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I. IrirTRODUCTION 

The magnetic center of a quadrupole magnet does not necessarily correspond 

to the mechanical center. jVhen a quadrupole magnet is used as a focusing lens in 

a hi& energy particle beam it is especially important to know that the magnetic 

centerline of the element (quadrupole) coincides with the centerline of the beam. 

To determine the magnetic centerline of a quadrupole, several methods are avail- 

able using various properties of the magnetic field. The properties usually used 

are its symmetries and its lack of radial field in the center. In using the symmetries 

in the field, a rotating loop can be used. If it is a symmetric loop, the method is 

reasonably simple since the voltage induced by the quadrupole field is canceled by 

the symmetry of the coil and the output .voltage of the coil is proportional to the 

magnitude of the dipole field which is only a function of distance from the magnetic 

center. Many variations on this technique may be used, employing coils of various 

geometries that are more or less sensitive to the various multipole fields. The 

accuracy of this method of locating the magnetic center is no better than several 

thousandths of an inch because of uncertainties in the coil geometry, coil vibrations 

and runout of the coil driving shaft. 

A floating wire is an example of a method of center determination for quadru- 

poles that uses the property of zero field at the center. One procedure for using 

this method involves putting a taut wire through the magnet at the approximate 

center. First, the magnet is energized, then a current is passed through the taut 

wire, and deflection of the wire is noted as evidence that the wire is not at the 

magnetic center. The wire is then moved and the process repeated until no deflec- 

tion of the wire is observed as the wire current is turned on. The wire is then in 

the magnetic center. The floating wire technique is probably good for center 

location to an accuracy of a few thousandths of an inch also, but requires a con- 

siderable amount of elaborate equipment. As with the rotating coil technique 
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ther are many variations on the floating wire method that can be used to determine 

magnetic center. 

Another method of center location, which we advocate as clearly the most 

satisfactory of all, involves the use of a colloidal suspension of ferrosoferric 

oxide particles. This technique was proposed and used by R. M. Johnson’ to 

locate the magnetic center of quadrupole fields. The physical mechanism of this 

method was explained recently as scattering of polarized light on aligned colloidal 

particles in multipole fields. 2 In this system a small vial of the suspension is 

placed in the mapetic quadrupole field such that the mechanical center falls within 

the area of the vial. White plane-polarized light is directed through the vial of 

solution from one end of the magnet. The observer at the opposite end of the magnet 

then looks at the vial through a plane-polarizing analyzer which is aligned with the 

polarizer of incoming light such that complete cancellation of light should occur 

when the magnetic field is turned off. With magnetic field, complete ca&ellation 

does not occur except along two mutually perpendicular axes which cross at the 

magnetic center of the quadrupole. The accuracy of this type of center determina- 

tion is of the order of 2 0.001 inch. (The experimental arrangement is shown in 

Fig. 1.) 

Typical scattering patterns in multipole fields are shown in Fig. 2 for a 

quadrupole field, in Fig. 3 for a sextupole field, and in Fig. 4 for octupole fields. 

The scattering centers in the colloidal solution are Fe304 crystallites. The 

preparation of such a colloidal solution is described by D. J. Craik and P. M. 
n 

Griffiths.’ The individual crystallites of the magnetite (Fe304) have been measured 

with an electron microscope by Craik4 and it was found that the particles are of 

the order of 100 5;. 
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Since this is the method of center location used for the alignment of quadrupole 

lenses at SLAC, we have looked into the mechanism that causes the dark lines to 

appear in the solution. Furthermore, we have examined the location of similar 

sets of lines in sextupoles and octupoles and the theory is shown to predict the 

location and spacing of lines in these magnets also. 

The alignment of these magnetite crystallites in the magnetic field might be 

explained by the theory of paramagnetic alignment. If No is the number of 

crystallites per unit volume, the number of aligned scattering centers is given 

by the following formula 

N = NoL(a) = No Eo* g-q;a=g 

where m is the magnetic moment of the colloidal particle, H is the applied 

field, T is the temperature of the solution, and L(a) is the well-known Langevin 

function used in the classical theory of paramagnetism. In the case of very strong 

field or very low temperature, the Langevin function becomes unity, so 

N = No = Nsat 

If all the dipoles are aligned with the field, the number of scattering centers is 

independent of the applied field, that is, the number of scattering centers is 

saturated. 

The dependence of the sharpness of the scattering pattern on temperature 

and field can be easily observed by a simple experimental setup, such as that 

shown in Fig. 1. 
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II. SYMMETRY RELATIONS IN MULTIPOLE FIELDS 

The theory of anisotropic light scattering is vrry complicated and a rigorous 

solution of the problem exists only in a few special ~8606. In this case the symmetry 

properties of the magnetic multipoles allow a number of simplifications in the cal- 

culation of the intensity distribution of the scattering pattern. Such a symmetry 

relation in a quadrupole field is that any line pasrring through the center of symmetry 

with an angle 8, with respect to the X axis, will cross the magnetic field lines 

at an angle /3, where 

P =-$+2e 

In order to prove this relation, write the magnetic field in a quadrupole in the 

following form 

where u = B2XY is the scalar magnetic potential. Thus 

fj= -B2(icY+jk) 

The line which gives the direction of the magnetic field at point Q intersects the 

X axis with an angle y (see Fig. 5) which is given by 

tan y (*I, x r COB 6 =-z-c 
(if), y r sine 

= cot 8 = taa(n/2 - e) 

or A 

lr z--e y 2 

Hence, since y + A - 0 + p = 71, 

But /3 is defined as the angle between two vectors; therefore, one must consider 

/3 and /3 + 7~ as the angles between the direction of the magnetic field line at 
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point Q and the line passing through the center. This yields 

A similar analysis can be carried out in the case of the sextupole field. 

There 

u=B Y3 3 [ 1 X2Y - 7J- 

C=-B3 $xY) + TV2 - Y2) 
t 

This leads to 

0 z tanY=,Y= Y2 -x2 = r2 sin2 13 - r2 ~0s’ e 

(-I- HX 
-2XY - 2r2 cos 8 sin 8 

- cos 28 = 
- sin 28 = cot 28 = tan i - 26 

( ) 

From this one obtains y = i - 28 , y + T - 8 f p = ?r gives 

, p=i+3e 
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Quite similarly, for an octupole field the magnetic scalar potential can be written 

as 

and 

u=B4XY [X2- Y2] 

Ii = - B4 +3X2Y - Y3) + 3(x3 - 3XY2)] 

and from this we have 

t-7 H Y 
tan y = - .= 

4x3 -- 12.xY2 r 3 co8 3 e - 3r3 cos 0 sin20 1 = 

(x 

=- =cot38 H 12X2Y - 4Y3 3r3 cos2 8 sin 8 - r3 sin3 19 tan 38 

Then 

y= i-38 

ai2d from y + 7r - 0 C p ‘= 71, one gets 

It was observed that the scattering pattern does not change with a change in 

polarity, which means that a particle aligned parallel with the magnetic field 

scatters the same way in the scattering process as a particle that is aligned 

opposite t,o the field. Particles with induced magnetic moments are aligned along 

the field lines irrespective of the relative directions of the magnetic field 6 and 

the moment m . Therefore, the relative orientations of m and 2 are not taken 

5 .;.,,; ;ccount m fu.t*LiAr-t c :k.I(~ulations. The symmetry relations used for the following 

caikations can be ;rv+itten as 

/j:zae -5 for quadrupole fields 

p-30 -; for sextupole fields 

p=4e -; for octupole fields 
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HI. THEORY OF LIGHT SCATTERING ON ALIGNED PARTICLES IN MULTIPOLE 
FIELDS 

In order to explain the.intensity distribution of the scattered polarized light 

on the aligned magnetite crystallites, one can assume anisotropy in the scattering 

process. One of the simplest assumptions is that the aligned magnetite has a 

different polarizability along the magnetic field than it does perpendicular to the 

field. The net effect of this anisotropy in the scattering is a rotation of the initial 

angle of polarization along certain lines going through the center of the multipole 

fields. The polarizability tensor in the coordinate system of the aligned particle 

(Xl JY’) can then be written as 

5 0 

a ik = 0 
71 

In order to calculate the polarizability tensor in the X-Y coordinate system, 

it is desirable to use the symmetry properties of the multipole fields, Figure 6 

shows the relative orientation of the (X1-Y’) coordinate system to the (X-Y) system 

in a quadrupole magnetic field. 

With these relationships, the polarizability tensor in the X-Y system can be 

expressed using a similarity transformation (see Fig. 6) 

I I ( 
7r aikxy=s ++p > 

a1 O 
S -- o 

( 
i+e -a) 

51 

( 
T where S 3 - 8 + /3)_is the transformation matrix, i.e. , 

s(; - e + p) = s(e) = 

with the use of the symmetry relation, fi = -f+ 28. 
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Using la~lxy , all quantities can be expressed in the X-Y coordinate 

system and the scattering amplitude can be calculated easily. The size of the 

scattering centers (100 - 1000 & is small as compared to the polarized light, 

so the Rayleigh approximation can be used. In this case the total intensity of the 

scattered light is the sum of the scattered intensities of each of the scattering 

centers, and the scattering amplitude by the i-th volume element of the system 

at the location of the observer is given5 as 

Ai = K($ . 6) cos k($ . i*s) 

The induced dipole in the i-th volume element is I , which is located a distance 

ri from the origin, k = &r/A (A = wavelength in the medium); “s = “sl - go where 

2’ and go are unit vectors along the scattered and incident beams; 6 is the 

unit vector perpendicular to the scattered light beam and along the polarization 

direction of the scattered light; K is a proportionality constant. 

The dipole moment Pi is given by 

Pi = aikEK 

In the X-Y coordinate system the components of E’ are given as 

2 =Eo (cos qb) I + (sin +) j 
1 

where $ is the angle of polarization, $ being measured counterclockwise from the Y 

axis. The components of 6 can be expressed as 

6 = [(sin $)i - (cos $)3] 

when observation is perpendicular to the X-Y plane and along the symmetry 

axis of the multipoles. In this case 2’ = g 0 and CO6 k(Si l ~) = 1 . 
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The total amplitude of the scattered light from the X-Y plane can be written 

2lr 

A= ZAi=K’ 
i %I- 

(6 l &drd$ 
r=o cp=o 

By squaring the total amplitude, the intensity is obtained. 

The angle 6 relative to the X axis at which the intensity is zero for a 

given polarization angle Cp is given by the expression 

(6 6)=P,sin$l -Pycos+=O 

Scattering processes in different multipoles will now be considered. 

A. Light Scattering on Aligned Particles in a Quadrupole Field 

In a quadrupole field, the dielectric tensor in the X-Y system can be written 

as 

cYl cos2e + CY,, sin28 

“II - 5 sin28 
2 

v sin28 

al sina e + CU,, ~0s~ 8 

and the induced dipole moment as 

6= oXYs=Eo 
I I 

al c0s2e cos tp + a,, sin28 cos 4 + 51 - 5 2 sin 28 sin@ 

?I - 5 
2 sin28 co8 $ + cyI sin’ e sin+ + c+, c0s2e sin+ 

And with this 

(6 l 5) = 

5 - 51 

2 sin2 (9 + e) 

The scattering intensity is proportional to the square of the amplitude; 

consequently, 2 
Ii~A; = K2(6 . $)2 = K2 sin2 2 ($ + e) 
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The numerical value for the constant K might be obtained from the Rayleigh 

formula, from which 

where Ni is the density of scattering centers in volume element Vi , and 

Ni = No coth m kT -- 
kT m.R 1 

The location of the zero intensity lines can be obtained for a given polarization 

angle 4, in terms of $ , from the scattering intensity formula as 

B = y-$ where n= 0, 1, 2... 

Along the Z axis, the scattered light intensity from volume element Vi can be 

expressed as 

I= 
87r4NoE2 mH kT 

A4 
coth kT - mH I[ 1 5. p’2 

B. Light Scattering on Aligned Particles in Sextupole and Octupole Fields 

In sextupole and octupole fields, the magnetic field intensity changes as 

(B,/ Rt)r2 and (Bo/Ri)r3 , respectively, where B, is the field at the pole 

faces, Ro is the half-aperture, and r2 =X2+Y2. 

Therefore, the magnetic field intensity is very low near the Z axis and is 

not sufficient to align the scattering centers in the field direction. This might 

be the reason for the unclear scattering picture near the Z axis as seen in 

Figs. 3 and 4. 

- 10 - 



In a sextupole field the dipole moment can be written as 

sin 48 sin@ \ (aloos 28 -t a,, sin2 20) co8 $ - 
P 1-5 ) 2 

p’= o! 
I I 

xyE = E. 

.-P sin48 cos$ + (a1 sin226 + a,, coe2 28) sin $ 

where c$ is the angle of polarization. Using this, one finds that the intensity is 

2 
1 = k2 (6 . sj2 = k2 sin2 4(0 + 2 ) Ji and I = 0 when 

na = 4(8 +$) or 0 =n$-$ where n = 0, 1, 2, 3 

Quite similarly, for an octupole field the dipole moment of the aligned 

colloidal particles can be written as: 

a1 sin238 CO8 9 + ct,, cos23e CO8 $ - sin68 sin+ 

5 = lo’lxyE = E. 

sin68 COS@ + (cxL cos2 38 + CY,, sin238) sin+ 

and with this 
2 

I=k2(&q2=k2 sin26(8 +3) 9 

I=0 when n7r = S(6 + Q ) or 0 =ni-f 

In both cases the observed locations of dark lines characterized by the azimuth 

angle 8 agree with the calculated values for a given polarization angle $. At 

zero polarization angles, as shown in Figs. 3 and 4, the dark lines are located at 

8 =:O”, 45’, 90“ and 135’ 
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for the sextupole field, and at 

8 = O”, 30°, 60°, 90°, 120°, and 150’ 

for octupole fields. It is interesting to note that the angular separation of the 

dark lines is 45’ in a sextupole field and 30’ in the octupole field (see Figs. 3 

and 4). 

Table I lists the calculated azimuthal location of the dark lines as a function 

of the polarization angle $(O > @ b-60’). 
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Fig. 2--Light scattering pattern in a quadrupole magnetic field (4 = 0). 



Fig. 3--Light scattering pattern in a sexkupole magnetic field (@ = 0). 



Fig. 4--Light scattering pattern in an octupole magnetic field ($ = 0). 
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FIG 5- INTERRELATION OF ANGLES y, 8, AND ,8 IN 
A MAGNETiC FIELD WITH QUADRUPOLE SYMMETRY. 
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FIG. 6 ORIENTATION FOR A MAGNETIC DIPOLE p IN A MAGNETIC 
FIELD WITH QUADRUPOLE SYMMETRY. 
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