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We study coherently oscillating massive gravitons in the ghost-free bigravity theory. This coherent field
can be interpreted as a condensate of the massive gravitons. We first define the effective energy-momentum
tensor of the coherent massive gravitons in a curved spacetime. We then study the background dynamics
of the Universe and the cosmic structure formation including the effects of the coherent massive gravitons.
We find that the condensate of the massive graviton behaves as a dark matter component of the Universe.
From the geometrical point of view the condensate is regarded as a spacetime anisotropy. Hence, in our
scenario, dark matter is originated from the tiny deformation of the spacetime. We also discuss a production
of the spacetime anisotropy and find that the extragalactic magnetic field of a primordial origin can yield a
sufficient amount for dark matter.
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I. INTRODUCTION

The existence of gravitational waves was indeed con-
firmed by the direct detections [1,2], and their quantum
counterpart is called gravitons. The gravitons are defined
by perturbations around a background spacetime. The
effective energy-momentum tensor of the high-frequency
gravitons in general relativity (GR) was derived by
Isaacson [3,4] which enables us to treat the gravitons as
massless spin-2 particles whose energy and momentum
change the background geometry. Due to the nonlinear
features of the Einstein equations the effective energy-
momentum tensor cannot be straightforwardly defined.
The gravitons are well defined when their frequencies
(and their momenta) are high enough compared with the
curvature scale of the background and then the energy-
momentum tensor is defined via a non-local operation
which projects the nonlinear quantities of the gravitons
onto those in low-frequency modes. However, the low
energy states of gravitons, i.e., low frequency/momentum
modes of gravitons, should be ill defined in GR. This is not
the case when a graviton is massive.
Although GR is now widely accepted as a low-energy

effective theory of gravity, the question whether the graviton
is indeed massless or not has been long discussed (see [5–7]
for reviews and [8–10] for experimental constraints on the

graviton mass). The linear theory of the massive spin-2 field
was constructed by Fierz and Pauli in 1939 [11]. Since the
gravity must be represented by a nonlinear theory of the
metric tensor, the Fierz-Pauli theory requires an extension to
the nonlinear theory of themetric in order to obtain the theory
of the massive graviton. Generic nonlinear extension of the
Fierz-Pauli theory turns to be unstable, called the Boulware-
Deser ghost [12]. However, the ghost-free nonlinear massive
gravity was proposed by de Rham et al. in 2010 [13,14]
whichwas further extended into the bigravity theory [15] and
the multigravity theory [16]. In the bigravity theory or the
multigravity theory, the gravity is still a long-range force
because there exists a massless graviton in addition to the
massive graviton(s). In the present paper, we focus on the
bigravity theory which contains a massless graviton and a
massive graviton. The effective energy-momentum tensors
of both massless and massive gravitons are defined in the
similar way to the case of GR [17].
The bigravity theory has received much attentions related

to the discovery of dark energy and dark matter. If the
graviton mass is extremely small such asm ∼ 10−33 eV, the
present accelerating expansion of the Universe can be
explained by the tiny graviton mass [18–25]. Other range
of the mass may explain the origin of dark matter.
For instance, dark matter is originated from a matter field
in the “dark sector” when m≳ 10−27 eV [25,26] whereas
the massive graviton itself is a candidate of dark matter
when 10−4 eV≲m≲ 107 eV [17] (see also [27,28]).
The first suggestion to dark matter in the ghost-free

bigravity theory was given by [22] which found that the
anisotropy of the spacetime behaves like a dust fluid as for
the contribution to the Friedmann equation. However, the
following questions have not been cleared: Why does the
anisotropy behave as a nonrelativistic fluid? Whether or not
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can it explain other phenomena of dark matter, e.g., the
cosmic structure formation? In the present paper, thus, we
explore those questions and find that the dark matter
component can be regarded as the “condensate” of the
massive graviton and it can give local structures of the
Universe.
We shall focus on the case when the massive graviton is

dominated by the zero momentum mode; that is, the
configuration of the massive graviton is almost homo-
geneous. This configuration can be interpreted as the con-
densate of the massive graviton which we call the massive
graviton condensate. Contrary to the case of the massless
graviton, the zero momentum mode of the massive graviton
shows a coherent oscillation due to themass term. Therefore,
we can define the energy-momentum tensor of the zero
momentum mode of the massive graviton as long as the
graviton mass is larger than the curvature scale of the
background spacetime. We find that the zero momentum
modeof themassivegravitongives a darkmatter contribution
to the Fridemann equation and the tiny fluctuations around
the zero momentum mode provide the cosmic structure
formation. The constraint on the graviton mass to be dark
matter is the same as that obtained in [17], i.e., 10−4 eV≲
m≲ 107 eV, in general.
From the geometrical aspect the zero momentum mode

of the massive graviton represents the anisotropy of the
spacetime. The Universe filled with the zero momentum
massive gravitons is interpreted as a homogeneous space-
time. The anisotropic component of the Universe acts as
dark matter which is indeed shown by [22]. The metric
perturbations around the homogeneous spacetime can
provide the structures of the Universe.
The tiny anisotropy of the Universe can be produced

when there is a coherent field with an anisotropic stress.
A possible candidate of the source is the extragalactic
magnetic field of a primordial origin (see e.g., [29–32]).
Recent blazar observations implies the existence of the
extragalactic magnetic field whose lower bound of the
strength B0 is about 10−17 G [33–39]. This magnetic field
could be produced in the early Universe [40,41]. We will
show that the coherent magnetic field can yield a sufficient
amount of the massive graviton condensate in order to
explain the present abundance of dark matter.
The paper is organized as follows. After a brief intro-

duction about the ghost-free bigravity theory in Sec. II, we
define the effective energy-momentum tensor of the coher-
ent massive graviton in Sec. III. The homogeneous con-
figuration of φμν is studied in Sec. IV which reproduces
the result obtained by [22] from a field theoretical aspect.
We then study the perturbations around the homogeneous
mode in Sec. V. We show that the massive graviton
condensate is indeed a viable candidate of dark matter.
In Sec. VI, a production of the condensate to be dark matter
is discussed. We give a summary and some discussions in
Sec. VII. In Appendix A, we summarize the definitions of

the energy-momentum tensors of the high-frequency mas-
sive and massless gravitons in a curved spacetime.
We briefly study the Bianchi I universe in bigravity in
Appendix B. In Appendix C, we detail the calculations
about the inhomogeneous modes of the massive graviton
condensate.

II. BIGRAVITY THEORY

The action of the bigravity theory proposed by Hassan
and Rosen [15] is given by

S ¼ 1

2κ2g

Z
d4x

ffiffiffiffiffiffi
−g

p
RðgÞ þ 1

2κ2f

Z
d4x

ffiffiffiffiffiffi
−f

p
RðfÞ

−
m2

κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
Uðg; fÞ þ S½m�; ð2:1Þ

where gμν and fμν are two dynamical metrics, and RðgÞ and
RðfÞ are their Ricci scalars. The parameters κ2g ¼ 8πG and
κ2f ¼ 8πG are the corresponding gravitational constants,
while κ is defined by κ2 ¼ κ2g þ κ2f.
The ghost-free interaction term between the two metrics

is given by

Uðg; fÞ ¼
X4
k¼0

bkUkð
ffiffiffiffiffiffiffiffiffiffi
g−1f

q
Þ; ð2:2Þ

where fbkgðk ¼ 0 − 4Þ are coupling constants and the
4 × 4 matrix

ffiffiffiffiffiffiffiffiffiffi
g−1f

p
¼ ð

ffiffiffiffiffiffiffiffiffiffi
g−1f

p
Þμν is defined by� ffiffiffiffiffiffiffiffiffiffi

g−1f
q �

μ

ρ

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �
ρ

ν

¼ gμρfρν; ð2:3Þ

while Uk are the elementary symmetric polynomials of the
eigenvalues of the matrix

ffiffiffiffiffiffiffiffiffiffi
g−1f

p
.

Just for simplicity, we assume that matter is coupled only
to the g-metric

S½m� ¼ S½m�
g ðg;ψgÞ: ð2:4Þ

We shall briefly discuss the case when other types of matter
fields are introduced in Sec. VII and Appendix A. Our
conclusion is not changed even for those cases.
The fully nonlinear equations of motion are given by

GμνðgÞ ¼ κ2gðTμν
ðintÞ þ TμνÞ; ð2:5Þ

GμνðfÞ ¼ κ2fT
μν
ðintÞ; ð2:6Þ

whereTμν is thematter energy-momentum tensorwhileTμν
ðintÞ

and T μν
ðintÞ are derived by the variations of the interaction term

U with respect to gμν and fμν, respectively. The contracted

Bianchi identity and the matter conservation law∇μ

ðgÞ
Tμν ¼ 0

lead to
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∇μ

ðgÞ
TðintÞμν ¼ 0; ∇μ

ðfÞ
T ðintÞμν ¼ 0; ð2:7Þ

where ∇μ

ðgÞ
and ∇μ

ðfÞ
are the covariant derivatives with respect

to gμν and fμν, respectively.
There is a particular vacuum solution in which two

spacetimes are homothetic such that

fμν ¼ ξ20gμν; ð2:8Þ
where ξ0 is a root of the quartic equation

Λg ¼ ξ20Λf; ð2:9Þ

with

Λg ≔ m2
κ2g
κ2

ðb0 þ 3b1ξ0 þ 3b2ξ20 þ b3ξ30Þ; ð2:10Þ

Λf ≔ m2
κ2f
κ2

ðb4 þ 3b3ξ−10 þ 3b2ξ−20 þ b1ξ−30 Þ: ð2:11Þ

For the homothetic solutions, we obtain

Tμν
ðintÞ ¼ Λggμν; T μν

ðintÞ ¼ Λffμν; ð2:12Þ
thus, the constants Λg and Λf are effective cosmological
constants for the g-spacetime and the f-spacetime, respec-
tively. In what follows, we assume

Λg ¼ Λf ¼ 0; ð2:13Þ
because we are interested not in dark energy but in dark
matter. The equations for the homothetic spacetime are
exactly reduced into those in GR which indicates that the
homothetic solution contains only the massless graviton
modes. The degrees of freedom of the massive graviton
mode do not exist in the homothetic solution.

III. ENERGY-MOMENTUM TENSOR OF
COHERENT GRAVITONS

In this section, we derive the effective energy-momentum
tensor of the coherently oscillating gravitons focusing on the
cosmological situation. General discussion about the energy-
momentum tensor of gravitons is given in Appendix A.
As is well known in GR, when we discuss some structure

produced by high frequency graviational waves, we have to
separate the high frequency modes from smoothed back-
ground. The length or/and time scale associated with the
gravitational waves should be sufficiently shorter than
the typical scale of the smooth background [3,4]. Under
this setting, the energy-momentum tensor of gravitational
waves is defined by the nonlinear terms of the perturbed
Einstein equation averaged over a length or/and time scale.
We then obtain the propagating equation for the gravita-
tional waves and the Einstein equation for the background
including the backreaction from gravitational waves. We
shall apply this procedure to the cosmological setting with

the coherently oscillating massive gravitons. In the coher-
ent case, we have to take care which we perform a spatial
average or a time average.
We consider the homogeneous universe with tiny metric

perturbations

gμν ¼ gðhomÞ
μν ðtÞ þ δgðinhÞμν ðt;xÞ;

fμν ¼ fðhomÞ
μν ðtÞ þ δfðinhÞμν ðt;xÞ; ð3:1Þ

where gðhomÞ
μν ; fðhomÞ

μν are the metrics of the homogeneous

spacetime and δgðinhÞμν ; δfðinhÞμν represent the inhomogeneous
perturbations. Since we are interested in the coherent
gravitons, the time coordinate has to be appropriately
chosen in order that the t ¼ constant hypersurfaces are
given by almost homogeneous spaces. Then, on each
hypersurface, the homogeneous parts can be obtained by

gðhomÞ
μν ¼ hgμνiV; fðhomÞ

μν ¼ hfμνiV; ð3:2Þ
where h� � �iV is the spatial average where the averaged
length scale is assumed to be much lager than the scale of
the inhomogeneities. The dynamics of the homogeneous
spacetime in bigravity was studied in [22]. Up to the linear
perturbation theory, one may directly analyze the dynamics
of the perturbations under the ansatz (3.1). In the present
paper, however, we consider another separation of the
metrics rather than (3.1). We first summarize the strategy of
our calculations and the explicit analysis are given in
Sec. IV and Sec. V.
The bigravity theory contains two types of dynamical

degrees of freedom, the massless graviton and the massive
graviton. First, we separate the metrics gμν and fμν into the
massless mode and the massive mode. Up to the linear
perturbations around the homothetic background, we can
introduce the mass eigenstates of the gravitons. However,
the definitions of the massless mode and the massive mode
of the metrics would be ambiguous in the nonlinear orders
in which the gravitons are no longer diagonalized. (see
discussions in [28,42]). Nevertheless, the massless mode
and the massive mode are still meaningful if the perturba-
tive expansion is viable. Therefore, we only consider the
situation that the spacetimes are well approximated by the
homothetic solution.
We focus on the late stage of the Universe such that

m2 ≫ H2; ð3:3Þ

whereH is the Hubble expansion rate in which the massive
graviton has too heavy mass to be excited. Hence, the
amplitude of the massive graviton is suppressed and then
the metrics gμν and fμν are approximated by the homothetic
solution (We recall that the homothetic solution give a
spacetime without the excitation of the massive graviton).

We then perturbatively treat the massive mode gðmassiveÞ
μν

which is defined by the difference between two metrics
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gðmassiveÞ
μν ¼ α

1þ α
ðgμν − ξ−20 fμνÞ; ð3:4Þ

where α ≔ ξ20κ
2
g=κ2f and we assume jgðmassiveÞ

μν j ≪ 1. On the
other hand, the massless mode is given by

gðmasslessÞ
μν ¼ 1

1þ α
ðgμν þ αξ−20 fμνÞ: ð3:5Þ

As a result, the metrics gμν and fμν can be decomposed into
the massless mode and the massive mode as follows:

gμν ¼ gðmasslessÞ
μν þ gðmassiveÞ

μν ;

fμν ¼ ξ20ðgðmasslessÞ
μν − α−1gðmassiveÞ

μν Þ: ð3:6Þ

We further decompose the massless and the massive
modes into the low-frequency modes and the high-
frequency modes, respectively:

gðmasslessÞ
μν ¼ gμν

ð0Þ þ hμν
Mpl

;

gðmassiveÞ
μν ¼ Mμν þ

φμν

MG
; ð3:7Þ

where the high-frequency modes hμν and φμν are normal-
ized by two mass scales

Mpl ≔
ξ0κ̄

κgκf
; MG ≔

κ̄

κ2g
¼ Mpl

α1=2
; ð3:8Þ

with κ̄2 ¼ κ2g þ ξ−20 κ2f. The low-frequency modes are
defined by

gμν
ð0Þ ¼ hgðmasslessÞ

μν iT; Mμν ¼ hgðmassiveÞ
μν iT ð3:9Þ

where h� � �iT is the time average.1 over some time interval T
which is assumed to be

m−1 ≪ T ≪ H−1: ð3:10Þ

Then, the metric tensors gμν and fμν are divided into four

components: gμν
ð0Þ

;Mμν; hμν and φμν. The meaning of each
variables is summarized in Table I.
We briefly mention the relation between two separations

(3.1) and (3.7). The variables gμν
ð0Þ

;Mμν; hμν and φμν are
divided into the homogeneous parts and the inhomo-
geneous parts

gμν
ð0Þ ¼ ḡμνðtÞ þ δgμνðt;xÞ;

Mμν ¼ M̄μνðtÞ þ δMμνðt;xÞ;
hμν ¼ hμνðt;xÞ;
φμν ¼ φ̄μνðtÞ þ δφμνðt;xÞ; ð3:11Þ

where the homogeneous parts are defined via the spatial
average h� � �iV as with (3.2). We then obtain

gðhomÞ
μν ¼ ḡμν þ M̄μν þ

φ̄μν

MG
; ð3:12Þ

δgðinhÞμν ¼ δgμν þ δMμν þ
hμν
Mpl

þ δφμν

MG
: ð3:13Þ

It is worth noting that

hhμνiV ¼ 0; hφμνiV ¼ φ̄μν ≠ 0; ð3:14Þ

because hμν is massless while φμν is massive. The zero
momentum mode of the massless graviton cannot be high-
frequency whereas that of the massive graviton can be
high-frequency due to the coherent oscillation. Since we
have assumed that the configuration of the fields are almost
homogeneous, the massive graviton is dominated by the
zero momentum mode φ̄μν, that is,

jφ̄μνj ≫ jδφμνj: ð3:15Þ

We call this configuration of φμν the massive graviton
condensate because a large fraction of φμν occupies the
single zero momentum state φ̄μν.
In the separation (3.1), the “backgrounds,” i.e., the

homogeneous modes gðhomÞ
μν and fðhomÞ

μν , are obtained by
the spatial average whereas the “background” in (3.7), i.e.,

TABLE I. The separations of the metric tensors.

Low-frequency High-frequency

Massless mode gðmasslessÞ
μν gμν

ð0Þ ¼ ḡμν þ δgμν
hμν=Mpl

Massive mode gðmassiveÞ
μν Mμν ¼ M̄μν þ δMμν φμν=MG ¼ φ̄μν=MG þ δφμν=MG

Homogeneous mode gðhomÞ
μν ḡμν þ M̄μν φ̄μν=MG

Inhomogeneous mode δgðinhÞμν δgμν þ δMμν hμν=Mpl þ δφμν=MG

1Alternatively, the low-frequency projection operator can be
the oscillation average, i.e., the time average over one coherent
oscillation T ¼ 2π=m.
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the low-frequency massless mode gμν
ð0Þ

, is given by the time
average and then it can be inhomogeneous. An advantage
of the separation (3.7) is that the high-frequency “pertur-
bations” hμν and φμν can be treated as tensor fields,

propagating on the low-frequency “background” gμν
ð0Þ

, with
well-defined energy-momentum tensors.
The amplitude of the massive graviton is small so we

have the inequalities

jMμνj; jφμνj=MG ≪ jgμν
ð0Þ j: ð3:16Þ

The amplitude of hμν=Mpl is also small since hμν is a part of
the inhomogeneity. As a result, we have three small
quantities Mμν; hμν and φμν which can be treated as the

tensors with respect to the “background” metric gμν
ð0Þ

. We
adopt the notation such that the suffices onMμν; hμν and φμν

are raised and lowered by gμν
ð0Þ
. However, the inequality

(3.16) does not suggest that the backreaction of φμν to gμν
ð0Þ

is
also small. The orders of magnitude of the Einstein tensor

of gμν
ð0Þ

and the energy-momentum tensor of φμν, which we

denote Gμν

ð0Þ
and Tμν

G , are estimated as

jGμν

ð0Þ
j ∼H2; jTμν

G j ∼m2jφ2
μνj; ð3:17Þ

where Tμν
G is explicitly defined by (3.22) below. Thus, if

jφμνj=MG ∼H=m ≪ 1, the massive graviton φμν can be a
dominant component of the Universe. In what follows, we
assume the massive graviton is the dominant component.
Just for simplicity, we consider the case

hμν ¼ 0: ð3:18Þ

This is a specific case, but this assumption is reasonable for
our interest since the massless gravitons, i.e., the gravita-
tional waves, are sub-dominant in the Universe. To discuss
the dynamics of the Universe, the effect of the massless
gravitons can be ignored.
To discuss dynamics of the massive graviton conden-

sate φμν, it is sufficient to include the leading and
subleading contributions associated with the adiabatic
expansion in terms of m−1.2 Up to subleading order,
we can ignore Mμν since the amplitude of Mμν is sup-
pressed by m−2 which is the sub-subleading order (see
Appendix B). The low-frequency massive modeMμν gives
only negligible contributions.

Ignoring hμν andMμν, the g-spacetime metric is given by

gμν ¼ gμν
ð0Þ þ φμν

MG
: ð3:19Þ

The equations for gμν
ð0Þ

is given by the time-averaged
Einstein equation

Gμν
ð0Þ

¼ 1

M2
pl

ðTμν
ð0Þ

þ hTμν
G iTÞ; ð3:20Þ

where the “effective” energy-momentum tensors of the

matter Tμν
ð0Þ

and that of the massive gravitons Tμν
G are defined

by the relation

�
Tμν −

1

2
gμνT

�
T
¼ Tμν

ð0Þ
−
1

2
gμν
ð0Þ

Tαβ

ð0Þ
gαβ
ð0Þ

; ð3:21Þ

and

Tμν
G ¼ −

�
gμα
ð0Þ

gνβ
ð0Þ

−
1

2
gμν
ð0Þ

gαβ
ð0Þ�

δRαβ

ð2Þ
½φ�

−
m2

eff

8
ð4φμαφν

α − gμν
ð0Þ

φαβφαβÞ þOðφ3Þ: ð3:22Þ

The equation of motion for φμν is

δRμν

ð1Þ
½φ� þm2

eff

4
ð2φμν þ φα

αgμν
ð0Þ Þ þ hδEμν

ð2Þ
ihigh þOðφ4Þ

¼ 1

MG

�
Tμν −

1

2
gμνT

�
high

; ð3:23Þ

where the effective graviton mass meff is defined by

m2
eff ≔ m2

κ̄2

κ2
ðb1ξ0 þ 2b2ξ20 þ b3ξ30Þ; ð3:24Þ

and δEμν

ð2Þ
include the terms of quadratic in φμν which is

explicitly given by

δEμν

ð2Þ
¼ α − 1

α1=2Mpl
δRμν

ð2Þ
½φ� þ m2

eff

16α1=2Mpl

× ½3ð1 − αÞgμν
ð0Þ

φαβφ
αβ þ 4fð1 − β2Þα − β2gφμνφ

α
α

þ 2fð1þ 2β2Þα − ð3 − 2β2Þαgφμ
αφνα�;

ð3:25Þ

with

β2 ¼
b2ξ20 þ b3ξ30

b1ξ0 þ 2b2ξ20 þ b2ξ30
: ð3:26Þ

The symbol h� � �ihigh denotes a high-frequency projection
operator which is given by

2More precisely, we use the dimensionless parameter H=m for
the adiabatic expansion. We just refer to m−1 as the order of the
expansion.
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hXihigh ¼ X − hXiT; ð3:27Þ

for a quantity X. The functionals δRμν

ð1Þ
and δRμν

ð2Þ
are the first

order and the second order of the perturbed Ricci curvatures
which are explicitly shown in Appendix A.
The amplitude of the coherent oscillation decreases due

to the Hubble friction which finally cause the decreasing of
the energy density of the massive graviton condensate.
To solve (3.23), we have to retain terms of linear in first
derivatives of the metric gμν

ð0Þ
.3 On the other hand, we may

ignore terms of higher orders of derivatives of gμν
ð0Þ

which are
sub-subleading order contributions; thus, the covariant
derivatives commute

∇½α
ð0Þ

∇β�
ð0Þ

φμν ≈ 0; ð3:28Þ

where ∇μ

ð0Þ
is the covariant derivative with respect to gμν

ð0Þ
.

Note that the quadratic terms δEμν

ð2Þ
cannot be ignored.

For the homogeneous ansatz, the Friedmann equation
schematically reads

H2 ∼
1

M2
pl

m2φ2 þOðφ3Þ; ð3:29Þ

when the massive graviton is the dominant component
of the Universe (see Sec. IV for the explicit expressions).
The quadratic term in (3.23) is then

δEμν

ð2Þ
∼

m2

Mpl
φ2 ∼Hmφ; ð3:30Þ

which yields a comparable effect to the first derivative of
the metric. Therefore, we should solve the nonlinear
differential equation (3.23) to discuss the dynamics of
the coherent massive graviton, in general. However, we
assume the Z2 symmetry for the self-interactions of the
massive graviton: the interaction terms are invariant under
the Z2 transformation φμν → −φμν, it prohibits appearance

of δEμν

ð2Þ
and then the basic equations become much simpler.

The Z2 symmetry is realized by supposing the symmetry of
the gravitational action under the replacement

gμν ↔ fμν; ð3:31Þ

which is realized when

κg ¼ κf; bi ¼ b4−i; ði ¼ 0 − 4Þ: ð3:32Þ
In this case, ξ0 ¼ 1 is always a solution to the equa-
tion (2.9). For the branch ξ0 ¼ 1, clearly from the definition
of the massive mode, the symmetry (3.31) realizes the Z2

symmetry of the massive graviton. Indeed, the parameters
(3.32) yield α ¼ 1; β2 ¼ 1=2 and then

δEμν

ð2Þ ≡ 0: ð3:33Þ
As a result, the equation for the massive mode is linear
since the cubic terms can be ignored for our calculations.4

By using the normalization of the mass parameter m, we
can always set

b1 þ 2b2 þ b3 ¼ 1; ð3:34Þ

in which we obtain

meff ¼ m; ð3:35Þ

thus, the mass parameter m indeed corresponds to the
graviton mass in the branch ξ0 ¼ 1. We shall use this
normalization in what follows. Combining this normaliza-
tion with (2.13) and (3.32), the coupling constants bi are
expressed by only b2 as

b0 ¼ b4 ¼ b2 − 2; b1 ¼ b3 ¼
1

2
− b2: ð3:36Þ

The effective energy-momentum tensor Tμν

ð0Þ
is obtained

from the smoothing of the true energy-momentum tensor
Tμν. Even if we assume the true energy-momentum tensor

is conserved, i.e., ∇μ

ðgÞ
Tμν ¼ 0, the smoothed energy-

momentum tensor is not conserved, in general, since the
energy of the matter can be converted to the one of the
graviton and vice versa via the equation (3.23). The
contracted Bianchi identity of (3.20) reads the smoothed
total energy-momentum tensor is conserved:

∇μ

ð0Þ
ðTμν
ð0Þ

þ hTμν
G iTÞ ¼ 0: ð3:37Þ

However, in the late stage of the Universe, the massive
gravitons must be decoupled from the matter due to the
weakness of the gravitational interaction, i.e.,

1

MG

�
Tμν −

1

2
gμνT

�
high

≈ 0: ð3:38Þ

3When φμν is treated as a particle, the graviton may be treated
as a freely propagating on the flat background since the particle
do not feel the effect of the curvature in a small scale. The particle
dark matter scenario in bigraivty has been discussed in
[17,27,28].

4The parameters α and β2 do not appear at linear order except
for the right-hand side of Eq. (3.23) (we note MG ¼ α−1=2Mpl).
As a result, the existence of the Z2 symmetry (3.32) does not
change the theory up to the linear order except for the coupling
strength to the matter.
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Then, the energy-momentum tensors are individually
conserved:

∇μ

ð0Þ
Tμν
ð0Þ

≈ 0; ð3:39Þ

∇μ

ð0Þ
hTμν

G iT ≈ 0: ð3:40Þ

The conservation of Tμν
G is directly confirmed by using

the equation of motion. For the freely propagating grav-
itons (3.38), the equation (3.23) is reduced into

ð∇α

ð0Þ
∇α
ð0Þ

−m2
effÞφμν ≈ 0; ð3:41Þ

∇μ

ð0Þ
φμν ≈ 0; φα

α ≈ 0: ð3:42Þ

Using these equations, one can find

∇μ

ð0Þ
Tμν
G ≈ 0; ð3:43Þ

which is a sufficient condition on the conservation of the
graviton energy-momentum tensor (3.40). We notice,
however, that two conservations (3.40) and (3.43) are
not equivalent since (3.40) reads that the smoothed quantity
of Tμν

G is conserved. Equation (3.40) has information only
about macroscopic behavior of φμν while Eq. (3.43) [or
(3.41) and (3.42)] involves information about microscopic
behavior.
In the following sections, we will show that there exists a

solution such that φμν behaves as dark matter which
explains not only the background dynamics of the
Universe but also the structure formation. Since we have
assumed the inhomogeneities are smaller than the homo-
geneous modes, we shall linearize the expressions in terms
of the inhomogeneities. For instance, the graviton energy-
momentum tensor is expressed as

Tμν
G ¼ T̄μν

G ðtÞ þ δTμν
G ðt;xÞ; ð3:44Þ

with, in order of magnitude,

jδTμν
G ðt;xÞj ∼ jφ̄αβ∂2δφμνj: ð3:45Þ

IV. MASSIVE GRAVITON CONDENSATE AS
DARK MATTER

In this section, we consider the homogeneous mode ḡμν
and φ̄μν. We assume the flat Friedmann-Lemaître-
Robertson-Walker (FLRW) background

ḡμνdxμdxν ¼ −dt2 þ a2½dx2 þ dy2 þ dz2�; ð4:1Þ

and a simple ansatz for φ̄μν

φ̄μν ¼ diag½0; 4a2φ̄;−2a2φ̄;−2a2φ̄�; ð4:2Þ

where a and φ̄ are functions of t. Note that the ansatz (4.2)
trivially satisfies the constraints (3.42).
The massive graviton originally appears from the metric

perturbations. The present set up (4.2) corresponds to
considering the axisymmetric Bianchi type I universe in
bigravity which we will detail in Appendix B (see [22] for
more details). One may worry about that ḡμν should be also
given by the axisymmetric Bianchi type I universe rather
than FLRW universe (4.1). However, as we will see just
below, the averaged graviton energy-momentum tensor is
indeed isotropic and (4.2) is consistent with (4.1) (see also
[43]). Furthermore, even if one replaces (4.1) with the
Bianchi-type universe, its anisotropy decreases as a−6 and
then the anisotropic part in ḡμν is quickly ignored.
The equation (3.41) including up to the first derivatives

of the metric reads

̈φ̄þ 3H _̄φþm2φ̄ ¼ 0; ð4:3Þ

where H ¼ _a=a. By using (4.3), we find

T̄tt
G ¼ 3ð _̄φ2 þm2φ̄2Þ;

T̄xx
G ¼ a−2ðm2φ̄2 − _̄φ2Þ;

T̄yy
G ¼ T̄zz

G ¼ 7a−2ðm2φ̄2 − _̄φ2Þ; ð4:4Þ

and other components are zero. The approximative solution
to (4.3) is

φ̄ ¼ φ̄0

a3=2
cos½mtþ θ0� ð4:5Þ

where φ̄0 and θ0 are integration constants. Since the initial
phase θ0 is not important for the discussion, we set θ0 ¼ 0.
After averaging over the time interval T ≫ m−1, the
graviton energy-momentum tensor is calculated as

hT̄μν
G iT ¼ diag½ρ̄G; 0; 0; 0� ð4:6Þ

where the energy of the massive graviton condensate is

ρ̄G ¼ 3

a3
m2φ̄2

0 ð4:7Þ

Therefore, the massive graviton condensate behaves as a
dust fluid. This guarantees the ansatz (4.1).
To explain the abundance of dark matter, the amplitude

of φ̄ is required to be

φ̄ ∼Mpl
H0

m
; ð4:8Þ
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where H0 is the present Hubble parameter. Since the
physical spacetime is given by (3.19), the Universe is
filled with the coherent “gravitational waves” φμν=Mpl

whose dimensionless amplitude and the frequency are

jφμν=Mplj ∼ 10−29
�
10−4 eV

m

�
; ð4:9Þ

f ∼ 1011
�

m
10−4 eV

�
Hz: ð4:10Þ

The oscillations have too small amplitude and too high
frequency and thus there should be no constraint on the
existence of φμν at present.

V. COSMIC STRUCTURE FORMATION

To study the cosmic structure formation, we then
introduce small inhomogeneity to the metric and the
massive graviton φμν. Note that the low-frequency “back-

ground” gμν
ð0Þ

is not necessary to be homogeneous (see

(3.11). We treat gμν
ð0Þ

including the inhomogeneity δgμν as the
low-frequency massless mode which is verified as long as
the momentum of the inhomogeneity is smaller than the
graviton mass:

k2

a2
≪ m2; ð5:1Þ

where k is the comoving momentum of the inhomogeneity
defined by (5.16) later.
For the calculations, we use the adiabatic expansion in

terms of the graviton mass inverse m−1 (see Section 2.5 in
[44] for calculations in the case of the scalar condensate and
[45] for the vector case). We set the orders of both ḡμνðtÞ
and δgμνðt;xÞ as Oðm0Þ. Since the time derivatives acting
on the low-frequency modes do not change the order of
magnitude m−1, i.e., ∂=∂t ¼ Oðm0Þ, the Friedmann equa-
tion leads to ρ̄G ¼ Oðm0Þ. Hence, the homogeneous mode
of the massive graviton φ̄μν is of order Oðm−1Þ. On the
other hand, the amplitude of the inhomogeneous mode of
the massive graviton δφμν is of order Oðm0Þ as we will
show later.
To evaluate the inhomogeneous parts of Tμν

G the coherent
background including the subleading order is required
which is given by

φ̄ ¼ φ̄1 cos½mt� þ φ̄2 sin½mt� þOðm−3Þ; ð5:2Þ

where φ̄1, φ̄2 are slowly varying functions with

φ̄1 ¼
φ̄0

a3=2
¼ Oðm−1Þ; φ̄2 ¼ Oðm−2Þ; ð5:3Þ

To determine the explicit form of φ̄2 we need to solve the
equation (4.3) up to the order Oðm−1Þ; however, the
equation (4.3) is valid up to the order Oðm0Þ.
Nevertheless, the explicit form of φ̄2 is not necessary to
evaluate δTμν

G .
Since we take the adiabatic expansion in terms of not

k=m but H=m, the spatial derivatives do or do not change
the order m−1 depending on the scales of the inhomoge-
neities. For the large scales such that

k2

a2
≪ mH; ð5:4Þ

the spatial derivatives acting on the variables do not change
the order of m−1, i.e.,

k2 ¼ Oðm0Þ; ð5:5Þ

in which the consistency of the Einstein equation leads to

hδTμν
G iT ¼ Oðm0Þ: ð5:6Þ

On the other hand, for the small scales

k2

a2
≳mH; ð5:7Þ

the order of k is

k2 ¼ OðmÞ: ð5:8Þ

Then, the graviton energy-momentum tensor is evaluated as

hδTμν
G iT ¼ Oðm1Þ: ð5:9Þ

As we will show, this classification of the scales corre-
sponds to the scales beyond or below the Jeans scale.
The graviton mass should bem≳ 10−4 eV since we have

not detected any deviations from the Newtonian gravita-
tional law in the laboratory scales.5 In that case, the scale
a=k ∼ ðmHÞ−1=2 is quite small compared with the struc-
tures of the Universe. Therefore, the case (5.7) is irrelevant
to the cosmic structure formation. Nevertheless, we shall
discuss both scales (5.4) and (5.7), for completeness.
Furthermore, the discussion about the small scale (5.7)
will make the properties of the massive graviton conden-
sate clear.
We have ignored sub-subleading terms to derive the

equations (3.41) and (3.42). Supposing δφμν is of order
Oðm0Þ, these equation showing the order of errors explic-
itly are written as

5The constraints are obtained from the linearized theory. The
precise constraints on the nonlinear bigravity theory are subject to
discussion.
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ð∇
ð0Þ

α∇
ð0Þ

α −m2Þφμν ¼ 0þOðm0Þ; ð5:10Þ

∇
ð0Þ

μφ
μν ¼ 0þOðm−1Þ; ð5:11Þ

φα
α ¼ 0þOðm−2Þ: ð5:12Þ

The corrections to the equations come from the approx-
imations Eqs. (3.28) and (3.38) as well as the nonlinear
quantities of φμν. It is worth noting that, as long as the
expressions are linear in inhomogeneities, the accuracy of
the calculations are same in both cases (5.4) and (5.7). As
for the graviton energy-momentum tensor, although we
have ignored higher-order corrections to δTμν

G such as
m2φ̄3δφ, they are of order Oðm−1Þ. Up to the order
Oðm0Þ, the higher-order terms are negligible.
In the standard cosmological perturbation theory, general

perturbations can be decomposed into scalar-type, vector-
type, and tensor-type perturbations and they are decoupled
at the linear order due to the spatial homogeneity and
isotropy of the background. In the present case, the back-
ground configuration φ̄μν breaks the spatial rotational
symmetry and then the different modes could couple in
the scalar-vector-tensor decomposition (see [46] for per-
turbations around the anisotropic universe). However, there
still exists the rotational symmetry in the y–z plane. The
perturbations can be decomposed into the even parity
perturbations and the odd parity perturbations associated
with the rotation in the y–z plane:

δgμν ¼ δgðevenÞμν þ δgðoddÞμν ; ð5:13Þ

δφμν ¼ δφðevenÞ
μν þ δφðoddÞ

μν ; ð5:14Þ

where explicit forms of perturbations are shown in
Appendix C. Furthermore, due to the spatial translation
symmetry of the background all variables can be trans-
formed into the momentum space, e.g.,

ϕðt;xÞ → ϕðtÞeiðkxxþkyyþkzzÞ;

and the different momentum modes do not couple.
Henceforth, we use variables in the momentum space and
the notation

k2∥ ¼ k2y þ k2z ; ð5:15Þ

k2 ¼ k2x þ k2y þ k2z : ð5:16Þ
For the calculations, we decompose the perturbations

into the odd parity perturbations and the even parity
perturbations. However, to clarify the physical meaning
of the results, we shall divide the odd parity perturbations
and the even parity perturbations into the scalar-type, the
vector-type, and the tensor-type components. We define

three-dimensional harmonic scalar YS, vectors Yi
V , Y

i
V , and

tensors Yij
T , Y

ij
T which satisfy

∂2YS ¼ −k2YS;

∂2Yi
V ¼ −k2Yi

V; ∂2Yi
V ¼ −k2Yi

V ;

∂2Yij
T ¼ −k2Yij

T ; ∂2Yij
T ¼ −k2Yij

T ; ð5:17Þ
and

∂iYi
V ¼ ∂iYi

V ¼ 0; ∂iY
ij
T ¼ ∂iY

ij
T ¼ 0;

Yi
T i ¼ Yi

T i ¼ 0; ð5:18Þ

where ∂2 ¼ ∂i∂i and i; j ¼ ðx; y; zÞ. The indices i, j are
raised and lowered by δij and δij. The quantities YS, Yi

V , Y
ij
T

are even parity quantities associated with the two dimen-
sional rotation in the y–z plane while Yi

V , Y
ij
T are odd parity

quantities. The suffixes S, V, and T are attached to classify
the quantities into the scalar, the vector, and the tensor types
associated with the three dimensional rotation. We further
introduce the quantities as

Yi
S ¼ −

1

k
∂iYS; ð5:19Þ

Yij
S ¼ k−2

�
∂i∂j −

1

3
∂k∂kδ

ij

�
YS; ð5:20Þ

Yij
V ¼ −

1

k
∂ðiYjÞ

V ; ð5:21Þ

Yij
V ¼ −

1

k
∂ðiYjÞ

V ; ð5:22Þ

then we obtain nine harmonics which are summarized in
Table II.
Using the gauge condition (see Appendix C for details),

the perturbations for the low-frequency mode δgμν can be
given by

δgevenμν ¼
�−2ΦYS −aBVYVj

� 2a2ðΨYSδij þHTYTijÞ

�
; ð5:23Þ

δgoddμν ¼
�
0 −aBVYVj

� 2a2HTYTij

�
; ð5:24Þ

where Φ, Ψ, BV , HT , BV , HT are functions of t.

TABLE II. The classifications of the even parity perturbations
and the odd parity perturbations.

Scalar Vector Tensor

Even parity YS, Yi
S, Y

ij
S Yi

V , Y
ij
V Yij

T
Odd parity None Yi

V , Y
ij
V Yij

T
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We will calculate the perturbed graviton energy-
momentum tensor in the following subsections. In the
momentum space, the perturbed graviton energy-momen-
tum tensor is given by the form

hδTðevenÞ
G

μνiT

¼
 ðδρG − 2Φρ̄GÞYS a−1ρ̄Gv

j
ðevenÞ

� a−2½δpGYSδ
ij þ Πij

ðevenÞ�

!
;

ð5:25Þ

hδTðoddÞ
G

μνiT ¼
�
0 a−1ρ̄GvðoddÞY

j
V

� a−2Πij
ðoddÞ

�
; ð5:26Þ

from which we can read the energy, the velocity, the
isotropic pressure, and the anisotropic stress regarding
the massive graviton condensate as a fluid. The velocity
for the even parity perturbation is decomposed into

viðevenÞ ¼ vSYi
S þ vVYi

V; ð5:27Þ
whereas the anisotropic stresses are decomposed into

Πij
ðevenÞ ¼ πSY

ij
S þ πVY

ij
V þ πTY

ij
T ; ð5:28Þ

Πij
ðoddÞ ¼ πðoddÞV Yij

V þ πðoddÞT Yij
T : ð5:29Þ

Since calculations for general perturbations are compli-
cated, we just show particular solutions. The generic
solutions are given in Appendix C.
First, the odd parity perturbations are not important for

the structure formation since these modes contain only
the vector-type and the tensor-type perturbations. We
discuss only the even-parity perturbations in this section.
Furthermore, we find the vector-type components are
always decoupled up to the subleading order, whereas
the scalar-type and the tensor-type components are coupled
in the small scales. Since the vector-type perturbations
represent the rotational modes and decay in time, the vector
modes are not important. Hence, it is sufficient for the
structure formation to consider the even-parity perturbations
without the contributions from the vector-type components.
The irrotational solution for the even-parity perturbations

can be found under the ansatz

δgμνðt;kÞ ¼
�−2ΦYS 0

� 2a2ðΨYSδij þHTYTijÞ
�
;

ð5:30Þ
δφμνðt;kÞ

¼

0
B@

−2ϕYS −aBYx −aCYa

� 2a2ðψ þ 2δφÞYS 0

� � 2a2ðψ − δφÞδabYS

1
CA

þOðm−2Þ; ð5:31Þ

where a, b ¼ ðy; zÞ whose indices are raised and lowered
by δab and Yx and Ya are defined by (C3). Since the
nondiagonal components of δφij only have decaying
modes, we just set δφij ¼ 0 for i ≠ j. Note that we do
not use the scalar-vector-tensor–type harmonics to re-
present the components of the massive graviton in order
that the expression is written in a clear form. Under the
adiabatic expansion, the variables for the massive graviton
can be given by

ϕ ¼ ϕ1 cos½mt� þ ϕ2 sin½mt�;
B ¼ B1 cos½mt� þ B2 sin½mt�;
C ¼ C1 cos½mt� þ C2 sin½mt�;
ψ ¼ ψ1 cos½mt� þ ψ2 sin½mt�;
δφ ¼ δφ1 cos½mt� þ δφ2 sin½mt�; ð5:32Þ

with slowly varying functions of time fϕ1;2; B1;2; C1;2;
ψ1;2; δφ1;2g. We shall show the particular solutions for the
large scales (5.4) and the small scales (5.7) in order.

A. Large scale inhomogeneity

In the large scales (5.4), the consistency of the equations
leads to the following amplitudes for the variables:

Φ;Ψ; HT; δφ2 ¼ Oðm0Þ;
B1; C1;ψ1; δφ1 ¼ Oðm−1Þ;
ϕ1;2; B2; C2;ψ2 ¼ Oðm−2Þ: ð5:33Þ

The order Oðm−2Þ quantities give just sub-subleading
contributions thus we can ignore them.
Equations (5.11) and (5.12) yield the constraint equa-

tions which determine B1, C1 and ψ1 as

B1 ¼ −
4k
ma

δφ2; C1 ¼
2k
ma

δφ2; ψ1 ¼
2k4∥
k4

HTφ̄1:

ð5:34Þ

Equation (5.10) gives

δ _φ2 þ
3

2
Hδφ2 þmΦφ̄1 ¼ 0: ð5:35Þ

We do not find other equations within our accuracy.
After using the above equation and taking the time

average, we obtain

δρG ¼ 6m2

�
φ̄1δφ1 þ φ̄2δφ2 þ φ̄2

1

�
2Ψþ k4∥

k4
HT

��
;

ð5:36Þ

vS ¼ −
k

amφ̄1

δφ2; ð5:37Þ
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vV; δpG; πS; πV; πT ¼ 0; ð5:38Þ
from the perturbed graviton energy-momentum tensor.
Therefore, the graviton energy-momentum tensor is given
by a form of pressureless perfect fluid without the vector-
type components (i.e., an irrotational fluid). Although the
irrotational property is obtained because of our specific
ansatz (5.31), the pressureless property is hold even if we
consider the general solution.
Note that the evolution of δφ1 (and also φ̄2) has not been

determined within our accuracy. We can, however, deter-
mine the dynamics of δρG by choosing the combinations
δρG as an independent variable instead of δφ1. The
dynamics of δρG is determined by the conservation law
of the averaged graviton energy-momentum tensor6 which
reads

δ_ρG þ 3HδρG þ
�
k
a
vS þ 3 _Ψ

�
ρ̄G ¼ 0; ð5:39Þ

_vS þHvS −
k
a
Φ ¼ 0; ð5:40Þ

where we notice that (5.40) is exactly same as Eq. (5.35).
Equation (5.39) determines the dynamics of δρG.
Although the definition of δρG contains the tensor mode

HT , Eq. (5.39) indicates that the dynamics of δρG is
independent from the tensor mode HT . Therefore, if we
focus on only the macroscopic behaviour of the massive
graviton condensate (i.e., we focus on only the dynamics
of hTμν

G iT), the scalar modes and the tensor mode are
decoupled. Needless to say, at the microscopic level,
the scalar modes and the tensor modes should be coupled.
For example, the dynamics of δφ1 would depend on the
dynamics of the tensor mode HT as well as the scalar
modes Φ, Ψ. Furthermore, the couplings between the
scalar-vector-tensor modes would appear when we consider
more higher-order corrections. The present calculations are
justified up to the sub-subleading order.
As a result, the massive graviton condensate behaves as a

dust fluid in the large scales (5.4) even if a small inhomo-
geneity is introduced. The massive graviton condensate can
cluster and then explain the cosmic structure formation.

B. Small scale inhomogeneity

Next, we discuss the solution in the small scales (5.7) in
which the amplitudes are given by

Φ;Ψ; HT; δφ1;2 ¼ Oðm0Þ;
B1;2; C1;2 ¼ Oðm−1=2Þ;
ϕ1;2;ψ1;2 ¼ Oðm−1Þ: ð5:41Þ

The constraint equations (5.11) and (5.12) yield

ϕ1 þ 3ψ1 − 6
k4∥
k4

HTφ̄1 ¼ 0;

ϕ2 þ 3ψ2 ¼ 0;

� 2mk
a

ϕ1;2 þ
k2x
a2

B2;1 þ
k2∥
a2

C2;1 ¼ 0; ð5:42Þ

and

B1;2 ¼∓ 4k
ma

δφ2;1; C1;2 ¼ � 2k
ma

δφ2;1; ð5:43Þ

whereas (5.10) gives

δ _φ1 þ
3

2
Hδφ1 −

k2

2ma2
δφ2 ¼ 0; ð5:44Þ

δ _φ2 þ
3

2
Hδφ2 þ

k2

2ma2
δφ1 þmΦφ̄1 ¼ 0: ð5:45Þ

Note that there are ten independent equations for ten
independent variables fδφ1;2; B1;2; C1;2;ϕ1;2;ψ1;2g. Hence,
the dynamics of the massive graviton are completely
determined within our accuracy, differently from the
previous case.
We notice that the equations (5.44) and (5.45) yield

the Schrödinger equation in the cosmological background.
The “wavefunction” uðt;xÞ is defined by the relation

φ̄ðtÞ þ δφðt;xÞ ¼ 1

2
½uðt;xÞe−imt þ u�ðt;xÞeimt�; ð5:46Þ

where δφðt;xÞ is the variable in the real space which is used
only here. Then, we obtain

i

�∂u
∂t þ

3

2
Hu

�
¼
�
−

∂2

2m2a2
þmΦ

�
u; ð5:47Þ

where mΦu≃mΦφ̄1 since we have considered the linear-
ized theory. The wavefunction u is dominated by the
coherent mode u0 ¼ φ̄1 which suggests that the almost
homogeneous configuration of φμν represents the conden-
sate of the massive graviton. A large fraction of massive
gravitons occupies the state u0 except for the tiny pertur-
bations δφμν. Note that u0 is also a solution to the
Schrödinger equation since the gravitational potential Φ
is zero for the homogeneous configuration.

6We notice again that although the conservation law of the

nonaveraged graviton energy-momentum tensor ∇
ð0Þ

μT
μν
G ¼ 0 is

equivalent to the equation of motion of φμν, that of the averaged

graviton energy-momentum tensor ∇
ð0Þ

μhTμν
G iT ¼ 0 is not. Hence,

we can obtain the equation for δρG even if the equations for δφ1

cannot be obtained from the equation of motion within our
accuracy.
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We obtain

δρG ¼ 6m2φ̄1δφ1 þOðm0Þ; ð5:48Þ

vS ¼ −
k

amφ̄1

δφ2; ð5:49Þ

δpG ¼ −
φ̄1

6a2
ð11k2x þ 5k2∥Þδφ1; ð5:50Þ

πS ¼ −
φ̄1

2a2
ð10k2x þ 7k2∥Þδφ1; ð5:51Þ

πT ¼ −
3φ̄1

2a2
k2δφ1; ð5:52Þ

and

vV ¼ πV ¼ 0: ð5:53Þ

Therefore, the massive graviton condensate is no longer
recognized as a pressureless fluid. The effect of the pressure
is relevant within the Jeans length. The Jeans momentum kJ
is estimated by the relation

				 k2a2 δpG

δρG

				
k¼kJ

∼
ρ̄G
M2

pl

; ð5:54Þ

which yields

k2J
a2

∼mH: ð5:55Þ

where we have assumed M2
plH

2 ∼ ρ̄G. Hence, (5.7) indeed
correspond to the scales below the Jeans scale.
If the massive graviton condensate is the dominant

component, the Einstein equation yield

k2

a2
Ψ ¼ 1

2M2
pl

δρG;
k2

a2
ðΦþΨÞ ¼ −

πS
M2

pl

: ð5:56Þ

Since πS is of orderOðm0Þ, we obtain Ψ ¼ −ΦþOðm−1Þ.
Equation (5.45) then becomes

δ _φ2 þ
3

2
Hδφ2 þ

�
k2

2ma2
−
ma2

k2
ρ̄G
M2

pl

�
δφ1 ¼ 0: ð5:57Þ

Combining with Eq. (5.44), we find

δ̈þ 2H _δþ
�

k4

4m2a4
−

ρ̄G
2M2

pl

�
δ ¼ 0; ð5:58Þ

where δ ≔ δρG=ρ̄G ¼ 2δφ1=φ̄1 is the relative perturbation
of the energy density. Clearly, in the scales beyond the
Jeans scale, this equation admits a growing mode solution

δ ∝ a due to the Jeans instability in the dust-dominant
universe. On the other hand, we find

δ ∝ exp

�
�i

3k2

2ma2
t

�
; ð5:59Þ

for k2 ≫ k2J with a ∝ t2=3. The massive graviton conden-
sate shows the acoustic oscillation.
The tensor mode is not decoupled from the scalar mode.

The gravitational wave HT is sourced by the anisotropic
stress πT which is related with the energy density of the
massive graviton condensate. The acoustic oscillation of
the massive graviton emits the gravitational waves.

VI. PRODUCTION OF MASSIVE GRAVITON
CONDENSATE

As shown in the previous section, the massive graviton
condensate is indeed a candidate of dark matter. We thus
consider a production mechanism of the massive graviton
condensate and discuss whether the massive graviton
condensate can be the dominant component of dark matter.
To generate the massive graviton condensate we need an

anisotropic source which is coherent on the cosmological
scale.7 A candidate is the cosmological scale magnetic
field. The blazar observations suggests the lower bound of
the strength of the extragalactic magnetic field B0 is about
10−17 G. The upper bound is obtained from the CMB
observations which is about 10−9 G [47]. Since the
production and the evolution of the cosmological scale
magnetic field are subject to discussion (see [48–50] for
reviews), we consider the simplest scenario.
We assume that the coherent magnetic field is generated

in the early Universe, e.g., in the inflationary regime of the
Universe. Here, we do not discuss the initial spectrum of
the dark matter perturbations which should depend on the
details of the coherent magnetic field. We just estimate
the produced amount of the coherent massive gravitons.
If the magnetic field adiabatically evolves, the energy
density decreases as a−4. On the other hand, the energy
density of the massive graviton decreases as a−3. Therefore,
the production of the massive graviton condensate by
the magnetic field can be ignored in the late stage of the
Universe (m ≫ H).
The separation (3.7) is not justified inH ≳m. To discuss

the early Universe we have to directly analyze the Bianchi
universe which is summarized in Appendix B. By solving
Eqs. (B9)–(B13), a typical behavior of φ̄ produced by the
coherent magnetic field is shown in Fig. 1.

7Although we have assumed that the massive graviton is
coherent on the cosmological scale for simplicity, we can discuss
the case when the coherent scale is smaller than the horizon scale
but larger than, at least, the de Broglie wavelength of the massive
graviton. The source is not necessary to be anisotropic over the
cosmological scale.
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The amplitude of φμν does not grow in H ≫ m since the
Hubble friction is too large. As a result, the dominant
production of the massive graviton condensate should
occur at H ∼m. The produced amplitude of the condensate
is estimated as

jφ̄�j ∼
B2�

Mplm2
∼

B2�
MplH2�

∼Mpl
ΩB

Ωr
; ð6:1Þ

where the asterisk represents the quantities at the produc-
tion and B is the strength of the magnetic field. ΩB and Ωr
are the present density parameters of the coherent magnetic
field and radiation, respectively. To obtain the final
expression we use the Universe is dominated by radiation
at the production,M2

plH
2� ∼ ρ�r , and both B2 and ρr decrease

as a−4. Once the gravitons are produced, φμν is decoupled
from the magnetic field because the contribution from the
interaction quickly decreases [see Eq. (B29)]. In order that
φμν is the dominant component of dark matter, the present
amplitude has to be φ̄0 ∼MplH0=m where the present and

the produced amplitudes are related by a3=20 φ̄0 ¼ a3=2� φ̄�.
Then, we get the condition for the graviton mass being the
dominant component of dark matter as

m ∼H0z
−3=2
eq

�
Ωr

ΩB

�
4

∼ 10−4
�
10−10 G

B0

�
8

eV: ð6:2Þ

where zeq is the redshift of the equality time. The graviton
mass should be 10−4 eV≲m≲ 107 eV where the lower
bound is obtained from laboratory-scale experiments of
gravity while the upper bound is given by the lifetime of the
massive graviton. Hence, a consistent scenario is con-
structed when the present magnetic field is

10−12 G≲ B0 ≲ 10−10 G; ð6:3Þ

which is indeed a viable region of the coherent mag-
netic field.

VII. SUMMARY AND DISCUSSIONS

We provide a scenario in which a tiny deformation of the
spacetime is dark matter in the ghost-free bigravity theory.
This deformation is interpreted as the “condensate” of the
massive gravitons. Differently from the case of the massless
graviton, the zero momentum state of the massive graviton
is well defined when m2 ≫ H2. We find that the zero
momentum massive graviton with small fluctuations is a
viable candidate of dark matter.
We have also studied a production mechanism of the

coherent massive gravitons with the mass range 10−4 eV≲
m≲ 107 eV and shown the coherent magnetic field with
10−12 G≲ B0 ≲ 10−10 G yields a sufficient amount of
massive gravitons for dark matter. When the present value
of the coherent magnetic field is determined by a future
observation, we can fix a suitable value of the graviton mass
to be dark matter.
Although we discussed the magnetic field as a source of

the massive graviton condensate, another source to produce
the condensate could exist. In general, if there exits a
coherent anisotropic stress πcoh whose coherent scale is L≳
m−1 and the density is πcoh=ρr ∼ 10−10 in the ageH ∼m, the
massive graviton condensate is produced and becomes dark
matter. Since the gravitons universally couple to matter
fields, the source is not necessary to be a standard model
particle. Any matter field can be a source of the gravitons.
If the anisotropic stress is a random field instead of the

coherent field, the stochastic massive gravitons are pro-
duced which have been discussed in [17]. Even for the
stochastic case, we obtain a viable scenario of the massive
graviton dark matter. Hence, if the anisotropic stress existed
in the early Universe, it inevitably yields the stochastic or
the coherent massive gravitons and then the massive
gravitons can be dark matter.
One may interpret that the Z2 symmetry is a fundamental

symmetry of the massive graviton. Although we have
assumed the Z2 symmetry only for the self-interactions
of gravitons, the symmetry can be introduced into the
matter-graviton interactions as well. The Z2 symmetry
holds if the action is invariant under the replacement
g ↔ f in bigravity. At low energy scales, matter fields
can couple to both metrics gμν and fμν via an effective
composite metric [51–59]. Hence, when all matter fields
couple to the composite metric geffμν defined by

geffμν ¼ 1

4
½gμν þ 2ð

ffiffiffiffiffi
gf

p
Þμν þ fμν�; ð7:1Þ

with


 ffiffiffiffiffi
gf

p �
μν

¼ gμα

 ffiffiffiffiffiffiffiffiffiffi

g−1f
q �α

ν
; ð7:2Þ

the matter-massive graviton interactions respect the Z2

symmetry. Indeed, expanding the metrics under (3.7) we
obtain

FIG. 1. A production of φ̄ by the coherent magnetic field with
ΩB=Ωr ¼ 10−4. Hg is the Hubble expansion rate of the g-
spacetime which becomes Hg ≃H in Hg ≪ m. We set b1 ¼
−1 and initially set both the g-spacetime and the f-spacetime are
isotropic, i.e., φ̄ ¼ 0 and _̄φ ¼ 0.
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geffμν ¼ g
ð0Þ

μν þ
hμν
Mpl

−
1

4M2
pl

φμαφ
α
ν þ � � � ; ð7:3Þ

thus, the matter action is manifestly invariant under φμν →
−φμν. In this case, the Yukawa interaction of the massive
graviton does not appear and then the present graviton mass
constraints cannot be applied. The details about the Z2

symmetric bigravity theory are under investigation.
We have introduced the Z2 symmetry to the self-

interactions of the massive graviton in order to simplify
the calculations. However, the massive graviton condensate
can be darkmatter evenwithout theZ2 symmetry because the
nonlinear terms are always sub-leading contributions and
then may not affect the dynamics at leading order. The
leading-order expression of Tμν

G would be unchanged. In
order that the massive graviton condensate is darkmatter, the
Z2 symmetry of the self-interactions should not be required.
Our scenario can be directly confirmed when we observe

the coherent anisotropic oscillation of the Universe. The
frequency of theoscillation is unfortunately toohigh to detect
the oscillation as a “gravitational wave” by the present and
future gravitational wave detectors. However, if the graviton
mass can be sufficently light due to, for example, the Z2

symmetry, the coherent oscillation will be detectable.
Finally, we comment on an interesting remaining ques-

tion: Is the almost homogeneous configuration of φμν the
Bose-Einstein condensate of themassive graviton?As iswell
known, a coherent massive scalar field, for example axion, is
a viable dark matter candidate [60–74]. This coherent scalar
field is interpreted as the Bose-Einstein condensate. Our
result would be a generalization of the Bose-Einstein con-
densate of the massive scalar field to that of the massive
tensor field. However, the present argument is completely
classical and we have not discussed any quantum aspect of
the massive graviton. Therefore, it would be interesting to
study a connection to the quantum theory of the gravitation,
but this is beyond the scope of the present paper.
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APPENDIX A: GRAVITON ENERGY-
MOMENTUM TENSOR: CURVED

BACKGROUND

In this section, we summarize the definitions of the
graviton energy-momentum tensors for generic cases. For
completeness, we introduce both the g-matter fields ψg and
the f-matter fields ψf and do not assume (3.32). The matter
action is given by

S½m� ¼ S½m�
g ðg;ψgÞ þ S½m�

f ðf;ψfÞ ðA1Þ
andwe denote the energy-momentum tensors of the g-matter
field and the f-matter field as Tμν and T μν, respectively.
To define the energy-momentum tensor of gravitons, we

shall decompose the metric into the “background” and the
“perturbations.”However, in general, the deomposition into
the perturbations and the background may not be well
defined because the perturbations and the background
interact with each others and then the equations may not
be separable when the backreaction from the perturbations
to the background is included. To decompose the Einstein
equations, we assume the perturbations contain only high-
frequency modes whereas the background consists of only
the low-frequency modes. In this case, we obtain two
independent equations for the low-frequency background
and the high-frequency perturbations via a low-frequency
projection h� � �ilow and a high-frequency projection
h� � �ihigh, respectively. Therefore, we assume the metrics
are expressed by the low-frequency backgrounds with the
high-frequency perturbations:

gμν ¼ gðlowÞμν þ δgðhighÞμν ; ðA2Þ

fμν ¼ fðlowÞμν þ δfðhighÞμν ; ðA3Þ

with jδgðhighÞμν j ≪ jgðlowÞμν j and jδfðhighÞμν j ≪ jfðlowÞμν j. The high-
frequency mode and the low-frequency mode are defined
by

gðlowÞμν ¼ hgμνilow; δgðhighÞμν ¼ hgμνihigh; ðA4Þ
which is same for fμν. It is worth noting that we only
assume the perturbations are high-frequency modes but do
not assume the perturbations are high-momentum modes.
In GR, the situations with the high-frequency waves and the
situations with the high-momentum waves are equivalent
since the graviton is massless. However, these situations
are not equivalent in bigravity due to the existence of the
massive graviton.
As already mentioned, the definitions of the massless

mode and the massive mode are ambiguous in general.
They can be defined when the curvature scale of the metrics
is smaller than the graviton mass squared:

j∂α∂βgμνj ≪ m2; j∂α∂βfμνj ≪ m2: ðA5Þ

In this case, although the low-frequency modes of the
massive gravitons can be excited by some source including
matter as well as the backreactions from high-frequency
modes, the amplitudes of the low-frequency massive
modes must be tiny (Indeed, in Appendix B, we will see
the amplitude of the low-frequency massive mode is
suppressed by m−2 for the homogeneous matter distribu-
tions.). Hence, we may assume the background is
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approximated by the homothetic solution. Then, the space-
time are expressed as spacetimes are expressed as

gμν ¼ g
ð0Þ

μν þMμν þ
hμν
Mpl

þ φμν

MG
; ðA6Þ

fμν ¼ ξ20

�
g
ð0Þ

μν − α−1Mμν þ
hμν
Mpl

−
φμν

αMG

�
; ðA7Þ

where g
ð0Þ

μν and Mμν are the low-frequency massless mode
and the low-frequency massive mode while hμν and φμν are
the high-frequency massless mode and the low-frequency
massive mode, respectively (see Table I). The assumption
that the homothetic background is good approximation

means jMμνj ≪ j gð0Þ μνj. In this case,Mμν, hμν and φμν can be

treated as the tensors with respect to g
ð0Þ

μν.
The Ricci tensor for the g-spacetime is expanded as

Rμν ¼ R
ð0Þ

μν þ δR
ð1Þ

μν½M� þ δR
ð1Þ

μν½δgðhighÞ� þ δR
ð2Þ

μν½Δg�
þ � � � ; ðA8Þ

where Δgμν ¼ Mμν þ δgðhighÞμν . The high-frequency modes
of gμν and fμν are written in terms of the mass eigenstates as

δgðhighÞμν ¼ hμν
Mpl

þ φμν

MG
; ðA9Þ

δfðhighÞμν ¼ ξ20

�
hμν
Mpl

−
φμν

αMG

�
: ðA10Þ

The functionals δR
ð1Þ

μν½χ� and δR
ð2Þ

μν½χ� are defined by

δR
ð1Þ

μν½χ� ¼
1

2
ð−∇

ð0Þ
α∇
ð0Þ

αχμν − ∇
ð0Þ

μ∇
ð0Þ

νχ
α
α þ 2∇

ð0Þ
α∇
ð0Þ

ðμχνÞαÞ;
ðA11Þ

δR
ð2Þ

μν½χ� ¼
1

2
g
ð0Þ

ρσ g
ð0Þ

αβ

�
1

2
∇
ð0Þ

μχαρ∇
ð0Þ

νχσβ þ 2∇
ð0Þ

ρχνα∇
ð0Þ

½σχβ�μ

þ χραð∇
ð0Þ

ν∇
ð0Þ

μχσβ þ ∇
ð0Þ

β∇
ð0Þ

σχμν − 2∇
ð0Þ

β∇
ð0Þ

ðμχνÞσÞ

þ
�
1

2
∇
ð0Þ

αχρσ − ∇
ð0Þ

ρχασ

�
ð2∇

ð0Þ
ðμχνÞβ − ∇

ð0Þ
βχμνÞ

�
;

ðA12Þ

for a tensor χμν. The linear quantities inMμν and δg
ðhighÞ
μν are

decomposed whereas the quadratic quantity δR
ð2Þ

μν½Δg� have
the cross terms between Mμν and δgðhighÞμν . The quadratic
quantity is given by

δR
ð2Þ

μν½Δg� ¼ δR
ð2Þ

μν½δgðhighÞ� þ δR
ð2Þ

μν½M�

þ δR
ð2Þ

cross
μν ½M × δgðhighÞ�; ðA13Þ

where the first two terms are quadratic in either Mμν or

δgðhighÞμν , respectively, and the third term represents the

cross terms. Note that δR
ð1Þ

μν½M� and δR
ð2Þ

μν½M� are the purely
low-frequency quantities while δR

ð1Þ
μν½δgðhighÞ� and

δR
ð2Þ

cross
μν ½M × δgðhighÞ� are the purely high-frequency quan-

tities with the inequalities

δRμν

ð1Þ
½M� ≫ δR

ð2Þ
μν½M�;

δR
ð1Þ

μν½δgðhighÞ� ≫ δR
ð2Þ

μν½M × δgðhighÞ�: ðA14Þ
After taking the high/low-frequency projections, we obtain

hRμνilow ¼ R
ð0Þ

μν þ δR
ð1Þ

μν½M� þ hδR
ð2Þ

μν½δgðhighÞ�ilow þ � � � ;
ðA15Þ

hRμνihigh ¼ δR
ð1Þ

μν½δgðhighÞ� þ hδR
ð2Þ

μν½δgðhighÞ�ihigh þ � � � ;
ðA16Þ

The other quantities are expanded in the similar way and then
the equations are decomposed into ones for the low-frequency
modes and for the high-frequency modes, respectively.
Up to the linear order the high-frequency mode

equations are decomposed into the massless one and the
massive one

δR
ð1Þ

μν½h� − Λghμν ¼
1

Mpl
ðδ S

ð1Þ
μν þ ξ20δS

ð1Þ
μνÞ; ðA17Þ

δR
ð1Þ

μν½φ� − Λgφμν þ
m2

eff

4
ð2φμν þ φα

α g
ð0Þ

μνÞ

¼ 1

MG
ðδ S

ð1Þ
μν − α−1ξ20δS

ð1Þ
μνÞ; ðA18Þ

where we define

δ S
ð1Þ

μν ≔
�
Tμν −

1

2
gμνT

�
high

; ðA19Þ

δS
ð1Þ

μν ≔
�
T μν −

1

2
fμνT

�
high

: ðA20Þ

Note that h∇
ðgÞ

μT
μν
ðintÞihigh ¼ 0 leads to

∇
ð0Þ

μφ
μ
ν ¼ ∇

ð0Þ
νφ: ðA21Þ
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Substituting this into the trace of (A17), we find a
constraint equation on the trace φα

α

ð3m2
eff − 2ΛgÞφα

α ¼
2

MG
ðδ S

ð1Þ
αβ − α−1ξ20δS

ð1Þ
αβÞ g

ð0Þ
αβ:

ðA22Þ

From the low-frequency mode equations, we obtain the
Einstein equation for the homothetic background

G
ð0Þ

μν þ Λg g
ð0Þ

μν ¼ 1

M2
pl

τμν; ðA23Þ

where G
ð0Þ

μν is the Einstein tensor for g
ð0Þ

μν and

τμν ≔ T
ð0Þ

μν þ ξ20 T
ð0Þ

μν þ hTμν
gwilow þ hTμν

G ilow; ðA24Þ

is interpreted as the total energy-momentum tensor includ-
ing the gravitons as well as the matters. The effective matter

energy-momentum tensors for matters T
ð0Þ

μν and T
ð0Þ

μν are
defined by the relations

S
ð0Þ

μν ≔
�
Tμν −

1

2
gμνT

�
low

¼ T
ð0Þ

μν −
1

2
g
ð0Þ

μν T
ð0Þ

αβ g
ð0Þ

αβ;

ðA25Þ

S
ð0Þ

μν ≔
�
T μν −

1

2
fμνT

�
low

¼ T
ð0Þ

μν −
1

2
g
ð0Þ

μνT
ð0Þ

αβ g
ð0Þ

αβ;

ðA26Þ

and the graviton energy-momentum tensors are defined by

Tμν
gw ¼ −

�
g
ð0Þ

μα g
ð0Þ

νβ −
1

2
g
ð0Þ

μν g
ð0Þ

αβ

�
δR
ð2Þ

αβ½h�; ðA27Þ

and (3.22).
Finally, we derive the equation for the massive modeMμν

which is given by

δR
ð1Þ

μν½M� − ΛgMμν þ
m2

eff

4
ð2Mμν þMα

α g
ð0Þ

μνÞ ¼
κ̄

MG
ΔSμν;

ðA28Þ

where

ΔSμν ≔ S
ð0Þ

μν − α−1ξ20S
ð0Þ

μν þ
�
−

1

κ2g
δR
ð2Þ

μν½δgðhighÞ�

þ 1

ξ40κ
2
g
δR
ð2Þ

μν½δfðhighÞ� þ Δ S
ð2Þ ðintÞ

μν

�
low

; ðA29Þ

and

Δ S
ð2Þ ðintÞ

μν ¼ m2
eff

4α1=2
ðgμνhαβφαβ − hμνφα

αÞ

−
m2

eff

16α
½3ð1 − αÞ gð0Þ μνφαβφ

αβ

þ 4fð1 − β2Þα − β2gφμνφ
α
α þ 2fð1þ 2β2Þα

− ð3 − 2β2Þαgφμ
αφνα�: ðA30Þ

Note that the source term ΔSμν is given by the difference
between two matter energy-momentum tensors whereas the
source term for the massless mode is given by the sum of
energy-momentum tensors. The massive mode can give an
anti-gravity since the positiveness of the source is not
guaranteed even if all energy of the sources are positive
definite.

APPENDIX B: SPACETIME DEFORMATION
AS DARK MATTER

In this section, we study the axisymmetric Bainchi type I
universe and obtain the same conclusion as the main text
but from the different picture: we observe the spacetime
anisotropy as dark matter in bigravity. In this section, we do
not assume either the smallness of the Hubble parameter
(3.3) or the Z2 symmetry (3.32).
We consider the simplest homogenous but anisotropic

universe in bigravity:

ds2g ¼ −N2
gdt2 þ a2g½e4βgdx2 þ e−2βgðdy2 þ dz2Þ�; ðB1Þ

ds2f ¼ −N2
fdt

2 þ a2f½e4βfdx2 þ e−2βfðdy2 þ dz2Þ�; ðB2Þ
where fNg; Nf; ag; af; βg; βfg are functions of the time t.
The Hubble expansion rates and the shears are defined by

Hg ≔
_ag

agNg
; Hf ≔

_af
afNf

; ðB3Þ

σg ≔
_βg
Ng

; σf ≔
_βf
Nf

: ðB4Þ

Just for simplicity, we consider only the g-matter field
whose energy-momentum tensor is given by

Tμ
ν ¼ diag½−ρ̄ðtÞ; p̄⊥ðtÞ; p̄∥ðtÞ; p̄∥ðtÞ�; ðB5Þ

where the pressure is decomposed into the isotropic part p̄
and the anisotropic part π̄:

p̄ ¼ 1

3
ðp̄⊥ þ 2p̄∥Þ; ðB6Þ

π̄ ¼ 1

3
ðp̄⊥ − p̄∥Þ: ðB7Þ
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The matter is assumed to satisfy the conservation law

_̄ρþ 3
_ag
ag

ðρ̄þ p̄Þ þ 6_βgπ̄ ¼ 0: ðB8Þ

Choosing the gauge Ng ¼ 1, we find following equa-
tions: the Friedmann equations

3H2
g ¼ κ2gρ̄þ 3σ2g þm2

g½b0 þ b1ðe−2β þ 2eβÞξ
þ b2ð2e−β þ e2βÞξ2 þ b3ξ3�; ðB9Þ

3H2
f ¼ 3σ2f þm2

f½b4 þ b3ð2e−β þ e2βÞξ−1
þ b2ðe−2β þ 2eβÞξ−2 þ b1ξ−3�; ðB10Þ

the constraint equation

Hg½3b1 þ 2b2ξð2eβ þ e−2βÞ þ b3ξ2ðe2β þ 2e−βÞ�
−Hfξ½3b3ξ2 þ 2b2ξðe2β þ 2e−βÞ þ b1ð2eβ þ e−2βÞ�
− 2ξðe−β − e2βÞ½σfðb1e−β þ b2ξÞ þ σgðb2e−β þ b3ξÞ�

¼ 0; ðB11Þ

and the equations for anisotropies

1

a3g

d
dt

ða3gσgÞ þ κ2g
∂Uβ

∂β ¼ κ2gπ̄; ðB12Þ

1

a3g

d
dt

ða3fσfÞ − κ2f
∂Uβ

∂β ¼ 0; ðB13Þ

where we define

ξ ≔
af
ag

; β ≔ βg − βf; ðB14Þ

m2
g ≔ m2

κ2g
κ2

; m2
f ≔ m2

κ2f
κ2

; ðB15Þ

and

Uβ ≔
m2

6κ2
½ξð2eβ þ e−2βÞðb1 þ b2NfÞ

þ ξ2ðe2β þ 2e−βÞðb2 þ b3NfÞ�: ðB16Þ

Equations (B12) and (B13) yield

1

a3g

d
dt

½a3gðκ2fσg þ κ2gξ
3σfÞ� ¼ κ2gκ

2
fπ̄: ðB17Þ

Hence, when the anisotropic stress is ignored π̄ ¼ 0, the
sum of the shears σg and σf decreases as a−3g which is the
same as the standard decaying law of the shear in GR. On
the other hand, the difference between them does not

decreases as a−3g due to the “potential” Uβ. Instead, σg − σf
(and also βg − βf) decrease as a

−3=2
g as shown in Fig. 2 and

then acts as the “dark matter” component of the Universe
(see also [22]).
Figure 3 shows a typical behavior of the solution in

vacuum. The top figure represents the spacetimes approach
the homothetic solution and the bottom figure shows that
H2

g decreases as a−3g at the late time where we assume
Λgjξ0¼1 ¼ 0. Therefore, even if the matter component is not
introduced, the same behavior as the dust-dominant uni-
verse can be obtained.

FIG. 2. The evolution of σg − σf in vacuum ρ̄ ¼ p̄ ¼ π̄ ¼ 0

where the coupling constants are chosen as κ2g ¼ κ2f and (3.36)
with b2 ¼ −1. The initial values are βðt0Þ ¼ 0.1, σgðt0Þ ¼ −m,
σfðt0Þ ¼ 0.1m. The black dashed curves are proportional to

a−3=2g .

FIG. 3. The evolutions of Nf; ξ and the rescaled Hubble
expansion rate (which is scale free due to the scale factor).
We set the same parameters as Fig. 2.
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We then assume β ≪ 1 and consider the regime
m2 ≫ H2

g, H2
f. Note that the smallness of β do not suggest

that contributions of those to the Friedmann equations are
also small because the quantity m2β2 can be comparable to
H2

g and H2
f. We introduce a small quantity ϵ ≔ Hg=m and

set β ¼ OðϵÞ. Equation (B11) gives

ðHg −HfξÞðb1 þ 2b2ξþ b3ξ2Þ þOðHgϵ
1Þ ¼ 0; ðB18Þ

where we have used σg, σf ≲Hg, Hf. Since the spacetime
can be approximated by the homothetic spacetime in the
regime m2 ≫ H2

g, H2
g, the ratio ξ can be expanded around

ξ0. Supposing the normal branch such that

Hg ¼ ξHf þOðHgϵÞ; ðB19Þ

the Friedmann equations yield

ð3m2
eff − 2ΛgÞ

ξ − ξ0
ξ0

≈ −κ2gðρ̄þ ρ̄σgÞ þ ξ20κ
2
fρ̄σf ; ðB20Þ

which indicates ξ − ξ0 ¼ Oðϵ2Þ where

ρ̄σg ≔
1

κ2g
½3σ2g þ 3m2

gβ
2ðb1ξ0 þ b2ξ20Þ�; ðB21Þ

ρ̄σf ≔
1

κ2f
½3σ2f þ 3m2

fβ
2ðb2ξ−10 þ b3ξ−20 Þ�: ðB22Þ

The deviation of the lapse function is then given by

Nf − ξ0 ¼
1

Hf

�
_ξ

ξ
þHg

�
− ξ0 ¼ Oðϵ2Þ; ðB23Þ

where we notice that, although _ξ and Hg have quantities of
order OðϵÞ, they are canceled and then Nf − ξ0 is of order
Oðϵ2Þ. Using m2

eff ≫ Λg and including only leading-order
contributions, the Friedmann equation is expressed by

3H2
g ≈ Λg þ

1

M2
pl

ðρ̄þ ρ̄h þ ρ̄GÞ ðB24Þ

where

ρ̄h ≔ 3 _̄h
2
; ρ̄G ≔ 3ð _̄φ2 þm2

effφ̄
2Þ; ðB25Þ

and

φ̄ ¼ 1

κ̄
ðβg − βfÞ; ðB26Þ

h̄ ¼ κf
ξ0κgκ̄

βg þ
ξ0κg
κf κ̄

βf: ðB27Þ

The variables φ̄ and h̄ are the normalized massive mode
and the normalized massless mode of the anisotropies, or,
following the notion of the main text, they can be
interpreted as the “massive graviton condensate” and the
“massless graviton condensate”, respectively, which obey

̈h̄þ 3Hg
_̄h ≈

1

Mpl
π̄; ðB28Þ

̈φ̄þ 3Hg _̄φþm2
effφ̄ ≈

1

MG
π̄: ðB29Þ

It is worth noting that although we have assumed the
inequalities β ≪ 1 and m2 ≫ H2

g, H2
g we have not used

the high-frequency and the low-frequency projections in
the present calculations.
When we ignore the anisotropic stress, the (averaged)

energy densities of h̄ and φ̄ decrease as

ρ̄h ∝ a−6g ; hρ̄GiT ∝ a−3g : ðB30Þ

The effect of the homogeneous mode of the massless
graviton can be ignored in time.
The averaged differences hξ − ξ0iT and hNf − ξ0iT

correspond to the low-frequency massive mode Mμν which
are given by

hξ − ξ0iT; hNf − ξ0iT ∼ ϵ2 ∝ m−2: ðB31Þ
As we expected, Mμν is suppressed by m−2 which is just a
sub-subleading contribution.
Finally, we discuss the production of the anisotropies.

We assume the matter field is composed of radiation and
the coherent magnetic field:

ρ̄r ∝ a−4g ; p̄r ¼
1

3
ρ̄r; π̄r ¼ 0; ðB32Þ

and

ρ̄B ¼ B̄2

2a4g
e4βg ; p̄B ¼ 1

3
ρ̄B; π̄B ¼ −

2

3
ρ̄B; ðB33Þ

where B̄ is a constant and the strength of the magnetic
field is given by B̄e2βg=a2g. A typical behavior of φ̄ is shown
in Fig. 1.8 The dominant production occurs just after
Hg ¼ meff in which Eq. (B29) can be barely used. The
produced amplitude is then estimated as

φ̄ ∼
π̄

MGm2
eff

: ðB34Þ

8Although the Higuchi instability [75–82] exists in sub-
horizon scales in Hg ≳m, the unstable modes should not affect
the dynamics of the homogeneous mode due to the cosmological
Vainshtain mechanism [83–85]. Thus, we may discuss the
dynamics of φ̄ even in Hg ≳m.
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In the main text, since we have assumed MG ¼ Mpl and
used the normalization meff ¼ m, we obtain (6.1).

APPENDIX C: GENERAL PERTURBATIONS

In this section, we summarize the calculations for the
general perturbations around the homogeneous solutions
(4.1) and (4.2). We use the specific choice of the coupling
constants κ2g ¼ κ2f and (3.36) to simplify the calculations.

1. Harmonics expansion

The homogeneity of the background solution leads to
that all variables can be transformed into the momentum
space. Furthermore, due to the rotational symmetry in the
y − z space, the perturbations are decomposed into the
even-parity perturbations and the odd-parity perturbations
and there is no interaction between the even- and the odd-
parity perturbations at linear order. The even- and odd-
parity perturbations are parametrized as

δφðevenÞ
μν ¼

0
B@

−2ϕYS −aBYx −aCYa

� 2a2ðψ þ 2δφÞYS 2a2DYxa

� � a2½2ðψ − δφÞδabYS þ 2EYab�

1
CA; ðC1Þ

δφðoddÞ
μν ¼

0
B@

0 0 −aBYa

� 0 a2DYxa

� � 2a2EYab

1
CA; ðC2Þ

where

Yx ¼ −k−1∂xYS;

Ya ¼ −k−1∂aYS;

Yxa ¼ k−2∂x∂aYS;

Yab ¼ k−2
�
∂a∂b −

1

2
δab∂c∂c

�
YS; ðC3Þ

and

Ya ¼
1

k
ϵa

b∂bYS;

Yxa ¼ −
1

k
∂xYa ¼ −

1

k2
∂xϵb

c∂cYS;

Yab ¼ −
1

k
∂ðaYbÞ ¼ −

1

k2
∂ðaϵbÞc∂cYS; ðC4Þ

with YS ¼ eikx.
For our study, it is useful to define the harmonics

associated with the three dimensional Euclidean space.
We define a three dimensional vector and a tensor as

YVi ¼ k−2ðk2∥Yx;−k2xYaÞ; ðC5Þ

YTij ¼ k−4
 
k4∥YS k2k2∥Yxa

� −
k4∥
2
YSδab − ðk4 þ k2xk2ÞYab

!
; ðC6Þ

and

YVi ¼ ð0;YaÞ; ðC7Þ

YTij ¼ k−2
�
0 k2∥Yxa

� −2k2xYab

�
; ðC8Þ

which satisfy (5.17) and (5.18). Using the three dimen-
sional harmonics, any three dimensional vector (or tensor)
is uniquely decomposed into the scalar and the vector (and
the tensor) quantities. For example, the even-parity pertur-
bations and the odd-parity perturbations of the graviton
energy-momentum tensor are given by (5.25) and (5.26),
respectively.

2. Perturbations for massless mode

The low-frequency mode g
ð0Þ

μν has the gauge symmetry
by which we can obtain (5.23) and (5.24).
The general form of the even parity metric perturbations

is given by

δgμν ¼
�−2ΦYS −aBi

� a2½2ΨYSδij þHij�
�
; ðC9Þ

with

Bi ¼ ðBgYx; CgYaÞ; ðC10Þ

and

Hij ¼
�
4hYS 2DgYxb

� −2hYSδab þ 2EgYab

�
; ðC11Þ

where we note

Hi
i ¼ 0; ðC12Þ

and

∂iBi ¼ ðk2xBg þ k2∥CgÞk−1YS; ðC13Þ
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∂iHix ¼ ð2k2∥Dg − 4k2hgÞk−1Yx;

∂iHia ¼ ð2k2xDg þ k2∥Eg þ 2k2hgÞk−1Ya: ðC14Þ

Under the gauge transformation

xμ → xμ þ ξμðevenÞ; ðC15Þ

with

ξμ ¼ ðξ0YS; ξ1Yx; ξ2YaÞ; ðC16Þ
the perturbations transform as

Φg → Φg þ _ξ0;

Ψg → Ψg þHξ0 þ 1

3
kξL;

hg → hg þ
k2x
3k

ξ1 −
k2∥
6k

ξ2;

Bg → Bg −
k
a
ξ0 − a_ξ1;

Cg → Cg −
k
a
ξ0 − a_ξ2;

Dg → Dg −
k
2
ðξ1 þ ξ2Þ;

Eg → Eg − kξ2; ðC17Þ

and then

∂iBi → ∂iBi −
�
k2

a
ξ0 þ ak_ξL

�
YS;

∂iHix → ∂iHix −
�
ξ1 þ 1

3
ξL

�
k2Yx;

∂iHia → ∂iHia −
�
ξ2 þ 1

3
ξL

�
k2Ya; ðC18Þ

where

k2ξL ¼ k2xξ1 þ k2∥ξ
2: ðC19Þ

Therefore one can fix the gauge so that

∂iBi ¼ 0; ∂iHij ¼ 0; ðC20Þ

in which Bi and Hij are given by

Bi ¼ BVYi
V; Hij ¼ 2HTY

ij
T ; ðC21Þ

where BV and HT are functions of time.
The odd parity metric perturbations are

δgðoddÞμν ¼
�
0 −aBi

� a2Hij

�
; ðC22Þ

with
Bi ¼ ð0;BgYaÞ; ðC23Þ

and

Hij ¼
�
0 DgYxb

� 2EgYab

�
; ðC24Þ

where we notice

∂iBi ¼ 0; ðC25Þ

∂iHix ¼ 0; ðC26Þ

∂iHia ¼ ðk2xDg þ k2∥EgÞk−1Ya; ðC27Þ

Hi
i ¼ 0: ðC28Þ

Under the gauge transformation

xμ → xμ þ ξμðoddÞ; ðC29Þ
with

ξμðoddÞ ¼ ð0; 0; ξoddYaÞ; ðC30Þ
the metric perturbations transform as

Bg → Bg − a_ξðoddÞ; ðC31Þ

Dg → Dg − kξðoddÞ; ðC32Þ

Eg → Eg − kξðoddÞ; ðC33Þ

and then

∂iHia → ∂iHia − k2ξðoddÞYa: ðC34Þ
One can choose the gauge

∂iHia ¼ 0; ðC35Þ
in which Bi

g andH
ij
g corresponds to the vector perturbation

and the tensor perturbation, respectively:

Bi ¼ BVYi
V; Hij ¼ 2HTY

ij
T : ðC36Þ

3. Adiabatic expansion

In addition to the linearization of the inhomogeneities,
we shall take the adiabatic expansion in terms of m−1.
To verify the linearization the amplitudes of the inhomo-
geneities are of OðmnÞ with n ≤ 0.
The equation (5.10) yields that, up to the subleading

order, the massive graviton can be expressed as

δφμν ¼ δφ1μν cos½mt� þ δφ2μν sin½mt�; ðC37Þ
where δφ1μν and δφ2μν are slowly varying function in time9

We use the suffixes 1 and 2 to represent the slowly varying

9If we do not assume the Z2 symmetry for the self-interactions,
the frequency at the subleading order can differ from m=2π.

KATSUKI AOKI and KEI-ICHI MAEDA PHYS. REV. D 97, 044002 (2018)

044002-20



functions in front of cos½mt� and sin½mt� [see (5.32)]. The
orders of δφ1μν and δφ2μν are determined to be consistent
with the equations.

4. Odd parity

We first study the odd-parity perturbations in which
(5.12) is trivially satisfied. We discuss the large scales (5.4)
and the small scales (5.7) in order.

a. Large scales

The consistency of the equations yield

B1;2 ¼ Oðm−1Þ; ðC38Þ
and other variables are of order Oðm0Þ.
Form the equations of motion (5.10) and (5.11) we

obtain the constraint equations

mk
a

B2 þ
k2x
a2

D1 þ
k2∥
a2

E1 ¼ 0; ðC39Þ

mk
a

ðB1 þ 2φ̄1BVÞ −
k2x
a2

D2 −
k2∥
a2

E2 ¼ 0; ðC40Þ

and the dynamical equations

_D1;2 þ
3

2
HD1;2 ¼ 0; ðC41Þ

_E1;2 þ
3

2
HE1;2 ¼ 0; ðC42Þ

which leads to

D1;2; E1;2 ∝ a−3=2: ðC43Þ
Then, we obtain the velocity and the pressure of the

massive graviton condensate as

vðoddÞ ¼ BV −
1

2mφ̄1

k2x
ak

D2 ðC44Þ

and

πðoddÞV ¼ πðoddÞT ¼ Oðm−1Þ; ðC45Þ

which indicates that the massive graviton can be interpreted
as the pressureless ideal fluid.

b. Small scales

From the consistency, we find

B1;2 ¼ Oðm−1=2Þ; BV ¼ Oðm−1=2Þ; ðC46Þ
and others are of order Oðm0Þ.

The constraint equations are given by

mk
a

B1;2 ∓ k2x
a2

D2;1 ∓
k2∥
a2

E2;1 ¼ 0; ðC47Þ

while the dynamical equation are

_D1;2 þ
3

2
HD1;2 ∓ k2

2ma2
D2;1 ¼ 0; ðC48Þ

_E1;2 þ
3

2
HE1;2 ∓ k2

2ma2
E2;1 ¼ 0: ðC49Þ

The solutions are

D1;2; E1;2 ∝ a−3=2 exp

�
�i

3k2

2ma2
t

�
; ðC50Þ

when a ∝ t2=3 (the dust-dominant universe).
We then obtain the velocity

vðoddÞ ¼ −
1

2mφ̄1

k2x
ak

D2; ðC51Þ

and the anisotropic pressures

πðoddÞV ¼ −
3k2x
2a2

φ̄1D1; ðC52Þ

πðoddÞT ¼ −
k2

4a2
φ̄1ðD1 þ 2E1Þ: ðC53Þ

SinceD1;2 and E1;2 are independent, we can chooseD1;2 and
D1;2 þ 2E1;2 as new variables which obey the same equation

as (C48) and (C49). The vector quantities vðoddÞ and πðoddÞV

evolve independently from the tensor quantity πðoddÞT . As a
result, the vector and the tensor modes are decoupled.

5. Even parity

a. Large scales

In the large scales (5.4), we obtain

ϕ1;2;ψ2 ¼ Oðm−2Þ;
B1;2;ψ1; δφ1 ¼ Oðm−1Þ; ðC54Þ

and others are of orderOðm0Þ. Since the quantities of order
Oðm−2Þ are sub-subleading order contributions, ϕ1;2 and
ψ2 are irrelevant to the dynamics.
From (5.11) and (5.12), we find five constraint equations

2k4∥HTφ̄1 − k4ψ1 ¼ 0; ðC55Þ

mk
a

B2 þ
2k2∥
a2

D1 ¼ 0; ðC56Þ

mk
a

C2 þ
2k2x
a2

D1 þ
k2∥
a2

E1 ¼ 0; ðC57Þ
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mk
a

B1 −
4mk2∥
ak

BTφ̄1 −
2k2∥
a2

D2 þ 4
k2

a2
δφ2 ¼ 0; ðC58Þ

−
mk
a

C1 þ
2mk2x
ak

BTφ̄1 þ
2k2x
k2

D2 þ
k2∥
a2

E2 þ
2k2

a2
δφ2 ¼ 0;

ðC59Þ

which determines fψ1; B1;2; C1;2g in terms of other vari-
ables. The nontrivial components (5.10) yield

δ _φ2 þ
3

2
Hφ2 þmΦφ̄1 ¼ 0; ðC60Þ

and

_D1;2 þ
3

2
HD1;2 ¼ 0; ðC61Þ

_E1;2 þ
3

2
HE1;2 ¼ 0: ðC62Þ

We cannot find other equations within our accuracy.
We note that the amplitudes of D1;2 and E1;2 always

decreases since the gravitational potentialΦ does not affect
the dynamics of D1;2 and E1;2. The Jeans instability does
not lead to the growth of D1;2 and E1;2.
After taking the oscillation average, we find that the

pressures are zero. The energy density and vS are given by
(5.36) and (5.37), respectively. The vector mode of the
velocity is

vV ¼ BV þ k
amφ̄1

D2: ðC63Þ

The massive graviton condensate is a form of a pressureless
perfect fluid. Clearly from the definitions of δρG, vS and
vV , the vector mode is decoupled from other modes.
As already mentioned in the main text, the evolution of

δφ1 is not determined. However, the dynamics of δρG is
determined by the conservation law of the averaged
graviton energy-momentum tensor.

b. Small scales

Finally, we study the even-parity perturbations in the
small scales (5.7). The consistency leads to

BV ¼ Oðm−1=2Þ; ðC64Þ

B1;2; C1;2 ¼ Oðm−1=2Þ;
ϕ1;2;ψ1;2 ¼ Oðm−1Þ; ðC65Þ

and others are of order Oðm0Þ.
We obtain the eight constraint equations in terms of the

eight variables fψ1;2;ϕ1;2; B1;2; C1;2g as follows:

ϕ1 þ 3ψ1 − 6
k4∥
k4

HTφ̄1 ¼ 0; ðC66Þ

ϕ2 þ 3ψ2 ¼ 0; ðC67Þ

� 2mk
a

ϕ1;2 þ
k2x
a2

B2;1 þ
k2∥
a2

C2;1 ¼ 0; ðC68Þ

�mk
a

B1;2 þ 2
k2∥
a2

D2;1 − 4
k2

a2
δφ2;1 ¼ 0; ðC69Þ

�mk
a

C2;1 þ 2
k2x
a2

D1;2 þ
k2∥
a2

E1;2 þ 2
k2

a2
δφ1;2 ¼ 0: ðC70Þ

Equation (5.10) gives six equations

δ _φ1 þ
3

2
Hδφ1 −

k2

2ma2
δφ2 ¼ 0; ðC71Þ

δ _φ2 þ
3

2
Hδφ2 þ

k2

2ma2
δφ1 þmΦφ1 ¼ 0; ðC72Þ

_D1;2 þ
3

2
HD1;2 ∓ k2

2ma2
D2;1 ¼ 0; ðC73Þ

_E1;2 þ
3

2
HE1;2 ∓ k2

2ma2
E2;1 ¼ 0; ðC74Þ

which determine the dynamics of fδφ1;2; D1;2; E1;2g.
The energy density and the velocity are expressed as

(5.48), (5.49) and

vV ¼ k
amφ̄1

D2: ðC75Þ

The pressures are not zero and given by

δpG ¼ −
φ̄1

6a2k2
½k2ð11k2x þ 5k2∥Þδφ1 − 2k2xk2∥D1 þ k4∥E1�;

ðC76Þ

πS ¼ −
φ̄1

4a2k2
½2k2ð10k2x þ 7k2∥Þδφ1 − 2k2xk2∥D1 þ k4∥E1�;

ðC77Þ

πV ¼ 3
k2

a2
φ̄1D1; ðC78Þ

πT ¼ −
φ̄1

4a2
½6k2δφ1 þ 2k2xD1 þ ð2k2x þ k2∥ÞE1�; ðC79Þ

Since the vector-type perturbations are determined by D1

and D2 only, the vector perturbations are decoupled from
other perturbations. However, the scalar-type perturbations
and the tensor-type perturbations are affected by δφ1, D1

and E1 and then they are not decoupled.
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