
A Safari Through Density Functional Theory

Reiner M. Dreizler and Cora S. Lüdde

Abstract Density functional theory is widely used to treat quantum many body
problems in many areas of physics and related fields. A brief survey of this method
covering foundations, functionals and applications is presented here.

1 The Astonishing Rise of Density Functional Theory

The first text books on density functional theory contain at most 750 references
([1, 2]). In 2011 a search via Google yields the astonishing number of about 5 200
000 entries if one searches for ‘density functional theory’. A selection of the topics,
that are included in the Google listing, is

• Ground (and some excited) state properties of nuclei, atoms, molecules, clusters
and solids

• Surface physics (adsorption, absorption)
• Properties of plasmas
• Superconducting systems
• Multicomponent systems
• Laser excitation
• DFT in molecular dynamics approaches
• Collision problems, e.g., ion-atom collisions
• Nano tubes, quantum dots

One may add that the Nobel Prize in Chemistry of the year 1998 has been awarded
to W. Kohn and J. A. Pople for the development of density functional theory.
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All this raises the question: ‘Why is density functional theory so popular?’ The short
answer is: It allows the reformulation of a quantum many body problem in terms of
a set of equivalent one particle problems, which can be handled more easily.

In view of the complexity of the many body problem one might well ask: Is this
really possible? The answer to this question is: An exact mapping is in principle
possible, but—and this is the reason for the popularity of the method—in reality in
terms of approximations that yield excellent results.

2 Basic Version: Ground State Properties

The starting point of the discussion is a standard many body Hamiltonian with kinetic
energy, motion of the particles in an external potential and an interaction between
all pairs of particles1

Ĥ = T̂ + V̂ + Ŵ .

The foundation of density functional theory is provided by the proof of the Hohenberg-
Kohn Theorem [3], which states that the groundstate expectation value of any observ-
able is a unique functional of the groundstate density

A0[n0] = 〈ψ0[n0] | Â|ψ0[n0] 〉.

Furthermore: the functionals for the kinetic T [n0] and the interaction energies W [n0]
are universal. This means: the kinetic energy functional has the same form for any
(nonrelativistic fermion) system and the interaction energy functional is the same
for any Coulomb system, however complicated the functionals are. The groundstate
energy of a specific system (e.g. atom, molecule, solid) is therefore characterised by
the one particle potential

V [n0] = 〈ψ0[n0] |V̂ |ψ0[n0] 〉 =
∫

d3r v(r)n0(r),

in the sense that there exists a unique, bijective mapping V [n] ⇐⇒ n.

On the basis of the theorem one may, given an energy functional, attempt to
determine the groundstate energy variationally. The variational problem

δ

δn(r)

{
E0[n] − μ

∫
d3r n(r)

}
= 0,

with the subsidiary condition of a fixed particle number N , allows the determination
of the ground state density n0(r) and the ground state energy E0. This direct path to
the ground state energy was attempted by the precursors of modern density functional

1 Questions of additional degrees of freedom as, e.g., spin will be suppressed here.
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theory, the Thomas-Fermi model (and its extensions, see e.g. [1]). So far only results
of modest accuracy have been obtained. The reason is: the kinetic energy functional
T [n] is not known well enough.

A way around the difficulties with the kinetic energy was suggested by Kohn and
Sham [4]. The Kohn-Sham method can be summarized in the following fashion2:

• Step 1: Represent the ground state density (again suppressing questions of spin or
other degrees of freedom)

n(r) ≡ n0(r) = N
∫

d3r2 . . .

∫
d3rN Ψ

†
0 (r, r2, . . .)Ψ0(r, r2, . . .)

in terms of a set of orbital functions

n(r) =
N∑

i=1

ϕ∗
i (r)ϕi (r).

• Step 2: Rearrange the expression for the groundstate energy

E0[n] = T [n] + W [n] +
∫

d3r v(r)n(r)

after addition and subtraction of the noninteracting kinetic energy

Ts[n] = − �
2

2m

N∑
i=1

∫
d3r ϕ∗

i (r)∇ϕi (r)

and the Hartree energy

WH (n) = 1

2

∫
d3r1

∫
d3r2 n(r1)w(r1, r2)n(r2)

in the form
E0[n] = Ts[n] + WH [n] + V [n] + Exc[n]

with the exchange-correlation energy

Exc[n] = T [n] − Ts[n] + W [n] − WH [n].

This central energy term is given by the difference between the full kinetic energy
and its noninteracting counterpart as well as the difference between the full inter-
action energy and the Hartree energy. In other words, it contains all serious many

2 The actual argumentation is more subtle. The subtlety is discussed under the heading of
v-representability, which concerns the question of the existence of functional derivatives of kinetic
energy functionals [5].
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body aspects of the problem. On the other hand, through the rearrangement, the
large and easy to obtain parts of the ground state energy have been separated
neatly from the smaller, but for all finer points important, exchange-correlation
contribution.

• Step 3: By variation with respect to the orbitals (and the subsidiary condition of
orthonormality—which turns out to be sufficient) one arrives at the Kohn-Sham
orbital equations

{
− �

2

2m
∇ + v(r)+ vH ([n]; r)+ vxc([n]; r)

}
ϕi (r) = εiϕi (r).

This single particle equation contains three potential terms. Next to the given
external potential and the Hartree potential one has to deal with the exchange-
correlation potential vxc([n]; r), which is defined by the functional derivative of
the exchange-correlation energy

vxc([n]; r) = δExc[n]
δn(r)

.

The Kohn-Sham equations constitute the map of the many body problem on effective
single particle problems. They invite the following comments:

• The full, effective Kohn-Sham potential

vK S([n]; r) = v(r)+ vH ([n]; r)+ vxc([n]; r)

is determined by the density. The Kohn-Sham problem is, as the Hartree-Fock
problem, a selfconsistency problem: an initial guess of the density (given the
density dependence of the potentials) has to be iterated until selfconsistency.

• The Hartree approximation is recovered for vxc = 0, the Hartree-Fock
approximation—cum grano salis—for vxc = vx . The Kohn-Sham scheme deals,
however, with correlation effects beyond these approximations.

• One welcome feature of the Kohn-Sham potential vK S is the fact, that it is mul-
tiplicative. It is much simpler to handle such a potential for geometrically com-
plicated systems as compared to the Hartree-Fock potential, which includes a
‘nonlocal’ exchange term.

• Although it might be very tempting to endow some physical significance to the
Kohn-Sham orbitals, the genesis of the approach does not support this point of
view. As a matter of principle, the orbitals are just mathematical constructs aimed at
generating the ground state density. In the same vein: the determinant constructed
from the lowest energy Kohn-Sham orbitals does not represent the groundstate of
the problem at hand.
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3 Survey of xc-Functionals

The xc-energy functionals or potentials are at the heart of the ensuing discus-
sion. Most functionals found in the literature address nonrelativistic, many particle
Coulomb systems. This field of activity will serve for the introduction of the four
types of functionals which have been used to date. Some sample results are found in
Sect. 5.

The functionals, that are most often used and easiest to apply, are based on the
local density approximation.

3.1 LDA: Local Density Approximation

The LDA assumes that xc-energy densities (exc = Exc/volume) obtained for
homogeneous systems (the electron gas, nuclear matter) can be transfered locally
to situations which are not so homogeneous

ehom
xc (n) −→ eL D A

xc (n(r)) so that E L D A
xc [n] =

∫
d3r eL D A

xc (n(r)).

The global functional dependence of the energy density on the constant density is
supposed to be (approximately) correct locally. One may then use results from many
body perturbation theory or Monte Carlo simulations of the homogeneous systems
for the formulation of the functionals. This approach leads to functionals, which lead
to very acceptable results, so that one is bound to ask for the reason. The reason
for the success of the LDA is a cancelation of errors between the exchange and
the correlation contributions. This, in turn, is due to the fact that the corresponding
exchange and correlation holes (correlation functions between pairs of particles) of
the LDA satisfy exact sum rules

ρx (r1, r2) ≤ 0
∫

d3r ′ρx (r, r + r′) = −1
∫

d3r ′ρc(r, r + r′) = 0

on the average.
There are, nonetheless, deficiencies of the LDA. The major one is a problem with

selfinteraction effects, due to a lack of cancelation of the selfinteraction between the
direct and the exchange energies. This leads to an incorrect asymptotic limit of the
xc-potential, for instance for neutral Coulomb systems

lim
r→∞ v

L D A
xc −→ −ε−γ r instead of lim

r→∞ v
exact
xc −→ −1

r
.
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If one particle is removed far from the system, one should observe a Coulomb poten-
tial as an effect of the hole left behind. This feature is also the reason for a poor
representation of negative ions.

3.2 GE: Gradient Expanded Functionals

If the homogeneous system does not provide an acceptable input, it is natural to look
at corrections due to inhomogeneities. An expansion of the xc-energy to low order
in derivatives of the density can be written as

Exc[n] = E (0)xc [n] + E (2)xc [n] + E (4)xc [n] + . . .

=
∫

d3r
{

eL D A
xc (n(r))+ B(2)xc (n(r))(∇n(r))2 + . . .

}
.

The technique used to evaluate the details is many body perturbation theory. For
instance, the coefficient of the second order contribution in the exchange-only limit
B(2)x is determined by evaluation of the three diagrams of the irreducible polarisation
insertion

Even the evaluation of these contributions did not turn out to be straightforward
due to the singular structure of the Coulomb interaction at small momenta. The same
must be said for low order correlation contribution. After much work, the gradient
expansion was found to converge slowly and lead to unsatisfactory results. One of the
reasons for this disappointing feature is the fact that the sum rules for the exchange
and correlation hole (see above) are not satisfied if evaluated with input obtained by
gradient expansion [6].

3.3 GGA: Generalised Gradient Functionals

The study of the gradient expansion of the xc-energy demonstrates that low order
correction beyond the LDA contribution can be expressed in terms of two quantities,
the density and a second order density gradient, usually called s

s(r) =
(∇n(r) · ∇n(r)

n(r)8/3

)1/2

.
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A standard ansatz takes the form

ΔEGG A
xc [n] =

∫
d3r eL D A

xc (n(r)) fxc(n(r), s(r)).

For Coulomb problems there exists a large number of well and not so well founded
suggestions for the function fxc. Parameters are, for instance, fitted by optimal repro-
duction of atomic data. The resulting functions can then, relying on the universality
of the functionals in question, be used for other Coulomb systems, from molecules
to solids. Again it is found that the sum rules for the pair correlation holes play an
important part. They can be enforced by a ‘real space cut-off’, which is achieved
technically by limiting the integrations to a suitable section of space [7].

3.4 OF: Orbital Functionals

Orbital or implicit functionals are introduced with the argument that the ground state
density is also a functional of the Kohn-Sham orbitals. It might, for this reason, be
worthwhile to use the orbitals as the basic variables. It is then possible to define the
Kohn-Sham exchange (with Kohn-Sham rather than Hartree-Fock orbitals)

E K S
x = −1

2

∑
i, j

∫
d3r1

∫
d3r2ϕ

∗
i (r1)ϕ

∗
j (r2)W (r1, r2)ϕi (r2)ϕi (r1),

so that the exchange-only limit is selfinteraction-free. The calculation of the
xc-potential is now more involved, as the application of the chain rule for the func-
tional derivatives

δ

δn(r)
=

∫
d3r ′ ∑

j

δ

δϕ j (r′)
δϕ j (r′)
δn(r)

+ herm. conj.

leads to integral equations for the xc-potential. The appearance of the integral
equations is the reason for the alternative name of the orbital approach: Optimised
Potential Method. For instance in the x-only limit one obtains the equation

∫
d3r1v

O F
x (r1)K (r1, r2) = Q(r2) ,

where the kernel K and the inhomogeneous term Q depend explicitly on occupied
as well as unoccupied Kohn-Sham orbitals. The solution of the integral equations
for the effective potentials has to be repeated within each selfconsistency cycle. As
this is quite time-consuming, efficient shortcuts [8] on the basis of closure have been
invented and tested. The correlation contribution is usually evaluated in terms of a
perturbative approach a posteriori.



472 R. M. Dreizler and C. S. Lüdde

4 Extensions

Extensions of the basic theory have been formulated and explored in many directions.
As examples one might name

• Time-dependent density functional theory [9] for the exploration of excitation
and collision processes: The basis is in this case the Runge-Gross Theorem [10],
which can be viewed as a nontrivial extension of the Hohenberg-Kohn Theorem.
The action functional

A[n(t)] = 〈ψ[n(t)]| Â(t)|ψ[n(t)]〉

replaces the energy functional. The extension is, among others reasons, nontrivial,
as retarded and advanced time structures have to be separated properly.

• Relativistic density functional theory [11, 12], e.g. for the investigation of systems
involving heavy elements: the formulation (basic existence theorem, structure of
the functionals, orbital equations) has to be based on a proper quantum field theo-
retical background (as quantum electrodynamics) in order to deal with questions
of renormalisation, vacuum polarisation etc. A relativistic four-current replaces
the density. In addition viable schemes have to be explored with the aim of han-
dling the solution of the underlying single particle Dirac-Kohn-Sham equations
with particle as well as hole states.

• Current/Spin-polarised density functional theory by inclusion of spin degrees of
freedom.

• Thermal density functional theory based on use of the free energy and the grand
potential.

• The list could be extended (see e.g. [5]).

5 Some Applications and Results

In this chapter a small selection of results, partly in the form of tables and partly
by illustrations are presented, with minimal comments. As usual, the devil hides
in the detail. Details are not be outlined here. Therefore interested readers are
encouraged to consult the references for explicit methods used and for further
examples.

5.1 Nuclei

The question of the energy situation in heavy or superheavy nuclei has been inves-
tigated with an approach termed Quantum-Hadro-Dynamics [13], that is a non-
renormalisable, field-theoretical meson-exchange model. The nucleons interact via
the exchange of massive scalar and vector mesons. The coupling constants are
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Table 1 Binding energy/nucleon (MeV) and charge radius (fm) of element 114, [14]

Binding energy (MeV) Charge radius (fm)
HF LDA Exp HF LDA Exp

16O 5.11 7.63 7.98 2.74 2.74 2.73

40Ca 6.46 8.26 8.55 3.46 3.52 3.46

48Ca 6.72 8.53 8.67 3.45 3.53 3.45

90Zr 7.11 8.73 8.71 4.23 4.33 4.23

208Pb 6.49 7.87 7.87 5.47 5.60 5.47
114 7.10 6.32

Table 2 Mean absolute deviation of atomisation energies (kcal/mol) for the 32 ‘standard’ mole-
cules, [15]

HF MP2 MP2+ LSD GGA/LSD GGA

85.9 22.4 28.8 35.7 4.4 5.6

determined so that they reproduce the properties of lighter nuclei. The model is
then used to predict properties of heavier nuclei and superheavies. The results for
the binding energy per nucleon (in [MeV]) and the charge radius (in [fm]) of a den-
sity functional calculation with the QHD model at the LDA level [14] are shown in
Table 1.

5.2 Molecules

An investigation of various properties of 32 ‘standard molecules’ by Johnson et al.
[15] convinced the community of Chemists of the usefulness and predictive power
of density functional theory. Table 2 shows results for the mean absolute deviation
of atomisation energies (in units of kcal/mol), comparing three standard many body
methods (Hartree-Fock and many body perturbation theory to second order, direct
and augmented by selected fourth order contributions) with three different density
functional approaches (local-spin-density, generalised gradient approximation for
exchange plus local-spin-density for correlation and a generalised gradient functional
for both exchange and correlation).

The same picture emerges on the level of individual molecules, for instance at
the atomisation energies (in units of eV) of carbohydrates [16] as a function of the
number of bonds (N ) shown in Table 3.

Direct insight into the distribution of the electrons in the ground state of a molecule
can be gleened by looking at the gradients of the density, as illustrated for instance in
the two parts of Fig. 1. The figure shows the variation of the two gradient functions
s and d
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Table 3 Atomisation
energies (eV) of selected
carbohydrates, [16]

N Exp HF LDA GGA

H2 1 4.75 3.63 4.89 4.55
C2 1 6.36 0.73 7.51 6.55
C2H2 3 17.69 13.00 20.02 18.09
CH4 4 18.04 14.39 20.09 18.33
C2H4 5 24.65 18.71 27.51 24.92
C2H6 7 31.22 24.16 34.48 31.24
C6H6 12 59.67 45.19 68.42 61.34

Fig. 1 Characteristic gradi-
ents s and d of the density in
the N2-molecule, [5]

s =
(∇n · ∇n

n8/3

)1/2

and d = Δn

n5/3

for the nitrogen molecule N2 (over the x-y plane). The density has been obtained
by a Kohn-Sham calculation with exact exchange [5]. The two nuclei are located at
x = ±1.035 Bohr, y = z = 0.
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Glycine Ip Glycine IIp

(a) (b)

Fig. 2 The conformers glycine Ip and glycine IIp

An example for the treatment of more complex molecules is the calculation of the
structure of small amino acids like glycine. The chemical formula

NH2 CH2 COOH

does not tell the full story, as there exist a number of conformers as for instance
glycine Ip and glycine IIp shown3 in Fig. 2.

These molecules were treated like solids with a supercell technique (with 23 Å)
using a plane wave expansion of the orbitals and a pseudopotential approach of
the Troullier-Martins type. Results for the various bond lengths and bond angles in
glycine Ip are collected in Table 4. LDA results [17] are compared with experimen-
tally determined values [18]. A corresponding calculation for glycine IIp, presented
in Table 5, emphasises the variation of results with the size of the basis (cut-off of
the plane wave basis at 60 versus 100 Rydbergs). This illustrates on one side the
accuracy that can be obtained with reasonably modest means (within the LDA) and
(in comparison with the Table 4) the difference in the structure of the two conformers.
The results of [17] can be summarised in the form: the structure of all the conformers
of all small amino acids is well reproduced by density functional theory. The effect
of contributions of gradient corrections is not very dramatic.

The total groundstate energies of the two conformers in LDA are found to be (in
Hartree)

E0(I p) = −55.8006H E0(I I p) = −55.9047H.

The energy difference E0(I I p)− E0(I p)=−0.05H=−0.14 eV=−3.12 kcal/mol
does however not agree with the experimental value E0(I I p)− E0(I p) = +0.06 eV
= +1.4 kcal/mol. The conformer I p has the lower energy.

3 p stands for the fact that the heavy constituents are planar.
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Table 4 Structure of glycine Ip, [17]

Bond lengths Bond angles
Ip (Ångstrøm) (degrees)
Bond Expt LDA Angle Expt LDA

N–H (1.001) 1.020 H–N–H (110.3) 106.5
N–C 1.467 1.431 H–N–C (113.3) 111.0
C–H (1.081) 1.101 N–C–C 112.1 115.0
C–C 1.526 1.506 H–C–H (107.0) 104.4
C–O 1.355 1.332 C–C–O 111.6 114.9
C = O 1.205 1.200 C–C = O 125.1 125.7
O–H (0.966) 0.976 C–O–H (112.3) 104.7

Table 5 Structure of glycine IIp, [17]

Bond lengths Bond angles
IIp (Ångstrøm) (degrees)
Bond LDA60 LDA100 Angle LDA60 LDA100

N–H 1.026 1.019 H–N–H 107.9 108.7
N–C 1.453 1.449 H–N–C 113.1 113.7
C–H 1.103 1.099 N–C–C 109.9 110.4
C–C 1.518 1.518 H–C–H 106.2 106.1
C–O 1.338 1.324 C–C–O 112.2 112.0
C = O 1.228 1.203 C–C = O 122.5 123.1
O–H 1.046 1.023 C–O–H 100.0 101.8

5.3 Solids

Different options for density functional potentials in solids reproduce in general the
gross features but differ sufficiently in detail, so that they give rise to different band
structures. This point is illustrated in Fig. 3, which shows the exchange potential
obtained by a plane wave pseudo potential calculations for Si [5]. The plot illus-
trates the difference between two GGA potentials, one LDA potential and the more
involved (and more accurate) OPM potential. The potentials are plotted along the
[111] direction of a diamond structure.

The band structure resulting from the OPM potential is displayed in Fig. 4, together
with rather close results obtained with the simpler, very efficient KLI approximation.

5.4 Final Remark

Obviously it is only possible to scratch the surface of a vast field in such a
short communication. For further reading and study we naturally recommend the
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Fig. 3 Exchange potential of Si, plotted along the [111] direction for a diamond structure, [5]

L G X U,K G

-10

-5

0

5

OPM

KLI

Si

Fig. 4 Band structure of Si obtained for the OPM and for the KLI approximation, [5]

book [5], which presents a fuller overview, addresses many finer points and pro-
vides the explanation of the figures, which are included here. The book also contains
references to additional texts and reviews.
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