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1 Introduction

The recent direct detection of gravitational waves [3] adds to an impressive list of ob-

servational tests of general relativity, the theory that describes long-distance dynamics of

spacetime. At the quantum level, however, the fate of spacetime requires a more careful

assessment; indeed, it is not even clear what the fundamental degrees of freedom in a the-

ory of quantum gravity are. The holographic principle [4, 5] suggests that these degrees of

freedom should in fact be nonlocal.

This notion is made explicit in the AdS/CFT duality, an equivalence between

d−dimensional conformal field theories (CFTs) and (d+ 1)-dimensional gravitational sys-

tems with Anti de Sitter (AdS) asymptotics. In particular, the proposal of Ryu and

Takayangi (RT) [6, 7] relates the entanglement entropy S of a CFT region B to the area

of a bulk extremal surface B̃,

S (B) = min
∂B̃=∂B

area (B̃)

4GN
. (1.1)

Developments over the past few years [8–12] have shown that the dynamics of this nonlocal

CFT quantity is closely related to the bulk Einstein equation.

In recent work [2] we demonstrated an extension of the RT proposal to other bulk

scalar fields. We introduced the OPE block, the contribution to the CFT operator product

expansion (OPE) from a single conformal family, and equated it to the Radon transform,
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the integral of a bulk scalar field over a minimal surface. Both of these objects obey an

equation of motion in kinematic space, a space which geometrizes the set of bulk surfaces

of a given dimension. We showed that this kinematic equation of motion emerges directly

from the bulk Klein-Gordon equation.

In this paper, we will demonstrate the relationship between the Ryu-Takayanagi pro-

posal and our results on kinematic space. Specifically, we will show that the wave equa-

tions obeyed by a perturbation to entanglement entropy [11–15] correspond directly to the

linearized bulk Einstein equation with matter via an intertwining relation of the Radon

transform:

(�K + 2d) δS = 0 ↔ Einstein equations

(�dS + d) δS = 0 ↔ Hamiltonian constrant

where the Laplacians �K and �dS on kinematic space arise from conformal Casimir equa-

tions. This clarifies and connects the results of [8–12].

Before stating our result explicitly, we begin by outlining the results of [2] on kinematic

space, the OPE block, and the Radon transform.

2 Scalar kinematic dictionary

The kinematic dictionary, introduced in [2] and recently also explored in [16], connects

Radon transforms of AdS-fields with OPE-blocks in the dual CFT. Here we outline the

basic formalism.

Radon transform. The Radon transform is a map from functions f (x) on some manifold

to functions on the space of n-dimensional totally geodesic submanifolds B̃. It is defined

via the integral transform

R [f ]
(
B̃
)

=

∫

B̃
dAf (2.1)

where dA is the induced area element on the surface B̃. Though [2] also considered the

case n = 1 of geodesics, we will focus here on the case n = d− 1 of codimension-2 minimal

surfaces in AdSd+1.

It is useful to define an auxiliary space K, which we call kinematic space, to organize

information about bulk surfaces. A point in K denotes equivalently any of the following:

• a particular bulk minimal surface, B̃,

• the boundary sphere where that surface ends, B,

• the two timelike separated boundary points x1, x2 at the tips of the causal develop-

ment of this sphere (see figure 2), �12.

The points of K are most conveniently parameterized by the two points (x1, x2). When the

context is clear, we will often denote any of the above three objects by the pair (x1, x2).

– 2 –



J
H
E
P
0
2
(
2
0
1
7
)
0
0
4

(d,d)K

dS (1,d-1)CFTd spatial slice

dS (1,d-1)

Figure 1. The kinematic space for spherical regions that lie on a single time slice is given by

d-dimensional Lorentzian de Sitter space. The de Sitter space is a corresponding slice of the larger

kinematic space for all (boosted) spherical regions, which is 2d-dimensional with signature (d, d).

The conformal group SO (d, 2) then endows kinematic space with a metric structure of

(d, d) signature (see [2]),

ds2 =
Iµν (x1 − x2)
(
x1−x2

2

)2 dxµ1dx
ν
2 (2.2)

where Iµν (x) = ηµν − 2
xµxν
x2 is the CFT inversion tensor.

It will also be useful to note that if we consider only spheres living in a particular

equal-time slice of AdSd+1, preserved by an SO (d, 1) subgroup, the corresponding slice of

K has the structure of a d-dimensional de Sitter (dS) space [1, 2, 14, 17] (see figure 1).

There is one such dS slice for each time slice of AdS. For instance, if we consider the t = 0

slice of AdS and parameterize the spheres it contains by their radius R and center ~x, the

induced metric on this slice is given by

ds2 =
−dR2 + d~x2

R2
. (2.3)

A particularly useful feature of the kinematic space K is that the domain of the CFT,

including the time direction, appears as a spacelike surface at x1 = x2. This allows us to
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=
X

k

X

k

�kor
O1(x1)

O2(x2)

Ok �
� (x1, x2)

Figure 2. A point in kinematic space labels two timelike-separated boundary points, x1, x2, or

equivalently a codimension-2 sphere formed by their causal domain. Operators σ(x1, x2) localized

on the sphere have an OPE expansion in terms of OPE blocks for primaries Ok, where contributions

can be identified as bulk surface operators φk. Figure from [2].

impose boundary conditions and choose a causal propagator in the usual way when solving

wave equations in kinematic space.

OPE-blocks. We now introduce a CFT object whose domain is also K. Recall that in a

CFT, the product of two identical scalar local operators can be expanded in terms of the

global primary operators of the theory as

O (x1)O (x2)

〈O (x1)O (x2)〉 =
∑

k

COOk |x12|∆k(1+b1x
µ
12∂µ+··· )Ok (x2)︸ ︷︷ ︸

Bk (x1, x2)

(2.4)

where xµ12 = xµ1 − xµ2 . The coefficients COOk are known as the OPE coefficients and are

theory-dependent, while the coefficients bi depend only on the scaling dimension ∆k of the

primary operator Ok. We have grouped the contributions from a single primary to the OPE

into an object Bk (x1, x2), which we call the OPE-block. In [2], we showed that operators

σ (x1, x2) localized on a CFT sphere can be expanded in terms of the same OPE blocks as

σ (x1, x2)

〈σ (x1, x2)〉 =
∑

k

CσkBk (x1, x2) (2.5)

where Cσk are theory-dependent “OPE” coefficients.

The OPE-block also has a compact integral expression [2] over the causal diamond

formed by the points x1, x2. For a scalar, this is just:

Bk(x1, x2) = Nk

∫

�12

ddx3

(
x13x23

x12

)∆k−d
Ok(x3) . (2.6)

OPE-blocks are useful as CFT objects in their own right; however, they become even more

powerful in the presence of an AdS dual, as we describe next.

Kinematic dictionary. At leading order in the N →∞ limit, the OPE-block Bk (x1, x2)

and the Radon transform R [φk] (x1, x2) of the dual AdS field are directly related:

Bk (x1, x2) =
1

c∆k

R [φk] (x1, x2) (2.7)

– 4 –
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where c∆ is a constant depending only on the dimension d and the scaling dimension ∆k.

To prove this, in [2] we showed that both sides obey the same equation of motion with the

same boundary conditions:

(
�K +m2

k

)
Bk = 0

(
�K +m2

k

)
R [φk] = 0

Bk ∼ |x12|∆k Ok R [φk] ∼ c∆k
|x12|∆k Ok . (2.8)

The OPE block equation of motion comes from a conformal Casimir equation,

[
L2,Bk

]
= �KBk = CkBk (2.9)

where L2 is the Casimir element of the conformal group SO (d, 2), with eigenvalue

C
SO(d,2)
k = −∆ (∆− d)− ` (`+ d− 2) = −m2

k. (2.10)

The Casimir element is represented on kinematic space scalar fields by the Laplacian �K,

yielding the equation of motion. The boundary condition as x1 → x2 comes from inspecting

the definition (2.4).

To find the equation of motion for the Radon transform we use an intertwining prop-

erty:

�KR [φ] = −R [�AdSφ] . (2.11)

Together with the Klein-Gordon equation, this implies an equation of motion for the Radon

transform:

�AdSφk = m2
kφk =⇒ �KR [φk] = −m2

kR [φk] . (2.12)

The boundary condition then comes from the AdS/CFT dictionary φk (x, z)→ z∆kOk (x).

Since kinematic space has signature (d, d), an additional d− 1 equations are required

to fix a solution uniquely. These take the form of constraint equations, explained in detail

in [2, 16]. These equations of motion together with the boundary conditions establish the

validity of (2.7).

In the remainder of this paper, we will use the same techniques to extend the kinematic

dictionary to the CFT stress tensor, which is dual to the bulk metric perturbation. We

will extend this dictionary to first subleading order in the 1/N expansion, finding that

the correction is precisely that found in [18]. This will allow us to prove an equivalence

between the linearized Einstein’s equations in the bulk and a simple equation satisfied by

the stress tensor OPE-block, which we show is equal to the modular Hamiltonian.

3 Tensor Radon transforms and Einstein’s equations

In this section, we will show that the linearized Einstein equations are equivalent to a set

of equations obeyed by the fluctuation in the area of the minimal surfaces. We will do this

in a similar way as in eq. (2.12), by using an intertwining relation. The goal will be to find

an analog of the field equation and boundary conditions of eq. (2.8); we will then match

to CFT quantities in the following section.

– 5 –
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Since the bulk field of interest, the metric perturbation δgµν , is a tensor, we must

first introduce a tensor analog of the Radon transform eq. (2.1). For a symmetric 2-tensor

field sµν , we define the longitudinal and transverse Radon transforms, denoted R‖ and R⊥
respectively, as

R‖ [sµν ] (x1, x2) =

∫

B̃12

dAhµνsµν

R⊥ [sµν ] (x1, x2) =

∫

B̃12

dA (gµν − hµν) sµν . (3.1)

Here, hµν denotes the induced metric on the surface B̃12. As before, these transforms

output a scalar function on kinematic space; we write indices on the left side only to

indicate that the input is a tensor.

We now note some useful identities for the tensor Radon transform. First, note that

the sum of the two tensor transforms is just a scalar Radon transform of trs. This implies

that the two are related by a trace-reversal of the input tensor,

R‖ [sµν ] = −R⊥
[
sµν −

1

2
gµνtrs

]

R⊥ [sµν ] = −R‖
[
sµν −

1

d− 1
gµνtrs

]
. (3.2)

Before we continue, let us pause to note a striking simplification of the full nonlinear

Einstein equation when written in terms of tensor Radon transforms. The Einstein equation

takes the form

Rµν −
1

2
gµνR = 8πGNTµν . (3.3)

where we have defined Tµν to include the cosmological constant term. If we apply the

transverse transform R⊥ to both sides, using the identity (3.2), we obtain

1

4GN
R‖ [Rµν ] + 2πR⊥ [Tµν ] = 0. (3.4)

This remarkable simplification occurs only when we integrate over a codimension-2 surface,

due to the appearance of the coefficient 1
2 in the Einstein tensor.1

Let us now consider the linearized version of eq. (3.4). Setting Tµν = − Λ
8πGN

gµν+δTµν ,

with Λ = −1
2d (d− 1) for AdSd+1, we have

1

4GN
R‖ [δRµν ] = −2π R⊥ [δTµν ]− 2d

4GN
δA (3.6)

where δA is the first order change in the area of the surface of integration. In terms of the

tensor Radon transform, the area perturbation can be written as

δA (x1, x2) =
1

2

∫

B̃12

hµνδgµνdA =
1

2
R‖δg. (3.7)

1However, note for a dimension-2 (rather than codimension-2) surface, the longitudinal transform of the

Einstein equations yields the equation

R
(2)
⊥ [Rµν ] +R

(2)

‖ [Tµν ] = 0. (3.5)
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We would like to specialize to minimal surfaces in AdSd+1, and recast the linearized equa-

tion (3.6) as an equation of motion in kinematic space. To do this, we make use of an

intertwining relation analogous to (2.11),

�KR‖ [sµν ] = −R‖
[(
∇2 + 2 (d+ 1)

)
sµν − 2gµνtrs

]
, (3.8)

where ∇2 = ∇α∇α denotes the covariant Laplacian. The right side of this equation is

given by the action of the casimir L2
SO(d,2) on sµν , as shown in appendix A.1. In fact, for

the case of δgµν , eq. (3.8) can be rewritten as

�KδA = R‖ [δRµν ] , (3.9)

where δRµν is the variation of the Ricci tensor due to the variation δgµν in the metric; this is

shown explicitly in appendix A.2. Together with (3.6), this implies the equation of motion

(�K + 2d)
δA

4GN
= −2π R⊥ [δT ] . (3.10)

We have thus shown that the area perturbation δA obeys an equation of motion in

kinematic space as a consequence of the linearized Einstein equation about AdS.

To show complete equivalence between the kinematic equation of motion and Einstein

equations, it remains only to show that the tensor Radon transform is invertible (up to

diffeomorphisms). Unfortunately, while reasonable, we are not aware of a proof of this fact

in the literature, and our statement of equivalence must carry a technical asterisk awaiting

further input from the mathematical community.

To avoid the technical problem in the preceding paragraph, we will now prove an

additional equation of motion for the area perturbation, but this time restricting ourselves

to surfaces on a time slice of AdS; this corresponds to a particular de Sitter slice of kinematic

space. Using the same techniques as above, we prove in appendix A.2 that

(�dS + d) δA = R

[
δ

(
Rµν −

1

2
Rgµν

)
t̂µt̂ν

]
. (3.11)

The right hand side is a tt component of the Einstein tensor; hence, using the Einstein

equation, we find

(�dS + d)
δA

4GN
= 2πR [δT00] . (3.12)

Here, T00 denotes the energy density relative to the particular AdS time slice we are con-

sidering; there is a separate de Sitter equation for each time slice. Hence, the Hamiltonian

constraint of the Einstein equation implies a de Sitter equation of motion for the area

perturbation. In thise case, since the scalar Radon transform is known to be injective [19],

eq. (3.12) is equivalent to the Hamiltonian constraint on a time slice, and the collection

of de Sitter equations for every slice is equivalent to the full linearized Einstein equation,

because knowing E00 = T00 for every choice of t̂ implies Eµν = Tµν .

To complete the description of the Cauchy problem for the area perturbation δA in

kinematic space, we must fix boundary conditions. This can be done using the extrapolate

dictionary for the metric perturbation [20–22], and was shown in [9] to be

δA (x0, R) ∼
R→0

RdT00 (x0)
8πGNΩd−2

d2 − 1
. (3.13)

– 7 –
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Now that we have formulated the Cauchy problem for the area perturbation in the form

of eq. (3.13) along with either (3.10) or (3.12), we can proceed to match with CFT variables.

4 Modular Hamiltonian and the tensor kinematic dictionary

In this section we use the Radon-transformed Einstein equations we have just derived to

give a novel derivation of the quantum-corrected Ryu-Takayanagi formula.

To begin, we take a moment to review the entanglement first law and the form of the

vacuum modular Hamiltonian. Given a quantum mechanical system in a certain state |ψ〉,
the state of a subsystem B is described by the reduced density matrix ρB, obtained from

|ψ〉〈ψ| by tracing over the degrees of freedom of the complement Bc. For such a subsystem,

the entanglement entropy is defined as:

S = −trρB log ρB. (4.1)

The modular Hamiltonian Hmod of the state ρB is then defined implicitly by

ρB =
e−Hmod

tr (e−Hmod)
. (4.2)

Using this expression, the change in the entanglement entropy of A due to a small pertur-

bation of the state can be compactly expressed as:

δS = δ 〈Hmod〉 . (4.3)

This equation is known as the first law of entanglement entropy.

When B is a ball of radius R in the vacuum state of a CFT, the modular Hamiltonian

can be written as

Hmod = 2π

∫

B

dd−1x
R2 − (x− x0)2

2R
T00 (x) , (4.4)

where T00 is the energy density in the CFT. The form of the vacuum modular Hamiltonian

was computed in [23]. The fact that Hmod is an OPE block was pointed out in [2]; in

appendix C we give the details for general dimension.

We can now make contact with the equations of motion (3.10), (3.12). It was pointed

out by [14] that the vacuum modular Hamiltonian, when viewed as a field on kinematic

space, obeys a de Sitter wave equation

(�dS + d)Hmod = 0. (4.5)

It in fact obeys a separate equation for each CFT time slice, each of which has a corre-

sponding de Sitter slice of the full kinematic space K. To see this, note that the SO (d, 1)

subgroup of the conformal group that preserves a time slice has the Casimir

CSO(d,1) = −∆ (∆− d+ 1)− ` (`+ d− 3) . (4.6)

Since T00 (x) transforms as a scalar of dimension ∆ = d under this subgroup, its Casimir

eigenvalue is−d. ThenHmod, being an integral of T00, satisfies
[
L2

SO(d,1), Hmod

]
= −dHmod.

– 8 –
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Since Hmod transforms as a scalar field on kinematic space, the Casimir L2
SO(d,1) is repre-

sented by the Laplacian �dS, yielding the equation (4.5). It follows similarly that Hmod

obeys an equation of motion on the full kinematic space,

(�K + 2d)Hmod = 0, (4.7)

with eigenvalue 2d coming from eq. (2.10) [2].

Having written an equation of motion for Hmod, we would now like to check the bound-

ary conditions in kinematic space for Hmod. Taking the limit R→ 0 of eq. (4.4), we find

Hmod (x0, R) ∼
R→0

RdT00 (x0)
2πΩd−2

d2 − 1
. (4.8)

We can now compare directly with the results of section 3. First, let us consider the leading

order in 1/N behavior, for which δTµν = 0. In that case, eqs. (3.12) and (4.5) match, and

the boundary conditions (3.13) and (4.8) differ only by a constant 4GN . This gives us the

leading-order kinematic dictionary:

Hmod =
δA

4GN
+O

(
N0
)
. (4.9)

Of course, this is just the linearized Ryu-Takayanagi formula (1.1).

To find the O
(
N0
)

correction to the dictionary, we must find an object X which

satisfies

(�dS + d)X = −2πR [δT00] . (4.10)

Using eq. (3.12), this will the guarantee that δA
4GN

+ X satisfies the same EOM as Hmod,

eq. (4.5). The solution can be written as

X (x1, x2) = −2π

∫

4
Gret

dS (x1, x2;x3, x4)R [δT00] (x3, x4) dV (4.11)

where the integration region is the past light cone of (x1, x2), and where GdS is a bulk-to-

bulk kinematic space causal propagator. The result is2

X = 2π

∫

Σ
δTµνξ

µdΣν (4.12)

where ξµ is the Killing vector corresponding to modular flow [16], and where dΣν is the

timelike unit normal vector to Σ (see figure 3).

We immediately recognize that X is none other than Hbulk+ŜWald-like, the bulk vacuum

modular Hamiltonian for a Rindler wedge. (In appendix B, we show via an intertwining

relation that Hbulk indeed satisfies eq. (4.10).) We thus arrive at the corrected kinematic

dictionary,

Hmod =
δA

4GN
+Hbulk + ŜWald-like, (4.13)

which reproduces the FLM correction to the Ryu-Takayanagi formula [18] as well as the

JLMS formula [24]. We hence recognize the Ryu-Takayanagi formula arises as a special

case of our more general kinematic dictionary.

2Note that δTµν refers to the gravitational stress tensor, which appears on the right-hand side of the

Einstein equation, rather than the canonical stress tensor [18, 24].
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(1,d-1)dS      Propagator AdSd+1 Wedge Integral

(x ,x )1 2

(x ,x )3 4
(x ,x )1 2

(x ,x )3 4

Σ

Figure 3. The retarded de Sitter propagator corresponds to an integral over all the geodesics that

lie on the t = 0 slice of the causal wedge. This integral reconstructs the bulk modular Hamiltonian,

which is also an integral over the same spatial slice.

5 Discussion

We have given a simple and elegant demonstration of the equivalence of the Einstein

equations and the quantum-corrected Ryu-Takayanagi formula for linearized perturbations

about the vacuum. In doing so, we exploited the fact that both the bulk Einstein equations

and the boundary modular Hamiltonian obey simple dynamical equations in an auxiliary

kinematic space.

The derivation of the quantum corrected Ryu-Takayanagi formula from the Einstein

equations was already described in [18]. While the previous work is more general, the bulk

quantum contribution depends on a generally non-local and unknown modular Hamilto-

nian. Our approach, on the other hand, makes more explicit how quantum corrections arise

from bulk interactions. We hope that these techniques will prove insightful when extended

away from simple regions of the vacuum state.

This paper was also primarily focused on demonstrating how the bulk Einstein equa-

tions imply the Ryu-Takayanagi formula, but our work equally leads to the reverse state-

ment. This is most mathematically rigorous when we make use of the kinematic space for

a single-time slice and the scalar Radon transform to derive the tt-component of the Ein-

stein equations (all components then follow by appropriate boosts, as in [8]). Here, we can

derive the local bulk EOM because the scalar Radon transform on Hyperbolic space has

been proven to be invertible [19]. However, to exploit the full kinematic space and directly

derive any component of the Einstein equations, we must invert the tensor Radon trans-

form. While the invertibility of these transforms (up to diffeomorphism) is well-motivated,

we are not aware of a mathematical proof. Thus, a stickler for rigor will conclude that only

an integrated version of the Einstien equations has been derived by this second approach.

– 10 –
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As the gravitational equations of motion intertwine to become a kinematic equation

of motion which is fixed by conformal invariance, it may be confusing to wonder what

happens to the gravitational equations of motion in a generalized theory of gravity.

However, the particular gravitational equation of motion is determined not by the fixed

kinematic EOM, but by the choice of entropy functional. In particular, it was shown

in [8–10] using the Wald-Iyer formalism [25] that the entanglement first law 4.3 can be

written for perturbations of the vacuum as

0 = δS − δ 〈Hmod〉 =

∫

Σ

[
1

4GN
δEµν − 2πδTµν

]
ξµdΣν . (5.1)

In this equation, δEµν is the linearized equation of motion for a general theory of gravity,

and the point-wise equation of motion follows from considering all surfaces Σ.

In a companion work, one of us [26] shows the relationship of the Wald-Iyer formal-

ism to the present work, where an integral over a surface B̃ rather than a time slice Σ

appears. Applying the differential operator (�dS + d) to both sides of (5.1) and using

the intertwining relation of appendix B along with the equation of motion (4.5) yields the

equation [26]

0 = (�dS + d) δS = R

[
1

4GN
δE00 − 2πδT00

]
. (5.2)

Applying (�K + 2d) instead yields the equation

0 = (�K + 2d) δS = −R⊥
[

1

4GN
δEµν − 2πδTµν

]
. (5.3)

Hence, the equation of motion for δS is equivalent to the linearized gravity equation inte-

grated over a bulk surface, and both vanish due to the entanglement first law.

The localization of the equation of motion onto the Ryu-Takayanagi surface after

applying these differential operators, a somewhat surprising fact from the Wald-Iyer point

of view, was required by the kinematic space formalism. It would be interesting to study

whether such a localization occurs more generally away from the vacuum. If so, it may

be more natural to consider whether the bulk gravitational equations can be derived not

from entanglement equations, but from one-point entropy equations [27–29]. The Radon

transform of the energy density in eq. (3.12) also appears in [30] in the context of relative

entropy. There, it was valid in the limit of small CFT regions and low energy excitations

of the vacuum. It would be interesting to understand the connection with this work.

It is also possible to assume both the Ryu-Takayanagi formula and Einstein equations,

and then derive the kinematic space entropy equations [11, 12]. One can understand this

as a consistency check of the approach, as the entropy equations are pre-determined by

conformal invariance.

The techniques we used to derive the quantum corrections for holographic entangle-

ment entropy link this story with a more general program of including interactions in the

dynamics of both kinematic space and local bulk operators operators [31–34]. In particular,

we can think of δA as a kinematic field, whose interactions with the stress tensor generate

quantum corrections to the kinematic operator. We will report on interacting kinematic

operators in upcoming work.
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A Tensor Radon transforms

A.1 Tensor intertwinement

The Radon transform maps functions on AdS to functions on the kinematic space K. In [2]

we derived an intertwining relation for the Radon transform of functions, relating the

Laplacian on AdS-spacetime to the Laplacian on kinematic space:

�KR [f ] = −R [�AdSf ] . (A.1)

In this section, we extend the intertwinement relation (A.1) to symmetric two-tensors. We

will present a short group theoretic derivation.

The only property of the tensor transform that we will use is that it transforms as a

scalar field on kinematic space under the relevant isometry group. Hence, our proof will

hold for a general transform R̃ with this transformation property. In particular, R̃ can

denote the longitudinal transform R‖, the transverse transform R⊥, or even the wedge

transform used in appendix B.

Consider a tensor transform R̃ [s] of a symmetric 2-tensor field sµν . Under some isom-

etry g ∈ SO (d, 2) of AdSd+1, this field transforms as s→ g
AdS· s, while a point in kinematic

space transforms as B̃ → g
K· B̃. The scalar transformation property then implies that

R̃

[
g

AdS· sµν

](
B̃
)

= R̃ [sµν ]
(
g−1 K· B̃

)
. (A.2)

In infinitesimal form equation (A.2) becomes

L
(K,scalar)
AB R̃ [sµν ] = −R̃

[
L

(AdS,2-tensor)
AB sµν

]
(A.3)

where the LAB are the differential operators representing the generators of the conformal

algebra, and the superscript denotes the representation. It follows that

L2
(K,scalar)R̃ [s] = R̃

[
L2

(AdS,2-tensor)sµν

]
, (A.4)

where L2 = LABL
AB is the conformal Casimir.

To find the intertwining relation for the Laplacian, we must now find the quadratic

differential operator representing L2 on the tensor sµν and its transform R̃ [s]. To do this,

– 12 –
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we make use of the fact that AdS and K are both coset spaces G/H, where G = SO(d, 2)

and H is the stabilizer of a bulk point or bulk surface respectively:

AdSd+1 =
SO (d, 2)

SO (d, 1)
; K =

SO (d, 2)

SO (d− 1, 1)× SO (1, 1)
. (A.5)

The Casimir operator on G is represented by the Laplacian with respect to the Cartan-

Killing metric. For a coset space G/H, the Laplacian �G can be written as [35]:

�G = �G/H + �H. (A.6)

A scalar function on AdS-spacetime is in the kernel of the Casimir of the little group

SO(d, 1), so the conformal Casimir is represented on functions on AdS-spacetime by the

AdS-Laplacian, up to a constant proportionality factor. A similar argument holds for

functions on kinematic space. The relative proportionality factor in the intertwining rela-

tion (A.1) is fixed by a choice of the Cartan Killing form on the Lie-algebra of the conformal

group G = SO (d, 2).3

For general tensors on AdS-spacetime, there will be an additional term from the non-

trivial representation of the little group H = SO(d − 1, 1). The tensor Radon transform

maps symmetric (two-) tensors on AdS-spacetime to functions on kinematic space, so there

will be no additional contributions from the Casimir of the kinematic space little group.

Tensors on AdS-spacetime do receive a contribution from the Casimir of the little group

H=SO(d, 1). One can decompose a general tensor on AdS-spacetime in terms of irreducible

representations of the little group H = SO(d − 1, 1). The irreducible representations can

be labeled by the spin `, and the conformal Casimir is represented by [35, 36]:

L2
(AdS,`) = −

(
∇2 + `(`+ d− 1)

)
. (A.7)

where ∇2 denotes the covariant Laplacian. We recover the representation of the conformal

Casimir on functions on AdS-spacetime by setting ` = 0. The traceless part of a symmetric

two-tensor corresponds to the ` = 2 representation, whereas the trace-part of a tensor

corresponds to the ` = 0 representation. We decompose a general symmetric two-tensor

sµν into the traceless symmetric and trace parts

sµν = strace
µν + straceless

µν , strace
µν ≡ trs

d+ 1
gµν . (A.8)

Then, using eqs. (A.4), (A.7), and (A.8), we find the following intertwinement rule for

symmetric two-tensors:

�KR̃ [sµν ] = −R̃
[
∇2strace

µν +
(
∇2 + 2 (d+ 1)

)
straceless
µν

]

= −R̃
[(
∇2 + 2 (d+ 1)

)
s− 2gµνtrs

]
. (A.9)

3For details on the factor of proportionality, see [2].
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A.2 Einstein equations from intertwinement

We would now like to verify eq. (3.9). First recall from eq. (3.7) that the area perturbation

can be written as

δA =
1

2
R‖ [δgµν ] . (A.10)

From here, we can see that the longitudinal Radon transform annihilates total derivatives:

R‖ [∇µvν ] = 0 (A.11)

where vν is a vector field falling off sufficiently quickly at infinity that the longitudinal

transform is well defined. This follows from the fact that δA vanishes at first order for

small deformations of the surface, which correspond to small coordinate transformations

δgµν = ∇(µvν).

Applying the Laplacian �K to δA and using the intertwining relation (A.9), we find

�KδA = −1

2
R‖
[(
∇2 + 2 (d+ 1)

)
δgµν − 2gµνtrδg

]
(A.12)

Now, note that the variation of the Ricci tensor is given by

δRµν =
1

2

[
∇α∇µδgνα +∇α∇νδgµα −∇2δgµν −∇µ∇νtrδg

]
(A.13)

By commuting covariant derivatives, this can be rewritten for AdSd+1 as

δRµν =
1

2

[
∇µ
(
gαβ∇αδgνβ

)
+∇ν

(
gαβ∇αδgµβ

)
(A.14)

−∇µ∇νtrδg −
(
∇2 + 2 (d+ 1)

)
δgµν + 2gµνtrδg

]
.

The last three terms match those in (A.12), while the longitudinal transform annihilate

the first three terms, yielding the desired result

�KδA = R‖δRµν . (A.15)

Let us now proceed to verify eq. (3.11). The Hamiltonian constraint equation, the tt

component of the Einstein equation, can be written as

R′ − tr
(
K2
)

+ (trK)2 = 16πGN T00 (A.16)

where R′ and Kµν denote the Ricci scalar and extrinsic curvature tensors on the time-slice

of interest. For an equal-time slice of AdS, we have Kµν = 0, so that the linearized equation

takes the simple form

δR′ = 16πGN δT00. (A.17)

Hence, we can prove (3.11) by showing

(�dS + d) δA =
1

2
R
[
δR′
]
. (A.18)
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If we denote the perturbation of the induced metric on the time-slice of interest by δwµν ,

then we can write δA = 1
2R‖ [δwµν ]. Then, both sides of eq. (A.18) depend only on δwµν ,

and we can restrict ourselves to considering perturbations of the metric of hyperbolic space

Hd. Generalizing (A.9) to hyperbolic space, we can write the intertwining relation

�dSR‖ [δwµν ] = −R‖
((
∇2 + 2d

)
δwµν − 2gµνtrδw

)
. (A.19)

Using the same methods as above, we find that

(�dS + d) δA− 1

2
R
[
δR′
]
∝
∫

B̃
nµnν∇α∇[νδwα]µ (A.20)

where nµ denotes the unit normal vector to B̃ in Hd. To proceed, we must use the fact

that the extrinsic curvature tensor on B̃ is zero, which implies that ∇µnν = nµn
α∇αnν .

Repeatedly using this along with eq. (A.11), we find that the right-hand side of (A.20)

vanishes, proving the result (3.11).

B Wedge integral relations

In this appendix, we will prove that the equation (4.10) is satisfied by the bulk modular

Hamiltonian (4.12). The object of interest will be a transformation R∧ [sµν ] of a conserved

symmetric 2-tensor sµν , defined by

R∧ [sµν ] =

∫

Σ
sµνξ

µdΣν . (B.1)

where Σ is an equal-time slice of a causal wedge, dΣν is the unit normal vector to that

slice, and ξµ is a Killing vector given in Poincaré coordinates by [16]

ξµ =
(X −X1)2 (X −X2)µ − (X −X2)2 (X −X1)µ

(X2 −X1)2 (B.2)

Here the capital letters denote bulk coordinates X = (x, z), whose indices are contracted

using the Minkowski metric. The bottom and top points of the corresponding causal

diamond are denoted by X1 = (x1, 0) and X2 = (x2, 0) respectively, with ξ representing

a flow from X2 to X1. In particular, we have Hbulk = 2πR∧ [Tµν ]. Note that since sµν is

conserved, R∧ is independent the choice of time slice Σ.

We can now restrict ourselves to a constant time slice of AdSd+1, which we take to be

the t = 0 slice. Then, ξ points only in the time direction, and we have

R∧ [sµν ] =

∫

Σ
s00 |ξ| dΣ. (B.3)

Hence, this restriction of the wedge transform is really a scalar transform, and is subject

to the scalar intertwining relation considered in [2]. In particular, we have

(�dS + d)R∧ [sµν ] =

∫

Σ
(−�H + d) s00 |ξ| . (B.4)
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Integrating by parts, this becomes

(�dS + d)R∧ [sµν ] = −
∫

∂Σ
|ξ|nµ∇µs00 +

∫

Σ
s00

(
d−∇2

)
|ξ|+

∫

∂Σ
s00n

µ∇µ |ξ| (B.5)

where nµ is the outward-pointing unit normal vector to B̃ within the specified time slice.

The first term vanishes because |ξ| = 0 at B̃, and because s00 goes to zero sufficiently

quickly at ∂AdS; the second vanishes since ∇2
H |ξ| = d |ξ|, as can be checked explicitly

from (B.2). Finally, we can check from (B.2) that nµ∇µ |ξ| = −1. This gives us our result,

(�dS + d)R∧ [sµν ] = −R
[
sµν t̂

µt̂ν
]

(B.6)

where t̂ is the timelike unit vector to the time slice correponding to the chosen de Sitter

slice of kinematic space.

With some more effort, we can also prove a similar relation using the Laplacian on the

full kinematic space, rather than a de Sitter slice. First, note that the wedge integral can

be written as

R∧ [sµν ] =

∫

Σ
∗j. (B.7)

where we have defined the conserved current

jµ = sµνξ
ν . (B.8)

Now, since R∧ transforms as a scalar in the full kinematic space, we can use the tensor

intertwining relation (A.9) to obtain

(�K + 2d)R∧ [sµν ] = R∧
[
−
(
∇2 + 2

)
sµν + 2gµνtrs

]

=

∫

Σ
∗j̃ (B.9)

where j̃µ =
[
−
(
∇2 + 2

)
sµν + 2gµνtrs

]
ξν . Using the fact that sµν is conserved and ξµ is

Killing, it can be shown with significant effort [26] that j̃ = ∆j, where ∆ is the Hodge

Laplacian. Then, conservation of j implies that

(�K + 2d)R∧ [sµν ] = −
∫

B̃
∗dj.

= −1

2

∫

B̃
εµν (dj)µν (B.10)

where εµν is the antisymmetric tensor in the two directions perpendicular to ∂Σ, defined

such that ε01 = −1. Next, note that since ξ vanishes on B̃, we can plug in j to find

(�K + 2d)R∧ [sµν ] =

∫

B̃
(εµα∇αξν) sµν . (B.11)

Finally, it can be checked explicitly from (B.2) that εµα∇αξν = gµν −hµν , where hµν is the

induced metric on B̃. This yields the result

(�K + 2d)R∧ [sµν ] = R⊥ [sµν ] . (B.12)

This relation was required for consistency between equations (3.10), (4.7), and (4.13).
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C Modular Hamiltonian as an OPE block

In this appendix, we will relate the stress tensor OPE block to the vacuum modular Hamil-

tonian for a spherical CFT region. This implies that the vacuum modular Hamiltonian

appears as the contribution of the stress tensor to the OPE of timelike separated scalars

of equal dimension, or the expansion of a spherical operator as in eq. (2.5).

In the OPE of two timelike separated scalars O (x) of equal scaling dimension ∆, the

stress tensor and its derivatives appear as

O (x1)O (x2)

〈O (x1)O (x2)〉 ⊃ COOT (1+...)
x
µ
12x

ν
12

x2−d
12

Tµν (x1+x2
2

)
︸ ︷︷ ︸

BT (x1, x2)

. (C.1)

Here, we have defined the OPE block BT for the stress tensor, which includes the contribu-

tion of Tµν and all descendants to the OPE, and is independent of the choice of operator

O (x). Note that, when expanded about the point x1+x2
2 , we can use tracelessness and

conservation to ensure that only the quantity xµ12x
ν
12Tµν and its derivatives in directions

perpendicular to x12 appear. More concretely, if we choose x2 = −x1 = Rt̂, this means that

only T00 and its spatial derivatives appear, as we would expect from the expression (4.4).

Now, consider the SO (d, 1) subgroup of the conformal group which preserves the time

slice intersecting x1+x2
2 and the sphere corresponding to x1, x2. The quantity xµ12x

ν
12Tµν

transforms as a scalar primary of dimension d under this subgroup, so it has eingenvalue

−∆ (∆− (d− 1)) = −d under the Casimir operator L2
SO(d,1), as do its derivatives in di-

rections along the time slice. Since BT (x1, x2) transforms as a scalar in kinematic space,

L2
SO(d,1) is represented by �dS, the Laplacian on the de Sitter slice of kinematic space

corresponding to this SO (d, 1) subgroup [14]. Hence, BT obeys the equation of motion

(�dS + d)BT = 0, (C.2)

which of course matches eq. (4.5) for the modular Hamiltonian; in fact, we obtain a whole

family of such equations, one for each time slice. Comparing boundary conditions of (4.8)

and (C.1), we obtain the relation

BT = −2d
(
d2 − 1

)

2πΩd−2
Hmod (C.3)

where Ωd−2 is the area of a (d− 2)-sphere. This result can also be obtained through the

shadow operator formalism [2].
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