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1 Introduction

Recently P. Hořava proposed a new intriguing formulation of theories with anisotropic

scaling between time and spatial dimensions [1–4].1 In particular, in his second paper [3]

he formulated a new world-volume quantum theory of gravity and matter in 2 + 1 di-

mensions that is strongly anisotropic between space and time in the world-volume theory.

This phenomenon is well known from the study of condensed matter systems at quantum

criticality [5]. Similar systems have been intensively studied from the point of view of the

nonrelativistic form of the AdS/CFT correspondence [6–25, 27–34].2 The construction of

such a 2+1 dimensional theory [3] was based on the following question: Is it possible to

find a quantum theory of membranes such that its ground state wave functional reproduces

the partition function of the bosonic string? Generally, we can start with some equilibrium

system in D dimensions that is at criticality and study how the critical behavior extends

to the dynamical phenomena in D + 1 dimensions. For example, the similar question can

be asked in the context of stochastic quantization; the goal is to build a non-equilibrium

system in D+1 dimensions that relaxes at late times to its ground state, which reproduces

the partition function of a D dimensional system we are interested in.

The goal of this paper is to implement similar ideas in the case where the p dimensional

system is a brane with the Nambu-Goto form of the action. We also assume that this p-

brane is embedded in general D dimensional background. This assumption implies that

the p dimensional action is highly non-linear with all well known consequences for the

renormazibility and quantum analysis of given action. Despite of this fact we demand-

with analogy with the quantum critical membrane theory [3]-that the partition function

of p dimensional theory should be equivalent to the norm of the ground state of the p + 1

1For recent study of cosmological aspects of these theories, see [47–49].
2For another approach to the study of non-relativistic systems in string theory,see for example [35–46].
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dimensional theory. Note however that this correspondence is pure formal since we do

not address the question whether these objects for highly nonlinear systems are really well

defined. Despite of this fact we proceed further and we will see that the fundamental

requirement allows us to find an action for the p + 1 dimensional theory that is manifestly

invariant under spatial diffeomorphism and under rigid time translation. Further, the

resulting action obeys the Detailed balance condition that states that the potential term of

p+1 dimensional theory can be derived from the variation principle of p dimensional theory.

As the next step in the construction of the action for a p-brane at criticality we extend

the symmetries of given action. More precisely, we extend the time-independent spatial dif-

feomorphisms to all space-time diffeomorphisms that respect the preferred codimension-one

foliation of p + 1 dimensional space-time by the slices at fixed time. These diffeomorphism

are known as a foliation-preserving diffeomorphism and consist a space-time dependent

spatial diffeomorphism together with time-dependent reparameterization of time. Since

under these transformations the original p + 1 dimensional action is not invariant we have

to introduce new gauge fields N i and N to maintain its invariance. The presence of these

new gauge fields will be crucial for the correct Hamiltonian formulation of the theory as the

theory of constraint systems. In fact, since the action does not contain time derivative of N

and N i the standard analysis implies an existence of primary constraints πN ≈ 0 , πi ≈ 0.

The consistency of these constrains implies an existence of secondary constraints. Then

we construct vacuum wave functional that is annihilated by these constraints and that is

automatically the state of zero energy.

The organization of this paper is as follows. In the next section 2 we review the

Lifshitz theory of D scalar fields defined on p dimensional space. In section 3 we construct

the p + 1 dimensional theory from the Nambu-Goto form of p-brane action that obeys

detailed balance condition. In section 4 we generalize the gauge symmetries of this p + 1-

dimensional theory when we extend rigid time translation and spatial diffeomorphism to

the foliation-preserving diffeomorphism. In section 5 we develop the Hamiltonian formalism

for given theory and we calculate the algebra of constraints. Finally in section 6 we outline

our results and suggest possible extension of this work.

2 Review of Lifshitz scalars and quantum criticality

The aim of this section is to review, following [3, 5] the physics of D free scalar fields

defined on p dimensional Euclidean space with coordinates x = xi , i = 1, . . . , p with action

W =
1

2

∫

dpxδij∂iΦ
M∂jΦ

NgMN , (2.1)

where gMN is a constant positive definite symmetric matrix.

As in standard quantum mechanics, the fundamental object of this theory is the par-

tition function Z
Z =

∫

DΦ(x) exp[−W (Φ(x))] , (2.2)

that is defined as a path integral on the space of field configurations ΦM(x). Let us assume

the existence of a p + 1 dimensional theory whose configuration space coincides with the
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space of all ΦM (x). In other words, the wave functionals of this p + 1-dimensional theory

are functionals of ΦM (x) so that Ψ(ΦM (x)). Then the standard interpretation of quantum

mechanics implies that Ψ(Φ(x))Ψ∗(Φ(x)) is a density on the configuration space. Our goal

is to formulate p+1 dimensional system with the property that the norm of its ground-state

functional Ψ0(Φ(x)) reproduces the partition function (2.2)

〈Ψ0|Ψ0〉 =

∫

DΦ(x)Ψ∗
0(Φ(x))Ψ0(Φ(x)) =

∫

DΦ(x) exp[−W (Φ(x))] . (2.3)

To proceed further we have to introduce of Schrödinger formulation of quantum field theory.

Explicitly, the basic operators in quantum field theory are Φ̂M(x) and Π̂M (x) with canonical

commutation relation
[

Φ̂M(x), Π̂N (y)
]

= iδM
N δ(x − y) . (2.4)

Further, the eigenstates of Φ̂M (x) are the states |Φ(x)〉 that obeys

Φ̂M(x) |Φ(x)〉 = ΦM(x) |Φ(x)〉 . (2.5)

In the Schrödinger representation any state of given system is represented as the state func-

tional Ψ(Φ(x)) and the action of the operator Φ̂M (x) on this state functional corresponds

to multiplication with ΦM(x). Further, the commutation relation (2.4) implies that in the

Schrödinger representation the operator Π̂M (x) is equal to

Π̂M (x) = −i
δ

δΦM (x)
. (2.6)

Let us now assume that the Hamiltonian of the p + 1 dimensional theory has the form

Ĥ =
1

2

∫

dpxĤ ≡
∫

dpxQ̂†
M (x)ĝMN Q̂N (x) , (2.7)

where Q̂M , Q̂†
M are defined as

Q̂M = iΠ̂M +
1

2

δW [Φ̂]

δΦ̂M (x)
, Q̂†

M = −iΠ̂M +
1

2

δW [Φ̂]

δΦ̂M (x)
. (2.8)

Clearly, the Hamiltonian (2.7) is Hermitian and positive. Note also that Q̂M , Q̂†
M take the

form in the Schrödinger representation

Q̂M =
δ

δΦM (x)
+

1

2

δW [Φ]

δΦM (x)
, Q̂†

M = − δ

δΦM (x)
+

1

2

δW [Φ]

δΦM (x)
. (2.9)

Let us assume that the vacuum wave functional takes the form

Ψ0(Φ(x)) = exp

(

−1

2
W

)

= exp

(

−1

4

∫

dpxδij∂iΦ
M(x)gMN∂jΦ

N(x)

)

. (2.10)

It is easy to see that Q̂M defined in (2.9) annihilates Ψ0

Q̂MΨ(Φ(x)) = 0 (2.11)

– 3 –
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as follows from the fact that

δ

δΦM (x)
Ψ0(Φ) = −1

2

δW

δΦM (x)
Ψ0(Φ) . (2.12)

Using the definition of the Hamiltonian (2.7) we derive that the vacuum state functional

is the eigenstate of the Hamiltonian of zero energy.

As the next step in the construction of the p+1-dimensional theory we should find cor-

responding Lagrangian density from the known quantum Hamiltonian (2.7). The standard

procedure is to consider the classical form of this Hamiltonian when we identify Π̂ → Π

and Φ̂ → Φ so that the classical Hamiltonian is equal to

H =
1

2

∫

dpx

(

−iΠM (x) +
1

2

δW

δΦM (x)

)

gMN

(

iΠM (x) +
1

2

δW

δΦM (x)

)

(2.13)

=
1

2

∫

dpx

(

ΠM (x)gMNΠN (x)+
1

4
∂i

[

δijgMN∂jΦ
N (x)

]

gMK∂i

[

δijgKL∂jΦ
L(x)

]

)

where we used the explicit form of the variation

δW

δΦM (x)
= −∂i

[

δijgMN∂jΦ
N (x)

]

. (2.14)

Then in order to find corresponding Lagrangian we use the Hamiltonian equation of motion

∂tΦ
M(x) =

{

ΦM(x),H
}

= gMNΠN (x) (2.15)

and consequently

L = ∂tΦ
MΠM −H

=
1

2
∂tΦ

MgMN∂tΦ
N − 1

2

(

1

2

δW

δΦM

)

gMN

(

1

2

δW

δΦN

)

=
1

2
∂tΦ

MgMN∂tΦ
N − 1

8
∂i

[

δijgMN∂jΦ
N

]

gMK∂i

[

δijgKL∂jΦ
L
]

. (2.16)

We derived exactly as in [3, 5] that the Lagrangian density of the p + 1 dimensional theory

is a sum of a kinetic term that involves time derivative of ΦM and a potential term that

is derived from the variational principle. This important property is known as detailed

balance condition.

The theory defined by the Lagrangian density (2.16) has many interesting properties.

Firstly, if we define the scaling dimension of x as

[x] = −1 (2.17)

we find from the requirement of the invariance of W under scaling that the scaling dimension

of Φ is

[Φ] =
p − 2

2
. (2.18)

However then from the requirement that the scaling dimension of p+ 1 dimensional action

is zero implies that the scaling dimension of t is

[t] = −2 . (2.19)

– 4 –
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It is known from the theory of condensed matter systems that the degree of anisotropy

between the time and space is measured by the dynamical critical exponent z in the sense

that [t] = −z. Lorentz symmetry of relativistic systems imply z = 1 while for non-

relativistic systems we have z = 2.

3 Branes at criticality

In this section we generalize the analysis presented in the previous section to the case when

p dimensional theory is p-brane with Nambu-Goto action

W =
1

κp
W

∫

dpx
√

detG ,Gij = gMN∂iΦ
M∂jΦ

N , (3.1)

where the world-volume is labeled by coordinates xi , i, j = 1, . . . , p. Further, ΦM ,M =

1, . . . ,D are scalar fields (from the point of view of dimensional world-volume theory) and

gMN (Φ) is general metric of target D−dimensional space.

Our goal is to find p + 1-dimensional theory with the property that the potential term

obeys detailed balance condition. We proceed in the similar way as in previous section and

demand that when we quantize this theory on Rp,1 the resulting vacuum wave functional

should be equal to

Ψ0[Φ(x)] = exp

(

−1

2
W [Φ(x)]

)

, (3.2)

where W is given in (3.1). In other words the wave functional is function of ΦM(x) that

should be defined on the space of gauge orbits A/G where A is a space of all fields ΦM(x)

and the gauge group G is the group of world-volume diffeomorphism. Recall that the norm

of the vacuum wave functional (3.2) is equal to

∫

A/G
DΦ[x]Ψ∗[Φ(x)]Ψ[Φ(x)] =

∫

A/G
DΦ(x) exp (−W (Φ(x))) . (3.3)

We see that this norm is equal to the partition function of p-brane theory that takes the form

Z =

∫

A/G
DΦ(x) exp (−W (Φ(x))) . (3.4)

We should again stress that (3.3) and (3.4) are formal prescriptions since we did not pre-

cisely defined the integration measure and the space A/G.

Despite of these facts we propose a Hamiltonian of p + 1 dimensional theory that has

the property that the vacuum wave functional (3.2) is its ground state with zero energy.

Following the analysis presented in previous section we introduce operators Φ̂M (x), Π̂M (x)

that obey the commutation relations (2.4) and define operators Q̂M (x), Q̂†
M (x) as in (2.8)

where now W is given in (3.1). However due to the non-linear character of (3.1) it is clear

that the commutator of Q̂†
M (x) with Q̂N (y) is nonzero and it is equal to some function of

Φ̂M together with their spatial derivatives. As a consequence we have to define the quantum
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Hamiltonian with the prescriptions that all Q̂†
M ’s are to the left of all Q̂′

N . Explicitly, we

propose the quantum Hamiltonian in the form

Ĥ =

∫

dpxĤ(x) ,

Ĥ =
κ2

2
Q̂†

M

gMN (Φ̂)
√

detG(Φ̂)
Q̂N =

κ2

2

(

−iΠ̂M +
δW

2δΦ̂M

)

gMN (Φ̂)
√

det G(Φ̂)

(

iΠ̂N +
δW

2δΦ̂N

)

, (3.5)

where κ is a coupling constant. It is easy to see that the Hamiltonian (3.5) is Hermitian

and positive definite. Further, it is also clear that Q̂M annihilates Ψ0[Φ(x)] given in (3.2)

and consequently (3.2) is a candidate for the ground state of the theory since by definition

ĤΨ0[Φ(x)] = 0 . (3.6)

Now we would like to find corresponding Lagrangian formulation of given theory defined

by quantum mechanical Hamiltonian (3.5). As in previous section we consider the classical

version of this Hamiltonian where we replace Π̂ with Π and Φ̂ with Φ. It is clear that in

this process we ignore the ambiguity in the ordering of Π and Φ in the Hamiltonian (3.5).

With this issue in mind we claim that the classical form of the Hamiltonian density (3.5)

takes the form

H =
κ2

2
ΠM

gMN

√
detG

ΠN +
κ2

8
√

det G

δW

δΦM
gMN δW

δΦN
. (3.7)

Using this form of the Hamiltonian density it is easy to determine the Lagrangian density.

Firstly we determine the time derivative of ΦM from

∂tΦ
M (x) =

{

ΦM(x),H
}

= κ2 gMNΠN√
detG

(3.8)

and then we easily obtain the Lagrangian density in the form

L = ∂τΦMΠM −H = LK − LV ,

LK =
1

2κ2

√
det G∂τΦMgMN∂τΦ

N ,

LV =
κ2

8κ2p
W

√
det G

(

∂MGijG
ji − 1√

det G
∂i

[

gMK∂jΦ
KGji

√
detG

]

)

gMN

×
(

∂NGklG
lk − 1√

det G
∂k

[

gNL∂lΦ
LGlk

√
detG

]

)

. (3.9)

Now we analyze the Lagrangian density (3.9) in more details. Let us consider the diffeo-

morphism transformations

x′i = x′i(x) (3.10)

under which the element dpx transforms as

dpx′ = dpx |detD| , (3.11)

– 6 –
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where we introduced p×p matrix Di
j = ∂x′i

∂xj . Further, by definition ΦM (x) are world-volume

scalars so that they transform under (3.10) as

Φ′M (x′) = ΦM (x) . (3.12)

It is easy to see that Gij transform in the following way

G′
ij(Φ

′(x′)) = Gkl(Φ(x))(D−1)ki (D
−1)lj

√

det G′(Φ′(x′)) =
1

|det D|
√

detG(Φ(x))

(3.13)

and consequently the Lagrangian densities LK ,LV transform as

LK(Φ′(x′)) =
1

|detD(x)|LK(Φ(x)) , LV (Φ′(x′)) =
1

|detD(x)|LV (Φ(x)) . (3.14)

Using these results we immediately obtain that p + 1 dimensional action

S =

∫

dpxdtL (3.15)

is invariant under spatial diffeomorphisms (3.10). We could also proceed in opposite di-

rection and demand that the p + 1 dimensional action should be invariant under (3.10).

However this requirement implies that the expression 1√
det G

has to be included into the

Hamiltonian density (3.7). In other words, the condition that (3.2) should be annihilated

by H can be also obeyed by Hamiltonian in the form ∼
∫

dpxQ̂†
M ĝMN Q̂N that however

does not lead to diffeomorphisms invariant theory.

The additional symmetry of the action (3.15) is global time translation

t′ = t + δt , δt = const

as follows from the fact that

Φ′M (t′,x) = ΦM(t,x) , ∂t′Φ
′M (t′,x) = ∂tΦ

M (t,x) . (3.16)

4 Foliation-preserving diffeomorphisms

We argued in previous section that the critical (p+1) brane theory is invariant under local

spatial diffeomorphisms and under global time translation. However it turns out that in

order to take into account appropriately the fact that the p + 1 dimensional theory is dif-

feomorphism invariant we have to extend these symmetries to space-time diffeomorphisms

that respect the preferred codimension-one foliation F of world-volume theory by the slices

of fixed time. After this extension we can develop the Hamiltonian formalism where the

constraints related to the diffeomorphisms invariance arise in natural way.

By definition such a foliation-preserving diffeomorphisms consist space-time dependent

spatial diffeomorphisms as well as time-dependent time reparameterization that are now

generated by infinitesimal transformations

δxi = x′i − xi = ζi(t,x) , δt = t′ − t = f(t) . (4.1)

– 7 –
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Note also that the field ΦM is scalar of world-volume theory and hence

Φ′M (t′,x′) = ΦM(t,x) (4.2)

so that

∂t′Φ
′(t′,x′) = ∂tΦ

M(t,x) − ∂tΦ
M (t,x)ḟ − ∂iΦ

M (t,x)ζ̇i

∂x′iΦ′M (t′,x′) = ∂iΦ
M (t,x) − ∂jΦ

M(t,x)∂iζ
j(t,x) (4.3)

and we see that these objects do not transform covariantly under (4.1). Note that under

such a diffeomorphism the element dtdpx transforms as

dt′dpx′ = (1 + ḟ)(1 + ∂iζ
i)dtdpx . (4.4)

It can be also easily shown that
√

detG transforms as

√

det G′(Φ′(x′)) =
√

det G(Φ(x))(1 − ∂iζ
i(x)) (4.5)

and consequently we find that

dpx′√det G′(Φ′(x′)) = dpx
√

detG(Φ(x)) . (4.6)

However due to the fact that the time-derivative of Φ transforms non-covariantly under

foliation-preserving diffeomorphism we should introduce new gauge fields Ni, N . It is con-

venient to derive their transformation properties under foliation-preserving diffeomorphism

from relativistic diffeomorphism transformations of p+1 dimensional metric gµν by restoring

the speed of light c and taking the non-relativistic limit c → ∞. This procedure has been

nicely reviewed in [3] where the following transformations rules for N and N i were derived

N ′(t′,x′) = N(t,x)(1 − ḟ) ,

N ′i(t′,x′) = N i(t,x) + N j(t,x)∂jζ
i(t,x) − N i(t,x)ḟ − ζ̇i(t,x) (4.7)

and consequently

dt′N ′(t′,x′) = dtN(t,x) . (4.8)

Further, the form of these transformations (4.7) suggest that it is natural to introduce

following object
1

N(t,x)

[

∂tΦ
M (t,x) − N i(t,x)∂iΦ

M(t,x)
]

(4.9)

that is invariant under folliation preserving diffeomorphism

1

N ′(t′,x′)

[

∂t′Φ
′M(t′,x′) − N

′i(t′,x′)∂i′Φ
M (t′,x′)

]

=

=
1

N(t,x)

[

∂tΦ
M(t,x) − N i(t,x)∂iΦ

M (t,x)
]

. (4.10)

– 8 –
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Using these results we can finally write the p+1 dimensional action that is invariant under

folliation-preserving diffeomorphism

S =

∫

dtdpxN
√

detG

[

1

2κ2

1

N2
(∂tΦ

M − N i∂iΦ
M)gMN (∂tΦ

N − N j∂jΦ
N )

−κ2

8

(

∂MGijG
ji − 1√

det G
∂i

[

gMK∂jΦ
KGji

√
detG

]

)

gMN

×
(

∂NGklG
lk − 1√

det G
∂k

[

gNL∂lΦ
LGlk

√
detG

]

)]

. (4.11)

5 Hamiltonian formalism

In this section we develop the Hamiltonian formulation of the theory that is governed by

the action (4.11). As the first step we introduce the momenta πN , πi that are conjugate to

N and N i with corresponding Poisson brackets

{N(x), πN (y)} = δ(x − y) ,
{

N i(x), πj(y)
}

= δi
jδ(x − y) . (5.1)

Then, due to the fact that the action (4.11) does not contain time derivatives of N and N i

we find that πN and πi are primary constraints of the theory

πN (x) ≈ 0 , πi(x) ≈ 0 . (5.2)

As the next step we determine the momenta conjugate to ΦN (x) from (4.11)

ΠN (x) =
1

κ2N

√
det GgMN (∂τΦ

N − N i∂iΦ
N ) . (5.3)

Then using the Lagrangian density given in (4.11) we find corresponding Hamiltonian

density

H = ∂tΦ
NΠN − L = N

[

κ2

2
√

G
ΠMgMNΠN

+
κ2

8

√
detG

(

∂MGijG
ji − 1√

detG
∂i

[

gMK∂jΦ
KGji

√
det G

]

)

gMN

×
(

∂NGklG
lk − 1√

det G
∂k

[

gNL∂lΦ
LGlk

√
detG

]

)]

+ N i∂iΦ
NΠN . (5.4)

Now the consistency of the primary constraints (5.2) with their time evolution implies the

secondary constraints:

∂tπN (x) = {πN (x),H} = −
[

κ2

2
√

G
ΠMgMNΠN−

−κ2

8

√
detG

(

∂MGijG
ji − 1√

detG
∂i

[

gMK∂jΦ
KGji

√
det G

]

)

gMN

×
(

∂NGklG
lk − 1√

detG
∂k

[

gNL∂lΦ
LGjk

√
det G

]

)]

≡ −T0 ≈ 0 (5.5)
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and

∂tπi(x) = {πi(x),H} = −∂iΦ
NΠN (x) ≡ −Ti ≈ 0 (5.6)

However following [3] we suggest another class of constraints using the fact that T0 can be

written as

T0 =
κ2

2
Q†

M

gMN

√
det G

QN ,

QM = iΠM +
1

2

δW

δΦM
(5.7)

= iΠM +
1

2

√
detG

[

∂MGij

(

G−1
)ji − 1√

detG
∂i

[

gMN∂jΦ
N

(

G−1
)ji √

det G
]

]

.

Then it turns out to be convenient to solve the consistency equations for πN and πi with

collections of secondary constraints

QM ≈ 0 , Ti ≈ 0 (5.8)

instead of T0, Ti.

Now we would like to demonstrate that the consistency of time evolution of these

constraints does not generate any additional constraints. First of all it is easy to see that

Poisson brackets between Ti, QM and πN , πi vanish. Further we calculate the Poisson

brackets between T ′
is and we find

{Ti(x), Tj(y)} = Ti(x)∂jδ(x − y) + Tj(x)∂iδ(x − y) + ∂iTj(x)δ(x − y) , (5.9)

where we used the basic identities

∂yiδ(x − y) = −∂xiδ(x − y) ,

∂xiδ(x − y)f(y) = ∂iδ(x − y)f(x) + ∂if(x)δ(x − y) . (5.10)

Alternatively, we can introduce the smeared form of the constraints Ti when we introduce

the object

Tζ =

∫

dpxζi(x)Ti(x) . (5.11)

Then the smeared form of the Poisson bracket (5.9) is

{Tζ ,Tη} =

∫

dpx
(

ζi∂iη
k − ηi∂iζ

k
)

Tk(x) . (5.12)

Further, let us consider the Poisson bracket of ΠM (x) with any general functional F (Φ(y)).

Using the definition of Poisson bracket

{ΠM (x), F (Φ(y))} = −δF (Φ(y))

δΦM (x)
(5.13)

and the fact that the functional derivative commute

δ

δΦM (y)

δF

δΦN (x)
− δ

δΦN (x)

δF

δΦM (y)
= 0 (5.14)

– 10 –
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we obtain

{QM (x), QN (y)} = − i

2

δ2W

δΦM (x)ΦN (y)
+

i

2

δ2W

δΦN (y)δΦM (x)
= 0

{

QM (x), Q†
N (y)

}

= −i
δ2W

δΦN (x)ΦM (y)
. (5.15)

As the next step we determine the Poisson bracket between QM and Tζ . In order to see the

physical meaning of Tζ let us calculate the Poison bracket of Tζ with any function F of Φ

{Tζ , F (Φ(x))} = −ζi(x)∂iΦ
N (x) = −ζi(x)∂iF (Φ(x)) . (5.16)

This result shows that Tζ is the generator of spatial diffeomorphism x′i = xi + ζi(x) under

which any scalar function F (Φ) transforms as

δTζ
F (Φ(x)) = F (Φ′(x)) − F (Φ(x)) = −ζi∂iF (Φ(x)) = −ζi∂iΦ

N δF

δΦN (x)
. (5.17)

We can also study the action of Tζ on more general world-volume tensors. For example,

the Poisson bracket of Tζ with Gij(x) ≡ GMN (Φ(x))∂iΦ
M(x)∂jΦ

N (x) is equal to

{Tζ , Gij(x)}=−ζi(x)∂kΦK(x)∂KGMN (x)∂kΦM (x)∂jΦ
N (x)

−GMN (x)∂i[ζ
k(x)∂kΦM(x)]∂jΦ

N (x)−GMN (x)∂iΦ
M(x)∂j [ζ

k(x)∂kΦN (x)]

=−ζi(x)∂iGij(x) − ∂iζ
k(x)Gkj(x) − Gik(x)∂jζ

k(x) ≡ δTζ
Gij(x) (5.18)

that is clearly correct form of the variation of p dimensional metric under diffeomorphism.

Then it is straightforward to calculate the Poisson bracket between Tζ and ΠM (x) and
δW

δΦM (x)
and we find

{

Tζ ,
δW

δΦM (x)

}

= −ζi(x)∂i

[

δW

δΦM (x)

]

− δW

δΦM (x)
∂iζ

i(x) ,

{Tζ ,ΠM (x)} = −ζi(x)∂iΠM (x) − ΠM (x)∂iζ
i(x) (5.19)

and we finally obtain

{Tζ , QM (x)} = −∂iQM (x)ζi(x) − QM (x)∂iζ
i(x) . (5.20)

Then it is easy to see that

{

QM (x),

∫

dpyNT0(y)

}

=
κ2

2

∫

dpyN
{

QM (x), Q†
P (y)

} gPQ(y)
√

detG(y)
QQ(y)

+
κ2

2

∫

dpyNQ†
P (y)

{

QM (x),
gPQ(y)

√

det G(y)

}

QQ(y)

+
κ2

2

∫

dpyNQ†
P (y)

gPQ(y)
√

detG(y)
{QM (x), QQ(y)} ≈ 0 , (5.21)

where the first and the second terms vanish on constraint surface QM ≈ 0 and the

third term vanishes due to the Poisson bracket (5.15). Then using (5.20) we find that

– 11 –
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∂tQM (x) = {QM (x),H} ≈ 0. In the same way we can show that the Poisson bracket be-

tween Tζ and H vanishes on constraint surface. These results imply that the consistency

of time evolutions of QM and Tζ does not generate additional constraints.

For further purposes we also determine the Poisson bracket between Tζ and W . Us-

ing (5.20) we find

{Tζ ,W} =
1

2

∫

dx {Tζ , Gij(x)}Gji(x)
√

detG(x)

= −
∫

dx

[

1

2
ζk(x)∂kGij(x)Gji(x)

√

detG(x) + ∂iζ
i(x)

√

det G(x)

]

= −
∫

dx∂i

[

ζi(x)
√

det G(x)
]

= 0 . (5.22)

In fact this is expected result since W is diffeomorphism invariant by construction.

Now we are ready to perform some preliminary steps in the quantization of given

theory. Since the Hamiltonian is sum of the first class constrains we have to demand that

each wave functional of the system should be annihilated by all these constraints. In fact,

we find previously that the ground state functional

Ψ0[Φ
M (x)] = exp

[

− 1

κp
W

∫

dpx
√

det G

]

(5.23)

satisfies the constraints

Q̂M (x)Ψ0[Φ(x)] =

(

δ

ΦM (x)
+

δW

2δΦM (x)

)

Ψ0[Φ(x)] = 0 . (5.24)

Further, the operator T̂ζ has following form in Schrödinger representation

T̂ζ = −i

∫

dxζi(x)∂iΦ
N (x)

δ

δΦN (x)
. (5.25)

Then it is clear that T̂ζ annihilates Ψ0[Φ] since

T̂Ψ0[Φ(x)] = i

∫

dyζi(y)∂iΦ
N (y)

δW

δΦ(y)
Ψ0[Φ(x)] = 0 (5.26)

using the fact that
∫

dxζi(x)∂iΦ
N (x) δW

δΦ(x) is equivalent to the Poisson bracket (5.22) that

vanishes due to the diffeomorphism invariance of W . In other words the vacuum wave

functional obeys all constraints of the theory. Further, since it is annihilated by Q̂M it

is also eigenstate of the Hamiltonian with zero energy. On the other hand it is an open

problem whether this is a normalizable state and whether there are more general functionals

that have non-zero energy with respect to given Hamiltonian.

6 Conclusion

This paper is devoted to the construction of new class of p + 1 dimensional non-relativistic

theories that obey the detailed balance condition that claims that their potential is derived

– 12 –
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from the variation principle of p dimensional Nambu-Goto form of p-brane action. We

also extended symmetries of given action and construct p + 1 dimensional action that is

invariant under foliation-preserving diffeomorphisms.

We hope that these new non-relativistic theories have many interesting properties and

should be studied further. In particular, it will be interesting to study their quantum

properties in more details. We would also like to extend this formalism to the case of BPS

and non-BPS Dp-branes and to the case of topological p-branes, following for example [50].

We also mean that it would be interesting to study the dynamics of these non-relativistic

p-branes in backgrounds with the metric that does not have Euclidean signature. We hope

to return to these problems in future.
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