // Radius / camera distance, 0 for parallel.

G4double fZoomFactor; // Magnification relative to Standard View.

G4Vector3D fScaleFactor; // (Non-uniform) scale/magnification factor.

G4Point3D fCurrentTargetPoint; // Relative to standard target point.

G4double fDolly; // Distance towards current target point.

G4bool fLightsMoveWithCamera;

G4Vector3D fRelativeLightpointDirection;

// i.e., rel. to object or camera according to G4bool fLightsMoveWithCamera.

G4Vector3D fActualLightpointDirection;

G4VisAttributes fDefaultVisAttributes;

G4VisAttributes fDefaultTextVisAttributes;

G4VMarker fDefaultMarker;

G4double fGlobalMarkerScale;

G4bool fMarkerNotHidden;

// True if transients are to be drawn and not hidden by

// hidden-line-hidden-surface removal algorithms, e.g., z-buffer

// testing; false if they are to be hidden-line-hidden-surface

// removed.

G4int fWindowSizeHintX; // Size hints for pixel-based window systems.

G4int fWindowSizeHintY;

G4String fXGeometryString; // If non-null, geometry string for X Windows.

G4bool fAutoRefresh; // ...after change of view parameters.

G4Colour fBackgroundColour;

Fig. D.3. View parameters (from G4ViewParameters).

40

void G4HepRepFileViewer::DrawView() {

NeedKernelVisit();

ProcessView();

}

Fig. D.4. DrawView for a simple viewer.

void G4OpenGLStoredXViewer::DrawView() {

if (!fNeedKernelVisit) KernelVisitDecision();

// Keep decision (ProcessView resets)...

G4bool kernelVisitWasNeeded = fNeedKernelVisit;

ProcessView();

if (!kernelVisitWasNeeded) {

DrawDisplayLists();

FinishView();

}

}

void G4OpenGLStoredViewer::KernelVisitDecision() {

if (CompareForKernelVisit(fLastVP)) NeedKernelVisit();

fLastVP = fVP;

}

G4bool G4OpenGLStoredViewer::CompareForKernelVisit

(G4ViewParameters& lastVP) {

if ((lastVP.GetDrawingStyle() != fVP.GetDrawingStyle()) ||

...) return true;

...

return false;

}

Fig. D.5. DrawView for a graphics driver with database.

• Initialise Called immediately after construction. Useful for viewers that
need to await complete construction before certain operations can be per-
formed. Currently only used by OpenGL (see comments in G4VViewer.hh).

• ShowView For viewers that need to trigger post-processing of the drawn
information, for example to perform hidden line removal or close a file. It is
called when the user issues /vis/viewer/update or at the end of event or
run, depending of scene actions.

• FinishView This is called after processing the run-duration models and
before end-of-event models (if requested). It is intended for flushing buffers
(to ensure all drawn material is written to screen) and/or swapping front
and back buffers (in double buffer systems). It is also called when the user
issues /vis/viewer/clear. Otherwise, it may be used internally by the
viewer.

• SetNeedKernelVisit and NeedKernelVisit Alternative ways of recording
the need for a kernel visit, i.e., when the scene needs to be processed again.
Viewers of graphics drivers that render the scene to a graphical database
need not re-visit the kernel for simple operations such as change of view-
point. This should be determined in DrawView. Two examples are shown in
Figures D.4 and D.5.

• ProcessView This is the first function encountered. If a kernel visit is re-
quested it calls the scene handler’s ProcessScene.

41

E Important Command Actions

To help understand how the Geant4 Visualisation System works, here are a
few important function invocation sequences that follow user commands. What
happens in DrawView, ProcessView and ProcessScene will be discussed in
detail below. For an explanation of the commands themselves, see the com-
mand guidance or the Control section of the Application Developers Guide
[2]. For a fuller explanation of the functions, see appropriate base class header
files or Software Reference Manual [5].

• /vis/viewer/clear
viewer->ClearView(); // Clears buffer or rewinds file.

viewer->FinishView(); // Swaps buffer (double buffer systems).

• /vis/viewer/flush
/vis/viewer/refresh

/vis/viewer/update

• /vis/viewer/rebuild
viewer->SetNeedKernelVisit(true);

• /vis/viewer/refresh If the view is “auto-refresh” 6 , this command is also
invoked after /vis/viewer/create, /vis/viewer/rebuild or a change of
view parameters (/vis/viewer/set/..., etc.).

viewer->SetView(); // Sets camera position, etc.

viewer->ClearView(); // Clears buffer or rewinds file.

viewer->DrawView(); // Draws to screen or writes to file/socket.

• /vis/viewer/update
viewer->ShowView(); // Activates interactive windows or closes file

// and/or triggers post-processing.

• /vis/scene/notifyHandlers For each viewer of the current scene, the
equivalent of

/vis/viewer/refresh

If “flush” is specified on the command line, the equivalent of
/vis/viewer/update

/vis/scene/notifyHandlers is also invoked after a change of scene
(/vis/scene/add/..., etc.).

E.1 What happens in DrawView?

This depends on the viewer. Those with their own graphical database, for
example, OpenGL’s display lists or Open Inventor’s scene graph, do not need

6 The auto-refresh flag is a member of G4ViewParameters. Its default
value is false. However, the OpenGL and Open Inventor viewers set it
to true in their constructors. It may also be set/unset by the command
/vis/viewer/set/autoRefresh.

42

to re-traverse the scene unless there has been a significant change of view
parameters. For example, a mere change of viewpoint requires only a change
of model-view matrix whilst a change of rendering mode from wireframe to
surface might require a rebuild of the graphical database. A rebuild of the run-
duration (persistent) objects in the scene is called a kernel visit; the viewer
prints “Traversing scene data...”.

Note that end-of-event (transient) objects are only rebuilt at the end of an
event or run, under control of the visualisation manager. Smart scene handlers
keep them in separate display lists so that they can be rebuilt separately from
the run-duration objects - see Section F.

• Integrated viewers with no graphical database For example,
G4OpenGLImmediateXViewer::DrawView().
NeedKernelVisit(); // Always need to visit G4 kernel.

ProcessView();

FinishView();

• Integrated viewers with graphical database For example,
G4OpenGLStoredXViewer::DrawView().
//See if things have changed from last time and remake if necessary...

// The fNeedKernelVisit flag might have been set by the user in

// /vis/viewer/rebuild, but if not, make decision and set flag only

// if necessary...

if (!fNeedKernelVisit) KernelVisitDecision ();

// KernelVisitDecision is a private function that sets fNeedKernelVisit.

// Keep copy of fNeedKernelVisit - ProcessView resets.

G4bool kernelVisitWasNeeded = fNeedKernelVisit;

ProcessView ();

// If kernel visit was needed, drawing and FinishView will already

// have been done, so...

if (!kernelVisitWasNeeded) {

DrawDisplayLists ();

FinishView (); // Swaps buffers.

}

• File-writing viewers For example, G4DAWNFILEViewer::DrawView().
NeedKernelVisit();

ProcessView();

Note that viewers needing to invoke FinishView must do it in DrawView.

E.2 What happens in ProcessView?

This is invoked by DrawView if appropriate conditions are satisfied, as de-
scribed in the previous section.

void G4VViewer::ProcessView() {

43

// If ClearStore has been requested, e.g., if the scene has changed,

// of if the concrete viewer has decided that it necessary to visit

// the kernel, perhaps because the view parameters have changed

// drastically (this should be done in the concrete viewer’s

// DrawView)...

if (fNeedKernelVisit) {

fSceneHandler.ProcessScene(*this);

fNeedKernelVisit = false;

}

}

E.3 What happens in ProcessScene?

ProcessScene causes a traversal of the scene. For drivers with graphical
databases, it causes a rebuild (ClearStore). In outline:

fReadyForTransients = false;

BeginModeling();

for each run-duration model...

pModel -> DescribeYourselfTo(*this);

EndModeling();

fReadyForTransients = true;

for each event available, for each end-of-event model...

pModel -> DescribeYourselfTo(*this);

(A second pass is made on request — see G4VSceneHandler::ProcessScene.)
The use of fReadyForTransients is described in Section F.

What happens then depends on the type of model:

• G4AxesModel G4AxesModel::DescribeYourselfTo simply calls sceneHan-
dler.AddPrimitive methods directly.
sceneHandler.BeginPrimitives();

sceneHandler.AddPrimitive(x_axis); // etc.

sceneHandler.EndPrimitives();

Most other models are like this, except for the following...
• G4PhysicalVolumeModel The geometry is descended recursively, culling

policy is enacted, and for each accepted (and possibly, clipped 7) solid:
sceneHandler.PreAddSolid(theAT, *pVisAttribs);

pSol->DescribeYourselfTo(sceneHandler);

// For example, if pSol points to a G4Box...

|-->G4Box::DescribeYourselfTo(G4VGraphicsScene& scene){

scene.AddSolid(*this);

7 Clipped solids are converted into G4Polyhedron objects for Boolean operations
and dispatched to the scene handler as such.

44

void G4HepRepFileSceneHandler::AddSolid(const G4Box& box) {

...

G4double dx = box.GetXHalfLength();

G4double dy = box.GetYHalfLength();

G4double dz = box.GetZHalfLength();

G4Point3D vertex1(G4Point3D(dx, dy,-dz));

...

vertex1 = (*fpObjectTransformation) * vertex1;

...

hepRepXMLWriter->addPoint(vertex1.x(), vertex1.y(), vertex1.z());

...

Fig. E.1. DrawView for a graphics driver with database.

DrawView();

|-->ProcessView();

|-->ProcessScene();

|-->BeginModeling();

|-->pModel -> DescribeYourselfTo(*this);

| |-->sceneHandler.PreAddSolid(theAT, *pVisAttribs);

| |-->pSol->DescribeYourselfTo(sceneHandler);

| | |-->sceneHandler.AddSolid(*this);

| | |-->RequestPrimitives(solid);

| | |-->BeginPrimitives (*fpObjectTransformation);

| | |-->pPolyhedron = solid.GetPolyhedron();

| | |-->AddPrimitive(*pPolyhedron);

| | |-->EndPrimitives();

| |-->sceneHandler.PostAddSolid();

|-->EndModeling();

Fig. E.2. The default sequence for a G4PhysicalVolumeModel

}

sceneHandler.PostAddSolid();

The scene handler may implement the virtual function AddSolid(const
G4Box&) (an example is shown in Figure E.1), or inherit:
void G4VSceneHandler::AddSolid(const G4Box& box) {

RequestPrimitives(box);

}

RequestPrimitives converts the solid into primitives (G4Polyhedron)
and invokes AddPrimitive:

BeginPrimitives(*fpObjectTransformation);

pPolyhedron = solid.GetPolyhedron();

AddPrimitive(*pPolyhedron);

EndPrimitives();

The resulting default sequence for a G4PhysicalVolumeModel is shown
in Figure E.2.

Note the sequence of calls at the core:
sceneHandler.PreAddSolid(theAT, *pVisAttribs);

pSol->DescribeYourselfTo(sceneHandler);

|-->sceneHandler.AddSolid(*this);

|-->RequestPrimitives(solid);

|-->BeginPrimitives (*fpObjectTransformation);

|-->pPolyhedron = solid.GetPolyhedron();

|-->AddPrimitive(*pPolyhedron);

45

|-->EndPrimitives();

sceneHandler.PostAddSolid();

is reduced to
sceneHandler.PreAddSolid(theAT, *pVisAttribs);

pSol->DescribeYourselfTo(sceneHandler);

|-->sceneHandler.AddSolid(*this);

sceneHandler.PostAddSolid();

if the scene handler implements its own AddSolid. Moreover, the sequence
BeginPrimitives (*fpObjectTransformation);

AddPrimitive(*pPolyhedron);

EndPrimitives();

can be invoked without a prior PreAddSolid, etc. The flag fProcessingSolid
will be false for the last case. The possibility of any or all of these three sce-
narios occurring, for both permanent and transient objects, affects the im-
plementation of a scene handler if there is any attempt to build a graphical
database. This is reflected in the templates XXXStored and XXXSG described
in Section D.1. Transients are discussed in Section F and the building of a
scene graph is discussed in Section G.

• G4TrajectoriesModel At end of event, the trajectory container is unpacked
and, for each trajectory, sceneHandler.AddCompound called. The scene han-
dler may implement this virtual function or inherit:
void G4VSceneHandler::AddCompound (const G4VTrajectory& traj) {

traj.DrawTrajectory(((G4TrajectoriesModel*)fpModel)->GetDrawingMode());

}

Similarly, the user may implement DrawTrajectory or inherit:
void G4VTrajectory::DrawTrajectory(G4int i_mode) const {

G4VVisManager* pVVisManager = G4VVisManager::GetConcreteInstance();

if (0 != pVVisManager) {

pVVisManager->DispatchToModel(*this, i_mode);

}

}

Thence, the Draw method of the current trajectory model is invoked (see
Section H for details on trajectory models), which in turn, invokes Draw

methods of the visualisation manager. The resulting default sequence for a
G4TrajectoriesModel is shown in Figure E.3.

• End-of-event models End-of-event models include: G4TrajectoriesModel,
G4HitsModel and G4CallbackModel that represents the current event ID.
These are normally processed at the end of event in G4VisManager::EndOfEvent.
However, they are also processed in ProcessScene if the run manager has
kept an event. (Events may be kept by the user; alternatively, the visuali-
sation manager asks the run manager to keep the last event of the run or,
if /vis/scene/endOfEventAction accumulate <N>, N events.)

46

DrawView();

|-->ProcessView();

|-->ProcessScene();

|-->BeginModeling();

|-->pModel -> DescribeYourselfTo(*this);

| |-->AddCompound(trajectory);

| |-->trajectory.DrawTrajectory(...);

| |-->DispatchToModel(...);

| |-->model->Draw(...);

| |-->G4VisManager::Draw(...);

| |-->BeginPrimitives(objectTransform);

| |-->AddPrimitive(...);

| |-->EndPrimitives();

|-->EndModeling();

Fig. E.3. The default sequence for a G4TrajectoriesModel

F Transient and permanent drawing

Any visualisable object not defined in the run-duration part of a scene is
treated as “transient”. This includes trajectories, hits and anything drawn
by the user through the G4VVisManager user interface (unless as part of a
run-duration model implementation). A flag, fReadyForTransients, is main-
tained by the scene handler. In fact, its normal state is true, and only tem-
porarily, during handling of the run-duration part of the scene, is it set to
false — see description of ProcessScene, Section E.3.

The reason for this distinction is that at end of run the user typically wants
to display trajectories on a view of the detector, then, at the end of the next
event 8 , erase the old and see new trajectories. The visualisation manager
messages the scene handler with ClearTransientStore just before drawing
the trajectories to achieve this.

If the driver supports a graphical database, it is smart to distinguish tran-
sient and permanent objects. In this case, every Add method of the scene
handler must be transient-aware. In some cases, it is enough to open a graph-
ical data base component in BeginPrimitives, fill it in AddPrimitive and
close it appropriately in EndPrimitives. In others, initialisation is done in
BeginModeling and consolidation in EndModeling — see G4OpenGLStoredSceneHandler.
If any AddSolid method is implemented, then the graphical data base com-
ponent should be opened in PreAddSolid, protecting against double opening,
for example,

void G4XXXStoredSceneHandler::BeginPrimitives

(const G4Transform3D& objectTransformation) {

G4VSceneHandler::BeginPrimitives(objectTransformation);

// If thread of control has already passed through PreAddSolid,

8 There is an option to accumulate trajectories across events and runs — see com-
mands /vis/scene/endOfEventAction and /vis/scene/endOfRunAction.

47

// avoid opening a graphical data base component again.

if (!fProcessingSolid) {

If the driver does not have a graphical database or does not distinguish between
transient and persistent objects, it must emulate ClearTransientStore. Typ-
ically, it must erase everything, including the detector, and re-draw the de-
tector and other run-duration objects, ready for the transients to be added.
File-writing drivers must rewind the output file. Typically:

void G4HepRepFileSceneHandler::ClearTransientStore() {

G4VSceneHandler::ClearTransientStore();

// This is typically called after an update and before drawing hits

// of the next event. To simulate the clearing of "transients"

// (hits, etc.) the detector is redrawn...

if (fpViewer) {

fpViewer -> SetView();

fpViewer -> ClearView();

fpViewer -> DrawView();

}

}

ClearView rewinds (or rewrites) the output file and DrawView re-draws the
detector, etc. (For smart drivers, DrawView is smart enough to know not to re-
draw the detector, etc., unless the view parameters have changed significantly
— see Section E.1.)

G Building a drawn scene graph

Some graphics technologies are capable of capitalising on a scene hierarchy.
Open Inventor is one such, with its concept of a scene graph. The Geant4

implementation of the Open Inventor driver makes use of this for the geome-
try volume hierarchy; not only that, it implements SoDetectorTreeKit which
makes only the top-most visible; clicking on this volume makes it invisible and
reveals its daughters. Thus, the user can reveal successive levels of detail inter-
actively. The SoDetectorTreeKit, along with physical properties — colour,
transformation, etc. — is designed to added to a SoSeparator.

Other examples of drivers that take advantage of the scene hierarchy are the
HepRep drivers. HepRep browsers then let the user control visibility, highlight-
ing and other visualization attributes through control trees that represent this
scene hierarchy.

To implement this feature, the developer needs knowledge of the drawn scene
graph, i.e., the parent-child relationships of drawn volumes. This is not neces-
sarily the same as the parent-child relationships of the Geant4 geometry since

48

the user has the option of making volumes invisible (culling). G4PhysicalVolumeModel
maintains the parent-child path of the actually drawn volumes (see G4OpenInventorSceneHandler::Genera

G4PhysicalVolumeModel* pPVModel =

dynamic_cast<G4PhysicalVolumeModel*>(fpModel);

if (pPVModel) {

typedef G4PhysicalVolumeModel::G4PhysicalVolumeNodeID PVNodeID;

typedef std::vector<PVNodeID> PVPath;

const PVPath& drawnPVPath = pPVModel->GetDrawnPVPath();

G4LogicalVolume* pCurrentLV = pPVModel->GetCurrentLV();

One way — possibly the simplest — is to rely on the fact that G4PhysicalVolumeModel
traverses the geometry hierarchy top down, i.e., parent before child. Therefore
the developer is assured that a parent will already have been encountered. The
G4LogicalVolume pointer is enough to identify this parent so Open Inventor
keeps a map of G4LogicalVolume* and SoSeparator*; if the parent is found
in the map, the SoDetectorTreeKit is added to that SoSeparator and the
current volume is added to the map:

// Find mother. ri points to mother, if any...

PVPath::const_reverse_iterator ri;

G4LogicalVolume* MotherVolume = 0;

ri = ++drawnPVPath.rbegin();

if (ri != drawnPVPath.rend()) {

// This volume has a mother.

G4LogicalVolume* MotherVolume =

ri->GetPhysicalVolume()->GetLogicalVolume();

...

fSeparatorMap[MotherVolume]->addChild(detectorTreeKit);

fSeparatorMap[pCurrentLV] = fullSeparator;

...

If there is no mother, the volume is added to the detector root of the scene
graph. (Transients — trajectories, etc. — are added to the transient root; it is
necessary to keep geometry objects separate from transients so that they can
be cleared separately — see Appendix F.)

G4XXXSGSceneHandler also implements the above algorithm.

49

H Enhanced Trajectory Drawing

H.1 Creating a new trajectory model

New trajectory models must inherit from G4VTrajectoryModel and imple-
ment these pure virtual functions:

virtual void Draw(const G4VTrajectory&, G4int i_mode = 0,

const G4bool& visible = true) const = 0;

virtual void Print(std::ostream& ostr) const = 0;

To use the new model directly in compiled code, simply register it with the
G4VisManager, e.g:

G4VisManager* visManager = new G4VisExecutive;

visManager->Initialise();

// Create custom model

MyCustomTrajectoryModel* myModel =

new MyCustomTrajectoryModel("custom");

// Configure it if necessary then register with G4VisManager

visManager->RegisterModel(myModel);

H.2 Adding interactive functionality

Additional classes need to be written if the new model is to be created and
configured interactively:

• Messenger classes
Messengers to configure the model should inherit from G4VModelCommand.

The concrete trajectory model type should be used for the template param-
eter, e.g:
class G4MyCustomModelCommand

: public G4VModelCommand<G4TrajectoryDrawByParticleID> {

...

};

A number of general use templated commands are available in G4ModelCommandsT.hh.
• Factory class

A factory class responsible for the model and associated messenger cre-
ation must also be written. The factory should inherit from G4VModelFactory.
The abstract model type should be used for the template parameter, e.g:
class G4TrajectoryDrawByChargeFactory

: public G4VModelFactory<G4VTrajectoryModel> {

...

};

50

The model and associated messengers should be constructed in the Create
method. Optionally, a context object can also be created, with its own
associated messengers. For example:
ModelAndMessengers

G4TrajectoryDrawByParticleIDFactory::

Create(const G4String& placement, const G4String& name)

{

// Create default context and model

G4VisTrajContext* context = new G4VisTrajContext("default");

G4TrajectoryDrawByParticleID* model =

new G4TrajectoryDrawByParticleID(name, context);

// Create messengers for default context configuration

AddContextMsgrs(context, messengers, placement+"/"+name);

// Create messengers for drawer

messengers.push_back(new

G4ModelCmdSetStringColour<G4TrajectoryDrawByParticleID>

(model, placement));

messengers.push_back(new

G4ModelCmdSetDefaultColour<G4TrajectoryDrawByParticleID>

(model, placement));

messengers.push_back(new

G4ModelCmdVerbose<G4TrajectoryDrawByParticleID>

(model, placement));

return ModelAndMessengers(model, messengers);

}

The new factory must then be registered with the visualisation manager. This
should be done by overriding the G4VisManager::RegisterModelFactory
method in a subclass. See, for example, the G4VisManager implementation:

G4VisExecutive::RegisterModelFactories()

{

...

RegisterModelFactory(new G4TrajectoryDrawByParticleIDFactory());

}

I Trajectory Filtering

I.1 Creating a new trajectory filter model

New trajectory filters must inherit at least from G4VFilter. The models sup-
plied with the Geant4 distribution inherit from G4SmartFilter, which imple-
ments some specialisations on top of G4VFilter. The models implement these
pure virtual functions:

51

// Evaluate method implemented in subclass

virtual G4bool Evaluate(const T&) = 0;

// Print subclass configuration

virtual void Print(std::ostream& ostr) const = 0;

To use the new filter model directly in compiled code, simply register it with
the G4VisManager, e.g:

G4VisManager* visManager = new G4VisExecutive;

visManager->Initialise();

// Create custom model

MyCustomTrajectoryFilterModel* myModel =

new MyCustomTrajectoryFilterModel("custom");

// Configure it if necessary then register with G4VisManager

visManager->RegisterModel(myModel);

I.2 Adding interactive functionality

Additional classes need to be written if the new model is to be created and con-
figured interactively. The mechanism is exactly the same as that used to create
enhanced trajectory drawing models and associated messengers. See the filter
factories in G4TrajectoryFilterFactories for example implementations.

J Creating and using G4AttDef and G4AttValue objects.

G4AttDef and G4AttValue are C++ implementations of HepRep [4]. They
may be used to pass generic information to the visualisation system. Typically
they are required in concrete implementations of the methods GetAttDefs and
CreateAttValues in the base classes G4VTrajectory, G4VTrajectoryPoint,
G4VHit and G4VDigi. Utility classes G4AttDefStore and G4AttCheck are pro-
vided. For an example of their creation, see the concrete class G4Trajectory.
For an example of their access, checking and use, see G4VTrajectory::ShowTrajectory.

The user also may specify G4AttDefs and G4AttValues in G4VisAttributes.
The user is responsible for their memory management. G4AttValues may be
short lived (the G4VisAttributes class makes expendable copies when re-
quired) but the G4AttDefs must be long lived, for example, a data member, or
even a static data member, of the user class - see, for example, ExN04CalorimeterHit.
Alternatively, the user may make use of G4AttDefStore, as in G4Trajectory.

G4PhysicalVolumeModel also provides methods GetAttDefs and CreateCurrentAttValues,
which apply to the current volume.

52

// Get user G4Atts...

const std::map<G4String,G4AttDef>* userAttDefs = visAttribs.GetAttDefs();

if (userAttDefs) {

const std::vector<G4AttValue>* userAttValues = visAttribs.CreateAttValues();

...

delete userAttValues; // These must be deleted after use.

}

// Get solid’s G4Atts created by G4PhysicalVolumeModel...

G4PhysicalVolumeModel* pPVModel =

dynamic_cast<G4PhysicalVolumeModel*>(fpModel);

if (pPVModel) {

const std::map<G4String,G4AttDef>* solidAttDefs = pPVModel->GetAttDefs();

if (solidAttDefs) {

const std::vector<G4AttValue>* solidAttValues =

pPVModel->CreateCurrentAttValues(

);

...

delete solidAttValues; // These must be deleted after use.

}

}

Fig. J.1. How to access G4Atts.

If a graphics driver is capable of representing this generic information, it is
required to inspect the G4Att pointers of (a) the visualisation attributes, (b)
any object that has one of the above abstract interfaces (G4VTrajectory,
etc.) and (c) G4PhysicalVolumeModel when relevant. Figure J.1 shows some
example code from a PreAddSolid method.

The class G4AttHolder and utility routine G4VSceneHandler::LoadAtts are
provided to facilitate the loading of G4Atts onto an object for future use
(picking, etc.). The target object is an object of a class that publicly inher-
its G4AttHolder - see, e.g., SoG4Polyhedron in the Open Inventor driver.
LoadAtts is used as follows:

void G4OpenInventorSceneHandler::AddPrimitive(const G4Polyhedron& polyhedron)

{

SoG4Polyhedron* soPolyhedron = new SoG4Polyhedron(polyhedron);

LoadAtts(polyhedron, soPolyhedron);

...

A snippet from G4VSceneHandler::LoadAtts is shown in Figure J.2. G4AttHolder’s
destructor ensures proper clean-up of the G4AttValues by deleting them on
destruction of the user object.

References

[1] S. Agostinelli et al, Geant4, a simulation toolkit, Nuclear Instruments and
Methods in Physics Research, NIM A 506 (2003), 250-303.
See Geant4 Web page: http://cern.ch/geant4.

[2] The Geant4 User Guide for Application Developers, accessible from the

53

void G4VSceneHandler::LoadAtts(const G4Visible& visible, G4AttHolder* holder)

{

// Load G4Atts from G4VisAttributes, if any...

const std::map<G4String,G4AttDef>* vaDefs =

visible.GetVisAttributes()->GetAttDefs();

if (vaDefs) {

holder->AddAtts(visible.GetVisAttributes()->CreateAttValues(), vaDefs);

}

G4PhysicalVolumeModel* pPVModel =

dynamic_cast<G4PhysicalVolumeModel*>(fpModel);

if (pPVModel) {

// Load G4Atts from G4PhysicalVolumeModel...

const std::map<G4String,G4AttDef>* defs = pPVModel->GetAttDefs();

if (defs) {

holder->AddAtts(pPVModel->CreateCurrentAttValues(), defs);

}

}

...

Fig. J.2. How to load G4Atts into a user object.

Geant4 web page [1]. Of particular interest and usefulness is Section 7.1,
Built-in commands

[3] Introduction to Geant4 Visualization, Joseph Perl, Stanford Linear
Accelerator Center,
http://geant4.slac.stanford.edu/Presentations/vis/G4VisIntroduction.pdf.

[4] Joseph Perl, HepRep: a Generic Interface Definition for HEP Event Display
Representables, Web page: http://www.slac.stanford.edu/~perl/heprep

[5] The Geant4 Software Reference Manual, accessible from the Geant4 web
page [1].

[6] The Geant4 User Guide for Toolkit Developers, accessible from the Geant4

web page [1].

[7] HepRApp: HepRep browser Application,
http:/www.slac.stanford.edu/~perl/HepRApp.

[8] WIRED4: World-Wide Web Interactive Remote Event Display,
M.C. Coperchio et al., Comput. Phys. Comm. 110 (1998) 155. (See also:
http://wired.freehep.org).

[9] The FRED Event Display: an Extensible HepRep Client for GLAST,
M. Frailis and R. Giannitrapani, Computing in High Energy and Nuclear
Physics (CHEP03), La Jolla, CA, USA, March 2003
(See also http://arxiv.org/abs/cs.gr/0306031.)

[10] S. Tanaka, M. Kawaguti, DAWN for Geant4 Visualization, Proceedings of the
CHEP ’97 Conference, Berlin (Germany), April 1997.

54

