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Introduction 

A preliminary study has been made of the parameters of a 2000 
GeV cold (superconducting or cryogenically cooled aluminum) magnet 
synchrotron. This synchrotron ring would make use of the AGS as the 
proton injector. Related to this study a variety of beam transfer modes 
has been investigated, including one whereby the AGS would operate 
as a multicycle booster synchrotron. In this case, a main ring injection 
magnetic cycle "flat top" is required. Since the post conversion AGS 
repetition period will be one second, single turn fast extraction would 
require a long injection flat top, i. e., approximately 12 seconds. With 
three turn resonant fast extraction, only four AGS cycles would be nee­
ded to fill the main ring, i. e., an injection flat top of three seconds 
would suffice. This might not be unacceptable since, related to the spe­
cific main ring cycle, it would reduce the accelerator utilization duty 
factor only from about 30% to 23%. For this reason the study of a three 
turn resonant fast extraction mode from the AGS has been carried out 
in more detail. With this particular mode of extraction, three stable dis­
tinct lobes in the transverse phase space are generated[1] by means of 
"bounded" third integral nonlinear resonant excitation. This can be ac­
complished by using in the AGS azimuthal field distribution both sextupole 
and octupole components. The technique might be considered an 
extension of the third integral resonant beam extraction as used at the 
AGS for obtaining a slow external beam spill. In the latter case 
the resonont beam blow-up can be pictured as phase point migration 
along straight line separatrices in the x, x' transverse phase 
space. With the addition of octupole components the original 
straight line separatrices turn into closed curves bounding closed 

* Work performed under the auspices of the U. S Atomic Energy Commission 
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(stable) domains in the transverse phase space. The fast resonant ext­
raction technique would be completed by using two fast kicker units 
(fast risetime, slow fall time) each separated approximately by one quar­
ter betatron wavelength from the extraction septum unit. Excitation of 
the kickers would be over three full AGS turns. The magnitude of the 
local closed orbit deformation would be made sufficientiy large that a 
single bounded domain in the phase space is displaced past the ejection 
septum. The advantage of this process of extraction is the simplicity of 
beam transfer and the essentially zero losses on the extraction septum 
unit. 

The purpose of this paper is to describe the dynamics of the re­
sonant extraction process. The terminal particle distribution after traver­
sal through ν=8-2/3 is obtained in transverse (x, x') phase space a 
the location in the AGS of the extraction septum magnet. Actual particle 
ejection orbits for the AGS may then be found in the standard fashion. 

First the analytical approach will bo given. The processs of transfor­
mation of the elliptical phase space into the three lobed phase space is 
discussed, relating this to the generation of the stable fixed points and 
their phase space motion as a function of ν, the devitation from ν=8-2/3. 
Next the results of the orbit program, which traces the par­
ticles through the resonant value are evaluated, i. e., the effective phase 
space dilution due to "filamentation" of the phase space and ν value 
spread is minimized with respect to sextupole and octupole strengths. 

Theory of Limited Resonant Growth 

The particle motion at a particular point in the AGS, with sextupole[2'3] 
and octupole components present in the azimuthal field distribu 
tion, can be described as shown in Appendix I, in terms of the particl-coordinates 
X and X' by the following expression for the constant oe 
the motion, V: 

v = 3 c(X2+X'2) + X(X2 — 3X'2) — 3 (X2+X'2)2 v = 2 
c(X2+X'2) + X(X2 — 3X'2) — 

16 
(X2+X'2)2 

Here, the rotated and scaled set of particle coordinates X, X' are related 
to the transverse phase space coordinates x, x' by 

[ 
X 
]=-( 

c 
)[ 

cos Φ sin Φ 
][ 

β-½ 0 
][ X ], 

[ X ]=-( p )[ -sinΦ cos Φ ][ αβ-½ β½ 

][ 

x' ], 

where Φ is a phase angle relating to the 26th harmonic of the sex­
tupole distribution (see below); while α and β are the usual betatron 
parameters[4]. Further, ρ=2π ν√C2 + S2, where C and S are the 26th 
harmonic components of the sextupole field distribution consisting of ns 
point sextupoles of strength g, as follows: 
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c = 1 
ns βi3/2gi cos26θi, S = 1 

ns 
βi3/2gi sin26θi. c = 1 βi3/2gi cos26θi, S = 1 βi3/2gi sin26θi. c = 4 

βi3/2gi cos26θi, S = 4 βi3/2gi sin26θi. c = 4 i=1 
βi3/2gi cos26θi, S = 4 i=1 

βi3/2gi sin26θi. 

The phase angle Φ referred to above is related to C and S by Φ = 
=(1/3)tan-1(S/C); while the angle θi is given by θi=(1/ν)∫si0[1/β(s)]ds. The 
parameter c, containing the ν value deviation, sextupole and octupole 
strengths, is defined by c=(32/3)π νvT/(C2 + S2) where T is the 0th har­
monic component of the octupole field distribution, consisting of n0 point 
cctupoles of strength ti, as follows: 

T= 9 n0 βi2ti T= 9 βi2ti T= 
32 βi2ti T= 
32 i=1 

βi2ti 

Since V is a constant of the motion, a set of fixed points can be 
found from 

V = V 
X = X' 

x=2{1±√ 1+c}, X'=0 
=0, leading to X=-{1±√ 1+c}, X'=+√ 3X 

X=-{1±√ 1+c}, X'=-√ 3X 

The "unstable fixed points, that is, those fixed points close to uns­
table trajectories in the limit of zero octupole strength, are given by the 
above set with the negative signs. The positive signs provide the three 
stable fixed points which, in the case of finite octupole strength, will 
become the "center of gravity" of the stable phase point distribution af­
ter traversal through the resonant ν value. 

The generation of the three distinct phase space lobes after tra­
versal through the resonant value can be visualized by using that par­
ticle trajectory, "S", which passes through the unstable fixed points 
This trajectory in X, X' space is obtained by substituting in the expres­
sion for the constant of the motion the values of X, X' for any one of 
the unstable fixed points. This provides the value V=Vs 

Vs=3c2+12c+8—8(1+c)3/2 and the S 

trajectory: X' 2=-X 2-8X+4c±8√(X-1/2c) 2 - (1/12)Vs+(1/3)X3. 
In general, particle trajectories for any V value are obtained by substi­
tuting V for Vs in this expression. These trajectories are plotted 
for V=V s, V < V s and V > V s for various values of the parameter c, 
i. e., c<<-1, c=-1, -0.75, 0 and c>>0, and are shown in Fig 1. 

This figure illustrates the sequence of phase space behavior as 
particles pass through the region of limited resonant beam growth. In 
general particles will be accelerated to the desirable extraction energy 
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and there maintained by means of a magnetic field "flat top". At this 
point condition c<<-1 exists (see Fig. 1). Then, by means of the 
sextupole and octupole excitation and correct control of the ν value the 
illustrated sequence of phase space structure can be obtained and is 
correlated with the changing value of the parameter c. Since c is 
proportional to ν the traversal through the resonance, i. e., c=0, is 
illustrated by going from negative to positive c values. This sequence 
applies for either a positive or a negative value of ( ν/turn), since with 
a reversal of sign of ν and a concomitant reversal of sign of T, the 
parameter c is unaffected*. 

Considering now particle distributions in the phase space prior to, 
and after traversal through the resonant ν value, the optimum final 
particle density distribution may be obtained by variation of the sextu­
pole and octupole components. Related to this, at the formation of the 
three stable fixed points (c=—1), the area of the "triangle" is actually 
a fraction of the original phase space area, containing all the particles, 
which exists for the case c<<—1. The optimum values of sextupole 
and octupole components are determined empirically by examination of 
the particle distribution after traversal through resonance and after the 
final state, c>>0, has been obtained. This will be quantitatively 
expressed by defining an area ratio, fA, es fA =(As/A2,h), where As 
equals the area within V=Vs for c=-1, and A2,h equals the phase 
space area at the beam extraction energy, before resonance traversal. 
An expression for As has been derived in Appendix II and is given by 
As=1.6√3ρ2. Consequently: ρ2=(1.6√3)-1fAA2h. A simplification may 
be obtained now by specifying a practical distribution of multipole 
components. For the sextupoles a (+, —) distribution of four units of 
strength equal to g is assumed (as for the present AGS slow external 
beam system) and for the octupoles, four units of strength t, symmetri­
cally distributed around the AGS, are assumed. This yields √C2+S2 =gβ3/2 
and T=(9/8)tβ2 leading to, with c=-1, (t/g)=-βg/[12π( ν)F 
where ( ν)F signifies the specific ν value at which the fixed points 
first appear in the phase space. With ρ2: ( ν)F=(1/2π) (1.6√3)-1/2×(fAA2h)1/2gβ3/2. 
Eliminating ( ν)F from the last two equations yields: 

t = -(1/6) (1.6√3)1/2(fAA2,h β)-1/2 g 
= -(1/6) (1.6√3)1/2(fAA2,h β)-1/2 

The guidance for the choice of fA, and thus (t/g) has, as indicated, 
been obtained from examination of particle density distributions after 

* This holds for the description In X, X' space. In order to provide the correct 
extraction sequence in x,x' space, the sextupole as well as the octupole polarities 
must be reversed. Thus, the sign of C and S (as well as T) must be changed. This 
means a rotation of the phase angle Φ by 180°. 

581 



reaching the final state c>>0, and also by minimizing the number of 
particles which, after traversal through the resonance value are trapped 
in the central domain. These particles will be designated as "lost" par­
ticles. Actually, the magnitude of this effect is also affected by the 
speed of traversal through the resonance or the ( ν/turn) value. 

A second criterium providing guidance for the optimum choice of 
sextupole and octupole strengths is provided by the effective dilution 
of the phase space due to the presence of a ν value distribution, δν, 
prior to resonance traversal. This ν spread is predominantly coherent 
and due to momentum spread in the beam, although a small incoherent 
ν spread due to space charge forces is also present. If δν= 0, the final 
phase area enclosing the particles in one phase space "lobe" should, 
according to the Liouville theorem, be one third of the original phase 
space area. Actually, "filamentation" of the phase space during passage 
through the resonance takes place, resulting in an effective phase space 
dilution. The Liouville condition of phase point density conservation is, 
nonetheless satisfied. For a nonzero value of δν, further effective phase 
space dilution occurs because of the superposition of the particle distri­
butions for end point υ values between ν-(δν/2) and ν +(δν/2). This 
is illustrated schematically in Fig. 2. The effective phase space dilution 
may be reduced by minimizing the value of dx/dυ, the stable fixed point 
motion in the relevant phase space lobe and by using the largest per­
missible υ value after resonant traversal, limited by the usable aperture 
in the AGS. Expressions for (dx/dν) and ν=f(x) are derived in Appen­
dix III and are given by: 

ν=( ν)f= xfgβ [ 1+ 3txf ] ν=( ν)f= 2πcosΦ [ 1+ 2gcosΦ ] 
and 

dx =- 2πcosΦ 1 | 
dν =- gβ |1+ 3txf 

| 
dν =- gβ |1+ gcosΦ 

| 

Actually, if practical values of the parameters are used, this last equa­
tion becomes 

dx 
dν 

- 2πcosΦ|cosΦ| 
• 

-
|3βtxf| 

• Recalling here 

that 
t = — 

1 

( 
1 • 6√3 ) 1 | 2, 

g = — 6 ( fAA2,h β 
) 1 | 2, the following conclusions may be 

drawn: 
a) ( 

dx 
) ( dν ) 
is reduced for larger xf values, as limited by the available 

AGS aperture, and for larger t values. 
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b) For large (t/g) values- fA is small. As will become evident be­
low, a small fa value optimizes the terminal particle distribution in 
phase space. 

c) For large t and xf values, ( ν)f will become large. Since ( ν/turn) 
must be small to satisfy the adiabaticity condition, an increase in ( ν)f 
would require a larger ejection flat top time, which is undesirable. 

Numerical Results 
In order to simulate realistically the fast resonant extraction process 

an orbit program has been used, making use of known AGS ring seg­
ment transfer matrices and the appropriate particle deflections due to the 
added sextupole and octupole components. A similar program has been 
used to calculate the AGS slow extraction process (only sextupole com­
ponents present) with good agreement with actual proton beam behavior. 
With this program the motion of the particle phase points are traced 
through the ν=8-2/3 resonance. In most orbit calculations a value of 
( ν/turn) of 10-6/turn has been used. Using a smaller value, not only 
becomes somewhat unacceptable from the computational point of view, 
but in practice would demand too long an ejection flat top. 
A larger value led to a higher number of "lost" particles. In all cases 
calculated the starting ν value has been taken as ν=8.68, with ( ν/turn) 
being negative. 

In order to arrive at a meaningful particle density distribution after 
traversal of the ν=8-2/3 value, a large number of particles (either 100 
or 300) were traced through the resonance. The initial values η, η* (or 
x, x') for each particle were chosen on the basis of a particle density 
distribution for the case c<<—1, as follows: In the η, η* representation, 
as defined here, the particle density distribution is a Gaussian dis-
tribution[5'8] given by D(r)=D0 exp. (-λ2r2), where r2=η2+η*2. At the 
AGS, this has been experimentally verified[7]. Normalization is obtained 
by defining the specific boundary η2+η*2=(A2,h/π),as the beam emittance 
boundary which contains 99% of the total beam "intensity", 
N. Straightforward integrations yield 

D(r)=( 4.60 ) N e -( 
4.60 )πr2 

D(r)=( 4.60 ) N e -( A2,h 
)πr2 

D(r)=( 4.60 ) N e -( A2,h 
)πr2 

D(r)=( 
A2,h 

) N e -( 

The phase space area A2,h is now divided into 12 rings of equal 
width r=(1/12) (A2,h/π)1/2nd the total number of particles within any 
ring, as determined by the function D(r), is evenly distributed on a 
circle centered in that ring. The resulting associated η, η* values pro­
vide, after transformation, the initial values x, x' for each particle. After 
traversal through the resonance the terminal ν value is arrived at by 
allowing the stable fixed point in the phase space lobe of interest to 
migrate to a particular terminal value x=xf. At this vlaue, ν=νt, all 
x, x' values are determined and plotted. By projection on the x axis 

583 



the real space particle distribution, both before and after traversal through 
the resonance is obtained. A typical result is shown in Fig. 3 where 
the phase space distributions are shown, and in Fig. 4. where the 
associated real space particle distributions are given, for a sextupole 
value g=0.1 mrad/inch2 and (t/g)=—2.5 (inch-1). In this case, prior 
to the resonant growth, all particles had the same ν value, i, e., δν=0. 
Also indicated is the location of the septum of the extraction septum 
magnet, which would be used in conjunction with the three turn reso­
nant extraction process. It is evident that for the conditions shown, i. 
e., p=25 BeV/c, A2,h=0.14π inch-mrad, (A2,h)t=0.047π inchmrad, and a 
septum thickness of 0.1 inches, more than adequate allowance exists for 
the septum, so that particle losses on the septum during the extraction 
process should be zero. 

An attempt has been made to quantitatively interpret the terminal 
distributions and to derive an approximate value for the effective phase 
space dilution, dps, defined here as: dps= 3(A2,h)t 

. dps= (A2,h) 

. This is done as fol­
lows: The original phase space contour is drawn, based on A2,h=0,14π 
inch-mrad. A second boundary is drawn, which, by inspection, encloses 
"rather well" the plotted points. This contour, dashed in the figures 
shown, by computation, using the foregoing density function, is found 
to enclose approximately 90% of the total particles and has a radius in 
η' η* space equal to (3/4) that of the emittance contour. On this basis 
a terminal emittance (area) is obtained by drawing a contour tightly 
around the terminal x, x' valèes and by multiplying the enclosed area 
by the value (4/3)2, an empirical correction factor which results from 
the limited number of particles used to approximate the Gaussian dist­
ribution. 

In the cases shown any effective phase space dilution is associated 
with filamentation of the terminal phase space. An added effective dilu­
tion is caused by the non-zero width of the ν value distribution prior 
to traversal through the resonance. For this reason several cases have 
been computed with an initial ν value distribution, given by δ=0,02. Four 
discrete groups, differing by 0.005 ν units were used in the computation 
and the final results, x, x' values, superimposed. These results are shown 
n Fig. 5b and Fig. 5c, where the effects of larger g and t values, for 
an identical value of (t/g) are also evident. In Fig. 5a the case for 
δν=0, but (t/g)=l,5 is shown, with obvious pronounced filamentation 
of the terminal phase space in this case. It is clear from these result 
that the terminal particle distribution is strongly dependent on t, (t/g) 
and the ν spread, δν. 

The results of the cases shown and other cases calculated are sum­
marised in Table, I and indicate that, for the parameters considered, op-

584 



timum extraction efficiency can be obtained with values g=0.15 (mrad/inch2) 
and (t/g)=2.5 (inch-1)*. 

Table 1 
Effective Dilution Factor, dps 

g mrad/inch2) (t/g) (inch-1) δν xf (inch) Nlost (%) dps 

0.1 3 0 1.0 8 1 

0.1 2.5 0 1.0 6.7 1 
0.1 2 0 1.0 6.7 1.2 
0.1 1.5 0 1.0 6.7 2.0 
0.15 2.5 0 1.0 2.0 1 
0.15 2.5 0.02 1.2 2.0 1.4 
0.1 2.5 0.02 1.2 6.0 1.7 
0.1 2.0 0.02 1.2 8.0 2.0 
0.1 1.5 0.02 1.2 7.0 3.1 

It is evident that near lossless three turn fast resonant extraction is 
feasible with essentially no dilution of the phase space if δν=0. Even for 
practical values of δν, with an optimum choice of g and [t/g] values, 
the effective dilution, dps, can be kept close to unity. In practice, the 
number of "lost" particles could be reduced by using smaller ( ν/turn) 
values. However, for some of the cases calculated the total process 
already required 0.1 sec. to 0.15 sec. 

It is worthwhile to mention here that chosen δν value is realistic 
for the AGS, i. e., at intermediate fields (p ν/ p)=—20. With 200 
MeV injection the calculated ( p/p) value at 25 BeV/c is approximately 
10-3, consequently δν=0.02. Actually, the ν versus radius characterisitic 
can be corrected straightforwardly to (dν/dR)=0 at 25 BeV/c by means 
of a set of additional sextupoles in the AGS azimuthal distribution. 

Conclusion 
Three turn fast resonant extraction can provide an acceptable 

mode of beam extraction from a booster synchrotron with extraction 
efficiencies close to 100%. Beam emittances of (1/3) the value 
present before resonance traversal can be obtained for a machine with 
(dν/dR)=0. Even in the case where the ν value spread is as high as 
0.02, the effective phase space dilution factor is less than 1.5. 

* The desired sextupole strength, equal to B"=165 Gauss/inch2 for a 30- inch 
long unit, can readily by obtained with the existing AGS sextupoles. For a simple 
octupole magnet design with aperture of 6 inches and 12 turns/ pole, the mentioned 
octupole strength, equal to =414 Causs/inch3 for a 30-inch long unit, would 
require an excitation current of approximately 1420 amps. The peak pole field would 
be 11.2 kGauss. 
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Appendix I 
Consider a set of ns sextupoles and no octupoles, respectively, 

changing the slope of a particle by xi'=gi xi2 and xi=t1 xi3. For ν 
near the resonance value, ν=8-2/3, the changes in the normalized 
coordinates η,η* given by 

[ 
η 
]=[ 

β-1/2 0 
][ 

xi 
], [ η* ]=[ αβ-1/2 β1/2 ][ xi ], 

over three particle revolutions, 

to first order in the sextupole strengths gi, the octupole strengths ti, and 
ν, can be derived by the usual matrix techniques, leading to 

η=6π νη*-3S (η2-η*2)+6Cη η*-4Tη* (η2+η*2) 
η*=-6π νη*-3C (η2-η*2)+6Sη η*-4Tη* (η2+η*2) 

where the various variables and parameters have been defined in the 
main text. Defining now U as: 

U = - 3 π ν ( η 2 + η * 2 ) + C η ( η 2 - 3 η * 2 ) - S η * ( η * 2 - 3 η 2 ) + T ( η 2 + η * 2 ) 2 

then the foregoing equations of motion are obtained from U by 

η=- U , η=- η* , 
η*= U . η*= 

η 
. 

This means that to lowest order in ν, g, and t, U is a constant of the 
motion, i. e., over three particle revolutions 

U= U η + U η*=0 U= η 
η + 

η* 
η*=0 

A simplification of the constant of the motion expression results if the 
coordinates are rotated and scaled by means of the transformation: 

[ 
X 
]=-( 

c 
)[ 

cosΦ sinΦ 
] [ 

η 
] [ X' ]=-( ρ )[ —sinΦ cosΦ ] [ η* ] 

where Φ and ρ again have been defined in the main text, leading to 
the invariant V given by: 

V = Uc3 = 3 c(X2+X'2)+X(X2-3X'2)- 3 (X2+X'2)2 V = 
ρ3√C2+S2 

= 
2 c(X

2+X'2)+X(X2-3X'2)-
16 

(X2+X'2)2 

with the parameter c expressed as c= 32πT ν c= 
3(C2+S2) 
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Appendix II 
The S trajectory for c= — 1 , in X, X' space has the form: 

X'2=—(X2+8X+4)± 8 (X+1)3/2 X'2=—(X2+8X+4)± 
√3 

(X+1)3/2 

This is sketched in Fig. 6 indicating that the S trajectory area differs 
from a triangular area by six times the shown cross-hatched area, leading to 

( 
As 

)={3√3-6 ∫ 
-2,3 d X √ - ( X 2 + 8 X + 4 ) - 8 (x+1)3/2} 

( 
As 

)={3√3-6 ∫ 
-2,3 d X √ - ( X 2 + 8 X + 4 ) - 8 (x+1)3/2} 

( ρ2 )={3√3-6 ∫ - 1 

d X √ - ( X 2 + 8 X + 4 ) -
√3 

(x+1)3/2} 

or, with a change of variable in the integral, 

As=3√3 ρ2{1- 2 
∫ 
1 
dr√3-2r- r2 — 8

3/2 

r} 
As=3√3 ρ2{1- 2 

∫ 
dr√3-2r- r2 — 8

3/2 

r} 
As=3√3 ρ2{1-

3√3 ∫ 
dr√3-2r- 9 — 9 r} 

As=3√3 ρ2{1-
3√3 ∫ 0 

dr√3-2r- 9 — 9 r} 
he integral has been evaluated numerically, yielding for the form in 
Tackets, a value of 0.5347, consequently 

As=1.6√3ρ2 

Appendix III 

The relevant stable fixed point coordinate is given by X = 2 {1+√1+c 
Its coordinate in x, x' space, with the transformation 

x=-( 
ρ )√β cosΦ.X, x=-( c )√β cosΦ.X, 

becomes: 
x=- 2 ρ√βcosΦ(1+√1+c) x=- c 

ρ√βcosΦ(1+√1+c) 

Using now c= 12πt ( ν) c= 
g2β 

( ν) and ρ= 2π ( ν) ρ= gβ3/2 ( ν) it follows 

x=- cosΦ 
( 
g 

)[ 
1+√1+ 12πt ν 

], 
x=-

3 ( t )[ 
1+√1+ g2β ], 

expressing the depen­

dence of x on ν. This may be written as 

ν=( ν)f= xfgβ 
[ 1+ 

3txf 
] 

ν=( ν)f= 2πcosΦ [ 1+ 2gcosΦ ] 
where 

xf refers to the final state value of the stable fixed point distance 
xf from the equilibrium orbit after traversal through the resonant value, 
and ( ν)f is the concomitant terminal ν value deviation from ν=8—2/3. 
Straightforward differentiation of x=F( ν) yields 

dX =- 2πcosΦ 1 
. dν 

=-
gβ 

|1+( 
3tx 

)| 

. dν 
=-

gβ 
|1+( gcosΦ )| 

. 
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Fig. 1. Phase space trajectories before, during and after traversal of 
ν=8-2/3 for values of V=Vs; V>Vs and V<Vs. 

Fig, 2. Effective dilution of the terminal phase space due to initial ν value 
distribution. "S" trajectories are computed. Final particle distributions are schematic. 



Fig. 3. Particle distribution in phase space before and after traversal through 
ν=8-2/3 resonance. 

Fig. 4. Particle distribution in real space before and after traversal through 
ν=8-2/3 resonance 



Fig. 5. Particle distributions in real space and phase space for various t/g 
values and δ νvalues. 

a Effect of smaller (t/g) value, δν=0. 
b Effect of ν value distribution, δν=0.02. 
c Effect of larger sextupole and octupole components, with Δ Ν = 0 . 0 2 . 

Fig. 6. S-trajectory. 
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