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Abstract: Themodel of the galaxy is considered as a structure of the baryonicmatter embedded into the hot darkmatter.
The dark matter is supposed to come into being from the decaying matter after the epoch of structure formation. The
galaxy is divided into two regions. In the inner region, the baryonic matter predominates over the hot darkmatter while
in the outer region, thehot darkmatter predominates over the baryonicmatter. Themotion of the test particle is bounded
in the inner region (elliptic orbit) and unbounded in the outer region (parabolic orbit). Observational constraints on the
proposed model are considered from the rotation curves of the galaxies: Milky Way, M33, NGC 2366 and IC 2574.
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1 Introduction
Measurements by Planck and WMAP demonstrate that
dark matter (DM) contributes nearly 85% to the matter
density in the universe (Ade et al. 2016). The strongest ev-
idence for DM comes from astrophysical observations in
which the mass of the objects (galaxies, galaxy clusters)
cannot be explained by themass of the visible matter thus
implying the presence of the DM (Trimble 1987). Rotation
curves of spiral galaxies are thebest probe forDMongalac-
tic scales, e.g. (Battaner & Florido 2000) and references
therein. Alternative explanation of the rotation curves of
spiral galaxies is provided for by the modified Newtonian
gravity (MOND) (Famaey & McGuagh 2012).

The investigation on the nature of DM has shown that
large part of it should be non-baryonic (Trimble 1987).
DM can be divided into three types: cold (CDM), warm
(WDM) and hot (HDM). The current models assign DM
a key role in the structure formation. Observational con-
straints favour themodels of structure formationwithCDM
and discard those with HDM. Now, ΛCDM is generally
considered the standard model of cosmology (Ostriker &
Steinhardt 1995). The currently preferred CDM candidates
are weakly interacting massive particles (WIMPs). WIMPs
have not been identified in direct and indirect detection
experiments (Bertone 2010). On large scales, the ΛCDM
model is consistent with observations (Reyes et al. 2010).
See, however, the discussion of the problems of the ΛCDM
model (López-Corredoira 2017) and references therein. To
this end, themodel of the universe alternative to the ΛCDM
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model can be found in Khokhlov (2011a,b, 2013). The
ΛCDM model encounters the problems on galactic scales,
e.g. (Weinberg et al. 2015) and references therein. Several
solutions of the problems have been proposed in baryonic
physics: gas cooling, star formation, and associated feed-
back, as well as in DM physics: WDM, self-interacting DM,
e.g. (Weinberg et al. 2015) and references therein. DM con-
tributions to the dynamics can be neglected in extended
theories of gravity, e.g. (Stabile & Capozziello 2014).

The problems of the ΛCDM model on galactic scales
were discussed by Kroupa (2012, 2015) and references
therein. The validity of the ΛCDM model is challenged
by two independent arguments. The first, the dual dwarf
galaxy theorem claiming that there exist two types of
dwarf galaxies: primordial dwarf galaxies which would
be DM dominated and tidal dwarf galaxies which would
have formed without a DM halo. The observational data
show the same dynamical M/L values and morphologi-
cal properties of both types of dwarf galaxies that falsifies
the ΛCDM model. A consistency test for this conclusion
comes from the significantly anisotropic distributions of
satellite galaxies which orbit in the same direction around
their hosting galaxies in disk-like structures which cannot
be derived from DM models. The second, the action of dy-
namical friction due to expansive and massive DM halos
must be evident in the galaxy population. The evidence for
dynamical friction is poor or even absent. Kroupa (2012,
2015) came to the conclusion that DM particles do not ex-
ist, and effective gravitational physics on galactic scales
and beyond ought to be non-Newtonian/non-Einsteinian
as it is in the MOND framework. It is worth noting that
MOND (Famaey & McGuagh 2012) allows to explain the
missing mass problem in galaxies without DM but not in
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galaxy clusters. To this end, the dark dynamical effects
of modified gravity theory were explored in a series of
works (Bhatti et al. 2018) and references therein.

Outer disk kinematics of massive star-forming galax-
ies at 0.6 ≤ z ≤ 2.6 from the KMOS3D and SINS/zC-SINF
surveys have been explored by Lang et al. (2017). The av-
erage rotation curve, extending out to ∼ 4 effective radii,
exhibits a significant drop in rotation velocity beyond the
turnover. This outer fall-off strikingly deviates from the
flat or mildly rising rotation curves of local spiral galax-
ies of similar masses. The results are in agreement with re-
cent studies (Genzel et al. 2017) demonstrating that star-
forming disks at high redshift are strongly baryon domi-
nated within the disk scale. The falling rotation curve can
be explained by a high mass fraction of baryons relative
to the total dark matter halo in combination with a size-
able level of pressure support in the outer disk (Lang et al.
2017). The falling rotation curves of high redshift galaxies
question both ΛCDM and MOND.

Demiański & Doroshkevich (2017) considered a phe-
nomenological model of the complex DM consisting of
the CDM and HDM fractions. They calculated the correla-
tion function of the matter density for the standard ΛCDM
power spectrum and the combined spectra with the dom-
inant HDM fraction, 0.1 CDM plus 0.9 HDM. The observa-
tional data of DM dominated objects in the range of virial
masses 106−1015 m⊙ favour themodelwith the dominant
HDM fraction.

Khokhlov (2015) suggested that DM may arise in the
decay of the protons falling onto the gravastar. The gravas-
tar (Mazur & Mottola 2004; Chapline 2003) is an alterna-
tive to black hole which contains a rigid surface instead
of event horizon. The decay of the proton falling onto
the gravastar was considered by Chapline (2003) within
the SU(5) theory of grand unification (Georgi & Glashow
1974), with the dominant mode of proton decay p → e+π0

where the end products are positron and photons. Barbi-
eri & Chapline (2012) explained an excess of 511 keV ra-
diation from positron annihilation from the centre of the
Galaxy (Prantzos et al. 2011) by the decay of the protons
under their falling onto Sgr A* while interpreting Sgr A* as
a gravastar. This explanation was shown (Khokhlov 2014)
to be consistent with the accretion rate onto Sgr A* but to
predict too high luminosity of Sgr A* in comparison with
the observed one; see also the further investigation of the
problem (Khokhlov 2017). Therefore, the mode of the pro-
ton decay, p → e+π0, is ruled out. One should consider an-
other mode of the proton decay. The decay of proton at the
Planck scale into positron and hypothetical Planck neu-
trinos, p → e+4νPl, was proposed in Khokhlov (2011c).
Planck neutrino can be interpreted as a HDM particle.

So, the ΛCDM model encounters the problems on
galactic scales. This raises the question of an alternative
to the ΛCDM model. In the ΛCDM model, the CDM exists
starting the early stages of theuniverse andplays a key role
in the structure formation. The observational data (Lang
et al. 2017; Genzel et al. 2017) show the baryon dominated
high redshift galaxies. It is reasonable to assume that only
baryonic matter (BM) existed in the early universe while
DM comes into being after the epoch of structure forma-
tion. Thus, only BM took part in the structure formation. In
this case, there is no restrictions on the type ofDM from the
structure formation. The observational data on the den-
sity perturbations (Demiański & Doroshkevich 2017) give
support to themodel with the dominant HDM fraction. As-
sume that the HDM particles emerge from the decaying
matter after the epoch of structure formation. The HDM
particles may arise in the decay of the protons falling onto
the gravastar (Khokhlov 2015). In the present paper, we
shall consider the model of the galaxy with HDM to avoid
the problems of the ΛCDMmodel on galactic scales.

2 The Model of the Galaxy
Consider the model of the galaxy with HDM. Assume that
the HDM particles emerge from the decaying matter af-
ter the epoch of structure formation. In this case, only
BM takes part in the structure formation thus there is no
restrictions on the type of DM from the structure forma-
tion. Assume that the proton decays at the Planck scale
into positron and four hypothetical Planck neutrinos, p →
e+4νPl, as it was proposed in Khokhlov (2011c). The pro-
cess may go effectively for the protons falling onto the
gravastar. Planck neutrino can be interpreted as a HDM
particle. It was defined as a massless particle propagating
with the speed of light (Khokhlov 2011c).

Suppose that the HDM consists of Planck neutrinos.
We shall consider the HDM as a fluid of uniformly dis-
tributed massless particles within the framework of the
Jeans model (Peebles 1980). The Jeans length for mass-
less particles is of order of the universe horizon. There-
fore, within the universe horizon, the HDM does not form
a structure due to gravity. The BM forms the structure of
the galaxy which is embedded into the fluid of the HDM
particles.

Consider the BM structure of the galaxy. At the radius
r from the centre of BMmass, the gravitational potential is
defined by the BMmass restricted within the radius r as

Φ = Gmb(< r)
r (1)
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where G is the Newton constant, mb(< r) is the BM mass
within the radius r. The HDM mass (energy) restricted
within the radius r gives an addition to the gravitational
potential

δΦ = Gmhdm(< r)
r (2)

wheremhdm(< r) is the HDMmass within the radius r. The
circular velocity of the test particle at the radius r is given
by

v2c = Φ + δΦ. (3)

The radial velocity due to the HDM pressure is given by

v2r = 2δΦ. (4)

The expression for the energy of the test particle of the
unity mass takes the form

E = 1
2 v

2
r +

1
2 v

2
c − Φ − δΦ. (5)

For energies E < 0, the test particlemoves along the elliptic
orbit (Landau & Lifshitz 1960).

Suppose that the HDM density is constant with ra-
dius, ρhdm = const. The HDM mass grows with radius as
mhdm(< r) ∝ r3. Suppose that, in the inner region of the
galaxy, the BM predominates over the HDM while, in the
outer region of the galaxy, the HDMpredominates over the
BM. At some radius r0, the HDM mass is equal to the BM
mass, mhdm(< r0) = mb(< r0). This means that the HDM
perturbation of the gravitational potential is equal to the
gravitational potential, δΦ = Φ, and the radial velocity of
the test particle is equal to its circular velocity, vc = vr. The
energy of the test particle is equal zero, E = 0, that defines
the parabolic orbit of the test particle (Landau & Lifshitz
1960). As such, the HDM perturbation of the gravitational
potential makes the test particle unbound. We come to the
model of the galaxy,with the different behaviour of the test
particle in the inner and outer regions. In the inner region
r < r0, the motion of the test particle is finite while, in the
outer region r ≥ r0, infinite.

At r > r0, the HDM mass is more than the BM mass,
mhdm(< r) > mb(< r). However, the maximum HDM per-
turbation of the gravitational potential is equal to the BM
gravitational potential, δΦ = Φ. Hence, the enclosed dy-
namical mass is twice the enclosed baryonic mass,mdyn(<
r) = 2mb(< r). One can define the parabolic orbit from the
minimum radius rmin ≥ r0 to infinity. The circular velocity
of the test particle at the radius rmin ≥ r0 is given by Eq. (3)
wherein the HDM perturbation is not defined by the total
HDM mass within the radius rmin but taken equal to the
BM gravitational potential, δΦ(rmin) = Φ(rmin).

Let the test particle move along the parabolic orbit
from r0 to infinity. At r0, the circular velocity of the test par-
ticle is equal to the radial velocity, vc = vr. At r > r0, the

radial velocity decreases with radius as vr ∝ r−0.5, and the
circular velocity decreases with radius as vc ∝ r−1. Hence,
the radial velocity predominates over the circular velocity.
At large distances r ≫ r0, the circular velocity is negligi-
ble, and the radial velocity of the test particle can be cast
as

v2r ≈ 2(Φ + δΦ) = 4Φ. (6)

One can derive the enclosed dynamical mass in the far
outer region r ≫ r0 through the radial velocity of the test
particle.

3 Observational Constraints from
the Rotation Curves of the
Galaxies

We shall consider observational constraints on the pro-
posed model from the rotation curves of the galaxies:
Milky Way, M33, NGC 2366 and IC 2574.

3.1 Rotation Curve of the Milky Way

Consider the rotation curve of our Galaxy (MilkyWay). The
circular velocity profile is found to be approximately flat
from the solar position∼ 8 kpc to∼ 15 − 20 kpc and then
decline little with radius, e.g. (Sofue et al. 2009; Nesti &
Salucci 2013; Bland-Hawthorn & Gerhard 2016). The rota-
tion curve ismodeledas thequadrature sumof the rotation
curves of the individualmass components: twoBMcompo-
nents, including the central bulge and the stellar disk, as
well as the DM halo.

Modern studies based on observational data from the
SDSS survey argue in favour of a two-component stellar
halo in the Galaxy (Carollo et al. 2007, 2010; Beers et al.
2012). The Galactic halo comprises two broadly overlap-
ping structural components, an inner halo r < 10 − 15
kpc, and an outer halo r > 15 − 20 kpc. These compo-
nents exhibit different spatial density profiles, stellar or-
bits, and stellar metallicities. Recent studies, e.g. (Watkins
et al. 2009; Deason et al. 2011; Sesar et al. 2011, 2013; Kafle
et al. 2014; Xue et al. 2015), show that the number den-
sity of halo stellar population in the Galaxy follows a bro-
ken power-law distribution, ν ∝ r−α, with a variety of val-
ues for the break radius 16 − 28 kpc, for the inner slope
1.0 − 2.6, for the outer slope 2.7 − 4.6.

Kinematics of the Galactic stellar halo was studied
by Kafle et al. (2012), using 4,664 blue horizontal branch
stars selected from the SDSS/SEGUE survey. The veloc-
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ity dispersion profiles in spherical coordinates and the
anisotropy profile were determined up to ∼ 60 kpc. They
found that the anisotropy is radially biased, β = 0.5 for
9 < r < 12 kpc. In the range r ≈ 13 − 18 kpc, it falls
sharply becoming tangentially biased, with a dip β = −1.2
at r = 17 kpc. In the range r ≈ 18 − 25 kpc, the anisotropy
is roughly isotropic, β ∼ 0. The anomaly feature cannot
be explained as arising either from halo substructures or
from accretion. An additional measurement of β = 0.0+0.2−0.4
at r = 24 ± 6 kpc is also reported by Deason et al. (2013)
in their proper motion studies of the main-sequence halo
stars obtained from the Hubble Space Telescope. The fea-
ture has been confirmed by King et al. (2015) in a study of
the halo with a sample of 19,859 F-type stars from a new
Hectospec survey and from published SDSS surveys. Over
the entire span of 6 < r < 30 kpc, the velocity dispersion
profiles in spherical coordinates and the anisotropy profile
were determined. The velocity dispersionwas shown to ex-
hibit unexpected behavior in the range 15 < r < 25 kpc
where the anisotropy estimate declines from 0.5 to around
−20.

Consider the HDM model of the Milky Way. Assume
that the anomalous feature in the anisotropy profile (Kafle
et al. 2012) corresponds to the border between the inner
and outer regions in the Galaxy. Take the radius of the
border r0 = 17 kpc. The literature data give a variety
of values for the circular velocity at 17 kpc, e.g. 195 km
s−1 (Sofue et al. 2009), 215 km s−1 (Bland-Hawthorn &
Gerhard 2016), 240 km s−1 (Nesti & Salucci 2013). Adopt
the circular velocity v(r0) = 220 km s−1. At r0 = 17
kpc, the BM mass is equal to the HDM mass (energy), the
BM circular velocity is equal to the HDM circular veloc-
ity, vbm(r0) = vhdm(r0) = v(r0)/

√
2 = 156 km s−1. This

gives the BM mass mb(< r0) = 9.6 × 1010 m⊙. The mass
models estimate the total stellar mass of the Milky Way
to be m* = (5 ± 1) × 1010 m⊙ (Bland-Hawthorn & Ger-
hard 2016), m* = (54.3 ± 5.7) × 109 m⊙ (McMillan 2017),
m* = 8.3×1010 m⊙ with an uncertainty of∼ 5% (Sofue et
al. 2009),m* = 0.95+0.24−0.30 ×1011 m⊙ (Kafle et al. 2014). The
gasmass of theMilkyWay is estimated to be 1.1×1010 m⊙
in the HI component (including helium and metals), and
1.2 × 109 m⊙ in the H2 component (McMillan 2017). Thus,
the BMmass of the Milky Way obtained in the HDMmodel
is consistent with the literature data.

At r0 = 17 kpc, the radial velocity of the test particle
is equal to its circular velocity, vc = vr. One can estimate
the radial velocity through the radial velocity dispersion
as vr = 2σr. The radial velocity dispersion at r ∼ 20 kpc is
σr = 100 km s−1 (Kafle et al. 2014). This gives the radial ve-
locity vr = 200 km s−1 which is consistent with the circular
velocity at r0 = 17 kpc.

In the HDM model, the test particle moves along the
parabolic orbit in the outer region r ≥ r0. The observa-
tional data on the circular velocities in the outer region of
the Milky Way, r ≥ 17 kpc, are obtained from the line of
sight velocities while assuming the elliptic orbit of the test
particle. The data are not suitable for the parabolic orbit
and cannot be used to test the HDMmodel above 17 kpc.

Estimate the enclosed dynamicalmass for r = 60−100
kpc. In the HDM model, the enclosed dynamical mass in
the far outer region r ≫ r0 is defined by the radial velocity
Eq. (6). One can estimate the radial velocity through the ra-
dial velocity dispersion as vr = 2σr. The radial velocity dis-
persion at r = 60 kpc is σr = 90 km s−1 (Kafle et al. 2014).
This gives the enclosed dynamical mass mdyn(< 60 kpc) ≈
2.2 × 1011 m⊙ and the enclosed BM mass mb(< 60 kpc) ≈
1.1 × 1011 m⊙. The radial velocity dispersion at r = 80
kpc is σr = 80 km s−1 (Kafle et al. 2014). This gives the en-
closed dynamical mass mdyn(< 80 kpc) ≈ 2.4 × 1011 m⊙
and the enclosed BMmassmb(< 80 kpc) ≈ 1.2 × 1011 m⊙.
The radial velocity dispersion at r = 100 kpc is σr = 65 km
s−1 (Kafle et al. 2014). This gives the enclosed dynamical
massmdyn(< 100 kpc) ≈ 2×1011 m⊙ and the enclosed BM
mass mb(< 100 kpc) ≈ 1011 m⊙. Thus, the prediction of
the HDMmodel in the far outer region r ≫ r0 is consistent
with the observational data.

Estimate the HDM density from the HDM circular ve-
locity at r0 = 17 kpc. For vhdm(r0) = 156 km s−1,
ρhdm = 3v2hdm(r0)/(4πGr

2
0) = 3.1 × 10−25 g cm−3 =

4.6 × 10−3 m⊙ pc−3. This is consistent with the local
DM density at the solar position, ρdm(R⊙) = 0.005 −
0.01m⊙ pc−3 (Weber & de Boer 2010), ρdm(R⊙) = 0.005−
0.015 m⊙ pc−3 (Read 2014). Since the prediction of the
HDM density is consistent with the local DM density at the
solar position, one can expect that the circular velocity at
the solar position in theHDMmodelwill be consistentwith
the observational data. Thus, the HDMmodel is consistent
with the observational data of theMilkyWay from the solar
position to the far outer region r ≫ r0.

3.2 Rotation Curve of M33

Consider the rotation curve of M33 (Corbelli 2003; Corbelli
et al. 2014). The circular velocity is steeply rising to 110 km
s−1 at 4.5 kpc. From 4.5 kpc to 23 kpc, it is approximately
flat, with the maximum value 125 km s−1. The similar rota-
tion curve is obtained in (Kam et al. 2017). Ciardullo et al.
(2004) derived rotation velocities of the planetary nebulae
inM33 out to 10 kpc, with themean rotation velocity being
smaller by ∼ 10 km s−1 than that in (Corbelli 2003). The
rotation curve is modeled with the use of the mass com-
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ponents: two BM components, including the stellar and
gaseous disks, as well as the DM halo.

Consider the HDM model of M33. There is a feature at
∼ 7.5 kpc in the curve of the position angle (beginning
of the decrease) of M33 corresponding to the warp of the
disc (Corbelli et al. 2014). Assume that the feature gives the
radius of the border between the inner and outer regions
in M33, r0 = 7.5 kpc. The circular velocity at r0 = 7.5 kpc
is v(r0) = 110 km s−1 (Corbelli et al. 2014). At r0 = 7.5
kpc, the BM mass is equal to the HDM mass (energy), the
BM circular velocity is equal to the HDM circular velocity,
vbm(r0) = vhdm(r0) = v(r0)/

√
2 = 78 km s−1. This gives

the BM mass mb(< r0) = 1.05 × 1010 m⊙. In (Kam et al.
2017) the circular velocity at r0 = 7.5 kpc is v(r0) = 108
km s−1. Then, the BM circular velocity and the HDM circu-
lar velocity are vbm(r0) = vhdm(r0) = v(r0)/

√
2 = 76 km

s−1. This gives the BM mass mb(< r0) = 1.0 × 1010 m⊙.
In (Ciardullo et al. 2004) the circular velocity at r0 = 7.5
kpc is v(r0) = 100 km s−1. Then, the BM circular velocity
and the HDM circular velocity are vbm(r0) = vhdm(r0) =
v(r0)/

√
2 = 71 km s−1. This gives the BM mass mb(< r0) =

8.7 × 109 m⊙. The total stellar mass of M33 is estimated to
be (3 − 6) × 109 m⊙, and the total gas mass (HI+H2+He)
∼ 3.2 ×109 m⊙ (Corbelli 2003). Thus, the BMmass within
7.5 kpc predicted by the HDMmodel is consistent with the
sum of the stellar and gas masses obtained from observa-
tions, neglecting the BMmass beyond 7.5 kpc.

Estimate the HDM density from the HDM circular ve-
locity at r0 = 7.5 kpc. For vhdm(r0) = 78 km s−1,
ρhdm(r0) = 3v2hdm(r0)/(4πGr

2
0) = 4.0×10−25 g cm−3 = 5.9×

10−3 m⊙ pc−3. For vhdm(r0) = 76 km s−1, ρhdm(r0) = 3.8 ×
10−25 g cm−3 = 5.7 × 10−3 m⊙ pc−3. For vhdm(r0) = 71 km
s−1, ρhdm(r0) = 3.3 × 10−25 g cm−3 = 4.9 × 10−3 m⊙ pc−3.
This is consistent with the value in our Galaxy.

In the HDM model, the test particle moves along the
parabolic orbit in the outer region r ≥ r0. The observational
data on the circular velocities in the outer region of M33,
r ≥ 7.5 kpc, are obtained from the line of sight velocities
while assuming the elliptic orbit of the test particle. The
data are not suitable for the parabolic orbit and cannot be
used to test the HDMmodel above 7.5 kpc.

Estimate the enclosed dynamical mass in the far outer
region r ≫ r0 with the use of the observational data on the
dwarf galaxy AndXXII, the distance to M33 is 59+21−14 kpc,
the velocity relative to M33 is 50 km s−1 (Chapman et al.
2013). The enclosed dynamicalmass in the far outer region
r ≫ r0 is defined by the radial velocity Eq. (6). Calculation
gives the enclosed dynamicalmassmdyn(< 59 kpc) ≈ 1.7×
1010 m⊙ and the enclosed BM mass mb(< 59 kpc) ≈ 8.6 ×
109 m⊙. Thus, the prediction of the HDMmodel in the far

outer region r ≫ r0 is consistent with the observational
data.

3.3 Rotation Curve of NGC 2366

Consider the rotation curve of NGC 2366 (Oh et al. 2011).
Several methods have been used to derive the rotation
curve of NGC 2366. Oh et al. (2011) derived the rotation
curve of NGC 2366 from the bulk velocity field. The circular
velocity is rising to 45 km s−1 at∼ 2 kpc, to 55 km s−1 at∼ 4
kpc, then is approximately flat. For comparison, they pre-
sented the rotation curves derived from the Hermite and
intensity-weightedmean velocity fieldswhich give smaller
circular velocities. Also, the rotation curve of NGC 2366
was considered in (Hunter et al. 2001; van Eymeren et al.
2009), with the circular velocities derived from the Her-
mite velocity field (van Eymeren et al. 2009) and from the
intensity-weighted mean velocity field (Hunter et al. 2001)
being smaller than those derived from the bulk velocity
field (Oh et al. 2011). The rotation curve is modeled with
the use of the mass components: two BM components, in-
cluding the stellar and gaseous disks, as well as the DM
halo.

Consider the HDM model of NGC 2366. There is a fea-
ture at∼ 2.5 kpc in the curve of the position angle (begin-
ning of the decrease) of NGC 2366 (Oh et al. 2011). Assume
that the feature gives the radius of the border between the
inner and outer regions in NGC 2366, r0 = 2.5 kpc. At
r = 2.5 kpc, the circular velocity for the stellar disk is 15
km s−1, the circular velocity for the gaseous disk is 21 km
s−1 (Oh et al. 2011). Calculation gives the BM circular ve-
locity 26 km s−1. At r0 = 2.5 kpc, the HDM mass (energy)
is equal to the BM mass. Adopt the HDM circular velocity
equal to the BM circular velocity 26 km s−1. Then, the total
circular velocity is 37 kms−1. Thebulk rotation curve (Ohet
al. 2011) gives the circular velocity 47 km s−1. The Hermite
rotation curve (Oh et al. 2011) gives the circular velocity 45
km s−1. The intensity-weightedmean rotation curve (Oh et
al. 2011) gives the circular velocity 43 km s−1. The Hermite
rotation curve (van Eymeren et al. 2009) gives the circular
velocity 41 km s−1. The intensity-weighted mean rotation
curve (Hunter et al. 2001) gives the circular velocity 41 km
s−1.

Estimate the HDM density from the HDM circular ve-
locity at r0 = 2.5 kpc. For vhdm(r0) = 26 km s−1,
ρhdm(r0) = 3v2hdm(r0)/(4πGr

2
0) = 4.1 × 10−25 g cm−3 =

6.0×10−3 m⊙ pc−3. This is consistent with the value in our
Galaxy.

One can see in the stellar and gaseous rotation curves
of NGC 2366 that most of the BM mass in NGC 2366 lies
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out of the radius r0 = 2.5 kpc, within the radius rb ∼ 6
kpc. In the HDM model, the test particle moves along the
parabolic orbit in the outer region r ≥ r0. One can define
the radius rmin of the parabolic orbit in the range from r0
to rb, 2.5−6 kpc. The circular velocity of the test particle at
the radius rmin = 2.5−6 kpc is given by Eq. (3) inwhich the
HDM perturbation is taken equal to the BM gravitational
potential. Hence, the HDM circular velocity at r = 2.5 − 6
kpc should be taken equal to the BMcircular velocity at the
same radius. It is expected that, in the range2.5−6kpc, the
total rotation curve follows the BM rotation curve, with the
enclosed dynamical mass is twice the enclosed baryonic
mass. The observational data on the circular velocities in
the outer region r ≥ r0 of NGC 2366 are obtained from the
line of sight velocities while assuming the elliptic orbit of
the test particle. The data are suitable for the radius rmin =
2.5 − 6 kpc of the parabolic orbit thus may be used to test
the HDMmodel in the range 2.5 − 6 kpc. Above 6 kpc, the
data cannot be used to test the HDMmodel.

At r = 4 kpc, the circular velocity for the stellar disk is
16 km s−1, the circular velocity for the gaseous disk is 26
km s−1 (Oh et al. 2011). Calculation gives the BM circular
velocity 30.5 kms−1. Adopt theHDMcircular velocity equal
to the BM circular velocity 30.5 km s−1. Then, the total cir-
cular velocity is 43 km s−1. The bulk rotation curve (Oh et
al. 2011) gives the circular velocity 55 km s−1. The Hermite
rotation curve (Oh et al. 2011) gives the circular velocity 54
km s−1. The intensity-weightedmean rotation curve (Oh et
al. 2011) gives the circular velocity 52 km s−1. The Hermite
rotation curve (van Eymeren et al. 2009) gives the circular
velocity 49 km s−1. The intensity-weighted mean rotation
curve (Hunter et al. 2001) gives the circular velocity 48 km
s−1.

At r = 6 kpc, the circular velocity for the stellar disk
is 15 km s−1, the circular velocity for the gaseous disk is 26
km s−1 (Oh et al. 2011). Calculation gives the BM circular
velocity 30 km s−1. Adopt the HDM circular velocity equal
to the BM circular velocity 30 km s−1. Then, the total cir-
cular velocity is 42 km s−1. The bulk rotation curve (Oh et
al. 2011) gives the circular velocity 57 km s−1. The Hermite
rotation curve (Oh et al. 2011) gives the circular velocity 45
km s−1. The intensity-weightedmean rotation curve (Oh et
al. 2011) gives the circular velocity 43 km s−1. The Hermite
rotation curve (van Eymeren et al. 2009) gives the circular
velocity 46 km s−1. The intensity-weighted mean rotation
curve (Hunter et al. 2001) gives the circular velocity 46 km
s−1.

One can see that, in the region 2.5−6 kpc, the total ro-
tation curve of NGC 2366 approximately follows the BM ro-
tation curve. However, the circular velocities derived from
the observations of NGC 2366 are higher than those pre-

dicted by the HDM model, by 10 − 14 km s−1 for the bulk
rotation curve (Oh et al. 2011), by 3−11 km s−1 for the Her-
mite rotation curve (Oh et al. 2011), by 1 − 9 km s−1 for the
intensity-weightedmean rotation curve (Oh et al. 2011), by
4−6 km s−1 for the Hermite rotation curve (van Eymeren et
al. 2009), by 4 − 5 km s−1 for the intensity-weighted mean
rotation curve (Hunter et al. 2001).

In observations, the circular velocities are derived
from the line of sight velocities through the inclination,
1/ sin i, and position angle, 1/ cosϕ. The inclination and
position angle determined from the HI kinematics in NGC
2366 are not the same as those found from the optical
and HI morphologies (Hunter et al. 2001). The HI kine-
matics gives an inclination of 65∘ and a position angle
of 46∘ (Hunter et al. 2001); 63∘ and 43∘ (van Eymeren
et al. 2009); 63.8∘ and 39.8∘ (Oh et al. 2011). The outer
isophote of the stars gives the values 72∘ and 32.5∘, re-
spectively (Hunter et al. 2001). The HI morphology gives
the values 73∘ and 23.5∘, respectively (Hunter et al. 2001).
These results indicate that either the HI distribution or the
kinematics deviate from axial symmetry. That is, the HI
disk must be either elongated or warped or the motions
must be non-circular. Using the inclination and position
angle of the optical and HI morphologies instead of those
of the HI kinematics will give the smaller circular veloci-
ties that may eliminate the discrepancy between the pre-
dictions of the HDMmodel and the observational data.

3.4 Rotation Curve of IC 2574

Consider the rotation curve of IC 2574 (Oh et al. 2011). Sev-
eralmethods have beenused to derive the rotation curve of
IC 2574. Oh et al. (2011) derived the rotation curve of IC 2574
from thebulk velocity field. The circular velocity is rising to
80 km s−1 at 11 kpc. For comparison, they presented the ro-
tation curves derived from theHermite, intensity-weighted
mean, single Gaussian and peak velocity fields. The cir-
cular velocities of the Hermite, single Gaussian and peak
rotation curves are comparable to those of the bulk rota-
tion curve. The circular velocities of the intensity-weighted
mean rotation curve are smaller than those of the bulk ro-
tation curve. Also, the rotation curve of NGC 2366, derived
from the intensity-weighted mean velocity field, was con-
sidered in (Martimbeau et al. 1994),with the circular veloc-
ities being comparable to those of the intensity-weighted
mean rotation curve (Oh et al. 2011). The rotation curve is
modeled with the use of the mass components: two BM
components, including the stellar and gaseous disks, as
well as the DM halo.
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Consider the HDMmodel of IC 2574. There is a feature
at ∼ 1.5 kpc in the curve of the inclination (beginning of
the decrease) of IC 2574 (Oh et al. 2011). Assume that the
feature gives the radius of the border between the inner
and outer regions in IC 2574, r0 = 1.5 kpc. At r = 1.5
kpc, the circular velocity for the stellar disk is 13 km s−1,
the circular velocity for the gaseous disk is 4 km s−1 (Oh
et al. 2011). Calculation gives the BM circular velocity 14
km s−1. At r0 = 1.5 kpc, the HDM mass (energy) is equal
to the BM mass. Adopt the HDM circular velocity equal to
the BM circular velocity 14 km s−1. Then, the total circu-
lar velocity is 20 km s−1. The bulk rotation curve (Oh et
al. 2011) gives the circular velocity 22 km s−1. The Hermite,
intensity-weighted mean, single Gaussian and peak rota-
tion curves (Oh et al. 2011) give the circular velocity 16 km
s−1. The intensity-weighted mean rotation curve Martim-
beau et al. (1994) gives the circular velocity 16 km s−1.

Estimate the HDM density from the HDM circular ve-
locity at r0 = 1.5 kpc. For vhdm(r0) = 14 km s−1,
ρhdm(r0) = 3v2hdm(r0)/(4πGr

2
0) = 3.3 × 10−25 g cm−3 =

4.9×10−3 m⊙ pc−3. This is consistent with the value in our
Galaxy.

One can see in the stellar and gaseous rotation curves
of IC 2574 thatmost of the BMmass in IC 2574 lies out of the
radius r0 = 1.5 kpc, within the radius rb ∼ 9 kpc. In the
HDM model, the test particle moves along the parabolic
orbit in the outer region r ≥ r0. One can define the radius
rmin of the parabolic orbit in the range from r0 to rb, 1.5−9
kpc. The circular velocity of the test particle at the radius
rmin = 1.5 − 9 kpc is given by Eq. (3) in which the HDM
perturbation is taken equal to the BM gravitational poten-
tial. Hence, the HDM circular velocity at r = 1.5 − 9 kpc
should be taken equal to the BM circular velocity at the
same radius. It is expected that, in the range 1.5 − 9 kpc,
the total rotation curve follows the BM rotation curve, with
the enclosed dynamical mass is twice the enclosed bary-
onic mass. The observational data on the circular veloci-
ties in the outer region r ≥ r0 of IC 2574 are obtained from
the line of sight velocities while assuming the elliptic or-
bit of the test particle. The data are suitable for the radius
rmin = 1.5 − 9 kpc of the parabolic orbit thus may be used
to test the HDM model in the range 1.5 − 9 kpc. Above 9
kpc, the data cannot be used to test the HDMmodel.

At r = 3 kpc, the circular velocity for the stellar disk is
18 kms−1, the circular velocity for thegaseousdisk is 10km
s−1 (Oh et al. 2011). Calculation gives the BM circular veloc-
ity 21 km s−1. Adopt the HDM circular velocity equal to the
BM circular velocity 21 km s−1. Then, the total circular ve-
locity is 29 km s−1. The bulk rotation curve (Oh et al. 2011)
gives the circular velocity 32 km s−1. The Hermite, single
Gaussian and peak rotation curves (Oh et al. 2011) give the

circular velocity 28 km s−1. The intensity-weighted mean
rotation curve (Oh et al. 2011) gives the circular velocity 26
km s−1. The intensity-weighted mean rotation curve (Mar-
timbeau et al. 1994) gives the circular velocity 31 km s−1.

At r = 6 kpc, the circular velocity for the stellar disk
is 26 km s−1, the circular velocity for the gaseous disk is
26 km s−1 (Oh et al. 2011). Calculation gives the BM cir-
cular velocity 37 km s−1. Adopt the HDM circular velocity
equal to the BM circular velocity 37 km s−1. Then, the total
circular velocity is 52 km s−1. The bulk rotation curve (Oh
et al. 2011) gives the circular velocity 55 km s−1. The Her-
mite, single Gaussian and peak rotation curves (Oh et al.
2011) give the circular velocity 53 km s−1. The intensity-
weightedmean rotation curve (Oh et al. 2011) gives the cir-
cular velocity 45 km s−1. The intensity-weighted mean ro-
tation curve (Martimbeau et al. 1994) gives the circular ve-
locity 45 km s−1.

At r = 9 kpc, the circular velocity for the stellar disk
is 24 km s−1, the circular velocity for the gaseous disk is
40 km s−1 (Oh et al. 2011). Calculation gives the BM cir-
cular velocity 47 km s−1. Adopt the HDM circular velocity
equal to the BM circular velocity 47 km s−1. Then, the total
circular velocity is 66 km s−1. The bulk rotation curve (Oh
et al. 2011) gives the circular velocity 72 km s−1. The Her-
mite, single Gaussian and peak rotation curves (Oh et al.
2011) give the circular velocity 73 km s−1. The intensity-
weightedmean rotation curve (Oh et al. 2011) gives the cir-
cular velocity 66 km s−1. The intensity-weighted mean ro-
tation curve (Martimbeau et al. 1994) gives the circular ve-
locity 65 km s−1.

One can see that, in the region 1.5 − 9 kpc, the total
rotation curve of IC 2574 approximately follows the BM ro-
tation curve. The circular velocities predicted by the HDM
model are roughly in agreement with the observational
data. The bulk rotation curve (Oh et al. 2011) gives the
largest circular velocities, by 2−6 kms−1 higher than those
predictedby theHDMmodel. The intensity-weightedmean
rotation curve (Ohet al. 2011) gives the smallest circular ve-
locities, by 0 − 7 km s−1 lower than those predicted by the
HDMmodel.

4 Conclusion
We have considered the model of the galaxy with HDM to
avoid the problems of the ΛCDMmodel on galactic scales.
The HDM particles are assumed to emerge from the decay-
ing matter after the epoch of structure formation. In this
case, only BM takes part in the structure formation, and
there is no restrictions on the type of DM from the structure
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formation. Such a scenario is in agreement with the obser-
vational data (Lang et al. 2017; Genzel et al. 2017) showing
the baryon dominated high redshift galaxies. Also, the ob-
servational data on the density perturbations (Demiański
& Doroshkevich 2017) give support to the model with the
dominant HDM fraction. We have considered the decay of
the proton at the Planck scale into positron and four hypo-
thetical Planck neutrinos. The process may go effectively
for the protons falling onto the gravastar. Planck neutrino
has been interpreted as a HDM particle.

In the HDM model, the galaxy is divided into two re-
gions. In the inner region, the BM predominates over the
HDM while, in the outer region, the HDM predominates
over the BM. The border between the regions is at some
radius r0 where the HDM mass is equal to the BM mass.
The motion of the test particle is bounded in the inner
region (elliptic orbit) and unbounded in the outer region
(parabolic orbit). The HDM density is supposed to be con-
stant with radius, ρhdm = const, and the HDMmass grows
with radius as mhdm(< r) ∝ r3. At r ≥ r0, the maximum
HDM perturbation of the gravitational potential is equal
to the BM gravitational potential, δΦ = Φ. Hence, the
enclosed dynamical mass is twice the enclosed BM mass,
mdyn(< r) = 2mb(< r). In the far outer region r ≫ r0, the
enclosed dynamical mass is defined by the radial velocity.

Observational constraints on the proposed model
havebeen considered from the rotation curves of the galax-
ies:MilkyWay,M33, NGC 2366 and IC 2574. The radius r0 in
the galaxies has been determined through the features in
the anisotropy profile (MilkyWay), in the curve of the posi-
tion angle (M33, NGC 2366), in the curve of the inclination
(IC 2574). The HDM density has been estimated from the
HDM circular velocity at r0. The HDM density in the four
galaxies under study is round the same, consistent with
the local DM density at the solar position.

The BM mass in the Milky Way and M33 lies mostly
within the radius r0. The predictions of the HDM model
for the BMmass within the radius r0 in the Milky Way and
M33 are in agreement with the literature data. The obser-
vational data on the circular velocities in the outer region
r ≥ r0 of the Milky Way and M33 are obtained from the line
of sight velocities while assuming the elliptic orbit of the
test particle. The data are not suitable for the parabolic or-
bit and cannot be used to test the HDMmodel in the outer
region r ≥ r0. The enclosed BM mass for r ≫ r0 has been
estimated in the Milky Way and M33, through the radial
velocity dispersion at r = 60 − 100 kpc in the Milky Way,
and through the radial velocity of AndXXII relative to M33.
The obtained BM masses in the Milky Way and M33 are in
agreement with the observational data.

The BM mass in NGC 2366 and IC 2574 lies mostly out
of the radius r0, within some radius rb. One can define the
radius rmin of the parabolic orbit in the range from r0 to
rb. It is expected that, in the range from r0 to rb, the to-
tal rotation curve follows the BM rotation curve, with the
enclosed dynamical mass is twice the enclosed baryonic
mass. The observational data on the circular velocities in
the outer region r ≥ r0 of NGC 2366 and IC 2574 are ob-
tained from the line of sight velocities while assuming the
elliptic orbit of the test particle. The data are suitable for
the radius rmin of the parabolic orbit in the range from r0
to rb thusmay be used to test theHDMmodel in this range.
Above rb, the data cannot be used to test the HDMmodel.
The total rotation curves of NGC 2366 and IC 2574 in the
range from r0 to rb approximately follow the BM rotation
curves. The predictions of theHDMmodel for IC 2574 are in
agreement with the observational data. The circular veloc-
ities derived from the observations of NGC 2366 are higher
than those predicted by the HDM model. A possible rea-
son is the use of the inclination and position angle of the
HI kinematics which are different to those of the optical
and HI morphologies.
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