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1. Introduction

The process of dissociation of nuclei in the Coulomb field of fast charged particles has
been discussed repeatedly ( see, for example, [1-3] ). In the recent years the interest to this
electromagnetic process was revived in connection with the creation of beams of relativistic
nuclei and the problem of identification of relativistic hypernuclei [4,5]. In the paper [6] the
process of excitation and disintegration of relativistic nuclei and hypernuclei was investigated
using the direct analogy with the problem of ionization and excitation of atoms at the prop-
agation of relativistic charged particles through matter [7]. In this work (see also [8]) we will
discuss the application of the results of [6] to the weakly bound deuteron-like systems con-
sisting of two compact clusters (charged and neutral), the distance between which essentially
exceeds the sizes of clusters themselves and the target nucleus radius R. The sharp increase
of the cross-section of Coulomb dissociation at the decrease of binding energies allows one
to determine experimentally these binding energies in the case of weakly bound nuclei and
hypernuclei, studying their disintegration at ultrarelativistic velocities. We will investigate
also the role of the finite sizes of the target nucleus.

2. Excitation and disintegration of relativistic nuclei in the Coulomb
field of a point-like charge

It was shown in the paper [6] that the total cross-section of excitation and dissociation of
a relativistic nucleus in the field of an immovable Coulomb centre with the charge Ze can
be presented in the following form:
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Here h = ¢ = 1, a = €¢* = 1/137 is the electromagnetic constant, q; is the transverse
momentum transferred to the nucleus, v = |v| is the velocity of the projectile nucleus in the
rest frame of the Coulomb centre (i.e. in the laboratory frame), (n|j|0) is the vector of the
current of transition from the ground state |0) of the projectile nucleus to the excited state
of the continuous or discrete spectrum |n), €,0 is the excitation energy. The summation
in Eq.(1) is performed over all quantum numbers of final states including spin and angular
variables, and the upper bar denotes the averaging over polarizations of the initial ground
state of the projectile nucleus, which is assumed to be unpolarized * .

LAt the first glance, the formula (1) for the cross-section of Coulomb dissociation corresponds to the
one-photon exchange, i.e. to the approximation Za <« 1. However, the analysis shows that even at large



At small transverse and longitudinal momenta transferred to the projectile nucleus (|q. | <
1/Rpr, q = €no/v < 1/ Ry, where R, is the radius of the projectile nucleus) the transition
current is expressed directly through the matrix element of the dipole moment:

(n]jl0) = —icqo(n| > _r,)0). (2)

In Eq.(2) the summation is performed over the coordinates of all the protons in the projectile
nucleus. In accordance with the rule of multiplication of matrices, taking into account the
equality (0|3, 1,|0) = 0, that arises due to the space parity conservation, the following

relation holds:
D ] Do rpl0)F = (01> r,)?|0) . (3)
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Finally, dividing the integration range into two intervals corresponding to very small and
larger g2, the following formula for the cross-section of the Coulomb dissociation emerges,
after all transformations [6]:
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Here €, is the binding energy of the projectile nucleus, the constant
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involves the dependence of the minimal momentum transfer, at the transition to excited
states |n), upon the excitation energy ¢,0 > €pin (¢ = epine? < 1/Rp.); the constant B
describes the contribution of comparatively large transfers of transverse momentum. Calcu-
lations lead to the expressions:
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Taking into account the completeness condition,
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At y < 1 the function G(y) ~ y/3, at y > 1 the function G(y) — z, where z is the number
of protons in the projectile nucleus. For the projectile nucleus with the unity charge we have:

G(y) =1 — F*(y), where

F(y) = F(ql) = (0] exp(—iq.r,)[0)

is the electromagnetic formfactor of the ground state.

values of 7, when Za ~ 1, the corrections to this formula still remain small. That is connected with the fact
that the considered result can be justified in the framework of the impulse approach with the amplitude of
the Coulomb scattering; in doing so, the exact amplitude of the Coulomb scattering in the region of small
transferred momenta, where the main contribution into ¢ 1s provided, differs from the amplitude obtained
within the Born approximation only by phase.



3. Contribution of finite sizes of the target nucleus

Taking into account that the target nucleus is not point-like, one should subtract the
correction term AB from the constant B in Eq. (4):

AB = 3/000 G(y)(ly; H(y)) dy. (8)

Here G/(y) is determined by Eq. (7) as before, and

H(y) = 5 (0] S expl—iaqur)) 0) | 0

is the square of the electromagnetic formfactor of the ground state of the target nucleus
[07); in doing so, r} is the coordinate of a proton in the target nucleus. For the uniform
distribution of protons over the volume of the target nucleus

H(y):9<sin:1; _cosx)2 7 (10)
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Riag 1s the radius of the target nucleus. It is clear that H(0) = 1.
Let us note that Eq. (8) describes the influence of finite sizes of the target nucleus on
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the process of Coulomb dissociation of the projectile nucleus without the excitation and
breakup of the target nucleus. When the quantum state of the target nucleus is not fixed
and transitions into all excited states are taken into account, the function H(y) is replaced

by the expression [6]
Hly) = — 0 —iqur)? |0 9
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It is easy to show that at the uniform distribution of the charge Z the functions ﬁ(y) and
H(y) are connected by the relation

L Tiy) = (1~ Hy) (9b)
thus, in the case of heavy target nuclei the corrections AB and AB = [1 — (1/Z)]AB
practically coincide.

It is clear from Eq.(4) that in the case of relativistic nuclei with small binding energies the
principal contribution into the cross-section of the Coulomb dissociation is conditioned by
the logarithmic term being proportional to In[y*v?/(e};,(0[(32, 1,)?[0))]. At ultrarelativistic
energies of the projectile nucleus (v — 1, v > 1) the cross-section of the Coulomb dissoci-
ation of this nucleus, irrespective of the relation between radii of the projectile and target
nuclei, has the structure:
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4. Weakly bound systems. Two-cluster model

Now we will consider the Coulomb disintegration of the "friable”, deuteron-like nuclei
consisting of two clusters ( charged and neutral), the average distance between which is
significantly larger than the radius of the force action and the sizes of the clusters themselves.
In this case the excited bound states are absent, and the normalized wave function of the
ground state, corresponding to the zero orbital momentum, has the following form:

L exp(—r/p)
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where r = |r| is the distance between the clusters,
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Here my and my are the masses of the charged and neutral clusters, respectively, M = m+m-
is the mass of the deuteron-like nucleus, €g = (—é€pin) is the energy of its bound state. In the
given case the quantity (0[(32, r,)?|0) can be explicitly determined:
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where z is the number of protons in the charged cluster.
Using Eqs. (7) and (13), we obtain the analytical expression for the function G(y):
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Here, according to Eq. (15),
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According to Eq.(14), at very small binding energies the effective radius p of the projectile
nucleus considerably exceeds the target radius R (p > R). In so doing, we may, in the
first approximation, take H(y) = 1, considering the target nucleus as a point-like Coulomb
centre. Substituting Eq.(16) into Eq.(6), we obtain the following value for the constant B:
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where [6]
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Meantime, taking into account that at small binding energies all excited states belong
to the continuous spectrum, for a two-cluster system with the wave function ¢o(r) (see Eq.
(13)) the constant A, determined by Eq. (5), is given by the integral:
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Finally, Eq. (4) leads to the following result for the total cross-section of Coulomb
disintegration of the weakly bound two-cluster nuclei, taking into account also the correction
term AB(Z) connected with the finite size of the target nucleus:
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Here 2A — C =2 2.12; the quantity AB(Z) in Eq.(21) is determined according to Eq.(8).

It is well seen from Eq.(21) that in the limit of very small binding energies epi, the cross-
section of Coulomb disintegration increases inversely proportionally to €p;,; in so doing, the
logarithmic term inside the square brackets essentially exceeds the other ones. Measuring
experimentally the Coulomb dissociation cross-section o for weakly bound nuclei and hy-
pernuclei, one can determine, in principle, the value of the binding energy ey, for these
nuclei.

5. Projectile nuclei with small binding energies: corrections due to
the finite radius of the target nucleus

Due to the correction term AB(Z), the cross-section of Coulomb dissociation o decreases
as compared with the case of the point-like target (Ao < 0). Substituting Eqgs. (16) and
(10) into Eq.(8), we obtain the quantity AB(Z) in the case of two-cluster projectile nuclei
as the integral

AB(Z) :/000 s? — (arctan s)? ll _9<sin:1; B cosx)zl ds. (22)
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It should be emphasized that, owing to the dependence of the quantity AB upon the radius
of the target nucleus (R = 1.1 A3 where A is the total number of nucleons in the nucleus;
for heavy nuclei Ry =~ 1.5 Z1/3) the total cross-section of Coulomb dissociation o gets a
certain deviation from the pure dependence ~ Z2. However, according to our calculations,
the dependence of the total cross-section of Coulomb disintegration of weakly bound nuclei
and hypernuclei upon Z cannot be presented as ~ Z?~° with a small constant §, contrary to
the statements in the papers [9,10].

The dependence of the correction term AB on the parameter y is presented in Fig.1 and
Fig.2. The corresponding correction to the Coulomb dissociation cross-section is
L)

Ao = _I (Zoz)222

3 AB(Z), (24)
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As shown by the analysis, the quantity AB(Z) tends to zero with the decrease of the ratio
Riag/p as AB ~ x*In x. Let us note that, for a given projectile nucleus, at charges of target
nuclei in the interval Z = 50100 the dependence of AB on y is almost linear (AB &2 by, ).
As a result, the quantities AB, Ao are proportional, respectively, to the factors Z'/?, Z7/3.
AB ~ 73 Ao ~ Z73. In so doing, the "effective” charge, determining the cross-section
of the Coulomb dissociation, is Zeg = Z(1 — aprZ1/3)1/2. The coeflicients b,, and ap,, depend
on the concrete projectile nucleus.

6. Calculations of the cross-section of Coulomb dissociation for the
hypernuclei *H, and °He,

1. Let us consider the process of Coulomb dissociation of the hypernucleus >, into the

deuteron and the A-particle:
SHy+ 7 > d+ A+ 7

(z =1, M = M(PHy) = 2993.6 MeV/c* my = myg = 1878 MeV/c*; my = my = 1115.7
MeV/c?). According to the experimental data, the binding energy of the A hyperon in the
hypernucleus ®Hy is eé?lj) = (0.01 £0.07) MeV [11], or eé?lj) = (0.1540.07) MeV [12]. Taking
v =6 and eé?lj) ~ (.08 MeV, we obtain:

X~ 04323 AB=0.63y; Z% = Z%*(1—0.022'/%).

In particular, for the tin target (7 = 50):

o9 = 1.88 barn; Ao = —0.14 barn; ¢ = 1.74 barn.
For the uranium target (7 = 92):

o9 = 6.38 barn; Ao = —0.58 barn; ¢ = 5.8 barn.

Here o¢ is the cross-section calculated for the point-like Coulomb centre, Ao is the
correction to the cross-section due to the finite radius of the target nucleus.

2. Now let us consider the process of Coulomb dissociation of the hypernucleus ¢ Hey
into ®Hey and the neutron:

SHea+ 7 — "Hex+n+ 2

(2 =2, M = M(°Hep) = 5.78 GeV/c*, my = m(*Hep) = 4.84 GeV/c?, my = m, = 939
MeV/c?).

The data on the binding energies of the A-hyperon in the hypernuclei *He, and °Hey
[12] and on the masses of their nucleon bases (ordinary nuclei *He and *He [13]) lead to
the following estimation of the binding energy of the neutron in the hypernucleus *He, :

6&2 = (0.23 +£0.13) MeV. Taking v = 6 and 6&2 ~ 0.15 MeV, we have:

X~ 14323 AB=05y: Z%~ Z*1—-0.0572'3).
In the case of the tin target (7 = 50): 09 = 0.74 barn; Ao = —0.14 barn; ¢ = 0.6 barn.
For the uranium target (7 = 92): oo = 2.50 barn; Ao = —0.54 barn; o = 1.96 barn.

So, for the considered cases (especially — for ®He,) the correction Ao to the Coulomb
dissociation cross-section, emerging due to the finite size of the target, proves to be rather
essential.



7. Summary

1. The process of Coulomb dissociation of weakly bound relativistic nuclei and hypernuclei
has been studied within the two-cluster ”deuteron-like” model. Explicit expressions for the

total effective cross-section of Coulomb disintegration, taking into account the corrections
conditioned by the finite size of the target nucleus, are obtained.

2. The experimental measurement of the Coulomb dissociation cross-section for weakly
bound nuclei and hypernuclei enables one to determine the value of the binding energy for
these systems.
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Fig. 1. Dependence of the correction term AB (22) upon the parameter y (23) .
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Fig. 2. Dependence of the coefficient b,,=AB/y upon the parameter y .





