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Abstract

In this thesis, we study the phenomenology of selected observables in the context of the
Randall-Sundrum scenario of a compactified warped extra dimension. Gauge and matter
fields are assumed to live in the whole five-dimensional space-time, while the Higgs sector
is localized on the infrared boundary. An effective four-dimensional description is obtained
via Kaluza-Klein decomposition of the five dimensional quantum fields. The symmetry
breaking effects due to the Higgs sector are treated exactly, and the decomposition of
the theory is performed in a covariant way. We develop a formalism, which allows for a
straight-forward generalization to scenarios with an extended gauge group compared to the
Standard Model of elementary particle physics. As an application, we study the so-called
custodial Randall-Sundrum model and compare the results to that of the original formu-
lation. We present predictions for electroweak precision observables, the Higgs production
cross section at the LHC, the forward-backward asymmetry in top-antitop production at
the Tevatron, as well as the width difference, the CP-violating phase, and the semileptonic
CP asymmetry in Bs decays.

Zusammenfassung

In dieser Arbeit studieren wir die Phänomenologie einiger ausgesuchter Observablen im
Kontext des Randall-Sundrum Szenarios einer kompaktifizierten gekrümmten Extradimen-
sion. Es wird angenommen, dass Eich- und Materiefelder in der gesamten fünfdimensionalen
Raumzeit leben, während der Higgs-Sektor auf der sogenannten Infrarot-Brane lokalisiert
ist. Eine effektive vierdimensionale Beschreibung wird mittels einer Kaluza-Klein Zer-
legung der fünfdimensionalen Quantenfelder erreicht. Die durch den Higgs-Sektor verur-
sachten symmetriebrechenden Effekte werden hierbei exakt behandelt, und die Zerlegung
der Theorie wird in kovarianter Weise vollzogen. Wir entwickeln einen Formalismus, der
eine direkte Verallgemeinerung auf Szenarien mit einer erweiterten Eichgruppe im Ver-
gleich zum Standardmodell der Elementarteilchenphysik erlaubt. Als Anwendung studieren
wir das sogenannte custodial Randall-Sundrum Modell, und vergleichen die Resultate mit
denen der ursprünglichen Formulierung. Wir machen Vorhersagen für elektroschwache
Präzisionsobservalen, den Wirkungsquerschnitt für die Higgs-Produktion am LHC, die
Vorwärts-Rückwärts Asymmetrie in der Top-Antitop Produktion am Tevatron, sowie die
Zerfallsbreitendifferenz, die CP-verletzende Phase und die semileptonische CP-Asymmetrie
in Bs-Zerfällen.
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1 Introduction

In this thesis, we want to study electroweak precision observables, as well as some selected
topics of flavor physics, which are of special interest within the search for new physics
at the Large Hadron Collider and the Tevatron. The calculations will be performed in
the context of the Randall-Sundrum scenario, which is perhaps one of the most discussed
extensions to the Standard model of elementary particle physics. As it is explained in detail
later, the Randall-Sundrum model involves one additional compactified spacial dimension,
but preserves ordinary four dimensional Poincaré invariance. Nevertheless, one has to
understand how matter and gauge fields are described in a five dimensional space-time. As
a further complication, we will generalize our studies to an extended gauge sector, which
fits that one of the Standard model at low energies. The gauge fixing will be treated in a
covariant way. Therefore, one has to extend the class of Rξ gauges in two ways: First, the
effects of the compactified space-time have to be taken into account, second, the new heavy
gauge fields have to be included. Furthermore, the mechanism of electroweak symmetry
breaking plays a major role in all our considerations.

In order to get started, we will provide the reader with a discussion of all the above
issues in the Standard model. Of course, such an introduction can not be complete. It
should rather catch up the basic ideas, and give the formulas which need to be generalized
within the context of an extra dimension or an extended gauge group. More detailed
elaborations can be found in [1], [2], and [3] for instance, which we will use as foundation
for our discussions. We are not going to provide an introduction to quantum field theory
in general, which is far beyond the scope of this thesis. However, we want spend some time
on discussing the concept of effective field theories, which is a powerful approach for the
study of multi-scale problems. The experienced reader may directly jump to subsection 1.7.
There, we will give some theoretical and empirical reasons, why we are expecting to find
new physics at current collider experiments. Furthermore, a detailed outline of all topics
treated in this thesis will be provided at the end of the introduction.

1.1 About symmetries and field quantization

When one asks a theoretical particle physicist about the most general purpose of collider
experiments at highest energies, he may answer with a short question: What is the La-
grange density L(x) of the observable nature and to what energy does it hold?

The Lagrange density is a formal object, which is used to define a quantum field theory
(QFT). The purpose of the following pages is to discuss its ingredients. First of all, there
are many similarities between QFTs and classical field theories, such as the Maxwell theory.
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1 Introduction

Here, the electric potential φ(x) and the vector potential ~A(x) of the magnetic field are
combined to four components of a Lorentz vector Aµ(x), where x denotes the coordinate of
the four dimensional space-time. The current jµ(x) is defined as the electric charge times
the four-velocity of a moving charged particle, which serves as a source. The Lagrange
density is a Lorentz-invariant object, which consists of a kinetic term for Aµ(x), and a
source term, which couples the potential to the current

LMaxwell(x) = − 1

4
Fµν(x)F

µν(x) + jµ(x)A
µ(x) . (1.1)

Here, Fµν(x) = ∂µAν(x)−∂νAµ(x) is the field-strength tensor with ∂µ ≡ ∂/∂xµ, and we use
natural units featuring ~ = c = 1 throughout the article. Apart from Lorentz symmetry, the
Lagrange density possesses a local gauge symmetry, which reflects the fact that potentials
themselves are not observable, but rather the field strengths obtained from derivatives of
the potentials. Indeed, the shift of the vector potential Aµ(x)→ Aµ(x)−∂µχ(x) leaves the
Lagrange density invariant, if in addition the continuity equation ∂µjµ(x) = 0 holds. Here,
χ(x) denotes an arbitrary scalar potential. On the other hand, the continuity equation is
nothing more than the statement, that the electric charge is conserved. We see that already
at the classical level nature seems to be controlled by simple symmetry and conservation
laws. Note that a term ∝ Aµ(x)A

µ(x) would violate the local gauge invariance of the
theory. The physical interpretation of such a term will be discussed below.

The action S is defined as the space-time integral over L, where the integration bound-
aries are sent to infinity. We write

S =

∫
dx4L(x) . (1.2)

If we insert the Lagrange density (1.1) and apply the famous variational principle, we obtain
Maxwell’s equations. When we go to a QFT, the formal expression for the action does not
change. All symmetries that are present in the classical (free) theory are kept. However,
within the canonical quantization procedure, the potential Aµ(x) has to be reinterpreted
as a single, relativistic quantum mechanical particle, which we call a field. Technically,
the classical potential has to be replaced by a field operator. If the operator acts on the
ground state of the theory (which we call the vacuum), it produces a single quantum field.
For the Maxwell theory, this field is the photon, and the field operator is given by

Aµ(x) =
1

(2π)3/2

∫
d3k

2ωk

3∑

λ=0

[
ǫµλ(k) cλ(k) e

−ikx + ǫµ ∗
λ (k) c†λ(k) e

ikx
]
. (1.3)

Here, k and ωk are the photon momentum and the energy, and ǫµ is its polarization vector.
The creation and annihilation operators c†λ(k) and cλ(k) are defined in momentum space
and satisfy commutation relations. Setting the current jµ(x) to zero, Maxwell’s equations
are now understood as the equations of motion (EOMs) of the free photon field, which
satisfies the dispersion relation p2 = ω2. In other words, the EOMs describe the on-shell
propagation. A different approach to field quantization is the path integral formalism,
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1.1 About symmetries and field quantization

invented by Richard Feynman back in the six-tees. Here, the field serves as integration
variable within the path integral, which enters the generating functional of the theory.
Without going into further details here, we note that the different components of a quantum
field correspond to the degrees of freedom of the respective particle. For the photon field
however, something seems to be wrong at the first sight. As light is observed as a transversal
wave, the photon has two helicity states. One the other hand, a Lorentz vector has four
components. Only two of them (or certain linear combinations) can therefore correspond
to physical degrees of freedom. The additional components arise due to the gauge freedom
we already observe at the classical level. Indeed, this gauge freedom leads to difficulties
in the field quantization. Within the functional appoach for instance, the path integral
diverges, as one integrates over an infinite set of gauge-equivalent configurations. Here, a
gauge fixing is used to pick out one (arbitrary) representative, thus giving a meaning to the
path integral. Within the canonical procedure, there is no canonical conjugate momentum
for the zero component A0(x), unless one adds an additional term to the action by choosing
a specific gauge. On the other hand, a naive gauge fixing would spoil the gauge invariance
of the theory. A solution has been given by L.D. Faddeev and V.N. Popov [4], where
the path integral is augmentend by a unity expression consisting of a functional integral
over a gauge-fixing condition times a functional determinant. The latter gives rise to so-
called ghost fields, which so to say keep the gauge freedom within the theory, but are non
observable as physical particles, as they have the wrong combination of spin and statistics.1

Coming back to classical field theories, we note that quantum fields are classified in
representations of the Lorentz group. The Maxwell field lives in the vector representation
and transforms via

Aµ(x)→ A
′µ(x) = Λµ

νA
ν(x) , (1.4)

where Λµ
ν is the component (µ, ν) of a Lorentz transformation. The most simple repre-

sentation consists of scalar fields with one degree of freedom (DOF), which we denote by
φ(x).2 They correspond to spin-0 particles and are invariant under Lorentz transforma-
tions. The respective creation and annihilation operators satisfy commutation relations
as well. As a consequence, scalar and vector particles obey Bose-Einstein statistics. The
Lagrange density of the free theory is given by

LKlein−Gordon = ∂µφ
∗(x)∂µφ(x)− m2|φ(x)|2 . (1.5)

Here, m is interpreted as the mass of the particle. The classical EOM is again obtained by
applying the variational principle. One finds the Klein-Gordon equation (�+m2)φ(x) = 0 ,
where � ≡ ∂µ∂

µ. If we insert the plane-wave solution of φ(x), we find p2 = m2, were p
is the four momentum of the moving spin-0 particle, which is confined to its mass shell.
Indeed, this was the original motivation for writing down a Lorentz invariant generalization

1Ghost fields are Grassman variables, that is scalar fields that obey anti-commutation relations. As a
consequence, they only show up as intermediate states which can only be produced/annihilated in
pairs.

2φ(x) could be any scalar field, do not confuse with the electric potential.
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1 Introduction

of Schroedinger’s equation. Within an interacting theory, particles do not necessarily have
to be on-shell. We will come back to this point below.

For the moment, we will instead continue dealing with free theories and study the two-
component spinor representation of the Lorentz group. The related quantum fields describe
spin-1/2 particles. Let us define a Lorentz vector via σµ = σ̂µ ≡ (σ0,σ) = (σ0, σ1, σ2, σ3),
where σ0 = 12×2, and σi are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.6)

The position vector x, which transforms as x′ = Λx under Lorentz transformations Λ, is
mapped on a two-dimensional hermitian matrix X via

xµ →X = σµx
µ . (1.7)

Next we have to find a representation for Lorentz transformations, such that

X = X ′ = A(Λ)XA†(Λ) . (1.8)

As detX = x2 and x2 = x′2 is an invariant, we have to require detA = 1. The complex
2× 2 matrices with determinant equal one form a group, the so-called special linear group
SL(2,C). Its elements can be represented by

A = e
1
2
σλe

i
2
σθ , (1.9)

where λ, θ correspond to six real parameters, and the exponential functions are defined via
power expansion. The first factor corresponds to special Lorentz transformations (boosts),
and λ = λv̂ is the rapidity parameter into the direction of the velocity v = v̂ tanhλ. The
second factor corresponds to rotations. If we define

ǫ = iσ2 =

(
0 1
−1 0

)
= ǫ−1 = ǫT = −ǫ ∈ SL(2,C) , (1.10)

we find that ǫ σ∗
µǫ

−1 = (σ0,−σ) ≡ σ̂µ = σµ , and, as a consequence,

ǫA∗ǫ−1 = e−
1
2
σλe

i
2
σθ ≡ Â . (1.11)

Thus, we have constructed a second representation, where the boost has a relative sign.
Next, one defines two-component complex-valued Weyl spinors φ and χ, that transform un-
der A and Â respectively. Due to (1.11), the spinors are related by a parity transformation.
They can also be transformed to each other via

χ(p) = Â(Lp)A−1(Lp)φ(p) , (1.12)

where we switched to momentum space, and Lp is a Lorentz boost with momentum p. It
is interesting to note that χ†φ and φ†χ form Lorentz invariants. This can be seen from
(1.11) and the relation ǫAT ǫ−1 = A−1, which implies

χ′†φ′ = χ†Â†Aφ = χ†(ǫAT ǫ−1)Aφ = χ†φ , (1.13)
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1.1 About symmetries and field quantization

and vice versa for φ†χ. Making use of the relations coshλ = p0/m and sinhλ = |p|/m, it
can be shown that equation (1.12) is equivalent to

mχ(p) = pµσ̂µφ(p) = pµσ̂
µφ(p) , (1.14)

or
mφ(p) = pµσµχ(p) = pµσ

µχ(p) . (1.15)

It is thus convenient to define a four-component Dirac spinor u(p) = (φ(p), χ(p))T , and to
introduce the Dirac matrices

γµ =

(
0 σµ

σ̂µ 0

)
. (1.16)

The equations (1.14) and (1.15) can now be combined into

(γµpµ −m14×4)u(p) = 0 . (1.17)

In the limit m = 0, the spinors φ(p) and χ(p) are eigenstates of the helicity operator
h = σ · p/(2p0), with eigenvalues ∓1/2. The EOMs (1.14) and (1.15) are known as
Weyl equations for that case. Defining γ5 = iγ0γ1γ2γ3 = diag(−1,1), which satisfies
γ5γµ + γµγ5 = 0, we can build projection operators

PL =
1

2
(1− γ5) , PR =

1

2
(1 + γ5) , (1.18)

and define the chiral spinors

uL(p) = PL u(p) =

(
φ(p)

0

)
, uR(p) = PR u(p) =

(
0

χ(p)

)
. (1.19)

The distinction between left-handed (uL(p)) and right-handed spinors (uR(p)) becomes
necessary, if different interactions for the more fundamental Weyl spinors are introduced.
For massive fermions, the chiral components are superpositions of states where the spin
points into the moving direction in the one case, and into the opposite direction in the
other. For a left-handed fermion at high energy E ≫ m for instance, the fraction of the
former state is suppressed compared to the fraction of the latter by the ratio m/E.

As the spinor product
u†(p)γ0u(p) = χ†φ+ φ†χ (1.20)

is a Lorentz invariant, it is convenient to define the Dirac conjugate u(p) ≡ u(p)†γ0. The
Dirac matrices satisfy the Clifford algebra

γµγν + γνγµ ≡ {γµ, γν} = 2ηµν14×4 , (1.21)

where we use the convention ηµν = diag(1,−1,−1,−1) for the Minkowski metric. Useful
identities which directly follow from the algebra are

γ0(γµ)†γ0 = γµ , (γ0)2 = 14×4 , and (γi)2 = −14×4 . (1.22)
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1 Introduction

Here, i = 1, 2, 3 label the space coordinates. Contracting (1.21) with pµpν and using
(1.17), one finds p214×4 = m214×4. The operator γµpµ has the eigenvalues ±m. Indeed,

there exists a second spinor v(p) = (ǫχ∗(p),−ǫφ∗(p))T , which satisfies

(γµpµ +m14×4)v(p) = 0 . (1.23)

The two EOMs (1.17) and (1.23) are known as the Dirac equations in momentum space.
Due to Pauli’s spin-statistic theorem, spin-1/2 particles should behave like fermions.

Therefore, the creation and annihilation operators have to satisfy anti-commutation rela-
tions. Switching back to position space and introducing creation (annihilation) operators

a
(s)†
p (a

(s)
p ) for fermions with momentum p and spin s, and b

(s)†
p (b

(s)
p ) for anti-fermions, the

field operators are given by

ψ(x) =
1

(2π)3/2

∑

s

∫
d3p

2Ep

(
a(s)

p e−ipx u(s)(p) + b(s)†p eipx v(s)(p)
)
,

ψ(x) =
1

(2π)3/2

∑

s

∫
d3p

2Ep

(
a(s)†

p eipx u(s)(p) + b(s)p e−ipx v(s)(p)
)
.

(1.24)

It satisfies the Dirac equation in position space

(iγµ∂µ −m14×4)ψ(x) = 0 . (1.25)

The conjugate equation can be derived with the help of the relations (1.22) and reads

ψ(x)(iγµ
←−
∂µ +m14×4) = 0 , (1.26)

where the arrow indicates that the derivative is acting to the left.
In a general d-dimensional space-time, the Clifford algebra (1.21) forms a 2d dimensional

vector space. In four dimensions, we can choose

Γ = {ΓS = 14×4,ΓP = γ5,ΓV = γµ,ΓA = γµγ5,ΓT = σµν} (1.27)

with µ < ν as its 16 basis elements. Here, we introduced the definition σµν ≡ i/2 [γµ, γν ]
and the superscripts S, P, V,A, T stand for scalar, pseudo scalar, vector, axial vector, and
tensor, respectively. The names refer to the transition behavior of the current ψ(x) Γψ(x)
under general Lorentz transformations. Indeed, in QFT the usual vector current jµ known
from electrodynamics is replaced by the (normal ordered) product of field operators jµ =
ψ(x)γµψ(x), and one proves ∂µj

µ = 0 with the help of (1.25) and (1.26). If the theory
distinguishes between the chiralities, it is often more convenient to work with the chiral
basis [5]

ΓM = {PR, PL, PRγµ, PLγµ, σµν} ,

ΓM = {PR, PL, PLγµ, PRγµ,
1

2
σµν} ,

(1.28)
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1.2 The gauge principle

instead of (1.27). Here, the second line is the dual basis to the first line and we again take
µ < ν. Finally, we want to quote the Lagrange density of the free Dirac theory

LDirac = ψ(x)

(
i

2
γµ
←→
∂µ −m14×4

)
ψ(x) , (1.29)

where
←→
∂µ ≡ ∂µ −

←−
∂µ. It is sometimes convenient to use integration by parts within the

action (or making use of the relations between φ and χ) in order to replace the Dirac
operator in (1.29) by (iγµ∂µ − m1). Another common abbreviation is provided by the
slash notation ∂/ ≡ γµ∂µ or A/ = γµAµ .

1.2 The gauge principle

As we discussed above, there is a gauge freedom in defining the classical vector potential
Aµ(x) at any point x, which is not affected by field quantization. Now, the question arises
if there is something similar for fermions. Obviously, the Dirac Lagrange density (1.29) is
invariant under global phase rotations ψ(x)→ exp(iα)ψ(x), where α is a real parameter.
On the other hand, a local phase rotation

ψ(x)→ eiα(x)ψ(x) (1.30)

will change LD due to the derivative in the kinetic term. In order to obtain local gauge
invariance, the partial derivative (which connects the point x with its vicinity) has to be
replaced by a covariant derivative. The latter takes care of the fact that fields at different
positions have different transformations (1.30). In general, we write

Dµ = ∂µ − igAµ(x) , (1.31)

where we pulled a constant g out of the vector field Aµ(x), which serves as a connection.
In order to obtain a gauge-invariant Lagrangian, the latter has to transform as

Aµ(x)→ Aµ(x) +
1

g
∂µα(x) . (1.32)

One now identifies Aµ(x) with the photon field of the Maxwell theory. For interaction
terms of fermions with photons, it is common to replace the general coupling constant g by
the elementary charge e times the quantum number q, which denotes the fermion charge
in units of e.

We now see how electromagnetic interactions can be motivated from the theory side:
As the theory is described in terms of local field operators ψ(x), Aµ(x) , etc., which are
themselves non-observable quantities (in analogy to classical potentials), we assume local
gauge freedom of the quantum fields for any point x of the space-time. However, this
assumption requires a so-called minimal substitution of the partial derivative in the fermion
action, which adds an interaction term to the Lagrange density. This is what we call the
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1 Introduction

gauge principle. If we now include a kinetic term for the gauge fields Aµ(x), we have
constructed the Lagrange density of quantum electro-dynamics (QED)

LQED = −1

4
Fµν(x)F

µν(x) + i ψ(x)γµDµψ(x)−mψ(x)ψ(x) . (1.33)

Some remarks are in order. The field-strength tensor Fµν(x) itself is a gauge-invariant
object. This is however not true for a mass term ∝ Aµ(x)A

µ(x). Thus, the photon has to
be massless in QED. We do not include a Lorentz- and gauge invariant term ∝ FµνF̃

µν , as
it violates parity.

The symmetry group of the above phase rotations (1.30) is the Lie group U(1). It is now
straight-forward to extend to more general cases. In general, fermions are assumed to live
in the fundamental (vector) representation of the chosen Lie group. For the special unitary
group SU(N) for instance, there have to be N copies of any field, which we label by Latin
indices from the middle of the alphabet. Gauge fields live in the adjoint representation,
labeled by indices from the beginning of the alphabet. Their number is equal to the
dimension of the group, which is N2 − 1 for SU(N). The covariant derivative generalizes
to

Dµ = ∂µ − ig T aGa
µ(x) , (1.34)

where T a are the generators of the Lie group. For SU(N), they satisfy the identities

Tr[T aT b] =
1

2
δab , T aT a = CF1 , (1.35)

with CF = (N2 − 1)/(2N), as well as

(T a)ij(T
a)kl =

1

2

(
δilδjk −

1

N
δijδkl

)
. (1.36)

The quantum theory of strong interactions for instance is based on SU(3) transformations.
Thus, there are three copies of any fermion which transforms as a vector, and it has become
common to talk about the color of a given field. The theory is therefore known as quantum
chromo-dynamics (QCD). Its gauge fields Ga

µ(x) with a = 1, .., 8 are known as gluons. The
generalization of the field-strength tensor Ga

µν , given by [Dµ, Dν ] ≡ −igGa
µνT

a, is however
not a gauge invariant object. Furthermore, it involves an additional term, as the generators
of SU(3) do not commute with each other3. Explicitly, one finds

Ga
µν = ∂µG

a
ν − ∂νGa

µ + gsf
abcGb

µG
c
ν , (1.37)

where fabc denotes the structure constant of SU(3). In order to obtain a gauge invariant
kinetic term, we have to take the trace Tr[T aGa

µνT
bGb µν ] with respect to the adjoint index

a. Thus, we find the QCD Lagrangian as a generalization of (1.33)

LQCD = −1

4
Ga
µν(x)G

aµν(x) + i ψi(x)γ
µDµψi(x)−mψi(x)ψi(x) , (1.38)

3It is said that QCD is a non-abelian gauge theory opposed to QED, which is abelian.
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1.3 Spontaneous symmetry breaking

where a summation over a = 1, .., 8 and i = 1, 2, 3 is understood. An important difference
to QED is that due to (1.37), the kinetic term induces interaction terms which are cubic
or quartic in the gluon fields. The U(1) group is thus exceptional as its gauge fields do not
directly interact with each other. Nevertheless, QED provides the possibility of photon-
photon scattering via intermediate exchange of charged fermions.

At this stage, one needs to distinguish between classical- and quantum field theories.
Within a quantum theory, there is the possibility of creating off-shell particle/anti-particle
pairs, with subsequent annihilation of the latter. In a free theory, these so-called vacuum
fluctuations would be non-observable. Within an interacting theory however, one can
have fluctuations within the propagation of a photon for instance. On the other hand, a
propagating fermion can emit an off-shell photon, and absorb it again. Within a classical
theory of course, there is no possibility of creating off-shell particles, as energy-momentum
conservation holds exactly. Thus, there is only the possibility of emitting an on-shell
photon, which of course also works within the quantized theory. In order to take care of
several quantum effects within the calculation of a scattering process, the mathematical
framework of QFT is needed.

1.3 Spontaneous symmetry breaking

Our goal is to write down a Lagrange density, which describes all physics that have directly
been discovered at collider experiments. Thus, it should contain the phenomena of electro-
magnetism, as well as strong and weak interactions. The latter is needed to describe the
decay of heavy fermions and is mediated by the exchange of heavy gauge bosons. Before
we are going to introduce the required gauge fields, we have to face another problem first:
As mentioned above, there is no way of writing down a (fundamental) mass term for gauge
fields without violating the local gauge symmetry of the theory. As we want to keep the
gauge principle as a basic concept, we have to find a way of creating some kind of effective
mass term, which stems from a gauge invariant interaction. This can be achieved with the
help of a so-called hidden or spontaneously broken symmetry. The idea goes as follows:
Let us assume that there exists a self-interacting (complex) scalar field φ(x). Its Lagrange
density is given by

Lφ4

=
1

2
∂µφ

∗(x)∂µφ(x) + µ2|φ(x)|2 − λ|φ(x)|4 . (1.39)

For µ2 > 0 and λ > 0 the potential V (φ) = −µ2|φ(x)|2 + λ|φ(x)|4 develops a minimum at

φ0 =

(
µ2

2λ

)1/2

. (1.40)

Within the quantized theory, this minimum is associated with the vacuum expectation
value (VEV) v = 〈φ(x)〉 of the scalar field. It is convenient to write

φ(x) = σ(x) + iϕ(x) ≡ φ0 + h(x) + iϕ(x) . (1.41)
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Figure 1.1: Potential V (φ) of the φ4 theory for −µ2 < 0. See text for details.

The massless field ϕ(x) is a left-over DOF within in the minimum of the potential V (φ) (see
Figure 2.1), which is known as Goldstone boson (GB). The field h(x), on the other hand,
will receive a mass term. Note that the scalar field φ(x) could either be an elementary
or a bound state, as long as it appears as a single particle at the scale v. Let us further
assume, that φ(x) is charged under a given gauge symmetry. In this case, we have to
replace the partial derivatives in (1.39) by covariant derivatives Dµ = ∂µ − igVµ(x), where
we consider a U(1) vector field for simplicity. We now find that an interaction term
∝ φ∗(x)φ(x)Vµ(x)V

µ(x), as well as further tri-linear terms are induced. If we take the
VEV, we will generate a quadratic term v2 Vµ(x)V

µ(x)/2 among others. This is the desired
mass term of the vector field Vµ(x), which on its own is not invariant under a local gauge
transformation. Nevertheless, the combination of interaction and mass terms preserves
local gauge freedom. This is all we require and the reason why we talk about hidden
symmetry here: The theory as a whole is covariant, where the ground state is not.

There is a formal relation to statistical mechanics. If one tries to find a continuum
description of a ferromagnet for instance, the theory should be invariant with respect to
rotations in space. Nevertheless, the ground state picks out on arbitrary direction, when the
elementary magnets are aligned. That is where the name spontaneous symmetry breaking
comes from. The procedure of creating gauge-boson masses from spontaneous symmetry
breaking is nowadays known as Higgs mechanism.

It should be noted that the insertion of the covariant derivative into (1.39) also induces
terms of the form g Vµ(x)∂

µϕ(x), which have no sensible physical interpretation. Here we
can make use of the gauge freedom and apply the method of gauge fixing, which allows us
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1.4 The Standard model of elementary particle physics

to get rid of those by adding the Lagrangian

LGF = − 1

2ξ

(
∂µVµ(x)− ξ

gv

2
ϕ(x)

)2

(1.42)

to the theory. Here, ξ is the gauge-fixing parameter, which can take any value from zero to
infinity. As it can be worked out, the undesired terms cancel, and we obtain an additional
(gauge dependent) contribution to the kinetic term of the vector field, as well as a mass
term mϕ = ξv2g2|ϕ(x)|2/2 for the Goldstone boson. It is therefore called pseudo- or
would-be Goldstone boson.

One might be worried that the gauge dependent terms spoil the predictivity of the theory.
However, one will always find that the related contributions cancel within the calculation of
a scattering or decay amplitude. An interesting remark is that in Feynman gauge (ξ = 1),
the propagator of a massive vector field equals that one of the photon (apart from the
mass in the denominator), while the propagator of the would-be GB is that of an ordinary
scalar particle. It is said that the latter carries the longitudinal DOF of the heavy vector
field, which is absent for a photon. The would-be GB is therefore not a particle on its
own, but rather part of the quantum field theoretical description of a heavy gauge boson.
Note that the quantization of the photon also goes along with a gauge-fixing Lagrangian,
which however does not contain a scalar DOF. If we extend the discussion to a non-abelian
gauge group, we need to add a further ingredient, the so-called ghost Lagrangian. It is a
byproduct of the gauge-fixing procedure and guarantees the overall gauge invariance of the
theory. As it is only important for calculations involving loops of gauge bosons (which is
not a topic of this thesis), we will not go into detail here.

1.4 The Standard model of elementary particle physics

The Standard model of elementary particle physics (SM) is the basic playground for theo-
retical computations. It consists of QCD and a unified theory of electromagnetic and weak
interactions. The theory of electroweak (EW) interactions, invented by Sheldon Glashow,

Abdus Salam and Steven Weinberg, is based on the direct product SU(2)× U(1). The as-
sociated gauge fields are denoted as W a

µ (a = 1, 2, 3), and Bµ. It further includes the Higgs
mechanism in order to generate masses, where the Higgs is charged under both symmetry
groups. As it turns out, the mass matrix has off-diagonal entries in the above basis of
gauge fields. Moreover, one of the SU(2) generators is imaginary. Therefore, one applies
a basis transformation to a set of fields for which the generators are real, and the mass
matrix is diagonal. These quantum fields are understood to describe the physical (that
is propagating) particles, which are given by the heavy charged W±

µ bosons, the heavy
neutral Z0, and the massless photon. Indeed, the existence of the heavy gauge bosons has
been postulated by the above authors before the direct observation at the LEP experiment.
The covariant derivative of the (non-abelian) theory of weak interactions is given by

Dµ = ∂µ − igT aW a
µ − ig′Y Bµ . (1.43)
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The generators of SU(2) are given by (half of) the Pauli matrices T a = σa/2, and we assign
the so-called hyper-charge Y to U(1). Furthermore, we need kinetic terms for the gauge
fields consisting of the square of the field strength tensors

W a
µν = ∂µW

a
ν − ∂νW a

µ + g ǫabcW b
µW

c
ν , and Bµν = ∂µBν − ∂νBµ . (1.44)

Here, the antisymmetric Levi-Cevita symbol ǫabc is the structure constant of SU(2). In
analogy to QCD, there will be interactions among the fields W a

µ . As a next step, we take
the covariant derivative (1.43) of the Higgs field, which is assumed to be a fundamental
complex scalar field, which transforms as a doublet under SU(2). As discussed in the
previous section, it can obtain a vacuum-expectation value different from zero by the
introduction of a self interaction. Explicitely, we write the Higgs-doublet as

Φ(x) =
1√
2

(−i(ϕ1(x)− iϕ2(x))

v + (h(x) + iϕ3(x))

)

1
2

, 〈Φ(x)〉 =
1√
2

(
0

v

)

1
2

, (1.45)

where the subscript denotes its hyper-charge. The Higgs-Lagrangian has the form

LHiggs = (DµΦ)† (DµΦ)− V (Φ) , V (Φ) = −µ2Φ†Φ + λ
(
Φ†Φ

)2
. (1.46)

Due to the non-vanishing VEV, the kinetic term in (1.46) gives rise to mass terms for the
gauge bosons. As mentioned above, these are not diagonal in the basis (W a

µ , Bµ). There is
a mixture between W 3

µ and Bµ. The change to the mass eigenbasis, where each field has
individual mass and kinetic terms, is achieved by the field rotation

(
Zµ
Aµ

)
=

1√
g2 + g′2

(
g −g′
g′ g

)(
W 3
µ

Bµ

)
. (1.47)

The fields Zµ and Aµ are identified with the massive Z0 and the massless photon respec-
tively. It is common to introduce the weak-mixing angle θw

sin θw =
g′√

g2 + g′2
, cos θw =

g√
g2 + g′2

(1.48)

in the above expression. One further defines

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
, T± = (T 1 ± iT 2) , (1.49)

where the generators

T+ =

(
0 1
0 0

)
and T− =

(
0 0
1 0

)
(1.50)

mediate between particles, which are identified as upper and lower components of SU(2)
doublets. We will come back to this point below. The masses of the gauge fields are found
to be

mW =
g v

2
, mZ =

√
g2 + g′2 v

2
, and mA = 0 . (1.51)
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1.4 The Standard model of elementary particle physics

The would-be GBs are rewritten in analogy to (1.49) such that ϕ± = (ϕ1 ∓ iϕ2) /
√

2. We
remember that the latter serve as longitudinal DOFs of W±

µ . The GB φ3 is absorbed by
the Z0 boson. The field h(x) however stays within the theory as an additional DOF. It is
known as Higgs field and is the only particle of the theory, which has not been observed
so far. Its mass is given by mh =

√
2λv, where λ is the self-coupling as introduced in

(1.39). It should be stressed that the above expressions for the masses mZ , mW and mh

are LO relations. There will be modifications from quantum corrections to the respective
propagators, given by vacuum-polarization diagrams. Here, one talks of oblique corrections
[6, 7]. The weak mixing angle is determined from measurements of various EW decay
processes. The Higgs VEV v can be extracted from the observed gauge boson masses
and is found to be v ≈ 246 GeV within the SM. Considering the Higgs mass, there is a
theoretical upper bound

mh <

(
8π
√

2

3GF

)1/2

≈ 1 TeV , (1.52)

if one wants to preserve unitarity in the longitudinal component of heavy gauge boson
scattering amplitudes at high energies [8]. Here, we have introduced Fermi’s constant

GF√
2

=
g2

8m2
W

. (1.53)

It is useful to write (1.43) in the mass eigenbasis. If we define the charges

e =
gg′√
g2 + g′2

= g sin θw , and gZ =

√
g2 + g′2 =

g

cos θw
(1.54)

as well as the charge quantum numbers

Q = T 3 + Y, and QZ = T 3 − g′2√
g2 + g′2

Q = T 3 − sin2 θwQ , (1.55)

we can write (sw ≡ sin θw, cw ≡ cos θw)

Dµ = ∂µ − i
g√
2

(
W+
µ T

+ +W−
µ T

−
)
− igz Zµ

(
T 3 − s2

wQ
)
− ieAµQ . (1.56)

The first connection term induces charged-current interactions. This can be understood
from the explicit form of the generators (1.50) and the definition of the quantum number Q
in (1.55). For a given hyper-charge, the value of Q differs by 1 for components of an SU(2)
doublet for which T 3 = ±1/2. As mentioned above, the generators T± link the different
components. On the other hand, Q is identified as the quantum number related to the
electric charge, as evident from the third term in the covariant derivative. The latter gives
rise to photon exchange, where e is the elementary electron charge. Finally, the second
term induces the exchange of neutral-current interactions mediated by a heavy Z0 boson.
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Before we are able to write down the full Lagrange density of the SM, we need to specify
the particles of the theory, and list there quantum numbers under the SM gauge group

SU(3)c × SU(2)L × U(1)Y . (1.57)

The subscripts c and Y indicate color and hyper-charge respectively. The subscript L
however refers to chirality. From angular distributions in scattering experiments it is
known that charged current interactions only occur for left-handed fermions. Therefore,
we have to choose the latter to be doublets under SU(2)L, where right-handed fermions are
taken to be singlets. This assignment is however problematic if we want to insist on local
gauge invariance and describe massive fermions at the same time. From (1.19) and (1.20) it
is evident that the Dirac mass term in (1.29) couples left to right-handed spinors and vice
versa. If the corresponding quantum fields are assigned with different quantum numbers,
the mass term does not form an invariant under the respective gauge group. Fortunately,
we have the solution to face the problem already at hand. If the Higgs doublet is part of
the theory, we are allowed to write down further coupling terms. For instance, if we define
the doublet LeL = (νe, eL)T , which consists of the electron neutrino and the left-handed
electron, we can write the gauge-invariant term

LeYukawa = −yeLeL(x)Φ(x)eR(x) + h.c. , (1.58)

where ye is a complex-valued coupling constant. After spontaneous symmetry breaking,
a mass term me = λev/

√
2 is generated. One now introduces Yukawa interactions for

all fermions, where the Yukawa couplings are further input variables of the theory. If
there is more than one generation of particles, we have again to distinguish between weak
eigenstates and mass eigenstates. Before we go into detail here, we first specify the particle
content of the SM.

Within the SM, fermions are classified by their color, their electric charge (quantum
number Q), their weak isospin T 3

L, and their mass. Fermions which are charged under
SU(3)c are known as quarks. Considering electric charge, there are two types of them: up-
type quarks with charge 2/3 e and down-type quarks with charge −1/3 e. Left-handed up-
and down-type quarks are combined into doublets QL of SU(2)L. Right-handed quarks
transform as singlets. Today, we know about three generations of up and down-type
quarks, which differ by their masses. In the up-sector we have ui = (u, c, t), where i is
the generation index.4 They are referred to as up quark, charm quark, and top quark
respectively. In the down sector we have di = (d, s, b), which are known as down quark,
strange quark, and bottom (or beauty) quark. A similar picture arises for leptons, which
are singlets under SU(3)c. We have ei = (e, µ, τ) with charge −e, known as electron, muon
and τ -lepton. The neutrinos with electric charge zero are labeled by νi = (νe, νµ, ντ ) and
carry the name of the corresponding charged lepton. Note that there are no right-handed
so-called sterile neutrinos in the SM, as they would be singlets under the complete group
(1.57). As a consequence, there is no Dirac mass term for the neutrino. In summary, the

4Do not confuse with the color index which we will suppress for the rest of the discussion.
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Q Y T 3
L

uiL 2/3 1/6 1/2
diL −1/3 1/6 −1/2
uiR 2/3 2/3 0
diR −1/3 −1/3 0
νiL 0 −1/2 1/2
eiL −1 −1/2 −1/2
eiR −1 −1 0

Table 1.1: Quantum numbers of the SM quarks and leptons. See text for details.

fermion content of the SM is given by

QL =

((
uL
dL

)
,

(
cL
sL

)
,

(
bL
tL

))
, uR = (uR, cR, tR) , dR = (dR, sR, bR)

LL =

((
νe
eL

)
,

(
νµ
µL

)
,

(
ντ
τL

))
, eR = (eR, µR, τR) .

(1.59)

The respective quantum numbers are collected in Table 1.1. Ignoring chirality, it is said
that there are six different flavors u, d, s, c, b, t. Only the lightest up and the down quarks
are stable. The additional quarks decay either hadronically into lighter quarks (finally into
u or d), or semileptonically into leptons via charged current interactions. Concerning the
latter, only the electron is a stable particle.

At this point, we need to discuss the phenomenon of quark (lepton) mixing. The Yukawa
Lagrangian of the quark sector in the three generation case is given by

LqYukawa = −(Yd)ijQiL
(x) Φ(x) djR(x)− (Yu)ijQiL

(x) ǫΦ∗(x)ujR(x) + h.c. , (1.60)

where Yd,u are complex-valued 3 × 3 matrices and ǫ is defined in (1.10). The hermitian
products YqY

†
q and Y †

q Yq with q = u, d can be diagonalized via the unitary transformations

YqY
†
q = UqỸ

2
q U †

q , Y †
q Yq = WqỸ

2
q W †

q . (1.61)

It follows that the Yukawa matrices Yq are diagonalized by a bi-unitary transformation

Yq = UqỸqW
†
q . (1.62)

If we now transform the quark fields according to

qiL → q′iL = (Uq)ijqjL , qiR → q′iR = (Wq)ijqjR , (1.63)

we can identify the quark masses mqi = v (Ỹq)ii/
√

2. The fields q form the flavor or weak
interaction basis, where the fields q′ are denoted as mass eigenstates. Due to the unitarity of
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Uq and Wq, the field redefinition (1.63) drops out if one studies neutral-current interactions.
For the same reason, there is no flavor-changing neutral current (FCNC) interaction in the
SM. This is not the case for charged currents. If we rotate to the mass basis, the current
will transform as

J+
µ =

1√
2
ūiL(x)γµdiL →

1√
2
ū′iL(x)γµ(VCKM)ijd

′
iL
, (1.64)

where we introduced the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix.

VCKM = U †
uUd . (1.65)

It is the only source of flavor violation in the SM, and can be parametrized by three mixing
angles and one complex phase. The latter gives rise to CP violating interactions [9] and
does not appear in a reduced scenario which features only two generations. Indeed, the
existence of a third generation has been postulated by Kobayashi and Maskawa in order to
obtain a CP violing phase, before there was a direct experimental evidence for the bottom
and the top-quark.

The Yukawa Lagrangian of the lepton sector is given by

LlYukawa = −(Yl)ijLiL(x)Φ(x)ejR(x) + h.c. , (1.66)

with a complex-valued 3×3 coupling matrix Yl. In analogy to (1.62), it can be diagonalized,
by introducing unitary matrices Ul and Wl. If the neutrinos are massless, these matrices
can however always be eliminated from the theory by imposing the field redefinitions

eiL → e′iL = (Ul)ijejL , νiL → ν ′iL = (Ul)ijνjL , eiR → e′iR = (Wl)ijejR . (1.67)

As a consequence, there will be no mixing among different generations in the lepton sector.
If the neutrinos carry mass on the other hand, we need a second set of transformation
matrices and the situation is analog to quark mixing.

We have finally collected all ingredients to write down the full SM Lagrangian. Within
the weak interaction basis, it reads

LSM = LGauge + LHiggs + LGF + LFP + LFermion + LYukawa , (1.68)

where

LGauge = −1

4
Ga
µνG

aµν − 1

4
W a
µνW

aµν − 1

4
BµνB

µν ,

LGF = − 1

2ξa

(
∂µW a

µ − ξa
gv

2
ϕa

)2

− 1

2ξ

(
∂µBµ + ξ

g′v

2
ϕ3

)2

,

(1.69)

and

LFermion = Q̄L iD/QL + ūR iD/ uR + d̄R iD/ dR + L̄L iD/LL + ēR iD/ eR . (1.70)
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For the case of quarks, the covariant derivative Dµ combines the connection terms of
(1.34) and (1.56). For leptons it is given by the latter formula only. The required quantum
numbers are listed in in Table 1.1. The Higgs Lagrangian LHiggs is given in (1.46), and
LYukawa is the sum of (1.60) and (1.66). As it is not needed in this thesis, we will not
specify the Faddeev-Popov ghost Lagrangian LFP. However, it will turn out to be useful
to translate (1.69) into the mass eigenbasis. Therefore, we define W±

µν = ∂µW
±
ν − ∂νW±

µ

and Zµν = ∂µZν − ∂νZµ , and obtain

LGauge = −1

4
Ga
µνG

aµν − 1

2
W+
µνW

−µν − 1

4
ZµνZ

µν − 1

4
FµνF

µν + weak interaction terms ,

(1.71)

LGF = − 1

2ξ

(
∂µAµ

)2 − 1

2ξ

(
∂µZµ − ξ mZϕ3

)2 − 1

ξ

(
∂µW+

µ − ξ mWϕ
+
)(
∂νW−

ν − ξ mWϕ
−
)
.

Here, we have chosen a common gauge parameter ξ for simplicity. A complete list of
Feynman rules deduced from (1.68) can be found in [3]. If one takes into account all
symmetry restrictions, the SM has 18 independent free parameters, which have to be
fixed by experiment. These consist of six quark masses, three lepton masses, three CKM
mixing angles, one CP-violating CKM phase, three gauge couplings (gc, g, g

′), as well as
the parameters µ and λ of the Higgs potential.

Before we are going to discuss the prosperities and short-comings of the SM, we first
want to give some short remarks about renormalization and effective theories. As it is given
above, the SM is a renormalizable theory. On the other hand, there are obvious reasons,
why it should be regarded as an effective theory only. Therefore, we want to repeat the
main facts about that topic. Let us close this section by noting that the SM of elementary
particle physics is a relativistic quantum field theory based on the concept of local gauge
freedom. It is widely believed that any extension should fall into the same category of
theories.

1.5 Effective theories and higher dimensional operators

In the early days it was widely believed that only renormalizable quantum field theories
make sense as a theory of nature, as only for those there is a finite number of counter
terms needed in the process of renormalization. Here, ultra-violet (UV) divergences due
to loop integrations are absorbed into singular (non-observable) relations between bare
input parameters and measurable quantities. The related renormalization constants have
to be fixed by measurement. Infra-red (IR) divergences cancel out when real state emission
is taken into account. Therefore, they do not have to be removed by a renormalization
procedure. Non-renormalizable theories involve so-called higher dimensional operators, for
which additional counter terms are induced at any order of the perturbative expansion of
the scattering matrix. Thus, predictivity is lost. On the other hand, if one cuts the loop
integration at some finite momentum (or energy) scale, there are no UV divergences at
all. The question now is, do we really expect our theory to hold to all energies? Indeed,
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this assumption seems to be very venturous. In the history of physics, it turned out again
and again that the validity of a well understood and experimentally verified theory can
break down, when one tries to test the theory on smaller length scales or higher energies.
Another important observation is that physics at different scales turn out to be disentangled
from each other. Back in the seventies, the physical meaning of renormalization has been
reinterpreted by Kenneth Wilson. Nowadays, it is accepted that renormalizability in the
original sense is no requirement in order to have a sensible theory of nature. Instead,
nature may be described in terms of so-called effective theories (EFTs). The price one has
to pay is that an EFT goes along with a hard energy/momentum cut-off M , to which it is
valid.

In the discussion of the previous sections we emphasized, that the Lagrange density of an
interacting theory has to satisfy Poincaré- and gauge invariance. In other words, the action
should transform as a scalar under the related symmetry transformations. By inspection
of (1.33) and (1.38) or (1.68) on the other hand, one observes that we have not written
down all possible terms. Indeed, there is an infinite amount of combinations of spinors,
vector and scalar fields, as well as derivatives, that are both gauge- and Lorentz invariant.
In order to be able to make a prediction from the theory, these extra terms should either
vanish, or be suppressed in a certain sense we have to specify.

In natural units (~ = c = 1), energy, mass, and momentum, as well as inverse time and
length scales have the same (mass) dimension: [E] = [p] = [m] = [1/x] = [1/t] = 1. The
action S has no physical dimension (otherwise it could not show up in the exponential of a
generating functional). Due to (1.2), the Lagrange density then has to have a mass dimen-
sion of four. As derivatives scale like 1/x, we conclude by “naive dimensional analysis”,
that the fields have the dimensions [ψ] = 3/2, and [φ] = [Aµ] = 1. If we want to con-
struct operators with a higher mass dimension (or simply higher dimensional operators),
we have to include an additional energy scale. For instance, the four fermion operator
Ψ1(x)Ψ2(x) Ψ3(x)Ψ4(x) has dimension six. Thus, it should be accompanied by an inverse
energy scale squared. Let us assume that this scale is identified with the cut-off M of the
theory. In the limit M →∞, all higher dimensional operators vanish. This is exactly what
happens for renormalizable theories, such as QED (1.33), QCD (1.38), and the theory of
EW interactions.

As it turns out, EFTs do not only offer the possibility of having a scale of ignorance,
beyond which the appropriate theory is not known, but also provide useful tools for the
analysis of multi-scale problems.5 In practice, the hard cut-off is identified with some
physical mass scale. Let us take the Fermi theory of EW interactions as an example.
Before the theory of weak interactions has been invented it was assumed, that β-decay is a
local four-fermion process. The respective coupling constant GF has to be proportional to
some inverse scale 1/m2

W . With the increase of available energies at collider experiments
it turned out that β-decay is instead mediated by a local charged-current interaction,
featuring an intermediate heavy gauge boson W±

µ of mass mW . To LO in perturbation

5A thorough discussion of the most important aspects is given in [10] or [11] for instance.
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1.5 Effective theories and higher dimensional operators

⊗

⊗
W

Figure 1.2: Effective four-fermion interaction versus exchange of a W -boson in the full
theory.

theory, its two-point correlation function (in Feynman gauge) reads
∫
d4x eipx 〈0|T W+

µ (x)W−
ν (x) |0〉 =

−iηµν
p2 −m2

W + iǫ
. (1.72)

At low energies p2 ≪ m2
W , the W±

µ boson is far from its mass shell and the right-hand
side of (1.72) is proportional to 1/m2

W . Thus, the four-fermion interaction indeed seems to
be point-like. Going up to higher energies, the non-renormalizable four-fermion operator
is replaced by two renormalizable charged-current operators, which are connected by the
propagator of the W±

µ (see Figure 1.5). In this sense, the theory of weak interactions is
the UV completion of Fermi’s theory.

Next, we want to understand how we can separate short distance from long distance
physics by the use of the EFT language. Therefore, one has to split the quantum fields of
the theory into low-frequency and high-frequency modes, separated by a scale µ

ωL < µ < ωH . (1.73)

Here, ωL,H denote the energies of the fields under consideration. Next, one wants to remove
the high-frequency modes as propagating particles and write down a low-energy theory,
where the quantum effects of the latter are absorbed into effective coupling constants. For-
mally this corresponds to the situation where the path integral of those modes is explicitly
performed. It is said that the heavy modes have been integrated out. They do no longer
show up as individual DOFs. For instance, if µ < mW , the W boson is no longer part
of the effective theory. The effective Lagrangian is defined as the sum off all operators
Qi allowed by the symmetries of the theory, multiplied by some coupling coefficients Ci.
These have to be determined by computing appropriate scattering amplitudes6 in the full
theory (including W± etc.) to a given order in perturbation theory, and comparing the
result to the matrix elements of the effective theory

A =
∑

i

Ci(µ) 〈Qi(µ)〉
∣∣∣
µ=Λ

. (1.74)

6The term “amplitude” is used for “amputated Greens function” here.

25



1 Introduction

This procedure is known as matching. The scale Λ < M is denoted as the matching
scale and serves as an intermediate cut-off, where the field that sets the scale is removed
from the theory. At LO matching, the so-called Wilson-coefficients Ci are either zero (if
the respective vertices do not exist), or given by the coupling constant times a numerical
factor with negative mass dimension. In the theory of weak decays, we would obtain Fermi’s
constant. If we now go to higher order in perturbation theory in QCD for instance, the
matrix elements involve terms ∝ αs(µ) ln(µ2/(−p2)), where the full theory gives rise to
αs(µ) ln(m2

W/(−p2)). The idea is now to apply the following matching scheme [11]

1 +
αs(µ)

4π
ln

(
m2
W

−p2

)

︸ ︷︷ ︸
full theory

=

(
1 +

αs(µ)

4π
ln

(
m2
W

µ2

))

︸ ︷︷ ︸
C(µ)

(
1 +

αs(µ)

4π
ln

(
µ2

−p2

))

︸ ︷︷ ︸
〈Q(µ)〉

+O
(
α2
s

)
,

(1.75)
where the separation into long distance (matrix elements) and short distance effects (Wilson
coefficients) becomes apparent. The choice of matrix elements from which the coefficients
are extracted is arbitrary, as long as the respective operators show up in the result of the
full theory calculation. The Wilson coefficients are therefore process independent. Once
they are calculated, they can be used for any operator insertion within an EFT calculation.

1.6 Renormalization group running for Wilson coefficients

The separation of scales as given in (1.75) only makes sense, if there is a reasonable con-
vergence of the power series in αs. Let us assume, we want to calculate the matrix ele-
ment of four-fermion operators at the scale µ ≈ 1 GeV, where Λ = mW . Then we have
ln(m2

W/µ
2) ≈ ln(802) ≈ 6, which has to be multiplied by αs(1GeV)/4π ≈ 0.03. Thus we

find αs/4π ln(m2
W/µ

2) ≈ 0.25. If the cut-off of the theory is about 1 TeV, the latter ex-
pression evaluates to ≈ 0.4. As we see, there is the danger of large logarithms spoiling the
perturbativity of the expansion, if we consider a large separation of scales. For that reason,
we require a resummation of the power expansion in such a way that αs ln(Λ/µ) counts as
an O(1) parameter. Therefore, all terms of the form (αs ln(Λ/µ))n with n ∈ N0 need to
be summed, where terms of the form αs(αs ln(Λ/µ))n count as O(αs) and so on. At this
point, the concept of renormalization group (RG)-improved perturbation theory enters the
game. Let us assume, the operators given in (1.74) form a complete set (basis) for a given
scattering process. It is clear that the amplitude should depend on the input momentum p
and the cut-off scale, but not on the choice of the separation scale Λ. Therefore, we require

d

d lnµ

∑

i

Ci(µ)〈Qi(µ)〉 = 0 . (1.76)

As the Qi form a basis, we can expand

d

d lnµ
〈Qi(µ)〉 = −

∑

j

γ̂ij(µ) 〈Qj(µ)〉 , (1.77)
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1.6 Renormalization group running for Wilson coefficients

where the expansion coefficients γ̂ij form the entries of the so-called anomalous dimension
matrix γ̂. They can be understood as the answer of the matrix element 〈Qj(µ)〉 to a scale
variation of 〈Qi(µ)〉. Inserting the definition (1.77) into (1.76), and using the fact that the
basis operators Qi are linearly independent, we conclude that

d

d lnµ
Cj(µ)−

∑

i

Ci(µ) γ̂ij(µ) = 0 ⇔ d

d lnµ
~C(µ)− γ̂T (µ) ~C(µ) = 0 . (1.78)

This is known as RG equation for Wilson coefficient functions, which we expressed in matrix
notation on the right-hand side for convenience. Let us now remember the definition of the
QCD β-function β ≡ dαs(µ)/d ln(µ), which describes the running of αs due to quantum
corrections in a given process. The scale dependence of the matrix element 〈Qi(µ)〉 can be
traced back to the scale dependence of the couplings and the separation of scales according
to (1.75). The anomalous dimension matrix depends on µ only through the running of
αs(µ). Thus, we can recast the RG equation (1.78) into the form

d

dαs(µ)
~C(µ)− γ̂T (αs(µ))

β(αs(µ))
~C(µ) = 0 . (1.79)

This equation is now solved by integration. If we define the quantities γ̂0 and β0 via the
expansion

γ̂(αs) = γ̂0
αs
4π

+O(α2
s) , β(αs) = −2αs

(
β0
αs
4π

+O(α2
s)
)
, Ci(Λ) = 1 +O(αs) , (1.80)

and insert the latter expressions into the equation (1.79), we find to LO in αs (see [10, 11]
for more details)

~C(µ) = V̂

(
αs(Λ)

αs(µ)

) ~γ0
2β0

D

V̂ −1 ~C(Λ) ≡ Û(µ,Λ) ~C(Λ) . (1.81)

Here, V̂ diagonalizes γ̂ T0 via γ̂0D = V̂ −1γ̂ T0 V̂ , and ~γ0 contains the entries of γ̂0D. If
there is only one operator under consideration, γ̂0 is just a number γ0, and there is no
diagonalization required. In order to see that we have indeed achieved a summation of
large logarithms by solving the RG equation (1.78), we insert the LO expression

αs(µ) =
αs(Λ)

1− β0
αs(Λ)

2π
ln
(

Λ
µ

) (1.82)

into (1.81). Another expansion is αs then gives

(
αs(Λ)

αs(µ)

) γ0
2β0

=

(
1− β0

αs(Λ)

4π
ln

Λ2

µ2

) γ0
2β0

= 1− γ0

2

αs
4π

ln
Λ2

µ2
+O

(
α2
s ln2 Λ2

µ2

)
. (1.83)

Finally, we want to mention that

β0(nf ) =
1

3
(11Nc − 2nf ) (1.84)
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is a function of the number of active flavors nf contributing to the running of αs, which
have not been integrated out at a given energy. This number might be different at the
matching scale and the scale we want to evolve to. The number of QCD colors Nc = 3
is fixed. The anomalous dimension matrices might also depend on nf . In general, the
running is performed in several steps according to

~C(µ1) = Û (nf1)(µ1, µ2) Û
(nf2)(µ2, µ3) ... Û

(nfn)(µn,Λ) ~C(Λ) , (1.85)

where the matrices Û are defined as in (1.81). The latter formula is extremely useful. If
the anomalous dimension matrices for a given operator basis have been calculated once at
a given order in αs, they can be used for any process which shares the same operators. Of
course, a similar treatment holds for corrections in powers of the fine-structure constant α.
For the purpose of this thesis, all we have to do is to perform the matching of the required
operators at the cut-off scale. If the matrix element is needed at a lower energy, we can
use the general formula (1.85) together with anomalous dimension matrices listed in the
literature.

1.7 The need for new physics

As we have now collected the main facts about renormalizability and the meaning of an
EFT description, we want to come back to the statement at the end of Section 1.4, where
we claimed that the SM should be regarded as an EFT only. First of all, although the
theory is renormalizable in the sense that only a finite number of renormalization constants
need to be fixed, there is no meaning in studying the SM at arbitrarily high energies by
using perturbation theory. This is simply due to the behavior of α(µ), which runs into a
pole at µ ≈ 10277 GeV. However, if this was the only short-coming, we probably would not
worry.

The SM does not describe effects of gravity. Of course, those can be safely neglected
within a high energy collision of elementary particles. Nevertheless, we expect modifications
due to a yet unknown quantum gravity at energies of the order of the reduced Planck mass
MPl ≈ 1018GeV. The latter may therefore serve as a natural cut-off scale. However, there
are many ideas and reasons, why we expect new physics (NP) at lower scales.

From the theoretical side, there are non-understood hierarchies in the particle spectrum
and the quark-mixing matrix. The input parameters are just matched to the empirical
observation, but there is no “theory of flavor”.

Inspired by the unification of electromagnetic and weak interactions, one might appre-
ciate the idea of Grand Unified Theories (GUTs) [12], where all elementary forces are
combined into a single force at the scale MGUT ≈ 1016GeV. The latter number is moti-
vated by the running of the coupling constants gs, g, and g′, which cross at the so-called
GUT scale. However, this crossing does not take place simultaneously for all couplings at
the same energy. Therefore, new particles are needed at a lower scale in order to modify the
RG running. Typical candidates are the superpartners of the SM fields in supersymmetric
theories.
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1.7 The need for new physics

While grand unification is a rather aesthetic motivation to believe in new physics, there
are empirical facts, which seem to make an extension of the SM unavoidable. For instance,
the SM model has no candidate for dark matter. Furthermore, its CP-violating phase fails
to reproduce the observed matter-antimatter asymmetry of the universe. Due to observed
neutrino-oscillations, the neutrinos need to have a mass. The latter requirement can be
fulfilled, by adding sterile neutrinos to the SM as a trivial extension. These may also
play a role in the explanation of dark matter [13, 14]. However, if one expects the SM
to be an effective theory, there is a further possibility by writing down the dimension-five
operator ν̄LHH

†νL. The latter will give rise to a Majorana mass term, that violates any
additive quantum number, which is assigned to the neutrino (for instance lepton number).
Therefore, there is an ongoing search for neutrino less double β-decays, which would be
a direct evidence for lepton-number violation. If we have a high cut-off scale, the 1/M
suppression of the latter operator will naturally predict light neutrino masses.

As we see, there are good reasons why the SM should be provided with a cut-off. There-
fore, one should write down all higher dimensional operators which are invariant under
the gauge group (1.57). However, doing so, one immediately runs into various problems.
Today, the SM has been tested to high accuracy. Up to some deviations (up to 3σ), the
theoretical predictions are in astonishing good agreement with the experimental estimates.
As a consequence we have tough bounds for the impact of many higher dimensional op-
erators (especially from flavor physics). This requires either a cancellation of various NP
corrections (typically due to a symmetry, which has been imposed), or a large value of the
cut-off scale.

Let us now assume, we have chosen such a large cut-off, for example M = MPl. Never-
theless, we are not confident. If we calculate quantum corrections to the Higgs mass due
to a particle of mass m, we will find

δm2
h = −AM2 +Bm2 ln

(
M

m

)
+ ... . (1.86)

If we now want to have v2 ≈ m2
h = m2

h0
+ δm2

h, where mh is the renormalized Higgs mass,
we require a huge fine-tuning of the bare mass mh0

. The amount of tuning is given by the
ratio mh/MPl ≈ 1/1016. In other words, compared to the cut-off scale, we have to adjust
the value of the bare Higgs mass in the first 16 significant numbers. This seems to be
very unnatural. The problem of an unstable Higgs mass against quantum corrections goes
under the name gauge-hierarchy problem, or simply hierarchy problem (HP) of the SM.
It arises, as there are two widely separated scales of physical importance, the electroweak
scale MW , and the Planck scale MPl. A possible solution is to add NP not too far away
from MW , which cancels the quadratic dependence on the cut-off scale within the Higgs
boson self energy. This is exactly what happens in super-symmetric models. On the other
hand, one might wonder why there is such a large discrepancy between MW and MPl. In
other words, one might ask why gravity is so weak compared to EW gauge interactions.

In 1998, a new proposal has been made by Nima Arkani-Hamed, Savas Dimopoulos, and
Gia Dvali. They claimed that the weakness of gravity may be related to the existence of
additional spacial dimensions, in which only gravity is allowed to propagate [15]. These
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extra dimensions (EDs) have to be smaller than the distance, to which the 1/r potential of
the gravitational force is tested. Going to smaller distances, the potential is proportional
to 1/rn+1, where n is the number of EDs. Thus, the gravitational force gets diluted. At
larger distances, we observe

V (r) ∼ m1m2

MPl
n+2
(4+n)R

n

1

r
, (1.87)

where R is the size of the EDs, and MPl(4+n) is the fundamental Planck scale, which is
taken to be roughly of the order of the weak scale. The “observed” effective Planck mass
is then of the order

M2
Pl ∼MPl

n+2
(4+n)R

n . (1.88)

For n = 2, one requires R > 100µm. However, the current experimental bound is given
by R ≤ 44µm [16]. For n = 3, R has to be about a nanometer. On the other hand,
for a low number n, the fundamental Planck scale must not be too small. The reason is,
that compactified EDs give rise to an infinite sum of so-called Kaluza-Klein excitations of
the graviton with masses ∝ k/R (k ∈ N0). These would give rise to missing energy at
collider experiments [17]. Furthermore, there are astrophysical constraints which require
MPl(7) > 4 TeV for instance [18].

It should be stated that the ADD model of large extra dimensions [15] is not really
satisfactory as a solution to the HP, unless the number n of EDs is huge. For low n, the
hierarchy between MPl and MW has been reduced to a somewhat milder but still strong
hierarchy between R and the Planck length, which scales as 1/MPl. Nevertheless, the
proposal of using additional spatial dimensions in order to explain the weakness of gravity,
opened a new way of thinking. In 1999, Lisa Randall and Raman Sundrum came up with
the idea of warped extra dimensions [19]. Here, all fundamental energy and inverse length
scales can be chosen to have the same order of magnitude, while the hierarchy problem
is solved by gravitational red-shifting. Opposed to ADD, the Randall-Sundrum model
features one ED in between two boundaries. This is the model we are going to study in
detail.

1.8 Outline

This thesis is organized as follows. In the next section, we introduce the Randall-Sundrum
(RS) model of warped extra dimensions (WEDs) and explain how it solves the HP, when
the Higgs sector is localized on (or near) the IR brane. We motivate that SM gauge and
matter fields should live in the whole higher dimensional space-time, which we call the
bulk. As the terminology of parametrizing the ED differs in the literature, we explain
how the different notations can be transformed to each other. In Section 3, we discuss the
gauge sector of the minimal RS model, which consists of the SM gauge and matter fields
living in the bulk, and the Higgs located on the IR boundary. The concept of Kaluza-Klein
(KK) decomposition is introduced and performed in the presence of electroweak symmetry
breaking (EWSB). The solution of the bulk EOMs gives us the profile functions of the
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1.8 Outline

KK modes, which describe their localization within the bulk. A summation over the KK
tower, needed for tree level gauge interactions, is performed. Corrections to the Fermi
constant, the gauge boson masses, and the related electroweak precision observables are
computed and compared to experimental bounds. In Section 4, we repeat the analysis of
Section 3 for the custodial model [20], which features an extended gauge group SU(3)c ×
SU(2)L × SU(2)R × U(1)X . The latter is broken down to the gauge group of the SM by
an appropriate choice of boundary conditions. We show in detail, how this extension leads
to a protection of the Peskin-Takeuchi T -parameter, up to small effects due to symmetry
breaking on the UV boundary. In Section 5, we discuss an alternative ansatz to KK
decomposition, the holographic approach [21, 22, 23]. Up to small boundary breaking
effects, the holographic approach is equivalent to the KK decomposition. The leading
expressions for the electroweak precision observables are verified. In Section 6, we discuss
the 5D action of fermions for the case of the minimal model. The KK-decomposition is
performed in the presence of EWSB and the flavor mixing among the different KK modes
is discussed. Hierarchies in the fermion masses and the CKM-mixing pattern appear as a
natural prediction and can be generated from anarchic O(1) 4D Yukawa couplings. The
observed spectrum and mixing angles, as well as the CKM phase, can be obtained by
an appropriate choice of bulk mass parameters, which however does not involve any fine-
tuning. In Section 7, we derive expressions for neutral and charged currents. It is briefly
explained how a protection for the Z0bLb̄L vertex can be achieved from a specific embedding
of the fermion fields into the enlarged gauge group [24]. Furthermore, we study four-fermion
charged current interactions and derive generalized expressions for the CKM matrix and
Wilson coefficients for the effective low-energy theory. In Section 8 we derive expressions
for the Higgs couplings, which require a proper regularization of the brane-localized Higgs.
As an application, we study the modification of the Higgs-production cross section at the
LHC.

The last part of this thesis is devoted to the phenomenology of selected four-fermion
interactions, which have been (and still are) of great interest from the theoretical and ex-
perimental side. In Section 9, we study RS corrections to the forward-backward asymmetry
in tt̄-production, going beyond the LO in QCD. The calculatations are performed within
a general EFT approach and can be applied to other NP models by replacing the Wilson
coefficients. For the RS model we find that, because of the normalization with respect
to the production cross-section, the corrections to the assymetry turn out to be marginal.
The situation is different for flavor-tagged B0

s decays, studied in Section 10. Here, the RS
model can induce sizeable modifications to the relative phase φs between the B̄0

s -B
0
s mixing

amplitude M s
12 and the related decay amplitude Γs12. The prediction for the semileptonic

CP asymmetry AsSL can come close to the experimental favored value. We calculate general
NP corrections to the magnitude of Γs12, where we include effects of right-handed charged
current interactions for the first time. In the model at hand these turn out to give the dom-
inant contribution. Again, a description in terms of local four-fermion operators is used.
The required running of the coefficients is performed as explained above. Formulas for the
various RS Wilson coefficients are collected in the appendices. Finally, we summarize our
findings in Section 11.
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Note that in the current version, some typos have been corrected compared to the original
printout.
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2 Warped extra dimensions

The RS model [19] of WEDs is formulated on a five-dimensional space-time. The ED is
compactified to a circle, labeled by a dimensionless coordinate φ ∈ [−π, π] for instance.
In addition, the authors impose a Z2-parity, which identifies points (x, φ) with (x,−φ).
Therefore, the set-up effectively corresponds to an interval and goes under the name S1/Z2-
orbifold. There are two fixed points at φ = 0 and φ = π, which act as boundaries of the ED.
The idea is now that the usual 4D space-time is rescaled by a so-called warp factor, such
that length scales in the 4D subspace depend on the position in the ED. This is achieved
by the metric

ds2 = e−2σ(φ)ηµν dx
µdxν − r2dφ2 , σ(φ) = kr|φ| , (2.1)

where we have chosen the convention ηµν = diag(1,−1,−1,−1). Here, k and r denote the
curvature and the radius of the fifth dimension, which are of the order of the (inverse)
Planck scale. The first task is to prove that the ansatz (2.1) is a solution to Einstein’s
equations in five dimensions. In [19] it has been shown that the solution asks for a negative
(5D) cosmological constant. The 5D bulk is therefore a slice of five-dimensional Anti-
de Sitter space AdS5 . Another crucial point is that the ansatz (2.1) guarantees four-
dimensional Poincaré invariance.

2.1 Features of the Randall-Sundrum model

Let us now understand, how the RS model solves the HP. If φ = 0, the warp factor
vanishes, and the Planck mass is taken to be the fundamental scale of the theory. For
φ = π, each coordinate x is multiplied by a factor ǫ ≡ e−krπ with ǫ≪ 1. If we rescale the
coordinates according to x → eσ(φ)x, length scales are blown up when going from 0 to π.
As a consequence, energy scales are warped down ∝ e−krφ. Thus, they are suppressed by
a factor ǫ at the IR or TeV brane (φ = π), while they keep their fundamental size at the
UV or Planck brane (φ = 0). The set-up is depicted in Figure 2.1.

If the Higgs is localized on the IR brane, we have v = ǫ v0, where v0 is to be taken of
the order of the Planck scale. In this thesis, we denote the scale of EW interactions by
MW ≈ 100 GeV. Explicitly, one has to choose

L ≡ krπ ≈ ln

(
MPl

MW

)
≈ ln

(
1016

)
≈ 37 , (2.2)

in order to reproduce the observed hierarchy, which is thus understood by gravitational
red-shifting. The original hierarchy of 1016 between the fundamental scales MW and MPl
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Figure 2.1: 5D bulk of the RS model. See text for details.

has been replaced by the small hierarchy kr ≈ 12 compared to the natural value of about
one. Thus we require some mechanism to stabilize the size of the ED. A solution has
been proposed in [25], where a bulk scalar field with quartic interactions on the boundaries
creates a potential, which is minimized by an appropriate choice of kr. One adjusts the
coupling constants to obtain the desired value. The factor L will sometimes be denoted as
the “volume” of the ED below.

Besides MW and MPl, there is a third scale of (phenomenological) importance, the so-
called KK-scale

MKK = kǫ = O(few TeV) . (2.3)

It is the mass scale of the low-lying KK excitations and thus sets the size of possible RS
corrections to higher dimensional operators. In the original formulation, the SM particle
content is confined on the IR brane. Thus, there is only new physics in the gravity sector
due to the presence of KK excitations of the graviton. The KK decomposition has been
worked out on [26]. It has been found that the zeroth excitation, which is identified with the
ordinary graviton, couples with the usual 1/MPl suppression to the stress-energy tensor.
The KK-gravitons however couple with the reduced 1/(ǫMPl) suppression. Therefore,
the effects of gravity can not be treated perturbatively at energies of several TeV. A UV
completion would be required instead. For instance, one could ask if it is possible to realize
the RS scenario as a low-energy limit of a String theory. Up to now, no UV completion for
the RS model is known. That is why it should only be regarded as an EFT with the hard
cut-off ΛIR ≈MKK on the IR brane, and ΛUV = MPl on the IR brane. For our calculations
of low-energy observables, we will use Λ = MKK as matching scale.

After the proposal of WEDs, it was soon realized that the warping gives rise to dangerous
four-fermion interactions [27]. For instance, if we want to study Grand unification in the
context of RS models, the GUT scale will also be warped down if all particles are confined
to the IR brane. As a consequence, we are immediately in conflict with the tough bounds
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from the yet unobserved proton-decay. If we decide to localize light fermions close to the
UV brane, these dangerous couplings can be suppressed sufficiently. Fortunately, a bulk
fermion scenario allows for a localization of the latter due to the free choice of their so-
called bulk mass. The localization of fermions at different positions of the WED moreover
gives a solution to the flavor problem. We will briefly discuss all this issues in Section 6.
The main focus of this thesis is the gauge sector, which is released into the bulk in analogy
to the fermions. In principle, the Higgs field can be released into the bulk too, as long as
it is kept close to the IR-brane. However, the brane-Higgs scenario can be solved exactly.
That is what we will discuss in the next sections.

2.2 Conventions and notations

One has to take care about the fact, that different signatures for the Minkowski metric are
used in the literature. For instance, Randall and Sundrum use ηµν = (−1, 1, 1, 1), which is
the common choice in String theory. Therefore, the sign in front of the fifth coordinate is
switched in [19] compared to (2.1).

It is often convenient to introduce a dimensionless coordinate t = ǫ eσ(φ) [28], in favor of
φ. The former equals ǫ on the UV brane and 1 on the IR brane. When we integrate over
the ED, we make use of the orbifold-symmetry and replace

∫ π

−π

dφ → 2π

L

∫ 1

ǫ

dt

t
,

∫ π

−π

dφ eσ(φ) → 2π

Lǫ

∫ 1

ǫ

dt , ∂φ = krt∂t =
L

π
∂t , etc. .

(2.4)
Despite the fact that we perform our integrations over the half of the orbifold only, we will
always normalize our fields to the whole circle φ ∈ [−π, π]. The coordinate t is related to
the widely used (dimensionful) coordinate z, which shows up in the conformally flat RS
metric [29]

ds2 =

(
R

z

)2 (
ηµν dx

µdxν − dz2
)
. (2.5)

The relations needed for comparison are given by

z =
t

MKK

, R =
1

k
, R′ =

1

MKK

, ln
R′

R
= L , (2.6)

where R and R′ denote the positions of the UV and IR branes respectively. A dimensionless
coordinate however is more comfortable for numerical calculations. That is why we decide
to use t in favor of z.
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3 Gauge fields in the minimal RS model

The KK decomposition of bulk gauge fields has been performed in [30, 31] first. Here, the
authors studied the decomposition of a 5D photon. Obviously, the treatment of the gluon is
identical. If the gauge fields are coupled to the Higgs however, the IR boundary conditions
(BCs) are modified. There are two possible ways of performing the KK decomposition in
the presence of EWSB, namely the perturbative and the exact treatment.

The first approach is mostly used in the literature. Here, the couplings of bulk fields to
the Higgs sector are neglected within the KK decomposition, but introduced afterwards
as a perturbation. This requires a diagonalization of an infinite-dimensional mass matrix
consisting of bare KK masses and Higgs couplings between various KK modes. We have
shown that an exact equation for the physical masses can be derived [32]. However, its
solution requires a truncation of the KK tower. The theory is then expanded in powers of
v2/M2

KK.

In this thesis, we choose the method of [33, 34], where exact solutions to the bulk EOMs
are constructed, which take into account the boundary terms imposed by the couplings to
the Higgs sector. We obtain exact results for the masses and profiles of the various SM
particles and their KK excitations, as a diagonalization of an infinite-dimensional mass
matrix is avoided. If we study the corrections to the light boson masses and couplings, it
is nevertheless convenient to expand the exact results in powers of v2/M2

KK.

3.1 Action of the 5D theory

We want to find a 5D generalization for the EW gauge sector in the presence of a brane-
localized Higgs. Therefore we need to decide, whether the components of the bulk gauge
fields W a

M (a = 1, 2, 3) and BM with M = 0, 1, 2, 3, 5 are even or odd under the Z2-orbifold
symmetry. The latter choice determines the BCs of the bulk profiles and fixes the spectrum
for given scales v, MKK, and volume L. After KK decomposition, we should obtain light
SM-like fields accompanied by heavy KK excitations. It turns out that only fields with
even Z2-parity possess a zero mode. As a consequence, we choose the vector components
W a
µ and Bµ to be even, and the scalar components W a

5 and B5 to be odd. Thus, we obtain
light mass eigenstates, which we denote as zero modes. The action can be split up as

SGauge =

∫
d4x r

∫ π

−π

dφ
(
LW,B + LHiggs + LGF + LFP

)
, (3.1)

37



3 Gauge fields in the minimal RS model

with the Lagrangian of the 5D gauge theory

LW,B =

√
G

r
GKMGLN

(
−1

4
W a
KLW

a
MN −

1

4
BKLBMN

)
, (3.2)

which satisfies 5D gauge invariance. Within the integration over the warped space-time,
we have to take into account the volume element

√
G, where G = r2e−8σ(φ) is the de-

terminant of the warped 5D metric GMN . Furthermore, the inverse metric is given by
GMN = diag(e2σ,−e2σ,−e2σ,−e2σ,−1/r2). Note that the bulk-gauge fields of the 5D the-
ory have mass dimension 3/2, as the Lagrangian has mass dimension five. The Higgs-sector
Lagrangian

LHiggs =
δ(|φ| − π)

r

[
(DµΦ)† (DµΦ)− V (Φ)

]
, V (Φ) = −µ2Φ†Φ + λ

(
Φ†Φ

)2
(3.3)

equals that one of the SM with the Higgs-doublet given in (1.45). We also perform the
usual field redefinitions of the gauge fields

W±
M =

1√
2

(
W 1
M ∓ iW 2

M

)
,

ZM =
1√

g2
5 + g′25

(
g5W

3
M − g′5BM

)
, (3.4)

AM =
1√

g2
5 + g′25

(
g′5W

3
M + g5BM

)
,

where g5 and g′5 are the 5D gauge couplings of SU(2)L and U(1)Y , respectively. They are
related to 4D couplings via g5 = g

√
2πr (same for g′) [30]. In analogy to (1.51), we define

MW =
vg5

2
, MZ =

v
√
g2
5 + g′25
2

, (3.5)

with mass dimension 1/2. For the photon we have MA = 0 .
At this stage, we want to comment on the precise meaning of the expression δ(|φ|−π). In

order to ensure that the Lagrangian is hermitian, we need to be able to apply integration
by parts without encountering boundary terms. On the other hand, the presence of δ-
functions on the IR brane gives rise to discontinuities of the fields at |φ| = π, which ask for
a proper regularization. Thus, we will always understand the brane-localized δ-functions
via the limiting procedure

δ(|φ| − π) ≡ lim
θ→0+

1

2

[
δ(φ− π + θ) + δ(φ+ π − θ)

]
. (3.6)

In this way the discontinuities are moved into the bulk, and we can assign proper BCs to
the fields, which are consistent with the hermiticity of the theory. Alternatively, one could
perform all calculations with a regularized δ-function, where a finite regulator η is sent to
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3.1 Action of the 5D theory

zero at the end. Indeed, as we will see below, such a treatment becomes necessary in order
to derive the BCs of the fermion fields. When we switch to t-notation, we have to replace

δ(|φ| − π)→ 1

2
kr δ(t− 1) (3.7)

In the following, we use the notation f(1−) ≡ limθ→0+ f(1− θ), whenever a function f is
discontinuous at t = 1.

As in the SM, the kinetic terms of the Higgs field give rise to mixed terms involving
the gauge bosons and the would-be GBs ϕ± and ϕ3 (with ordinary mass dimension one),
which can be read off from

DµΦ =
1√
2

(
−i
√

2
(
∂µϕ

+ +MW W+
µ

)

∂µh+ i (∂µϕ3 +MZ Zµ)

)
+ terms bi-linear in fields . (3.8)

In addition, the kinetic terms of the gauge fields in (3.2) contain mixed terms consisting
of the gauge bosons and the scalar components W±

5 , Z5, and A5. All of these mixed terms
can be removed with a suitable choice of the gauge-fixing Lagrangian. We find

LGF = − 1

2ξ

(
∂µAµ −

ξ

2

[
M2

KK

2π

L
t∂t t

−2A5

])2

− 1

2ξ

(
∂µZµ −

ξ

2

[
δ(t− 1) kMZ ϕ3 +M2

KK

2π

L
t∂t t

−2Z5

])2

− 1

ξ

(
∂µW+

µ −
ξ

2

[
δ(t− 1) kMW ϕ+ +M2

KK

2π

L
t∂t t

−2W+
5

])

×
(
∂µW−

µ −
ξ

2

[
δ(t− 1) kMW ϕ− +M2

KK

2π

L
t∂t t

−2W−
5

])

(3.9)

as a straightforward generalization of (1.71), where we choose one common gauge-fixing
parameter ξ for simplicity. The reader might worry about squaring the δ-functions in the
above expression. We will see below that the contributions of the latter are canceled by
the derivatives of the scalar components of the gauge fields W±

5 and Z5, when we apply the
bulk EOMs. Therefore, we do not need to introduce a separate gauge-fixing Lagrangian
on the IR boundary, contrary to the treatment in [35].

In order to derive the spectrum of the effective four-dimensional theory, we write down
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3 Gauge fields in the minimal RS model

all quadratic terms of the action (3.1), omitting the Faddeev-Popov Lagrangian,

SGauge,2 =

∫
d4x r

2π

L

∫ 1

ǫ

dt

t
(3.10)

{
− 1

4
FµνF

µν − 1

2ξ
(∂µAµ)

2 +
1

2
M2

KK t
−2

(
π2

L2
∂µA5∂

µA5 + (t∂tAµ)(t∂tA
µ)

)

− 1

4
ZµνZ

µν − 1

2ξ
(∂µZµ)

2 +
1

2
M2

KK t
−2

(
π2

L2
∂µZ5∂

µZ5 + (t∂tZµ)(t∂tZ
µ)

)

− 1

2
W+
µνW

−µν − 1

ξ
∂µW+

µ ∂
νW−

ν +M2
KK t

−2

(
π2

L2
∂µW

+
5 ∂

µW−
5 + (t∂tW

+
µ )(t∂tW

−µ)

)

+
k δ(t− 1)

2

(
1

2
∂µh∂

µh− λv2h2 + ∂µϕ
+∂µϕ− +

1

2
∂µϕ3∂

µϕ3 +
M2

Z

2
ZµZ

µ +M2
W W+

µ W
−µ

)

− ξ

8

(
M2

KK

2π

L
t∂t t

−2A5

)2

− ξ

8

(
δ(t− 1) kMZ ϕ3 +M2

KK

2π

L
t∂t t

−2Z5

)2

− ξ

4

(
δ(t− 1) kMW ϕ+ +M2

KK

2π

L
t∂t t

−2W+
5

)(
δ(t− 1) kMW ϕ− +M2

KK

2π

L
t∂t t

−2W−
5

)}
.

The next step consists of decomposing the vector and scalar components of the gauge fields,
what we will do now.

3.2 Kaluza-Klein decomposition

The KK decompositions of the various 5D fields can be written in the form [34, 36]

Aµ(x, t) =
1√
r

∑

n

A(n)
µ (x)χAn (t) , A5(x, t) =

1√
r

∑

n

aAn ϕ
(n)
A (x)

L

π
t∂t χ

A
n (t) ,

Zµ(x, t) =
1√
r

∑

n

Z(n)
µ (x)χZn (t) , Z5(x, t) =

1√
r

∑

n

aZn ϕ
(n)
Z (x)

L

π
t∂t χ

Z
n (t) ,

W±
µ (x, t) =

1√
r

∑

n

W±(n)
µ (x)χWn (t) , W±

5 (x, t) =
1√
r

∑

n

aWn ϕ
±(n)
W (x)

L

π
t∂t χ

W
n (t) ,

(3.11)

where A
(n)
µ etc. are the 4D mass eigenstates. The related profiles χan with a = A,Z,W 1,

form complete sets of even functions on the orbifold and obey the orthonormality condition

2π

L

∫ 1

ǫ

dt

t
χam(t)χan(t) = δmn . (3.12)

As the scalar components of the gauge fields go along with a derivative of even profiles,
they are odd under Z2-parity. The longitudinal DOFs are given by the corresponding 4D

1Do not confuse with the superscript a = 1, 2, 3 for weak interaction eigenstates.
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3.2 Kaluza-Klein decomposition

scalar fields ϕ
(n)
a . The would-be GBs of the Higgs sector can be expanded in the same basis

of mass eigenstates

ϕ±(x) =
∑

n

bWn ϕ
±(n)
W (x) , ϕ3(x) =

∑

n

bZn ϕ
(n)
Z (x) . (3.13)

Inserting these decompositions into the action, and matching the result on the canonical
form of a 4D Lagrangian, one finds that the profiles χan have to satisfy the EOMs [30, 31]

−M2
KK t∂t t

−1∂t χ
a
n(t) = (ma

n)
2 χan(t)−

1

2
δ(t− 1) kM2

a χ
a
n(t) , (3.14)

where we have introduced the masses ma
n of the 4D vector fields. The masses of the scalar

fields ϕ
(n)
a are related to those by gauge invariance. In order to derive the explicit form of

the profiles and eigenvalues ma
n from the second order EOM, we need to fix the boundary

conditions. The UV BCs immediately follow from the Z2-parity assignment, which states
that derivative of even fields should vanish at the orbifold-fix points. If there is no EWSB
as in the case of the photon, the same statement applies to the IR boundary. If we want
to include EW symmetry-breaking effects into the derivation of the profiles, we have to
integrate the EOMs over an infinitesimal interval around the IR boundary [33, 34]. Thus,
we obtain

∂t χ
a
n(t)

∣∣∣
t=ǫ
≡ ∂t χan(ǫ) = 0 , (UV brane)

∂t χ
a
n(t)

∣∣∣
t=1−

≡ ∂t χan(1−) = − kM2
a

2M2
KK

χan(t) . (IR brane)
(3.15)

Having all this at hand, one finds that the action takes the desired form

SGauge,2 =
∑

n

∫
d4x

{
− 1

4
F (n)
µν F

µν(n) − 1

2ξ

(
∂µA(n)

µ

)2
+

(mA
n )2

2
A(n)
µ Aµ(n)

− 1

4
Z(n)
µν Z

µν(n) − 1

2ξ

(
∂µZ(n)

µ

)2
+

(mZ
n )2

2
Z(n)
µ Zµ(n)

− 1

2
W+(n)
µν W−µν(n) − 1

ξ
∂µW+(n)

µ ∂νW−(n)
ν + (mW

n )2W+(n)
µ W−µ(n)

+
1

2
∂µϕ

(n)
A ∂µϕ

(n)
A −

ξ(mA
n )2

2
ϕ

(n)
A ϕ

(n)
A +

1

2
∂µϕ

(n)
Z ∂µϕ

(n)
Z −

ξ(mZ
n )2

2
ϕ

(n)
Z ϕ

(n)
Z

+ ∂µϕ
+(n)
W ∂µϕ

−(n)
W − ξ(mW

n )2 ϕ
+(n)
W ϕ

−(n)
W

}
+

∫
d4x

(
1

2
∂µh∂

µh− λv2h2

)
,

(3.16)

if and only if

aan = − 1

ma
n

, ban =
Ma√
r

χan(π
−)

ma
n

. (3.17)

Thus, we have constructed an effective 4D Lagrangian, where all SM gauge fields are
accompanied by a tower of massive KK gauge bosons. The 4D gauge-fixing Lagrangian
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3 Gauge fields in the minimal RS model

derived from (3.9) takes the simple form

r

∫ π

−π

dφLGF =
∑

n

L(n)
GF , (3.18)

with

L(n)
GF = − 1

2ξ

(
∂µA(n)

µ − ξmA
nϕ

(n)
A

)2

− 1

2ξ

(
∂µZ(n)

µ − ξmZ
nϕ

(n)
Z

)2

− 1

ξ

(
∂µW+(n)

µ − ξmW
n ϕ

+(n)
W

)(
∂νW−(n)

ν − ξmW
n ϕ

−(n)
W

)
.

(3.19)

For each KK mode these expressions are identical to those of the SM. We see that the
δ-terms have been canceled by the use of (3.11) and (3.14). It is interesting to realize that
the KK excitations of the scalar components of the 5D gauge fields act as would-be GBs
for the related vector excitations. Therefore, the related profiles have to be odd under
Z2-parity, such that the zero modes of the vector fields do not obtain a longitudinal DOF
in the absence of EWSB.

3.3 Bulk profiles

It is now straightforward to derive the explicit form of the profiles χan from the bulk EOMs
(3.14). Replacing the 5D mass parameters Ma by the 4D counter parts ma (1.51), and
defining the dimensionless parameters

xan =
ma
n

MKK

, xa =
ma

MKK

, (3.20)

the EOMs are given by
(
t∂t t

−1∂t + (xan)
2
)
χan(t) = δ(t− 1)Lx2

a χ
a
n(t) . (3.21)

The solution is formally the same for all gauge fields, as the boundary terms only enter
the BCs. If we choose the ansatz

χan(t) ∝ t c+n (t) , (3.22)

we can recast (3.21) into a first order Bessel equation [30, 31] with the general solution

c+n (t) = AJ1(x
a
nt) +B Y1(x

a
nt) . (3.23)

We see that the nature “a” of the gauge boson only affects the eigenvalues xan within the
argument of the Bessel functions. The coefficients A and B are determined from the UV
BC given in (3.15) and the orthonormality relation (3.12). We find

χan(t) = Nn

√
L

π
t c+n (t) , (3.24)
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3.3 Bulk profiles

with the normalization factor

N−2
n =

[
c+n (1)

]2
+
[
c−n (1)

]2 − 2

xn
c+n (1) c−n (1)− ǫ2

[
c+n (ǫ)

]2
, (3.25)

and the explicit form of the profiles and their derivatives

c+n (t) = Y0(x
a
nǫ) J1(x

a
nt)− J0(x

a
nǫ)Y1(x

a
nt) ,

c−n (t) =
1

xant

d

dt

[
t c+n (t)

]
= Y0(x

a
nǫ) J0(x

a
nt)− J0(x

a
nǫ)Y0(x

a
nt) .

(3.26)

As c−n (ǫ) = 0, the solution (3.24) satisfies the UV BC ∂tχn(ǫ) = 0. The eigenvalues xan are
determined from the IR BC (3.15), which requires

xan c
−
n (1) = −x2

a L c
+
n (1) . (3.27)

For the case of the photon (or gluon), the right-hand side is zero and there is a massless
zero-mode solution with a flat profile χγ(g)(t) = 1/

√
2π .

In the presence of EWSB, we find m0 6= 0. The results for the SM-like gauge bosons
can be simplified by expanding (3.27) in powers of xW,Z0 ≪ 1. Doing so, we recover the
tree-level SM relations (1.51), augmented by corrections of the order v2/M2

KK. Therefore,
we re-define the explicit expressions (1.51) for mW and mZ according to

m2
W ≡

g2v2

4

[
1− g2v2

8M2
KK

(
L− 1 +

1− ǫ2
2L

)
+O

(
v4

M4
KK

)]
,

m2
Z ≡

(g2 + g′2) v2

4

[
1− (g2 + g′2) v2

8M2
KK

(
L− 1 +

1− ǫ2
2L

)
+O

(
v4

M4
KK

)]
.

(3.28)

It will further be useful to have an approximate expression for the ground-state profiles

χW,Z(t) =
1√
2π

[
1 +

m2
W,Z

4M2
KK

(
1− 1− ǫ2

L
+ t2 (1− 2L− 2 ln t)

)
+O

(
m4
W,Z

M4
KK

)]
, (3.29)

which are obtained from expansion of the exact solution (3.24) in xan ≪ 1 and the use of
(3.28). Contrary to the zero-mode profile of the photon (and the gluon), the latter profiles
depend on the coordinate t of the ED. As L ≈ 37, we can approximate the above result
by χW,Z(t) ≈ χγ[1 + x2

W,Z(1 − 2L t2)/4]. We see that the profiles χW,Z(t) are more or less
flat in the UV regime, but receive a dip near the IR brane [33]. From the perturbative
point of view, this behavior can be understood from an admixture of the KK profiles, when
the diagonalization of the mass matrix is performed. As we will see later, the dependence
on t will give rise to non-universal gauge couplings with respect to different flavors. As a
consequence, the Z0 induces FCNC interactions at tree-level.

For the KK gauge bosons, we are not able to perform an expansion of the Bessel functions.
The shape of their profiles is controlled by the prefactor

√
L t in (3.24), which gives rise to

an IR localization of the KK modes.
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3.4 Summing over Kaluza-Klein modes

If we compute the tree-level exchange of a SM gauge boson accompanied by its KK tower
in a generic Feynman diagram, we have to sum over the corresponding propagators in
combination with the boson profiles, which show up in the vertex functions. In the low-
energy limit, i.e., for small momentum transfer q2, we can expand

∑

n

χn(t)χn(t
′)

m2
n − q2

=
∞∑

N=1

(
q2
)N−1

∑

n

χn(t)χn(t
′)

(m2
n)
N

. (3.30)

For simplicity, we have dropped the superscript a, which labels the type of the gauge field.
The KK index n runs from 0 to ∞ in general. If the zero mode is massless, it has to be
treated separately. For most applications, it is sufficient to consider just the first term
(N = 1) in the above expansion. It can be evaluated in closed form by generalizing a
method developed in [37]. Here, one makes use of the fact that the profiles χn(t) form a
complete set of even functions on the orbifold. The required completeness relation can be
deduced from (3.12), and is given by

2π

L

∑

n

1

t
χn(t)χn(t

′) = δ(t− t′). (3.31)

We first integrate the EOM (3.14) twice, accounting for the UV BC. This yields

χn(t)− χn(ǫ) = −x2
n

∫ t

ǫ

dt′ t′
∫ t′

ǫ

dt′′
1

t′′
χn(t

′′) . (3.32)

Using the latter result along with the completeness relation (3.31), the sums over profiles in
(3.30) can be evaluated iteratively [34]. We will restrict ourselves to the first approximation
with N = 1, and normalize the sum with respect to M−2

KK. For the case of massive gauge
bosons with m0 > 0, we obtain

∑

n

χn(t)χn(t
′)

x2
n

=
∑

n

χ2
n(ǫ)

x2
n

− L

4π

(
t2> − ǫ2

)
, (3.33)

where we have introduced t> ≡ max(t, t′). The remaining sum over profiles χ2
n(ǫ) on

the UV brane can be performed by multiplicating (3.33) with χ0(t), and performing an
integration over the entire orbifold. If we now use the orthonormality condition (3.12) on
the one hand, and the explicit form of the zero-mode profiles (3.29) on the other hand, we
find ∑

n

χ2
n(ǫ)

x2
n

=
1

2πx2
0

+
1

4π

[
1− 1

2L
− ǫ2

(
L− 1

2L

)]
+O

(
x2

0

)
. (3.34)

The terms ∝ ǫ2 can be ignored for all practical purposes. Inserting the latter expression
into (3.33), and substituting t2> = t2 + t′2 − t2< with t< ≡ min(t, t′), we obtain the final
result

∑

n

χn(t)χn(t
′)

x2
n

=
1

2πx2
0

+
1

4π

[
L t2< − L

(
t2 + t′2

)
+ 1− 1

2L
+O

(
x2

0

)]
. (3.35)
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3.4 Summing over Kaluza-Klein modes

If there exists a massless zero mode, one has to remove its contribution from the sum
over states. This can be done by subtracting the square of the zero-mode profiles from
both sides of the completeness relation (3.31), where the explicit expression for the flat
zero-mode profile is used on the right-hand side. In this way we find

∑

n

′ χn(t)χn(t
′)

x2
n

=
1

4π

[
L t2< − t2

(
1

2
− ln t

)
− t′2

(
1

2
− ln t′

)
+

1

2L

]
, (3.36)

where the prime on the sum indicates that n runs from 1 to ∞.
In order to understand the origin of the corrections in the above relations, we explicitly

evaluate the zero-mode contribution in (3.35) with the help of (3.28) and (3.29). We find

χ0(t)χ0(t
′)

x2
0

=
1

2πx2
0

− L

4π

[
t2 + t′2

]
+

1

4π

[
1− 1

L
+ t2

(
1

2
− ln t

)
+ t′2

(
1

2
− ln t′

)]
. (3.37)

By comparison of (3.37) and (3.35), we see that beside the non-factorizable contribution
proportional to t2< , the L-enhanced terms in the latter formula arise from zero-mode ex-
change. The terms proportional to t2 and t′2 in (3.36) on the other hand do not receive an
enhancement. This has important consequences for the phenomenology of flavor-violating
processes [38]. It implies that the RS corrections to ∆F = 2 processes are dominated by
tree-level KK gluon exchange. Concerning ∆F = 1 processes, the main modifications com-
pared to the SM are given by FCNC couplings of the Z0 boson to fermions. An extended
analysis of the summation over the KK towers is provided in [34] for N = 2.

Another important consequence is a modification of the theoretical expression for the
Fermi constant GF . The latter is determined from muon decay µ → ν̄eνµe, which is
mediated by a charged-current interaction. Staying at tree level, the W− exchange of
the SM has to be replaced by the exchange of the whole K tower in the RS model. The
relevant sum over these intermediate states is given in (3.35). The terms proportional to t2

or t′2 in this relation give rise to non-universal corrections, if the fermions live in the bulk.
Therefore, we have to perform the KK decomposition of the fermion sector and determine
the relevant profiles. It will turn out that fermions with light zero modes should be localized
near the UV brane. As a consequence, the upper terms are exponential suppressed for the
light leptons involved in muon decay and can be neglected to excellent approximation.
The correction to GF is thus given by the constant terms in (3.35), for which the fermion
profiles are combined to a factor one due their orthonormalitiy condition. We obtain

GF√
2

=
g2

8m2
W

[
1 +

m2
W

2M2
KK

(
1− 1

2L

)
+O

(
m4
W

M4
KK

)]
. (3.38)

The correction term receives a contribution (1−1/L) from the zero mode of the W− boson
(3.37), and a contribution 1/(2L) from the KK tower (3.36). If the RS model is realized
in nature, the measurement of the Fermi constant always involves the exchange of the KK
tower. Therefore, we have to account for this universal correction factor, when we pull out
a factor GF of the effective Hamiltonian for charged currents.
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3 Gauge fields in the minimal RS model

Before we proceed, we want to mention that there is another possibility for the calculation
of two-point functions within a five-dimensional theory. For internal states, there is no need
to perform a KK decomposition. Instead, one could solve the generalized Greens functions
in five dimensions in the presence of the brane-localized Higgs sector. This gives rise to
5D propagators [36], which are equivalent to the infinite sum over KK modes. We will
however not entertain this possibility here.

3.5 Electroweak precision observables

A first phenomenological test of the RS model can be obtained from the gauge sector only,
if we study the impact on electroweak precision observables. In the SM, these are defined
as universal corrections stemming from vacuum polarization diagrams, known as oblique
corrections. They are collected in correlator functions, which can be expanded for small
momenta (squared) according to Π(p2) ≈ Π(0) + p2Π′(0). Within the study of NP, one
defines the parameters S, T , and U as shifts to the corresponding SM values, which are
therefore set to zero. The definition of the so-called Peskin-Takeuchi parameters is given
in [6, 7]

S =
16πs2

wc
2
w

e2

[
Π ′
ZZ(0) +

s2
w − c2w
swcw

Π ′
ZA(0)− Π ′

AA(0)

]
,

T =
4π

e2c2wm
2
Z

[
ΠWW (0)− c2w ΠZZ(0)− 2 swcw ΠZA(0)− s2

w ΠAA(0)
]
,

U =
16πs2

w

e2

[
Π ′
WW (0)− c2w Π ′

ZZ(0)− 2 swcw Π ′
ZA(0)− s2

w Π ′
AA(0)

]
.

(3.39)

Here, sw (cw) denotes the sine (cosine) of the weak-mixing angle. Of particular interest is
the T -parameter, which is sensitive to the difference between the corrections to the W and
Z0 boson vacuum-polarization functions, and thus measures isospin violation. For the RS
scenario (and any other NP model which involves heavy gauge bosons that mix with those
of the SM), the oblique parameters can be computed in an effective Lagrangian approach
[29]. The quantities Π ′

aa(0) collect modifications due to universal vertex corrections, which
for the case of the W± and the Z0 bosons are given by 1 +m 2

W,Z/(4M
2
KK)(1− 1/L). The

idea is to rescale the fields with the inverse factor, such that the interaction vertices take
their canocical form. Thereafter, one has to match the resulting expression to the effective
Lagrangian

Leff = − 1

2

(
1− Π′

WW (0)
)
W+
µνW

−µν − 1

4

(
1− Π′

ZZ(0)
)
ZµνZ

µν − 1

4

(
1− Π′

AA(0)
)
FµνF

µν

+

(
g2v2

4
+ ΠWW (0)

)
W+
µνW

−µν +

(
(g2 + g′2)v2

4
+ ΠZZ(0)

)
ZµνZ

µν . (3.40)

Note that the photon (and the gluon) do not receive a vertex correction. Therefore the
correlator Π ′

AA(0) vanishes. The quantities Πaa(0) additionally pick up corrections of the
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Figure 3.1: Regions of 68%, 95%, and 99% probability in the S-T plane for the minimal
RS model. The green (medium gray) shaded stripes in both panels indicate
the SM predictions for mt = (172.6 ± 1.4) GeV and mh ∈ [60, 1000] GeV.
The blue (dark gray) shaded area represents the RS corrections for MKK ∈
[1, 10] TeV and L ∈ [5, 37]. Figure taken from [34]. See text for details.

zero-mode masses. Gauge invariance guarantees that ΠAA(0) = 0 holds to all orders in
perturbation theory, and one further has ΠZA(0) = Π′

ZA(0) = 0 as long as one works at
tree-level. For the minimal RS model we find

ΠWW (0) = − g4v4

32M2
KK

(
L− 1

2L

)
,

Π ′
WW (0) =

g2v2

8M2
KK

(
1− 1

L

)
,

ΠZZ(0) = − (g2 + g′2)
2
v4

32M2
KK

(
L− 1

2L

)
,

Π ′
ZZ(0) =

(g2 + g′2) v2

8M2
KK

(
1− 1

L

)
.

(3.41)

Inserting these expressions into (3.39) yields [34, 39, 40]

S =
2πv2

M2
KK

(
1− 1

L

)
, T =

πv2

2 c2wM
2
KK

(
L− 1

2L

)
, U = 0 . (3.42)

As we see, a potential problem arises from the T -parameter, which goes along with a
factor L. In Figure 3.1, we show the experimental 68% , 95%, and 99% confidence levels
(CLs) in the S-T plane, corrected to the present world average of the top-quark mass [41].

47



3 Gauge fields in the minimal RS model

Details about the generation of the confidence ellipses are given in [34], from where the
plots are taken from. The light-shaded stripe indicates the SM predictions for different
values of mh and mt, where mh = 150 GeV corresponds to S = T = 0. The dark-shaded
area represents the RS corrections for different values of MKK and L. For a SM-like Higgs
mass mh < 150 GeV, we find that

MKK > 4.0 TeV (99% CL) . (3.43)

As the first eigenvalue of the bulk EOM (3.14) is about x1 = 2.45 in warped extra dimen-
sions, the bounds from the T -parameter will force the first gauge-boson KK excitation to
have a mass of at least 10 TeV. The energy cut-off on the IR brane is about the same size.
This will re-introduce a little HP due to (1.86), as we have to tune 150 GeV against the
latter number. If, on the other hand, the Higgs mass is raised compared to the SM, the
problem is cured by two different effects. First, a larger Higgs mass requires less tuning
against the cut-off. Secondly, the SM reference values for S and T will be corrected at the
loop level [42, 43, 44, 45, 46]. In particular the T -parameter receives a negative correction,
which partially cancels the positive RS correction. Keeping only the leading logarithmic
loop effects in the SM, the shifts in S and T due to a Higgs-boson mass different from the
reference value mref

h = 150 GeV read [7]

∆S =
1

6π
ln

mh

mref
h

, ∆T = − 3

8πc2w
ln

mh

mref
h

, (3.44)

while U remains unchanged. For example, taking mh = 1 TeV,2 the lower bound (3.43) is
relaxed to

MKK > 2.6 TeV (99% CL) . (3.45)

This feature is illustrated by the upper sets of bands in the panels of Figure 3.2, which
show the regions of 68%, 95%, and 99% probability in the mh-MKK and mh-L planes for
L = ln(1016) (left plot) and MKK = 3 TeV (right plot).

An additional possibility is to give up the solution to the full HP by working in a volume-
truncated RS background [48]. The so-called little RS model with L = ln(103) has a lower
bound of

MKK > 1.5 TeV (99% CL) . (3.46)

Since the lightest mass eigenvalue is about x1 = 2.65, resulting in KK mass of around
4 TeV. As in the case of the original RS scenario, the bound (3.46) relaxes further for a
larger Higgs-boson mass. This feature is illustrated by the lower sets of bands in the panels
of Figure 3.2, where we take L = ln(103) (left plot) and MKK = 1.5 TeV (right plot). For
example, using mh = 500 GeV relaxes the limit (3.46) to 1.1 TeV. In this thesis however,
we are not going to consider the little RS scenario.

Another way to satisfy the bounds from EW precision data, keeping the masses of the
first KK gauge-bosons of the order of 5 TeV, is to introduce large brane-localized kinetic

2Note that the unitarity bound for W -boson scattering can be satisfied for values of mh > 1TeV in the
RS model [47].
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Figure 3.2: Regions of 68%, 95%, and 99% probability in the mh–MKK (left panel) and
mh–L (right panel) plane in the RS scenario without custodial protection.
The upper (lower) area in the left and right panel corresponds to L =
ln(1016) (L = ln(103)) and MKK = 3 TeV (MKK = 1.5 TeV), respectively.
Figure taken from [34]. See text for details.

terms for the gauge fields [40, 49, 50]. Since such terms are generated at the loop level
[51, 52] and turn out to be UV divergent, bare contributions to the brane-kinetic terms
encode unknown UV physics at or above the cut-off scale. In order to retain the predictivity
of the model, we simply assume that these bare contributions are small.

The perhaps most elegant method to protect the T -parameter from vast corrections
is the implementation of a gauged custodial symmetry [20]. Within the SM, the ratio
mW/mZ = cos θw is a consequence of the symmetry-breaking mechanism. Within the
weak interaction basis, the mass matrix for the vector (W 1

µ ,W
2
µ ,W

3
µ , Bµ)

T has the form

Mweak
mass =




M2
W 0 0 0
0 M2

W 0 0
0 0 M2

W M2

0 0 M2 M2
0


 . (3.47)

Here, the masses in the upper-left 3 × 3 block have to be identical due to a global O(3)
rotation symmetry of (1.46), which exchanges the would-be GBs with each other. As the
orthogonal group O(3) is locally isomorph to the unitary group SU(2), it is said that the
EW sector is invariant under a custodial SU(2) symmetry. The idea of [20] is to promote
the global custodial symmetry of the SM to be a local one. This is achieved by replacing
the hyper-charge group U(1)Y by the direct product SU(2)R × U(1)X , which is broken
down to the former by an appropriate choice of UV BCs of the respective gauge fields. As
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3 Gauge fields in the minimal RS model

we will see in the next section, this will remove the leading L-enhanced contribution to the
T -parameter.
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4 Gauge fields in the custodial RS

model

In this section we repeat the analysis of the minimal model for the extended gauge group

SU(3)c × SU(2)L × SU(2)R × U(1)X , (4.1)

as suggested in [20]. Again, we keep the Higgs sector on the IR brane and decompose the
5D theory into a tower of mass eigenstates. This allows for a compact notation [53], which
makes the generalization of the minimal gauge sector straightforward. Furthermore, the
exact treatment allows for a clear understanding of the custodial protection mechanism,
which arises from the interplay of UV and IR boundary conditions. An exhaustive treat-
ment within perturbative approach, featuring a truncation of the KK tower after the first
mode, can be found in [54].

4.1 Action of the 5D theory

According to (4.1), we have to introduce a second set of SU(2) gauge fields. Omitting the
Faddeev-Popov Lagrangian, the 5D action of the gauge sector takes the form

SGauge =

∫
d4x r

∫ π

−π

dφ
(
LL,R,X + LHiggs + LGF

)
, (4.2)

with the kinetic terms (a = 1, 2, 3)

LL,R,X =

√
G

r
GKMGLN

(
−1

4
LaKLL

a
MN −

1

4
Ra
KLR

a
MN −

1

4
XKLXMN

)
. (4.3)

The Higgs Lagrangian is generalized to

LHiggs =
δ(|φ| − π)

r

(
1

2
Tr |(DµΦ)|2 − V (Φ)

)
, (4.4)

where the Higgs is assumed to transform as a bi-doublet (2,2)0 . It explicitly reads

Φ(x) =
1√
2

(
v + h(x)− iϕ3(x) −i

√
2ϕ+(x)

−i
√

2ϕ−(x) v + h(x) + iϕ3(x)

)
, (4.5)
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4 Gauge fields in the custodial RS model

where again ϕ± = (ϕ1 ∓ iϕ2)/
√

2 . SU(2)L transformations act from the left on the bi-
doublet, while the SU(2)R transformations act from the right. The covariant derivative1

DµΦ = ∂µΦ− igL5 L
a
µT

a
L Φ + igR5 ΦRa

µT
a
R , (4.6)

with T aL,R = σa/2 , can be worked out in analogy to (3.8),

DµΦ =
1√
2




∂µ (h− iϕ3)− i
v

2

(
gL5L

3
µ − gR5R

3
µ

)
− ∂µi

√
2ϕ+ − iv

2

(
gL5L

+
µ − gR5R

+
µ

)

−∂µi
√

2ϕ− − iv
2

(
gL5L

−
µ − gR5R

−
µ

)
∂µ (h+ iϕ3) + i

v

2

(
gL5L

3
µ − gR5R

3
µ

)




(4.7)
+ terms bi-linear in fields .

Here, we have introduced the linear combinations

L±
µ =

1√
2

(
L1
µ ∓ iL2

µ

)
, R±

µ =
1√
2

(
R1
µ ∓ iR2

µ

)
. (4.8)

The structure of (4.7) motivates for a further field rotation [55]

(
ÃaM
V a
M

)
=

1√
g2
L + g2

R

(
gL −gR
gR gL

)(
LaM
Ra
M

)
, (4.9)

which gives rise to a diagonal mass matrix, and we have replaced the 5D gauge couplings
by 4D ones. The rotations are analogous to the usual definitions of the Z0 boson and
photon fields in the SM (4.16). The 5D mass term related to EWSB adopts the form

Lmass =
δ(|φ| − π)

r

(g2
L5 + g2

R5) v
2

8
ÃaµÃ

µa (4.10)

→ δ(t− 1)
k

4

(g2
L5 + g2

R5) v
2

4
ÃaµÃ

µa ≡ δ(t− 1)
k

4
M2

Ã
ÃaµÃ

µa , (4.11)

where we changed to t-notation again. There is no mass term for the fields V a
µ . Thus, the

Higgs VEV 〈Φ〉 = v/
√

2 1 breaks the bulk gauge symmetry down to a diagonal subgroup
SU(2)V on the IR brane

SU(2)L × SU(2)R
IR−→ SU(2)V . (4.12)

The SM gauge group is obtained by an additional symmetry breaking on the UV boundary

SU(2)R × U(1)X
UV−−→ U(1)Y , (4.13)

which is achieved by an appropriate choice of the UV BCs. Therefore, we define the linear
combinations (

Z ′
M

BY
M

)
=

1√
g2
R + g2

X

(
gR −gX
gX gR

)(
R3
M

XM

)
, (4.14)

1The plus sign in front of gR5
is chosen for convenience.
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SU(2)R × U(1)X → U(1)Y SU(2)L × SU(2)R → SU(2)V

AM

ZM

L±
M

Z ′
M

R±
M

AM

Z̃M

Ã±
M

ZH
M

V ±
M

UV brane IR brane

Figure 4.1: UV and IR basis ⇔ gauge fields with individual BCs at the corresponding
branes. If EWSB is neglected, the fields which are related to the UV basis
and depicted in the upper half, possess a zero mode, while the fields in the
lower half do not.

and assign Dirichlet BCs to Z ′
µ and R1,2

µ on the UV brane. The U(1)Y hyper-charge
coupling is related to the SU(2)R × U(1)X couplings by

gY =
gR gX√
g2
R + g2

X

. (4.15)

The SM-like neutral electroweak gauge bosons are defined in the standard way through

(
ZM
AM

)
=

1√
g2
L + g2

Y

(
gL −gY
gY gL

)(
L3
M

BY
M

)
, (4.16)

where the SM coupling constants g and g′ are now denoted as gL and gY , respectively. The
SM definition of the weak-mixing angle (1.48) is kept. The fields AM , ZM , L±

M , Z ′
M , and

R±
M form a basis. As we are going to assign individual UV BCs for each of those, we will

refer to them as the UV or weak basis.

Starting from (4.9), we will construct a second basis for which we will assign individual
IR BCs. As EWSB takes place at the IR boundary, we will therefore speak of the IR or
mass basis. The fields V 3

M and XM for instance can be rotated to the photon field AM and
a state ZH

M via

(
ZH
M

AM

)
=

1

g2
LRX

(
gL gR −gX

√
g2
L + g2

R

gX
√
g2
L + g2

R gL gR

)(
V 3
M

XM

)
, (4.17)
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∂tAµ(x, ǫ) = 0 A5(x, ǫ) = 0 ∂tAµ(x, 1) = 0 A5(x, 1) = 0

∂tZµ(x, ǫ) = 0 Z5(x, ǫ) = 0 ∂tZ̃µ(x, 1
−) = −kM2

Ã
/(2M2

KK)Z̃µ(x, 1) Z̃5(x, 1) = 0

∂tL
±
µ (x, ǫ) = 0 L±

5 (x, ǫ) = 0 ∂tÃ
±
µ (x, 1−) = −kM2

Ã
/(2M2

KK)Ã±
µ (x, 1) Ã±

5 (x, 1) = 0

Z ′
µ(x, ǫ) = 0 Z ′

5(x, ǫ) = 0 ∂tZ
H
µ (x, 1) = 0 ZH

5 (x, 1) = 0

R±
µ (x, ǫ) = 0 R±

5 (x, ǫ) = 0 ∂tV
±
µ (x, 1) = 0 V ±

5 (x, 1) = 0

Table 4.1: BCs for UV basis (left) and IR basis (right).

where

g2
LRX =

√
g2
L g

2
R + g2

R g
2
X + g2

X g
2
L . (4.18)

We further write Z̃M ≡ Ã3
M , as it is a linear combination of ZM and Z ′

M , which is orthogonal
to ZH

M . The two bases can be transformed to each other with the help of the relations

(
Z̃M
ZH
M

)
=

(
cos θZ − sin θZ
sin θZ cos θZ

)(
ZM
Z ′
M

)
≡ RZ

(
ZM
Z ′
M

)
,

(
Ã±
M

V ±
M

)
=

(
cos θW − sin θW
sin θW cos θW

)(
L±
M

R±
M

)
≡ RW

(
L±
M

R±
M

)
,

(4.19)

where

sin θZ =
g2
R√

(g2
L + g2

R)(g2
R + g2

X)
, cos θZ =

g2
LRX√

(g2
L + g2

R)(g2
R + g2

X)
,

sin θW =
gR√
g2
L + g2

R

, cos θW =
gL√
g2
L + g2

R

. (4.20)

The latter quantities will be abbreviated by sZ , cZ , sW , and cW from now on.
In Table 4.1 we give the various BCs needed to obtain the correct mass spectrum for

the SM gauge bosons. The 5D photon field Aµ has individual and source-free Neumann
BCs at both branes. Therefore its zero mode remains massless, and there is no need to
distinguish between the two bases. In contrast to the the minimal model, which features
the two parameters MZ and MW (3.5), there is just one parameter MÃ entering the IR
BCs. The different masses for the lightest electroweak W± and Z0 bosons are generated
through the mixed UV BCs of the gauge fields in the IR basis. The fact that there is just
one fundamental mass parameter is crucial for the custodial protection of the T -parameter.
We will elaborate on this in Section 4.6.

As it is the case in the minimal model, the action of the theory contains mixing terms
between the vector components of the gauge fields and the various scalars, which can be
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4.2 Kaluza-Klein decomposition

removed by an appropriate gauge-fixing. As the Higgs sector is localized on the IR brane,
it is natural to work in the IR basis for that purpose. For this reason, we define the 5D
theory in the IR basis. For the KK decomposition however, it is convenient to rotate to the
weak basis. The expression for the extended gauge-fixing Lagrangian will be given below,
after the introduction of some useful notation.

4.2 Kaluza-Klein decomposition

For the KK decomposition of the 5D fields it is convenient to work with profiles that obey
definite Neumann (+) or Dirichlet (−) BCs at the UV brane. Therefore we include a
rotation to the weak basis, for which the UV BCs are decoupled. As different UV fields get
mixed by the IR BCs, these fields should be expressed through the same 4D basis. Thus,
we introduce the vectors

~ZM = (Z̃M , Z
H
M)T , and ~W±

M = (Ã±
M , V

±
M )T , (4.21)

and define the diagonal matrix consisting of profiles in the UV basis,

χa
n(t) =

(
χ
a(+)
n (t) 0

0 χ
a(−)
n (t)

)
(4.22)

for a = W,Z. The superscripts (+) and (−) label the type of BC we impose at the UV
brane, i.e., they indicate untwisted and twisted even functions on the orbifold. We use
the term twisted even functions for profiles with even Z2-parity, which obey Dirichlet BC
on the UV brane and are thus not smooth at this orbifold fix point. These fields are
sometimes called odd, as they look like an odd function if one just considers half of the
orbifold. Untwisted even functions correspond to ordinary profiles with Neumann UV BCs.
Remember from Table 4.1 that both profiles satisfy a Neumann BC at the IR boundary,
which we do not indicate explicitly by a superscript (+) to avoid unnecessary clutter of
notation.

We further define two-component vectors ~Aan, which are supposed to parametrize the
mixings between the different UV gauge fields and their KK excitations due to the EWSB
on the IR brane. As a straightforward generalization of (3.11) we are now able to write

Aµ(x, t) =
1√
r

∑

n

χA(+)
n (t)A(n)

µ (x) , A5(x, t) =
1√
r

∑

n

L

π
t∂t χ

A(+)
n (t) aAn ϕ

(n)
A (x) ,

~Zµ(x, t) =
RZ√
r

∑

n

χZ
n (t) ~AZ

n Z
(n)
µ (x) , ~Z5(x, t) =

RZ√
r

∑

n

L

π
t∂t χ

W
n (t) ~AZ

n a
Z
n ϕ

(n)
Z (x) ,

~W±
µ (x, t) =

RW√
r

∑

n

χW
n (t) ~AW

n W±(n)
µ (x), ~W±

5 (x, t) =
RW√
r

∑

n

L

π
t∂tχ

W
n (t) ~AW

n aWn ϕ
±(n)
W (x).

(4.23)
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Again, the fields A
(n)
µ (x) etc. are the 4D mass eigenstates and the lightest modes are

identified with the SM gauge bosons. The matrices RZ,W are defined in (4.19). The
mixing vectors are normalized according to

( ~Aan)
T ~Aan = 1 . (4.24)

As the profile matrices (4.22) are always combined with the mixing vector ~Aan, it is
natural to define the vectors

~χZn (t) =

(
χ
Z(+)
n (t)

χ
Z′(−)
n (t)

)
= χZ

n (t) ~AZ
n , ~χWn (t) =

(
χ
L(+)
n (t)

χ
R(−)
n (t)

)
= χW

n (t) ~AW
n , (4.25)

for the profiles of the UV fields. A crucial point is that the profiles χ
a(+)
n (t) and χ

a(−)
n (t)

do not obey exact orthonormality conditions separately, as the related fields are mixed by
the IR BCs, and decomposed into the same 4D gauge-boson basis. The complete vectors
~χ an(t) on the other hand are orthonormal on each other,

2π

L

∫ 1

ǫ

dt

t
~χ aTm (t) ~χ an(t) = δmn . (4.26)

Indeed, within our exact treatment, one should never consider the components of the gauge-
field vectors (4.21) separately. Instead, one should always take the expressions (4.25)
as a starting point [53]. Within the perturbative approach, the situation is different.
Here, the gauge fields are decoupled within the KK decomposition such that one obtains
individual orthonormality relations for all of them. The mixing is induced after truncation
via diagonalization of the mass matrix. The photon and gluon are exceptional as they obey
the standard orthonormality condition (3.12) in both approaches. In analogy to (3.13), we

also expand the 4D Goldstone bosons in the basis of mass eigenstates ϕ
(n)
Z (x) and ϕ

±(n)
W (x)

by writing

~ϕ 3(x) =
∑

n

~bZn ϕ
(n)
Z (x) , ~ϕ±(x) =

∑

n

~bWn ϕ
±(n)
W (x) . (4.27)

Employing the notation introduced in this section, it is now straightforward to write down
the generalized gauge-fixing Lagrangian

LGF = − 1

2ξ

(
∂µAµ −

ξ

2

[
M2

KK

2π

L
t∂t t

−2A5

])2

− 1

2ξ

(
∂µ ~Zµ −

ξ

2

[
δ(t− 1) kMZ ~ϕ3 +M2

KK

2π

L
t∂t t

−2 ~Z5

])2

− 1

ξ

(
∂µ ~W+

µ −
ξ

2

[
δ(t− 1) kMW ~ϕ+ +M2

KK

2π

L
t∂t t

−2 ~W+
5

])T

×
(
∂µ ~W−

µ −
ξ

2

[
δ(t− 1) kMW ~ϕ− +M2

KK

2π

L
t∂t t

−2 ~W−
5

])
.

(4.28)
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The same philosophy applies to the generalization of the expression (3.10). If we insert
the decomposition (4.23) into the action and define the projectors P(+) = diag(1, 0) and
P(−) = diag(0, 1), we find the generalized EOMs [53]

(
t∂t t

−1∂t + (xan)
2
)
Ra χa

n(t)
~A a
n = δ(t− 1)L

(g2
L + g2

R)v2

4M2
KK

P(+)Ra χa
n(t)

~A a
n . (4.29)

for a = W,Z. The EOM for the photon can be written in the same form by defining RA = 1

and ~AA
n = (1, 0)T , and setting the brane-localized mass term to zero. The appropriate IR

BCs are derived as above. They read

Ra ∂t χ
a
n(1

−) ~A a
n = −X2LP(+)Ra χa

n(1) ~A a
n , (4.30)

where X2 ≡ (g2
L + g2

R) v2/(4M2
KK) , and, for the photon, the right-hand side is equal to

zero. The UV BCs are given by

∂t χ
(+)
n (ǫ) = χ(−)

n (ǫ) = 0 . (4.31)

After applying the EOMs and the orthonormality condition (4.26), we observe that the 4D
action takes the desired canonical form (3.16), if

aan = − 1

ma
n

, ~b an =
√

2π

√
g2
L + g2

R v

2ma
n

P(+)Ra χa
n(1

−) ~A a
n . (4.32)

With these definitions, the desired 4D form of the gauge-fixing Lagrangian (3.19) is recov-
ered.

4.3 Bulk profiles

We now derive expressions for the profiles χ
a(±)
n (t). In order to get the EOMs for the UV

basis, we multiply (4.29) with RT
a from the left. The solutions of χ

a(+)
n (t) are identical to

those derived in Section 3.3. The profiles χ
a(−)
n (t) have to vanish on the UV boundary. As

a consequence, there is no zero-mode solution for the latter fields. We find

χ(+)
n (t) = N (+)

n

√
L

π
t c(+)+

n (t) , χ(−)
n (t) = N (−)

n

√
L

π
t c(−)+

n (t) , (4.33)

with

c(+)+
n (t) = Y0(x

a
nǫ)J1(x

a
nt)− J0(x

a
nǫ)Y1(x

a
nt) ,

c(−)+
n (t) = Y1(x

a
nǫ)J1(x

a
nt)− J1(x

a
nǫ)Y1(x

a
nt) ,

c(+)−
n (t) =

1

xant

d

dt

(
t c(+)+

n (t)
)

= Y0(x
a
nǫ) J0(x

a
nt)− J0(x

a
nǫ)Y0(x

a
nt) ,

c(−)−
n (t) =

1

xant

d

dt

(
t c(−)+

n (t)
)

= Y1(x
a
nǫ) J0(x

a
nt)− J1(x

a
nǫ)Y0(x

a
nt) .

(4.34)
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As c
(+)−
n (ǫ) = c

(−)+
n (ǫ) = 0, it is apparent that the UV BCs are satisfied. The normalization

factor is given by

(
N (±)
n

)−2
=
[
c(±)+
n (1)

]2
+
[
c(±)−
n (1−)

]2 − 2

xn

(
c(±)+
n (1) c(±)−

n (1−)− ǫ c(±)+
n (ǫ) c(±)−

n (ǫ+)
)

− ǫ2
([
c(±)+
n (ǫ)

]2
+
[
c(±)−
n (ǫ+)

]2)
, (4.35)

where ǫ+ ≡ limθ→0+ (ǫ+ θ). Note that, depending on the type of the UV BCs, some of the
terms in (4.35) vanish identically.

The spectrum of the theory is determined by the IR BCs (4.30). The eigenvalues xan are
solutions of

det
[
∂t χ

a
n(1

−) + LX2Daχ
a
n(1)

]
= 0 , (4.36)

with

Da = R−1
a P(+)Ra =

(
c2a −saca
−saca s2

a

)
, (4.37)

and the mixing angles sa and ca are defined in (4.20). The presence of the new gauge fields
doubles the number of KK excitations in such a way that there are always two KK modes
with similar masses. This already suggests, that there may be cancellations within the
calculation of weak-interaction amplitudes. To see that this can indeed happen, one needs
to determine the eigenvectors ~A a

n from (4.30), once the eigenvalues are known.
If we expand (4.33) in powers of v2/M2

KK and ignore tiny terms ∝ ǫ2, we find the simple
analytic expressions

m2
W =

g2
Lv

2

4

[
1− g2

Lv
2

8M2
KK

(
L− 1 +

1

2L

)
− g2

Rv
2

8M2
KK

L+O
(

v4

M4
KK

)]
, (4.38)

m2
Z =

(g2
L + g2

Y ) v2

4

[
1− (g2

L + g2
Y ) v2

8M2
KK

(
L− 1 +

1

2L

)
− (g2

R − g2
Y ) v2

8M2
KK

L+O
(

v4

M4
KK

)]
,

for the masses of the W± and Z0 bosons. The last terms inside the square brackets are
new compared to the minimal model. Interestingly, these are responsible for the custodial
protection of the T -parameter. Expanding (4.30) in v2/M2

KK, the zero-mode profiles are
found to be

χ
(+)
0 (t) =

1√
2π

[
1 +

x2
a

4

(
1− 1

L
+ t2

(
1− 2L− 2 ln t

))
+O

(
x4
a

)]
,

χ
(−)
0 (t) =

√
L

2π
t2
[
−2 +

x2
a

4

(
t2 − 2

3

)
+O

(
x4
a

)]
,

(4.39)

for a = W,Z and xa = ma/MKK. The profiles χ
(+)
0 (t) with Neumann IR BC are identical

to those of the minimal model (3.29). The profiles χ
(−)
0 (t) satisfying Dirichlet IR BC scale
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like
√
L, reflecting the admixture of KK modes close to the IR boundary. Indeed, the

contribution of profile the χ
(−)
0 (t) is a higher order effect in v2/M2

KK due to the respective
entry of the mixing vector

~A a
0 =




1

−saca
X2

4

√
L


+O

(
X4
)
. (4.40)

As we will see below, the results (4.39) and the minus sign in (4.40) play a crucial role in
the custodial protection mechanism of the Z0bLb̄L vertex.

4.4 Interactions among gauge bosons

For some applications, one requires the RS corrections of cubic and quartic gauge couplings.
For instance, one may think of a Higgs decaying into a photon and a Z0 boson via a triangle
W -boson loop. We will show that the RS corrections to cubic and quartic couplings of
zero modes are of higher order.

Due to the unbroken U(1)e.m. gauge group, the WWγ coupling is unchanged with respect
to the SM to all orders in v2/M2

KK. The WWZ0 coupling will receive a correction, but not
at the order v2/M2

KK. This can be understood by the following observations: First, the
bulk integral over a single zero-mode profile of a heavy gauge field is given by

2π

L

∫ 1

ǫ

dt

t
χ

(+)
0 (t) =

√
2π +O

(
v4

M4
KK

)
. (4.41)

Second, within the custodial model, the contributions from the additional gauge bosons are

of higher order as
[
( ~Aa0)2χ

(−)
0 (t)

]2
= O(v4/M4

KK). Collecting all factors appearing in the
decomposed action apart from the 4D gauge fields, the result (4.41) immediately implies
that the RS coupling of the triple-gauge boson vertex WWZ0 is given by

rgL5
cw

2π

L

∫ 1

ǫ

dt

t

1

r3/2

(
χ
W (+)
0 (t)

)2

χ
Z(+)
0 (t) = gLcw

[
1 +O

(
v4

M4
KK

)]
. (4.42)

Thus, corrections compared to the SM appear at the order v4/M4
KK [54], which are therefore

irrelevant for all practical purposes. The same line of reasoning applies to the quartic vertex
WWZ0Z0.

In the example of the Higgs decay, one further involves overlaps of KK W± bosons and
the zero mode Z0, which in the custodial model with gL = gR are given by [53]

IWWZ
nn0 =

(2π)3/2

L

∫ 1

ǫ

dt

t

[
χ

(+)Z
0

(
χ(+)W
n

2
( ~AWn )

2

1 +
g2
Y

g2
L

χ(−)W
n

2
( ~AWn )

2

2

)

−
√

1− g4
Y /g

4
L χ

(−)Z
0 ( ~AZ0 )2 χ

(−)W
n

2
( ~AWn )

2

2

]
.

(4.43)
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Here,
(
AWn (t)

)
i

denotes the ith component of the corresponding mixing vector. Within
the minimal model, one just keeps the first term on the right-hand side. Note that we
have to choose the same KK index n for both W bosons, whenever the triangle loop is
coupled to photon. The generalization to the more general case is obvious. The overlap
integral (4.43) has to be performed numerically, as we do not have simple expressions for
the profiles of the KK modes in simple powers or logarithms of t. However, as the sum
over KK propagators of W (n)± bosons is already suppressed with v2/M2

KK compared to the
zero-mode exchange, one only requires (4.43) to 0th order in the latter ratio. This gives
rise to the more simple expression

IWWZ
nn0 =

2π

L

∫ 1

ǫ

dt

t

(
χ(+)W
n

2
( ~AWn )

2

1 +
g2
Y

g2
L

χ(−)W
n

2
( ~AWn )

2

2

)
+O

(
v2

M2
KK

)
. (4.44)

An analogous result is obtained for the interaction W (m)W (n)Z0Z0. The extension to the
most general vertex W (m)W (n)Z(k)Z(l) is also straightforward.

4.5 Summing over Kaluza-Klein modes

In this section we are going generalize the computations of KK sums of the heavy W± and
Z0 bosons. We define the expression

Σa(t, t
′) ≡

∑

n

~χ an(t) ~χ aTn (t′)

(xan)
2 , (4.45)

which arises within the calculation of the tree-level exchange of a SM electroweak gauge
boson accompanied by its KK excitations in the limit of zero (or negligibly small) momen-
tum transfer. In analogy to the minimal model, we integrate the EOM (4.29) twice, but
accounting for the BCs on both branes [53]. We observe

~χ an(t) = (xan)
2 ~I an (t)− (xan)

2
(
t2 − ǫ2

)
Xa

~I an (1) +
[
1−

(
t2 − ǫ2

)
Xa

]
P(+) ~χ

a
n(ǫ) , (4.46)

where we have defined

~I an (t) ≡
∫ t

ǫ

dt′ t′
∫ 1−

t′

dt′′

t′′
~χ an(t′′) , Xa ≡ X̃2 Da ≡

LX2

2 + LX2 (1− ǫ2) Da . (4.47)

Using the generalized completeness relation

2π

L

∑

n

1

t
~χ an(t) ~χ aTn (t′) = δ(t− t′)1 , (4.48)

one derives

Σa(t, t
′) =

L

4π

[ (
t2< − ǫ2

)
1 +

(
t2 − ǫ2

) (
t′ 2 − ǫ2

)
Xa

]

+
[
1−

(
t2 − ǫ2

)
Xa

]
P(+) Σa(ǫ, ǫ) P(+)

[
1−

(
t′ 2 − ǫ2

)
Xa

]T
.

(4.49)
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The latter result is exact to all orders in v2/M2
KK and the straight-forward generalization

of (3.33). Again, the orthonormality relation (4.26) is used to perform the remaining sum
over gauge profiles evaluated at the UV brane, which yields

P(+) Σa(ǫ, ǫ) P(+) =
L

2πx2
a

(
~χ a0 (ǫ)

)
1

[ ∫ 1

ǫ

dt

t

[ (
1− c2aX̃2

(
t2 − ǫ2

)) (
~χ a0 (t)

)
1

+ sacaX̃
2
(
t2 − ǫ2

) (
~χ a0 (t)

)
2

] ]−1

P(+) .

(4.50)

This formula can be easily expanded in powers of v2/M2
KK, after inserting the explicit

expression for the profiles (4.39) and the mixing vectors (4.40). Thus, we obtain

P(+) Σa(ǫ, ǫ) P(+) =

(
1

2πx2
a

+
1

4π

[
1− 1

2L
− ǫ2

(
L− 1

2L

)]
+O(x2

a)

)
P(+) . (4.51)

Keeping in mind that X2 = x2
a/c

2
a + O(x4

a) and dropping phenomenologically irrelevant
terms ∝ ǫ2, we finally arrive at

Σa(t, t
′) =

L

4π

[
t2< 1− Pa t

2 − P T
a t′ 2

]
+

[
1

2πx2
a

+
1

4π

(
1− 1

2L

)]
P(+) +O(x2

a) , (4.52)

where

Pa =

(
1 0
− sa

ca
0

)
. (4.53)

The zero-mode contribution to the KK sum(4.45) can be obtained from (4.39) and (4.40),
and is explicitly given by

~χ a0 (t) ~χ aT0 (t′)

x2
a

=
1

2πx2
a

P(+) −
L

4π

[
Pa t

2 + P T
a t′ 2

]

+

[
1

4π

(
1− 1

L
+ t2

(
1

2
− ln t

)
+ t′ 2

(
1

2
− ln t′

))]
P(+) +O(x2

a) .

(4.54)

We see that the results for the minimal model (3.35) and (3.37) are contained in the
extended results (4.52) and (4.54). The additional terms due to the custodial extension
go along with a factor sa/ca and, under certain circumstances, play a crucial role in the
custodial protection of the Z0bLb̄L coupling. We will postpone the necessary discussion to
Section 7. Of course, the KK sums involving photon and gluon excitations do not depend
on whether the electroweak gauge group is minimal or extended. Thus, the result (3.36)
derived in the previous section stays valid.

4.6 Electroweak precision observables

Finally, we want to repeat the analysis of Section 3.5. The non-zero tree-level correlators
Πaa(0) with a = W,Z are calculated from the corrections to the zero-mode masses (4.38)

61



4 Gauge fields in the custodial RS model
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Figure 4.2: Regions of 68%, 95%, and 99% probability in the S-T plane for the custo-
dial RS model. Figure taken from [34].

and profiles (4.39), where the latter also give rise to non-zero derivatives Π ′
aa(0) of the

correlators at zero momentum. The expressions (3.41) generalize to

ΠWW (0) = − g2
Lv

4

32M2
KK

[
g2
L

(
L− 1

2L

)
+ g2

RL

]
,

Π ′
WW (0) =

g2
Lv

2

8M2
KK

(
1− 1

L

)
,

ΠZZ(0) = −(g2
L + g2

Y ) v4

32M2
KK

[(
g2
L + g2

Y

)(
L− 1

2L

)
+
(
g2
R − g2

Y

)
L

]
,

Π ′
ZZ(0) =

(g2
L + g2

Y ) v2

8M2
KK

(
1− 1

L

)
.

(4.55)

Compared to the expressions of the minimal model (3.41), the correlators ΠWW (0) and
ΠZZ(0) receive additional L-enhanced contributions from the extended mass formula (4.38),
that cancel the leading contribution to the T -parameter. This can also be understood as
follows: The contributions of the the fields L±

µ and Zµ to the mass eigenstates Ã±
µ and

Z̃µ are multiplied by cW and cZ , respectively. On the other hand, if one combines the
definitions (1.48), (4.15), and (4.20), one can show that c2W = c2wc

2
Z . As a consequence,

there is a cancellation of the volume enhanced terms in the expression ΠWW (0)−c2w ΠZZ(0),
which enters the definition of the T -parameter. Indeed, if we insert the expressions (4.55)
into (3.39), we obtain

S =
2πv2

M2
KK

(
1− 1

L

)
, T = − πv2

4 c2wM
2
KK

1

L
, U = 0 , (4.56)
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in agreement with [39, 20]. The tree-level results for S and U are unchanged with respect
to the minimal model. A related discussion including estimates of loop effects on the
T -parameter has been given in [56, 57].

In Figure 4.2, we depict the corrections (4.56) to S and T compared to the SM refer-
ence value. Opposed to the minimal model, tree-level RS corrections to the T -parameter
are essentially zero. On the other hand, shifts due to a heavy Higgs boson can not be
compensated anymore. Thus, the custodial RS model prefers a light, SM-like Higgs with
mh < 150 GeV.

One-loop corrections to the S-parameter, arising from Higgs loops in the KK-gauge boson
tower, have been calculated in [55]. They are found to be logarithmically UV divergent
and scale like m2

W/M
2
KK ln(Λ2

IR/m
2
h). For ΛIR ≈ few TeV, this correction is of the order of

the tree-level result. Therefore, low-lying KK scales of MKK ≈ 1 TeV seem to be excluded
also for the custodial RS model.

63



4 Gauge fields in the custodial RS model

64



5 The holographic approach

In this section, we want to discuss an alternative to KK decomposition, invented in [23].
It is known as holographic approach and features the idea of separating the 5D gauge field
from its boundary value, which is kept fixed during the variation of the 5D action. When
one inserts the solutions to the (classical) bulk EOM into the 5D action, the latter reduces
to a 4D action on the UV boundary. It is said that the bulk has been integrated out. The
idea of holography goes back to the conjectured duality between a 3+1-dimensional N = 4
conformal Yang-Mills theory and a supergravity formulated on AdS5×S5 [58]. Taking only
a slice of AdS5, Green’s functions of the former in the large N limit can be calculated by
mapping the conformal theory on the boundaries of the supergravity [21, 22]. The authors
of [59] therefore refer to the method as the boundary-effective action approach. We will
give a more detailed discussion at the end of this section.

At this point, we want to state that the holographic approach is not completely equivalent
to KK decomposition. This is evident from the solutions χ

(±)
n (t) (4.33), which have different

(but rather similar) values on the UV brane for different KK numbers n. Therefore, the
ansatz of pulling out a common UV boundary value can not lead to exactly the same low-
energy theory, that we have discussed above. Naively speaking, it rejects the possibility of
having a quantized momentum within the fifth dimension, and therefore corresponds to a
classical solution. On the other hand we will learn that the boundary breaking effects due
to the presence of the UV brane are small, as they scale like 1/L.

The holographic approximation nevertheless is a practical tool, which allows for an easy
derivation of effective 4D correlator functions. We will demonstrate this for the custodial
model.

5.1 Integrating out the bulk

We follow the calculation of [55] and work with the fields ÃM , VM defined in (4.9), and
XM . Besides kinetic terms, the action contains the mass term (4.10), as well as mixing
terms of the vector components with the respective fifth component of the gauge fields.
In addition, there is an IR-brane localized mixing term between the would-be GBs φa and
the fields Ãaµ. Thus, we impose the gauge-fixing Lagrangian

LGF = − 1

2ξ

(
∂µÃaµ − ξ M2

KK

π

L
t∂t t

−2Ãa5

)2

− δ(t− 1)
1

2ξ

(
∂µÃaµ −

ξ

2
kMÃφa

)2

− 1

2ξ

(
∂µV a

µ − ξ M2
KK

π

L
t∂t t

−2V a
5

)2

− 1

2ξ

(
∂µXµ − ξ M2

KK

π

L
t∂t t

−2X5

)2

.

(5.1)
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Compared to the previous section, we have chosen a separate gauge-fixing for the would-
be GBs, as we are not going to expand the latter in a set of orthonormalized KK-profile
functions. As a consequence, we can not use the EOMs to cancel δ2-terms, as we did in
(4.28).

In order to solve the classical bulk EOM, it is convenient to change to momentum space
for the 4D coordinates1. As mentioned above, we will separate the UV boundary value
from the gauge fields by writing

Ãaµ =
√
k Ãaǫµ (p) fÃ(p, t) , V a

µ =
√
k V aǫ

µ (p) fV (p, t) , Xµ =
√
k V ǫ

µ (p) fV (p, t) .
(5.2)

Note that we have chosen the same bulk function fV (p, t) for the fields Vµ and Xµ, as the
respective IR BCs are the same,

∂tV
a
µ (1) = V a

5 (1) = ∂tXµ(1) = X5(1) = 0 . (5.3)

The components of the massive 5D vector field ÃM satisfy the IR BCs

(
∂t +

kM2
Ã

2M2
KK

)
Ãaµ(1

−) =

(
∂t + L

(g2
L + g2

R)v2

4M2
KK

)
Ãaµ(1

−) = Ãa5(1) = 0 . (5.4)

Inserting the gauge-fixing Lagrangian (5.1) into the action (4.2), and using integration by
parts, we obtain

S = − 1

2

∫
d4p

(2π)4
2

∫ 1

ǫ

dt

k t

{
Ãaµ

(
p2ηµν − pµpν

(
1− 1

ξ

))
Ãaν

+M2
KK Ã

a
µ t∂t t

−1 ∂tÃ
aµ − δ(t− 1)L

(g2
L + g2

R)v2

4
ÃaµÃ

aµ + ...

}

+
1

2

∫
d4p

(2π)4

2

k t
M2

KK

[
Ãaµ∂tÃ

aµ + V a
µ ∂tV

aµ +Xµ∂tX
µ
] ∣∣∣∣

1

t=ǫ

(5.5)

Due to the BCs (5.3) and (5.4), all IR boundary terms vanish identically or cancel each
other. The bulk is integrated out by demanding the fields to fulfill the classical bulk EOM

(
M2

KK t∂t t
−1∂t + p2

)
Ãaµ(p, t) = 0 etc. , (5.6)

Choosing Feynman gauge (ξ = 1), we are left with the effective-boundary action

S = −
∫

d4p

(2π)4
MKK

(
Ãaµ∂tÃ

aµ + V a
µ ∂tV

aµ +Xµ∂tX
µ
) ∣∣∣∣

t=ǫ

(5.7)

of the gauge fields. The solution to (5.6) is derived in analogy to the bulk profiles. If one
normalizes the fields according to fÃ(p, ǫ) = fV (p, ǫ) = 1, and implements the above IR

1As a consequence, the mass dimensions of the fields are reduced by four, [Ãµ(p, t)] = −5/2 , etc. .
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BCs, one finds [55]

fV (p, t) =
t
[
Y0(xp)J1(xpt)− J0(xp)Y1(xpt)

]

ǫ
[
Y0(xp)J1(xpǫ)− J0(xp)Y1(xpǫ)

] ,

fÃ(p, t) =
t
[(
pY0(xp) +MY1(xp)

)
J1(xpt)−

(
pJ0(xp) +MJ1(xp)

)
Y1(xpt)

]

ǫ
[(
pY0(xp) +MY1(xp)

)
J1(xpǫ)−

(
pJ0(xp) +MJ1(xp)

)
Y1(xpǫ)

] ,

(5.8)

where p =
√
p2, xp = p/MKK, and M = kM2

Ã
/(2MKK).

5.2 Low-energy theory

The effective low-energy Lagrangian for the gauge fields is now written in the form

LGauge
eff =

ηµν

2

(
Ãaǫµ ΠÃÃ(p2)Ãaǫν + V aǫ

µ ΠV V (p2)V aǫ
ν +Xǫ

µΠV V (p2)Xǫ
ν

)
, (5.9)

where the correlators are obtained by inserting the solutions (5.8) into the boundary action
(5.7). If one uses the identity2

d

dz

[
znJn(z)

]
= znJn−1(z) (5.10)

with n = 1 and z = xpt, one finds

ΠV V (p2) = − kp
[
Y0(xp)J0(xpǫ)− J0(xp)Y0(xpǫ)

]
[
Y0(xp)J1(xpǫ)− J0(xp)Y1(xpǫ)

] ,

ΠÃÃ(p2) = − kp
[(
pY0(xp) +MY1(xp)

)
J0(xpǫ)−

(
pJ0(xp) +MJ1(xp)

)
Y0(xpǫ)

]
[(
pY0(xp) +MY1(xp)

)
J1(xpǫ)−

(
pJ0(xp) +MJ1(xp)

)
Y1(xpǫ)

] ,

(5.11)

For the following discussion, we will drop the superscript ǫ in (5.9) and always assume the
fields to be four-dimensional ones. The next step consists of using the field rotations (4.9),
(4.14), and (4.16) to write the effective Lagrangian in the form

LGauge
eff =

ηµν

2

(
La=1,2
µ ΠLL(p2)La=1,2

ν + ZµΠZZ(p2)Zν + AµΠAA(p2)Aν

)
. (5.12)

One derives

ΠLL ≡ ΠWW = s2
WΠV V + c2WΠÃÃ ΠZZ = s2

ZΠV V + c2ZΠÃÃ ΠAA = ΠV V , (5.13)

2An analogous relation holds for the Bessel functions of second kind.

67
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where the mixing angles are defined in (4.20). If we expand the correlators (5.11) in xp
and, for the case of ΠÃÃ in v/MKK afterwards, we find to LO (neglecting terms ∝ ǫ2)

ΠV V (p2) ≈ p2Π′
V V (0) = −p2L ,

ΠÃÃ(p2) ≈ ΠÃÃ(0) + p2Π′
ÃÃ

(0) = L
(g2
L + g2

R)v2

4
− p2L

[
1− L (g2

L + g2
R)v2

8M2
KK

]
.

(5.14)

Thus, we can easily identify the correlators at zero momentum and their derivatives. In-
serting this result into the definitions of the Peskin-Takeuchi parameters (3.39), and using
the relations c2W = c2wc

2
Z , as well as s2

wc
2
wc

2
Z/e

2 = c2W/g
2
L = 1/(g2

L + g2
R) , one finally obtains

S =
2πv2

M2
KK

, T = 0 , U = 0 . (5.15)

Up to the tiny 1/L corrections, we have re-derived the result (4.56) of the previous section.
The holographic approximation can also be applied to the fermion sector [60]. It has been

used for the construction of composite Higgs models [61, 62], where the Higgs is realized
as a would-be GB of a strongly coupled four-dimensional conformal field theory (CFT).
The latter can be described by means of an effective boundary action of a weakly coupled
gravity theory in a slice of AdS5. Here, the warped ED is introduced as a computing aid
to make perturbative calculations within a strongly coupled theory feasible.

Indeed, the concept of holography opened a new branch in theoretical physics. For
instance, there are attempts to perform (perturbative) QCD calculations in the region of
confinement, where the running of αs can be neglected. Therefore, it is worth to say a few
words about this remarkable correspondence between 4D CFTs and 5D warped models. A
very nice and more thorough introduction can be found in [63] for instance.

The original conjecture states that a type IIB string theory on AdS5 × S5 is dual to a
N = 4 SU(N) 4D Super Yang-Mills theory. The latter has to be a conformal field theory,
as the isometry group of AdS5 is equivalent to the conformal group in four dimensions. If
we want to neglect string corrections and rather study a classical gravity theory on AdS5,
the duality relations require that the CFT has to be strongly coupled, and that one assumes
a large number of colors.

A purely CFT is invariant under conformal transformations and therefore does not in-
volve a mass scale. As a consequence, its gauge couplings do not run with energy. The
invariance of conformal transformations corresponds of having the whole AdS5 space on
the gravity side with −∞ < φ <∞. If we now locate a UV brane at φ = 0, this introduces
a UV cutoff ΛUV on the CFT side, which explicitly breaks conformal invariance. If one
runs down to lower energies, the conformal behavior is restored again. Therefore, only
higher dimensional operators come in question as symmetry breaking terms [64, 65, 66].
Fields which are located on the UV brane are elementary, and act as source fields when
coupled to CFT operators. The introduction of an IR brane on the other hand corresponds
to a spontaneous breaking of the conformal symmetry [64, 65], and goes along with an IR
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5.2 Low-energy theory

cut-off ΛIR. Physical states of the strongly coupled conformal sector in the region of the
IR cut-off correspond to composite particles.

At this point, we want to stress again that in AdS/CFT, the dual description of strongly
coupled 4D conformal Yang-Mills theories in the large N limit relies on a classical gravity
theory. In some sense, the invention of the fifth dimension can be understood as a math-
ematical trick. In this thesis however, we will assume the fifth dimension to be physical.
Therefore, we have to account for all the quantum effects of the bulk, if the fields are as-
sumed to propagate in the whole space-time. Therefore, the method of KK-decomposition
is mandatory to obtain the correct low-energy description.
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6 Fermions in the bulk

In this section, we want to study fermions in the 5D bulk. The appropriate 5D action has
been given in [28] first. Due to the curvature of the fifth dimension, one needs to introduce
the inverse vielbein EM

m (x), defined via the inverse RS metric GMN

EM
m η

mnEM
n = GMN = diag(e2σ,−e2σ,−e2σ,−e2σ,−1/r2) . (6.1)

As before, capital Latin indices refer to the coordinates of the warped space-time, where
m,n = 0, 1, 2, 3, 5 refer to the five-dimensional flat space. Within the fermion action, we
have to replace γµ → γM = EM

m γ
m. Therefore, the Clifford algebra (1.21) has to be

extended according to
{Γm,Γn} = 2 ηmn14×4 , (6.2)

As a consequence, the 5D QFT for fermions is no longer a chiral theory, as the fields
can no longer be separated into independent left- and right-handed representations of
the Lorentz group1. It should be stressed that due the chosen signature ηmn = ηmn =
diag(1,−1,−1,−1,−1), one has to distinguish γ5 = η55γ5 = −γ5 = diag(−1,1) . We
define Γm = (γµ, iγ5) and Γm = (γµ,−iγ5) = (γµ, iγ5). In general, a curved background
asks for a spin connection, which has to be added to the partial derivative within the
kinetic term ∂M → ∂M + ωM . For the RS model we find [27]

ωµ = −i k
2

sgn(φ)eσ(φ)γ5γµ , ω5 = 0 . (6.3)

The 4D space-time components of the spin connection are odd under Z2 orbifold symme-
try, and therefore vanish within the integration over the bulk from −π to π. The fifth
component on the other hand is identical to zero.

Before we are able to proceed, we first have to answer the following question: How can we
get a chiral low-energy 4D theory out of a non-chiral 5D one? At this point, the Z2-parity
enters the stage. As already mentioned, it is still possible to define projection operators.
Therefore, we may assign different parities to the Dirac spinors ΨL and ΨR. A crucial
point is that only even fields possess a zero mode. Thus, we are able to construct a theory
which involves a massless ground state with one specific chirality, and a tower of massive
non-chiral Dirac spinors. As we need a massless ground state for both the left-handed
and the right-handed fields, we need to introduce a second set of fermions with opposite
Z2-parity assignments [27]. As a consequence, the number of KK modes gets doubled.

1Of course, one is still allowed to define projectors PL,R (1.18) in order to write Ψ = ΨL + ΨR, where
ΨL,R are four-component Dirac spinors with the last (first) two elements are equal to zero.
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6 Fermions in the bulk

In this thesis, we consider three generations of 5D fermions in the bulk. They are grouped
into SU(2)L doublets Q and singlets uc and dc, where each of them is a three-component
vector in flavor space. It follows that the KK tower is made up of bunches, each with
six KK excitations of similar masses. We will denote these bunches as KK levels in the
following.

6.1 Action of the 5D theory

For the purpose of this thesis, we will only study the decomposition of quark fields. The
extension to leptons is obvious. After switching to t-notation, and taking into account the
IR boundary terms from EWSB2, the quadratic terms in the 5D action of the minimal RS
model can be written in the form3 [34, 67]

Sferm,2 =

∫
d4x r

2π

L

∫ 1

ǫ

dt

t{
ǫ3

t3

(
Q̄ i/∂ Q+

∑

q=u,d

q̄ c i/∂ qc
)
− ǫ4

t4

(
Q̄MQQ+

∑

q=u,d

q̄ c Mq q
c

)
(6.4)

− kǫ4t−1

[
Q̄L ∂tt

−2QR − Q̄R ∂tt
−2QL +

∑

q=u,d

(
q̄ cL ∂tt

−2 qcR − q̄ cR ∂tt−2 qcL

)]

− δ(t− 1)
ǫ3v

2
√

2r

[
ūL Y (5D)

u ucR + d̄L Y
(5D)
d dcR + ūR Y (5D)

u ucL + d̄R Y
(5D)
d dcL + h.c.

]}
.

Here, MQ,q are diagonal matrices containing the (real) bulk masses, which can be positive
or negative. In fact, phenomenology requires that the bulk masses are clustered around
the values MQi

≈ −k/2 and Mqi ≈ +k/2. Note that the choice of diagonal bulk masses is
convenient, but not necessary in general. However, as the diagonal structure can always
be achieved by appropriate field redefinitions [34], there is no need to study the more
complicated case of off-diagonal entries. We will refer to our choice as the bulk-mass basis.
The 5D Yukawa matrices Y

(5D)
q correspond to the latter basis. Up to them, all other terms

in (6.4) are invariant under a basis rotation. In the following, we define the dimensionless
4D Yukawa matrices via

Y (5D)
q ≡ 2Yq

k
, q = u, d . (6.5)

Of course, the latter definition is not unique. For instance, one could define Y ′
q ≡

Y
(5D)
q /(2πr) = Yq/L [34] in analogy to the relation between the 5D and 4D gauge cou-

plings, which seems to be a more natural choice. The definition (6.5) therefore absorbs a
factor L, which appears in the square of the fermion profiles evaluated at the IR brane, as

2Here, we have already implemented a rescaling of the Higgs field in order to obtain canonical normalized
kinetic terms [19].

3We use a superscript c to label SU(2)L singlets.
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6.2 Kaluza-Klein decomposition

we will see in a moment. Nevertheless, we choose the defintion (6.5), as it is common in
the literature.

The left-handed (right-handed) components of the SU(2)L doublet Q are chosen to have
even (odd) Z2-parity. Likewise, the right-handed (left-handed) components of the singlets
uc and dc are even (odd). As mentioned above, without the Yukawa interactions, each
5D fermion would decompose into a massless Weyl fermion and a tower of massive KK
excitations. After EWSB, the Yukawa couplings replace the massless modes by light SM-
like fermions.

One may wonder, why we have written down terms of the form q̄R Y
(5D)
u qcL, which would

not be there in the SM. From the 5D point of view, this is just explained by the vector-like
nature of 5D quarks. Within the KK decomposition in the presence of EWSB, KK fermions
of left-handed SU(2)L doublets will be mixed with left-handed SU(2)L singlets. On the
other hand, the right-handed singlets will be mixed with right-handed doublets. Moreover,
the presence of the Higgs sector will change the bare profiles of the unbroken scenario.
The profiles of quark fields become discontinuous at the IR brane [68]. The Z2-odd profiles
of qR and qcL gain a non-vanishing value at t = 1−, while they have to be zero at t = 1.
Indeed, the treatment of the Higgs couplings to fermions and the derivation of the BCs for
the fermionic bulk EOMs, requires a proper regularization of the δ-function [67].

6.2 Kaluza-Klein decomposition

For the following discussion, Dirac spinors in the effective 4D theory are separated according
to q(n) = q

(n)
L + q

(n)
R . In formal analogy to the extended gauge boson sector, we introduce

three-vectors in flavor space QL,R(x, t) and qcL,R(x, t), which are supposed to be decomposed
into the same 4D basis of quark fields. We have to discriminate between the left- and
right-handed components, as we want them to have different Z2-parity assignments. At
this point one can make use of the fact that the fields QL,R(x, t) and qcL,R(x, t) can be
expanded in terms of the same three-component mixing vectors ~aQn and ~aqn , respectively.
As a consequence, the Z2-even and odd profiles are normalized in the same way. Having
all this in mind, we write the KK decomposition of the 5D fields in the form [34, 53]

QL(x, t) =
1√
r

t2

ǫ2

∑

n

CQ
n (t)~aQn q

(n)
L (x) , QR(x, t) =

1√
r

t2

ǫ2

∑

n

SQ
n (t)~aQn q

(n)
R (x) ,

qcL(x, t) =
1√
r

t2

ǫ2

∑

n

Sq
n(t)~a

q
n q

(n)
L (x) , qcR(x, t) =

1√
r

t2

ǫ2

∑

n

Cq
n(t)~a

q
n q

(n)
R (x) ,

(6.6)

where Q = U,D , q = u, d and we pulled out a factor eσ = t2/ǫ2 for convenience. The
index n labels the mass eigenstates with fermion masses mn. The vectors ~aQ,qn parametrize
the flavor mixing of the “bare” fermion profiles, which are collected into the diagonal 3× 3
matrices of CQ,q

n and SQ,q
n , where each entry refers to a different bulk mass parameter (in

the bulk mass basis). Here, the matrices CQ,q
n contain profiles with even Z2-parity, while
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6 Fermions in the bulk

SQ,q
n collect the odd ones. Note that we have to distinguish the associated vectors ~aUn and

~aDn .
Inserting these relations into the action (6.4), and applying the 5D variational principle,

one derives the equations of motion [34, 53]

(
− t∂t − cQ

)
SQ
n (t)~aQn = −xn tCQ

n (t)~aQn + δ(t− 1)
v√

2MKK

Yq C q
n(t)~a

q
n ,

(
t∂t + cq

)
S q
n(t)~a

q
n = −xn tC q

n(t)~a
q
n + δ(t− 1)

v√
2MKK

Y †
q CQ

n (t)~aQn ,

(
t∂t − cQ

)
CQ
n (t)~aQn = −xn tSQ

n (t)~aQn + δ(t− 1)
v√

2MKK

Yq S q
n(t)~a

q
n ,

(
− t∂t + cq

)
C q
n(t)~a

q
n = −xn tS q

n(t)~a
q
n + δ(t− 1)

v√
2MKK

Y †
q SQ

n (t)~aQn ,

(6.7)

where again xn = mn/MKK, and we have defined the dimensionless bulk mass parameters
cQ,q = ±MQ,q/k .

For t 6= 1, the general solutions [28, 27] to the above equations can be written as linear
combinations of Bessel functions. The presence of the source terms on the IR brane dictates
the boundary behavior of the fields. Finding the correct IR BCs requires a proper regular-
ization [67]. The most simple possibility consists of replacing the δ-functions appearing in
(6.7) by a rectangular function

δη(t− 1) =





1

η
, t ∈ [1− η, 1] ,

0 , otherwise ,

(6.8)

where the limit η → 0 is to be taken at the end. Keeping only terms which may become
singular in the infinitesimal range t ∈ [1− η, 1], the EOMs (6.7) close to the IR brane take
the simpler form

−∂t SQ
n (t)~aQn = δη(t− 1)

v√
2MKK

Yq C q
n(t)~a

q
n ,

∂t S
q
n(t)~a

q
n = δη(t− 1)

v√
2MKK

Y †
q CQ

n (t)~aQn ,

∂t C
Q
n (t)~aQn = δη(t− 1)

v√
2MKK

Yq Sq
n(t)~a

q
n ,

−∂t C q
n(t)~a

q
n = δη(t− 1)

v√
2MKK

Y †
q SQ

n (t)~aQn .

(6.9)

Combining the first (second) with the fourth (third) relation and using (6.8), we obtain

[
∂2
t −

(
Xq

η

)2
]

SQ
n (t) = 0 ,

[
∂2
t −

(
X̄q

η

)2
]

S q
n(t) = 0 , (6.10)
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where

Xq ≡
v√

2MKK

√
Yq Y

†
q , X̄q ≡

v√
2MKK

√
Y

†
q Yq . (6.11)

Imposing the BCs SQ,q
n (1) = 0 and matching SQ,q

n (1− η) onto the bulk solutions of (6.7),
evaluated in the limit t→ 1−, we find that the differential equations (6.10) are solved by

SQ
n (t) =

sinh

(
Xq

η
(1− t)

)

sinh
(
Xq

) SQ
n (1−) , S q

n(t) =

sinh

(
X̄q

η
(1− t)

)

sinh
(
X̄q

) S q
n(1

−) .
(6.12)

This implies that in the interval t ∈ [1− η, 1] the Z2-even fermion profiles take the form

CQ
n (t) =

cosh

(
Xq

η
(1− t)

)

cosh
(
Xq

) CQ
n (1−) , C q

n(t) =

cosh

(
X̄q

η
(1− t)

)

cosh
(
X̄q

) C q
n(1

−) .
(6.13)

Reinserting the solutions (6.12) and (6.13) into (6.9), allows us to determine the IR BCs,
which relate the Z2-even profiles with the odd ones at t = 1−. The resulting expressions
read

SQ
n (1−)~aQn =

v√
2MKK

Yq

(
X̄q

)−1
tanh

(
X̄q

)
C q
n(1

−)~aqn ,

−S q
n(1

−)~aqn =
v√

2MKK

Y †
q

(
Xq

)−1
tanh

(
Xq

)
CQ
n (1−)~aQn .

(6.14)

Next, we introduce the rescaled Yukawa matrices [53]

Ỹq ≡ f

(
v√

2MKK

√
Y~qY

†
~q

)
Yq , f(A) = A−1 tanh (A) , (6.15)

which are given by the original ones plus some higher order correction, i.e.Ỹq = Yq +
O(v2/M2

KK). Thus, the IR BCs at t = 1− are given by

SQ
n (1−)~aQn =

v√
2MKK

Ỹq C q
n(1−)~aqn ,

−S q
n(1−)~aqn =

v√
2MKK

Ỹ †
q CQ

n (1−)~aQn .
(6.16)

In [53], the same result has been derived in a complete general manner, which does not
rely on the concrete choice of the regularization function.

Without the brane-localized Yukawa terms, the profiles C
(Q,u)
n and S

(Q,u)
n form complete

sets of even and odd functions on the orbifold, which can be chosen to obey orthonormal-
ity conditions independent from each other [28] . As it turns out, the δ-function terms
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6 Fermions in the bulk

in the above EOMs (6.7) are inconsistent with these. We thus impose the generalized
orthonormality conditions

2π

Lǫ

∫ 1

ǫ

dtC(Q,u)
m (t) CQ,u

n (t) = δmn 1 + ∆CQ,u
mn ,

2π

Lǫ

∫ 1

ǫ

dtS(Q,u)
m (t) SQ,u

n (t) = δmn 1 + ∆SQ,u
mn ,

(6.17)

and find that the 4D action reduces to the desired canonical form

Sferm,2 =
∑

n

∫
d4x

[
ū(n)(x) i/∂ u(n)(x)−mn ū

(n)(x)u(n)(x)
]
, (6.18)

if and only if, in addition to the BCs, the relation

~aQ,q †m

(
δmn1 + ∆CQ,q

mn

)
~aQ,qn + ~aq,Q †

m

(
δmn1 + ∆S q,Q

mn

)
~aq,Qn = δmn (6.19)

is fulfilled. Without loss of generality, we can choose

~aQ †
n ~aQn + ~aq †n ~aqn = 1 , ~aQ,q †m ∆CQ,q

mn ~a
Q,q
n + ~aq,Q †

m ∆S q,Q
mn ~a

q,Q
n = 0 . (6.20)

This is possible due to the freedom of exchanging normalization factors between the flavor
vectors ~aQ,qn and the corresponding profiles.

The fact that the profiles do not fulfill separate orthonormality conditions is in complete
analogy to the situation within the extended gauge sector. Indeed, from (6.19) it is apparent
that the vectors

~ψLn(t) =

√
2π

Lǫ

(
CQ
n (t)~aQn

Sq
n(t)~a

q
n

)
and ~ψRn(t) =

√
2π

Lǫ

(
Cq
n(t)~a

q
n

SQ
n (t)~aQn

)
(6.21)

fulfill the canonical orthonormality relations

∫ 1

ǫ

dt ~ψ †
Lm

(t) ~ψLn(t) =

∫ 1

ǫ

dt ~ψ †
Rm

(t) ~ψRn(t) = δmn . (6.22)

This has to be the case as the corresponding 5D fields are decomposed into the same set
of 4D fields (6.6). Opposed to the gauge sector, it is however not sensible to express the
theory in terms of the latter objects. The reason is that the components of (6.21) have
different gauge quantum numbers with respect to SU(2)L. Therefore, weak interactions
will distinct the entries. As a consequence, the corrections to the separate orthonormality
relations (6.17) will give rise to observable effects. Therefore, we have to derive explicit
expressions for the corretion terms ∆C q,Q

mn and ∆S q,Q
mn . With the help of the EOMs, one

can show that

mm∆CQ,q
mn −mn∆SQ,q

mn = ±2

r
CQ,q
n (1−) SQ,q

m (1−) . (6.23)

76



6.3 Bulk profiles

Using the symmetry of the relations (6.17) in m and n, we obtain for m 6= n

∆CQ,q
mn = ±2

r

mm CQ,q
n (1−) SQ,q

m (1−)−mn CQ,q
m (1−) SQ,q

n (1−)

m2
m −m2

n

,

∆SQ,q
mn = ∓2

r

mm CQ,q
m (1−) SQ,q

n (1−)−mn CQ,q
n (1−) SQ,q

m (1−)

m2
m −m2

n

.

(6.24)

Finally, using the explicit results for the bulk profiles which are derived in Section 6.3, one
finds that

∆CQ,q
nn = −∆SQ,q

nn = ± 1

rmn

CQ,q
n (1−) SQ,q

n (1−) . (6.25)

One would naively expect that the extra terms in the generalized orthonormality conditions
(6.17) are small corrections of the order v/MKK. However, as we will see below, these terms
are of O(1) for the profiles of the light SM-like fields.

Finally, we want to derive the spectrum from the regularized BCs (6.16). These relations
can be written as a system of linear equations for the components of the vectors ~aQ,qn

SQ
n (1−)~aQn = − v2

2M2
KK

Ỹu Cq
n(1

−)
[
Sq
n(1

−)
]−1

Ỹ †
u CQ

n (1−)~aQn ,

Sq
n(1

−)~aqn = − v2

2M2
KK

Ỹ †
u CQ

n (1−)
[
SQ
n (1−)

]−1
Ỹu Cq

n(1
−)~aqn ,

(6.26)

where we have used that the matrices SQ,q
n are non-singular, such that the inverse matrices

exist. The mass eigenvalues xn are solutions to the equation

det

(
1− v2

2M2
KK

[
SQ
n (1−)

]−1
Ỹq Cq

n(1
−)
[
−Sq

n(1
−)
]−1

Ỹ †
q CQ

n (1−)

)
= 0 . (6.27)

Once they are known, the eigenvectors ~aQ,qn follow from (6.26). Note that the latter are
complex-valued objects in general.

6.3 Bulk profiles

The explicit form of the profiles (CQ,q
n )i and (SQ,qn )i associated with bulk mass parameters

cQi,qi (with q = u, d) has been obtained in [27, 28]. For the following discussion, we will
drop the flavor index i. In analogy to the gauge sector, one can derive a Bessel equation,
which is solved by

CQ,q
n (t) = Nn(cQ,q)

√
Lǫt

π
f+
n (t, cQ,q) ,

SQ,qn (t) = ±Nn(cQ,q)
√
Lǫt

π
f−
n (t, cQ,q) ,

(6.28)

77
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where
f±
n (t, c) = J− 1

2
−c(xnǫ) J∓ 1

2
+c(xnt)± J 1

2
+c(xnǫ) J± 1

2
−c(xnt) . (6.29)

If we would perform our calculations using the coordinate φ ∈ [−π, π], we would have
to include a factor sgn(φ) to the odd profiles. In t-notation, integrants with overall odd
Z2-parity like CQ,q

m (t)SQ,qn (t) have to be set to zero, as long as those expressions are not
evaluated by means of a δ-function. From the orthonormality relations (6.17) it follows
that

2

∫ 1

ǫ

dt t
[
f±
n (t, c)

]2
=

1

N 2
n(c)

± f+
n (1−, c) f−

n (1−, c)

xn
, (6.30)

and the normalization factor in (6.28) is given by

N−2
n (c) =

[
f+
n (1−, c)

]2
+
[
f−
n (1−, c)

]2 − 2c

xn
f+
n (1−, c) f−

n (1−, c)

− ǫ2
( [
f+
n (ǫ, c)

]2
+
[
f−
n (ǫ+, c)

]2 )
.

(6.31)

For the odd fermion profiles of the minimal model, the last term in the latter expression
vanishes due to the UV BC. The custodial RS model however may contain odd fermion
profiles with a non-vanishing UV boundary value at the point ǫ+ ≡ limθ→0+ (ǫ + θ) . For
the special cases where c + 1/2 is an integer, the profiles must be obtained by a limiting
procedure.

As even the top-quark is much lighter than the KK scale, it is a very good approximation
to expand the above results in xn ≪ 1 for all the zero modes. We find

CQ,q
n (t) ≈

√
Lǫ

π
F (cQ,q) t

cQ,q ,

SQ,qn (t) ≈ ±
√
Lǫ

π
xnF (cQ,q)

t1+cQ,q − ǫ1+2cQ,q t−cQ,q

1 + 2cQ,q
,

(6.32)

where we have introduced the “zero-mode profile” [27, 28] on the IR brane

F (c) ≡ sgn[cos(πc)]

√
1 + 2c

1− ǫ1+2c
. (6.33)

The sign factor in (6.33) is chosen such that the signs in (6.32) agree with those derived
from the exact profiles (6.28). The bulk-mass parameter c controls the localization of
the fermions within the bulk. For c < −1/2, the profiles are UV-localized, while they
grow towards the IR brane for c > −1/2. The quantity F (c) decreases exponentially with
increasing UV-localization of the fermions, where it isO(1) for IR-localized ones. Explicitly
we find the behavior

F (c) ≈





−
√
−1− 2c ǫ−c−

1
2 , −3/2 < c < −1/2 ,

√
1 + 2c , −1/2 < c < 1/2 .

(6.34)
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6.4 Hierarchies of fermion masses and mixings

The latter observation is crucial for the suppression of dangerous four-fermion operators.
As it turns out, all KK-modes (fermions and gauge bosons) are localized towards the IR
brane. As a consequence, KK-gauge boson couplings to light quarks (c < −1/2) will
always receive an exponential suppression, and therefore minimize NP corrections within
light-quark interactions. This is known as RS-GIM mechanism [69, 70]. From now on, we
will refer to the first order in the expansion of the exact profiles in terms of xn ≪ 1 as
the zero-mode approximation (ZMA). The so-obtained expressions agree with those of the
perturbative approach, where one first solves the bulk EOMs (6.7) without the Yukawa
couplings and then treats the latter as a perturbation [28, 27, 71].

6.4 Hierarchies of fermion masses and mixings

In order to study the mixing among different fermion generations, we need the profiles
evaluated at the IR brane. We start our analysis with the zero modes and show how the
hierarchical quark-mass pattern of the SM can be obtained from O(1) input parameters.
Therefore, we apply the ZMA and insert the IR boundary values

C(Q,q)
n (1−) =

√
Lǫ

π
F (cQ,q) , S(Q,q)

n (1−) = ±
√
Lǫ

π

xn
F (cQ,q)

. (6.35)

into the BCs (6.16). These can now be written as

√
2mn

v
âQn = Y eff

u âqn ,

√
2mn

v
âqn = (Y eff

q )† âQn , (6.36)

with n = 1, 2, 3 , where the effective Yukawa matrices

Y eff
q ≡ diag [F (cQi

)] Ỹq diag
[
F (cqj)

]
=

√
2

v
Uq diag [mq1,mq2,mq3] W

†
q (6.37)

factorize into a product of zero-mode profiles and rescaled Yukawa couplings (Ỹq)ij. As we
will explain below, the latter can taken to be anarchic O(1) complex numbers within the
RS model. The rescaled vectors âAn ≡

√
2~aAn obey the normalization conditions

âQ†
n âQn = âq†n â

q
n = 1 . (6.38)

From (6.36), we thus obtain the simple equations

(
m2
n 1− v2

2
Y eff
q (Y eff

q )†
)
âQn = 0 ,

(
m2
n 1− v2

2
(Y eff

q )† Y eff
q

)
âqn = 0 . (6.39)

The mass eigenvalues are the solutions to

det

(
m2
n 1− v2

2
Y eff
q (Y eff

q )†
)

= 0 . (6.40)
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6 Fermions in the bulk

Notice that in the ZMA, but not in general, the vectors aAm and âAn with m 6= n are
orthogonal on each other.

The eigenvectors âQn and âqn of the matrices Y eff
q

(
Y eff
q

)†
and

(
Y eff
q

)†
Y eff
q form the columns

of the unitary matrices Uq and Wq appearing in the singular-value decomposition intro-
duced in (6.37). It follows that in the ZMA, the transformation between the SM-like weak
interaction eigenstates and mass eigenstates is provided by the matrices Uq and Wq. The
former apply to the SU(2)L doublets with bulk mass parameters cQi

, the latter to singlets
with masses cqi . Thus, to the zeroth order in v/MKK, the CKM mixing matrix is given by

VCKM = U †
u Ud . (6.41)

Due to the expression (6.37), the RS model has a build-in Froggatt-Nielsen mechanism
[72]. The latter relates hierarchies in the quark-mass pattern to those appearing in the
CKM matrix, provided there is a theory of flavor, which gives rise to a factorizing Yukawa
structure. In our case, the hierarchies of the quark masses can be adsorbed into the
zero-mode profiles by an appropriate choice of the bulk mass parameters. Due to the
exponential behavior for c < −1/2 (6.34), we can generate light quark masses with O(1)
Yukawa couplings for bulk mass parameters slightly below −1/2. The mass of the top
quark is of the order of the EW scale4, and therefore should not receive a suppression due
to its profile. As a consequence, the latter should be IR localized.

Let us now understand, how the warped-space Froggatt-Nielsen mechanism [70, 34]
works: The products of up- and down-type quark masses is obtained from the determinant
of the equation (6.37),

mumcmt =
v3

2
√

2
|det (Yu)|

∏

i=1,2,3

|F (cQi
)F (cui

)| ,

mdmsmb =
v3

2
√

2
|det (Yd)|

∏

i=1,2,3

|F (cQi
)F (cdi

)| ,
(6.42)

where one uses det(Uq) = det(Wq) = 1. If we assume a little hierarchy in the bulk mass
parameters, giving rise to a sizable hierarchy in

|F (cA1
)| < |F (cA2

)| < |F (cA3
)| , (6.43)

we can consistently evaluate all the eigenvalues to leading order in hierarchies. Thus, we
obtain

mu =
v√
2

| det(Yu)|
|(Mu)11|

|F (cQ1
)F (cu1

)| , md =
v√
2

| det(Yd)|
|(Md)11|

|F (cQ1
)F (cd1)| ,

mc =
v√
2

|(Mu)11|
|(Yu)33|

|F (cQ2
)F (cu2

)| , ms =
v√
2

|(Md)11|
|(Yd)33|

|F (cQ2
)F (cd2)| ,

mt =
v√
2
|(Yu)33| |F (cQ3

)F (cu3
)| , mb =

v√
2
|(Yd)33| |F (cQ3

)F (cd3)| ,

(6.44)

4Indeed, within the SM the top-quark mass is the only one which seems to be natural, as the required
Yukawa coupling is O(1). The existence of light quark masses is part of what is called the “flavor
puzzle” today.
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6.4 Hierarchies of fermion masses and mixings

where (Mq)ij denotes the minor of Yq, i.e., the determinant of the square matrix formed
by removing the ith row and the jth column from Yq.

To leading order in hierarchies, the elements of the matrices Uq and Wq are given by

(Uq)ij = (uq)ij





F (cQi
)

F (cQj
)
, i ≤ j ,

F (cQj
)

F (cQi
)
, i > j ,

(Wq)ij = (wq)ij e
iφj





F (cqi)
F (cqj)

, i ≤ j ,

F (cqj)
F (cqi)

, i > j .

(6.45)

The non-hierarchical entries of the matrices uq and wq, as well as the phase factor eiφj , are
given in [34]. There, we also collect approximate expressions for the Wolfenstein parameters

λ =
|Vus|√

|Vud|2 + |Vus|2
, A =

1

λ

∣∣∣∣
Vcb
Vus

∣∣∣∣ , ρ̄− iη̄ = −V
∗
udVub
V ∗
cdVcb

, (6.46)

in terms of zero-mode profiles and entries of the up- and down-type Yukawa matrices Ỹu and
Ỹd. These, in combination with (6.44), can be used for the generation of RS parameter sets
consisting of bulk masses and the Yukawa matrices, which reproduce the observed masses
and CKM structure. As an example, we quote the scaling behavior of the SU(2)L doublet
profiles in terms of the parameter λ ≈ 0.225 ,

|F (cQ1
)|

|F (cQ2
)| ∼ λ ,

|F (cQ2
)|

|F (cQ3
)| ∼ λ2 , |F (cQ3

)| ∼ O(1) . (6.47)

The related ratios of the singlet profiles can be obtained from (6.47) with the help of (6.44).
The ZMA formulas (6.44) and the expressions for the CKM parameters given in [34] are
used for the random generation of RS parameter sets. It is interesting to note that to LO
order, the size of the chosen KK scale has no impact on the spectrum and the quark mixing.
It is solely controlled by the localization pattern and the choice of Yukawa couplings.

Finally, we want to discuss the mass spectrum and flavor mixing of KK modes. There-
fore, we make use of the exact relations derived in the previous subsections. As an example,
we study the first level of KK quarks numerically, using default parameters given in Ap-
pendix A.1 and assuming MKK = 2 TeV. Due to the existence of two fermion sets with
opposite Z2-parity assignments, we obtain six mass states for each KK-level in each sector.
In Figure 6.1 we compare the exact mass spectrum of these states with the spectrum ob-
tained without Yukawa couplings. The “undisturbed states” correspond to pure SU(2)L
doublets and singlets, labeled by Q1, Q2, Q3 and u, c, t or d, s, b, respectively. The
Yukawa couplings induce mixings between fields with different flavor and SU(2)L quantum
numbers, which are visualized by the bar charts at the bottom of each panel. The area of
each colored region is proportional to the square of the absolute value of the corresponding
entry in the mixing vectors ~a

(U,D)
4−9 and ~a

(u,d)
4−9 , which appear in the KK decomposition (6.6)

of the fermion fields.
Naively, one might expect the flavor mixings between KK fermions to be small, as the

KK scale is much larger than the Higgs vacuum expectation value. However, as it is evident
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Figure 6.1: Mass spectrum of the first KK excitations of the up- (left) and down-type
(right) quarks. Black lines show the exact masses, while gray lines show
the masses obtained by switching off the Yukawa couplings. The mixings
of the mass eigenstates are visualized by the bar charts at the bottom of
each panel. See text for details.

from Figure 6.1, we find O(1) mixing effects. This is explained by the near degeneracy
of the 5D bulk masses of the corresponding fermion fields. The mass splittings of the
undisturbed KK states turn out to be of order of the Higgs VEV v. Therefore, the latter
induces O(1) mixings among the KK excitations of the same KK level. The top singlet is
an exception due to its strong IR localization. As a consequence, its bare KK mass differs
from the others about some TeV, and is close to the masses of the next KK level. The
related flavor mixing is therefore at the percent level of the order v2/M2

KK. Note that in our
reference point, we have chosen a rather large bulk mass ctR = 0.874. One could also choose
a negative value, as long as it is larger than −1/2. The fact that the zero-mode profiles
behave like

√
1 + c in the infra-red region (opposed to the exponential scaling behavior in

the ultra-violet) allows for a big scattering range.

The generation mixing of KK modes is an important example where the approach of
treating the Yukawa couplings as a small perturbation is inadequate in general. On the
other hand, we have shown explicitly that the spectrum can be reproduced perturbatively
to good approximation [32]. This is achieved by solving the bulk EOM (6.7) without
Yukawa couplings, which are then introduced as interactions afterwards. The resulting
mass matrix is then diagonalized for a truncated basis of KK-states [73].
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6.5 Embeddings into the custodial gauge group

Q QX Y T 3
L T 3

R

u
(+,+)
L 2/3 1/6 1/6 1/2 0

d
(+,+)
L −1/3 1/6 1/6 −1/2 0

u
c (+,+)
R 2/3 1/6 1/6 0 −1/2

Q QX Y T 3
L T 3

R

d
′ (−,+)
R −1/3 1/6 1/6 0 1/2

u
′ (−,+)
R 2/3 1/6 1/6 0 −1/2

d
c (+,+)
R −1/3 1/6 1/6 0 1/2

Table 6.1: Charge assignments of the different quark fields in the left-right symmet-
ric custodial RS model. Of course, the same values hold for the Z2-odd
counterparts.

6.5 Embeddings into the custodial gauge group

We will now give a short discussion of possible fermion embeddings into the extended gauge
group (4.1) of the custodial RS model. Here, one has to carefuly distinguish between the
chiralities L,R of the quark fields, and the gauge-group charge assignments. These are
labeled by the same capital letters, but have a different theoretical meaning. Of course,
within the SM the left-handed quark is taken to be charged under SU(2)L, while the right-
handed is not. As the RS model deals with heavy vector-like particles, one has, already in
the minimal model, both chiralities coupled to one specific gauge group. The presence of
a gauged SU(2)R may therefore lead to additional confusion.

Coming back to the possibilities of embeddings, one may choose all left-handed quark
fields, which have zero mode in the weak-interaction basis, to be doublets (singlets) under
SU(2)L (SU(2)R). Fields with a right-handed zero-mode are taken to be doublets under
SU(2)R and singlets under SU(2)L. This left-right symmetric assignment has been used
in [88] recently, for instance. The covariant derivative (4.6) implies the relation

Q = T 3
L − T 3

R +QX = T 3
L + Y , (6.48)

and fixes the quantum numbers of the other fields uniquely. The following multiplet struc-
ture for the quark fields of even (first line) and odd (second line) Z2-parity is observed:

QL ≡
(
u

(+,+)
L

d
(+,+)
L

)

1
6

, UR ≡
(
d
′ (−,+)
R , u

c (+,+)
R

)
1
6

, DR ≡
(
d
c (+,+)
R , u

′ (−,+)
R

)
1
6

,

QR ≡
(
d

(−,−)
L , u

(−,−)
R

)
1
6

, UL ≡
(
u
c (−,−)
L

d
′ (+,−)
L

)

1
6

, DL ≡
(
u
′ (+,−)
L

d
c (−,−)
L

)

1
6

.

(6.49)

The SU(2)L transformations act vertically, while the SU(2)R transformations act horizon-
tally on the multiplets. All quark fields are understood to be three-vectors in flavor space.
The superscripts specify the type of BCs on the UV/IR boundary for the respective chi-
rality, which have been chosen such to obtain the desired low-energy spectrum. As in the
gauge sector, we denote Neumann BCs by (+) and Dirichlet BCs by (−). The subscripts
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Q QX Y T 3
L T 3

R

u
(+)
L 2/3 2/3 1/6 1/2 1/2

d
(+)
L −1/3 2/3 1/6 −1/2 1/2

λ
(−)
L 5/3 2/3 7/6 1/2 −1/2

u
′ (−)
L 2/3 2/3 7/6 −1/2 −1/2

Q QX Y T 3
L T 3

R

u
c (+)
R 2/3 2/3 2/3 0 0

Λ
′ (−)
R 5/3 2/3 2/3 1 0

U
′ (−)
R 2/3 2/3 2/3 0 0

D
′ (−)
R −1/3 2/3 2/3 −1 0

Q QX Y T 3
L T 3

R

D
(+)
R −1/3 2/3 −1/3 0 1

U
(−)
R 2/3 2/3 2/3 0 0

Λ
(−)
R 5/3 2/3 5/3 0 −1

Table 6.2: Charge assignments of the different quark fields in the extended custodial
model.

correspond to the U(1)X charges, where the charge under U(1)e.m. is evident from the nam-
ing of the quark fields. The quantum numbers are summarized in Table 6.1. Altogether
there are nine different quark fields in the up and down sector, respectively. Due to the
BCs, there will be six light modes in each sector, three left-handed SU(2)L doublets and
three right-handed SU(2)L singlets. These are to be identified with the SM quarks. The
three zero modes of a given chirality are accompanied by KK towers, which contain nine
modes of similar masses at each KK level.

A much more popular though more complicated embedding has been proposed in [24],
where the authors achieved a protection of the Z0bLb̄L vertex from vast corrections by an
appropriate choice of the gauge quantum numbers of the third generation. The left-handed
SU(2)L doublet of the SM is extended to a bi-doublet under SU(2)L × SU(2)R. The left-
handed bottom quark has isospin quantum numbers T 3

L = −T 3
R = −1/2. This fixes the

quantum numbers of the other fields uniquely and implies the following multiplet structure
for the quark fields with even Z2 parity:

QL ≡
(

u
(+,+)
L 2

3

λ
(−,+)
L 5

3

d
(+,+)
L − 1

3

u
′ (−,+)
L 2

3

)

2
3

, ucR ≡
(
u
c (+,+)
R 2

3

)
2
3

,

TR ≡ T1R ⊕ T2R ≡




Λ
′ (−,+)
R 5

3

U
′ (−,+)
R 2

3

D
′ (−,+)
R − 1

3




2
3

⊕
(
D

(+,+)
R − 1

3

U
(−,+)
R 2

3

Λ
(−,+)
R 5

3

)
2
3

.

(6.50)

Here, we have chosen the same SU(2)L×SU(2)R representations for all three generations,
in order to consistently incorporate quark mixing in the fully anarchic approach to flavor
in WEDs. The choice of the parities is again motivated by the low-energy spectrum of
the theory. The quantum numbers of the quark fields are summarized in Table 6.2. The
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6.5 Embeddings into the custodial gauge group

right-handed down-type quarks have to be embedded in a SU(2)R triplet in order to arrive
at an U(1)X-invariant Yukawa coupling [54]. Altogether, the embedding (6.50) features 15
different quark fields in the up-type and nine in the down-type sector. Moreover one also
has a KK tower of exotic fermion fields of electric charge 5/3, which has nine excitations
in each level. In addition to (6.50) we have a second set of multiplets, belonging to the
components of opposite chirality. The corresponding states have opposite BCs and Z2-
parity assignments. In particular, they all obey Dirichlet BCs at the IR brane and do
not posses a zero mode in the weak-interaction basis. The mechanism of the custodial
protection of the Z0bLb̄L vertex is discussed in the next section, where we study gauge
couplings to fermions.

At this point, we want to shortly explain, how the analysis of the decomposition within
the minimal model is extended to fermions in the custodial one. By virtue of our exact
treatment, the generalization is straightforward. To get started, one collects all fields which
should be decomposed into the same basis of 4D fields (that is states with equal chirality
and electric charge) into a common 5D vector. Within the left-right symmetric model for
instance, we define

~U ≡ u , ~u ≡
(
uc

u′

)
, ~D ≡ d , ~d ≡

(
d′

dc

)
. (6.51)

In the extended custodial model, we obtain

~U ≡
(
u
u′

)
, ~u ≡




uc

U ′

U


 , ~D ≡ d , ~d ≡

(
D
D′

)
, ~Λ ≡ λ , ~λ ≡

(
Λ′

Λ

)
. (6.52)

The KK decomposition is now performed into analogy to (6.6), where the diagonal profile
matrices and the flavor mixing vectors have to be replaced by larger objects, if required.
For the latter representation, this has been explicitly done in [53]. We are therefore not
going to repeat the whole analysis again, but rather close this section with some useful
remarks.

The profiles of the (+,+) fields in (6.51) and (6.52) are given by the Z2-even solution

in (6.28). We rename the solution f
(+)+
n (t, c) ≡ f+

n (t, c), where the plus sign in brackets
denotes the type of the UV BC. Though they are even, the profiles of the (−,+) fields
satisfy the UV BC of “ordinary” Z2-odd fields. The solution of the former is denoted by
f

(−)+
n (t, c), where the solution of the latter is f

(+)−
n (t, c) ≡ f−

n (t, c). Here, the plus sign in
brackets refers to the UV BC of the related even profile. In other words, all fields that are
present in the minimal model carry a superscript (+). Furthermore, we have odd solutions

with Neumann UV BC f
(−)−
n (t, c), where (−) refers to the Dirichlet BC of the related even

profile. Although this notation may seem to be confusing at first sight, it turns out to be
very convenient, as it allows for a compact notation for many calculations. If we define the
bulk mass parameters in analogy to the minimal model as cQ = MQ/k, and cA = −MA/k
for A = uc, T1, T1 , we find that the (−) fields have to be related to the known (+) fields
by the equalities

f (+)+
n (t, c) = f (−)−

n (t,−c) , and f (+)−
n (t, c) = −f (−)+

n (t,−c) . (6.53)
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6 Fermions in the bulk

By inspection of the zero-mode solutions (6.32) we conclude that within the mass eigenba-
sis, the profiles of the additional even fermions are suppressed by xn. The profiles of the
additional odd solutions on the other hand do not receive such a suppression. However,
as it turns out, there is a factor xn in the ZMA expression of the respective entries of
the generalized flavor mixing matrices. Thus, any corrections to light-fermion interactions
caused by the additional heavy states receives a chiral suppression mnmn′/v2 times the
usual v2/M2

KK RS factor. The interested reader is referred to our paper [53], where all
analytic results have been given. If we however study processes with KK fermions in the
loop, such as Higgs production via gluon fusion, the high multiplicity of states will give
rise to sizable effects.
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7 Gauge interactions with fermions

In this section we work out the various gauge couplings to quarks. The results can applied
to leptons by obvious replacements of the gauge quantum numbers. Considering the Z0

coupling, we reexamine how a custodial protection for left-handed down type quarks (and
right-handed up-type quarks [74]) can be achieved for equal gauge couplings gL = gR
and the embedding (6.50). The phenomenological impact of neutral currents within the
minimal RS model has been studied in great detail in [38]. For the custodial model, ∆F = 2
processes have been examined in [74]. Recently, we have studied the effective Hamiltonian
of the charged-current sector for both models, where the possibility of right-handed charged
currents is taken into account [53, 75]. We will present the latter analysis here and derive
the generalized quark mixing matrices.

7.1 Fermion couplings to gluons, photons, and KK

excitations

As a start, we will examine the gauge couplings for the cases without symmetry breaking,
that is the photon and the gluon couplings. The 4D QCD Lagrangian contains the terms

L4D ∋
∑

k,m,n

{ [
~aQ†
m I

C(Q)
kmn ~a

Q
n + ~aq†m I

S(q)
kmn~a

q
n

]
q̄
(m)
L gs /A(k)a ta q

(n)
L

+
[
~aq†m I

C(q)
kmn ~a

q
n + ~aQ†

m I
S(Q)
kmn ~a

Q
n

]
q̄
(m)
R gs /A(k)a ta q

(n)
R

}
,

(7.1)

where we have defined the overlap integrals

I
C(A)
kmn =

2π

Lǫ

∫ 1

ǫ

dt
√

2π χk(φ) CA
m(t) CA

n (t) , A = Q, u, d , (7.2)

and similarly I
S(A)
kmn in terms of integrals over odd profiles S

(A)
n . Obviously, analogous

relations hold for the (KK) photon couplings, where we have to replace gst
a → eQq. For

the gluon (photon) zero mode, the factor
√

2π cancels with the result for the zero-mode
profile, and we can use the orthonormality relations (6.17). The condition (6.19) then
implies that

~aQ†
m I

C(Q)
0mn ~a

Q
n + ~aq†m I

S(q)
0mn ~a

q
n = ~aq†m I

C(q)
0mn ~a

q
n + ~aQ†

m I
S(Q)
0mn ~a

Q
n = δmn . (7.3)
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7 Gauge interactions with fermions

Thus, the gluon and the photon couple flavor diagonal with couplings gs and e, as they do
not mix with their KK excitations. This is a direct consequence of the unbroken SU(3)c×
U(1)e.m. symmetry, which assures that there are no NP corrections to the interactions of
massless gauge bosons. Note that the couplings of KK gluons (photons) are not flavor
diagonal and have to be computed from the general expression (7.1). It is interesting to
note that the couplings of KK gauge bosons to heavy fermions, which live close to the IR
brane, are enhanced by a factor

√
L [30, 31] compared to the zero-mode coupling. This

follows from the explicit shape of the KK profiles, as discussed in Section 3.3.

7.2 Fermion couplings to heavy gauge bosons

As we have learned above, the heavy Z0 and W± bosons develop a non-trivial profile
within the ED, which gives rise to a non-universal gauge coupling. Furthermore, the heavy
gauge bosons couple differently to the SU(2)L doublet and singlet fermions. Thus, the
condition (6.19) can not be used, even if we just consider the constant part of the ground
state profiles (3.29), which gives the dominant contribution. As a consequence we have
FCNC couplings of the Z0 boson for two reasons: first, due to the non-constant terms
in (3.29); secondly, due to the correction terms ∆CQ,q

mn and ∆SQ,qmn in the orthonormality
relation (6.17). In the perturbative approach, the latter effect would be interpreted as an
SU(2)L singlet admixture in the wave functions of the SU(2)L doublet SM fermions (and
vice versa) due to mixing with their KK excitations [73, 76, 77].

In order to derive the gauge couplings of Z0 and W±, we give the covariant derivative
in the mass eigenbasis

Dµ = ∂µ − i
gL5√

2

(
L+
µ T

+
L + L−

µ T
−
L

)
+ i

gR5√
2

(
R+
µ T

+
R +R−

µ T
−
R

)

− i gZ5QZZµ − i gZ′5QZ ′Z ′
µ − i e5QAµ .

(7.4)

In analogy to the SM model we define

gZ =
√
g2
L + g2

Y , gZ ′ =
√
g2
R + g2

X , QZ = T 3
L −

g2
Y

g2
Z

Q , QZ ′ = −T 3
R −

g2
X

g2
Z ′

Y , (7.5)

and it will be useful to introduce ~gZ = (gZQZ , gZ′QZ′)T .
The explicit form of the SU(2)L,R generators depends on the multiplets they are acting

on. For the case of doublets or bi-doublets, the generators T iL,R with i = 1, 2, 3 are given by
the Pauli matrices (1.6) times a factor of 1/2. As usual we define T±

L,R = T 1
L,R± i T 2

L,R. The
generators T iL act on the multiplets from the left, where the T iR act from the right. If, on the
other hand, the generators act on SU(2)L,R triplets, one has to choose the representation

T+
L,R =




0
√

2 0

0 0
√

2
0 0 0


 , T−

L,R =




0 0 0√
2 0 0

0
√

2 0


 , T 3

L,R =




1 0 0
0 0 0
0 0 −1


 . (7.6)
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7.3 Custodial protection of the Z0bLb̄L vertex

The charged-current operators involve a trace with respect to the fundamental gauge in-
dices. Therefore, we define the generalized charged-current vectors of the custodial model
as

~J µ±
WQ

=
1√
2

(
gL Tr

[
Q̄ γµ T±Q

]
, gR Tr

[
Q̄ γµQT±

] )
,

~J µ±
WT

=
1√
2

(
gLT̄1 γµ T± T1 , gR Tr

[
T̄2 γµ T2 T±

] )
.

(7.7)

These act on
(
L±
µ , R±

µ

)T
from the left and are the starting point for the calculation of the

generalized quark-mixing matrices.

7.3 Custodial protection of the Z0bLb̄L vertex

Using (4.39) and (4.40), we find that the neutral current is proportional to

(
~g qZ
)T
~χZ0 (φ) =

gZQ
q
Z√

2π

{
1 +

m2
Z

4M2
KK

[
1− 1

L
− 2L t2ωqZ + 2 t2

(
1

2
− ln t

)]}

+O
(
m4
Z

M4
KK

)
,

(7.8)

with ωqZ = 1 in the minimal RS model, where it is given by

ωqZ = 1− sZ
cZ

gZ ′Qq
Z ′

gZQ
q
Z

(7.9)

in the custodial one. This formula allows us to understand (part of) the custodial protection
mechanism of the Z0bLb̄L vertex. If the gauge couplings and quantum numbers of the
fermions are chosen such that

ωbLZ = 0 ⇐⇒ gZQ
bL
Z =

sZ
cZ

gZ ′QbL
Z ′ , (7.10)

the dominant correction to the Z0 coupling vanishes. Numerically, the corrections arising
from the gauge sector are thus suppressed by a factor of L ≈ 37 in the custodial model
relative to the minimal RS model.

In order to see which quantum number assignments are necessary to achieve a custodial
protection, we recast (7.9) into the form

ωqZ =
c2w
2g2

L

(g2
L + g2

R) (T 3 q
L + T 3 q

R ) + (g2
L − g2

R) (T 3 q
L − T 3 q

R )

T 3 q
L − s2

wQq

. (7.11)

This allows one to read off the possible choices

T 3 q
L = T 3 q

R = 0 , (PC symmetry) (7.12)
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7 Gauge interactions with fermions

and

gL = gR , T 3 q
L = −T 3 q

R , (PLR symmetry). (7.13)

Since the representation (6.50) features T 3 dL

L = −T 3 dL

R = −1/2 and T 3uR

L = T 3uR

R = 0,
the ZdiLd̄

j
L and ZuiRū

j
R vertices are protected by the PLR and PC symmetries, respectively.

It is interesting to observe that only the leading term in L can be protected, while no
such mechanism is available for the sub-leading terms, since they arise from the fact that
the fields χ

(±)
0 (t) obey different UV BCs. The latter effects hence represent an irreducible

source of the PLR-symmetry breaking.

We will see below that the terms arising from the non-orthonormality of the fermion
profiles also give rise to sizable corrections. The leading contribution of these can be
eliminated by setting the bulk masses of the triplets equal cT1

= cT2
[78]. Formally, this

corresponds to an exchange symmetry of the fields D and D′ [53], which is broken by the
distinct UV BCs. As a consequence, we obtain parametrically suppressed correction terms,
which can not be eliminated, but turn out to be insignificant. From now on we will always
choose the fermion representation (6.50) for the custodial model and assume that extended
PLR symmetry (gL = gR, T

3 diL

L = −T 3 diL

R , cT1
= cT2

) is at work.

Let us now explicitly work out the Z0-boson couplings to left- and right-handed quarks.
The 4D Lagrangian can be written in the form

L4D ∋
gL
cw

[
1 +

m2
Z

4M2
KK

(
1− 1

L

)] ∑

q,m,n

[(
g qL
)
mn

(
q̄
(m)
L γµq

(n)
L

)
+
(
g qR
)
mn

(
q̄
(m)
R γµq

(n)
R

) ]
Zµ ,

(7.14)
where we pulled out the universal correction factor due to the t-independent terms in
(3.29). The left- and right-handed couplings g

q
L,R are infinite-dimensional matrices in the

space of quark modes, and can be parametrized as

g
q
L =

(
T 3 qL
L − s2

wQq

) [
1− m2

Z

2M2
KK

(
ωqLZ L∆Q −∆′

Q

)]
− T 3 qL

L

[
δQ −

m2
Z

2M2
KK

(
c2w
g2
L

LεQ − ε′
Q

)]
,

g
q
R = −s2

wQq

[
1− m2

Z

2M2
KK

(
ωqRZ L∆q −∆′

q

)]
+ T 3 qL

L

[
δq −

m2
Z

2M2
KK

(
c2w
g2
L

Lεq − ε′
q

)]
.

(7.15)

The isospin quantum-numbers are always those of the SM-like fermions, also in the case
of the custodial model, where new fermion species contribute1. These will modify the
expressions for the matrices ∆

(′)
A , ǫ

(′)
A , and δA, which contain certain overlap integrals. The

matrices ∆
(′)
A and ǫ

(′)
A arise from the t dependent terms of the Z0-boson profile. The former

1We do not consider exotic λ and Λ(′) quarks at this point, as these fields do not possess zero modes.
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7.3 Custodial protection of the Z0bLb̄L vertex

are formally equal for the minimal and the custodial model and read

(∆Q)mn =
2π

Lǫ

∫ 1

ǫ

dt t2
[
~aQ†
m CQ

m(t) CQ
n (t)~aQn + ~aq†m Sq

m(t) Sq
n(t)~a

q
n

]
,

(∆q)mn =
2π

Lǫ

∫ 1

ǫ

dt t2
[
~aq†m Cq

m(t) Cq
n(t)~a

q
n + ~aQ†

m SQ
m(t) SQ

n (t)~aQn

]
,

(
∆′
Q

)
mn

=
2π

Lǫ

∫ 1

ǫ

dt t2
(

1

2
− ln t

)[
~aQ†
m CQ

m(t) CQ
n (t)~aQn + ~aq†m Sq

m(t) Sq
n(t)~a

q
n

]
,

(
∆′
q

)
mn

=
2π

Lǫ

∫ 1

ǫ

dt t2
(

1

2
− ln t

)[
~aq†m Cq

m(t) Cq
n(t)~a

q
n + ~aQ†

m SQ
m(t) SQ

n (t)~aQn

]
.

(7.16)

The latter differ for the various RS models. In the minimal model, the matrices ǫ
(′)
A are

equal to the expressions (7.16), where the even profiles have been removed. If one considers
the coupling to light SM-like fermions, these terms are highly suppressed. The same is true
for the custodial model, where the expressions are slightly more complicated due to the
different isospin quantum numbers.

The matrices δA arise due to the non-orthonormality of the fermion profiles. For zero
modes, they are of the order v2/M2

KK. In the minimal model, they are given by

(δQ)mn = ~aq †m (δmn + ∆Sq
mn)~a

q
n , (δq)mn = ~aQ †

m

(
δmn + ∆SQ

mn

)
~aQn , (7.17)

while in the custodial model, they read

(δQ)mn =
2π

Lǫ

∫ 1

ǫ

dt
[
~aQ †
m CQ

m(t)
(
1− T

3Q
L /T 3 qL

L

)
CQ
n (t)~aQn

+ ~aq†m Sq
m(t)

(
1− T

3 q
L /T 3 qL

L

)
Sq
n(t)~a

q
n

]
, (7.18)

(δq)mn =
2π

Lǫ

∫ 1

ǫ

dt
[
~aq †m Cq

m(t) T
3 q
L /T 3 qL

L Cq
n(t)~a

q
n + ~aQ†

m SQ
m(t) T

3Q
L /T 3 qL

L SQ
n (t)~aQn

]
.

In the expressions above we have used the charge matrices T
3Q,q
L,R , defined as T 3u

L,R = 0,

T 3U
L,R =

(
T 3u
L,R 0

0 T 3u′

L,R

)
, T 3D

L,R = T 3 d
L,R , T 3 d

L,R =

(
T 3D
L,R 0

0 T 3D′

L,R

)
. (7.19)

Note that up to the expansion of the Z0-boson profile, the expression (7.15) is exact to all
orders in v/MKK. Nevertheless, of particular interest are the ZMA results of the overlap
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7 Gauge interactions with fermions

matrices. In the minimal model we find for m,n = 1, 2, 3 (see also [20, 79])

∆Q → U †
q diag

[
F 2(cQi

)

3 + 2cQi

]
Uq ,

∆f →W †
q diag

[
F 2(cqi)

3 + 2cqi

]
Wq ,

∆′
F → U †

q diag

[
5 + 2cQi

2(3 + 2cQi
)2
F 2(cQi

)

]
Uq ,

∆′
q →W †

q diag

[
5 + 2cqi

2(3 + 2cqi)
2
F 2(cqi)

]
Wq ,

(7.20)

and

δQ → xq W †
q diag

[
1

1− 2cqi

(
1

F 2(cqi)
− 1 +

F 2(cqi)

3 + 2cqi

)]
Wq xq ,

δq → xq U †
q diag

[
1

1− 2cQi

(
1

F 2(cQi
)
− 1 +

F 2(cQi
)

3 + 2cQi

)]
Uq xq ,

(7.21)

where xu = diag(mu,mc,mt)/MKK , xd = diag(md,ms,mb)/MKK [34]. The leading terms
in the latter expressions are those proportional to 1/F 2(ci), which will be exponentially
enhanced for ci < −1/2. However, exactly these terms will be canceled, if we have a
custodial protection. From (7.18) we obtain

δD →xd W
†
d diag

[
1

1− 2cT2i

(
1

F 2(cT2i
)

[
1− 1− 2cT2i

F 2(−cT1i
)

]
− 1 +

F 2(cT2i
)

3 + 2cT2i

)]
Wd xd ,

δu →xu U †
u diag

[
1

1− 2cQi

(
1

F 2(cQi
)

[
1− 1− 2cQi

F 2(−cQi
)

]
− 1 +

F 2(cQi
)

3 + 2cQi

)]
Uu xu .

(7.22)

Assuming extended PLR symmetry (cT1
= cT2

), and observing that all bulk mass parameters
(besides cQ3

and cu3
) typically satisfy c < −1/2, we can apply (6.34) and therefore obtain

1− (1− 2c)/F 2(−c) = 0 to excellent approximation.

Now, as we have discussed how to protect the Z0bLb̄L vertex, we want to understand
why this is desired, and to what extent such a protection is necessary. Therefore, we
have to discuss the Z0 → bb̄ “pseudo observables”. These are given by the ratio of the
width of the Z0-boson decay into bottom quarks and the total hadronic width, R0

b , the
bottom quark left-right asymmetry parameter Ab, and the forward-backward asymmetry
for bottom quarks A0,b

FB. They can be expressed as functions of the left- and right-handed
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7.3 Custodial protection of the Z0bLb̄L vertex

bottom quark couplings [80]

R0
b =

[
1 +

4
∑

q=u,d [(gqL)2 + (gqR)2]

ηQCD ηQED

[
(1− 6zb)(gbL − gbR)2 + (gbL + gbR)2

]
]−1

,

Ab =

2
√

1− 4zb
gbL + gbR
gbL − gbR

1− 4zb + (1 + 2zb)

(
gbL + gbR
gbL − gbR

)2 , A0,b
FB =

3

4
AeAb , (7.23)

where ηQCD = 0.9954 and ηQED = 0.9997 are QCD and QED radiative correction factors.
The parameter zb ≡ m2

b(mZ)/m2
Z = 0.997 · 10−3 describes corrections from a non-zero

bottom quark mass. Due to the RS-GIM suppression, we can neglect the RS contributions
to the left- and right-handed couplings of the light quarks and the asymmetry parameter
of the electron, Ae. We will therefore fix these quantities to their SM values guL = 0.34674,
guR = −0.15470, gdL = −0.42434, gdR = 0.077345 [81], Ae = 0.1462 [82, 83].

Inserting the SM expectations gbL = −0.42114 and gbR = 0.077420 [81] into the relations
(7.23), we obtain the central values

R0
b = 0.21579 , Ab = 0.935 , A0,b

FB = 0.1025 . (7.24)

These should be compared to the experimentally extracted values for the three “pseudo
observables” [81]

R0
b = 0.21629± 0.00066 ,

Ab = 0.923± 0.020 ,

A0,b
FB = 0.0992± 0.0016 ,

ρ =




1.00 −0.08 −0.10
−0.08 1.00 0.06
−0.10 0.06 1.00


 . (7.25)

Here, ρ is the correlation matrix. We see that while the R0
b and Ab measurements agree

within +0.8σ and −0.6σ with their SM predictions, the A0,b
FB measurement is almost −2.1σ

away from its SM value.
In Figure 7.1 we plot the predictions of the minimal (blue/dark gray) and the custodial

(orange/light gray) RS model in the gbL-gbR plane for 10000 random parameter sets, which
produce the correct zero-mode masses and CKM parameters. The KK scale is set to
MKK = 2 TeV. The ellipses mark the 68% , 95% , and 99% confidence regions with respect
to the experimental favored values. While the corrections relative to the SM value of gL are
strictly positive and potentially large in the minimal model, they turn out to be negative
and tiny in the custodial model with extended PLR symmetry. Note that the latter also
allows for moderate positive and negative corrections to gL, if we allow for different bulk
masses cT1

6= cT2
[53]. In either case, the corrections to gR turn out to be small and negative.

However, we can reach a sizable shift of the latter by varying the Higgs mass against the SM
reference value mh = 150 GeV. The individual leading logarithmic Higgs-mass corrections
are well approximated by [34]

∆R0
b = 3.3 ·10−5 ln

mh

mref
h

, ∆Ab = −2.7 ·10−4 ln
mh

mref
h

, ∆A0,b
FB = −2.7 ·10−3 ln

mh

mref
h

. (7.26)
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Figure 7.1: Predictions of the minimal (blue/dark gray) and the custodial (or-
ange/light gray) RS model in the gbL-gbR plane for 10000 parameter sets.
See text for details.

Within the plots in Figure 7.1, we have sketched the shifts of the SM prediction for mh =
(100, 300, 500, 1000)GeV. We conclude that for a Higgs mass of around 500 GeV, one can
come close to the central value. As the minimal RS model favors a large Higgs mass in
order to compensate corrections to the T -parameter, the overall fit can be significantly
improved. Note especially that, despite appearance, the chance of obtaining a moderate
correction to gL in the minimal RS model is not so bad at all. Indeed, using the above
ZMA expressions for the Z0bLb̄L coupling, we find that nearly 20% of the respective scatter
points lie within the 2σ confidence region. Here, the combined fit sets an upper limit on
the value of cbL ≡ cQ3

, depending on the value of the KK scale. For MKK = 2 TeV we
find cbL . −0.43 for our set of scatter points. For MKK = 3 TeV, the limit is extended to
cbL . −0.35 . A lower limit comes from the top mass, which requires cbL = ctL & −0.5
for |(Yu)ij| ≤ 3. For the custodial model on the other hand, a large Higgs mass seems to
be excluded from the T -parameter. Therefore, the choice of the embedding (6.50) is well
motivated as one safely stays within the 2σ confidence region.

7.4 Charged-current interactions

In this section, we want to elaborate an effective theory of charged four-quark interactions
in the framework of the RS scenario, which we can apply for Λ < mW . The effective
Hamiltonian can be written as

H(W )
eff = 2

√
2GF

{
[ d̄mL

γµ(V
†
L)mnunL

+ d̄mR
γµ(V

†
R)mnunR

]

⊗ [ ūm′

L
γµ(VL)m′n′dn′

L
+ ūm′

R
γµ(VR)m′n′dn′

R
] + h.c.

}
,

(7.27)
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7.4 Charged-current interactions

where m,n,m′, n′ ∈ {1, 2, 3} and we assume m+ n > m′ + n′. Furthermore, a summation
over repeated indices is understood. The tensor symbol merely indicates that the full
analytic result contains terms that can not be separated into independent matrix products.
This is because of the sums over W -gauge boson profiles (3.35) and (4.52) which contain
a term ∝ t2< , that prevents a factorization into separate vertex factors.

Before we are going to derive the Wilson coefficients of four-quark interactions, we first
want to study the case of a semileptonic decay, for which we replace (7.27) by

H(W )
eff = 2

√
2GF

∑

l

{[
ūLγ

µVL dL + ūRγ
µVR dR

]
(l̄Lγµνl L) + h.c.

}
. (7.28)

If the leptons are light, their profiles have to be localized close to the UV brane. Therefore,
we can drop the t2< term to excellent approximation. We can further assume that the lepton
current is SM-like, if we are just interested to determine the elements of the quark-mixing
matrices VL,R. The latter have to be computed from the product ~J µ±

Wquarks
(t) · Σa(t, t

′) ·
~J
Wleptons

µ± (t′). The current vectors and the sum over the KK-tower are given in (7.7) and
(4.52), where the simplification to the minimal model is straightforward. We find the
general result

VL = ∆+Q +
√

2 ε+ q − m2
W

2M2
KK

L
(
∆̄+Q +

√
2 ε̄+ q

)
,

VR =
√

2∆+ q + ε+Q − m2
W

2M2
KK

L
(√

2 ∆̄+ q + ε̄+Q
)
,

(7.29)

with

∆+Q,q
mn =

2π

Lǫ

∫ 1

ǫ

dt ~aU,u†m CU,u
m (t)ΩQ,q CD,d

n (t)~aD,dn ,

ǫ+Q,q
mn =

2π

Lǫ

∫ 1

ǫ

dt ~aU,u†m SU,u
m (t)ΩQ,q SD,d

n (t)~aD,dn ,

∆̄+Q,q
mn =

2π

Lǫ

∫ 1

ǫ

dt t2~aU,u†m CU,u
m (t) Ω̄Q,q CD,d

n (t)~aD,dn ,

ǭ+Q,q
mn =

2π

Lǫ

∫ 1

ǫ

dt t2~aU,u†m SU,u
m (t) Ω̄Q,q SD,d

n (t)~aD,dn .

(7.30)

The matrices ΩQ,q and Ω̄Q,q contain the information, which fields in the generalized flavor
vectors (6.52) are linked through the respective overlap integrals. In the custodial model,
we observe

ΩQ =

(
1

0

)
, Ωq =




0 0

0 1

0 0


 , Ω̄Q =




1

−g
2
R

g2
L

1


 , Ω̄q =




0 0

0 1

−g
2
R

g2
L

1 0


 , (7.31)
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where the entries are 3 × 3 matrices. In the minimal model we have ΩQ = Ω̄Q = 1, and
Ωq = Ω̄q = 0. Note that our definitions of VL,R include the exchange of the entire W -boson
tower. Here, we have already absorbed the universal correction factor

(
1+m2

W/(2M
2
KK)[1−

1/(2L)]
)

(3.38) into the definition of the Fermi constant. As any measurement of a charged-
current interaction involves the exchange of the whole KK-tower, this universal factor is
non-observable in the measurement of the combination GFVL,R [38].

Opposed to the neutral-current sector, no custodial protection mechanism is at work for
charged currents [24]. The leading contribution to (VL)mn stems from ∆+Q

mn . Corrections
of the order v2/M2

KK arise from the non-universality of KK gauge bosons encoded in ∆̄+Q
mn

and, in the custodial model, from the admixture of U ′ and D′ quarks described by ǫ+ q
mn.

Contributions arising from the admixture of U , D, u′, U ′, andD′ quarks, which are collected
ǭ+Q,q
mn , do not contribute at the order O(v2/M2

KK). The full ZMA expression for VL reads

VL = U †
u

(
1− m2

W

2M2
KK

L diag

[
F 2(cQi

)

3 + 2cQi

]

+
v2

2M2
KK

diag
[
F (cQi

)
]
Yd diag

(
F−2(−cT1i

)
)
Y

†
d diag

[
F (cQi

)
]
)

Ud ,

(7.32)

where the first line holds for both scenarios, while the second arises from the admixture
of U ′ and D′ in the custodial model. Obviously, the result (7.32) is not unitary. The
amount of unitarity violation has been estimated in [53] and has been found to be below
the current experimental uncertainty, at least within the minimal RS model. A detailed
discussion of the breakdown of the unitarity of the quark-mixing matrix in the framework
of the RS model with custodial protection has been presented in [78]. Unfortunately, the
authors defined the CKM matrix via the WuiLd

j
L vertex only, and did not take into account

the non-universal corrections stemming from the exchange of the KK excitations.
For the mixing matrix of right-handed quarks (VR)mn, the dominant contribution is

given by ǫ+Q
mn , which is equal for both scenarios. All other contributions are of the order

v4/M4
KK, which we will neglect. Explicitly, we find the ZMA expression [75]

VR = xuU
†
u diag

[
f(cQi

)
]
Ud xd , (7.33)

where

f(c) =
1

F 2(c)(1− 2c)
− 1

1− 2c
+

F 2(c)

(1 + 2c)2

(
1

1− 2c
− 1 +

1

3 + 2c

)
. (7.34)

The factors xu,d reflect the fact that to LO the right-handed charged-current interactions
of zero modes originate from quark mixing, and not, as one might naively expect, from
the presence of a gauged SU(2)R group. The product xui

xdi
can be split up into the usual

v2/M2
KK suppression and a chiral factor mui

mdi
/v2. As the latter is tiny for all quarks

besides the top, one might think that the contributions of right-handed charged currents are
completely negligible against the RS corrections to the left-handed ones. However, the ZMA
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7.4 Charged-current interactions

expressions (7.33) also involve exponentially enhanced terms proportional to 1/F (ci)
2,

in analogy to the quantities δQ,q (7.21), (7.22). In fact, the resulting NP corrections
dominate those of the left-handed sector, as to LO the latter solely arise from parametrically
suppressed non-factorizable RS corrections, which can not be absorbed into the definition
of the Fermi constant and CKM matrix elements.

Coming back to four-quark interactions, we perform the necessary overlap integrals and
find (m,n,m′, n′ = 1, 2, 3)

(V†
L)mn ⊗ (VL)m′n′ =

(
U

†
d

[
1 +O

(
v2

M2
KK

)]
Un

)

mn

(
U †
u

[
1 +O

(
v2

M2
KK

)]
Ud

)

m′n′

+
m2
W

2M2
KK

L (U †
d)mi(Uu)in(∆̃QQ)ij(U

†
u)m′j(Ud)jn′ (7.35)

with the non-factorizable correction [84]

(∆̃QQ)ij =
F 2(cQi

)

3 + 2cQi

3 + cQi
+ cQj

2 + cQi
+ cQj

F 2(cQj
)

3 + 2cQij

. (7.36)

A summation over repeated indices is understood. The O(v2/M2
KK) terms in the brackets

are simply given by the RS corrections in (7.32). The factorizable terms in the first
line are universal for all interactions involving the given vertices, and therefore should
be identified with the measured values of the respective CKM-matrix elements. Thus,
they are only observable through unitarity violations. For a given four-fermion interaction,
the RS correction to the amplitude is given by the non-factorizable terms (7.36), and the
Wilson coefficients have to be deduced from the latter.

For the interference of left- and right-handed currents, we find at LO in v2/M2
KK

(V†
L)mn ⊗ (VR)m′n′ =

1

M2
KK

(U †
dUu)mn(muU

†
u)m′j f(cQj

) (Ud md)jn′ ,

(V†
R)mn ⊗ (VL)m′n′ =

1

M2
KK

(mdU
†
d)mi f(cQi

) (Uu mu)in(U
†
uUd)m′n′ .

(7.37)

The double insertion of right-handed currents contributes at the order v4/M2
KK, and there-

fore can safely be neglected in the models at hand.
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8 Higgs-boson couplings

In this section we present analytic results for the vertices of Higgs couplings to fermions.
The latter are not flavor diagonal in the mass basis due the mixing of zero-modes with
their KK excitations. Thus, WED scenarios give rise to flavor-changing Higgs couplings
[85]. These require a proper localization of the δ-function, as couplings to Z2-odd fermions
are involved [67]. Naively, one would set these terms to zero as the odd profiles vanish
on the boundaries. In fact, we will use the latter property below. However, as we have
learned above, the fermion profiles develop a discontinuity in the limit η → 0, where η is
the regulator. For the odd profiles, this means that within the interval t ∈ [1− η, 1], they
are rising to a finite value according to the solution (6.12) of EOMs in the vicinity of the
IR brane (6.9). At this point we should stress that the latter have a restricted region of
validity. Within their derivation, we have dropped the term that multiplies the bulk mass,
and the one proportional to the eigenvalue xn. As the first term never becomes singular, its
omission is well justified for the brane-Higgs scenario. The second one, however, becomes
singular in the limit n→∞. Going back to a regularized scenario with η finite, its omission
is only justified for xn ≪ 1/η. On the other hand, we have learned that the IR cut-off has
to be in the vicinity of the KK scale. For (IR) brane-localized interactions, one should not
sum up modes with masses mn > ΛIR. As we safely fulfill ΛIR/MKK ≪ 1/η, our solution
is trustworthy in the low-energy effective theory.

We further give results for Higgs couplings to gauge bosons. These are required along
with the results from the fermion sector to make estimations of Higgs production ampli-
tudes normalized to the known SM results.

8.1 Higgs couplings to fermions

In [67] it has been pointed out that the contributions of the Z2-odd fermions provide
the dominant corrections to tree-level Higgs FCNCs in the case of light quark flavors.
The authors performed their calculations within the perturbative approach and obtained
results valid to O(v2/M2

KK). In [53], we re-derived these results within our exact treatment
and thus to all orders in v/MKK, both for the minimal as well as the custodial RS model.
Working in unitary gauge, the relevant terms in the 4D Lagrangian describing the couplings
of the Higgs boson to quarks are given by

L4D ∋ −
∑

q,m,n

(gqh)mn h q̄
m
L qnR + h.c. , (8.1)
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and the coefficients (gqh)mn are given by

(gqh)mn =
√

2
π

Lǫ

∫ 1

ǫ

dt δ(t− 1)
[
~aQ †
m CQ

m(t)Yq Cq
n(t)~a

q
n + ~aq †m Sq

m(t)Y †
q SQ

n (t)~aQn
]
. (8.2)

To simplify this expression, we follow [67] and observe that the EOMs (6.7) imply

~aQ †
m

(
xntC

Q
m(t)CQ

n (t)− SQ
m(t)SQ

n (t) t xm − t∂t CQ
m(t)SQ

n (t)
)
~aQn

− v√
2MKK

δ(t− 1)
[
~aQ †
m CQ

m(t) Yq C q
n(t)~a

q
n − ~aq †m S q

m(t) Y †
q SQ

n (t)~aQn
]

= 0 .
(8.3)

After integrating this relation over the orbifold t ∈ [ǫ, 1], the derivative in (8.3) does not
contribute since the Z2-odd profiles obey SQ,q

n (ǫ) = SQ,q
n (1) = 0. Using the orthonormality

(6.17) and the normalization condition (6.19), we find the expression

xm δmn =
2π

L

∫ 1

ǫ

dt

{
xnt~a

q †
m S q

m(t) S q
n(t)~a

q
n + ~aQ †

m SQ
m(t) SQ

n (t)~aQn t xm

+
v√

2MKK

δ(t− 1)
[
~aQ †
m CQ

m(t) Yq C q
n(t)~a

q
n − ~aq †m S q

m(t) Y †
q SQ

n (t)~aQn

]}
.

(8.4)

This result allows to eliminate the term bi-linear in the Z2-even profiles from (8.2), and to
express the tree-level Higgs FCNCs solely in terms of overlap integrals involving Z2-odd
fields. Doing so, we find that the Higgs couplings to fermions can be written as

(gqh)mn ≡ δmn
mq
m

v
− (∆gqh)mn , (8.5)

where the misalignment (∆gqh)mn between the SM masses and the Yukawa couplings is
given by

(∆gqh)mn =
mq
m

v
(Φq)mn + (ΦQ)mn

mq
n

v
+ (∆g̃qh)mn , (8.6)

with

(Φq)mn =
2π

Lǫ

∫ 1

ǫ

dt~aQ†
m SQ

m(t) SQ
n (t)~aQn , (ΦQ)mn =

2π

Lǫ

∫ 1

ǫ

dt~aq†m Sq
m(t) Sq

n(t)~a
q
n , (8.7)

and

(∆g̃qh)mn = −
√

2
2π

Lǫ

∫ 1

ǫ

dt δ(t− 1)~aq †m S q
m(t) Y

†
~q SQ

n (t)~aQn . (8.8)

For Higgs couplings to fermion zero-modes, the corrections (8.7) receive a chiral suppres-
sion. For light quarks, these terms are negligible to first approximation. In the minimal
model, the definitions of (8.7) are identical to the quark-mixing corrections (δq,Q)mn in the
Z0 couplings (7.17). The ZMA expressions are given in (7.21). In the custodial model, the
corrections to the Higgs couplings differ in general from those of the Z0. The respective
ZMA results can be found in [53].
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Our last task is to regularize the integrand of (8.8). Employing the regularization (6.8)
for the δ-function, we get

(∆g̃qh)mn = −
√

2
2π

Lǫ

∫ 1

1−η

dt
1

η
~aq †m S q

m(t) Y
†
~q SQ

n (t)~aQn . (8.9)

Now we combine the solutions (6.12) and (6.13) with the expressions for the boundary
values at t = 1− (6.14) and apply the relation

∫ 1

1−η

dt
1

η
sinh2

(
A

η
(1− t)

)
=

1

2

(
sinh

(
2A
)(

2A)−1 − 1
)

(8.10)

(valid for any invertible matrix A) to the integral (8.9). Thus, we obtain

(∆g̃qh)mn =
1√
2

2π

Lǫ

v2

3M2
KK

~aQ †
m CQ

m(1−) Y~q Y
†
~q g

(
v√

2MKK

√
Y~qY

†
~q

)
Y~q C q

n(1
−)~aqn , (8.11)

with

g(A) =
3

2

[
sinh

(
2A
)(

2A
)−1 − 1

] (
cosh

(
A
)
A
)−2

. (8.12)

This expression has to be rewritten in terms of rescaled Yukawa matrices (6.15), which we
use as numerical input. Using

v√
2MKK

√
Y~qY

†
~q = tanh−1

(
v√

2MKK

√
Ỹ~q Ỹ

†
~q

)
, (8.13)

we obtain

(∆g̃qh)mn =
1√
2

2π

Lǫ

v2

3M2
KK

~aQ †
m CQ

m(1−) Ỹq Ȳ †
q Ỹq C q

n(1
−)~aqn , (8.14)

where

Ȳ †
q ≡ Ỹ †

q h

(
v√

2MKK

√
Ỹq Ỹ

†
q

)
, h(A) =

3

2

[
A−2 + tanh−1

(
A
)
A−1

(
1−A−2

) ]
.

(8.15)
In analogy to the rescaled Yukawa matrices Ỹq, the definition (8.15) satisfies Ȳ †

q = Y †
q +

O(v2/M2
KK). This implies that, as long as one is interested in the ZMA results for (∆g̃qh)mn

only, one can simply replace Ỹq Ȳ †
q Ỹq by the product Yq Y †

q Yq of original Yukawa matrices.
Applying the ZMA to the exact expression in (8.14), we find

∆g̃
q
h =

√
2 v2

3M2
KK

U †
q diag [F (cQi

)] YqY
†
q Yq diag [F (cqi)] Wq . (8.16)

An analysis of the flavor misalignment of the SM fermion masses and the Yukawa cou-
plings has also been presented in [86] for composite Higgs models. There it has been
shown that chirally unsuppressed contributions to flavor-changing Higgs-fermion vertices
arise from dimension-six operators of the form q̄ iLHq

j
R (H†H). They generically dominate
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over the chiral suppressed contributions from q̄ iLD/ q
j
L (H†H), because the couplings yq∗

of the composite Higgs to the other strongly interacting states can be large, resulting in
y2
q∗/(16π2) ≫ mq/v. Within our model, one could also perform an analysis within the

mass insertion approximation, keeping all relevant dimension-six operators in lowest order
[67]. Doing so, one obtains the above ZMA expressions. We emphasize that in our exact
solutions (8.5), (8.6), (8.7), and (8.14), all NP effects induced by the mass insertions are
resummed to all orders in v2/M2

KK at tree level.

8.2 Higgs couplings to gauge bosons

In order to be able to calculate the production rates of the Higgs boson via vector-boson
fusion, we still need to evaluate the RS corrections to theWWh and ZZh tree-level vertices.
The weak couplings involving the Higgs boson are derived from the cubic and quartic
interactions due to (4.6). In unitary gauge, the 4D Lagrangian involves

L4D ∋
(
h2 + 2 v h

) [ g2
L

4

(
1−∆gWh

)
W+
µ W

−µ +
g2
L + g2

Y

8

(
1−∆gZh

)
ZµZ

µ

]
, (8.17)

where

∆gVh = x2
V

[
L

(
1 +

s2
V

c2V

)
− 1 +

1

2L

]
+O

(
x4
V

)
, (8.18)

and xV ≡ mV /MKK for V = W,Z. For the case of PLR symmetry (7.13), we have s2
W/c

2
W =

1 and s2
Z/c

2
Z = 1−2s2

w . This implies that the leading correction due to ∆gW,Zh simplifies to
−2m2

W/M
2
KKL. For MKK = 2 TeV (3 TeV) these terms lead to a suppression of the WWh

and ZZh couplings by about −10% (−5%) compared to the SM. In the minimal RS model
the expressions (8.18) hold in the limit sW,Z → 0, and consequently the corrections to the
couplings of the Higgs to massive gauge bosons are smaller by a factor of about 2.

In principle, one has to include another effect. As the Higgs VEV is extracted from the
masses of the heavy gauge bosons, one would assume a correction of O(v2/M2

KK) to the SM
estimation v = 246 GeV. In order to get a precise prediction here, one needs to calculate
vacuum polarization diagrams that involve KK particles in the loop. In this thesis however,
we fix the VEV to its SM value. The inclusion of a VEV shift [87] would partially cancel
the correction terms (8.18) [88]. Our finding that the couplings WWh and ZZh experience
a reduction from their SM expectations confirms the model-independent statements made
in [89].

8.3 RS effects in Higgs production at the LHC

In this section, we estimate the impact of the RS scenario on Higgs production cross
sections. At hadron colliders such as the Tevatron or the LHC, the leading production
mechanism of the Higgs boson is gluon fusion. This process is mediated by a triangle
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Figure 8.1: Feynman diagrams contributing to Higgs production via gluon and vector-
boson fusion (V = W,Z). For the exchange of zero modes, the vertex
indicated by a black square can receive a sizable shift in the RS model
relative to the SM coupling. See text for details.

quark loop, where the dominant SM contribution stems from the top-quark. Within the
RS framework, we further have to take into account KK modes of all quark flavors. The
corresponding Feynman diagrams are depicted in Figure 8.1. It is evident that the treat-
ment of the various KK-quark loops is analogous to the SM calculation. Due to the flatness
of the zero-mode gluons in the initial state, there is no possibility of a flavor change inside
the loop. Therefore, we can rescale the SM prediction of the production cross section,
employing

σ(gg → h)RS = |κg|2 σ(gg → h)SM , (8.19)

where

κg =

∑
i=t,b

κiA
h
q (τi) +

∑
n
κKK
n Ahq (τn)

∑
i=t,b

Ahq (τn)
, (8.20)

with τi ≡ 4m2
i /m

2
h and τn ≡ 4(mq

n)
2/m2

h . The first term in the numerator encodes the
effects due to zero modes running in the loop and the corresponding sum includes both
the virtual top- and bottom-quark contributions. The form factor Ahq (τi) arises from the
calculation of the loop and approaches 1 for τi →∞, whereas it vanishes proportional to τi
for τi → 0. Its analytic form is given in Appendix A.2. For KK-modes with τn ≪ 1, it is a
good approximation to set Ahq (τn) = 1. The task is now to sum up the tower, at least up to
the IR cut-off. Naively, one would expect the whole sum to be logarithmically divergent,
as the single contributions to the g → hh amplitude is proportional to yn/m

q
n. However,

as we will see in a moment, there is a cancellation taking place between the contributions
of the various KK modes within each KK level, leading to a finite result. Nevertheless, one
should remember the hard IR cut-off and truncate the sum over KK modes. This is also
necessary in few of the solution of the hierarchy problem. Any KK fermion which couples
to the Higgs gives rise to a term Λ2

IR in the Higgs boson self-energy [90]. Thus, the sum
over the whole quark tower will force the self-energy to diverge for finite Λ2

IR. Though it
may be done analytically, a summation over n up to infinity1 will be meaningless, as long

1For one generation this has been achieved in [88] for a perturbative treatment of EWSB.
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Figure 8.2: Numerical results for the summands in νu,d corresponding to our default

parameter set. The red (blue) dots in the left (right) panel display the first
18 terms in the KK sum of up(down)-type quarks, while the gray boxes
indicate the sums over a complete KK level. See text for details.

as the required UV completion is not known. At this point, one may complain that we have
performed analytical summations over KK gauge boson towers for scattering amplitudes
featuring strong and electroweak gauge interactions. However, the rejection of the cut-off
does not lead to conceptional problems for that case. Moreover, the KK sum is dominated
by the lowest modes, such that a truncated evaluation gives a similar result compared to
the complete sum. As it turns out, this is not the case for brane-localized Higgs couplings
to Z2-odd fermions. Without going into details here, we refer the interested reader to an
upcoming paper [90].

Coming back to the zero-mode exchange, we observe that also the Higgs-boson couplings
to heavy quarks need to be corrected due to the misalignment (8.6) between the masses
and Yukawa couplings. Therefore, we have introduced

κt = 1− v

mt

(∆guh)33 , κb = 1− v

mb

(∆gdh)33 (8.21)

in the relation (8.20). The corrections from the KK-tower can be written as
∑

n
κKK
n Ahq (τn) =

∑
q=u,d,(λ)

νq , (8.22)

where

νu = v
∑

n=4

Re[(guh)nn]

mu
n

Ahq (τ
u
n )

=
2π

ǫL

∑

n=4

Re

[
~aU†
n CU

n (π−)

(
1− v2

3M2
KK

ỸuȲ
†
u

)
SU
n (π−)~aUn

]
(xun)

−1 Ahq (τ
u
n ) ,

(8.23)
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8.3 RS effects in Higgs production at the LHC

and similar for q = d, (λ). The sum should be truncated at low n. For instance, if we
include the first two KK-levels, we have to up to n = 15 in the minimal RS model. Note
that, due to the IR BCs (6.16), we could replace the SU(2)L-doublet profiles and vectors by
those corresponding to SU(2)L singlets in the above expression, if in addition we changed
the order ỸuȲ

†
u → Ȳ †

u Ỹu and added an overall sign factor.

In Figure 8.2, we show the individual summands of the first three KK levels within the
minimal model for our reference parameter set (A.2, A.3), using MKK = 2 TeV. The plots
show clearly the bunches belonging to a single level. In the up sector, the SU(2)L-singlet
top-quark turns out to be an outlier due to its strong IR localization. The dashed lines
mark 1/xn fits for single fermion species and recover the naive yn/mn behavior. Note
especially that the various Higgs couplings contribute with different signs. Therefore a
cancellation takes place within each KK level. The gray boxes mark the average values of
the masses and Higgs couplings of each KK level. As indicated by the continuous lines,
they fit to a 1/x2

l behavior, and therefore guarantee the convergence of the sum (8.23).

In analogy to (8.21), we define the correction factors

κW = 1−∆gWh , κZ = 1−∆gZh (8.24)

for the exchange of W± and Z0 bosons. These are needed for computing the RS corrections
to the Higgs production cross section of vector-boson fusion qq(′) → qq(′)V ∗V ∗ → qq(′)h
(V = W,Z), which is another important possibility at the LHC. Note that contributions
from KK gauge bosons can be neglected to excellent approximation in these channels:
Either the respective couplings to light quarks are RS GIM suppressed, or, in the case of
top-quarks in the initial state, they are negligible due to the parton distribution function
(PDF) of the proton. Moreover, the flavor non-universal corrections of the W± and Z0

couplings to light quarks are also RS GIM suppressed, whereas the universal modifications
are absorbed into a redefinition of GF (3.38). Thus, we are left with the corrections to the
V V h couplings (8.24), as indicated by the black square in the Feynman diagram on the
right-hand side of Figure 8.1.

In [53], we have performed an analysis of the Higgs-boson production cross sections
at the LHC for a center-of-mass energy

√
s = 10 TeV. The calculation of σ(gg → h)SM

is based on [91]. Furthermore, MRST2006NNLO parton distribution functions [92] and the
associated normalization αs(mZ) = 0.1191 for the strong coupling constant have been
used. Considering the RS corrections, we have computed the quantities (8.21) and (8.24)
for 10000 appropriate parameter sets. Average values have been extracted by fitting the
results to κi = 1−ai v2/M2

KK and taking the mean values of the coefficients νi. The results
are shown in Figure 8.3 (solid lines) for MKK = 2 TeV and MKK = 3 TeV respectively,
where the dashed lines indicate the SM expectation. For the gluon fusion, the dependence
on the Higgs mass enters through the loop function Ahq (τi) (i = t, b), and therefore solely
comes from RS corrections to the zero-modes to first approximation. As we see, we observe
sizable reductions of the Higgs production cross section via gluon fusion compared to the
SM. For MKK = 2 TeV and mh ≈ 2mt, we find an almost perfect destructive interference
between corrections to the zero-modes and KK-quarks in the triangle loop. Raising the
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Figure 8.3: Main Higgs-boson production cross sections via gluon-(red) and vector-

boson fusion (blue) at the LHC for a center-of-mass energy of
√
s = 10 TeV,

and MKK = 2 TeV (left) and MKK = 3 TeV (right). The figures are taken
from [53]. See text for details.

Higgs mass flips the sign of the real part of the amplitude in the threshold region. For
higher KK scales, the corrections to the zero-modes always dominate, and the real part of
the amplitude is positive for all values of the Higgs mass. As a consequence, there is no dip
of the cross esection in the plot for MKK = 3 TeV. On the other hand, a reduction of the
gluon-fusion cross section by a factor of ≈ 10 is still present for light Higgs masses. The
RS corrections to vector-boson fusion are rather moderate, not exceeding −20% (−10%)
for MKK = 2 TeV (MKK = 3 TeV).

We have further performed a numerical analysis of the modification of the various Higgs
decay branching fractions. Details of the calculations can be found in [53]. At this point,
we just quote the most important results. For mh & 180 GeV the experimentally cleanest
signature for the Higgs discovery at the LHC is the “golden” decay to four leptons, h →
Z(∗)Z(∗) → l+l−l+l−. As it turns out, the h→ ZZ branching fraction is essential SM-like.
Thus, the reduction in the gg → h production cross section will make an observation of
the Higgs boson in the golden channel more difficult. The most pronounced effects are
found for the decays h→ gg and h→ γγ. For Higgs masses below the WW threshold, the
branching fraction of the former is reduced by a factor of almost 4 (8) for MKK = 2 (3)
TeV, while the branching ratio of the latter transition is enhanced by a factor of around 4
(2). It follows that the statistical significance for a LHC discovery of the Higgs boson in
h→ γγ can be enhanced in the custodial RS model for low KK scales.
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9 Forward-backward asymmetry in tt̄
production

As we have learned above, the top-quark is exceptional in RS scenarios, as its couplings to
KK gauge bosons are not suppressed by the RS GIM mechanism. As a consequence, we
may expect sizable RS corrections within observables related to top production and decay.
One of these is the forward-backward asymmetry observed in tt̄ production at the Teva-
tron. The CDF and DØ experiments have collected thousands of top-quark pair events,
which allowed to measure the top-quark mass, mt, and its total inclusive cross section, σtt̄,
with an accuracy of below 1% [93] and 10% [94, 95], respectively. The forward-backward
asymmetry, AtFB, which is closely related to the charge-symmetric and asymmetric cross
sections, has been measured [96, 97, 98, 99, 100] and consistently found to be larger than
expected. In the laboratory (pp̄) frame, the CDF result reads

(
AtFB

)pp̄
exp

= (15.0± 5.0 stat. ± 2.4 syst.) % , (9.1)

where the quoted uncertainties are of statistical and systematical origin, respectively. Re-
cently, CDF presented measurements of AtFB in the dilepton decay channel with 5.1 fb−1 of
collected data [101]. After correcting for background, detector acceptance and resolution
effects, the asymmetry has been found to be (AtFB)

pp̄
dilep = (42.0± 15.0 stat. ± 5.0 syst.) % .

The DØ collaboration reported a measurement of (AtFB)obs.
exp = (8± 4stat. ± 1syst.)% for tt̄

events that satisfy the experimental acceptance cuts [102]. The corresponding SM predic-
tion reads (AtFB)obs.

SM =
(
1+2
−1

)
% and is similarly below the observed value.

In order to get into the subject, we first explain how the asymmetry arises within the
SM. Then, we will extend our considerations to general NP models. Here, we will work in
a general EFT language and give results for the RS Wilson coefficients of the respective
four-fermion operators. A numerical analysis of possible NP corrections within the RS
scenario is presented in the last subsection. All these results have been published in [103].

9.1 Production cross section and asymmetry in the SM

The Tevatron produces tt̄ pairs in collisions of protons and anti-protons, pp̄ → tt̄X at a
center-of-mass energy of 1.96 TeV. At the Born-level, the process is mediated by quark-
anti-quark annihilation and gluon fusion

q(p1) + q̄(p2)→ t(p3) + t̄(p4) ,

g(p1) + g(p2)→ t(p3) + t̄(p4) .
(9.2)
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9 Forward-backward asymmetry in tt̄ production

The four-momenta p1,2 of the initial state partons are given by the fractions x1,2 of the
momenta P1,2 of the colliding hadrons, p1,2 = x1,2P1,2. As usual, s = (P1 +P2)

2 denotes the
hadronic center-of-mass (CM) energy squared. The partonic cross section can be expressed
as a function of the kinematic invariants

ŝ = (p1 + p2)
2 , t1 = (p1 − p3)

2 −m2
t , u1 = (p2 − p3)

2 −m2
t , (9.3)

where momentum conservation implies that ŝ+ t1 + u1 = 0.
Important observables are the differential cross section with respect to the invariant mass

Mtt̄ =
√

(p3 + p4)2 of the tt̄ pair and the angle θ between ~p1 and ~p3 in the partonic CM
frame. Therefore, we express t1 and u1 in terms of θ and the top-quark velocity β,

t1 = − ŝ
2
(1− β cos θ) , u1 = − ŝ

2
(1 + β cos θ) , β =

√
1− ρ , ρ =

4m2
t

ŝ
. (9.4)

The hadronic differential cross section may then be written as

dσpp̄→tt̄X

d cos θ
=
αs
m2
t

∑

i,j

∫ s

4m2
t

dŝ

s
ffij
(
ŝ/s, µf

)
Kij

(
4m2

t

ŝ
, cos θ, µf

)
, (9.5)

where µf denotes the factorization scale and we have introduced the parton luminosity
functions

ffij(y, µf ) =

∫ 1

y

dx

x
fi/p(x, µf ) fj/p̄(y/x, µf ) . (9.6)

The luminosities for ij = qq̄, q̄q are understood to be summed over all species of light
quarks, and the functions fi/p(x, µf ) (fi/p̄(x, µf )) are the universal non-perturbative PDFs,
which describe the probability of finding the parton i in the proton (anti-proton) with
longitudinal momentum fraction x. The hard-scattering kernels Kij(ρ, cos θ, µf ) can be
expanded in αs and thus be written in the form

Kij(ρ, cos θ, µf ) =
∞∑

n=0

(αs
4π

)n
K

(n)
ij (ρ, cos θ, µf ) . (9.7)

Calculating the LO amplitudes of s-channel gluon exchange yields

K
(0)
qq̄ = αs

πβρ

8

CF
Nc

(
t21 + u2

1

ŝ2
+

2m2
t

ŝ

)
,

K(0)
gg = αs

πβρ

8(N2
c − 1)

(
CF

ŝ2

t1u1

−Nc

)[
t21 + u2

1

ŝ2
+

4m2
t

ŝ
− 4m4

t

t1u1

]
.

(9.8)

The coefficient K
(0)
q̄q is obtained from K

(0)
qq̄ by replacing cos θ with − cos θ. The factors

Nc = 3 and CF = 4/3 are the usual color factors of SU(3)c.
Next we introduce charge-asymmetric (a) and -symmetric (s) differential cross sections

dσa,s
d cos θ

≡ 1

2

[
dσpp̄→tt̄X

d cos θ
∓ dσpp̄→t̄tX

d cos θ

]
. (9.9)
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9.1 Production cross section and asymmetry in the SM
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Figure 9.1: Feynman diagrams contributing to AtFB in tt̄ production at NLO QCD. The
two-particle (three-particle) cut corresponds to the interference of qq̄ → tt̄
(qq̄ → tt̄g) amplitudes.

The superscripts pp̄ → tt̄X and pp̄ → t̄tX indicate that the angle θ corresponds to the
scattering angles of the top and anti-top in the partonic CM frame, respectively. Obviously,
the total hadronic cross section is given by

σtt̄ =

∫ 1

−1

d cos θ
dσs
d cos θ

. (9.10)

Since QCD is symmetric under charge conjugation, we can replace

dσpp̄→t̄tX

d cos θ

∣∣∣∣
cos θ=c

=
dσpp̄→tt̄X

d cos θ

∣∣∣∣
cos θ=−c

(9.11)

for any fixed value c. The forward-backward asymmetry is defined as

AtFB ≡

∫ 1

0

d cos θ
dσpp̄→tt̄X

d cos θ
−
∫ 0

−1

d cos θ
dσpp̄→tt̄X

d cos θ
∫ 1

0

d cos θ
dσpp̄→tt̄X

d cos θ
+

∫ 0

−1

d cos θ
dσpp̄→tt̄X

d cos θ

=
σa
σs
≡ Atc , (9.12)

and compares the number of top quarks scattered along the direction of the incoming
proton with the respective number of the opposite hemisphere. Due to the relation (9.11),
its definition is equivalent to that of a charge asymmetry Atc , which is given by the ratio
of the charge-asymmetric and -symmetric cross sections (9.9). In the following, we will
denote the respective hard-scattering kernels by Aij and Sij.

In the SM the LO coefficients of the symmetric part read

S
(0)
qq̄ = αs

πβρ

27
(2 + ρ) ,

S(0)
gg = αs

πβρ

192

[
1

β
ln

(
1 + β

1− β

)(
16 + 16ρ+ ρ2

)
− 28− 31ρ

]
,

(9.13)

while the asymmetric contributions A
(0)
qq̄ and A

(0)
gg both vanish identically.
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9 Forward-backward asymmetry in tt̄ production

At next-to-leading order (NLO) a non-zero coefficient A
(1)
qq̄ is generated from the inter-

ference of tree-level gluon exchange with one-loop QCD box diagrams and the interfer-
ence of initial- and final-state radiation (see Figure 9.1). Including QCD NLO as well
as electroweak corrections [104, 105], the SM prediction in the pp̄ frame for the inclusive
asymmetry is [106]

(
AtFB

)pp̄
SM

= (5.1± 0.6) % , (9.14)

where the total error includes the individual uncertainties due to different choices of the
parton distribution functions (PDFs), the factorization and renormalization scales, and a
variation ofmt within its experimental error. Recent theoretical determinations of (AtFB)SM,
that include the resummation of logarithmically enhanced threshold effects at NLO [107]
and NNLO [108, 109], are in agreement with the latter number. If we compare this result
to (9.1), we see that the SM prediction is about 2σ away from the experimental value
(9.1). Recently, an evidence for a mass dependent forward-backward asymmetry has been
presented in [110] for 5.3 fb−1 of pp̄ collisions. It has been found that for an invariant mass
of Mtt̄ ≥ 450 Gev, the tension in the tt̄-rest frame exceeds 3σ.

9.2 NP corrections at LO

In general, it turns out to be difficult to explain the large central experimental value,
since any viable NP model must simultaneously avoid giving rise to unacceptably large
deviations in σtt̄ and/or dσtt̄/dMtt̄, which both show no evidence of non-SM physics. In
[103] we have listed a bunch of publications, which propose NP in the s-channel through
the exchange of new vector bosons, or contributions to the t(u)-channel by the exchange
of either vector bosons W ′ and Z ′, or color singlet, triplet and sextet scalars. Concerning
the s-channel exchange, color octets are preferred as they directly interfere with LO QCD
diagrams. They should exhibit sizable axial-vector couplings to both the light quarks, gqA,
and the top quark, gtA. In order to induce a positive shift in AtFB, the new vectors have to
couple to the first and the third generation of quarks with axial-vector couplings [111] of
opposite sign1.

As noted in [112], the RS scenario of a warped extra dimension offers the possibility to
fulfill the latter requirement, as gauge couplings of quarks to KK gluons depend on flavor.
Further corrections to AtFB arise from the neutral current sector, where KK excitations of
the photon and the Z boson give rise to flavor-violating couplings. At the order v4/M4

KK,
there are also contributions from the Z0 and the Higgs boson. The LO diagrams are shown
in Figure 9.2. The gluon-fusion channel gg → tt̄ does not receive a correction at the Born
level, since the coupling of two gluons to a KK gluon is zero due to the orthonormality of
the gauge-boson wave functions.

1The sign is needed as to first approximation the interference term is proportional to gqAgtA/(−M2
NP),

where MNP is the mass of the new exchange particle.
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Figure 9.2: Tree-level contributions to the qq̄ → tt̄ (left) and the uū → tt̄ (right)
transition arising from s- and t-channel exchange of KK gauge bosons.

The effective Lagrangian, needed to account for the effects of the order v2/M2
KK, reads

Leff =
∑

q,u

∑

A,B=L,R

[
C

(V,8)
qq̄,ABQ

(V,8)
qq̄,AB + C

(V,8)
tū,ABQ

(V,8)
tū,AB + C

(V,1)
tū,ABQ

(V,1)
tū,AB

]
, (9.15)

where

Q
(V,8)
qq̄,AB = (q̄γµT

aPAq)(t̄γ
µT aPB t) ,

Q
(V,8)
tū,AB = (ūγµT

aPAt)(t̄γ
µT aPBu) ,

Q
(V,1)
tū,AB = (ūγµPAt)(t̄γ

µPBu) .

(9.16)

The sum over q (u) involves all light (up-type) quark flavors, and the superscripts (V, 1)
and (V, 8) label color-octet and singlet vector currents, respectively. The chiral projectors
PL,R have been introduced in (1.18). Starting from (9.15), we calculate the interference
between the matrix elements of the s-channel SM gluon exchange and the s- and t-channel
NP contributions, which arise from the Feynman graphs displayed in Figure 9.2. In terms
of the linear combinations

C
(P,a)
ij,‖ = Re

[
C

(P,a)
ij,LL + C

(P,a)
ij,RR

]
, C

(P,a)
ij,⊥ = Re

[
C

(P,a)
ij,LR + C

(P,a)
ij,RL

]
, (9.17)

the resulting hard-scattering kernels take the form

K
(0)
qq̄,RS =

βρ

32

CF
Nc

[
t21
ŝ
C

(V,8)
qq̄,⊥ +

u2
1

ŝ
C

(V,8)
qq̄,‖ +m2

t

(
C

(V,8)
qq̄,‖ + C

(V,8)
qq̄,⊥

)]
,

K
(0)
tū,RS =

βρ

32

CF
Nc

[(
u2

1

ŝ
+m2

t

)(
1

Nc

C
(V,8)
tū,‖ − 2C

(V,1)
tū,‖

)]
.

(9.18)

Here, Nc is the number of colors and CF has been introduced in (1.35).
After integrating over cos θ, one obtains the LO corrections to the symmetric and asym-

metric parts of the cross section in the partonic CM frame

S
(0)
uū,RS =

βρ

216
(2 + ρ) ŝ

[
C

(V,8)
uū,‖ + C

(V,8)
uū,⊥ +

1

3
C

(V,8)
tū,‖ − 2C

(V,1)
tū,‖

]
,

S
(0)

dd̄,RS
=

βρ

216
(2 + ρ) ŝ

[
C

(V,8)

dd̄,‖
+ C

(V,8)

dd̄,⊥

]
,

(9.19)
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and

A
(0)
uū,RS =

β2ρ

144
ŝ

[
C

(V,8)
uū,‖ − C

(V,8)
uū,⊥ +

1

3
C

(V,8)
tū,‖ − 2C

(V,1)
tū,‖

]

A
(0)

dd̄,RS
=
β2ρ

144
ŝ
[
C

(V,8)

dd̄,‖
− C(V,8)

dd̄,⊥

]
.

(9.20)

Obviously, the coefficients involving down-type quarks do not receive corrections from
flavor-changing t-channel transitions. Note that in (9.19) the coefficients C

(V,8)
qq̄,‖ and C

(V,8)
qq̄,⊥

enter in the combination CV
qq̄ ≡

(
C

(V,8)
qq̄,‖ + C

(V,8)
qq̄,⊥

)
, while in (9.20) they contribute as the

difference CA
qq̄ ≡

(
C

(V,8)
qq̄,‖ − C

(V,8)
qq̄,⊥

)
. This feature is related to the fact that the symmetric

(asymmetric) LO cross section σs (σa) measures the product gqV g
t
V

(
gqAg

t
A

)
of the vector

(axial-vector) parts of the respective gauge couplings.

The expressions (9.19) and (9.20) hold for any NP model, which goes along with tree-
level exchange of new color-octet vectors in the s- and t-channel, as well as t-channel
transitions due to flavor changing color-singlet vectors. Whithin the minimal RS model,
the coefficients are explicitly given by [103]

C
(V,8)
qq̄,‖ = −2παs

M2
KK

{
1

L
−
∑

a=Q,q

[
(∆′

a)11 + (∆′
a)33 − 2L (∆̃a)11 ⊗ (∆̃a)33

]}
,

C
(V,8)
qq̄,⊥ = −2παs

M2
KK

{
1

L
−
∑

a=Q,q

[
(∆′

a)11 + (∆′
a)33

]

+ 2L
[
(∆̃Q)11 ⊗ (∆̃q)33 + (∆̃q)11 ⊗ (∆̃Q)33

]}
, (9.21)

C
(V,8)
tū,‖ = −4παs

M2
KK

L
∑

a=U,u

[
(∆̃a)13 ⊗ (∆̃a)31

]
,

C
(V,1)
tū,‖ = −4παe

M2
KK

L

s2
wc

2
w

[(
T u3 − s2

wQu

)2
(∆̃U)13 ⊗ (∆̃U)31 +

(
s2
wQu

)2
(∆̃u)13 ⊗ (∆̃u)31

]

− 4παe
M2

KK

LQ2
u

∑

a=U,u

[
(∆̃a)13 ⊗ (∆̃a)31

]
, (9.22)

for q = u, d and Q = U,D. Analogous expressions with the index 1 replaced by 2 hold if
the quarks in the initial state belong to the second generation. As in the charge-current
sector, the tensor products indicate that the respective terms do not factorize into single
vertex corrections. The definition of these terms have been given in [38, 84]. The overlap
integrals (∆Q,q)ij have been introduced in (7.16). Here, they stem from the non-universal
(t-dependent) terms in our expression for the sum over the KK-gluon tower (3.36). In
Appendix B.1, we collect ZMA expressions and give the results of the RG evaluation at
leading logarithmic accuracy, which are used for our numerical analysis. As it turns out,
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9.2 NP corrections at LO

the dominant RS corrections stem from the vector couplings of KK gluons, which are
collected into CV

qq̄. This is also true for the custodial scenario.
Coming to the subleading corrections we observe that the left-handed part of the KK

Z-boson contribution to C
(V,1)
tū,‖ is enhanced by a factor of around 3 within the custodial RS

model compared to the minimal one. On the other hand, the right-handed contribution is
protected by the custodial symmetry and thus smaller by a factor of roughly 1/L ≈ 1/37.
In contrast, the KK-gluon contributions remain unchanged at the order (v2/M2

KK). Higher
order corrections arise from the admixture of KK fermions to the light quarks. We conclude
that the predictions for the tt̄ observables are rather model-independent. However, as we
will see later, the constraints from the Z0bb̄-pseudo observables restrict the possible range
of RS corrections within the minimal model compared to the custodial one.

In order to get a feeling about the size of the RS hard-scattering kernels for tt̄ production,
we just consider corrections proportional to αs and suppress relative O(1) factors as well
as numerically sub-leading terms for the moment. Thus, we can simplify the ZMA results
(B.1) and find that the coefficient functions S

(0)
ij,RS and A

(0)
ij,RS scale like

S
(0)
uū,RS ∼

4παs
M2

KK

∑

A=L,R

F 2(ctA) ,

A
(0)
uū,RS ∼ −

4παs
M2

KK

L

{
∏

q=t,u

[
F 2(cqR)− F 2(cqL)

]
+

1

3

∑

A=L,R

F 2(ctA)F 2(cuA
)

}
,

(9.23)

for the case of up-type quarks. Here, we have again used the notation ctL ≡ cQ3
, ctR ≡ cu3

,
cuL
≡ cQ1

, and cuR
≡ cu1

.
Under the natural assumptions that the bulk mass parameters of the top and up quarks

satisfy ctA > −1/2 and cuA
< −1/2, we can use the approximate scaling behavior (6.34)

of the zero-mode profiles, and expand the above result in the small number (cuL
− cuR

).
Thus, we find

S
(0)
uū,RS ∼

4παs
M2

KK

2 (1 + ctL + ctR) ,

A
(0)
uū,RS ∼

4παs
M2

KK

2LeL(1+cuL
+cuR

) (1 + cuL
+ cuR

)

×
{(

2 +
1

3

)
L (ctL − ctR) (cuL

− cuR
) +

1

3
(1 + ctL + ctR)

}
.

(9.24)

The symmetric function entirely arises from s-channel KK-gluon exchange, while the asym-
metric one collects contributions from the s-channel (proportional to the term multiplied
by 2 in the curly bracket) and the t-channel (terms ∝ 1/3). The relations (9.24) reveal a

couple of interesting features. We first observe that the hard-scattering kernel S
(0)
uū,RS of the

charge-symmetric cross section is independent of the localization of the up-quark to first
approximation. Furthermore, it is strictly positive, as long as ctA > −1/2. This implies
that the inclusive tt̄ production cross section gets enhanced with increasing IR localization
of the left- and right-handed top quarks.
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9 Forward-backward asymmetry in tt̄ production

In contrast to S
(0)
uū,RS, both terms in A

(0)
uū,RS are exponentially suppressed for UV-localized

up quarks, i.e., cuA
< −1/2. For typical values of the bulk mass parameters, one finds that

the magnitude of the first term in the curly bracket of (9.24) is larger than the second term
by a factor of almost 10. This implies that, to first approximation, the asymmetric cross
section can be described by including only the effects from s-channel KK-gluon exchange.
Note that the difference of the bulk mass parameters for light quarks (cuL

−cuR
) is typically

small and positive. It follows that the product (1+ cuL
+ cuR

)(cuL
− cuR

) < 0 is generically

negative. In order to find a positive LO contribution to A
(0)
uū,RS, one requires (ctL − ctR) to

be negative as well. Fortunately, this is the natural assumption in warped models which
satisfy bounds from the Z0bLb̄L vertex and generate the hierarchies in the flavor sector
by means of the warped-space Froggatt-Nielsen mechanism. Applying the latter, we can
deduce the condition ctR & mt/(

√
2v |Yt|)− 1/2 , where the top-quark mass is understood

to be normalized at the KK scale and Yt ≡ (Yu)33. For mt(1 TeV) = 144 GeV and |Yt| = 1 ,

this implies that positive values of ctR lead to A
(0)
uū,RS > 0, and thus to a positive shift in

σa. However, we want to stress that the latter bound is only a crude approximation of the
leading QCD corrections. The inclusion of electroweak corrections does not change this
picture qualitatively.

At this point, remember that at LO QCD in the presence of NP the symmetric (asym-
metric) piece is generated from vector (axial vector) currents. The important message here
is that at tree-level the axial-vector current is RS GIM suppressed due to the IR localiza-
tion of the light quarks in the initial state. Therefore it is tiny for a natural choice of bulk
masses. On the other hand, the RS corrections to the vector current can be sizable. There-
fore, it is worth to go to NLO in the αs/(4π) expansion, where an asymmetric contribution
is generated by the vector current.

9.3 Calculation of NLO effects

Since QCD is a pure vector theory, the lowest-order processes qq̄ → tt̄ and gg → tt̄
of the O(α2

s) do not contribute to AtFB within the SM. However, at O(α3
s) there is an

charge-asymmetric piece arising in quark- anti-quark-annihilation qq̄ → tt̄ (g) and flavor
excitation qg → qtt̄ processes [104, 105]. The Feynman diagrams are given in Figure 9.1,
where one still has to add their counterparts with crossed gluon lines in the box. Note that
the crossing of gluons is equivalent of changing the direction of the arrows in the fermion
loop, that is replacing top by anti-top. The charge or forward-backward asymmetry arises
from interference terms that are odd under the exchange of t ↔ t̄. Since the axial-vector
current is even under this exchange, it does not contribute to the asymmetry at NLO. The
vector-current on the other hand will generate asymmetric terms proportional to the color

structure d2
abc =

(
2Tr

(
{T a, T b}T c

))2
[104, 105]. Gluon-fusion processes gg → tt̄ (g), on

the other hand, remain symmetric to all orders in perturbation theory. Explicit formulas
for the asymmetric contributions to the tt̄ production cross section in QCD are given in
[105]. Contributions from flavor excitation are negligibly small at the Tevatron and will
not be taken into account in the following.
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Figure 9.3: Interference of SM and NP diagrams contributing to the forward-backward
asymmetry in tt̄ production at NLO. The insertion of the effective operator
is indicated by a black square.

If order to compute the NLO corrections due to NP at leading order in v2/Λ2
NP, one

considers the interference between SM and NP diagrams. Examples are shown in Figure 9.3,
where we replace the tree-level SM amplitude by an effective four-fermion operator. Of
course, NP can also arise within the loop. We will however not consider this possibility.

For the case of the RS model, one concludes from (9.19), (9.20), and (9.24) that the
NLO corrections to σa should dominate over the LO ones, if the condition

αs
4π

(1 + ctL + ctR) & LeL(1+cuL
+cuR

) (9.25)

is fulfilled. Note that this inequality should be considered only as a crude approximation
valid up to a factor of O(1). Due to the rather strong UV localization of light quarks, it
can easily be satisfied. Note that in contrast to the SM, in the RS framework the Feynman
graphs displayed in Figure 9.3 are not the only sources of charge-asymmetric contributions.
Self-energy, vertex, and counter-term diagrams will also lead to an asymmetry. However,
these corrections turn out to be RS GIM suppressed, just as the tree-level RS correction.
Compared to the latter, these contributions are accompanied by an additional factor of
αs/(4π), and can therefore be ignored for all practical purposes.

In the partonic CM frame (qq̄ = uū, dd̄) the leading RS NLO asymmetric hard-scattering
kernel is related to that of the SM model by

A
(1)
qq̄,RS =

ŝ

16παs
CV
qq̄A

(1)
qq̄ . (9.26)

Note that the Wilson coefficient CV
qq̄ contains a factor 4παs/M

2
KK (B.1). The SM result A

(1)
qq̄

is normalized according to (9.7), and can be described through a parametrization which
is accurate to the permille level. The explicit expression is given in Appendix A.3. A
numerical integration of the asymmetric differential cross section given in [105] over the
relevant phase has been performed in [103]. As the forward-backward asymmetry AtFB is
measured in the pp̄ laboratory frame, we have to transform the results of the partonic CM
frame by a change of the integration boundaries within the integration over cos θ. The
resulting reduction factors are collected in Appendix A.3.
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9 Forward-backward asymmetry in tt̄ production

The Wilson coefficients appearing in the effective Lagrangian (9.15) do not only give
rise to corrections of the forward-backward asymmetry AtFB, but also to the theoretical
prediction of the total cross section σtt̄, and the invariant mass spectrum dσtt̄/dMtt̄. In SM
the latter quantities agree with the recent Tevatron results (

√
s = 1.96 TeV) [94, 113, 114]

(σtt̄)exp = (7.50± 0.31stat. ± 0.34syst. ± 0.15lumi.) pb ,

(9.27)(
dσtt̄
dMtt̄

)Mtt̄ ∈ [800,1400] GeV

exp

= (0.068± 0.032stat. ± 0.012syst. ± 0.004lumi.)
fb

GeV
,

within the theoretical and experimental errors. In the case of the tt̄ invariant mass spec-
trum, we have restricted our attention to the last bin of the available CDF measure-
ment, Mtt̄ ∈ [800, 1400] GeV, which is most sensitive to the presence of new DOFs with

masses in the TeV range. In terms of the dimensionless coefficients C̃V
qq̄ ≡ 1 TeV2CV

qq̄ and

C̃V
tū ≡ 1 TeV2

(
1/3C

(V,8)
tū,‖ − 2C

(V,1)
tū,‖

)
, we find the theoretical predictions2

(σtt̄)RS =
[
1 + 0.053

(
C̃V
uū + C̃V

tū

)
+ 0.008 C̃V

dd̄

] (
6.73+0.52

−0.80

)
pb ,

(9.28)(
dσtt̄
dMtt̄

)Mtt̄ ∈ [800,1400] GeV

RS

=
[
1 + 0.33

(
C̃V
uū + C̃V

tū

)
+ 0.02 C̃V

dd̄

] (
0.061+0.012

−0.006

) fb

GeV
.

All Wilson coefficients are understood to be evaluated at µ = mt. The RG evolution of
the Wilson coefficients can be found in Appendix B.1. Details concerning the numerical
evaluation are given in [103]. The latter results constrain the size of the Wilson coefficients
appearing in the effective Lagrangian (9.15).

From (A.6) and (9.28), we obtain the forward-backward asymmetry in the laboratory
frame

(AtFB)pp̄RS =

[
1 + 0.22

(
C̃A
uū + C̃V

tū

)
+ 0.03C̃A

dd̄
+ 0.034C̃V

uū + 0.005C̃V
dd̄

1 + 0.053
(
C̃V
uū + C̃V

tū

)
+ 0.008C̃V

dd̄

]
(
5.6+0.8

−1.0

)
% . (9.29)

The central value of the SM prediction has been obtained by integrating the formulas given
in [105] over the relevant phase space (A.6), weighted with MSTW2008LO PDFs [115] with
the unphysical scales fixed to mt. The above result (9.29) is in good agreement with (9.14)
as well as the findings of [107, 108]. Electroweak corrections have not been included within
the calculation of the central value (9.29). Such effects have been found to enhance the tt̄
forward-backward asymmetry by around 4% to 9% [106, 116]. Therefore, we have added
in quadrature an error of 5% to the combined scale and PDF uncertainties.

In Table 9.1 we show the results for the various Wilson coefficient functions for ap-
propriate parameter sets. The bulk mases and (anarchic) Yukawa couplings used for the
calculation of the first three rows are given in [103]. The last row corresponds to our default

2Here, we have ignored the tiny contributions from the (anti-)strange-, (anti-)charm-, and (anti-)bottom
quark content of the proton (anti-proton).
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9.3 Calculation of NLO effects

ctL ctR C̃V
uū/αs C̃A

uū/αs C̃V
dd̄
/αs C̃A

dd̄
/αs C̃V

tū/αs
−0.41 0.09 4.496 0.71 · 10−2 0.680 −1.40 · 10−3 −1.3 · 10−4

−0.47 0.48 4.950 0.22 · 10−2 0.268 −0.03 · 10−3 −0.7 · 10−4

−0.49 0.90 5.309 1.79 · 10−2 0.084 −0.64 · 10−3 −2.5 · 10−4

−0.47 0.87 5.263 2.82 · 10−2 0.035 −3.71 · 10−3 −0.2 · 10−4

Table 9.1: Results for the Wilson coefficients corresponding to three different parameter
points in the minimal RS model. The coefficients scale as (1 TeV/MKK)2.

parameter set given in Appendix A.1. The values of the left- and right-handed top-quark
bulk mass parameters ctL and ctR are given in the first two columns, as these are of special
importance for the size of the LO cross sections (see (9.24)). From the numbers it is evi-
dent that the Wilson coefficients of the axial-vector current contributions are suppressed
against those of the vector current by at least two orders of magnitude. Thus, the relative
αs/(4π) factor gets (over)compensated, and the NLO vector current gives the dominant
contribution to σa. Explicitly, this can be seen by inserting the above numbers into the nu-
merator of (9.29). The RS contributions from t-channel transitions (last column) turn out
to be negligible. Restricting ourselves on the corrections arising from s-channel KK-gluon
exchange, we conclude that one can also neglect the contributions from down quarks in the
initial state. First, the respective Wilson coefficients are smaller than those belonging to
up quarks by about one order of magnitude. Second, they are suppressed in the total cross
section (last bin of the tt̄ invariant mass spectrum) by the small ratio of quark luminosities

ffdd̄ (0.04) /ffuū (0.04) ≈ 1/5 (ffdd̄ (0.17) /ffuū (0.17) ≈ 1/15). We further observe that C̃V
uū

grows with increasing values of (ctL + ctR), as expected from (9.24).
As we have now identified the dominant RS corrections to AtFB, we want to find out

which corrections are allowed by the RS parameter space, and whether they decrease or
increase the SM prediction. As the dominant contributions arise from the exchange of
KK-gluons, there is no difference between the minimal and the custodial model at LO in
v2/M2

KK. Dropping all numerical irrelevant terms in (9.29), we obtain

(AtFB)pp̄RS ≈
[

1 + 0.22 C̃A
uū + 0.034C̃V

uū

1 + 0.053 C̃V
uū

]
(
5.6+0.8

−1.0

)
% . (9.30)

Looking at the numerator, we observe that the correction due to the axial-vector current
plays a minor role, being just a few percent compared to the one of the vector current. On
the other hand, the corrections to the symmetric cross section in the denominator have a
stronger sensitivity to C̃V

uū, and are also positive. It follows that the ratio (AtFB)
pp̄
RS/(A

t
FB)

pp̄
SM

is smaller than one. In other words, for a natural choice of input parameters, the RS
corrections to the SM prediction of the forward-backward asymmetry AtFB turn out to be
negative due to the normalization with respect to the symmetric cross section. This feature
is illustrated in Figure 9.4, where we show the (approximate) results for the absolute RS
corrections to AtFB in the pp̄ frame as a function of ctL and ctR . The figures have been
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Figure 9.4: Absolute correction to (AtFB)pp̄RS in the ctL-ctR plane for a KK scale of
1 TeV. The parameter region which is in agreement with the Z0bb̄ “pseudo
observables” is colored in green ( light gray). Figure taken from [103].

obtained by including only the KK-gluon corrections to C̃V,A
uū . Here, we have employed

MKK = 1 TeV, cuL
= cdL

= −0.63, cuR
= −0.68, cdR

= −0.66, ccL = csL
= −0.56,

ccR = −0.53, csR
= −0.63, and assumed the minors of the Yukawa matrices Yu,d to be

equal for simplicity. Furthermore, we imposed constraints from the Z0bLb̄L vertex and the
top mass, which restrict the value of ctL = cQ3

. The allowed parameter region is colored
in green (light gray). For the custodial model only the bound from the top mass survives,
whereas in the minimal version only the thin stripe with ctL ∈ [−0.60,−0.49] is allowed.
The solid lines indicate the required value of the top-Yukawa coupling Yt = (Yu)33 for the
given bulk masses.

Both panels in Figure 9.4 show that the corrections to (AtFB)pp̄RS interfere destructively
with the SM in the whole ctL-ctR plane. However, even for a low KK scale of MKK = 1 TeV
(which is rather unrealistic in view of the constraints from the electroweak precision observ-
ables and various flavor-changing interactions [38]), the maximal attainable effects do not
exceed −0.03% (−0.06%) in the minimal (custodial) RS model. Since the RS corrections
decouple as 1/M2

KK, it follows that for MKK = 2 TeV the maximal absolute corrections
are about −0.02%. Thus, we conclude that the RS prediction for the forward-backward
asymmetry in tt̄ production, AtFB, is essentially SM-like within an anarchic approach to
flavor.

This result should be contrasted with the analysis [112], which finds positive corrections
to the tt̄ forward-backward asymmetry of up to 5.6% (7%) arising from KK gluons (Z ′-

boson exchange) at LO. Here, the authors obtain sizable values for C̃A
qq̄ by assuming an IR-

localized quark field uL and a strongly UV-localized uR. This choice, however, reintroduces
hierarchies in the Yukawa matrices in order to reproduce the correct light quark masses
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9.3 Calculation of NLO effects

simultaneously with the desired CKM structure. Moreover, the RS GIM suppression for
the gauge couplings of left-handed up and down quarks vanishes, giving rise to possible
conflicts with the flavor phenomenology. Positive corrections to the asymmetry have also
been found in [117] in the context of a warped Higgsless model.

We close this section by noting that, due to the universal result (9.29), a sizable positive
correction to (AtFB)SM from s-channel NP exchange requires at least anO(1) tree level axial-
vector current with a different sign for heavy and light quarks, which in addition interferes
with the tree-level QCD diagram of quark-anti-quark annihilation [111]. On the other
hand, there should not be vast corrections to the top-quark vector couplings, as otherwise
the good agreement for the total cross section and the invariant mass spectrum would
be spoiled (see (9.3) and (9.3)). A viable model should therefore involve a massive color
octet, which possesses a sizable axial-vector coupling to fermions. A possible candidate an
axigluon within the chiral color model [118], where quarks of opposite chirality but same
flavor are charged under different SU(3) groups.
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10 CP Violation in Bs-meson decays

As a final project, we want to study RS corrections in the decay of B0
s -mesons. An impor-

tant observable is the width difference ∆Γs ≡ ΓsL − ΓsH between the light and the heavy
meson state, which involves a CP-violating phase. According to the above definition, ∆Γs
happens to be positive in the SM. It can be computed from the dispersive and absorptive
part of the B̄0

s -B
0
s mixing amplitude, M s

12 and Γs12 . For |Γs12| ≪ |M s
12|, one can derive the

simple relation [119, 120]

∆Γs ≈ −
2 Re(M s

12Γ
s∗
12)

|M s
12|

= 2 |Γs12| cosφs . (10.1)

We define the relative phase φs between the mixing and the decay amplitude according to
the convention

M s
12

Γs12
= − |M

s
12|

|Γs12|
eiφs , φs = arg(−M s

12Γ
s ∗
12 ) , (10.2)

for which the SM value is positive and explicitly given by φSM
s = (4.2 ± 1.4) · 10−3 [121].

The combined experimental results of CDF and DØ differ from the SM prediction in the
(β

J/ψφ
s ,∆Γs)-plane by about 2σ [122], whereas the latest CDF results disagree by 1σ only

[123]. Here, β
J/ψφ
s ∈ [−π/2, π/2] is the CP-violating phase in the interference of mixing

and decay, obtained from the time-dependent angular analysis of flavor-tagged B0
s → J/ψφ

decays. In the SM it is given by [121, 124]

βJ/ψφs = − arg

(
−λ

bs
t

λbsc

)
= 0.020± 0.005 , (10.3)

with λbsq = VqbV
∗
qs . In the presence of NP, the prediction of ∆Γs is modified [125, 126] .

Adopting the notation of [127], we extend the SM relations according to

M s
12 = M s SM

12 +M sNP
12 = M s SM

12 RM eiφM ,

Γs12 = Γs SM
12 + ΓsNP

12 = ΓsSM
12 RΓ e

iφΓ .
(10.4)

Inserting the latter definitions into (10.1) it follows that

∆Γs = 2 |Γs SM
12 |RΓ cos(φSM

s + φM − φΓ) , (10.5)

where ∆ΓSM
s = (0.087 ± 0.021) ps−1 [128]. A further important observable is the CP

asymmetry in semileptonic decays

AsSL =
Γ(B̄0

s → l+X)− Γ(B0
s → l−X)

Γ(B̄0
s → l+X) + Γ(B0

s → l−X)
= Im

(
Γs12
M s

12

)
. (10.6)
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Figure 10.1: Feynman diagrams that contribute to the dispersive and absorptive part
of the B̄0

s -B
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s mixing amplitude, M s

12 and Γs12, at LO in the SM.
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Figure 10.2: Feynman diagrams for generic NP contributions to M s
12 and Γs12 through

insertion of effective ∆B = 2 and ∆B = 1 operators, respectively.

Including NP corrections, we find

AsSL =
|Γs SM

12 |
|M s SM

12 |
RΓ

RM

sin(φSM
s + φM − φΓ) . (10.7)

Within the SM, the leading contribution to the dispersive part of the B̄0
s -B

0
s mixing

amplitude M s
12 appears at the one-loop level. The respective Feynman diagrams are shown

on the left-hand side of Figure 10.1. If NP involves FCNCs at tree level, these give rise
to sizable corrections to the mass difference ∆mBs ≡ M s

H − M s
L = 2 |M s

12| [119]. The
generic m2

W/Λ
2 suppression compared to the SM amplitude is (over)compensated by the

inverse loop factor 4π/α in the ratio M sNP
12 /M s SM

12 . Here, Λ denotes the NP mass scale.
For the case of the minimal and custodial RS model, the corrections have been calculated
in [38] and [74], respectively. On the other hand, the presence of tree level FCNCs and
right-handed charged current interactions give rise to new decay diagrams. However, NP
corrections to the absorptive part of the amplitude Γs12 do not gain an inverse loop factor
compared to the leading SM diagrams, which can be seen in Figure 10.2. Therefore, the
m2
W/Λ

2 (here m2
W/M

2
KK) suppression does not get attenuated and the effects are expected

to be small. Thus, they are neglected in many NP studies.
Recently, model-independent estimates on AsSL in the presence of heavy gluons have

been presented in [129], taking into account modifications in Γ12. NP contributions from
EW penguin operators as well as right-handed charged currents have not been considered.
We will see below that the former can compete with or even dominate contributions from
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QCD penguins within the minimal RS model [34, 38], where part of the latter tend to give
the dominant contribution to ΓsRS

12 for the most natural choice of input parameters. The
results presented in the following can also be found in our recent article [75].

10.1 Calculation of Γs12

Within the SM, Γs12 is known to NLO in QCD [130, 131, 132, 133, 134, 135, 121]. In this
section, we (re-)calculate the leading contribution to Γs12 in the presence of NP. Formally,
one has to evaluate the hadronic matrix element of the transition amplitude, which converts
B̄0
s into B0

s

Γs12 =
1

2mBs

〈B0
s |T |B̄0

s 〉 ,

T = Disc

∫
d4x

i

2
T
[
H∆B=1

eff (x)H∆B=1
eff (0)

]
.

(10.8)

Here, T stands for “time-ordered”, and the effective Hamiltonian collects all ∆B = 1 opera-
tors which can be inserted into the Feynman diagrams of the right-hand side in Figure 10.2.
Taking the discontinuity in the expression above projects out on-shell intermediate states.
Explicitly, this is done by cutting the diagram and allowing only for light quarks (leptons)
as decay products. The leading correction to the SM result is given by the interference
between SM and NP insertions. The framework of heavy-quark expansion (HQE) allows
for a systematic evaluation of the matrix element in powers of 1/mb. At the zeroth order,
the momentum of the B-meson p in its rest frame corresponds to the momentum of the
bottom quark (p2 = m2

b), while the strange-quark momentum is set to zero. Therefore, we
make use of the EOMs p/ub(p) = −p/vb(p) = mbub(p) and p/us(p) = p/vs(p) = 0. At typical
hadronic distances x > 1/mb, the transition of B̄0

s into B0
s is a local process. Thus, the

matrix element can be expanded in terms of local ∆B = 2 operators. QCD corrections are
implemented by running the ∆B = 1 operators from the matching scale down to the mass
of the bottom quark. The leading SM contributions can be collected into matrix elements
of the ∆B = 2 operators

Q1 = (s̄ibi)V−A(s̄jbj)V−A ,

Q2 = (s̄ibi)S+P (s̄jbj)S+P ,
(10.9)

where i and j denote color indices, and a summation over repeated indices is understood.
The shorthand notation V ± A indicates the Dirac structure γµ(1 ± γ5) in between the
spinors, whereas S ± P denotes (1 ± γ5). The possibility of having right-handed charged
currents within the RS model asks for further ∆B = 2 operators, caused by interference
of SM with NP insertions. We introduce

Q3 = (s̄ibj)S+P (s̄jbi)S+P ,

Q4 = (s̄ibi)S−P (s̄jbj)S+P ,

Q5 = (s̄ibj)S−P (s̄jbi)S+P .

(10.10)
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10 CP Violation in Bs-meson decays

The appropriate ∆B = 1 Hamiltonian, allowing for new right-handed charged currents
as well as tree-level FCNCs, is given by

H∆B=1
eff =

GF√
2
λbsc

[ ∑

i=1,2

(
CiQi + CLL

i Qi + CLR
i QLR

i + CRL
i QRL

i

)
+

10∑

i=3

CiQi

]

+
10∑

i=3

(
CNP
i Qi + C̃NP

i Q̃i

)
.

(10.11)

In the RS model the operators Q1,2 arise from (KK) W±-boson exchange, and the LR/RL
operators involve right-handed charged currents. They are defined as

Q1 = (s̄icj)V−A(c̄jbi)V−A , Q2 = (s̄ici)V−A(c̄jbj)V−A ,

QLR
1 = (s̄icj)V−A(c̄jbi)V+A , QLR

2 = (s̄ici)V−A(c̄jbj)V+A ,
(10.12)

and the QRL
i are chirality flipped with respect to QLR

i . Operators of the type RR are not
included into our analysis as their coefficients scale like v4/M4

KK in the models at hand.
We also do not consider the small contributions from electromagnetic and chromomagnetic
dipole operators Qγ

7 and Qg
8 . Due to the hierarchies in the CKM matrix and the RS-GIM

mechanism, it is sufficient to restrict ourselves on c quarks as intermediate states, when we
calculate the RS corrections related to W -boson exchange. For the SM contribution how-
ever, we include the combinations uc, cu, and uu in addition to the operators given above.
Concerning the NP corrections encoded in the coefficients with superscripts LL,LR,RL,
we pull out the CKM factor λbsc for convenience. As discussed at the end of Section 7,
the measured values for Vcb and Vcs (extracted from semileptonic B and D decays) should
be identified with the exchange of all (SU(2)L) W -type bosons. As a consequence, the
NP coefficients CLL

1,2 arise only due to non-factorizable corrections (7.36), which can not be
absorbed into λbsc . As we will discuss later, the dominant RS corrections however arise from
the chirality-mixed operators QLR

i . Explicit ZMA expressions for the Wilson coefficients
are collected in Appendix B.2. Besides the charged-curent operators (10.12), we take into
account contributions from QCD penguin operators

Q3 = (s̄ibi)V−A

∑
q
(q̄jqj)V−A , Q4 = (s̄ibj)V−A

∑
q
(q̄jqi)V−A ,

Q5 = (s̄ibi)V−A

∑
q
(q̄jqj)V+A , Q6 = (s̄ibj)V−A

∑
q
(q̄jqi)V+A ,

(10.13)

as well as EW penguin operators

Q7 =
3

2
(s̄ibi)V−A

∑
q
Qq (q̄jqj)V+A , Q8 =

3

2
(s̄ibj)V−A

∑
q
Qq (q̄jqi)V+A ,

Q9 =
3

2
(s̄ibi)V−A

∑
q
Qq (q̄jqj)V−A , Q10 =

3

2
(s̄ibj)V−A

∑
q
Qq (q̄jqi)V−A ,

(10.14)

where q = u, c, d, s, and Qq is the electric charge. Here, no CKM suppression factors are
involved. Thus, one should keep all light quarks as intermediate states, if one considers
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10.1 Calculation of Γs12

double neutral-current insertions. The operators Q̃3..10 are chirality-flipped with respect to
(10.13) and (10.14). In principle, there is the possibility of a flavor change on both vertices
for NP penguins. Furthermore, the interaction is not universal with respect to the quark
flavor q. However, these non-universal effects and internal flavor changes suffer from an
additional RS-GIM suppression and can be neglected for all practical purposes. For the
same reason, the chirality flipped penguins C̃RS

3−10 can be neglected compared to CRS
3−10 for

bs transitions [38]. Within the minimal RS model it turns out that, despite of the relative
α/αs-suppression, the EW penguin operators can dominate over the gluon penguins [38].
This is explained by the extra factor L, which shows up in the leading correction to the
left-handed Z0-coupling (7.15). Remember that this factor vanishes in the custodial model.
The RS Wilson coefficients of the penguin operators can be found in [38] and are collected in
Appendix B.3 for completeness. There further is the possibility of a flavor-changing Higgs
coupling which, however, can be neglected against the contributions of the flavor-changing
heavy gauge bosons in RS models.

Concerning double-penguin insertions, we include all light quarks with masses set to zero
(besides mc). For q = c and penguin-operator insertions that contain V − A structures
only, the calculation resembles that of the charged-current sector by applying a Fierz
transformation. The double-penguin insertion moreover allows for leptons within the cut-
diagram. However, as the related SM coefficient is suppressed by α/αs, there is no chance
to obtain big effects from s̄b → τ̄ τ transitions, which are less constrained by experiment
[136]. Note that this is not a general statement about NP models. If there is a tree-level
transition s̄b → τ̄ τ mediated by light NP particles in the range of ∼ 100 GeV, the double
NP insertion becomes comparable to the SM diagrams. Possible candidates are scalar
leptoquarks [127, 137].

In order to determine Γs12, one has to evaluate integrals of the form

∫
d4k δ

((
k +

p

2

)2 −m2
q

)
δ
((
k − p

2

)2 −m2
q

) {
1, k2, kµkν

}

=

∫
dΩ

∫ ∞

0

d|~k| |~k| 1

4mb

δ
(
|~k| −

√
m2
b/4−m2

q

)
{

1, k2,
k2

3

(
gµν − pµpµ

m2
b

)}

=
π

2

√

1− 4
m2
q

m2
b

{
1, m2

b

(
m2
q

m2
b

− 1

4

)
,
m2
b

3

(
m2
q

m2
b

− 1

4

) (
gµν − pµpµ

m2
b

)}
.

(10.15)

The δ-functions stem from the two-particle cut, p is the outer momentum associated to the
b quark, and k is the loop momentum. In the first step, we have applied Passarino-Veltman
reduction to the term ∝ kµkν . The cut fixes k2 and the absolute value of ~k. The residual
integration over the solid angle can easily be performed, as the problem is 4π-symmetric.

Within the calculation of the amplitude it is often required to perform Fierz re-arrangements
of the spinors. Therefore, it is convenient to use the master formula [5], which directly
applies to the chiral basis (1.28) (i, j, k, l denote Dirac indices),

(ΓA)ij(Γ
B)kl =

1

4
Tr [ΓAΓCΓBΓD] (ΓD)il(Γ

C)kj . (10.16)
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10 CP Violation in Bs-meson decays

At the end, the results of the various ∆B = 1 operator insertions are matched on
the B0

s -meson matrix elements of the ∆B = 2 operators (10.9) and (10.10). In other
words, performing the evaluation of the cut shrinks the diagrams on the right-hand side of
Figure 10.2 to a local ∆B = 2 four-fermion transition, as depicted on the left-hand side.
Note that the twisted diagram on the very right of Figure 10.2 picks up a minus sign due
to the interchanged order of fermionic field operators. Neglecting intermediate leptons, we
find to LO in 1/mb

Γs12 = − m2
b

12π(2MBs)
G2
F (λbsc )

2√
1− 4z

{[
(1− z)

(
Σ1 + ΣLL

1

)
+

1

2
(1− 4z)

(
Σ2 + ΣLL

2

)
+ 3z

(
Σ3 +K

′LL
3

)

− 3

2

√
z
(
ΣLR

1 + ΣLR
2 +K

′LR
3 +K

′LR
4

)

+
1√

1− 4z

(
3K̄ ′′

1 +K ′′
s1 +

3

2
K̄ ′′

2 +
1

2
K ′′
s2

)

+
1√

1− 4z

(λbsu
λbsc

(1− z)2
(
(2 + z)K1 + (1− z)K2

)
+

1

2

(λbsu )
2

(λbsc )2 (2K1 +K2)
)]
〈Q1〉

+
[
(1 + 2z)

(
Σ1 + ΣLL

1 − Σ2 − ΣLL
2

)
− 3
√
z
(
2ΣLR

1 + ΣLR
2 −K

′LR
4

)

+
1√

1− 4z

(
3K̄ ′′

1 +K ′′
s1 − 3K̄ ′′

2 −K ′′
s2

)

+
1√

1− 4z

(
2
λbsu
λbsc

(1− z)2(1 + 2z)(K1 −K2) +
(λbsu )

2

(λbsc )2 (K1 −K2)
)]
〈Q2〉

− 3
√
z
(
ΣLR

1 + 2ΣLR
2 +K

′LR
3

)
〈Q3〉

+ 3
√
z
(
ΣRL

1 −K
′RL
3

)
〈Q4〉 + 3

√
z (ΣRL

2 −K
′RL
4 ) 〈Q5〉

}

− m2
b

12π(2MBs)

√
2GFλ

bs
c

√
1− 4z (10.17)

{[
(1− z) ΣNP

1 +
1

2
(1− 4z) ΣNP

2 + 3zΣNP
3

+
1√

1− 4z

(
3K̄

′′NP
1 +K

′′NP
s1 +

3

2
K̄

′′NP
2 +

1

2
K

′′NP
s2

)]
〈Q1〉

+
[
(1 + 2z)

(
ΣNP

1 − ΣNP
2

)

+
1√

1− 4z

(
3K̄

′′NP
1 +K

′′NP
s1 − 3K̄

′′NP
2 −K ′′NP

s2

)]
〈Q2〉 + O

(
1

mb

)}
,

where z = m2
c/m

2
b and 〈Qi〉 ≡ 〈B0

s | Qi |B̄0
s 〉. The meaning of all the coefficients will be
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10.1 Calculation of Γs12

explained in a moment. At this point, note that our result (10.17) holds for any NP model,
which gives rise to the operators collected in (10.11). Remember that we have neglected

contributions from the chirality flipped penguins Q̃3..10 , as they turn out to be unimportant
for the model at hand. In order to get a (more or less) compact expression for Γs12, we have
introduced the linear combinations (A,B ∈ {L,R})

Σi = Ki +K ′
i +K ′′

i ΣAB
i = KAB

i +K
′AB
i , i = 1, 2,

Σ3 = K ′
3 +K ′′

3 , ΣNP
i = K

′NP
i +K

′′NP
i i = 1, 2, 3 ,

(10.18)

where the coefficients on the right-hand side of (10.18) are themselves linear combinations
of Wilson coefficients. In agreement with [130] we obtain

K1 =NcC
2
1 + 2C1C2 , K2 = C2

2 ,

K ′
1 = 2 (NcC1C3+9 + C1C4+10 + C2C3+9) , K ′

2 = 2C2C4+10 ,

K ′
3 = 2 (NcC1C5+7 + C1C6+8 + C2C5+7 + C2C6+8) ,

K ′′
1 =NcC

2
3+9 + 2C3+9C4+10 +NcC

2
5+7 + 2C5+7C6+8 ,

K ′′
2 =C2

4+10 + C2
6+8 ,

K ′′
3 = 2(NcC3+9C5+7 + C3+9C6+8 + C4+10C5+7 + C4+10C6+8) ,

(10.19)

with Ci+j ≡ Ci + Cj. The combinations Ki stem from the insertion of charged-current
operators and give the dominant contribution in the SM. The coefficients K ′

i and K ′′
i

correspond to the interference of charged-current with penguin operators and penguin-
penguin insertions, respectively. As we consider light quarks (q = u, d, s ) in the limit
mq = 0, there is a cancellation in the EW penguin sector due to the electric charges. The
coefficients K̄

′′

i therefore resemble the K
′′

i , with C7..10 set to zero. For strange quarks as
intermediate states, there is a second possibility for the penguin insertion. In the limit
ms = 0 we find additional contributions from

K ′′
s1 = (2 +Nc)(C4 − C10/2)2 + 2 (Nc + 1)(C3 − C9/2)(C4 − C10/2) + 2 (C3 − C9/2)2 ,

K ′′
s2 = 2 (C3 − C9/2)(C4 − C10/2) + (C3 − C9/2)2 . (10.20)

At O(v2/M2
KK), we have to consider interference of SM diagrams with NP penguins, which

give rise to

K
′NP
1 = 2 (NcC1C

NP
3+9 + C1C

NP
4+10 + C2C

NP
3+9) , K

′NP
2 = 2C2C

NP
4+10 ,

K
′NP
3 = 2 (NcC1C

NP
5+7 + C1C

NP
6+8 + C2C

NP
5+7 + C2C

NP
6+8) ,

K
′′NP
s1 = 2

(
(Nc + 2)C4(C

NP
4 − CNP

10 /2) + (Nc + 1)C4(C
NP
3 − CNP

9 /2)

+ (Nc + 1)C3(C
NP
4 − CNP

10 /2) + 2C3(C
NP
3 − CNP

9 /2)
)
,

K
′′NP
s2 = 2

(
C3(C

NP
3 − CNP

9 /2) + C3(C
NP
4 − CNP

10 /2) + C4(C
NP
3 − CNP

9 /2)
)
,

(10.21)
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10 CP Violation in Bs-meson decays

and

K
′′NP
1 = 2 (NcC3C

NP
3+9 + C3C

NP
4+10 + C4C

NP
3+9 +NcC5C

NP
5+7 + C5C

NP
6+8 + C6C

NP
5+7) ,

K
′′NP
2 = 2 (C4C

NP
4+10 + C6C

NP
6+8) ,

K
′′NP
3 = 2 (NcC3C

NP
5+7 + C3C

NP
6+8 + C4C

NP
5+7 + C4C

NP
6+8

+NcC5C
NP
3+9 + C5C

NP
4+10 + C6C

NP
3+9 + C6C

NP
4+10) .

(10.22)

Here, we have neglected the tiny contributions from the interference of SM EW penguins
with NP graphs. There further is interference between NP charged currents and SM
penguins

K
′LL
1 = 2 (NcC3C

LL
1 + C3C

LL
2 + C4C

LL
1 ) , K

′LL
2 = 2C4C

LL
2 ,

K
′LL
3 = 2 (NcC5C

LL
1 + C5C

LL
2 + C6C

LL
1 + C6C

LL
2 ) ,

K
′LR
1 = 2 (NcC3C

LR
1 + C3C

LR
2 + C4C

LR
1 ) , K

′LR
2 = 2C4C

LR
2

K
′LR
3 = 2 (NcC5C

LR
1 + C5C

LR
2 + C6C

LR
1 ) , K

′LR
4 = 2C6C

LR
2 .

(10.23)

The double charged-current insertions that contribute at O(v2/M2
KK) are collected into

KLL
1 = 2

(
NcC1C

LL
1 + C1C

LL
2 + C2C

LL
1

)
, KLL

2 = 2C2C
LL
2 ,

KLR
1 = 2 (NcC1C

LR
1 + C1C

LR
2 + C2C

LR
1 ) , KLR

2 = 2C2C
LR
2 .

(10.24)

The coefficients K
(′)RL
i resemble K

(′)LR
i , with CLR

i replaced by CRL
i . All NP coefficients

should by evaluated at the NP mass scale and then be evolved down to mb. For the RS
model, explicit ZMA expressions are given in the Appendices B.2 and B.3.

Finally, one has to compute the B0
s -meson matrix elements 〈B0

s | Qi |B̄0
s 〉. Here, we use

existing results from the lattice. In terms of

R(µ) ≡
(

MBs

m̄b(µ) + m̄s(µ)

)2

, (10.25)

the matrix elements are given by

〈Q1〉 =
8

3
M2

Bs
f 2
Bs
B1(µ) , 〈Q2〉 = −5

3
M2

Bs
f 2
Bs
R(µ)B2(µ) ,

〈Q3〉 =
1

3
M2

Bs
f 2
Bs
R(µ)B3(µ) , 〈Q4〉 = 2M2

Bs
f 2
Bs
R(µ)B4(µ) ,

〈Q5〉 =
2

3
M2

Bs
f 2
Bs
R(µ)B5(µ) .

(10.26)

We take the bag parameters Bi from [138], which are given in Appendix A.4 for complete-
ness. In order to resum large logarithms we employ z̄ = m̄2

c(m̄b)/m̄
2
b(m̄b) = 0.048(4) [121]

in our numerical analysis. We further use m̄b(m̄b) = (4.22 ± 0.08) GeV and m̄s(m̄b) =
(0.085± 0.017) GeV.
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10.2 Numerical analysis

For the sake of completeness, we quote the known results for the mixing amplitude. The
general effective ∆B = 2 Hamiltonian is given by

H∆B=2
eff =

5∑

i=1

CiQi +
3∑

i=1

C̃iQ̃i , (10.27)

where there are no tree-level contributions to C2,3 and C̃2,3 in the RS model. The mixing
amplitude

2mBsM
s
12 = 〈B0

s |H∆B=2
eff |B̄0

s 〉 (10.28)

has been calculated in [74, 38], and found to be

M sRS
12 =

4

3
mBsf

2
Bs

[ (
CRS

1 + C̃RS
1

)
B1 +

3

4
R(m̄b)C

RS
4 B4 +

1

4
R(m̄b)C

RS
5 B5

]
. (10.29)

The bag parameters B1,4,5 are listed in (A.8), and the ∆B = 2 coefficients evaluated at
the KK scale can be found in Appendix B.4. These should be evolved down to m̄b . As
it turns out, the coefficient CRS

4 is suppressed compared to CRS
1 by about two orders of

magnitude, because of a stronger RS-GIM mechanism. The coefficients C̃RS
1 (mb) and CRS

5

are even further suppressed. The SM mixing amplitude can be taken from [10, 121, 139]

M s SM
12 =

G2
F

12π2
(λbst )

2
m2
WmBsηBf

2
Bs
B1S0(xt) , (10.30)

where ηB = 0.837 involves NLO QCD corrections in naive dimensional reduction (NDR).
S0(xt) is the Inami-Lim function stemming from the evaluation of the box-diagram, and
xt = m̄t(m̄t)

2/m2
W with m̄t(m̄t) = (163.8± 2.0) GeV. The meson mass and decay constant

are given by mBs = 5.366(1) GeV [140] and fBs = (238.8± 9.5) MeV [141], respectively. If
not stated otherwise, all other experimental input is taken from [140].

10.2 Numerical analysis

In our analysis, we use 10000 randomly generated parameter sets with |(Yu,d)ij| ∈ [0.1, 3].
The bulk masses are chosen such that in the ZMA, the correct zero-mode masses, CKM
mixing angles and phase are obtained within the 1σ range. We summarize the results for
some individual ingredients of Γs12 (10.17) in Table 10.1. The SM coefficients are taken
from [142]. For the sake of comparison, we rescale the RS penguin coefficients, for instance

K̃
′RS
2 ≡

√
2 (GFλ

bs
c )

−1
K

′RS
2 (SM: K̃ ′

2 = K ′
2), as they are not supplemented with a CKM

factor in (10.11). The numbers in the table have to be multiplied by the factors given in
the last column. The maximum values of the RS contributions exceed the respective mean
results by at least one order of magnitude, as suggested by the large standard deviations.
The KK scale is set to MKK = 2 TeV and we discard all points which are in conflict with
the Z0 → bb̄ “pseudo observables”. Therefore, the number of points is reduced by a factor
of about five in the minimal RS model.
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10 CP Violation in Bs-meson decays

Model/Coef. |K̃ ′
2| |K̃ ′′

2 | |K(LL)
2 | |KLR

2 | |KRL
2 | ×

SM 0.543 0.016 12.656 - - 10−1

mean(min RS) 0.16 0.03 0.01 4.40 0.04 10−3

stand. dev. 0.17 0.03 0.05 7.41 0.06 10−3

mean(cust) 0.94 0.06 0.23 2.22 0.03 10−3

stand. dev. 1.39 0.09 1.38 4.98 0.05 10−3

Table 10.1: Selected SM penguin and charged-current coefficients contributing to Γs12 com-
pared to the mean absolute values of the corresponding RS coefficients for
MKK = 2 TeV and µ = m̄b . See text for details.

Concerning the contributions from the charged-current sector, there is no difference
between the prediction of the minimal and the custodial RS model at LO in v2/M2

KK. The
different average numbers arise due to the Z0bb̄ selection. For the natural assumption cQ2

<
−1/2 the biggest correction comes from the operator QLR

2 . This is easy to understand if we
apply the warped-space Froggatt-Nielsen analysis to the charged-current Wilson coefficients
(B.4). Setting all Yukawa factors to one, we can derive simplified expressions by performing
an expansion in the Wolfenstein parameter λ, which is related to the ratios of IR zero-mode
profiles (6.47). Thus, we find the scaling behavior

CLL
2 ∝ m2

W

2M2
KK

L F (cQ2
)2F (cQ3

)2 ,

CLR
2 ∝ v2

2M2
KK

F (cQ3
)

F (cQ2
)
F (cu2

)F (cd3) ∝
mcmb

M2
KK

1

F (cQ2
)2
,

CRL
2 ∝ v2

M2
KK

F (cu2
)F (cd2) ∝

2mcms

M2
KK

1

F (cQ2
)2
.

(10.31)

Note that the importance of CLR
2 grows with increasing UV-localization of the (c, s)L

doublet. The coefficients CAB
1 with A,B ∈ {L,R} are zero at the matching scale, but

generated through operator mixing when running down to µ = m̄b. As it turns out, the
values of |KAB

1 | are about a third of the respective values of |KAB
2 | at µ = m̄b. From the

result (10.31) and the numbers in Table 10.1 we conclude that one can neglect contributions
from the coefficients CLL

i and CRL
i in the RS model.

Turning our attention to the contributions of RS penguins, we observe that the coeffi-
cients K

′RS
i and K

′′RS
i grow with an increasing value of cbL ≡ cQ3

and csL
≡ cQ2

. The reason
is that the latter are dominated by overlap integrals of left-handed fermions with interme-
diate KK-gauge bosons and mixing effects of the latter with Z0. The relevant expressions
are given in (B.6). As KK modes are peaked towards the IR brane, overlap integrals with
UV-localized fermions are exponentially suppressed (RS-GIM). The leading correction due
to Z0 exchange is enhanced by a factor L within the minimal RS variant. Nevertheless, due
to the stringent bounds from the Z0bLb̄L vertex, the total penguin contributions typically
remain smaller than in the custodial model. Furthermore, we note that it is sufficient to
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Figure 10.3: RS corrections to the magnitude and CP-violating phase of the B̄0
s -B

0
s

decay amplitude, RΓ and φΓ, as well as of the mixing amplitude, RM and
φM . Blue (dark gray) points correspond to the minimal, orange (light
gray) to the custodial RS model. The dashed lines mark the 95% con-
fidence region with respect to the measurement of ∆mBs . See text for
details.

consider just the contributions stemming from the coefficients K
′NP
i in the neutral-current

sector, as the impact of double-penguin insertions is typically about 1% of the leading
correction due to charged currents.

In the first panel of Figure 10.3 we show the RS corrections to the magnitude and CP-
violating phase of Γs12, RΓ and φΓ, for our set of 10000 parameter points at MKK = 2 TeV.
The blue (dark gray) points correspond to the minimal RS model, where we plot only
those that satisfy the bounds from the Z0bLb̄L vertex. The orange (light gray) points
correspond to the custodial extension, where the latter requirement is always fulfilled. As
we are just interested in the approximate size of RS corrections, we work with the LO SM
expressions contained in (10.17) and (10.30). For precise predictions of a certain parameter
point, one should include the full NLO corrections to Γs12 and M s

12. As expected, the RS
corrections to |Γs12| are rather small, typically not exceeding ±4%. As already found in [38]
and [74], there are sizable corrections to the magnitude and phase of the dispersive part of
the mixing amplitude, RM and φM , which are plotted in the second panel of Figure 10.3.
At this point, one should keep in mind the experimental result from the time-dependent
measurement of the B̄0

s -B
0
s oscillation frequency [143]

∆mexp
Bs

= (17.77± 0.10 (stat)± 0.07 (syst)) ps−1 , (10.32)

which is in good agreement with the SM prediction (17.3±2.6) ps−1 [128]. As a consequence,
all points with RM 6∈ [0.718, 1.336] are excluded at 95% confidence level, as we have
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10 CP Violation in Bs-meson decays

indicated by the dashed lines. We observe that for a sufficient amount of scatter points,
the phase correction φM can take any value of [−π, π] within the custodial RS model.
Compared to φM , the new phase φΓ can be neglected (what we will do from now on).

Further important constraints to the bulk masses stem from the RS prediction of the
observable ǫK = ǫSM

K +ǫRS
K [38, 74, 84]. Explicitly, one needs to satisfy |ǫK | ∈ [1.2, 3.2] ·10−3,

where

ǫK =
κǫ e

iϕǫ

√
2 (∆mK)exp

Im(MKSM
12 +MKRS

12 ) , (10.33)

with ϕǫ = (43.51 ± 0.05)◦ [140] and κǫ = 0.92 ± 0.02 [144]. The mixing amplitude of the
neutral kaon is defined in analogy to (10.28). The input data needed for the calculation
is given in Appendix B of [38]. As it turns out, without some tuning of the parameters,
the prediction for ǫK is generically too large. Within the K̄0-K0 mixing, the contributions
from the operators Qsd

4,5 can become comparable to those of Qsd
1 because of the large value

RK(2 GeV) ≈ 20 in the matrix-element, and a more pronounced RG running. A protection
can however be achieved by imposing a U(3) flavor symmetry in the right-handed down-
quark sector [145]. This symmetry is broken by the Yukawa couplings to obtain the correct
zero-mode masses. On the other hand, if all bulk masses are equal, there are no tree-level
FCNCs in the ZMA. The latter statement is evident from the expression (B.9), where
(W †

d )mj(Wd)jn = 0 for m 6= n due to the unitarity of Wd . Non-vanishing contributions

arise at O(v4/M4
KK) from mixing with KK-modes. For MKK = 2 TeV, we can reduce Csd

4,5

by a factor of about 100. The same suppression factor applies to the B-meson sector. For
the coefficient CRS

1 however, there is no protection. In our analysis, we will not impose
the proposed U(3) flavor symmetry in the down sector, but rather use the bound from ǫK
as a filter. As we will see below, this still allows for sizable corrections to the observables
introduced at the beginning of this section.

10.3 Predictions for ∆Γs, φs, and As
SL

Neglecting the small SM phases, the width difference (10.5) can be written as

∆Γs = ∆ΓSM
s RΓ cos 2βs , (10.34)

where 2βs ≈ −φRS
M [122]1. The preliminary CDF analysis [123] uses the older SM prediction

∆ΓSM
s = (0.096± 0.039)ps−1 [121], which we will take as central value for our calculation.

Taking the more recent value will not change our conclusions. Comparing the latest CDF
results in the ∆Γs/φs-plane (Figure 10.4) to the RS predictions shown in the left panel of
Figure 10.5, we conclude that the RS model can enter the 68% confidence region and come
close to the best fit value. It stays below the desired value of ∆Γs, as there are no sizable
positive corrections to |Γs12|.

The SM prediction (AsSL)SM = (1.9 ± 0.3) · 10−5 [128], which is often named assl or
asfs in the literature, agrees with the direct measurement (AsSL)exp = −0.0017 ± 0.0092

1Be careful to discriminate between βs and β
J/ψφ
s .

132



10.3 Predictions for ∆Γs, φs, and AsSL

 (rad)                 sβ
-1 0 1

) 
   

   
   

   
   

  
-1

 (
ps

Γ∆

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

-1
CDF Run II Preliminary        L = 5.2 fb

95% CL

68% CL

SM prediction

Figure 10.4: Experimental constraints from flavor-tagged B →0
s J/ψφ decays in the

∆ΓSM
s /βs -plane. Figure taken from [123].

SM

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Βs@rad D

D
G

s
@p

s-
1
D

-1.0 -0.5 0.0 0.5 1.0
-0.02

-0.01

0.00

0.01

0.02

SΨΦ

A
SLs

Figure 10.5: Left panel: Corrections within the ∆ΓSM
s /βs -plane for the minimal

(blue/dark gray) and the custodial (orange/light gray) RS model. Bounds
from Z0bLb̄L, ∆mBs , and ǫK are satisfied. Right panel: Corrections within
the AsSL/Sψφ -plane for the minimal (blue/dark gray) and the custodial
(orange/light gray) RS model, and the same set of scatter points .

133



10 CP Violation in Bs-meson decays

[146] within the (large) error. However, recent measurements of the like-sign dimuon
charge asymmetry AbSL [147], which connects AsSL to its counterpart AdSL of the B0

d-meson
sector [148], imply a deviation of almost 2σ. If one neglects the tiny SM phases and
the NP phase corrections related to decay, AsSL is proportional to the quantity Sψφ [124],
which is given by the amplitude of the time-dependent asymmetry in B0

s → J/ψφ decays,
AsCP(t) = Sψφ sin(∆mBst). Setting just the NP phase in decay to zero, one obtains the well

known expression Sψφ = sin(2β
J/ψφ
s − φM) [149], and thus

AsSL ≈ −
|Γs SM

12 |
|M s SM

12 |
RΓ

RM

Sψφ . (10.35)

The RS result is shown in the right panel of Figure 10.5, where we have sketched the
experimental favored values Sψφ = 0.56 ± 0.22 [150] and AsSL = −0.0085 ± 0.0058 [146].
The latter number combines the direct measurement with the results derived from the
measurement of AbSL in semileptonic B-decays in combination with the average value AdSL =
−0.0047±0.0046 from B-factories. It is evident from the plot that the best fit value of Sψφ
can be reproduced (with some tuning in the minimal RS variant). This has already been
noted in [38]. Furthermore, the custodial RS model can enter the 1σ range of the measured
value of AsSL. The same conclusion has been drawn in [129] recently, using a different
approach. Here, the authors did not produce any concrete sets of input parameters, but
scanned FCNC vertices across the allowed range subject to bounds from ∆Γs and ∆mBs .

From Sψφ ≈ sin(2βs) it follows that the corrections in the ∆ΓSM
s /βs -plane and AsSL/Sψφ -

plane are aligned. An improvement in the former also leads to an improvement in the latter.
We conclude that in the RS model, the current experimental results of all observables
introduced in this section can be simultaneously reproduced within the range of 1σ. In
the minimal RS model, this requires some moderate tuning of the parameters due to the
combined constraints from the Z0bLb̄L vertex, the B̄0

s -B
0
s oscillation frequency ∆mBs , and

ǫK . In the custodial model, the first bound vanishes and generically allows for bigger
corrections to the CP violating phase φs. This can be understood by noting that the
coefficient CRS

1 , which gives the dominant contribution of the mixing amplitude M s
12, scales

like F (cQ2
)2F (cQ3

)2. In the custodial model we could choose a positive value of about one
for cQ3

= cbL (which in turn would imply a strong UV localization of the right-handed
bottom quark). As we have learned above, this is not possible in the minimal model, as
the analysis of Section 7.3 has given the bound cbL . −0.43 . In order to maximize the
RS corrections to φs, one has to localize the second generation SU(2)L doublet as close to
the IR brane as possible. This maximizes the value of F (cQ2

)2. On the other hand, due to
the scaling behavior of the charged-current ∆B = 1 coefficients (10.31), this choice would
minimize the leading correction to Γs12, and therefore excludes the possibility of having a
moderate positive correction to the width difference ∆Γs by some tuning of the parameters.
However, due to the latest CDF results, an enhancement of ∆Γs is no longer mandatory.
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11 Summary and conclusions

In this thesis we have studied important observables of current hadron collider experiments
in the context of Randall-Sundrum scenarios, where gauge and matter fields are assumed
to propagate in the bulk, and the Higgs is localized on the IR brane. After the introduction
of a useful parametrization of the extra dimension, we have generalized the gauge-sector
of the SM to a gauge theory in five dimensions. The Kaluza-Klein decomposition has
been performed in the mass basis after applying a covariant Rξ-gauge fixing, which is
needed if one intends to perform higher order calculations involving KK vector bosons. We
presented compact expressions for the sum over KK propagators, which at tree level give
rise to corrections of the order v2/M2

KK compared to the SM for any scattering process.
As a first application, we calculated the universal corrections which modify the theo-

retical prediction of Fermi’s constant. We emphasized that such a universal correction is
non-observable, as it appears in any process mediated by the exchange of charged W±(n)

bosons. We further determined the corrections to the zero-mode masses and couplings,
which give rise to sizable modifications of the Peskin-Takeuchi parameters compared to
their SM value. As it turned out, the (positive) corrections to T -parameter are enhanced
with the “volume” L of the extra dimension. Agreement with the electroweak precision
data can be achieved by rising the Higgs mass for instance.

On the other hand, the L-enhanced term can be eliminated by imposing a gauged cus-
todial symmetry in the bulk. Therefore, we extended the discussion to the custodial
Randall-Sundrum model and introduced a formalism which allowed for a straightforward
generalization of our findings within the minimal scenario. Therefore, it can be used for
any choice of the local gauge symmetry. For instance, the treatment of a GUT scenario
within the 5D bulk would be an easy exercise. We furthermore presented exact results for
the couplings among (KK) gauge bosons, which are needed in the study of Higgs branch-
ing fractions. After all, we re-derived the (leading) expressions for the Peskin-Takeuchi
parameters using the holographic approximation. Though the latter approach is not the
method of choice if one assumes the fifth dimension to be physical, it offers new ways in
the treatment of strongly coupled four dimensional conformal field theories, which is a
promising topic on its own.

In order to derive the RS corrections to gauge couplings of SM-like quarks, we have per-
formed a KK decomposition also for 5D fermions. Here, the choice of the exact treatment,
which includes the symmetry breaking effects due to the Higgs sector within the solution
of the bulk EOMs, asks for a proper regularization. We have derived exact solutions of the
fermion profiles in the vicinity of the IR brane, which for the case of the brane-Higgs sce-
nario hold for any finite KK mass. Hierarchies in the Yukawa sector have been eliminated
with the help of the warped space Froggatt-Nielsen mechanism, and expressions for the
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11 Summary and conclusions

quark masses in the zero-mode approximation have been derived. We have investigated the
flavor mixing of KK quarks and found O(1) mixing effects caused by the near degeneracy
of the bulk masses. We shortly discussed how a generalization to more evolved fermion
embeddings into the given gauge group is achieved. Again, we benefit from our vector
notation, which collects 5D quantum fields that are supposed to be decomposed into the
same 4D basis.

Concerning the neutral gauge interactions, we presented a detailed discussion of the
couplings to zero-mode gauge bosons. While the universality of the photon and gluon
couplings is guaranteed by the flatness of their profiles, the massive W± and Z0 bosons
go along with a vertex correction. For the case of the Z0bLb̄L vertex, we discussed how a
custodial protection can be achieved by an appropriate embedding of the fermions into the
extended gauge group. Here, we distinguished between protection through the admixture
of heavy Z ′ bosons, and suppression of quark-mixing effects. We emphasized that the
protection mechanism is broken by UV BCs and identified all terms that escape custodial
protection. We have calculated the RS predictions for the left- and right-handed couplings
of the Z0 boson and found that in the minimal RS model the constraints from the Z0 → bb̄
“pseudo observables” can be satisfied with moderate tuning. The overall fit can moreover
significantly be improved by choosing a heavy Higgs mass of about 500 GeV. In the cus-
todial model, the latter possibility seems to be excluded by the T -parameter. However,
due to the chosen fermion embedding, all scatter points are safely localized within the 2σ
confidence ellipse in the gbL-gbR plane.

Concerning weak decay processes mediated by the exchange of charged gauge bosons, we
have written down the effective Hamiltonian and identified the expressions for the quark-
mixing matrices. Here, we distinguished between factorizable RS corrections which can
be observed through unitarity violations of the CKM matrix, and those that explicitly
depend on the decay under consideration. We pointed out that right-handed charged
currents already arise in the minimal model due to the admixture off right-handed KK
SU(2)L doublets into the right-handed zero-mode singlets.

As another important topic, we have investigated how the RS model modifies the main
Higgs production channels. A significant reduction of the gluon-fusion cross section is
predicted, which can be about one order of magnitude or even more, depending on the
value of the Higgs mass and the KK scale. Against the naive expectation, the sum over
the KK tower in the fermion triangle loop is finite due to a cancellation within the doubled
KK fermion spectrum. However, the presence of an IR cut-off asks for a truncation at low
KK number, as the triangle loops are coupled to the brane-localized Higgs. For vector-
boson fusion we observe a moderate suppression with respect to the SM prediction.

Motivated by the latest Tevatron results, we have studied the forward-backward asym-
metry in tt̄ production, where the SM prediction is about 2σ below the experimental
favored value. Although the RS model looks as a promising candidate for closing the gap
at first sight, it turns out that the outcome resembles the SM prediction. At LO, this is
explained by the RS-GIM suppression of the tree level axial-vector currents for light quarks
in the initial state. At NLO, RS corrections of the vector currents of the top quark cancel
in the ratio of the charge-asymmetric and symmetric differential cross section. A sizable
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enhancement of the SM prediction therefore seems to be excluded for a setup with anarchic
O(1) Yukawa couplings.

Furthermore, we have studied observables related to CP violation in B0
s -meson decays.

Therefore, we have calculated the NP corrections to the absorptive part of the B̄0
s -B

0
s mix-

ing amplitude Γs12 in the framework of an effective field theory based on operator product
expansion. Taking existing results for the absorptive part M s

12, we observe that the RS
model gives rise to a sizable new CP violating phase. Taking care of the constraints from
the Z0bLb̄L vertex, the B̄0

s -B
0
s -oscillation frequency ∆mBs , and the RS prediction of ǫK ,

we conclude that an improvement within the ∆Γs/βs-plane and the AsSL/Sψφ-plane can be
obtained simultaneously.

Finally, we conclude that the RS model of warped extra dimensions, regarded as an
EFT, is an interesting alternative to SUSY (where is does not exclude the latter). Apart
from solving the gauge-hierarchy problem of the SM, it also offers an explanation for the
hierarchies in the flavor sector. It possesses a build-in Froggatt-Nielsen-mechanism, as well
as a natural suppression of dangerous four-fermion operators involving light quarks. A
direct hint for extra dimensions would be the discovery of Kaluza-Klein excitations, which,
contrary to SUSY partners, possess the same spin as the related SM particles. However,
for realistic choices of the KK scale, the masses of the lightest KK fermions (gauge bosons)
are at least about 4 (5) TeV. Thus, a direct evidence seems to be impossible even at LHC
energies. As a consequence, the search for NP within precision measurements is of special
interest. Precise measurements of various weak decay cross sections may give hints for
unitarity violations of the CKM matrix. The observation of right-handed charged currents
would be a striking signal for either a mixing of SM fermions with non-SM fermions, or
the realization of a gauged SU(2)R symmetry, which is broken at LHC energies. Even if
not realized in nature, warped extra dimensions provide a new way of treating strongly
coupled conformal field theories in the ordinary 4D space-time. However, if there is an
evidence for extra dimensions, the next theoretical step has to be the construction of an
appropriate UV completion.
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A Input data and formulas

A.1 Reference values for SM parameters

The central values and errors of the quark masses used for the generation of scatter points

mu = (1.5± 1.0) MeV , mc = (520± 40) MeV , mt = (144± 5) GeV ,

md = (3.0± 2.0) MeV , ms = (50± 15) MeV , mb = (2.4± 0.1) GeV .
(A.1)

They correspond to MS masses evaluated at the scale MKK = 1 TeV, obtained by using
the low-energy values as compiled in [151].

A possible set of RS input parameters is given by

cQ1
= −0.597 , cQ2

= −0.531 , cQ3
= −0.473 ,

cu1
= −0.706 , cu2

= −0.575 , cu3
= +0.874 ,

cd1 = −0.691 , cd2 = −0.660 , cd3 = −0.583 ,

(A.2)

and

Ỹu =



−1.101− 1.692 i − 0.298 + 0.695 i 0.908− 1.513 i

0.386− 1.330 i 0.564 + 1.399 i −0.048 + 0.105 i
0.316 + 2.211 i 0.098− 1.176 i 0.788 + 1.776 i


 ,

Ỹd =




0.465 + 1.430 i 0.017− 2.261 i −0.652 + 2.376 i
0.710− 0.074 i − 0.665 + 2.183 i −0.255 + 0.016 i
0.313 + 2.397 i − 0.563 + 1.544 i −1.783− 1.898 i


 . (A.3)

A.2 Form factors for Higgs-boson production

The form factor Ahq,W (τ) describing the effects of quark loops in the production of the Higgs
boson is given by [152]

Ahq (τ) =
3τ

2
[1 + (1− τ) f(τ)] , (A.4)

where

f(τ) =





−1

4

[
ln

(
1 +
√

1− τ
1−
√

1− τ

)
− iπ

]2

, τ ≤ 1 ,

arcsin2

(
1√
τ

)
, τ > 1 .

(A.5)

139



A Input data and formulas

A.3 Reduction factors for tt̄-production cross sections

In order to transform expressions for the tt̄-production cross sections valid in the partonic
CM frame to the laboratory frame, we employ

σpp̄a =
αs
m2
t

∑

i,j

∫ 1

4m2
t /s

dτ

∫ 1

τ

dx

x
fi/p(x, µf ) fj/p̄(τ/x, µf )A

pp̄
ij (x, τ, µf ) , (A.6)

where τ ≡ ŝ/s , and

App̄ij (x, τ, µf ) ≡
∫ 1

c(x,τ)

d cos θ Kij(ρ, cos θ, µf )−
∫ c(x,τ)

−1

d cos θ Kij(ρ, cos θ, µf ) (A.7)

with c(x, τ) ≡ 1/β (x2 − τ)/(x2 + τ) . The latter formula (A.6) applies at the Born level.
Beyond LO the phase-space integration is more involved. The respective corrections can
be parametrized by the reduction factors R ≡ σpp̄a /σa that convert the SM as well as the
EFT results from the partonic CM to the laboratory frame at NLO. In the SM we find
RSM = 0.64, while the reduction factors of the effective operators are given by RV

uū = 0.73,
RV
dd̄

= 0.72, RS
tū = −1.78, RA

uū = 0.58, and RA
dd̄

= 0.56 [103].

A.4 Bag parameters for Bs-meson matrix elements

In the following we quote bag parameters of the matrix elements (10.26) as given [138].
These have been renormalized in the NDR-MS scheme of [131] at µ = mb = 4.6 GeV, and
read

B1 = 0.87(2)
(
+5
−4

)
, B2 = 0.84(2)(4),

B3 = 0.91(3)(8), B4 = 1.16(2)
(
+5
−7

)
, B5 = 1.75(3)

(
+21
−6

)
,

(A.8)

The first (second) number in brackets corresponds to the statistical (systematic) error.
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B Wilson coefficients

B.1 Wilson coefficients for tt̄ production

In the following, we present the ZMA results for the Wilson coefficients (9.21). If we have
up quarks in the initial state (q = u), we obtain for the KK gluon s-channel exchange

C
(V,8)
uū,‖ = −4παs

M2
KK

[
1

2L
− F 2(ctR) (2ctR + 5)

4(2ctR + 3)2
− F 2(ctL) (2ctL + 5)

4(2ctL + 3)2

− F 2(cuR
)

4 |(Mu)11|2
∑

i=1,2,3

(2cui
+ 5) |(Mu)1i|2

(2cui
+ 3)2

− F 2(cuL
)

4 |(Mu)11|2
∑

i=1,2,3

(2cQi
+ 5) |(Mu)i1|2

(2cQi
+ 3)2

+
L

2

F 2(ctR)F 2(cuR
)

(2ctR + 3) |(Mu)11|2
∑

i=1,2,3

(cui
+ ctR + 3) |(Mu)1i|2

(2cui
+ 3)(cui

+ ctR + 2)

+
L

2

F 2(ctL)F 2(cuL
)

(2ctL + 3) |(Mu)11|2
∑

i=1,2,3

(cQi
+ ctL + 3) |(Mu)i1|2

(2cQi
+ 3)(cQi

+ ctL + 2)

]
,

C
(V,8)
uū,⊥ = −4παs

M2
KK

[
1

2L
− F 2(ctR) (2ctR + 5)

4(2ctR + 3)2
− F 2(ctL) (2ctL + 5)

4(2ctL + 3)2

− F 2(cuR
)

4 |(Mu)11|2
∑

i=1,2,3

(2cui
+ 5) |(Mu)1i|2

(2cui
+ 3)2

− F 2(cuL
)

4 |(Mu)11|2
∑

i=1,2,3

(2cQi
+ 5) |(Mu)i1|2

(2cQi
+ 3)2

+
L

2

F 2(ctL)F 2(cuR
)

(2ctL + 3) |(Mu)11|2
∑

i=1,2,3

(cui
+ ctL + 3) |(Mu)1i|2

(2cui
+ 3)(cui

+ ctL + 2)

+
L

2

F 2(ctR)F 2(cuL
)

(2ctR + 3) |(Mu)11|2
∑

i=1,2,3

(cQi
+ ctR + 3) |(Mu)i1|2

(2cQi
+ 3)(cQi

+ ctR + 2)

]
. (B.1)

Similar relations hold for the case of the light quarks q = d, s, c. Here, (Mu)ij denote the

minors of the up-type Yukawa matrix Ỹu. The coefficients for the t-channel exchange are
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given by

C
(V,8)
tū,‖ = − παs

M2
KK

L

[
F 2(ctR)F 2(cuR

) |(Mu)13|2

(2ctR + 3)(ctR + 1) |(Mu)11|2
+

F 2(ctL)F 2(cuL
) |(Mu)31|2

(2ctL + 3)(ctL + 1) |(Mu)11|2

]
,

C
(V,1)
tū,‖ = − παe

M2
KK

L

s2
wc

2
w

[
(T u3 −Qus

2
w)2 F 2(ctL)F 2(cuL

) |(Mu)31|2

(2ctL + 3)(ctL + 1) |(Mu)11|2

+
(
s2
wQu

)2 F 2(ctR)F 2(cuR
) |(Mu)13|2

(2ctR + 3)(ctR + 1) |(Mu)11|2

]

− παeQ
2
u

M2
KK

L

[
F 2(ctR)F 2(cuR

) |(Mu)13|2

(2ctR + 3)(ctR + 1) |(Mu)11|2
+

F 2(ctL)F 2(cuL
) |(Mu)31|2

(2ctL + 3)(ctL + 1) |(Mu)11|2

]
.

(B.2)

All coefficients have to be matched at the KK scale and evolved down to the top-quark
mass mt. We perform the RG evolution at leading-logarithmic accuracy, i.e., at one-loop
order, neglecting tiny effects that arise from the mixing with QCD penguin operators. For
the s-channel Wilson coefficients entering the formulas (9.28) and (9.29), we find

C̃P
qq̄(mt) =

(
2

3η4/7
+
η2/7

3

)
C̃P
qq̄(MKK) , (B.3)

where P = V,A , and η ≡ αs(MKK)/αs(mt) is the ratio of strong coupling constants
evaluated at the relevant scales MKK and mt. Since in the RS model the t-channel Wilson
coefficients C̃V

tū and C̃S
tū turn out to be numerically irrelevant, we do not consider their

running.

B.2 Wilson coefficients of ∆B = 1 charged-current

operators

According to the definition (10.11), we find at LO in v2/M2
KK for the Wilson coefficients

of charged-current ∆B = 1 operators

CLL
2 =

m2
W

2M2
KK

L
(U †

d)2i(Uu)i2
(U †

dUu)22

(∆̃QQ)ij
(U †

u)2j(Ud)j3

(U †
uUd)23

,

CLR
2 =

1

M2
KK

(muU
†
u)2i f(cQi

) (Ud md)i3
(U †

uUd)23

,

CRL
2 =

1

M2
KK

(mdU
†
d)2i f(cQi

) (Uu mu)i2
(U †

dUu)22

,

(B.4)

and CLL
1 (MKK) = CLR

1 (MKK) = CRL
1 (MKK) = 0 for both the minimal and the custodial

model. All coefficients have to be evolved down to the bottom mass. The coefficients
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B.3 Wilson coefficients of ∆B = 1 penguin operators

C
LL/LR/RL
1 (mb) are non-zero as the operators QAB

1 (A,B = L,R) mix with the operators
QAB

2 within the renormalization procedure. Note that there is no mixing between operators
of different chirality assignments. The LO QCD anomalous dimension matrix (1.80) for all
three cases is given by

γ̂0 =

( − 6
Nc

6

6 − 6
Nc

)
. (B.5)

We fix the running of αs(µ) at µ = mt = 171.2 GeV and µ = MKK = 2 TeV, and apply the
general formula (1.85) with nf1 = 5, nf2 = 6.

B.3 Wilson coefficients of ∆B = 1 penguin operators

At O(v2/M2
KK) the Wilson coefficients of the penguin operators in equation (10.11) are

explicitly given by [38]

CRS
3 =

παs
M2

KK

(∆′
D)23

2Nc

− πα

6s2
wc

2
wM

2
KK

(ΣD)23 ,

CRS
4 = CRS

6 = − παs
2M2

KK

(∆′
D)23 ,

CRS
5 =

παs
M2

KK

(∆′
D)23

2Nc

,

CRS
7 =

2πα

9M2
KK

(∆′
D)23 −

2πα

3c2wM
2
KK

(ΣD)23 ,

CRS
8 = CRS

10 = 0 ,

CRS
9 =

2πα

9M2
KK

(∆′
D)23 +

2πα

3s2
wM

2
KK

(ΣD)23 ,

(B.6)

where

ΣD ≡ ωdL

Z L

(
1

2
− s2

w

3

)
∆D +

M2
KK

m2
Z

δD . (B.7)

These results are to be evaluated at the KK scale with ωdL

Z = 1 in the minimal RS model,
and ωdL

Z = 0 in the custodial one. The exact analytic expressions for ∆D, ∆′
D, and δD are

given in (7.16), (7.17), and (7.18). However, as we only deal with light SM quarks in the
initial and final state, it is convenient to insert the ZMA expressions (7.20), (7.21), and
(7.22) into the above defintions of Wilson coefficients.

Within the RG running, the penguin operators mix with each other. Furthermore, there
is a small admixture from charged-currents. For the operator basis ~Q = (Q1, Q2, Q3,..,10),
the anomalous dimension matrix γ(0) is a function of Nc, nf , nu, and nd (number of colors,
flavors, up- and down-type quarks), and can be found in [153, 154]. The upper left 2 × 2
sub-matrix is just the anomalous dimensions matrix (B.5) given above. Note that while the
charged-current operators mix into the penguin operators, the former evolve independent
from the latter.
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B Wilson coefficients

B.4 Wilson coefficients for ∆B = 2 operators

The ∆B = 2 operators that contribute to the B̄0
s -B

0
s mixing amplitude at tree-level are

given by Q1, Q̃1, Q4, and Q5. There is no mixing between Q1 and Q̃1 under renormal-
ization. The anomalous dimension for both cases is given by γVLL

0 = 6 − 6/Nc [155].
The operators Q4,5 mix under renormalization and the anomalous dimension matrix of the
vector (C5, C4)

T explicitly reads [155, 156]

γ̂0 =

(
6
Nc

12

0 −6Nc + 6
Nc

)
. (B.8)

Defining ∆̃dd and ∆̃Qd in analogy to (7.36), the RS coefficients evaluated at the KK scale
are given by [38]

CRS
1 =

πL

M2
KK

(U †
d)2i(Ud)i3(∆̃QQ)ij(U

†
d)2j(Ud)j3

×
[
αs
2

(
1− 1

Nc

)
+Q2

d α+ (ωdLdL

Z )
(T 3dL

L − s2
wQd)

2 α

s2
wc

2
w

]
,

C̃RS
1 =

πL

M2
KK

(W †
d )2i(Wd)i3(∆̃dd)ij(W

†
d )2j(Wd)j3

×
[
αs
2

(
1− 1

Nc

)
+Q2

d α+ (ωdRdR

Z )
(s2
wQd)

2 α

s2
wc

2
w

]
,

CRS
4 =

πL

M2
KK

(U †
d)2i(Ud)i3(∆̃Qd)ij(W

†
d )2j(Wd)j3 [−2αs] ,

CRS
5 =

πL

M2
KK

(U †
d)2i(Ud)i3(∆̃Qd)ij(W

†
d )2j(Wd)j3

×
[

2αs
Nc

− 4Q2
d α+ ωdLdR

Z

4s2
wQd (T 3dL

L − s2
wQd)α

s2
wc

2
w

]
.

(B.9)

Here we have introduced the correction factors ωqq
′

Z , which are equal to 1 in the minimal
RS model, and given by

ωqq
′

Z = 1 +
1

c2w − s2
w

(s2
w(T 3q

L −Qq)− c2wT 3q
R

T 3q
L − s2

wQ
q

)(s2
w(T 3q′

L −Qq′)− c2wT 3q′

R

T 3q′

L − s2
wQ

q′

)
(B.10)

in the custodial one [75]. Numerically we find ωdLdL

Z ≈ 2.9, ωdRdR

Z ≈ 150.9, and ωdLdR

Z ≈
−15.7. The quantum numbers T 3q

L,R of the (+) type fields q = dL,R are listed in Table 6.2.
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