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Introduction

On the quest for the ultimate theory describing the fundamental interactions of elementary
particles a major milestone was the completion of a renormalizable gauge field theory in four
space-time dimensions — the Standard Model (SM) of elementary particle physics — which not
only incorporates the strong interactions of quarks, but also unifies the electromagnetic and
weak interactions of quarks and leptons [1-17]. It has been tested experimentally to a high
level of accuracy, and the only missing ingredient intimately connected with the electroweak
breaking mechanism that has not yet been directly observed is the Higgs boson.

However, in spite of the tremendous success the common belief is that the SM is not the
final answer but rather the low-energy limit of a so-called grand unified theory (GUT) in
which the strong and electroweak interactions are described by a single gauge group. This
assumption is highly motivated because the extrapolated running gauge couplings of the SM
meet, approximately at a very high scale of about 10'® GeV [18]. The smallest possible GUT,
which can be spontaneously broken down to the SM gauge group via the Higgs mechanism,
is based on the SU(5) gauge group [18,19], which in turn can be naturally embedded into the
SO(10) gauge group having the nice feature that all fermions belonging to one generation
of the SM are unified within a single irreducible representation [20,21]. Furthermore, this
irreducible representation contains the long lost right-handed neutrino being a gauge singlet
below the grand unification scale, or in other words, this field does not participate in the
strong, weak and electromagnetic interactions. This right-handed neutrino can naturally
aquire a large Majorana mass and hence escape from direct experimental detection, while
allowing for a tiny Majorana mass for the left-handed neutrinos via a rather attractive
scenario known as the see-saw mechanism [22,23]. And indeed, from experiments we know
that left-handed neutrinos do have non-vanishing masses [24,25].

Nevertheless, how promising these ideas soever may be, the increasing precision in mea-
suring the strong and electroweak coupling constants at low energies has shown that they
fail to meet in one point by more than seven standard deviations [26], and hence unification
without the introduction of new degrees of freedom in the SM does not take place. Another
issue grabbing theorists attention is the so-called hierarchy problem which becomes apparent
once the SM is embedded into a GUT. Albeit such a large unification scale is necessary for
the stability of the proton, it is difficult to understand the smallness of the electroweak scale
with respect to the former. And, even more important, is the fact that the weak scale, which
settles the mass scale of the W and Z bosons, is not stable against quantum corrections. It
can only be arranged by extremely fine-tuning the parameters of the theory. The reason for
this circumstance is the elementary Higgs boson. Being a scalar particle nothing protects its
mass from receiving large, quadratically divergent, quantum corrections, which therefore is
naturally of the order of the largest involved mass scale of about 10> GeV.

A possible solution is provided by the softly broken minimal supersymmetric extension



of the SM, the so-called Minimal Supersymmetric Standard Model (MSSM)!, in which the
couplings of the Higgs bosons are fixed by supersymmetry, and hence no quadratically diver-
gent quantum corrections occur [31-33]. In this sense supersymmetry solves the hierarchy
problem in that it allows for a small and stable weak scale without fine-tuning when embed-
ding the MSSM into SU(5) or SO(10). However, supersymmetry still lacks the explanation
why the weak scale is so much smaller than the grand unification scale. Besides this taming
of quadratic divergences the gauge couplings unify at a scale of about 10'® GeV within the
framework of the MSSM [26,34,35] which can be taken as a strong hint for a supersymmetric
GUT. Remarkably, the unification scale gets enhanced by an order of magnitude and hence
supersymmetry stabilizes the proton. A further shortcoming of the SM is the inability to
turn on gravity, which we cannot anymore neglect when going beyond the Planck scale of
about 10! GeV, since up to now no renormalizable quantum field theory of gravity has been
found. And from the fact that the low-energy limit of a superstring theory, a promising
candidate for a unification of all interactions including gravity, is supersymmetric, the belief
on a supersymmetric extension of the SM among theorists is all the more strengthened.

So nice and appealing these theoretical arguments are, up to now neither a single spar-
ticle has been observed, nor is there any conclusive indirect experimental evidence pointing
towards supersymmetry. This is due to the limited energy reach in present experiments
of direct searches, and the relatively large uncertainties, or even only existing lower/upper
bounds, from which the indirect searches still suffer. But in the light of continually pursued
investigations with increasing energy reach and improving precision from the experimental
side, future experiments will hopefully signal the first evidence for supersymmetry. In this
respect it is of most importance to improve the theoretical uncertainties of physical quanti-
ties in the framework of both the SM and the MSSM in order to keep with the increasing
experimental precision and to reveal possible supersymmetric deviations from the former.
Of special interest are furthermore observables for which only lower/upper bounds exist,
because the rich structure of the MSSM combined with other experimental constraints often
allows for order of magnitude enhancements sometimes even saturating these bounds, and
therefore lying just around the corner of present experiments.

In this thesis we will attack both above mentioned approaches, the latter for the rare
exclusive decays K+ — ntvi and K, — 7vv belonging to the theoretically cleanest pro-
cesses in the field of meson decays, and the former for the semileptonic B — X, I+~ decay,
where we restrict ourselves to the inclusive decay mode since it is amenable to a cleaner
theoretical description. Within the SM both decays, as all other weak decays, are governed
by the Cabbibo-Kobayashi-Maskawa (CKM) matrix, the only source of flavor and CP vio-
lation [36,37]. Furthermore, there is no tree-level contribution to these decays and it is this
fact which makes contributions from virtual superpartners of SM particles so important,
especially in the light of the additional sources of flavor and CP violation residing in the
soft-breaking terms of the MSSM. In what follows we will argue why both decay modes are
of special interest to us.

Let us start with the Kt — 7fvy and K; — 7% decays. As already mentioned
they belong to the theoretically cleanest processes, and in fact, their branching ratios can be

LOther solutions are given by the assumptions that the Higgs boson is not an elementary particle but
rather a condensate of strongly interacting fermions, so-called technicolor theories [27], or by models of
large extra dimensions, in which the four-dimensional space-time description breaks down beyond the weak
scale [28,29]. Also, there exists a fairly new approach of so-called Little Higgs models [30].



computed to an exceptionally high degree of precision that is not matched by any other decay
of mesons [38-42]. The reason for this is that the hadronic matrix elements for these decays
can be extracted from the well measured branching ratio of the non-rare decay K+ — 7%,
due to isospin symmetry. As emphasized in [43], the clean theoretical character of these
decays remains valid in essentially all extensions of the SM. In this context an important
virtue of these decays is the possibility of parameterizing the new physics contributions to
their branching ratios, in a model-independent manner by just two parameters [44], the
magnitude of the short distance function X and its complex phase, X = |X|e®x.

The most recent predictions for the relevant branching ratios within the SM read [43]
B(KT — atvp)gy = (7.8 +£1.2) - 1071
B(K — mvp)gy = (3.0 0.6) - 107 (1)

in the ballpark of other estimates [45-49]. As discussed in [43] a NNLO calculation of
the charm contribution to K™ — 77w and further progress on the determination of the
CKM parameters coming in the next few years dominantly from BaBar, Belle, Tevatron
and later from LHC and BTeV, should eventually allow predictions for B(K* — 7" vv) and
B(K; — 7°vr) with uncertainties of at most +5%.

On the experimental side the two events observed by the AGS E787 collaboration at
Brookhaven [50-53] and the additional event observed by AGS E949 [54] imply

B(KT — ntvp) = (14.775%0) - 1071 (2)

While the central value in (2) is about a factor of two higher than the SM value, the large
experimental error precludes any claims for signals of new physics in the Kt — ntuw
data. Further progress is expected in principle from AGS E949, from the efforts at Fermilab
around the CKM experiment [55], the corresponding efforts at CERN around the NA48
collaboration [56] and at JPARC in Japan [57].

On the other hand the present experimental upper bound on B(Kj — 7v) from KTeV
[58] reads

B(Kp — %) <59 x 1077 (3)
This is about four orders of magnitude above the SM expectation but a K; — 7°vi exper-
iment at KEK, E391a [59], which recently took data, should in its first stage improve this
bound by three orders of magnitude. While this is insufficient to reach the SM level, a few
events could be observed if B(K; — w°vi7) turned out to be by one order of magnitude larger
due to new physics contributions. Further progress on this decay is expected from KOPIO

at Brookhaven [60,61], and from the second stage of the E391 experiment at JPARC [57].

In this context let us recall that a model-independent upper bound on B(K; — 7'vi)

following from isospin symmetry reads [62]
B(K; — mvi) < 4.4-B(Kt — ntup) (4)
With the data in (2), which imply [54]

B(K" — 7tvp) <3.8-1071° (90% C.L.) (5)



one finds then
B(K — mvi) < 1.7-1077 (90%C.L.) (6)

still two orders of magnitude below the upper bound from the KTeV experiment.

In the present work we will analyze the KT — ntvi and K; — 7°vi decays within

the MSSM, taking into account all sources of flavor violation in the squark sector and the,
in our opinion, most important existing experimental and theoretical constraints. Also, we
will refrain from using the mass-insertion approximation [63] in our numerical analysis, but
instead work in the mass eigenstates basis for all sparticles using the exact formula for the
short distance function X. Our approach generalizes previous analyses [44,64,65], where the
mass-insertion approximation was applied, and only a limited number of MSSM parameters,
assumed to be the most important, were used in numerical scans. The questions we will
address here are whether the

e phase fx can be as large as found in [48,49]?,

e B(Kt — 7tvi) can be significantly enhanced over the SM expectation so that it is at
least as high as its central experimental value given in (2),

e B(K; — 7%i) can be enhanced by an order of magnitude over the SM expectation
with the ratio of both branching ratios of K; — 7’v and K+ — 77vi reaching the
bound given in (4).

Answering these questions is a non-trivial numerical task, due to the large number of free
parameters and experimental constraints which have to be considered. Here we will demon-
strate an efficient method of a random scan over the MSSM parameter space, based on an
adaptation of the Monte Carlo integration algorithm VEGAS [66-68]. Such a method is
designed to automatically concentrate most of the randomly generated points in the MSSM
parameter ranges giving the largest deviations from the SM results, thus allowing for ana-
lyzing very large parameter spaces, with 20 or more dimensions, in a reasonable time and
without very extensive computer CPU usage.

The second topic of this thesis are higher order corrections to the inclusive decay B —
X It~ in the framework of the MSSM. The major theoretical uncertainties arise here from
the non-perturbative nature of intermediate c¢ states of the decay chain B — X,J/¢ —
X, IT1~ and analogous higher resonances. These decay channels interfere with the simple
flavor changing decay mechanism B — XTI/~ and the dilepton invariant mass distribution
can be only roughly estimated when the invariant mass of the lepton pair s = ¢* = (p- +p;+)?
is not significantly away from M7 ) resulting in uncertainties larger than £20% [69]. For
this reason the charmonium decays are vetoed explicitly in the experimental analysis [70-73]
by cuts on the invariant dilepton mass around the masses of the J/1 and 1)’ resonances.

A rather precise determination of the dilepton invariant mass distribution seems to be
possible once the values of s are restricted to be below or above these resonances, and indeed,
at the moment the low-s region, accessible to [ = e and p, is theoretically best understood.

2Recently it has been pointed out in [48,49] that the anomalies seen in the B — 7K data may imply
|X|=2.17+0.12 and 6x = —(86 £+ 12)°, to be compared with |X| = 1.53 +0.04 and fx = 0° in the SM. In
this scenario the prediction for B(K* — nvv) is in agreement with the SM, while those for B(K — 7
is enhanced by a factor of about 10.

V)



Here the calculation can be performed using perturbative methods whereas non-perturbative
corrections can be systematically taken into account within the framework of Heavy Quark
Effective Theory (HQET). Furthermore, the effects related to the tails of ¢¢ resonances in
the low-s region were estimated model-independently by employing an expansion in inverse
powers of the charm quark mass in [74]. Because of the smallness of the non-perturbative
corrections in the low-s region, the B — X,ITI1~ decay rate is precisely predictable up to
about 10% uncertainty.

On the experimental side a measurement of the B — X I+~ branching ratio with [ = e, p
has been reported by the Belle collaboration for the first time [70], and subsequently a similar
value was announced by the BaBar collaboration [72]. A very recent experimental result of
Belle valid for the low-s region reads [71]

B(B — X Tl )exp = (1.493 £ 0.50475:382) . 107° (7)

which is in agreement with the BaBar result quoted in [73], and both having comparable
uncertainties. Clearly, in view of the improving experimental situation of the ongoing B-
physics dedicated experiments, such as the BaBar and Belle experiments, the experimental
uncertainties will decrease.

The calculations of the perturbative contribution [75-77] up to the complete next-to-
leading order (NLO) in QCD [78,79] in the SM had not reached this precision. In a series
of recent papers the calculation was extended to the next-to-next-to-leading order (NNLO)
in QCD being almost complete up to the missing two-loop matrix element contributions of
the four quark operators Oz ¢ which are expected to be small®>. These calculations com-
prise corrections to the Wilson coefficients [82], the anomalous dimensions of the operators
under consideration [83-86]*, and virtual and real corrections to the their low-energy ma-
trix elements [87-92]. Within the SM the inclusion of NNLO QCD corrections reduces the
branching ratios of B — X,ete™ and B — X,utp~ by typically 12% and 20%, respec-
tively [93]. Furthermore uncertainties due to the dependence on the renormalization scale
of the top quark mass, p; ~ O(my), become reduced from about £16% to 3% [82], and the
inclusion of the NNLO matrix element corrections decrease the low-energy scale dependence
wy ~ O(my) from £13% to a value about +£6.5% [87-89]. Electroweak corrections were found
to be a few percent [86] removing the scale ambiguity of the electromagnetic coupling aep,
when going beyond leading order (LO).

The most recent SM predictions for the branching ratio of B — X"~ with [ = e, p in
the low-s region read [92]

B(B — XM gy = (1.63 +0.20) - 10°° (8)

where a normalization on the semileptonic decay B — X, lv; was used in order to cancel the

factor (m>*)?, the origin of large uncertainties, and [86]

B(B — X" )su = (1.57 +0.16) - 107 (9)

which additionally includes dominant higher order electroweak effects and reduces the un-
certainty due to the charm quark mass present in the decay rate I'(B — X.lv;) owing to

3The analogous corrections to B — Xy are 1% [80,81].
4The three-loop self-mixing of the four-quark operators O; g and their mixing into Oy is not published
yet [85], however the relevant result for B — X I+~ can be found in [86].



a normalization on the charmless semileptonic decay B — X,lv; in combination with the
decay B — X, ly,.

Apart from the branching ratio and the dilepton invariant mass distribution, the differen-
tial forward-backward asymmetry of the leptons represents the another interesting observable
in the decay B — X,I*1~. The leading contribution to the forward-backward asymmetry
arises in the SM at the NLO and thus the inclusion of NNLO corrections drastically re-
duces the renormalization scale dependence in predictions of this observable. In particular
it is very sensitive to new physics effects and further, sq, the position at which the forward-
backward asymmetry vanishes provides an important test of the SM [94,95]. Within the
SM the inclusion of NNLO corrections in the evaluation of sy leads to a shift of 10% to
higher values accompanied by a reduction of the uncertainty due to renormalization scale
dependencies in the prediction from typically 15% to 5% [96-98]. Within the SM the zero of
the forward-backward asymmetry has been calculated in [86] and [92] at the NNLO yielding
s0 = (3.76 £ 0.33) GeV? and s = (3.90 4 0.25) GeV?, respectively. Higher order electroweak
corrections are found to shift so by +2% [86].

Besides testing the SM, once the experimental accuracy improves, the inclusive decay
B — X, 71~ will also allow to constrain models involving new physics scenarios beyond
the SM. The reliability of such constraints depend crucially on theoretical uncertainties
due to higher order corrections in the prediction of observables as demonstrated by the
SM analysis in the case of the importance of NNLO QCD corrections. In this work we will
calculate QCD corrections to the matching conditions for the Wilson coefficients of operators
mediating the transition b — si[~ in the context of the MSSM. To ensure the completeness
of the calculated QCD corrections we assume that the down-squark mass-squared matrix
decomposes into 2 x 2 matrices for each generation, that the gluino is heavy and decouples
from the theory, and furthermore concentrate on the region tan 8 < 10. Taking into account
the results of [99-101], the known results for the Wilson coefficients of the magnetic penguins,
the NNLO corrections to the matrix elements of the relevant operators from [87-89,92]
and their three loop anomalous dimensions calculated recently in [83-86], the only missing
ingredients of a complete NNLO analysis of B — X,I*I~ in the considered scenario of the
MSSM are the QCD corrections to the Wilson coefficients of the four-quark operators O, g
and the semileptonic operator Og. These missing ingredients are calculated here for the first
time. Our main objectives are as follows,

e the calculation of Wilson coefficients, the dilepton invariant mass distribution and the
forward-backward asymmetry of B — X I*I™ at O(a),

e the investigation of the renormalization scale dependence and of the impact of the
NNLO corrections on the observables in question,

e the comparison of the NNLO results of the SM with those of the MSSM and of the
size of MSSM corrections with the theoretical uncertainties in the SM.

The remainder of this thesis is organized as follows. In chap. 1 we briefly summarize
the properties of Weyl spinors being the fundamental building blocks of fermionic matter
fields. The concept of gauge field theories is reviewed focusing on perturbative aspects. The
discussion includes the construction of the classical Lagrangian, the quantization and renor-
malization as well as the background field formulation of such a theory. These ideas are
then applied to the SM which gives our current description of the phenomena of elementary



particles. Subsequently, in chap. 2 we review the MSSM, a phenomenologically viable super-
symmetric extention of the SM with minimal particle content consistent with observed SM
particles and which does not violate SM conservation laws, i.e. baryon and lepton number
conservation. The elegant superfield formalism is used to construct Lagrangians invariant
under global supersymmetry transformations, and the results enables us to promote the SM
to is minimalist supersymmetric extension. A special scenario of the MSSM with a heavy
decoupled gluino, which finds it application in chap. 4, is also introduced. In chap. 3 we
present formulae for the branching ratios B(K ™ — ntvv) and B(Ky — 7°vr) in terms of the
function X in a particularly suitable form for our numerical analysis. We discuss the numer-
ical method we use to cope with the huge space of MSSM parameters under consideration,
and afterwards, taking several experimental and theoretical constraints into account, we ex-
plore the possible departures of the function X and the branching ratios B(K* — 7tuvw)
and B(K; — w'vp) from their SM predictions. Chap. 4 is devoted to the calculation of
the two-loop QCD corrections to the matching conditions of the b — st~ transition in the
context of the MSSM with a heavy decoupled gluino. We review the low-energy effective
Lagrangian relevant for this scenario and present our analytical findings for the two-loop
Wilson coefficients. As an application, we study the phenomenological implications for the
dilepton invariant mass distribution and the forward-backward asymmetry of the leptons in
the decay B — X,I*1~ including all NNLO corrections paying special attention to the re-
duction of renormalization scale uncertainties. Finally, we conclude and give a short outlook
in chap. 5. Some technical details, and the analytical formulae for the Wilson coefficients
are presented in the appendices. In app. A we list all contributions entering the function X
relevant for the K — wvv decays in the general MSSM. The complete set of non-physical
operators relevant for the off-shell b — sl™l~ matching can be found in app. B, and app. C
summarizes the analytical matching conditions for the considered scenario of the MSSM.
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Chapter 1

The Standard Model

In this chapter we briefly summarize the properties of Weyl spinors being the fundamental
building blocks of fermionic matter fields. Subsequently, the concept of gauge field the-
ories is reviewed [102-105] focusing on perturbative aspects. The discussion includes the
construction of the classical Lagrangian, the quantization and renormalization as well as
the background field formulation of such a theory. Some of these ideas are then applied to
the SM which gives our current description of the phenomena of elementary particles. Its
Lagrangian is introduced in terms of two-component Weyl spinors but, as is standard, we
pass to four-component Dirac spinors after electroweak symmetry breaking. This approach is
somewhat unconventional but allows for a smooth transitions to its minimal supersymmetric
extension discussed in chap. 2.

1.1 Spinor Representations

Two-component Weyl spinors transform under the lowest dimensional non-trivial represen-
tation of the Lorentz group, namely the matrices of the group SL(2,C). Here, we have to
distinguish between two different inequivalent representations?,

640 = exp { Lo 0t fonle) = Moo

ale!) = exp { G 7 onlie) = (M) (o) (1)
where 0 = 1(o"6” — 0”o*) and 6" = ;(6"0" — ¢"o*) are the Lorentz group generators
in terms of the generalized Pauli matrices o = (1,5) and ¢* = (1, —0), and w,, = —w,,
collects the rotation and boost parameters of a general Lorentz transformation. The spinors
11, and YR are called left- and right-handed Weyl spinors, respectively, and their components
are considered as Grassmann numbers, i.e. they are anticommuting numbers.

From (1.1) it follows that io?y% and —ic%*y} transform under the matrices (M7T)~*
and M*, respectively, which in turn are equivalent to M and (MT)~!, respectively. This
observation allows us to introduce dotted and undotted spinor indices,

wL = (¢a)7 YR = (¢a)7 1/}2 = (@Z_)d)v Wz = (¢a) (12)

'We adopt the convention in which the space-time metric guv has signature (+, —, —, —).
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The transformation properties of these spinors under SL(2,C) are as follows,
Vs = Mg, vy = [M*] 5% = a[MT]%
9 = (MY e, = (M) e = M (13)

Obviously, the spinor indices can be raised and lowered by use of the antisymmetric
tensors

(cas) = —(e*) = (e45) = (") = ic” (1.4)
according to
wa - 6a,3¢57 ¢a - Eaﬁw,& '[Ed - Go'éﬁ"lﬂéa 'l;d - Gdﬁ.'&ﬂ' (15)

Since the matrices M of SL(2,C) are unimodular (det M = 1), the e-tensors are invariant
under SL(2,C) transformations.

The equation of motion of a free spin % particle with mass m in terms of two-component
Weyl spinors ¢, and x i read
10" 0,0, = mxr, 00, xr = MYy, (1.6)
and thus we conclude that the generalized Pauli matrices carry one dotted and one undotted
spinor index, 0¥ = (d*,;) and o* = (7).

Both spinors 97, and xg can be combined to form a four-component Dirac spinor ¥p =

(Y1, xr)" satisfying the Dirac equation (79, —m)¥p = 0 with the y-matrices in the chiral
representation given by
_ (0 o _ 50123 _ (—1 0
7“—(5# o)’ B=7 =T =1, 1 (1.7)

The charge conjugated Dirac spinor is defined by U§ = CUZ, where C is the charge conju-
gation matrix,

)
.20 10 0
and Up = WA, Hence, U5 = (xp, Yr)" with x = io2x} and g = —io)y.

A Majorana spinor can be obtained from the Dirac spinor by imposing the constraint
Xr = g, so that Uy = (¢, vr)". Thus follows ¥§, = Wy, i.e. a Majorana fermion is its
own antiparticle?.

In sec. 1.3 the SM Lagrangian will be introduced in terms of two-component Weyl spinors.
Hence it will be useful to set up a dictionary to translate bilinears in terms of four-component
spinors into bilinears in terms of two-component spinors and vice versa. Defining the abbre-
viations

Xt = X“a; xotp = xo* 50", Xo1h = xo™ g
XV = Xa¥", X0 = X" s, X0 = X0 " (1.9)

2From now on we will drop the subscripts D and M on Dirac or Majorana spinors, respectively. It will

become clear from the text what is meant.
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and considering two four-component Dirac spinors ¥; = (11, Yri)*, i = 1,2, we obtain
U105 = X112 + X2U1, Uy, = 10"y — X20"xa
U150y = —x1ths + Xathi, UiyHys Wy = —1h1"1hy — X20"x1 (1.10)

for bilinears behaving like scalars, pseudoscalars, vectors and axialvectors under Lorentz
transformations, respectively.

1.2 Foundations of Gauge Field Theories

Quantum field theories are characterized by a Lagrangian density with the interactions de-
scribed by products of fields at the same space-time point. In elementary particle physics
we observe two kinds of fields, namely matter fields and the forces acting between them. It
is the concept of gauge field theories that seem to describe the interaction of both types of
fields correctly.

Classical Lagrangian for Gauge Field Theories

Gauge field theories are defined as theories which are locally invariant under particular
symmetry transformations. In the following discussion we will for simplicity consider only
one Dirac spinor ¥ transforming in the fundamental representation of the non-abelian gauge
group SU(N). A general element of this group can be written as U() = exp{i0*T*} where
in the case at hand the T'* are the generators in the fundamental representation and the
0 space-time dependent functions. The structure constants belonging to this group will be
denoted by £ and the coupling constant by g.

The most general renormalizable classical Lagrangian invariant under the non-abelian
symmetry transformations

U =U(0)¥
a. a a a Z
VaT = U0)ViT U6) + p [0,U(0)] U0 (1.11)
of the fermion field ¥ and the real gauge fields V' is given by?
1 a yyapuv TS
‘Cclassical = _Z V;WV # + \I/(Zp — m)\If (112)
Here, m is the mass of the fermion field,
D, =0, +1igV;T" (1.13)
the covariant derivative coupling the fermion fields to the gauge bosons, and
Ve, =0,V — 0,V — gf ViV (1.14)

the field strength tensor transforming under the adjoint representation of SU(N). In abelian
gauge theories the self-interactions of the gauge bosons contained in the gauge kinetic term
given in (1.12) are absent due to the vanishing structure constants.

3A possible term proportional to eWQBV‘““’V“aB can be written as a total derivative and does not
contribute in perturbation theory. Therefore it is not taken into account here.
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Quantization of Gauge Field Theories

We will quantizise the classical Lagrangian given in the previous section using the path
integral formalism. The generating functional for Green functions is given by

Z|Jy, Jg, Jv] = / DV DU DV exp {z / d*z (Lojassical + Ju¥ — UJg + J&*‘Vj)}
(1.15)

where Jy, Jg and Jy are external sources. However, this generating functional is mathe-
matically inconsistent due to the gauge invariance of the classical Lagrangian. The emerging
singularity results from the integration over configurations of the gauge fields V which are
related by gauge invariance by one another.

This problem has been solved by Faddeev and Popov by introducing a gauge fixing
condition in the generating functional to avoid this overcounting. Their finding reads [106]

Z[Jy, Ty, Ju, Ja, Jy] = /DV DU DV

X exp {z / d'z (Lo + Jo¥ — g + Jou® — u®J? + Jgﬂv;)} (1.16)

where the “effective” Lagrangian consists of the classical, a gauge fixing and the Faddeev-
Popov Lagrangian,
‘Ceff = ‘Cclassical + [’GF + EFP (117)
Writing F'* = 0"V}7, the gauge fixing term is given by
1
Lop = ——F*F* 1.18
or =3¢ (1.18)

with & being the gauge parameter, and the Faddeev-Popov Lagrangian reads

—Qa 5Fa(x) — —Qa ac ac C
Lpp = g/d4yu (z) 507 (y) w’(y) = —u"0" (0,0% + g f* V) u (1.19)

which involves interactions of unphysical ghost fields. These fields, however, are essential
in order to obtain a unitary S-matrix, and indeed they have already been introduced by
Feynman to solve exactly this problem [107]. In the case of an abelian gauge theory, where
all structure constants are equal to zero, the ghost fields decouple from the theory.

The generating functional for Green functions given in (1.16) is now well-defined and
serves as the starting point for perturbative calculations. But, as is evident, this functional
is no longer invariant under the SU(N) gauge group and thus the Ward identities [108,109]
following from the classical Lagrangian are no longer valid in the quantizised theory. For-
tunately, the gauge transformations can be extended by including transformations of the
ghost fields to the so-called BRST transformations [110-112]*. They give rise to general-
ized Ward identities known as Slavnov-Taylor identities [9,11,115,116] which summarize all
relationships between the Green functions resulting from local gauge invariance.

4The BRST symmetry can be formulated in a more symmetric form by linearizing the gauge fixing
Lagrangian, Lgr = B*F*+£/2 B*B®, where the auxiliary scalar field B? is the so-called Nakanishi-Lautrup
field [113,114]. Eliminating this field by its purely algebraic equation of motion one recovers (1.18).
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Renormalization of Gauge Field Theories

It is well known that the quantizised theory presented in the previous section suffers from
divergencies arising in the calculation of Green functions when going beyond the tree-level
approximation in perturbation theory. In renormalizable theories it is possible to redefine all
involved parameters and fields order by order in perturbation theory to absorb these infini-
ties systematically®. Calculating physical quantities within this redefined theory produces
meaningful results which can be compared with experiments.

Practically this means that we replace the so-called bare quantities present in the original
Lagrangian through renormalized ones,

bare

9" = 249,
V;,bare — \/EVMQ’ \Ilbare — Z\I/\I/, ua,bare — @ua’ aa,bare — \/ZEa (120)

with some quantities having equal renormalization constants which is a consequence of
Slavnov-Taylor identities. The resulting Lagrangian will then be split into a sum of one
that resembles the bare Lagrangian, except that the bare parameters are now replaced by
the renormalized ones, and a counterterm Lagrangian which individual terms will be treated
as interactions,

mbare

= Znm, € = 7y

Ele:)gre — Ez%normalized + £CT (121)

The standard method to isolate the infinities within gauge theories in perturbation theory
is dimensional regularization. Here, four dimensional space-time is analytically continued
to D = 4 — 2¢, dimensions and the singularities, which occur in integrals over loop mo-
menta, emerge as simple poles in the parameter e. As the unrenormalized Lagrangian is
now defined in D dimensions the unrenormalized coupling constant becomes a dimensionfull
parameter. By keeping the renormalized coupling constant dimensionless the t’Hooft mass
scale pu appears,

bare

9" = Zygu© (1.22)

In perturbation theory the renormalization constants can be expanded in powers of the
coupling constant,

[e%) 0 k
a\Fk aNk 1
Z =1 (—) 52k — 1 (—) P YAGD 1.23

where o« = g/(4m). So far we only required the renormalization constants to absorb the
infinities resulting in loop calculations, but also finite terms can be absorbed which defines
different renormalization schemes. A particular useful renormalization scheme, especially for
QCD corrections, is the MS scheme [117] which is obtained by replacing the t'Hooft mass
scale, i1 — g1 e7? /\/4w, where g is Euler’s constants, and afterward absorbing only infinities
in the counterterms. In this way all renormalization constants are uniquely defined.

The dependence of the coupling constant g and the mass m on the t’Hooft mass scale
i is governed by the renormalization group equations [102-105,118-120]. These equations

5Even in the case when everything is finite it is necessary to redefine parameters and fields order by order
in perturbation theory in order to stay within a given renormalization prescription.
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are derived from the definitions (1.20) using the fact that bare quantities are p-independent.

One finds

dg dm
_ an _ 1.24
ey = 0 + 6(9), W =7 (g)m (1.24)

where the 8 function and the anomalous dimension 7,, of the mass are given by

z,
dp’

. dZ,,
’Vm(g) = Zml MW (1-25)

B(9) = —9Z; "
In so-called mass independent renormalization schemes, to which class the MS scheme be-
longs, the coefficients §Z % given in (1.23) are constants and hence the only p-dependence
of the renormalization constants resides in the coupling constant®. In such schemes, the
perturbative expansion of 5 and 7, reads

Blo) =235 Y (1) 62

r=1
d =/ a\k
_ 9.2 k1
Tm(9) = —2g d_QQZ <E> VAR (1.26)
=1

An efficient method to calculate the 3 function will be introduced in the next subsection.

Background Field Formalism

As already mentioned the generating functional given in (1.16) is not gauge-invariant but only
invariant under BRST transformations. As a consequence, its associated Green functions do
not directly reflect the underlying gauge invariance, but rather obey complicated Slavnov-
Taylor identities resulting from BRST invariance. In addition, the Green functions depend
on the particular gauge fixing chosen, and only physical quantities are gauge independent.

To avoid the explicit breaking the gauge symmetry the background field formalism was
introduced [121,122]. By decomposing the usual fields present in the classical Lagrangian
given in (1.15) into quantum and background fields,

U+, Ve Ve Ve (1.27)

one can impose the gauge fixing necessary for quantization while maintaining the gauge
invariance with respect to the background gauge field,

o= DV — (9,0 + gf V) Ve (1.28)
Consequently, the Faddeev-Popov Lagrangian is also modified,

Lrp = —a" Dy (96" + g f [V 4 V) uf (1.29)

6Strictly speaking this statement depends on the Lagrangian under consideration. For example, it is true
within the SM, but the MS renormalized MSSM defines no mass independent renormalization scheme.
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Since the fermion field does not enter the gauge fixing Lagrangian, the Feynman rules for
background and quantum fermions are the same, and hence there is no need to distinguish
them. The equivalence of the S-matrix in the background field formalism and the conven-
tional one has been proven in [123].

As a result of the gauge transformations with respect to the background gauge field the
derived Green functions fulfill Ward identities following from the classical Lagrangian. This
is especially important for applications dealing with off-shell Green functions. Also, some
calculations become greatly simplified in the background formalism. For example, due to the
Ward identities, the renormalization constant linking the bare and renormalized background
gauge field is given by the inverse of that of the coupling constant, Z; = Z 2 which allows
to calculate the 3 function from the two-point Green functions with background gauge fields
on the external legs’.

1.3 Lagrangian of the SM

The Lagrangian of the SM is based on the local SU(3)c ® SU(2), ® U(1)y symmetry, where
the first factor describes the strong interactions of the fundamental particles, and the last two
factors unify the electromagnetic and weak interactions. The spectrum of particles includes
three generations of quarks and leptons, gauge bosons and one Higgs doublet.

Classical Lagrangian of the SM

The fermions incorporated in the SM together with their quantum number assignments
are displayed in table 1.1. All of them are expressed in terms of left-handed Weyl spinors
in the weak weak eigenstates basis indicated by the attached prime. More precisely, we
define lepton and quark SU(2), doublets to have lower spinor index while lepton and quark
SU(2)r, singlets, denoted by a superscript ¢, have upper spinor index. The corresponding
right-handed singlets can be obtained by complex conjugation, fi** = fi¢ with f = e, u,d.
The index I = 1,2, 3 labels generations, and upper indices i, j, ..., when present, will label
components of SU(2)-doublets. The electric charge Qe listed in the last column defines
the weak hypercharge Y through Qem = 72 + Y, where 73 is the third component of the
weak isospin.

For each factor of the SM gauge group we have as many gauge bosons as generators: for
SU(3)c a gluon octet denoted by G, for SU(2),, a weak isospin gauge boson triplet denoted
by W, and for the abelian factor U(1)y a weak hypercharge gauge boson denoted by B,,.

The classical Lagrangian of the SM invariant under local SU(3)c®SU(2),®@U(1)y gauge
transformations consists of several parts,

'CSM = ‘Cgauge + /Cmatter + 'CYukawa + 'CHiggs (130)

which will be discussed in some detail in what follows.
The Lagrangian containing the kinetic and self-interaction terms for all gauge bosons

"In fact, we have used this formalism to calculate the renormalization constants of QCD in the MS scheme
up to two-loops, which are necessary for the calculation presented in chap. 4. Our findings agree with [84].
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Matter and gauge fields SUB)e | SUR2)L | Uy | Qem

v 0
Leptons l, = < I) 1 2 -3 ( >
e -1
el 1 1 1 |
u 2
Quarks ¢ = (d’l> 3 2 z <_3 l)
I 3
¥ I N
c 3 1 1
! 3 1 1 L
+ 1
Higgs boson = ¢ 1 2 2
¢’ 0
Ga 3 1 0 0
G b
auge bosons wo L 3 0 (0.+1)
B, 1 1 0 0

Table 1.1: Particle spectrum of the SM.

expressed in terms of the field strength tensors
G, = 0.Gy — 0,G), — gsfachZG,C,
We, = 0,Ws — 0,W; — gaeae W Wy

B,, = 8,B, — 8,B, (1.31)
is given by
1 a apy 1 a Y{rapy 1 v
,Cgauge = _ZG“VG — EW/WW — ZB'LWB (132)

Here, fup. and €4 are the structure constants of SU(3)¢ and SU(2), respectively. Further-
more, the gauge couplings corresponding to the three factors of the SM gauge group have
been denoted by gs, g2 and gy, respectively.

Kinetic terms for fermions and their couplings to gauge bosons are contained in
Ematter - Zl;ra-'u (aﬂ + iQQWSTG + lnguY) ll[
+iefa" (0, +ig1 B,Y) e}

+igfo" (9, +ig,GAT" +igoaWiT" +igi B.Y ) q
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+ ot (8, + ig:GoT* + igi B,Y ) uff
+idfo" (O +igs Gy T + i1 B,Y ) df (1.33)

with 7% and 7% being the generators of SU(3)¢ and SU(2), in the 3 and 2 representations,
respectively, 7% = —(T%)T the generator of SU(3)¢ in the 3 representation, and Y the
generator of U(1)y.

Mass terms for fermions are forbidden by gauge invariance, and therefore the Higgs field
given in table 1.1 is introduced. Breaking the electroweak gauge symmetry of the SM down
to electromagnetism with a non-vanishing vacuum expectation value (VEV) for the Higgs
field, the fermions will aquire their masses. The couplings of the latter to the Higgs doublet
are described by®

Lyvaawa = =Y (IF¢")es — Y (fF ~)u'f — Y3 (¢F ¢*)ds + h.c. (1.34)

where we defined ¢ = io2¢*. The U(1)y quantum number assignment of the Higgs doublet
follows from the requirement that Lyyxawa 1S gauge invariant. In order to pass from the
weak to the mass eigenstates basis we diagonalize the Yukawa couplings by the following
redefinition of fermion fields with unitary matrices,

1 =[Sy

17 =[S"1] 05, et =[P e
¢ = 15""145, uf* = [SURY)us
qf = [SP 11,47, df* = [SPrY),d5 (1.35)

Since there are no mass terms for neutrinos in (1.34), we are free to choose SY = SFt. The
consequence of the operation (1.35) is the appearance of the CKM mixing matrix

K = sUrighe (1.36)

in the charged weak current interactions of quarks, which is the only source of flavor and
CP violation in the SM [36,37].

The gauge-kinetic term for the weak isospin Higgs doublet, its interactions with the gauge
bosons and its self-interactions are contained in

‘CHiggs = ¢T (8u _ZQQWS 4 — ZngMY> (8“ + igW“”Ta + ZngMY) ¢ — V(¢) (137)
where

V(¢) = —1i?¢T + A(6¢) (1.38)

is the potential for the Higgs doublet. In order for this potential to be bounded from below
A > 0 has to hold. Furthermore, the parameter p? has to be real.

The potential for the Higgs doublet has for u? < 0 an absolute minimum at ¢ = 0, but
for 42 > 0 it has an absolute minimum at ¢'¢ = p?/(2)\) which is clearly invariant under

8Note that for Grassmann numbers complex conjugation is defined by (¢x---&)* = £*---x*¥*, ie.
complex conjugation is equivalent to hermitian conjugation.
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SU(2), @ U(1)y transformations. In the latter case a VEV for the neutral component of the
Higgs doublet,

¢= % (v + h° +iGP) (1.39)

where v = /u2/\, breaks electroweak symmetry down to electromagnetism. Here, h° is the
physical Higgs field, and G° as well as G are the unphysical Goldstone bosons corresponding
to the broken generators of SU(2), @ U(1)y.

Particle Mass Spectrum

The physical gauge boson fields are obtained via®

1 A Cw Sw B
W= —_W!xiw? = " 1.40
AR TUAE (Z) (v <W3> (1.40)
where
Sy = sin by = __5 cw = cosby =1 — sy (1.41)

Va+a

and Oy is the weak mixing angle. The masses of the Z and W bosons resulting from (1.37)
read

1 1
M3 = 1 (g7 + g3)v°, Mg, = 1 g*v? (1.42)

from which follows the tree-level relation My, = ¢y Mz. The photon and gluons remain of
course massless. The electromagnetic coupling is given by

€= gicw = G2 Sw (1.43)

Furthermore, the relations given in (1.42) fix the value of the parameter v.
The physical leptons and quarks are described by the Dirac spinors

ll 12 1 2
R ) R ) R ()
0 e ug T

The neutrinos remain massless, M,, = 0, and the electron-type lepton, up-type and down-
type quark masses read

v
My = —=SErYSELT = diag(me,, me,, M. )
\/5 1 2 3
v
My = —=SYRY; SULT = diag(my,,, My, Ma,)
\/5 1 2 3
MD = LSDRYDSDLT = diag(mdl,mdQ,mdS) (145)

V2

The last physical particle is the Higgs boson h°? with mass M7, = 2\v”.

9The electric charge assignments can be easily seen by observing that Wﬁc and W are eigenstates of the
charge operator [7%],, = —i€3? in the adjoint representation with eigenvalues +1 and 0, respectively.
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Quantization of the SM

In order to quantizise the classical SM Lagrangian given in (1.30) one has to add a gauge
fixing term and the Faddeev-Popov Lagrangian. We choose a gauge fixing term in the
so-called R, gauge,

1 1 1 1
Lop = —s—FaFa— ——FzF; — —FFyy — =—F&F 1.46
GF 2€A ALA 25Z zZ45Z fW wEtw 260 G- G ( )
where
Fy=0"A,, Fy =0"Z, — Mz&2G°
Fyy = "Wy FiMwéwG™, Fé& = "G5, (1.47)

This ensures that all mixed gauge boson and Goldstone boson propagators present in (1.30)
cancel. The loop calculations presented in later chapters will be performed in a general Ry
gauge in which also the non-physical Goldstone bosons G* and G with masses Mg, = {; M7
and M2, = v/, M7, respectively, are present'?. Since physical observables are independent
of the gauge parameters, this serves as a non-trivial check of our calculations.

The next step is the introduction of the Faddeev-Popov Lagrangian. For the calculations
presented in later chapters we only need the interactions of ghost fields with gluons,

LD = —uk0" (0,6 + gof* G ug; (1.48)

The Faddeev-Popov Lagrangian relevant for the quantization of the electroweak sector of
the SM is irrelevant for our purposes and thus we will not display it here (cf. [105]).

1.4 Background Field Formalism

In the background field formulation of the SM we split the fermions, the gauge bosons and the
Higgs doublet contained in the classical Lagrangian in the (1.30) in quantum and background
fields. In order to avoid tree-level mixing between gauge bosons and Goldstone bosons, and
also between the photon and the Z boson, we choose as gauge fixing condition [124]

1

Loy = _QTGDZb e
o [0 H i@y o] - o [Pt ping@ira) @) (149)
2¢ |7 2¢ 7

The second term within the square brackets expresses the R¢ gauge condition. The interac-
tions contained in this gauge fixing Lagrangian relevant for our purposes are given by!!

10The physical gauge, in which the Goldstone bosons decouple from the theory, is obtained by sending the

gauge parameters to infinity.
"Note that only the background Higgs doublet will aquire a non-vanishing VEV when breaking the
electroweak symmetry down to electromagnetism.



22 1. The Standard Model

1 1 1
a QW Qv Ya %1%
—2§GG”8 0 Gy+—2§Zu8 »Z, + %

1
— §£M§G°G° — EMY,GTGT + Mz Z,0"G°

1
Lar D A 0M0" A, + EW:ﬁ“a”W;

1 ~
— My [W04G" +he] = g @ CLIELG"
G
e | L @WAWE £ My WG 4 hee.| [ Ar 4 Y n (1.50)
f 1% 1 Sy

Thus follows that in the background field formulation of the SM there is no W*G¥ A coupling.

The Faddeev-Popov Lagrangian involving the the interactions of ghost fields with quan-
tum and background gluons reads

‘CI(;QSD _ _,ELGDZIJ (a#abc + gsfbcd[Gd/L + édﬂ]) ug (151)

The one following from the electroweak part of the gauge fixing condition is irrelevant for
our purposes and thus we will not display it here (cf. [124]).



Chapter 2

The Minimal Supersymmetric
Extension of the Standard Model

In this chapter we present the MSSM, a phenomenologically viable supersymmetric exten-
tion of the SM with minimal particle content consistent with observed SM particles and
which does not violate SM conservation laws [31-33,125-127]. To construct supersymmet-
ric Lagrangians we will use the elegant superfield formalism [128,129]. Again we express
the Lagrangian in terms of two-component Weyl spinors, since they are contained in chiral
and gauge superfields which are the fundamental building blocks of supersymmetric models.
We will break supersymmetry explicitly by adding additional soft supersymmetry-breaking
terms and study the physical particle spectrum after electroweak symmetry breaking in
terms of four-component spinors. A scenario with a heavy decoupled gluino, which finds it
application in chap. 4, is also introduced.

2.1 Supersymmetric Lagrangians

Supersymmetry is a symmetry that turns a bosonic state into a fermionic state, and vice
versa. Therefore the generators of the supersymmetry transformation must transform in the
spinor representation of the Lorentz group. These new fermionic generators form together
with the four momentum P, and the generators of the Lorentz transformations M, a graded
Lie algebra which features in addition to commutators also anticommutators in their defining
relations.

The simplest supersymmetry algebra involves only one Weyl spinor generator @), and
is composed out of the Poincaré algebra supplemented with the following commutators and
anticommutators,

[Qa, P = [Qa, Pu] = 0

(Qa, M™] = i0""Qp, @ M) = io",Q
{Qa; Qﬁ'} = {Qda Qﬂ} =0, {Qaa Qﬁ} = quaﬁpﬂ (21)

The irreducible representations of a supersymmetric field theory can be conveniently ob-
tained working in real superspace which elements are composed out of four bosonic and four
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fermionic coordinates, {x,,, 6., 04}, where x,, is the coordinate in four-dimensional Minkowski
space and 60, a two-component Weyl spinor. The generators acting on so-called superfields
in real superspace and fulfilling (2.1) are found to be [129]!

P, =1id,, Qo = —i0, + (0"0),0,, Qs = 105 — (05140, (2.2)

where 9, = 9/90% and 9, = 0/06%. For our purposes it is sufficient to consider only
superfields transforming as Lorentz scalars, which in full generality can be written as

F(2,0,0) = f(x) + 0¢(x) + Ox(x) + (00) M (x) + (A0)N (x)
+ (60 9V, (x) + (O9)FA(x) + (B)0n(x) + 5(66)(8)D(x) (2.3)

The so-called component fields f, M, N, D are complex scalars fields, ¢, n and ¥, A left-handed
and right-handed Weyl spinors fields, respectively, and V), is a complex vector field. This
superfield is however reducible. To find irreducible superfields we define covariant derivatives,

Dy = 0y — i(0"0),0,, D4 = —04 +i(05") 40, (2.4)
which anticommute with the generators @, and Q4. Hence we can impose further covariant
conditions, i.e. invariant under supersymmetry transformations, on the general superfield
resulting chiral superfields, D4 F = 0, antichiral superfields, D,F = 0, and vector superfields,
F = FT. It turns out that these superfields are irreducible.

Chiral Superfields

Let us consider from the very beginning a non-abelian supersymmetric gauge theory. The
coupling constant of the non-abelian gauge group, here again assumed to be SU(N), will
be denoted by g, the generators by T* with the index a running over the dimension of the
adjoint representation, and the structure constants by fa%.

An important consequence of the theorems of [130,131] is the fact that the generators
T* have to commute with the supersymmetry generators,

7%, Qa) = [T%, Qs =0 (2.5)
Therefore all members of chiral and vector superfields have to have to reside in the same

representation of the gauge group.

Chiral superfields are characterized by the condition D;® = 0, where in our case ® =
(@1,...,®5)T is in the fundamental representation. For simplicity we will again consider
only one chiral superfield. From the defining condition it follows that the most general form
of this chiral superfield is given by

O(y,0) = ¢y) + V200 (y) + (00)F (y) (2.6)
where y* = z# — i(fo"0). Re-expressing this in terms of z* results in

d(x,0,0) = p(x) + V200 (x) + (00)F (x)

— i(008) 0,0(x) + = (06) B, ()08 — (66)(80) D,0"6(x) (2.7)

2
+
V2

!The irreducible representations can be found considering only the sub-algebra of (2.1) consisting out of

the generators P, and Q.
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Thus the chiral superfield contains a complex scalar field ¢(x), a left-handed Weyl spinor field
¥ (z) and a complex scalar field F(z). Antichiral superfields characterized by the condition
D,®" are simply obtained by hermitian conjugation of the above given chiral superfield as
the notation suggests.

Acting with a infinitesimal supersymmetric transformation ie@ + i€Q, where € is a con-
stant Weyl spinor parameter, on a chiral superfield, we find the supersymmetry transforma-
tions of the component fields,

05 = V2e)
Os5ta = V2[eaF — i(0"€) 00,0
o5 F = iv/20,, (Yo" (2.8)

Hence we find that fermions transform into bosons, and vice versa.

Vector Superfields

Vector superfields are characterized by the condition V = V. In our case this vector field is
matrix-valued, V = VT and its most general form in terms of component fields is given
by

V(z,0,0) =C(z) + {2’9)((1’) + %(9«9)]\/[(35) + h.c} + (0c"9)V,

4 {z’(%)@ {)\(:r) _ %a“@uqb(x)] + h.c} + %(99)(99) [D(x) _ %GMGMC(x) (2.9)

where the last two terms are chosen such that the component fields A\(z) and D(z) will
be invariant under abelian supersymmetric gauge transformations. Applying a infinitesimal
supersymmetric transformation gives obviously lengthier expressions for the transformations
of the component fields than for the chiral superfield. We will only quote the important result

6sD = 0, (ed" X\ + Ao"€) (2.10)
Non-abelian supersymmetric gauge transformations for vector superfields are defined

through

29V

, 9 t .
e N ngV —e 2igA 629V621g/\ (211)

where A = A“T® with A® being chiral superfields. Expanding this in orders of the coupling
constant g results in

V' =V i(A" = A™) — gf VP (A° — A —iAPAT) L (2.12)

This expansion shows that we can adjust the chiral superfield A® to obtain the vector super-
field in the so-called Wess-Zumino gauge,

V(x,0,0) = (05"0)V,(x) +i(00)0X(x) — i(00)0A(z) + %(99)(90)1}(:5) (2.13)
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This vector superfield contains a real vector field V#(x), a left-handed Weyl spinor field A*(xz)
and a real scalar field D*(x). However, the vector superfield in the Wess-Zumino gauge is
not invariant under supersymmetry transformations in the sense, that the M and the y
components are reintroduced.

Performing a supersymmetric gauge transformation on this vector superfield with the
component fields of A fulfilling ¥* = F* = 0 and ¢* being real and infinitesimally small we
obtain

Vit = Vi + 20,0 — 29 fareV, 0"
X = Ao = 29 fabe Moo
D' = D% — 2q fape D" (2.14)

Therefore, the vector component field transforms under a usual non-abelian gauge transfor-
mation, and the field strength tensor

Fi, =0,V =0,V — gfancVIV (2.15)

under the adjoint representation.

The supersymmetric field strength tensor of the non-abelian vector superfield V' is defined
through

Wy = —&(DD)e*V DoV = —H(DD)D,V — 1g(DD)[D.V, V] (2.16)

The last equality is only valid if V' is in the Wess-Zumino gauge which we will assume from
now on. It is important to note that under a supersymmetric gauge transformation

W, — W/ = e 297, g7 (2.17)

which is also valid for general vector superfields V. In terms of component fields W, = W2 T
can be written as

Wa(y,0,0) = iXg(y) — 0a D" (y) +i(0™0)a s, (y) + (00) (0" DX (y))a (2.18)

with the gauge-covariant derivative D7 = 0,0% — g f‘ll’CVlf7 .

Constructing Supersymmetric Lagrangians
First of all we have to define a gauge transformation for the chiral superfields,
P — O = 2P (2.19)

where A is the matrix-valued chiral superfield which was already introduced in (2.11). Indeed,
since @’ should be a chiral superfield the A* have to also to be chiral superfields.

To construct supersymmetric Lagrangians one only has to take the term of a superfield
or products thereof which contains the component field of highest mass dimension®. The

2We note that chiral and vector superfields have mass dimension 1 and 0, respectively, while those of 8

is f%. Therefore both the scalar field ¢ and the gauge boson V7 have mass dimension 1, the fermion fields

1) and A\ have mass dimension %, and the auxiliary fields F' and D® have mass dimension 2.



2.1 Supersymmetric Lagrangians 27

component fields with this property are called the highest components and are identified
with the F; and D® components in the case of a single chiral or vector superfield. The
resulting Lagrangian density then transforms into a total derivative under a supersymmetry
transformation, see e.g. (2.8) and (2.10), which leaves the corresponding action invariant.

A gauge-invariant supersymmetric Lagrangian for chiral superfields can now be written
down,

Laira = DTV D[, = (Dughi)* (D" ¢5) + 106" Dyt
+FUF A+ (V2900 T\ + he| + (o1 Th0,) D" (2:20)
with the covariant derivatives given by
Dybi = 0ui +igV,[ T 05, Dypi = Opibi + gV, Tib; (2.21)

A gauge-invariant supersymmetric Lagrangian for vector superfields reads

1
£vector = §TI' [Wa Wa]

+hec = ——F“,/Fa”” + NG D, A + D“D“ (2.22)
00 4" 2

9y4’x
The last term we have to specify is the so-called superpotential. Requiring renormaliz-

ability of the theory its most general form reads

1 1
W(®) = §mij(1>iq)j + éyz‘jkq)i(qu)k
1
= W(¢) + W; |V204; + (00)F;| — 5 Wi (00):0; (2.23)
where we defined
_IW(9) W (k)
Wi = 907 Wij = 96,00 (2.24)

The mass parameters m;; and the Yukawawa couplings y;;; appearing in the superpotential
are totally symmetric under the interchange of their indices. Further constraints on these
parameters follow from gauge-invariance. The Lagrangian build up from the superpotential
in terms of component fields reads
1
Epot = W((I)) B h.c. = —5 ijl/Jﬂ/Jj + W, F; 4+ h.c. (2.25)
To summarize, the most general renormalizable supersymmetric and gauge-invariant La-
grangian for non-abelian gauge groups is given by

1 _
Lsusy = ZF.EVFGIW + NG DA + (D) (D" i) + ihio* Db
[1 PW ow

23@(9@%% (a@) i ”“3} T

+ [iVag(@i Ty )N + e + (61 T30, D" + %D“D“ (2.26)
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The auxiliary fields, which appear naturally in the superfield formalism, guarantee that
we have a supersymmetric algebra which closes off-shell. We can eliminate them to obtain
the on-shell Lagrangian by their purely algebraic equations of motion,

aW * * a
b= — (3@) 7 D* = _9(@sz¢j) (2.27)

The complete scalar potential of this theory is given by

* 1 a na a” ' a” 1 2 pxa 2
Vicalar Fle+2D D (a@) ((9(;51-) —|—2g (qﬁllwgbj) >0 (2.28)

and hence is always positive semi-definit. The two terms appearing in this scalar potential
are called F- and D-terms.

An important consequence of the supersymmetric Lagrangian given in (2.26) is that the
component fields belonging to a chiral or vector superfield are degenerate in mass. Therefore
supersymmetry cannot be exact in nature and thus has to be broken either spontaneously or
explicitly. Breaking supersymmetric spontaneously is of course from a theoretical point of
view more appealing. To this end we first recall that supersymmetry is spontaneously broken
if, and only if, the scalar potential given in (2.28) is unequal to zero. Thus non-vanishing
F- and D-terms signal spontaneous supersymmetry-breaking. However, in models which do
lead to non-vanishing F- or D-terms [132,133] problems arise from so-called “mass sum rules”
which hold in any theory with spontaneously broken supersymmetry [134]. Nature requires a
large mass difference between particles and their superpartners in order to make them invis-
ible in present experiments, and the “mass sum rules” valid within a spontaneously broken
supersymmetric SM cannot be arranged to fulfill this boundary condition. Furthermore, we
have a massless Goldstone fermion in the particle spectrum after spontaneously breaking the
global supersymmetry.

To summarize, breaking global supersymmetry spontaneously runs into phenomenological
difficulties. The only way out is an explicit breaking of global supersymmetry. This explicit
breaking should however solve the naturalness problem, i.e. stabilize the Higgs boson mass
and thus the weak scale without fine-tuning®. Such terms which break supersymmetry
explicitely and generate no quadratic divergences are called “soft-breaking” terms.

Returning to our SU(N) supersymmetric gauge theory with one chiral superfield @,

the most general renormalizable soft supersymmetric-breaking Lagrangian can be written
as [126, 136]

1 *
‘Csoft = 5 (M)\/\a)\a + hC) — m?j(]ﬁl(lﬁj

1 1 1
— §bz’j¢i¢j + Eaijk¢i¢j¢k + éciijSz‘ ¢jdr + h.c. (2.29)

3Fermion masses behave natural in the sense that they do not receive large quantum corrections if their
tree-level masses are small, owing to an approximate chiral symmetry which gets restored in the limit
where the fermion masses are set to zero. For scalar masses this is however completely different. They
behave unnatural, since even in the case when its tree-level mass is set to zero nothing protects this mass
from receiving large, quadratically divergent, quantum corrections. In supersymmetric theories, however,
cancellation of quadratic divergences occurs as a consequence of the non-renormalization theorem [135].



2.2 Lagrangian of the MSSM 29

which consists of gaugino and scalar mass terms and trilinear scalar interactions?. Fur-

ther constraints on the soft parameters come from gauge-invariance. We have not included
soft mass terms for chiral superfield fermions because these could always be removed by a
redefinition of the superpotential parameters and the parameters m?j and c;j.

2.2 Lagrangian of the MSSM

Our starting point for the construction of the MSSM Lagrangian is (2.26) taking into account
(2.27). But let us first give a precise definition of the MSSM [137]:

e Minimal particle content consistent with observed SM particles and supersymmetry.
e SU3)c ®SU(2), @ U(1)y gauge invariance.
e Most general soft (dim < 4) supersymmetric breaking terms.

For every field of the SM one has to postulate a superpartner with exactly the same
quantum numbers but with different spin. More specifically, the quarks and leptons are
promoted to chiral superfields adding scalar quarks and leptons to the spectrum. The scalar
superpartners of leptons and quarks are called sleptons and squarks, respectively. For dis-
tinction these scalar partners are dressed with a tilde. The superscript ¢ denotes here charge
conjugated scalars being singlets under SU(2) .

The gauge bosons are promoted to vector superfields by adding the corresponding gaug-

inos to the spectrum. Each SM gauge boson has to get a spin % supersymmetric partner:
gluinos A¢; belonging to the gluons G, winos A, belonging to the W bosons, and the bino

Ap belonging to the B-boson.

Finally, the Higgs boson is also promoted to a chiral superfield with a higgsino as super-
partner. However, in the MSSM we need at least two weak isospin Higgs doublets,

h! h}
he = [} hy = [ 2 2.30
1 (h?) ’ 2 <hg) (2.30)

with U(1)y quantum numbers —% and 1 5, respectively. This is because the superpotential

must not contain complex conjugated Scalar fields, as can be seen from (2.23), and therefore

we need Yukawa couplings of type II in order to give all SM fermions masses. Furthermore

the two Higgs doublets must have opposite weak hypercharge. Only in this case cancellation
1

of the triangle anomalies with higgsinos, the spin 3 superpartners of the Higgs bosons, in

the loops occurs. Again, higgsinos will be dressed with a tilde.

Having the full particle content of the MSSM by hand, we can write down the most general
renormalizable superpotential respecting SU(3)c ® SU(2), ® U(1)y gauge invariance,

WMSSM — Meljhl h] + YJIEZ] hz l/j ~lc YJIEZ] th ~/Ij f}: + YJIEU h”th~ljdlc (231)

Here, we tacitly imposed a multiplicatively defined quantum number called R-parity, defined
as

Pp = (—1)3B-1)+2s (2.32)

4Higher powers of ¢ are forbidden since they generate quadratic divergences at the two-loop level [136].
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where s is the spin, B the baryon and L the lepton number of the MSSM particle. The
terms which are allowed by gauge invariance but forbidden by R-parity conservation would
either violate baryon or lepton number conservation, and thus can easily lead to unacceptable
physical consequences, e.g. the proton could become unstable. Thus our superpotential is
the most general version respecting SM conservation laws. An immediate consequence of
this additional symmetry is the fact that the lightest supersymmetric particle is necessarily
stable.

To obtain the supersymmetric Lagrangian of the MSSM we only have to plug this super-
potential into the Lagrangian given in (2.26). It is interesting to observe that this Lagrangian
has one parameter less than the SM. The coupling A defined in (1.38) is expressed in terms
of gauge couplings as can be seen in (2.33) due to supersymmetry invariance. However,
supersymmetry-breaking will introduce lots of new parameters.

Besides the problem that all particles and their corresponding superpartners have equal
masses, we have another problem related with electroweak symmetry-breaking. The mini-
mum of the scalar Higgs potential

Loy 1
Viriges = [l* (W11 + hlha) + S g3 Dy * + 2 (of + 93) (hiha — hihn)? (2:33)

sits necessarily at (h') = (h?) = 0 corresponding to a vacuum with unbroken electroweak
symmetry. This is obvious since the scalar potential of a supersymmetric Lagrangian is
always positive semi-definit. Therefore our MSSM Lagrangian specified so far cannot ac-
commodate a vacuum with spontaneously broken electroweak symmetry and thus breaking
supersymmetry is necessarily related with electroweak symmetry-breaking.

Specializing to the case of the MSSM with R-parity conservation we can write down the
most general soft-breaking Lagrangian®

1
Lot = 5 {MaAZNEG + Mo NSy + MiAgAg +hee.} —m2 hihy —m32 hih
— (M3 0T T — [(ME) 178y — [M3)1sd) dy — [ME)yrag iy — [M3]didy

Due to SU(2), gauge invariance both components of the slepton and the squark doublets
must have the same mass matrices M% and M%, respectively.

Adding this soft breaking Lagrangian to the supersymmetric part we get the total La-
grangian of the MSSM with softly broken supersymmetry, SM gauge group and R-parity
invariance, Lyssm = Lsusy + Lsofe- This Lagrangian defines a theory with an huge parameter
space but not all of them are physical. In order to eliminate unnecessary degrees of freedom
we redefine fields and parameters such, that the parameter b is real and positive, and fur-
thermore, the Yukawa couplings are diagonal. The latter can be achieved if we change to
the so-called super-CKM basis of fields, in which we redefine the leptons and quarks accord-
ing to (1.35) and perform the same redefinitions for sleptons and squarks. Having done all
redefinitions we still have 105 new parameters in addition to the ones of the SM. However,

®Here, we follow the standard approach and neglect the c¢;j,-terms, which is consistent with renormaliza-
tion. Once setting them equal to zero they are not generated through renormalization group running to all
orders in perturbation theory [137].
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not all of these parameters are arbitrary but quite a number of them are experimentally
constraint. The inclusion of the soft-breaking Lagrangian shows that the sparticles can now
easily be heavy and therefore out of reach of present experiments. Furthermore, the Higgs
potential is changed and electroweak symmetry-breaking can be arranged.

2.3 Electroweak Symmetry-Breaking

The minimum of the Higgs potential (2.33) including terms from (2.34) with pure Higgs field
content should break electroweak symmetry down to electromagnetism. To have an unbroken
U(1)em at the minimum of the potential only the neutral components of the Higgs doublets
have to get vacuum expectation values. Performing a SU(2), gauge transformation we can
take h? = 0 at the minimum without loss of generality. Then the minimization condition

aiHiggs !
=0 2.35
oh2 |y (2.35)

requires that also hi = 0 at the minimum. So we are left with the simpler potential
1
Vitiggs = Mi [ + Mi,|13]° = [bhahs +hoe.] + 2 (g7 + g3)([hs]” — [m[)? (2.36)

where M; = mj + |u|? for i = 1,2. Since b is real and positive hih3 also has to be real
and positive in order to have a minimum which spontaneously breaks electroweak symmetry.
Thus (hi) and (h3) must have opposite phases. By a U(1)y gauge transformation we can
make them both real and positive without loss of generality,

U1 v 2 (%) v

(hbzﬁ:ﬁcosﬁ7 <h2>:ﬁ:\/§

Hence we have no spontaneously broken CP symmetry in the Higgs sector.

sin 3 (2.37)

Expanding the Higgs fields around their vacuum expectation values,

B %(vl + 0y + i) B ©3
h/l — _ ) h/2 — 1 0 ) (238)
1 E(W‘f’% + i)

we see that the Higgs potential contains terms linear in fields,

Vitiges O 1107 + 207, (2.39)
where
V21 1
t1,2 = V1,2 Mfi,z — ba + é(Q% + g%)(UiQ — Ug,l) (240)

are the tree-level tadpoles. At the correct minimum of the Higgs potential these tadpoles
vanish. This follows from the minimization conditions for the neutral Higgs fields

0 Higgs 0 Higgs !
Vitiges _ OVitiges 1 2.41
Oh! on (2.41)
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taken at hl = v, /v/2 and h2 = vy/V/2.

In addition to the vanishing of the tadpoles we have two further constraints on the
parameters of the Higgs potential. For arbitrarily large values of h} and h2 the Higgs potential
must be bounded from below. This is always satisfied for |h}| # |h2| since the |h}|* and |h3]*
terms have positive coefficients. But for |hl| = |h3| the last term in the potential (2.36)
vanishes. Thus

M7 + M7, > 2b (2.42)

must hold to guarantee the bound in that case. A minimum of the potential (2.36) exists
only if the Hessian

M2 b
P/I/iggs hl=h3=0 — ( _bl M}% ) (2.43)
2

has at least one negative eigenvalue. Together with (2.42) this can only be satisfied if the
Hessian is indefinite, which gives

Mp M, < b (2.44)

It is customary to replace the parameters v; and v by v and (3, as we did in equation
(2.37). The parameter v is again fixed by the requirement that it should give the proper
W-and Z-boson masses, whereas the parameter (3 is at first look only constrained to satisfy
0<p<m/2

A proper minimization of the scalar potential of the MSSM requires to take into account
all scalar fields and not truncate to the neutral Higgs bosons. It is possible, and does occur
in certain regions of the parameterspace of the MSSM, that there exist minima which do not
only break the electroweak symmetry but also SU(3)¢ and/or U(1)en [138-140].

From (2.40) we obtain

M 2 (btan B — M} ) =

= — M} 2.4
2= o323 bcot 3 ) (2.45)

2

cos 23 (
which give an additional constraint on the supersymmetry-breaking parameters. Note that
the parameter b is proportional to the sum M ,fl + M,i as can be seen in the first equation
given in (2.53). In order to stabilize the weak scale all soft parameters appearing in this
equation should be of the same order of magnitude as the weak scale My or at most in
the TeV range [141]. Otherwise we have to fine-tune all soft parameters. This in turn
implies that supersymmetry breaking should occur at the weak scale and that most likely
all supersymmetric particles have masses in that range. Therefore supersymmetric particles
should be accessible in future experiments. Of course the parameter u appearing in the
superpotential has also to be of the order of the weak scale, a circumstance which is known
as the p-problem [31].

2.4 Particle Mass Spectrum

The gauge bosons are exactly the same as in the SM. One only has to replace v? in the Z
and TV boson masses given in (1.42) by v? + v3.
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Leptons and Quarks

The lepton and quark mass eigenstates are described by four-component Dirac spinors,

ll l2 1 2
) () ) ae(D) e
0 €5 ug dg

The neutrinos remain massless, M, = 0, and the electron-type lepton, up-type and down-
type quark masses read

_ U qE ELt _ Y2 Urt _ Y1 opg Dt
Mp = —=SPrYpSPLt My = —=SUrY,SULtT Mp = —SPrY)S 2.47
RN g veRT Y N b (247)

The only difference compared to (1.45) is that the up-squarks obtain there masses from the
vacuum expectation value of the second Higgs doublet.

Higgs Bosons

When the electroweak symmetry is broken, the Higgs interaction eigenstates h; and hy mix
to give charged Higgs mass eigenstates H*, G* and neutral Higgs mass eigenstates H°, h°,
AY and G°. The mass terms of the Higgs bosons are

1 0 oy a2 (P R L N 2
_§ (@17902)M¢>0 <,00 +(0-170-2)M0‘0 50 _(@17902)M¢i 90+ (2-48)
2 2 2
where
btan 3 + & b

M20: V1 .

14 b beot 3+ 2

e btanﬁth%coszﬁ—l—f]—ll —b — MZ%sin (3 cos 3

- —b—MZsinfcos3  beotf+ MZsin®?f 4 2
A2 — btanﬁ+MV2Vsin2ﬁ+% b+ M, sin 3 cos 3 2.49)
v b+ MZ, sin 3 cos 8 bcotﬁ+M3VCOSQﬁ+i—z (2

After setting the tadpoles equal to zero we diagonalize these mass matrices to obtain CP-odd
neutral Higgs mass eigenstates

AN [ sinf o cosBY (@) "
(GO> N (— cos sinﬁ> (w%) = Xu (908) (2:50)

and CP-even neutral Higgs mass eigenstates

(HOO> _ ( CO'SO‘ sina> <O’§> _ Xt (ag) (2.51)
h —sina cosa/) \oy o

and charged Higgs mass eigenstates

()5 ()
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The eigenvalues are the tree-level masses

2b
Mo = My, + M, = sm2g’ mgo =0,

1
Mo po = 5 [mio + M2+ \/(mz10 + M3)? — 4m?, M7 cos? 23

mie =mio + M,  mii=0 (2.53)
Obviously, these tree-level masses fulfill
mg+ 2 Mw, mgo Z Mz, mpo S MZ (254)

However, these are all tree-level relations and, especially the last relation gets large contri-
butions from loop corrections [142,143].

The mixing angle « defined in (2.51) fulfills

. 2 2 2 2
sin2a Mmoo+ myo cos2a  myo — My 5 55
; -2 2 -T2 2 (2.55)
sin 23 M0 — Mio cos 23 M0 — Mio

It is shown in appendix A of [144] that —7/2 < a < 0.

Charginos, Neutralinos and Gluinos

The charged higgsinos ) and 2, and the winos \jj;, and )y, where Af, = 7 My F iy,
combine to form two Dirac fermions X7 and x4, called charginos. In the basis (¢7)T =
(—i\y, b)) and ()T = (i), h?) the chargino mass terms in the MSSM Lagrangian are

—(7) "My +he (2.56)
where the chargino mass matrix is

M, = ( M, V2My, sinﬁ)

X

VI w0 5 ; (2.57)

This mass matrix can be diagonalized by two unitary 2 x 2 matrices U and V defined by
UM« V= diag(m,+,m,+) (2.58)
The chargino mass eigenstates are given by
kT
X; = <l_) , where s =Vl k7 = Uiy (2.59)
K

The neutral higgsinos i} and A3, the wino A}, and the bino Az mix to form four Majorana
fermions x?, i = 1,...,4, called neutralinos. In the basis (¢°)T = (—i\p, —iA},, hi, h3) the
neutralino mass terms in the MSSM Lagrangian are

—%WO)TMXOW he. (2.60)
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where the neutralino mass matrix is

M, 0 —Mygsy cos 3 Mygsy sin 8
0 M- Mzcyw cos —Mzcw sin
Mo = 2 ZCw €os 3 zCw sin 3 (2.61)
—Mzsw cos 3 Mzcy cos 3 0 —
MZsW sinﬁ —MZcW Sinﬂ — K 0
This mass matrix can be diagonalized by a unitary 4 x 4 matrix /N such that
N*MoN' = diag(m,, ..., m,q) (2.62)
The neutralino mass eigenstates are given by
KO
XD = (8) ,  where &} = Ny1] (2.63)
ki

The gluinos mass eigenstates form Majorana spinors

—i\%,
o _ [ 2.64
! ( X ) .

with masses Mz = Ms.

Sleptons and Squarks
In the super-CKM basis of fields we define

R 5 B ZQ B ~1 R 52
N =1, E—() U—(?), D—(?) (2.65)
ge* 71" Jc*

where (%2, &%, G2, 4 and d°* are three-component objects in flavor space. Then the slepton
and squark mass terms in the MSSM Lagrangian read

—~NtTM34N — EPMZE — U M2U — D'MED (2.66)

Adopting the notation of [137] the mass matrices are®

1
M3, = [ME]rL + M copl

2
M2 [ME|Lr + Mg + 5(MZ — 2M§,) ca51 [M2]Lr — Mppts
2 _
[ME]} g — Mep" tg [M]rr + M — Mzsjy cagl
Mz — (Mg + Mg + §(4Mf, — MZ) cap1 [M§]ir — Mypcts
2 _
[MB]}p — Mup* ctg (M rR + M + M3y casl
M [Mpler + Mp — §(M3 + 2Mfy) a5l [M3]Lr — Mppts (2.67)
D = .
[MB]}5 — Mpp” tg [Mp]rr + Mp — 5Mzsiy casl

®Here we defined ¢, = cos ¢, t, = tan and ct, = cot .
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where
[M%‘]LL = SELM%SELT> [M%]RR = SERM?ESERT> [M}ZL‘]LR = %SELAIESERT
[M{], = SUEMESUH, (M) = SURMESURY, (M7, = 25U Ay, SU

V2

[Mp),p, = SDLM%SDLT7 [M%]RR - SDRM[%SDRTa [M%]LR - %SDLA/DSDRT (2.68)

Following standard conventions we rewrite the LR-terms without loss of generality as
(M3 r = MxS*rRAxS*rT X = FE U D (2.69)

where we introduced Ay = (Vi) 1A4Y%.

It is important to note that in the super-CKM basis we have
[Mp] = K'[M{] K (2.70)

due to SU(2) gauge invariance.

The sneutrino mass matrix can be diagonalized by one 3 x 3 unitary matrix I'", and the
selectron, up- and down-type squark mass matrices by three 6 x 6 unitary matrices I'?, I'V
and I'?, respectively, according to

Y MATNT = diag(mg,, ..., M), TP METET = diag(me,, . .., me,)

TYMZTYT = diag(ma,, . . ., mag), P MALTPT = diag(mg,, ..., mg,) (2.71)
The mass eigenstates for sneutrinos, selectrons, up-type and down-type squarks read

v=T"N, ¢=TIPE, a=TYU, d=TPD (2.72)

It is convenient to split the 6 x 6 matrices into 6 x 3 sub-blocks

Tae = (Fé(xL&Fé%) , X=EUD (2.73)
Therefore we have
2 = [[21], ¢, @ = [V 10 @, @ = 0710 d,
& ="l @ = [, d = [P, (2.74)

where the index I runs from 1 to 3 and the index a from 1 to 6.

A particularly useful basis, especially in the context of the K+ — ntvi and K, — 7vi

decays discussed in the next chapter, is the one defined in [44], which we will call BRS basis
from now on. It is obtained starting from the super-CKM basis with the redefinition

dr.5rs = Ky dp (2.75)

while all other fields remain unchanged. In this basis the matrix M?% is modified such
that SU(2) gauge invariance for the LL mixing matrices in M?% and M?% is automatically
preserved,

[Mplirers = [MuliL, prs (2.76)
to be compared with (2.70).
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Also, with respect to the numerical discussion of these decay channels it is useful to define
so-called mass-insertions through [137]

(0] = [MiLiip : A,B e {L,R} (2.77)
VML M1,

which depend obviously from the basis of the slepton and squark fields chosen in flavor space.

2.5 The MSSM with a Heavy and Decoupled Gluino

In chap. 4 we will calculate QCD corrections to the matching conditions for the Wilson
coefficients of operators mediating the transition b — sl™[~ in the context of the MSSM. This
corrections include virtual gluons and gluinos, and the latter necessitates the introduction
of additional four-quark operators. Such a calculation at the NNLO is however beyond the
scope of the present work since it not only includes the calculation of the two-loop matching
conditions but also the three-loop mixing of the new operators. We will instead assume that
the gluino is much heavier than all other particles present in the theory, and therefore can
be decoupled to ensure the completeness of the calculated QCD corrections.

This leads us to an “effective MSSM” with decoupled gluino at the scale pz; ~ O(Mj)
[100]. Taking furthermore the down-squark mass-squared matrix to be flavor diagonal so that
there are no neutralino contributions to flavor-changing b — s transitions’, and neglecting
all the 1/Mj effects, the only modified couplings relevant for the NNLO corrections to B —
X, 71~ come from the “chargino — up-squark — down-quark” vertex®,

M,
xUr — —02 [ag‘/;’{I‘UL — angFUR v } K

' \/ﬁMwslIlﬁ
Mp

XUR = goayUpl " K ——— 2 2.78

‘ v iz \/ichosﬁ ( )

where
as(pg) |7 15 a(p3) Mg

=1- —+4In | =£ =14+ 29 1] 4 4In | =L 2.79

% o {3 L 77 R S L (2.79)

These couplings as well as the up-squark masses mg, and mixing matrices 'V and I'V% of
the “effective MSSM” are determined in the matching with the full MSSM at the scale 1.
All of them are understood to be MS renormalized quantities in dimensional regularization
and can be determined from the one-loop corrected mass-squared matrix [146,147].

This approach limits the validity of the results with respect to the parameter space of
the general MSSM, nevertheless it is interesting to compute the QCD corrections to the
decay B — X,ITI~ within this special scenario, and to investigate their phenomenological
consequences. Indeed, similar analysis of the inclusive B — X, decay [99,100] have shown
that QCD corrections can be of the magnitude of the current experimental uncertainties.

"This assumption corresponds to “Scenario B” described in detail in [145].
8These couplings are defined in the super-CKM basis.
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Part 11

Rare K and B Decays






Chapter 3

K — 7wvr in the General MSSM

Here, we present formulae for the branching ratios B(K™ — ntvw) and B(K, — n'vp)

in terms of the function X in a particularly suitable form for our numerical analysis. We
discuss the numerical method we use to cope with the huge space of MSSM parameters
under consideration, and afterwards, taking several experimental and theoretical constraints
into account, we explore the possible departures of the function X and the branching ratios
B(K* — nvp) and B(K} — 7°vw) from their SM predictions.

3.1 Effective Hamiltonian

The effective Hamiltonian relevant for the K+ — 7+vv and K, — 7°vi decays in the general
MSSM can be written as follows!,

o 4GF Olem
V2 2msd,

where the internal charm part

Heff

[Hi}? + Hife?] (3.1)

Mg = > KK, X\ (5Pd)(mPyn) (3.2)

l=e,p,7

is fully dominated by the SM contributions and

Mg = Y KKy [Xp(5PLd) (@ Pr) + Xp(5Prd) (@ Prin)] (3.3)

l=e,p,T

with X receiving both the SM and supersymmetric contributions and Xg only the latter
ones that also include charged Higgs boson exchanges. In the SM X is real and given for
my(my) = (168.1 +4.1) GeV by [43]

X2M =153 +0.04 (3.4)

LA detailed discussion of the “charm” and “top sector” within the SM including O(«,) corrections can be
found for example in [148]. Also note that in writing (3.1) we made use of the fact that in the general MSSM
there exists no right-handed neutrino. Furthermore, we ignored possible lepton flavor number violating
interactions, and hence the neutrino current is diagonal.
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The dependence of the the functions X g on the charged lepton masses resulting from
the box diagrams is negligible for the top contribution. In the charm sector this is the case
only for the electron and the muon but not for the 7-lepton.

This parameterization of Hgg is very useful for phenomenological applications within the
SM, but one should remember that in the general MSSM scenario considered here not all
contributions to Hég are proportional to K} K,;. This means that parameterizing Hég as
given in (3.3), necessarily puts some CKM dependence into X and Xg.

Now, as the strong interactions are not sensitive to the chirality of the quarks, the
hadronic matrix elements of (sPrd) and (§Pgd) are equal to each other, and consequently
the function X playing the central role in our analysis is simply given by

X =X+ Xg = |X|ex (3.5)

The explicit expressions for X; and Xpg are collected in app. A. As one can see there,
chargino and part of the neutralino contributions to Xg are strongly suppressed by small
Yukawa couplings of the down quarks. As we will see, the remaining neutralino contribution
proportional to the U(1) gauge coupling is typically also much smaller than the dominant
terms in X, so that |Xgr| < |X| also in the general MSSM (except may be for some
non-interesting points where X, is small due to cancellations) and can be neglected for all
practical purposes.

3.2 Branching Ratios

The branching ratios for the K™ — ntvv and K — 7w decays resulting from (3.1) can
be written as follows [43],

BK* — ntui) = ks (Im&%my + (%PC(X) + W)Ql

Br(K; — n’vp) = Ky, (M)2 (3.6)

with A = 0.224 being one of the Wolfenstein parameters [149], \; = K/ K, A\e = KX K4,
r-factors equal to [43]

Ky = (4.844£0.06) - 107, K = (2.1240.03) - 10710 (3.7)
and
172, 1.
P.(X) = 31 |35+ 3 X | = 0394007 (3.8)

resulting from the NLO calculations in [40,41]. The anatomy of the error in P.(X) has been
recently presented in [43].
As discussed in the next section we will use as our input parameters

|K,,| = A =0.224, K| = AX? = 0.0415, R, = 0.37 (3.9)
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where

(1-X/2) |K,,
R — U
b b K,

(3.10)

We recall that A is a Wolfenstein parameter [149] with A = 0.83 +0.02 and Ry, is one of the
sides of the unitarity triangle.

While the parameters in (3.9) contain uncertainties, the latter are sufficiently small so
that they can be neglected in comparison with huge uncertainties in the values of supersym-
metric parameters. The choice of these three parameters is dictated by the fact that they
are extracted from tree-level decays and consequently their values are not subject to new
physics uncertainties.

As the fourth variable we will take the angle v in the unitarity triangle that is equal to
the CKM phase dckps in the standard parameterization of this matrix. The angle ~ can
be in principle measured without any new physics pollution in tree-level B decay strategies
that will be only available at LHC and BTeV [150]. In the general MSSM the value of ~y
may deviate from the one extracted from the usual analysis of the unitarity triangle that
uses SM expressions. For this reason we will allow v to vary in the full range

—180° < v < 180° (3.11)

but as we will see in the next section, only the range 20° < v < 110° is allowed when all
constraints are taken into account.

We define next X gygy through
X = MXsn + N X susy (3.12)

and introduce

’ch|2
2\

K 2
| ;b| Xon ~ 1.43, b=R,

a=P(X)+ =3

that do not depend on supersymmetric parameters. We find then

B(K* — 7tvi) = kg [(Qepr(7) + ImX susy)® + (Pepr(v) — ReXsusy)?]
B(Ky — 7v) = kr, (Qepr(7) + ImYSUsy)2 (3.14)
where

Ps) = (1= ) a—beosn],  Quss(7) = bsin (3.15)

As P.sr(7) and Qesf(7y) can be fully determined within the SM, provided 7 can be measured
through tree-level decays, the formulae given in (3.14) transparently exhibit supersymmetric
contributions. With v =~ 65° we have

Peyp(v) ~ 1.23, Qerr(7) = 0.35 (3.16)
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Cabbibo-Kobayashi-Maskawa phase
CP-odd Higgs boson mass

SU(2) gaugino mass;

we use M; GUT-related to M,
Gluino mass

Supersymmetric Higgs mixing parameter

—180° < v < 180°
150 < M40 < 400

50 < My < 800
195 < M; < 2000
—400 < p1 < 400

Common flavor diagonal slepton
mass parameter (I =1,2,3 and A =L, R)

Common mass parameter for the first two

95 < My = /[M2]TT, < 1000

generations of squarks (X = U, D, I = 1,2 and
A=L,R),aswell as by (X =D, I =3 and A = R)
Squark mass parameter for

the left-handed stop and sbottom

240 < M,, = /[MZ]L, < 1000
50 < M;, = /[MZE, < 1000
50 < M;, = /[M2J3, < 1000

Squark mass parameter for the right-handed stop

Flavor universal trilinear scalar
mixing parameter normalized to the
fermion mass (I =1,2,3 and X = E,U, D)

Mass-insertion 015 = [0y|¥ = [dp]|¥%

—1< A= (Mx) ' [ME]R <1
012] < 0.135
1033 .| < 1.65
1023 | < 1.65

Mass-insertion ;7 p = [0v] ¥

Mass-insertion 6% p = [0u]|%%

Table 3.1: Parameters and their ranges used in the “constrained” scan (16 real degrees of
freedom). All mass parameters are in GeV. Furthermore, we adopt the notation commonly used
in the literature: t;, = ¢}, tp = 4§, by, = @2 and bg = dS.

3.3 Numerical Analysis

In the general MSSM, the predictions for the branching ratios considered here and various
experimental constraints can depend on almost every MSSM parameter. However, the de-
pendence on the majority of them is weak enough to be safely neglected in principle for the
purpose of computing Br(K* — ntvw) and Br(K, — n°v). Still, the parameters may
indirectly enter through the expressions for other observables, which we use to constrain the
parameter space. Taking a conservative approach we allow for the independent variation of
more free parameters than included in the existing literature.

Independent MSSM Parameters

To start with, we assume that B(K+ — ntvv) and Br(Kp — 7°vi) may depend significantly
on the set of unknown SM and MSSM parameters listed in table 3.1. We took as fixed the
other SM parameters, including fermion masses and the CKM parameters given in (3.9),
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respectively.

as their measurements are known to be relatively insensitive to physics beyond the SM.
This leaves as our only free SM parameter the CKM angle v, which to date has not been
determined from tree-level decays.

Apart from the flavor diagonal supersymmetric mass parameters, we vary several off-
diagonal ones. For a transparent parameterization and easy comparison with the literature,
it is useful to use the mass-insertions defined in (2.77), even though our actual computation
makes use of exactly diagonalized sfermion, chargino, and neutralino mass matrices. These
mass-insertions depend obviously on the basis of the slepton and squark fields chosen in flavor
space, and in the context of K — mwvv decays particularly useful is the BRS basis defined
in [44]. In this basis the gluino and neutralino couplings are flavor conserving, while the
CKM elements from the chargino couplings to the left-handed up squarks are eliminated,
and in particular from the term in the mass-insertion approximation of the function X
that is believed to be dominant [64]. Since the BRS basis ensures that any choice of §’s

automatically preserves SU(2) invariance, we also omit the “sector” index on the .

The decays K+ — 7tvw and K; — 7w are AS = 1 processes and correspond to

a transition between the first and second quark generations. Thus, they could certainly
depend on (12) squark mass-insertions. However, as pointed out in [64], both decays are
sensitive also to second-order terms in the mass-insertion expansion, namely, to products
of a (13) and (the conjugate of) a (23) mass-insertion. Therefore, we start from varying
independently five (12) mass-insertions, 0715, 0firp, Otfrrs Onr and 0{4 r, plus five more
(13) and five (23) mass-insertions (assuming for the moment that all LR mass insertions are
hermitian, e.g. 5,5 = 057 5). Even assuming that all flavor diagonal quantities from the

list above are real (there is no reason to constrain mass-insertions to be real), we have listed
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Quantity Measured value Experimental error
Lightest neutralino mass > 46.0 GeV
Second lightest neutralino mass > 62.4 GeV
Lightest chargino mass > 94.0 GeV
The two “sbottom” masses > 89.0 GeV
The two “stop” masses > 95.7 GeV
All other squark masses > 250.0 GeV
lek] 2.280- 1073 0.013-1073
AMy 3.489 - 1071° GeV 0.008 - 1071°
AMy 3.31-10713 GeV 0.04-10713
AM, >9.5-10712 GeV
Br(B, — Xv) 3.28 - 1074 tose 107
(sin23) s 0.736 0.049

Table 3.2: Experimental measurements used to constrain the MSSM parameter space. Limits
on supersymmetric particles masses published in [151] are used. The quotes on “sbottom” and
“stop” indicate that these are only approximate flavor states.

already 40 free real parameters. This is a huge number for any reasonably dense numerical
scan. To avoid excessive computation time, we first tested how sensitive to the various
mass-insertions the predictions for our branching ratios really are. In fig. 3.1 we plot the
dependence of Br(K+ — wtvi) on 673 and the product 67 z07  for a chosen set of MSSM
parameters. The dependence on the other mass-insertions, not shown in the plots, is much

weaker and can be neglected in the first approximation.

Fig. 3.1 suggests that it is sufficient in the numerical scan to vary only three indepen-
dent mass-insertions, 1%, 03 5 and 625 . In fact the dependence on §}% | which is tightly
constrained from mixing in the neutral kaon system, is almost negligible for realistic values.
Thus, the large but already numerically more feasible total number of 16 free parameters ap-
pears to be sufficient to explore the possible ranges of Br(K+ — ntvi) and Br(K — nvi)
in the framework of the MSSM. However, this is not true when trying to satisfy experimen-
tal bounds and selecting allowed values of the MSSM parameters. For example, keeping the
product 13 623 constant but varying §}3 independently does not affect Br(K+ — ntuvi)
and Br(Kj — 7%v) but allows to satisfy bounds coming from AMy, the measured BS — BY
mass difference. This motivates keeping, in §}2 , one more flavor violating parameter even in
the “minimal” 16-parameter scan. Later, we will see that our numerical method is powerful
enough to study the consequences of further increasing the number of degrees of freedom,

which turn out to be unimportant.

Theoretical and Experimental Bounds

The enormous freedom in the MSSM parameter space is reduced by a number of phenomeno-
logical constraints the theory must satisfy. From the experimental side we take into account
the set of bounds and measurements listed in table 3.2. As can be seen, we do not take into
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account the €'/e constraint, as its calculation still has very large theoretical uncertainties.
Doing this we are aware of the fact that £'/e could one day offer a very powerful constraint
on the size of MSSM contributions [65,152].

Due to the large number of unknown parameters and substantial theoretical uncertainties
present in many calculations, it is pointless (and certainly very difficult to implement from
a practical point of view) to use everywhere higher order QCD corrections and other non-
leading effects calculated in the literature?. Nevertheless, whenever feasible we try to avoid
unnecessary simplifications made in many papers. In particular:

e For low-energy flavor-changing neutral current and CP-violating processes, we do not
restrict ourselves to the most commonly used mass-insertion approximation. Instead,
we calculate all Wilson coefficients relevant for a given process in the mass eigenstate
approach, taking into account the full set of contributions. Further, we compare ex-
perimental results with the full one-loop MSSM expressions, not just the dominant
(usually gluino) term.

e To complete the bounds coming from the low-energy data, we also compare lower mass
bounds for MSSM particles, obtained from accelerator experiments, with the tree-level
eigenvalues of the MSSM mass matrices.

For comparing theoretical predictions for the low-energy observables with experiment,
we apply the following procedure. For a given set of MSSM parameters, we calculate all
appropriate parton-level diagrams. Next, we construct expressions for the considered quan-
tities using the central values of the QCD evolution factors and necessary hadronic matrix
elements, obtained by perturbative SM and lattice-QCD computations, respectively. Finally,
for every quantity () we require:

Q7 — Q"] < 3AQ™ +4/Q", 1=05 (3.17)

with the exception of AM,, for which we require (1 + ¢)|Q™| > Q°*P.

The first term on the r.h.s. of (3.17) represents the 30 experimental error. The second
term corresponds to the theoretical error. In principle, such an error differs from quantity
to quantity and is usually smaller than ¢ = 50%, which we assumed as a generic number
in all calculations. However, apart from the theoretical errors coming from uncertainties
in the QCD evolution and hadronic matrix elements calculations, one should take into ac-
count also problems arising due to the limited numerical scan density. In principle, with
a very dense scan, it should be possible to find MSSM parameters fulfilling (3.17) within
the “true” theoretical errors of present calculations. Such a dense scan requires, however, a
huge amount of computer time - with 16 or more free parameters and rather complicated
mass eigenstate formulae, it would take months of CPU time. This does not seem to be
necessary and may even be undesirable. Our goal is to find “generic” allowed values for
the K — mvv decay rates, i.e. values possible to obtain for fairly wide ranges of MSSM
parameters, without strong fine-tuning and resorting to some very particular points of the
parameter space where the experimental bounds are satisfied due to precise cancellations of
various types of contributions. Thus, in our scan we use wide “theoretical” errors, assuming
that this procedure points to the correct ranges of the MSSM parameters, and if necessary

20nce the experimental uncertainties in the K — mv decays are improving, it is, however, unavoidable
to include higher order QCD corrections and other non-leading effects.
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the exact values of such parameters fulfilling the bound in (3.17) with smaller ¢ could always
(or at least almost always) be found. This could be achieved e.g. by a denser scan or by
more advanced numerical routines, possibly even solving numerically the set of non-linear
equations given by all constraints.

The only exception from the procedure described above is the imposition of the constraint
from the CP asymmetry ayrq(t). Making the safe assumption that the supersymmetric
contributions to the decay amplitude can be neglected, this asymmetry measures the phase
of the B — BY amplitude

Myy = (BY|Hep(AB = 2)| BY) = [ Mj|e+0) (3.18)
through
Ay K (t) = —UyKg sin(AMdt) = sin 2(5 + Gd) Sin(AMdt) (319)

Here —( is the phase of K4, while 6, is the new effective phase coming from the super-
symmetric contributions. As in the general MSSM the presence of non-vanishing sfermion
mass-insertions implies contributions of several local operators to M., the phase 6, suffers
from potential uncertainties related to the hadronic matrix elements of these operators. Only
if one of these operators dominates over the others in the full amplitude can 6, be cleanly
related to supersymmetric parameters. In other cases its error can be sometimes very large
and moreover is hard to estimate — it would require additional scanning over hadronic un-
certainties for each given set of MSSM parameters. To avoid such problems, in our analysis
we assume conservatively

|y, —sin2(8 + 04)] < 2Aay%, (3.20)

with sin 2(8 + 6,) calculated in the MSSM for central values of the hadronic parameters and

erp

g = 0.736 £ 0.049. Expressing everything in degrees we require then
|23.7° — (B + 04)] < 4.2° (3.21)

Assuming only experimental and no theoretical errors on the r.h.s. of (3.20), we reject some
otherwise valid points from our scan, but we checked that this does not have any significant
effect on the results discussed in following sections.

Apart form the experimental bounds, there are also bounds from the requirement that
the vacuum is stable, or that the true ground state of the theory does not break color and
charge. We apply the corresponding charge and color breaking and unbounded from below
MSSM scalar potential bounds [138-140], which give constraints on the soft supersymmetry
breaking trilinear couplings, and consequently on the left-right elements of the sfermion mass
matrices.

The Adaptive Scan Algorithm

The numerical analysis laid out in the previous subsections requires us to scan an N-
dimensional (N > 16) parameter space sufficiently densely to account for all regions where
the quantity X possibly is large. A straightforward approach is to scan over a uniform
N-dimensional grid. However, this is both time-consuming and ineffective.
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Compared to this brute force approach a random generation of parameters is much more
efficient to find possible large deviations of the function X from the SM prediction. But still
a random scan with a uniform distribution may miss values where the deviation is largest
because in this regions it also tends to vary more strongly. And what we are interested in
are actually the maximal allowed regions of the parameter space and the extremal values
of the function X that are possible. To find this information, a very time-consuming scan
is necessary. It would be desirable to generate points more densely where the function X
is large and/or varies quickly - such a procedure would be particularly efficient if, as is
expected, our results mainly depend on just a few parameters.

Recently, Brein [66] has suggested using an adaptive Monte-Carlo integration algorithm
such as VEGAS [67,68] for a similar purpose. VEGAS performs “importance sampling” via
an iterative algorithm. At each iteration, it generates a certain number of points according
to a probability distribution determined by the integrand values encountered during the
previous iterations. The probability distribution is chosen to be separable and is adjusted
after each iteration. The initial distribution is chosen to be uniform. This procedure is
designed to minimize the statistical error of the integration by increasing the number of
points in those parts of the integration volume where the integrand is found to be large.
While we are not interested in computing any integral to any given precision, VEGAS does
provide what we desire, if we choose our integration volume as the parameter space (suitably
rescaled) and the integrand such that it becomes large for large values of X. We found the
following “integrand” useful:

fe { 0 parameter set rejected by constraints (3.22)

X — XxM|" constraints satisfied

where X is the quantity defined in (3.5), X?M is its SM central value (3.4) and we varied
the power n between 3 and 8. We “integrated” this function numerically with the VEGAS
routine, storing all generated Monte Carlo points in a separate file along with the values of

various observables for the analysis. The parameter ranges used for the integration are given
in table 3.1.

Using the VEGAS algorithm has the great advantage of sampling mostly the important
regions of parameter space, where the function X really depends significantly on at least
some of the parameters. It also allows us to increase safely the number of the degrees of
freedom — adding new variables has only a moderate effect on total computation time as long
as the function X, or in general the VEGAS integrand, is weakly dependent on them. In fact,
we were able to perform Monte Carlo sampling over huge portions of the MSSM parameter
space, probably never tried before, of up to 63 dimensions (parameters), and to judge only
afterwards, from the obtained distributions, which of the parameters where important for a
given problem.

3.4 Numerical Results

Sensitivity to Scan Parameters

As a first step of our analysis, we plotted the distributions of |X| obtained in the “con-
strained” scan versus various flavor diagonal and off-diagonal parameters, in order to check
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Figure 3.3: Chargino and neutralino contributions to A\, X for tan § = 2.

the sensitivity of the considered decay rates to them. The plots obtained support our conjec-
ture that only a modest subset of the MSSM parameters is in the first approximation relevant
for our analysis, even after including the complicated set of additional bounds. Most of the
obtained distributions for flavor diagonal parameters are flat (dependence on M 4o, My, Mj)
or almost flat (dependence on Mg, A). A more pronounced dependence could be observed
only in the case of v and the MSSM parameters plotted in fig. 3.2.

The dependence visible for the other parameters can be explained by looking at fig. 3.3,
where we plotted the contributions from the chargino and neutralino sectors to A;X. The
chargino diagrams are always strongly dominant, typically one order of magnitude larger
than the neutralino contributions. Gluino exchanges (in our case penguin diagrams only)
can be always completely neglected, as we checked that they are several orders of magnitude
smaller than other contributions. Thus, the size of both decay rates, Br(K™ — ntvv) and
Br(Ky — 7%w), is determined by the chargino-up-squark contribution and should depend
mostly on the parameters entering the expression for this amplitude, in agreement with
the results of [44,64,65]. This is not true for the variety of experimental and theoretical
bounds we took into account in constraining the MSSM parameter space — they also depend
on other parameters (e.g., the hole in the u distribution comes of course from the bounds
on the lightest neutralino and chargino masses). This has some secondary influence on the
shape of the plots in fig. 3.2, as the imposed constraints can lead to a correlation between
the allowed ranges of some of the parameters directly relevant for the K — 7wvv decay
calculation. For instance, attainable values of |X| grow first with MSSM masses like M7,
or Ms, because experimental constraints for squark mass-insertions are easier to satisfy for
heavier sparticles (similarly for distributions with Mz, or M,,, not included in fig. 3.2).
Later they go down again because the suppression of MSSM loop diagrams contributing to
K — wvv decays for heavy virtual particles dominates above the effect of weakening the
impact of the experimental constraints. One should also note that the distribution of v in
fig. 3.2 shows an increased density of points around SM-preferred value v ~ 70° + 30° — for
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Figure 3.4: Absolute value of the ratio of box to penguin contributions as a function of slepton
mass for tan 3 = 2. Only points for which B(K+ — 7tvi) > 1.5- 1071 are plotted.

the remaining points, the larger or smaller value of the CKM phase must be compensated
by the phases of some mass-insertions.

An interesting observation can be made by comparing the relative size of penguin- and
box-type contributions to the K — wvv decay amplitude. A common assumption used in
the literature says that box diagrams are parametrically suppressed by O(My, /M3, ,,,,) and
can be safely neglected when compared with Z penguin contribution. This is certainly not
justified for light slepton masses, and not very accurate even for moderate My ~ 300 GeV.
In fig. 3.4 we plot the absolute value of the ratio of box to penguin contribution against
the slepton mass, including in the distribution only particularly interesting points for which
the KT — wtvu decay rate is large, B(K™ — 77vi) > 1.5-1071°. As can be immediately
seen, for slepton masses just above 100 GeV the box and penguin contributions are in a
substantial number of cases comparable in amplitude, and even for M, = 300 GeV their
ratio can still reach 30%. Thus box diagrams definitely should be taken into account in
realistic calculations. Of course, their presence introduces a slepton mass dependence into
the considered branching ratios, which would otherwise be negligible.

In our “constrained” scan we varied 3 types of mass-insertions, 015, 03z and 675 ,. We
checked that the dependence on §}2 is actually almost negligible, as expected because it is
strongly constrained by bounds coming from €x and AMg measurements: 532 < 0.05. In
fig. 3.5 we plot the dependence on the moduli of the remaining two ULR mass-insertions.
The dependence on them is quite pronounced, in agreement with the conclusions of [64] that
the second order ULR terms in the mass-insertion expansion give the dominant contribution
to the considered decays. For comparison, we also plot | X| against just the real part of 6; g,
which exhibits less correlation.
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Figure 3.6: Distributions of X and B(K+ — ntvw), Br(K, — ntvp) for tan § = 2.
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Figure 3.7: Distributions of X for tan 5 = 2 after imposing the constraint Br(K+ — ntvi) <
3.8-10719.

Allowed Ranges for X, Br(K* — wtvi) and Br(Kp — nvi)

The most interesting information from scanning over MSSM parameters are the maximal
values of |X|, x and the branching ratios B(K™ — n"vv), Br(K — ntvw) which can be
obtained taking into account the bounds given by other processes. In fig. 3.6 we plot the
distributions of those quantities for tan g = 2.

As can be seen from fig. 3.6, the allowed values for B(Kt — nTvw) and Br(K, — nvp)
can be significantly enhanced compared to the SM prediction, even by an order of magnitude.
Such large values are higher than the 90%CL experimental bound [54], Br(K+ — ntvi) <
3.8 - 1071°, therefore this decay can already be used to constrain the MSSM parameter
space. One should note that the obtained values for the branching ratios do not violate the
Grossman-Nir (GN) [62] bound Br(K; — n%w)/Br(KT — ntvi) < 4.4, which can be
regarded as a simple cross-check of the correctness of our numerical codes.

In fig. 3.7 we plot the allowed range of X after imposing the cut [54] Br(K*T — ntvp) <
3.8 -1071%. Even with this constraint, | X| could be several times bigger than the SM value
(3.4). Also, its phase can still vary almost freely, however is preferred to be in a broad
range —160° < fx < 70°. Such a freedom leads to a possible enhancement of the ratio
B(K; — 7%vw)/B(K* — i) even for large values of B(K™ — mTvi), as can be observed
in fig. 3.6.

The plots of X in figs. 3.6 and 3.7 display a conspicuous correlation between the phase
and modulus. This can be understood from the allowed region in the complex plane for the
chargino contribution to A\; X shown in fig. 3.3. The experimental constraints we apply con-
strain its imaginary part to be relatively small, especially when the real part becomes large.
Taken together with the fact that ReA; < 0 (any ) and that v is sufficiently constrained
(cf. fig. 3.2) to always imply ImA; > 0, this explains the shape of the allowed region in the
complex X plane.
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Figure 3.8: Distributions of Br(K+ — 7vv) and B(K — 7°vw) for tan § = 20.

Finally, in fig. 3.8 we plot the distributions of Br(K*™ — 7tvi) and B(K; — 7°vw) for
higher value of tan = 20. Results are qualitatively similar to those obtained for tan 3 = 2,
however for larger tan 3 (particularly tan /3 > 10) it is easier to generate parameters sets
giving high branching ratios (or their ratio).

Extended Scan over MSSM Parameters

The “adaptive scan” method [66] described in an earlier subsection allows for efficient explo-
ration of really huge multi-dimensional parameter spaces, especially when the dependence of
the analyzed results on most of those parameters is not very strong. Therefore, we tried to
check how our results change if we get rid of virtually all assumptions usually used to relate
MSSM parameters and treat them all as free independent quantities. We varied randomly
the following quantities:

e the angle v (real)

e CP-odd Higgs mass M 4o (real)

U(1) gaugino mass M; (complex)

SU(2) gaugino mass M, (complex)
e gluino mass Mj (real)

e 4 parameter (complex)

diagonal LL mixing slepton mass matrix [M2].r, common for all generations (real)

diagonal RR mixing slepton mass matrix [M2]grr, common for all generations (real)
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Figure 3.9: Distributions of X, Br(K™ — 77vv) and B(K; — 7'vi) for tan 8 = 2 in the
63-parameter scan.
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e 9 independent diagonal mass parameters in squark mass matrices, 3 parameters for
each of left, up-right and down-right mass matrix (all real)

e common sfermion LR mixing parameter A (real)

e 3 independent LL mass insertions in squark mass matrices: 15, 015, 632 (all complex)

e 6 independent RR mass insertions in squark mass matrices: d5pp, Ohrrs OtrR, OirrR>
0iar, 0% p (all complex)

e 12 independent LR up- and down-squark mass insertions 01s 5, 0rrpn, Oorny OBrn,

5DLRa 5DLR7 5ULR> 5ULR7 5ULRa 5ULR> 5ULR7 5ULR (all complex)

Altogether this gives 63 real degrees of freedom, more than half of the free parameters
of the completely unconstrained (but R-parity-conserving) MSSM. For the MSSM mass
parameters we use the same limits as given in table 3.1, with the additional requirement
|My| > 20 GeV; for new complex parameters we assume their phase to vary completely
freely. Of course, for any parameter point we still apply all experimental and theoretical
constraints considered so far. Such an extensive scan was probably never reported before in
the literature, so it is very interesting even to see if such a general MSSM version still retains
any predictive power. The answer is positive — the results obtained for both analyzed decays,
Kt — ntvv and KT — 7fvp, remain qualitatively similar to those already discussed for
the “constrained” scan case!

Plots equivalent to those shown in fig. 3.2 confirm the assumption that the dependence
on most new parameters is weak (i.e. distributions are flat). Actually, in some cases like
the left-handed stop and right-handed sbottom mass parameters they become even flatter
than in fig. 3.2, as both discussed branching ratios do not depend directly on them (at
least not strongly), and various experimental constraints can be satisfied varying additional
parameters.

The allowed ranges for X and both branching ratios are extended somewhat in the
63-parameter scan, but not drastically, as illustrated in fig. 3.9. In general, as could be
expected, it is easier to generate a 6y in the full range, there are more points with large
Br(K* — ntvw) and B(K, — 7vi) or their ratio, but in general all distributions are still
well defined in shape, just a bit broader. Thus, the most important conclusion of this kind
of analysis is the statement that even the almost fully general low-energy MSSM does not
lose its predictive power and exploring it can still lead to reasonable and well defined results.
Although it requires more effort in numerical computation, it also minimizes the possibility of
overlooking some interesting scenarios which can be realized for particular MSSM parameter
choices.



Chapter 4

QCD Corrections to B — X 71—

This chapter is devoted to the calculation of the two-loop QCD corrections to the matching
conditions of the b — sl™[~ transition in the context of the “effective MSSM” introduced
in sec. 2.5. To ensure the completeness of the calculated QCD corrections we furthermore
assume that the down-squark mass matrix decomposes into 2 x 2 matrices for each generation
and concentrate on the region tan 3 < 10. We review the low-energy effective Lagrangian
relevant for this scenario and summarize our analytical findings for the two-loop Wilson
coeflicients in sec. 4.1. Details of the calculation can be found in the subsequent section. As
an application, we present the formulae for the dilepton invariant mass distribution and the
forward-backward asymmetry of the leptons in the decay B — X, [*!~ including all NNLO
corrections and the phenomenological implications for both observables.

4.1 Two-Loop Matching Conditions

The framework of effective theories applied to electroweak decays is a convenient tool to
resum QCD corrections to all orders using renormalization group methods [118-120]. The
important point here is that the mass hierarchy of the SM and the considered extension —
the “effective MSSM” — allows for integrating out the heavy degrees of freedom of masses
Mheavy > Myy. The effect of the decoupled degrees of freedom will be contained in the
Wilson coefficients of the QCD and QED gauge invariant low-energy effective theory with
five active quark flavors.

Low-Energy Effective Lagrangian

The effective low-energy Lagrangian relevant to the inclusive decay B — X,I*I~ resulting
from the SM and the “effective MSSM” has the following form,

Eeff = CQEDXQCD + ﬁphysical + £evanescent + *CEOM + £CT (41)

The first term consists of kinetic terms of the light SM particles — the leptons and the five
light quark flavors — as well as their QCD and QED interactions, while the second term is



60 4. QCD Corrections to B — X 111~

given as follows [153-157],
e 2 10
s = G 5 Y K P04 T 3 o) (12)
Q=u,c i=1 Q=u,c,t 1=3

Here G is the Fermi constant and furthermore we refrain from using unitarity of the CKM
matrix. This part consist of AB = —AS = 1 gauge-invariant local operators! up to dimen-
sion 6 built out of the light SM fields. It includes the current-current operators

OF = (57, PLTQ)(Qy" PLTD)

0F = (57, PLQ)(Qy" PLb) (4.3)
the QCD penguin operators? [83,158]

O3 = (%PLb)Zq(q‘v“q)

Oy = (57, PLT “b)zq(W‘T“q)

Os = (F3m 1, Pub) Y (@"7'7"9)

696::(Evuvyvpfii“ﬂﬂjizq(év“v”vpimq) (4.4)

where the sum runs over all light quark flavors, the electro- and chromomagnetic moment
operators®

OF = émb(gawPRb) P

s

1
Os = —my(50,, PRTb) G (4.5)

s

where o"" = %[fy“, +"], and finally the semileptonic operators

2

[ —
Oy = ?@%PL(’)(W“Z)
62 —
O = ?(g’mPLb)(l’Y“%l) (4.6)

The specific structure of the physical operators O, 10 is determined from the requirement
that the effective theory reproduces the SM AB = —AS = 1 amplitudes of b — s+(light
particles) at the leading order in electroweak gauge couplings and up to Ol(external momenta
and light masses)?/MZ,,..]), but to all orders in strong interactions. The same applies to the

'The operators conserve flavors other than B and S.

2Electroweak penguin operators arise first at O(em) and are only relevant if QED corrections are con-
sidered. However, we will not include the higher order QED corrections, but rather use aey = 1/133 which
yields results close to those obtained when including them, as was found in [86].

3The s-quark mass is neglected here, i.e. it is assumed to be negligibly small when compared to ms.
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extensions of the SM. It should be noted that the above given basis of physical operators
results from the SM, however in extensions of the SM other physical operators could become
relevant, too. In the MSSM scenario chosen here this is not the case for low values of tan 3
and the SM operator basis suffices.

We remark that the QCD penguin operators O3 are defined in such a way that problems
connected with the treatment of 75 in D # 4 dimensions do not arise [158]. Consequently we
are allowed to consistently use anticommuting 5 in dimensional regularization throughout
the calculation.

In addition to the physical operators several non-physical operators have to be included
in the matching procedure of the full and effective theories. The so-called EOM-vanishing
operators that vanish by the QCDxQED equation of motion of the effective theory up to a
total derivative are collected in the third term given in (4.1). They appear in intermediate
steps of the off-shell calculation of the processes b — sy and b — sg and contribute to the
final results of Wilson coefficients of physical operators when going beyond LO matching.
The so-called evanescent operators contained in the fourth term in (4.1) vanish algebraically
in four dimensions, however in D # 4 dimensions they are indispensable and contribute to
Wilson coefficients of physical operators. We use the same convention for the evanescent
operators as introduced in the evaluation of the anomalous dimensions relevant to b — sv,
b — sg and b — st~ of [83,84]. All EOM and evanescent operators relevant for the
two-loop matching presented here can be found in app. B.

The last term given (4.1) collects all counterterms to render the effective theory finite.

Two-Loop Matching Conditions

The Wilson coefficients at the matching scale p; can be perturbatively expanded in ag(p)
as follows,

2
0@ = Q0 4 Yl pem | ) pee)

Ax (47)2 e Q=uct (4.7)

Contributions to order af to each Wilson coefficient originate from n-loop diagrams which
follows from the particular convention of powers of the QCD gauge coupling g5 in the nor-
malization of the operators O7 ¢ given in (4.5) and (4.6).

The result of the matching calculation of the Wilson coefficients of the physical operators
O1..10 can be summarized as follows. At the tree-level the only nonzero Wilson coeflicient
is

c0 = 1 (4.8)
The one- and two-loop matching conditions in the “charm-sector” read as?

O = 15 — 6Ly, csW =5 =0

CZ(U = — L, 050(1) _ 060(1) -0

4In the matching calculation we neglected all light particle masses except for linear effects in my in
the determination of the Wilson coeflicients corresponding to the electro- and chromomagnetic moment
operators. In consequence the u-quark and c-quark sectors are equal, i.e. C}* = C¥.
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7 36’ 8 3
1 38 4 1
oW _2 4L o — 4.9
o 42, 271 97" 007 4e2, (4.9)
. 7987 17 AT5
O =[] + M)} — oo — o — —" Ly — 17L%,
72 3
127 4 46
C® = 22 Zp2 Ly — AL
2 18 3" T 3w T AW
630 20 68 20
CsP = = 4+ 4 Ly 4+ =L
3 013 Ti” Tt togrhw
950 10 124 10
4 243 ~ 81"~ o7 PW T ortw
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5 243~ 81" T 817W T aortw
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Cc(?):____ 2__L __L2
6 162 108" ~108°W 36V
713 4 91 4
7 243 81" 8 304 97w
1 524 1928 16 128 1
o _ 1 0et e 0, 1400, e — 4.10
9 < 70 a3t T3 RLw 0T (4.10)
with
1y
Ly =In M—EV (4.11)

and gy ~ O(Myy) being the renormalization scale in the “charm-sector”. Due to the chosen
renormalization prescription the first diagram given in fig. 4.2 with top quarks or squarks
in the loops is completely “renormalized away”, and thus the Wilson coefficient of O, is not
affected by virtual top quark or squark exchange. The second and third diagram shown in
fig. 4.2 are the origin of the function [82]

[T1]; = — (162 + 8)V/4z — 1 Cl, <2 arcsin 2\2) + (162 + 2) Inx + 322 + 193 (4.12)
where = m?/MZ,, and of the function®
1 : 3 , 1
[Th]; = ; q;d {2(43@ —1)2 Cly <2 arcsin 2\/@)
-8 (xqa — %) Inz;, — 16xqa} + ? (4.13)

®Here we assumed 2mg, > My, which is clearly fulfilled.
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where x5, = mga /M3, both entering the Wilson coefficient of O;. The definition of the
Clausen function Cly(z) can be found in app. C.

The one- and two-loop matching conditions in the “top-sector” read as

civ — g, Ci® = [Gy)!

1 2 1 2
iV =0, O3 = —5[Gal' + S B
eV =0 ct® = 3 e+ Lmpe
0 ’ 6 16 4
1
C«;(l) _ __[A7](n—1)
2
t(1) _ 1 (n—1)
Cy ' = —5[F§]
2
1—4s2, - 1. - .
Cé(l) = Sw [Céz](nq) _ ST[Béz](nq) _ [ngz](nq)
w w
1 _ _
ciy’ = 5 {1l - 16} (4.14)
w

The index n corresponds to the number of loops in the diagrams which can be classified into
LO (n = 0), NLO (n = 1) and NNLO (n = 2) contributions; see also the comment below
(4.7). The various functions [Xj]" introduced in (4.14) indicate their origin when matching
the b — s+(light particles) Green functions of the full and effective theory,

e [Gs]: two-loop box-type diagrams of b — sqq (see fig. 4.4)

e [E4]: off-shell part of b — sg, contributing to b — sqq (see fig. 4.3)

e [A;]: on-shell part of b — s (see fig. 4.3)
e [F3]: on-shell part of b — sg (see fig. 4.3)
o [Bg{m]: box-type diagrams of b — 71~ (see fig. 4.5)

e [CU]: Z penguin diagrams of b — [T1~ (see fig. 4.3)
e [DH: off-shell part of b — s7, contributing to b — 171~ (see fig. 4.3)

Furthermore, each function [X]™ receives contributions from different virtual particle ex-
change,

X" =) =X} (4.15)

1

where the index ¢ corresponds to

e ; =W: “top quark — W boson” loops (SM)
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e 1 = H: “top quark — charged Higgs boson” loops
e ¢ = (" “chargino — up-squark” loops
receiving virtual gluon corrections at NNLO and further
e i = (Q: “chargino — up-squark” loops containing the quartic squark-vertex®

which contribute only at NNLO. Discarding the contributions { H, C, Q} in the sum of (4.15)
one recovers the SM results, whereas discarding only {C, @} one obtains the results for the
2HDM of type II provided tan [ is small. Not all of the functions [X;]™ are new but some
have already been resented in the literature. To summarize:

e The contributions [A7]}, [Fy]!, [BL]}, [CH} with i = W, H,C,Q and [BY]},, [DY]},,,
(G334, [Edlyy, [T1]} have been calculated previously in [38,39,41,42,82,99-101,159-163]
with the expressions listed in (4.12) and app. C.

e The contributions [Gs]!, [Ey}, [BY)}, (DY)} with i = H,C,Q and [T3]} have been cal-
culated here for the first time with the expressions listed in (4.13) and app. C. The
contributions with ¢ = H have been calculated already in [164] and very recently the

same result has been obtained in [165].

Explicit expressions for the various functions [X;]™ can be found in app. C. We stress that
all parameters appearing there are MS renormalized”.

4.2 Details of the Calculation

The calculation of the Wilson coefficients will be performed working with background gauge
bosons in dimensional regularization with fully anticommuting s and in an arbitrary R
gauge for the gluon gauge parameter but in the t‘Hooft-Feynman gauge for the W boson
gauge parameter. A detailed description of the two-loop matching calculation for the b —
slT1~ transition within the SM can be found in [82]. We will follow their approach in
calculating the supersymmetric contributions to the relevant Wilson coefficients.

In order to render the effective side finite we have to introduce renormalization constants
for the low-energy effective couplings,

Qbare Z Z~Z~CJ-Q, Q=u,c,t (4.16)
which can be expanded in terms of the strong coupling constant as follows,
Z:Hi(%)kazwzwii( ) = 5200 (4.17)
oo AT k=1 1=0

and is found in the MS scheme from the following two conditions which the n-loop effective
theory amplitudes have to satisfy [42]:

6Strictly speaking these contributions originate from the part of the quartic squark vertex proportional
to the strong coupling constant g.
"The expressions for the functions [X;]" can also be found in [166].
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e Renormalized amplitudes proportional to the Wilson coefficients coefficients of physical
operators have to be finite in the limit ¢ — 0. Counterterms which make them finite
can contain nothing but 1/¢* poles, with 1 < k < n.

e Renormalized amplitudes proportional to the Wilson coefficients coefficients of evanes-
cent operators have to vanish in the limit ¢ — 0. Counterterms which make them
vanish can contain nothing but 1 /ek poles, with 0 < k < n — 1 if the are propor-
tional to physical operators, and with 1 < k& < n if the are proportional to evanescent
operators

The Wilson coefficients Ci(l) can then be obtained by the matching procedure,

4G
AL = ﬂF KoK}, [(JZQ(O (52 5 +5z.(j1)) (JQ(”a ](o Yiree (4.18)

where Ayssy is the relevant amplitude in the MSSM. Here, the sum over ¢ and j extends
over all physical, evanescent and EOM-vanishing operators present in the low-energy effective
Lagrangian. Furthermore, §Z() summerizes O(as) renormalization constants of the strong
coupling constant, quark fields and quark masses present in the local operators O; in the
MS scheme with five active quark flavors. Note that only tree-level diagrams contribute on
the effective theory side since all light masses have been set equal to zero. The equation to
be solved for C'( ) reads

AGr _
Aissm = ﬂKQbKQS [C{‘? (5Z<2>5ij+5z +62M620 )

i Z_;CZQ(l) (52(1)5” + 5Z182)> + C?(Q)ézj] <Oj>tree (419)

(4n)?

where 6Z) summerizes now corresponding O(a?) renormalization constants.

Having renormalized the effective theory side of the matching equation®, let us proceed
to renormalize the “effective MSSM” side. Since weak interactions produce flavor non-
diagonal propagation in the down-quark sector we have to introduce matrix-valued field
renormalization constants for the down-quark fields [167-169],

dyre =\ ZXdy = /1 + 6725 dx, dx = Pxd (4.20)

with X = L, R and d being a three-component object in flavor space, in order to obtain
diagonal down-quark mass matrices at O(e?) and O(e?g?). These renormalized fields produce
a non-diagonal counterterm for the down-quark kinetic term,

Lo ™ = id; (Wd I + 0287 ) @ Prdys

—dp (OZERTY + PZEMTD) Pody — didZ P ZEM7 Prdy + (L < R)
(4.21)

8Needless to say that there remain infrared divergences which cancel in the matching equation against
their counterparts contained in the “effective MSSM” amplitudes.
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where we defined

c 1 1
62311, = 5[5Z£]IJ + 5[5Zf]u
m 1 1
0251, = i[MD]H[éZUﬂIJ + Q[MD]JJMZC?T]IJ (4.22)

with 07,, being the flavor diagonal one-loop quark mass renormalization constant in the
MS scheme, and the renormalization constants [6ZF]° and [§ZFF]™ can be obtained by
substituting L <> R in (4.22). The field renormalization constants introduced in (4.20) are
uniquely fixed by the requirement that the renormalized one-loop and two-loop selfenergy
for the b — s transition vanishes for p?> = 0, where p is the incoming momentum of the b
quark. Therefore non-diagonal propagation is not present in the renormalized theory in the
approximation where terms of order O[(external momenta and light masses)/Mpeavy]) are
neglected?.

The relevant one-loop and two-loop counterterms at O(e?) and O(e?g?) for the b — sv,
b — sg and the b — sZ matching calculations read!®

1 7 C C
Lo = edi (BZHP + 0205 ) v PdsAu + (L = R)

Lo = —gus (DZE1) + 6ZE15) 1T Pud G+ (L R)

e 1 1 - . .
Lo = { (— - —s%V) dr (625159 + 025155 7 Pudy
Swew 2 3
1 - . .
— shvdr (027157 + 16255 v“PRdJ}Zu (4.23)

An additional complication arises in the MSSM because the strong interactions are no
longer flavor blind which is the case in the SM. Here we have “squark—quark—gluino” and
“quartic—squark” interactions leading to flavor transitions between quarks and squarks, and
in our scenario, where the gluino is heavy and decoupled, only the latter interactions are
relevant. They lead to off-diagonal field renormalization constants for up-squarks,

U™ = [V Za v iy = [V 1+ 023 |ap Ty (4.24)

which in turn affects the mixing matrix 'V [170],

1

U ) _ U U U
VO = (1 4 460Y) 1Y, orY = <

<6Zﬁ . 525) (4.25)

We will renormalize the matrix-valued field renormalization constants for up-squarks and
hence the mixing matrix I'V in the MS scheme.

9Working in such a renormalization scheme, the Wilson coefficient of the operator N3q (cf. app. B) gets
no contribution from the b — s matching. Alternatively one could simply require the v* Py, term to vanish
in the b — sy and b — sg matching to determine [§Z 5]6 directly. This is possible, because the v* Py, term
not proportional to external momenta or light masses on the effective side stems solely from N3q.

10Note that Zo=124 2 since we work with a background field gluon.
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Figure 4.1: Tree-level and one-loop contributions to b — scc. The wiggly line denotes the W

boson. Possible left-right and up-down reflected diagrams are not shown.

The MS counterterms for the effective couplings a, and ay, defined by da, = a, + da,
and day = ay + day, read
2« 2«
Sa., — 25 Say = ——2 4.26
Qg < In Qg, ay ¢ dn ay ( )
They are needed to cancel divergences stemming from gluon corrections to the “chargino—
upsquark—downquark” vertex in the “effective MSSM”.

All remaining QCD counterterms in the “effective MSSM” will be MS renormalized except
for those were the top quark and squarks contribute to light-quark and gluon propagators.
The corresponding renormalization constants will be determined in the MOM scheme at
¢*> = 0, where ¢ is the four-momentum of the light-quark or the gluon.

Matching b — scc

The diagrams contributing to the b — sc¢ amplitudes within the MSSM are depicted in
figs. 4.1 and 4.2. Here we neglected diagrams with charged Higgs boson exchange instead
of the W boson being an excellent approximation for low values of tan 3. All diagrams
have been calculated for vanishing external momenta and light quark masses set equal to
zero. The appearing infrared divergences, which we regularize dimensionally, cancel when
matching with the “effective MSSM”.

Our renormalization scheme is fixed by the following observations. The Lagrangian
Laoepxqep given in (4.1) is taken in its canonical form, i.e. we drop only terms including the
top quark and squarks, and will be renormalized in the MS scheme. We want the full theory
side, the “effective MSSM”, to have fields and parameters being equal to those present in the
low-energy effective Lagrangian, and hence we have to “renormalize away” all light particle
Green function with the top quark and squarks in the loops!!. More precisely this means that
the propagators of light particles are subtracted in the MOM scheme at ¢ = 0, i.e. terms
of order O[(external momenta and light masses)/m;]) are neglected. In the case at hand
this renormalization affects the gluon field renormalization constant 6Z(G1 ) at the one-loop
level, which in turn affects the strong coupling constant renormalization constant 5Z5(,1), and

furthermore the light quark field QCD renormalization constant 5Z(§2) at the two-loop level.
We remark that we have to include infinite, finite and O(e) terms in these renormalization

"This means in particular that the strong coupling constant a; being the same in both theories is the MS
renormalized one with five active flavors
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Figure 4.2: Two-loop contributions to b — scé. The wiggly line denotes the WW boson. Shaded
blobs stand for self-energy insertions. Possible left-right and up-down reflected diagrams are not
shown.
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Figure 4.3: One-loop and two-loop contributions to b — sv, b — sZ and b — sg. The circle
indicates the positions where photons, Z bosons or gluons can be emitted, whereas the square
(diamond) indicates the positions where only photons and Z bosons (gluons) can be emitted.
The double plain line represents up-type quarks and squarks, and the double dashed line W, G,
H bosons and charginos.

constants. All other QCD renormalization constant are taken in the MS scheme with five
active flavors.

For the b — scc transition this means that no top quark and squark loop contribution
remaines in the “light quark — W boson” effective vertex after renormalization, and hence
the first diagram shown in fig. 4.2 gives no contribution to C’;(z). The next two diagrams
giving non-vanishing contributions to C’f(2) are the origin of the functions [T1]; and [T1];
given in (4.12) and (4.13), respectively.

Matching b — sv and b — sg

Here, we neglect all light quark masses except for linear terms in m,; in the diagrams of
the “effective MSSM” shown in fig. 4.3. In consequence all loop-diagrams on the effective
side are equal to zero, and the EOM-vanishing gauge-invariant operators given app. C are
sufficient as long as we work with background photon and gluon fields. There is no need to
introduce EOM-vanishing gauge-variant operators in the matching procedure!?.

All possible Lorentz structures we encountered in the b — sy and b — sg off-shell
matching calculation are collected in

Sf;(l E{F}/MP_XW k,-)/MPX’ ’YukPXy %P)/NPXa ’yuﬁan
k'E Px, k"p Px, p"} Px, p"p Px, (kp)v"Px, k*y* Px, p*+"Px } (4.27)

where X = L, R and ¢« = 1,...,13. In terms of these 26 Lorenz structures, the off-shell

12However, they are necessary to determine the renormalization constants Z of the Wilson coefficients
entering the matching equation.
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Figure 4.4: Two-loop 1Pl contributions to b — sqq. The double plain line represents up-type
quarks and squarks, and the double dashed line W, G, H bosons and charginos. Diagrams with
crossed gluon lines are not shown.

b — sv amplitudes in the “effective MSSM” can be written as

13
4G
Q S F * Q Q *
i=1
where o and (3 are color indices, and ¢, is the polarization vector of the photon. The
amplitude of the effective theory is given by

4GF . 36
‘A(?ffective = ZWKQbKQs { Z Cz‘Q<Oi>tree + Z C]Cgfz <Ni>tree (429)
i=7,8 =30

Matching the amplitudes of both theories yields the Wilson coefficients of the operators O-,
N3s.33 and N5 36, for example

21 1
Q=9 {_agg + —a?g} (4.30)

The determination of the Wilson coefficients of the operators Og and Ns; 34 from the off-
shell b — sg amplitudes is completely analogous. The Wilson coefficients of the operators
N35 and N33 can be determined from both decays which provides a check of our calculation.
Furthermore, since not all coefficients a% are independent from each other, we obtain further

non-trivial relations between the a% which provides a an additional check of the calculation.

Matching b — sqg@ and b — slTl~

The b — sqq decay receives two contributions from the “effective MSSM”. First the off-shell
part of the b — sg matching, and second 1PI diagrams emerging here for the first time
at two-loops and being depicted in fig. 4.4. The former contribution enters the matching
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Figure 4.5: One- and two-loop contributions to b — sl™l~. The double plain line represents
up-type quarks and squarks, the double dashed line W, G, H bosons and charginos, and the
double dotted line neutrinos and sneutrinos.

equation via the operator N3;

AGFp

ZWKQbKas(C‘? + 016\2[31)<O4>tree (431)

Q —
AMSSM -

where AﬁSSM is the amplitude in the “effective MSSM” resulting from considering only
the diagrams shown in fig. 4.4. This matching equation has of course to be understood
only schematically. Needless to say that one also has to consider evanescent operators and
counterterms on the effective side.

The matching of the b — sl™l~ decay is performed complete analogously. We have
three contributions, the off-shell b — sy part, the Z-penguins and the box-type diagrams
displayed in fig. 4.5. The off-shell photonic amplitudes enter the matching equation again
via the operator Nsg,

KQbK55<O§2 - C]?f%)<09>tree (432)

where AﬁSSM is the amplitude in the MSSM including only Z-penguins (cf. fig. 4.3) and
box-type diagrams shown in figure 4.5. Again, evanescent operators and counterterms have
been suppressed in this matching equation.

4.3 Renormalization Group Evolution

The evolution of the Wilson coefficients from the matching scale p; down to the low-energy
scale p; is governed by

p7-C() =" (5) (433)
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where ~ is the so-called anomalous dimension matrix corresponding to the operators O 19
which can be perturbatively expanded as

2 3
s a

(47)°

Neglecting the running of the electromagnetic coupling constant the general solution of (4.33)
can be written as

o a
v(gs) = —v + v 4 (4.34)

A7 (4m)

1
57+

—

) = Ulpe, ) Cle) (4.35)

with U(u, o) being the evolution-matrix. It is given by

HS(N) T(
Ulp, i) = Ty, exp {/ dg. L (95)}
g
2

ey Bs(gl)
= U g1, ) + T2UD () + 250D ) + (4.36)
’ 4 ’ (4m)? ’

where T}, denotes ordering of the coupling constants gs(x) in such a way that their value
increase from right to left, and 3(g,) is the QCD beta function,

2 3
B(gs) = —9s {Z—;ﬁo + (40;:>251 + (40:)352 +.. } (4.37)

The leading order evolution matrix reads
U (1, ) = Vdiag (") V=" (4.38)

which depends on the matrix V' and the so-called magic numbers that are obtained via
diagonalization of v(O7,

v i = VA OTV]y = 260 a: 8 (4.39)

Furthermore, we defined 75 = a(ut)/as(p). The perturbative solution of (4.33) relevant for
the NNLO QCD corrections we discussed in sec. 4.1 is given by

Clu) = UOCO (1)) + %{ e LU — U0 1] GO () + U(O)C’(”(uo)}

2

(8% —
- (ZST’“;Q{ (12U = WU T, = U0 Sy = )] CO ()

n [ns_lle(O) _ U(O)Jl} GO (1) + U(O)é(Z)(Mt)} (4.40)

where the arguments of the evolution matrix U (u, p;) have been omitted to avoid unnecessary
clutter. Furthermore, J; = V.S;V ! and J, = VS,V ! with S; and S, given by
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V4907V,

Syl = Do 5
[S1)i; 232 v Jisd 206 + [’yg))]n' - [’Yg))]jj
Br ) V=@V,
S. i = T3 A
[ 2] 458 [7D ] 460 -+ [ )] - [’Yg))]ﬂ
P e h%n — i (saisi = G50 o

The derivation of (4 40) up to NLO is shown in great detail in [119], which can be generalized
to include the O(a?) term in a straightforward way [171].

4.4 Effective Wilson Coefficients

In the following we will summarize the perturbative calculation of the matrix elements at
the parton level b — sl]~ within the effective theory at the low-energy scale p;, ~ O(my,).
At this scale the usually rescaled operators and Wilson coefficients

~  as(w) ~ Amr

O, = in O;, Ci() = (1)

Ci(1w) (4.42)

fori =7,8,9,10 are used. The matrix elements at the low-energy scale with single insertions
of physical operators are proportional to the tree-level matrix elements of (’)7 and (99, and it
has become customary to take them into account by the introduction of the effective Wilson
coefficients

6;,263 ( ) (Mb)+MQ {1,2}+M$i{36}+MC7\'{,2{1,2}+MC72’,2{36}+M$,28
~ 47
off {1,2 {3..6 {1,2 {3..6 ,
CoT = =7 )CQ(M,) + ME 4 MG G MG G
5T = 2T 09 () (4.43)
as(:ub)

At the LO the only operator mediating b — st~ is Oq which receives a non-zero Wilson
coefficient at the scale j;, when solving the renormalization group equation due to the mixing
of the four-quark operators into Oy.

The low-energy matrix elements at the NLO are given by [78,79,82]
{1,2 {1,2
M7Q,1{ b Mgz,l{ Yo

20 80

1
M = =2 CF (1) = 5CP () = 5 C5 () — 5 CF ()

u m 4 . . ~
o= ZCQ 8™ (S50 + C5) ) 0.5)
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ME 4 . . .
{1 = ZOQ g +(§ol<u>+02<u>)h<zc,s>

M-8 _ ZCQ )72 net <6CQ( )+6OC5Q(;L)> h(ze, §)

- (gc&m 50200 + 38000 + 0200 ) W13
= (56900 + 36200 + 56200 + (0 0.9

64
9

64

5 C5 (1) + 5

T+ 200 +

. —C%(n) (4.44)

where 2, = m?/m? and hy (2., §) being the loop function
1
h(z., §) = —4/ dr x(1 — z) [z — x(1 — x)§ — ip] (4.45)
0

Defining y = 422 /3, we find as its solution in accordance with [79]

[ln (HVI_y) —Z"/T] , y<l1
|

2 2 1 I—Vioy
Wz 8) = 5(5+3y) — Szl = 22+ V[T -y ’
2 arctan NSt y>1
2 10
h(0,35) = 3(1ns —im) + 9 (4.46)

The matrix elements originate from one-loop diagrams with single insertions of the operators
O:..¢ and from virtual gluon corrections to the operator Oy in the b — si*I~ transition.
Infrared singularities arising in the latter calculation cancel once the gluon bremsstrahlung
corrections of the process b — sgl™l~ to the operator Qg are taken into account, summarized
in the function weg(3), where § = s/m? [cf. (4.49)].

At the NNLO level, the matrix elements read [87,88,90]

/\/l7{1 2 Mg’él’Q} —0

1,2 Oés(/J) c(0 ) /A c(0 7) /A
M = 2B N (G () FSL6) + O FS))
Q=u,c

, () 7) /A
MF = =22 AL FD (3)

AT Oés H C A~ C ~
M2 = ) S (0 ) ED (8) 4 050 () EGL)

as ~
Mgs = - (:)Ag(o) (W F"(3) (4.47)
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and originate from infrared finite virtual corrections to the matrix elements of the operators
012 and Og represented in the functions Fl-(] ), and from virtual and bremsstrahlungs cor-
rections to the matrix elements of O7919. The latter suffer from infrared and and collinear
singularities which cancel when combined at the parton level of differential decay rates
yielding the functions wz7(8), wre(8) and wgg(8) [cf. (4.49)]. The functions F i(] ) for low values
of §, which involves an expansion in the ratios m./my, v/s/my and /s/2m., can be found
in [87,88,90], together with the auxiliary quantity Ag)(())‘ The calculation valid for all dilepton
invariant masses s can be found in [91,92]. The matrix elements involving single insertions
of the operators Os_¢ have not been calculated yet and are expected to be negligibly small'3.
However, a complete NNLO computation of B — X, I*I~ should include these corrections
as well. As far as the two-loop O(a?) matrix element of Qg is concerned, we will use the
approximate formula given in [86].

4.5 Differential Decay Distributions

In this section we provide the formulae of some differential decay distributions of the decay
B — X,Itl~. These are the dilepton invariant mass spectrum and the differential forward-
backward asymmetry with respect to the dilepton invariant mass s of the lepton pair. They
are given in terms of the Wilson coefficients at the low-energy scale,

K:chb ~§,eff KZsKub

6ieff _ 5:,6& + Cz + 75?6& 4.48
K;(SKtb K;sKtb ( )

A rather precise determination of the dilepton invariant mass spectrum seems to be pos-
sible once the values of s are restricted to be below or above these resonances. Then the
calculation can be performed using perturbative methods whereas non-perturbative correc-
tions can be addressed within the framework of Heavy Quark Expansion (HQE) predicting
the leading contribution of the inclusive decay B — X, ItI~ to be the matrix elements
of the quark-level transition b — sl*tl~ whereas non-perturbative corrections of the type
(Aqep/mp)™ can be taken systematically into account. However, this method is not appli-
cable over the whole kinematical range of s and in this work we will restrict the analysis to
the so-called low-s region [82] below the cé-resonances'.

The dilepton invariant mass spectrum at the parton level reads [97]

(1-3)

d0(b— sI*l7) <aem>2 G (mb ) | KK [
ds 47 4873

x {(1+2§) <‘5§ﬁ

2 ~
+4 <1+ g) s

'3The analogous corrections to B — X are 1% [80,81]. )
4However, contrary to the semileptonic decays B — X, .l and the radiative decay B — Xy this method

2 ~
+|ci

JLEE=0)

20,

2 20, X ~
1+ %ww(s)] +12Re (O;ffcgff ) 1+

™

w79(§)]}

is not applicable in the endpoint region of the spectrum as pointed out in [172]. Here other approaches have
to be used such as for example heavy hadron chiral perturbation theory (HHYPT) by summing over the
kinematically allowed exclusive channels to reliably estimate the magnitude of the endpoint decay spectrum.
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dFBrems,A dPBrems,B
- + -
ds ds

(4.49)

The functions w;;($) summarize the virtual and real QCD corrections to the matrix ele-
ments of the operators (57,9710 [87,88,96] discusses in the previous section, whereas the terms
dTBremsA /qs and dTBrmsB /ds result from infrared finite bremsstrahlungs corrections due to
interferences between Og and O; 1o and between O; 5 and O 27, 10, respectively [89]. In
the numerical analysis we follow [86] concerning the QCD corrections. However, we will not
include the higher order QED corrections discussed there, but rather use ey, = 1/133 which
yields results close to those obtained when including them, as was found in [86].

To obtain the hadronic differential decay rate dI'(B — X,l*1~)/d$ within HQE, (Aqcp/
my)" corrections have to be added to the partonic differential decay rate dI'(b — si*l™)/ds
given in (4.49) [172-177]. These corrections were calculated up to the order n = 3 [176,177]
and turn out to be small compared to the leading perturbative contribution — however, still
involving poorly known matrix elements of the HQET for n = 3. In the numerical analysis
we will only include the corrections with n = 2. We also include the (Aqcp/m.)? corrections
of [74] in order to take effects related to the tails of ¢¢ resonances in the low-s region into
account. Their size was found to be similar to the that of the A%p/mj corrections. Both
type of corrections can also be found in [93].

The partially integrated branching ratio B(B — X,I*17) of the low-s region is

Prax oyt
BB — X' N/ (B Xl D)) (4.50)

2
my,

with the boundaries chosen to be g2, = 1 GeV? and ¢, = 6 GeV?. Commonly the semilep-
tonic decay B — X.lv is used as normalization because the factor (mP®®)> — the origin of

large uncertainties — cancels in the ratio,

B(B — X v)

N:mée&m)

(4.51)

An alternative proposed in [178] reduces the uncertainty due to the charm quark mass present
in the decay rate I'(B — X.lv;) owing to a normalization on the charmless semileptonic decay
B — X,ly, in combination with the decay B — X_.lv;. The application of this method to
the decay B — X,ITI~ can be found in [86,179],

Ku B(B — X,
b = Xcln) (4.52)
(B — X, ly)
with C' = 0.581 4+ 0.017, and will be used in the numerical analysis.
The so-called un-normalized forward-backward asymmetry is defined as
d*r B X It~
Arp (3 /\// — >sgn(z) dz (4.53)

where z = cos 6 and 6 is the angle between the positively charged lepton and the b quark in
the dilepton center of mass frame. Again the normalization is commonly chosen to be the
semileptonic decay B — X, lv;, however also the alternative of the combination of the decays
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B — X, v [86] can be applied. The so-called normalized forward-backward asymmetry is
given by the ratio

Ars(s) = [ TTE = XL con(z) de / A AL (4.54)

) dsdz ds

The numerator at the parton level of the forward-backward asymmetries introduced in (4.53)
and (4.54) is

/1 d’T'(b — sl*1™)
-1 dsdz

aem>2 G2.(m) | K5 K|

_ Y
sgn(z)dz = ( y yr (1-23)

™

~ o~ 2
X [3§Re(C§HCfg*) <1+ Oésfsno@))

20,

+ 6 Re(CSTCeft) (1 + f710(§)) — Aggem@)} (4.55)

7

The functions fi10($) summarize virtual and real QCD corrections [96,97]. The real QCD
corrections ABE™S(3) are infrared finite [98] and their contribution does not exceed 1% in
the SM. In the following they will be neglected. As in the case of the dilepton invariant mass
spectrum the non-perturbative contributions (Aqcp/my)™ have to be added to pass from
the partonic quantity d?T'(b — sl*17)/dé dz to the hadronic quantity d?I'(B — X lv)/ds dz.
They can be found in [172,174,176,177] whereas the (Aqcp/me.)? corrections are given in [74].

4.6 Phenomenological Implications

In what follows we will investigate the phenomenological implications of the MSSM cor-
rections for the branching ratio, the dilepton invariant mass distribution and the forward-
backward asymmetry. As far as the SM parameters are concerned we will take the values as
given in [86] throughout the numerical analysis.

MSSM Parameters and Constraints

At the present, neither squark masses nor elements of squark mixing matrices have been
measured, and thus in the numerical analysis we would like to vary the O(«y) corrected
fundamental parameters of the MSSM [146,147], taken to be in the super-CKM basis, rather
then the squark masses and mixing matrices of the “effective MSSM”. The latter are deter-
mined from the former in matching the “effective MSSM” with the full MSSM, and hence
have to be understood as MS renormalized quantities at the scale ;.

We refrain here from shifting the up-squark masses and mixing matrices of the “effec-
tive MSSM” into the on-shell scheme in order to avoid the appearance of large logarithms
“In(pz/ma,)”, as can be seen by inspection of (C.5). Then the next step is to integrate out
successively all other particles with masses much smaller than My and much larger than m;
when going to smaller scales using NLO renormalization group equations between all occur-
ring matching scales. In our analysis, however, we integrate out all sparticles other than the
gluino in one step with the top quark, taking into account the LO renormalization group



78 4. QCD Corrections to B — X 111~

5.0
45!

S 40!

X

G

< 35

T

I

5 30}
25|
2.0

1.2 2.0

B(B — X I*17) x 106

Figure 4.6: B(B — X,v) versus B(B — X,l*1~) for randomly chosen points in the parameter
space of the MSSM scenario. The three vertical lines indicate the SM prediction of B(B —
X,I*17) [86] and the three horizontal lines the one for B(B — X,v) [80,178].

running between j; and i, for up-squark masses and their mixing matrices I'V. Due to the
quartic QCD-interaction of the scalar squarks the LO renormalization group equations of
masses and mixing matrices are coupled and found to be

6

d o s s 8 U, 2 pU

M@maa = I —8mg, + 3 ; Py, Pra
6 2

d v _ a8 v Mg, UpU

M@Fab =13 > P 5 Fecl'ap (4.56)
e=1 c=1 Ua Uc
c#a
with

PV =TV1LR Ut 1R = diag(1,1,1,—1,—1,—1) (4.57)

The down-squark mixing matrix I'? still retains its 2 x 2 block structure after scaling it down
from g to py using LO renormalization group equations, and thus neutralino contributions
are absent in b — s+ (light particle) decays in LO electroweak interactions at the scale p;.
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Figure 4.7: \/B(B — X,7) versus 3¢, the position of zero of the normalized Apg(3) for randomly
chosen points in the parameter space of the MSSM scenario. The three vertical lines indicate the
SM prediction of 3¢ [86,92] and the three horizontal lines the one for B(B — X,v) [80,178]. In
the left plot the MS charm quark mass is used for B(B — X,v), whereas in the right plot mpP°',
resulting in a smaller prediction.

Having scaled the squarks masses and mixing matrices down to the scale u; the heavy
SM particles and the remaining (apart from the gluino) sparticles have to be integrated out.
Here we could either stay in the MS renormalization scheme or shift the squarks masses and
mixing matrices into the on-shell scheme as discussed in app. C. However, using the Wilson
coefficients in terms of on-shell quantities one needs of course on-shell input parameters.
In our approach we have MS quantities at the scale j;, and shifting them to their on-shell
values with the help of (C.5) only reproduced our numerical results in the MS scheme if all
squark masses are close in size. More properly one should integrate out squarks stepwise if
their mass splittings are large, and then shift to the on-shell scheme at the appropriate scale
for each squark. We chose to integrate out all squarks at one scale, and hence we refrain

from working in the on-shell scheme in our numerical analysis.
The fundamental parameters of the MSSM relevant for our numerical analysis are

the charged Higgs mass Mg+ and tan § in the Higgs sector,

i and M, that parameterize the chargino sector,

the gluino mass M; ~ O(p3),

the soft supersymmetry breaking scalar masses [M3|rr, [M?]rr,
e the soft supersymmetry breaking trilinear couplings Ay = (My) [ ME] g,

with [M3].r, [ME]rr and Ay assumed to be real and diagonal matrices. We remark that
the up-type squark squared mass matrix [MZ|grr cannot be decomposed into three 2 x 2
block-matrices for an arbitrary diagonal [M3].;, due to (2.70) [145].
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Figure 4.8: B(B — X,I*I7) versus §, the position of zero of the normalized Apg(3) for
randomly chosen points in the parameter space of the MSSM scenario. The three vertical lines
indicate the SM prediction of 3, [86,92] and the three horizontal lines the one for B(B — X I71~)
[86].

The decoupling of the gluino requires that the masses of all other sparticles should be
lighter compared to the gluino mass and consequently effects of order Mgparticle/M; can be
neglected. This provides an upper bound on the sparticle spectrum which is chosen to be
~ 600 GeV. Further lower bounds have to be fulfilled on sparticle masses by direct searches
from [180]

e m,+ > 94 GeV for the chargino masses,

e my, > 100GeV for the 2 lightest up-squarks whereas the remaining squarks are re-
quired to be heavier than 250 GeV.

Due to the matching of box-diagrams contributing to b — sl™1~ the Wilson coefficients also
depend on the masses of sneutrinos. As such contributions are rather small we fix their
masses to be degenerate, with values in the range of 100 to 300 GeV. Also the down-squarks
are approximated by a common mass of about 300 to 500 GeV, as they only appear in the
function [T1];, which effect is negligibly small.

A very important constraint on new physics models is the total inclusive branching ratio
for B — X,v. It has been shown within scenarios of the MSSM [99, 100] that the NLO
QCD corrections of one-loop diagrams with virtual sparticles can become important and
comparable to the present experimental uncertainty of B(B — X,y). Also a correlation
between the B — X,y and the B — X,I*I~ decays is obvious because both involve the
Wilson coefficient Ct;. However, the issue of theoretical uncertainties in B(B — X,7) is not
settled yet. Two main points arise here. First the choice of the renormalization scheme of
the charm quark mass m,. in the 2-loop matrix elements of the four-quark operators is still a
large theoretical uncertainty of 11% [178]. It can only be solved by the calculation of NNLO
corrections to B(B — Xv) as anticipated in [181,182]. The second point is concerned with
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Figure 4.9: Various contributions to the differential branching ratio for fixed MSSM parameter
point “P1" compared to the SM result and the partial MSSM result as functions of s.

the model-dependences entering the results of B(B — X,v) measurements when extrapolat-
ing to the lower end of the photon energy spectrum in the experimental analysis. In [183] a
total inclusive branching ratio B(B — X,v) = (3.34£0.38) x 10~ with a photon energy cut
Ey > my /20 was quoted. A very recent analysis of the Belle Collaboration [184] uses the full
inclusive spectrum between 1.8 < F, < 2.8 GeV, without invoking theoretical models of the
photon-spectrum. The necessity to introduce the photon energy cut in theoretical calcula-
tions in order to avoid model-dependent experimental results was also raised very recently
in [185]. The method proposed there results in larger uncertainties of the theoretical predic-
tion of the order of 25%. In our numerical analysis the most recent SM calculations [80,178]
will be used, however with Ey > my;/20, and the rather conservative interval

20x 107" < B(B — X,v) <50 x107* (4.58)

to show the correlations with the B — X 71~ observables.

Results

We find that the branching ratio B(B — X,I71~) receives only small corrections within the
considered MSSM scenario. This is illustrated in fig. 4.6 where for randomly chosen points of
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Figure 4.10: The differential branching ratio for fixed MSSM parameter point “P1" compared
to the SM result and the partial MSSM result as a function of § (left plot). The relative size
compared to the SM is given in the right plot.

the MSSM parameter space, fulfilling the lower sparticle mass bounds, the resulting B(B —
X,7) versus B(B — X, I717) is shown. The vertical lines correspond to the SM prediction
of B(B — X,I*17) and the corresponding estimate of the theoretical uncertainty [86]. The
horizontal lines indicate the SM prediction and theoretical uncertainties of B(B — X,v)
[80,178]. Deviations are possible from the SM central value B(B — X,I*17) ~ 1.60 x 107
up to +(15 — 20)% respecting the experimental bound from B(B — X,y). Therefore the
observable B(B — X,I*1~) of the low-s region will not serve as a good candidate allowing
to distinguish the SM and the considered MSSM scenario in view of the present theoretical
uncertainties. The reason is the smallness of the MSSM contributions to C§T and C$f which
dominate in the expression for B(B — X,ITl7) in the low-s region. Although 5$ﬁ could
receive a larger MSSM contribution its magnitude is strongly constraint by the measured
value of B(B — X,v).'> Furthermore, the contribution to |CS%|? to the differential branching
ratio falls like 1/5 and therefore only dominates for values of § < 0.05 which coincides with
the lower end of our integration range. The interplay between various contribution to the
differential branching ratio within the SM is depicted in fig. 4.9. There also a specific point
in the space of supersymmetric parameters with significant corrections to CSI is shown.

The position of the zero of the forward-backward asymmetry $, represents a more sensi-
tive observable than B(B — X,IT17) in the considered MSSM scenario. In fig. 4.7 we plot
VB(B — X,v) versus §q of the normalized Apg(3) for randomly chosen points of the MSSM
parameter space. There the vertical lines correspond to the SM prediction of §y and its un-
certainties [86,92] and the horizontal lines as in fig. 4.6 to the SM prediction of B(B — X,7).
We note that the points in both plots in fig. 4.7 are clustered along a straight line, exhibiting
very clearly the correlation between the value of Br(B — X7v) and $y within models with
minimal flavor violation as pointed out in [186].

The straight lines in fig. 4.7 are to a very good approximation model independent within
the class of models with minimal flavor violation. Only different points on them correspond

15Tt should be stressed that this is a quite loose terminology since for the LO expression of the radiative
decay B(B — X,v) the initial Wilson coefficients of the two operators O7 and Og enter. At the NLO this
becomes even more involved.
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“P1” | Mpy+ = 440.11 GeV, tan 8 = 5.01, p = —122.87 GeV, M, = 184.56 GeV
Ay = diag(370.29, 79.60, 535.71) GeV

Mp, = diag(299.63, 127.20, 454.43) GeV

My, = diag(219.96, 519.91, 167.68) GeV

“P2" | Mpy+ = 248.34GeV, tan 8 = 2.56, u = 192.83 GeV, M, = 489.68 GeV
Ay = diag(—419.30, 525.64, —540.81) GeV

Mp, = diag(339.09, 128.18, 393.52) GeV

My, = diag(232.08, 351.41, 234.77) GeV

“P37 | My+ = 451.74GeV, tan 8 = 4.89, i = —540.06 GeV, M, = 582.50 GeV
Ay = diag(—375.95, —324.59, —497.23) GeV

Mp, = diag(503.97, 281.42, 264.06) GeV

My, = diag(444.06, 186.86, 417.40) GeV

Table 4.1: Three selected points. All values are taken at the scale 15 = M; = 1TeV, and the
down-squarks and sneutrinos are assumed to have masses about 300 and 250 GeV, respectively.

to different models and/or different sets of parameters in a given model. On the other hand
the position of these lines depends on the parameters of the low energy theory, in particular
on the charm quark mass that enters sensitively the evaluation of Br(B — Xv) [178] but is
practically irrelevant for 5y. In the left plot in fig. 4.7 we used the MS mass m.(m.) and in
the right plot the mP° mass, that results in a different straight line. The SM prediction for
B(B — X,v) is lower in the right plot than in the left plot. It is clear that the usefulness of
the correlation between the values of Br(B — X7v) and §¢ in testing the MSSM will depend
on the progress in NNLO calculations for B — X,y that should significantly decrease the
sensitivity due to the choice of m..

As seen in fig. 4.7, in addition to dense points in the ballpark of SM expectations, there
are values of Br(B — X,v) and §p within the MSSM that are larger and smaller than the
SM predictions. This should be contrasted with the result in a model with one universal
extra dimension in which only smaller values of Br(B — Xyv) and §; were possible [186].

In fig. 4.8 we show Br(B — X,J*17) versus 3. In the left plot the MS definition was
used for the charm quark mass in the evaluation of B(B — X,v) whereas in the right plot
the pole-mass definition. As a consequence the allowed range of the position of the zero
of Arp(5) becomes shifted a bit towards higher values. The comparison of figs. 4.7 and
4.8 shows that the position of §y is much more sensitive to the Wilson coefficient C7; and
consequently to Br(B — X,v) than to Br(B — X,IT17) itself.

In fig. 4.9 we show the four main contributions due to |é§§§710|2 and Re(CTCE™) to the
differential branching ratio, see (4.49), as functions of § for the fixed MSSM parameter point
“P1” given in table 4.1. Each plot shows the SM (light grey band) and the MSSM contribu-
tion. To demonstrate the reduction of the renormalization scale dependence p; we show the
MSSM result when including all calculated corrections (dark grey band — “MSSM”) and the
partial MSSM result (shaded bend — “mssm”) obtained by discarding all contributions with
n=2andi={H,C,Q} to the functions [X]? in (4.15), but not to the SM. The bands are
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Figure 4.11: Normalized forward-backward asymmetry Apg(3) versus 3 in the low-5 region for
two (left, right) fixed MSSM-parameter points “P2" and “P3" compared with the SM prediction.

obtained by varying the renormalization scale p; € [120,300] GeV and the low-energy scale
iy € [2.5,10] GeV. Large deviations from the SM appear in the contribution |C¢f|2
due to the Z-penguin function [CY] which is suppressed in |C&F|? as can be seen in (4.14).
The inclusion of the NNLO matching conditions in the MSSM reduces the renormalization

scale dependence to comparable size as obtained in the SM calculation.

mainly

The sum of this four separate contributions (and the bremsstrahlung contributions) adds
up to the final differential branching ratio shown in fig. 4.10 in the left plot. As before the
bands are obtained by variation of the renormalization scales y; and u,. The reduction due
to MSSM contributions is roughly —30% for values of § > 0.15 as can be seen in the right
plot of fig. 4.10 where the relative size compared to the SM result (obtained for p; = 120 GeV
and p, = 5GeV) is given by the quantity AQ = Q/Qsm — 1. Thus the shape and magnitude
of the dilepton invariant mass distribution provides in certain regions of § a more sensitive
observable then the integrated branching ratio itself in the search for deviations from the
SM prediction, depending on the MSSM parameter point. It should be noted that the very
small scale dependence around values of § ~ 0.05 are due to accidental cancellations between
the 4 separate contributions in (4.49).

In fig. 4.11 we show the normalized forward-backward asymmetry Agg(8) for the low-s
region. The left plot illustrates the result for the fixed MSSM-parameter point “P2” and
the right plot for “P3” that are given in table 4.1. The SM result is shown in both plots
for comparison. Again the bands are obtained by varying the renormalization scales p; and
1y as in figs. 4.9 and 4.10. Due to the strong correlation of the position of the zero §; and
B(B — X,v) in the considered MSSM-scenarios further shifts to the left or right (as shown
in the two plots) of §y are unlikely.

In fig. 4.12 the fundamental MSSM parameters p and [Ay ]33 are shown versus the position
of the zero of Apg(3), 89, for the sample of random MSSM points given in fig. 4.7. The lower
and upper bounds of §; present in both plots are evidently due to the strong correlation to
B(B — X,v). The “hole” in the p distribution for values |u| < 100 GeV comes of course
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Figure 4.12: Correlation between §, and parameters 1 and [Ay]ss produced in our scan over
MSSM input parameters. The distributions for the other soft-breaking parameters are flat.

from the bound on the lightest chargino mass. As can be seen for small values of 5y also
smaller values of p are preferred. The allowed values of [Ay]s3 versus §y generated during
our random scan are shown in the right plot. Almost no bounds are found here, only towards
smaller values of §y very small values of [Ay]33 seem to be excluded. We could not find such
correlations for all other soft-supersymmetry breaking parameters.
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Chapter 5
Conclusions and Outlook

The first topic of this thesis was concerned with an analysis of the rare decays K+ — wtuw
and K; — 7% in the context of the general MSSM with conserved R-parity. We briefly
reviewed the effective Hamiltonian relevant for these decays, and presented the corresponding
branching ratios in a form particularly suitable for our numerical analysis. The function X
entering these observables has been calculated in the mass eigenstates basis for all particles
of the MSSM in order to take all sources of flavor violation in the squark sector into account.
This generalizes earlier work [44, 64, 65] where the mass-insertion approximation was used
exclusively in calculating the X function, and only those flavor changing entries in the squark
mass-squared matrices assumed to be the most important have been considered.

As a consequence, in our numerical analysis we had to consider a huge space of MSSM
parameters, 16 in the constraint scan and 63 in the extended scan, which to our knowledge has
been presented here for the first time. To find the possible large deviations of the function X
from its SM prediction, we used a random scan based on an adaptation of the Monte Carlo
integration algorithm VEGAS [66-68] rather than a random generation of points with a
uniform distribution. The advantage of such a scan is its ability to find the maximal allowed
regions of the parameter space and the extremal values of observables in a reasonable time.

Concerning the individual contributions to the function X, we find in agreement with
[44,64,65] that chargino-mediated diagrams are always strongly dominant, typically one order
of magnitude larger than the neutralino contributions, whereas gluino-mediated diagrams
are fully negligible. However, unlike these authors we find that in addition to chargino-
mediated Z penguins, chargino box-type diagrams can be important and even dominant for
light charged slepton masses, as seen in fig. 3.4.

The answers to the questions posed in the introduction are as follows:

e The phase fx can be as large as found in [48,49]. In fact as seen in fig. 3.7 one finds
typically —160° < 0x < 50° with a slightly increased range for the extended scan
as seen in fig. 3.9. However, among the allowed values of | X]|, it is not easy to find
simultaneously | X| ~ 2.2 and fx &~ —85° as found in [48,49]'. Indeed, for 0x ~ —85°
the allowed value of |X| in the constrained scan is typically lower than its SM value
of 1.53 and only in the extended scan can it reach |X| ~ 2.0. On the other hand for
—50° < fx < 50°, one can have |X| as high as 7. A similar situation is found for
6x = —(150 = 10)° with |X| reaching values as high as 8.

1See also the footnote on p. 4.
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e As seen in figs. 3.6, 3.8 and 3.9, the branching ratio B(K* — 7tvv) can be naturally
obtained in the ball park of the central experimental value given in (2), and simul-
taneously, B(K; — n°v) can be enhanced by an order of magnitude over the SM
expectation with the ratio of both branching ratios of K; — 7w and K+ — ntvi
reaching the bound given in (4). Comparing figs. 3.6 and 3.7 we observe that the ex-
perimental bound given in (2) has a significant impact on the maximal allowed values
of | X| with essentially no impact on fx. This is not surprising as K™ — 7ntvw is a
CP-conserving decay. Clearly an improved upper bound on B(Kj; — 7vv) should
have an important impact on the allowed values of 6.

Finally, we would like to mention that the numerical analysis of the extended scan can
be used to put bounds on the allowed magnitude of the mass-insertions present in the
squark mass-squared matrices, without resorting to the simplifying assumptions made in
the literature. There, the bounds on the mass-insertions coming from various experimental
results were obtained by the approximate procedure of requiring that each individual term in
the mass-insertion expansion at most saturates the measured value. This neglects of course
the possibility of significant cancellations between contributions from different terms in the
expansion and also the interference with the SM contribution that is always present. In
our approach, we use the exact results and hence we are able to “derive” improved bounds
on the mass-insertions. The results of such an analysis, including additional experimental
constraints not considered here, will, however, be presented elsewhere.

The second topic of this thesis was devoted to the presentation of a complete NNLO
QCD analysis of the semileptonic inclusive decay B — X I*I~ (I = e, u). This calculation
was motivated by the fact that in the SM the corresponding observables suffer from sizable
renormalization scale uncertainties which are reduced considerably at NNLO. Consequently,
in order to have a chance to reveal supersymmetric effects in this decay, it is essential to
reduce the renormalization scale uncertainties in the MSSM as well. And in the light of the
improving precision in measuring the branching ratio B(B — X,ITI7) at Belle and BaBar
in ongoing experiments, this decay channel provides a valuable source of information of new
physics scenarios complementary to those coming from the radiative decay B — X,7.2

As a first step in this challenging enterprise we have assumed that the down-squark mass-
squared matrix decomposes into 2 x 2 matrices for each generation, that the gluino is heavy
and decouples from the theory, and furthermore we concentrated on region within the MSSM
parameter space with tan 3 < 10. Within this special scenario we determined the squark
masses and mixing matrices present in the “effective MSSM” with a decoupled gluino from
the O(ay) corrected squark mass-squared matrices present in the “full MSSM” including
the gluino when matching both theories at the scale puz ~ O(Mj). The resulting effective
Lagrangian was then scaled down using renormalization group techniques to the scale
where all remaining sparticles, assumed to be much lighter than the gluino, together with
the Higgs bosons, the W bosons and the top quark have been integrated out. At the NNLO
level in QCD, the latter matching procedure required the calculation of two-loop Wilson
coefficients, some of which were already present in the literature and some of which have
never been calculated before®. We calculated these Wilson coefficients in the MS and on-shell

2In the very recent work [187] it has been pointed out that the measured branching ratio B(B — X,I717)
already indicates that the sign of C~’$H is unlikely to be different than in the SM, an information which cannot
be extracted from B(B — X,7) alone.

3We have re-calculated all contributions relevant for the NNLO QCD analysis of the decay B — X, It1~
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scheme for squark masses and mixing matrices. While the latter has the advantage that all
contributions involving “quartic QCD interactions” of squarks are absent, it introduces large
logarithms once we allow for larger splittings in the squark mass spectrum, and therefore
makes predictions following from perturbation theory unreliable. Hence, in our numerical
analysis we worked throughout with MS renormalized parameters in the squark sector.

Solving known renormalization group equations for Wilson coefficients in order to scale
our findings down from the hight-energy scale u; to the low-energy scale pu;, and including
known low-energy matrix elements up to the NNLO level, we were able to calculate with
this accuracy the branching ratio for B — X,[*tI~ in the low-s region, the corresponding
dilepton invariant mass distribution and the forward-backward asymmetry.

Our main findings are as follows:

e As seen in figs. 4.9, 4.10 and 4.11, the i dependence present in all quantities of in-
terest at NLO is visibly reduced at NNLO depending on the magnitude of the MSSM
contribution for the particular MSSM parameter point, and it is typically of the same
size as the one of the corresponding SM result.

e Supersymmetric effects in the branching ratio amount only to at most 20% (cf. fig. 4.6),
and consequently in view of theoretical uncertainties in this quantity it will be very
difficult to see them unless experimental and theoretical uncertainties will be signif-
icantly reduced. In this respect the dilepton invariant mass distribution can offer in
certain regions of § the possibility to distinguish the supersymmetric effects from the
SM prediction. Such effects can reach up to 30% depending on the MSSM parameters
and the value of 3, as seen in fig. 4.10.

e The best chance to observe supersymmetric effects in this decays is through the
forward-backward asymmetry. We find that the position of the zero §y in this asym-
metry can be significantly shifted both downwards and upwards relatively to the SM
expectation (cf. fig. 4.11). These shifts are accompanied by shifts in B(B — X,v)
as shown in fig. 4.7. As the predictions for 3 is theoretically rather clean, accurate
measurements could be able to detect a possible departure from the SM prediction one
day.

The next step is of course an analysis with a more general scenario than considered here.
On could for example relax our first assumption and consider an arbitrary down-squark mass-
squared matrix, which makes it necessary to calculate also diagrams with virtual neutralino
contributions. Such contributions are, however, typically smaller than chargino-mediated
diagrams, and therefore we do not expect large deviations from our findings. More promising
in this respect is to relax our second or third assumption. But once the gluino is assumed to
be relatively light, or that tan § is large, unavoidably new operators besides those relevant
for the SM have to be taken into account. For example, considering the b — sl™1~ transition
at large values for tan (3, neutral Higgs boson contributions give rise to scalar operators and
the corresponding anomalous dimensions turns out to be a 54 x 54 matrix. In [188] only
a subset of the relevant operators and only their one-loop mixing has been considered in a
model-independent analysis of radiative and semileptonic B decays®. As already in the SM

already present in the literature since some results have never been checked by another group.
4The one-loop mixing of gluino-induced non-SM operators in the framework of the MSSM for the b — s
transition has been presented in [189].
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the magnitude of the NLO contributions is of the same size as the LO contribution, it is
desirable to extend the analysis of [188] to the NLO, which requires the calculation of the
two-loop 54 x 54 anomalous dimension matrix and the one-loop low-energy matrix elements of
the corresponding operators. Such a calculation is essential to arrive at reasonable estimates
for the branching ratios and forward-backward asymmetries for the decays B — X [Tl and
B — K®[*]~ in the presence of new scalar operators, and will be postponed to another
publication.
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Appendix A

Matching Conditions for d — svv

In this appendix we collect the contributions to the functions X, and Xg introduced in (3.3)
within the general MSSM in the mass eigenstates basis for particles and sparticles. They
can can be divided into two classes, generated by box-type and Z penguin diagrams:

Ky K3y Xprluxe = Y {[Bigluxe + [P gludxe} (A1)
i=W,H,C,N,G

where W denotes the SM contribution and H, C';, N ,G diagrams with virtual charged Higgs
boson, chargino, neutralino and gluino exchange, respectively. This formula corresponds to
a generalization of (3.3) to?

3
H = > K31K§J{[XL]JIKL(JJPLdI)(VKPLVL)

KI-1
+ [XR]JIKL(dJPRdI)V+A(17KPLVL)} (A.2)

where for K — mwvv decays one should use I = 1,J = 2 and K, L are neutrino flavor
indices. In general the X, p quantities defined in (A.1) carry lepton flavor indices. Only
in the case when the lepton flavor number is conserved in the slepton sector and the left-
and right-slepton flavor diagonal mass parameters are identical for all three generations,
the X, g are to a good approximation (neglecting small terms proportional to the lepton
Yukawa couplings) universal, as assumed in (3.3). The relation between the X p of (3.3)
and of (A.2) is given by

(X1 rloikre = XKL (A.3)

In the numerical analysis presented in sec. 3.3 we assume the above mentioned simple flavor
conserving structure of the slepton sector and use the definition given in (A.3).

Defining further

2 2
m3 m3
— = A4
e MZ,’ v M J%H (4.4)

I'Note that the subscript L on X and Py, refers to the chirality structure of the quark current and hence
is no summation index.
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the non-vanishing box contributions read?

(B 1sixr = —Ks K3y 4f1 () Ok

2 4
mq,mq,m;, tan® 3

(Bl s1xr = =Ky K, RYERTER fiye) Ok
c Msiy o, t N Ut U 2 2 2 2
[Br liikr = — 51 (X5 kol X5 o [ X5 10 X Jar m;zjmijO(m;(;mmx;mmaaaméb)
c M siy vt N Urt U 2 2 2 2
[Brlikr = 1o [XG Trn X Jor [ X577 T 0al X R]a1D2(m>~<i+7m@amaaamgb)
[BY ke = ~ Misiy 2P 1l ZP

4et

1
X {[ZINL ]KN[ZJ]-VL]NLDQ(m%,m%,mga,ml%]v)

N T Nz 2 2 2 2
+2[Z;" kN2, ]NLm;(?m;(?Do(mig,m;(?,mda,mﬁlv)
2 4

M sy,
4et

T
[ZDL ]Ja[ZiDL]aI

[BR stk = j

T
X {[ZJNL ]KN[ZiNL]NLD2(m§~<?7mfz?amga?ml%N)

+ Q[ZiNLT]KN[ZJ]'VL]Nnggmgg Dy (m3, mfzg, ms mgN)} (A.5)

while the non-vanishing penguin contributions read

[PF/]JI = KlengZ(xt)

cot? BMZ,,

[PE]JI = _K3IK§J 2M5V

Yo f1(ye)

ma,mq, tan® 3

Pl = Ky, K;
[Prlir = K3 K3, ONE,

fi (yt)

s? +
[P = S—ZZ[XJUL 17l X7 Jor

" 2 2 9
X {ZUﬂUﬂ(Sab M Mgt Co(mg, Mt m)zj)

Up? X

— ViiViaday Co(miy, e my) + (DVETVE) 06,5 Co(m s m3, mﬁb)}
i j i

2Summation over all indices other than J, I, K and L is understood. All box and penguin contributions
presented here can also be found in [190].
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S
(PRl = 8?2 [XJUL 17a[ X 0

X

{2‘/}*1‘/1' Oap Mg+ Co(mi,, m7s,mi )
J

Up? X;

= Ui Uj10ay Ca(m,, mie,mi. ) — (DURTVRT) g 02(mf~<,+7mz21a’m?1b)}
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(PY)r = S (201,24

{(I’DRFDRT)abéw C’g(m 0 m?i ,mfl )
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+ 2(Njy Niy — NjsNiz)dan mfc?mi?c()(mfib’ m?zg: mi;’)}

(PN s =~ (207,125,

{(FDLPDLT) p0ij Co(m? o,md ,m2)

PERI¢

gs s
[Pr]r = =g (DPRDPRD)  [DPET] 5, [DP2) Co (M, m, )

3e2
S
[PS];; = — g%ya@qﬂﬂnw%ﬂhwﬁmmuM'm;n@) (A.6)

For the definitions of the couplings XVt.r XNe.r  7ZPir and ZNek we refer the reader
o0 [191,192]3. The loop functions appearing in these Wilson coefficients are given by

x rlnz
filz) = =) 11=a2p
_z(6—z) x(24+3z)lnx
PO =500t s -y

_ Y Y
CQ(QJ,Z/,Z) - (Jc—y)(z—y) hlx—|-<yHZ)
Co( )——2 + log4m — +1n—“2+1— v 1n3+( “ 2)
2\, Y, 2 4A—D 0og am TE (I_y)<z_y) T Yy

3We remark that in [192] the couplings X V£.2 and ZNt.® are denoted by X *£-# and ZLL.® | respectively.
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D0<m7y727t)_ (y—x)(y—z)(y—t)l $+(y )+(y t)
Do, 2. 1) = v Y (o) 4 e (A7)

(y—z)y—2)y—1t) =

The infinite and p-dependent terms in Cy always cancels out in flavor off-diagonal penguins
after summation over squark, chargino and neutralino mixing matrices. We recall that
fi(z) = Bo(z) and fy(x) = Cy(z) in the notation of [118,120].



Appendix B

Non-Physical Operators for b — slT1~

The effective low-energy Lagrangian relevant for the B — X,I*I~ decay consists of several
operators which can be divided into two classes, namely physical and non-physical opera-
tors. In the following we will discuss the non-physical operators relevant for two-loop QCD
corrections to the B — XTI~ decay. These are the so-called evanescent operators, i.c. al-
gbraically vanishing in four dimensions, and the EOM-vanishing operators, i.e. vanishing by
the QEDxQCD equations of motion. The effect of these non-physical operators is twofold.
First, in the matching calculation they contribute to the Wilson coefficients of physical op-
erators. Second, in calculating the anomalous dimension of the physical operators they are
necessary to remove the divergences of all possible 1PI Green functions with single insertions
of physical operators.

B.1 Evanescent operators

All evanescent operators we encountered in the two-loop QCD calculations are collected in

‘Cevanescent = W{ Z Z KQbKQs (CEUEM + CEQiEQi>
Q=u,c i=1

6
+ 3 Kakiond (08, B+ €8, Bu) +CF, |

Q=u,c,t 1=5
2,5
+ KRG Y (ChyuBE + Clyn L)

i=1

+ Cpu By® + Cpun EY + (L R)}} (B.1)

Their explicit form defines what the MS scheme means in the effective theory. Introducing
the short-hand notation 7v,, . = Yu - Vu, those relevant for the b — sgq transitions read
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as [82,83,158]
EY = (5% PLT Q) Q3" PLTb) — 16 OF
Ef = (5%upPra) (Qy" Prb) — 16 OF
B = (EVWPAUPLb)Z (@Y7 q) — 20 O5 + 64 O3
Eis = (5%uwpro PLT" b)zq( P T) — 20 O + 64 O,
ES = (5%mpm0 PLTQ) Qv PLT®) — 256 OF — 20 ES
E = (57mo PLQ) (Qv"77 PLb) — 256 OF — 20 ES
B = (%uppons P1L0) Y (@7"77q) = 336 O + 1280 O

Eas = (57wprons PLT® b)zq( GY"PATEOT ) — 336 Og 4 1280 O, (B.2)

where the sum over ¢ runs over all light quark flavors participating the effective theory.
For the b — sl™l~ two-loop matching within the SM one needs

2

e —
FEig = ?(g’mupPLb)(l’Y“W)PLl) -8 Og +8 010 (BS)

We remark that the definition of this evanescent operator is irrelevant for QCD corrections
because it does not appear in the calculation of the anomalous dimension matrix.

All of these evanescent operators can be shown to vanish in four dimensions by means of
the identity

Yo Y = GunYp + Guo Vo + GupVu + L€apwpY Vs (B.4)

The appearance of 5 in this identity exhibits the reason why we have to introduce evanescent
operators in D # 4 dimensions.

The matching of b — sI™l~ within the considered scenario of the MSSM requires the
introduction of

Ett = (5PLU)(IPLb) 4 5(SPLb)(IPLL) + (50, Pb)(lo" PLl)

E{" = (5Pyl)(IPrb) + 1(57,Prb)(Iv" Pl

E3t = (57, PLl)(In" PLb) — (57, PLb) (In* PLl)

EYF = (57, PLl)(I1y" Prb) + 2(5Pgb) (1Pl

Eft = (50, Pl)(lo" Ppb) + 6(5PLb)(1Pl) — (50, Prb)(lot Prl)

E{" = (5yuPLl)

E5LL = ( IWP
= (

LR
E5

Iy Pyb) — 16(57,PL1) (1" PLb)

(
(Iv** Pgrb) — 4(5PLl)(IPgrb)
rl)
1)

(I Prb) — 4(57, Prl) (17" Prb) (B.5)

Vurp L
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and those obtained by the substitution L < R. The first five operators are so-called
Fierz-vanishing evanescent operators. They can be shown to vanish by observing that
{1, 9", 75, v"v5,0""} is a basis for complex 4 x 4 matrices. It is again the appearance of
vs in this set that makes it necessary to introduce evanescent operators.

For the calculation of the two-loop anomalous dimension matrix only Ej1 121516 and
Es; 92,2596 are relevant. However, the definition of the operators Ea 999596 is not unique
because we can for example add any multiple of € times any physical operator to them
without affecting the one-loop and two-loop anomalous dimensions. This is contrary to
what happens if such a redefinition is applied to the operators Fii121516. However, the
evanescent operators Eoj 29 9506 become more important at the three-loop level [84,193].

B.2 EOM-vanishing operators

All EOM-vanishing operators we need are given in

e (& 3
Lrom = NG Z KaonKgs {Z CJ%,Z-N& + Z O]%5(2i+1)N5(2i+1) (B.6)
i—1 =0

Q=u,c,t
Here, we have to consider both gauge-invariant and gauge-variant operators.
Using the properties of the covariant derivatives

D, =8, + ieQy +ig, Gy T, D = 579, + g, f*°G¢ (B.7)

where @) is the electric charge of fermion f on which D, acts, the gauge-invariant EOM-
vanishing operators can be chosen to be [82,161]

i
N3g = ?Mﬁ,(glﬁPLb)

1
N3 = — (59" PLT"b) D}, G", + Oy

s

1
N3y = ?mb(ﬂpﬂ)PRb)

N3z = ig(nglDDPLb)

Y
Niy = * {(5 @ UNVPLTab)GZV — GZV(ET(IO"WJDPL[?)} + Og
N5 = % [(5 jp UWPLb)FW - FNV(EU#”ppr)} O
e
N3 = ?(g'prb)ayF;w — Oy (B8)

where we neglected the strange quark mass.
In the above given equation Oy is redefined so that it contains a sum over all the light
charged fermions f weighted by their electric charges @),

2

Oy = =5 (FuPib) Y Qs ) (B.9)
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Such a redefinition of Oy does not alter its Wilson coefficient at leading order in electroweak
interactions.

Strictly speaking N3; is no EOM-vanishing operator. However, we will adopt a renor-
malization prescription on the full theory side such that its Wilson coefficient gets no con-
tribution, and thus we put it here with the other gauge-invariant operators.

We note that the operators O;._ 19 and N3g._ 36 close off-shell under QCD corrections up
to evanescent operators [82,153-157] if one works with background gluons and photons.

The gauge-variant EOM-vanishing operators relevant for the calculation of the two-loop
anomalous dimension matrix are given by [84]

Ns, = —gim,, {S(Jp GoT" — @aTup)PRb]

N = =1 |S(DD GT* = GT*PP)Psb + iy (56T PEsb)
Ny = _gl {S(bﬁu G*T* — G*"T“D, D) Prb + imb(sG““T“DuPRb)}
N = 1 [ D T D P + s P @1 P (B.10)
where we again neglected the strange quark mass.
They are necessary in the calculation of the anomalous dimension matrix of the physical

operators beyond LO in order to remove the divergences of all possible 1PI Greens functions
with single insertions of operators even if one works with background gluons and photons.



Appendix C

Matching Conditions for b — slT1~

This appendix summarizes the matching results relevant for B — X, I*1~ in the SM and the
considered scenario of the MSSM as introduced in sec. 2.5. It provides the formulae for the
functions [Xj]? introduced in (4.15). We define the mass ratios

2 2 m’ 2 2
_ oy oy % _ Mmg, My, C1
T = 2 Yy = 2 Ty = 9 Yai = 9 VKi = D) ()
M M
W H+ m_y m_, m_,
Xj X X

and introduce the abbreviations

2 2 2
Hi Hi Sw
L =n 2t Lo, =InFt - W C.2

ST T e T OK, K ©2
The integral representations for the dilogarithm Lis(z) and the Clausen function Cly(z) are
as follows,

LiQ(Z) = — /OZ dtw

Cly(z) = Im [Lia(¢%)] = — /O " 0 1n [25in(0/2) (C.3)

As a consequence of the adopted renormalization procedure outlined in sec. 4.2, all masses
of quarks and squarks, as well as the mixing matrix I'V and the effective couplings XZ-U L and
XiU R appearing in this appendix are MS quantities. The masses of particles which do not
interact strongly are not renormalized and thus might be interpreted as their tree-level
masses. For the definition of the couplings X;'* and X'* we refer the reader to [101].

To obtain the Wilson coefficients in terms of on-shell masses and mixing matrices for
squarks, the following steps should be performed:

1. Remove the contributions due to strong quartic squark couplings, i.e. the contributions
with the index ¢ = @) in the functions [Xj]™.

2. Make the following shift of the up-squark mass in the contributions with the index
1= X

ole as(mgde) 4
m2, () = (ml >2{1 -

Ht
1o ()] o




102

C. Matching Conditions for b — sltI~

Observe that this shift involves only the gluonic corrections, since the contributions
due to strong quartic squark couplings have already been considered in step 1.

These two steps are a direct consequence of the application of the full scheme shift from the

MS to the on-shell scheme given by

2 pole\ 2 s (Mt> 4 He
2 = (mt 1-— —|7+61
mua (:ut) (mua ) { At 3 + n mgole
6 U polen2 pU 1
s 4 Pa mﬂ, a
+Oé(Mt)_Z b( b1) b 1+2In Htl
A1 3 ( pole m}zo e
b=1 Ua Up n
6 ole
PU( 1% ) pU L
U ec t
Fab(:ut) r § 1: ;_: pole . (mgzﬂe)g 1+2In mgjle

)
g

(C.5)

On the left hand side of these equations the squark masses and the mixing matrix are
running MS parameters, whereas on the right hand side they take their on-shell values. The
couplings a, and ay [cf. (2.79)] present in X" and X7 are still MS renormalized in the

on-shell scheme for squarks.

C.1 Standard Model Contributions

The evaluation of Feynman diagrams contributing to b — s+(light particles) Green functions
within the SM mediated by “top quark — W boson” loops yields the functions denoted by

the index ¢ = W in (4.15). We find

[E4]?/V _ 79(?(14*16)1‘ Ay + 7713562(111 $§2x+4
[Arlyy = S5 In + 2O
[Fily = iz Ine + 5=
[Bilw = [Blbly = p ne + it
Oy = 222 Ina + S8
[ Df;l]?/v _ —3m4+32m8?;5;1§j+32$—8 Inz 4 —47x3+1203é7(si:?))%2x+104
[Gs]{ly _ 10964710095;&3055)4»16036 40L1 (1 ) + 30:1;372;1125:12;3)32%68 Inz
I 76:;:37?19?%:31361“42 4 [901227&16%%0 I+ 35x5+§(ifz;f2;)210x 20] L,
[E4]11/V _ 515:04—614&3(183 —1902+407 5, (1 %)
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4 =10302" +4350° +13732° +19500 424 | . | =20467"+456042° 30237 +665322—10960
108(1—x)5 1944(1—z)7

_ 3 2 _ 4_ 3_ 2 _
+ 11252°4+16852°+380x—"76 hlflf + 133z* —2758x° —2061x°+11522x 1652] Lt

54(1—x)5 324(1—x)4
1 3224424423 -16022+16z T ; 1
[A7ly = 9(1—z) Ll?(l z)

+ —774x* 2826234199422 —1302+8 Inz + —9424 1866523 4+2068222 —9113x42006
81(1—=x)5 243(1—x)4

—1224—9223 45622 —682%4—2022% —80422 47942 —152
+ 3(1—x) Inz + 27(1—x)3 Ly

[Flyy, = drt=tei=tietory (1 — 1)

+ —1442* 4317723 4366122 +2502—32 Inz+ —2472* 41189023 +3177922 —29662+1016
108(1—=x)5 648(1—x)4

172343122 =352 417023444722 +3382—56
+ | Ty Inz + 18(1—z)3 Ly

— 1 —9 .
Byl = [Blolw = e L2 (1= )

SR I+ g+ | HE I + i L

_a® Ay
(Colw = T Lia(1 - 3)

3x3 41422423z 4234722429z 8x242x 342248z
BT Inz + 30-27 T | (o) Inz + 1—2)2 Ly

1 4 3 2
Y 38021135203 4165602—7840+2567 : (1 _ 1
[Dyly = 81(1_x)? Liz(1 - 3)

4 3_ 2 _ _ 4 3_ 2 —
+ 304z 4-17162° —4644x°4-27682—"720 Inx + 61752%+41608x°—66723x~+331062—7000

81(1—x)5 729(1—x)4
64824 —72023 —23222 —160x+32 —35224 4491223 — 828022 +33042—880
+ 81(1—x)° Inz + 243(1—x)3 Ly (C.7)

The functions [Xj]j;, have been first calculated in the following papers: [A7]}, and [Fgljy
in [100,159-162], [BY]Y, and [C{]}, in [38,39,41,42] and [Gs]Yy, [E4ly, and [DY]Y, in [82].

C.2 Charged Higgs Boson Contributions

The evaluation of Feynman diagrams contributing to b — s+(light particles) Green functions
within the MSSM (but also 2HDM of type I1) mediated by “top quark — charged Higgs boson”
loops and denoted by the index ¢ = H in (4.15) yields

2_ 3_99,2
[E4]2I = cot? 3 { g’f’y_f)i Iny + W20 36?&14;316;/}

0 32 2_ _ 343 2 3 2_
[Aelly = S22 0y 4 S5 4 cot?  { I ny 4 i

0 2 2 3_5,2_
[F8]H = (y_yl)3 lﬂy + 721@_%/2 + cot? ﬁ {Q(yy_1)4 lny + y12(2y_1)§y}
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(Bl = (Bl =
(D] = cot® 5 { S5t Iny o+ TGE | 8
[G3]}y = cot? B {—103’;7*(30_1/;;209L12(1 - 5) - BSOS I
P | Sy 4 =Sl
[E4]11q — cot? 3 {515y4 9§f(z/y +19)9y 1827 5 (1 _ i)
1030y4_21’(7)gyzy3—115y +980y 1 y + —29467y4+68142y3_—67417y2—18134y
y—1)° 1944(y—1)
4 [—375%1@9531,;;182;/ Iny + 133y4—10;3i&i0%iy2—2320y:| Lt}
[ A7]11q _ 764y94(ry22%3)/2796yL1 (1 _ % ) i 728y39+(25161y;7132y Iny
16y3;(20f31/)23+56y 4 [24;, +(212%2764y1 ny+ 32y37(2881y) +84yi| L,
+ cotQB{ —32y &;48131)3—72;/ Li, <1 _ i) I —126y4+18611(4:gf’1—)§26y2+14y Iny
T 1t vy ] 1)
[Fs]llq o —17y§(4y—2_513,;—36yL12 <1 _ i) I —34y63(—;—!7_y12)1165y Iny
293 —444%4+143y + [ 34y —38y1 7y3—16y2+81y} I
4(y=1)° -1 3(y-1)° t
¥ cot? 3 {%ﬁ’j’mh (1 _ i) AR Iy
4451y4776%(13é(;rl§;53y ~1130y | [ %7(@?; 7131y Iny + 7y471817§;72?§32+38y] Lt}
(BL]}; = (Bl =0
i, = é‘ﬁ%v cot? 9 { 31013, (1 1)
S iy + B+ %y + ] £
[Dgl]llq — cot2 3 {380y —582fg;y +17)2y H128yT 5 <1 _ %>

596y* —672y3 +64y>+204y Iny+ —6175y*+9138y3 —3927y% —764y
8I(y—1)° Y 720(y—1)3
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432y* —456y3+40y% +128y —352y*—972y3+1944y% — 1052y
+ 8L(y—1)> Iny + 243(y—1)2 Ly (C.9)

The following functions [Xj|}; have been calculated previously: [A7]}; and [F]}, in [100,161,
163] and [Bi)}, and [C{]}; in [101]. The function [D4]}; has been calculated in [164] and
confirmed in [165]. The results for the functions [G3]}; and [E4]}, are new. Note that [BY]},

and [Bl]} vanish due to the approximation of vanishing lepton masses.

C.3 Chargino-Squark Contributions

The evaluation of Feynman diagrams contributing to b — s+(light particles) Green functions
within the MSSM mediated by “chargino — up squark” loops and denoted by the index ¢ = C'
in (4.15) yields'

kM2 1

[E4]% = m2W [XzUL ]2a[XiUL]a3 hz(LO)(yai)
X

kM2 t M+ 1

[A7]2' = 2W {[XzUL ]Qa[XiUL]aZS hg[)) (yai) + A[XzUL ]Qa[Xz’UR]aS th)(yaz)}
M? Mg+
[Felg = 5% {[Xf“]za[XFL]ag 7O (Yai) + — [ XU, [XUR) 5 hé"’(yai)}
T ’fMi%VS%V Ut Ur
[BQ,IO]C = :FW[X]‘ J2a[ X " a3
X

T T
X {[XiNL ]lK[XJNL]Kl 5(0)(%1;7%2‘,@1(@') F 20X, }ZK[X;VR]KZ\/JUﬁfG(O)(%myaz‘,UKi)}

0 K

8

X { (FULFULT)bain) (Yais Ybi) i

T
(X [ X s

+ [QUﬂan/ﬁjz’féO)(%u Yai) — Vu‘/}*lfio) (254, yai)} 5ab}

-0 kM2 +
[Dg)e =~ 5 (X ]2l X Jas B () (C.10)
o
kM2 t
(Gsle = m2W[XiUL J2a[ X" ]as B8 (Yas, La,)
o
kM2 t
[E4]1C = mzw[XiUL ]Za[XiUL]a3 hz(il)(?/aia La,)
o

!Summation over all indices other than [ is of course understood. Also note that my is the b quark mass
and hence the subscript is no summation index.
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kM2 1 me+ t
[Arle = S5 {[XJJL Foal X Jas 1 (s L) + =1 T2l X s 5 (3t Lm}
X

kM2 1 me+ t
[Flg = —5* {[X?L Joa X Tas B (Yass L) + — (X7 120 [ X % B (Yas, Laa)}

mf?r mp
(B ol = 0y () x5
- y a 7 a
9,101 4€2m;;~_ 7

+ -
X {[XiNL ]zK[XJNL]Kz él)(ﬁjuymwm,[/aa)

t ~
+ Q[X;VR ]lK[X]]'VR]Kl\/%ifél)(ﬂfji,ya¢7UKz,Laa)}

77,1 K LT .
[CSle = —g[XjU Jon[ X" s

X {(FULFULT)bafél) (yai7 Yuvis Lﬁa)éij

+ [QUﬁan/%ifél)(%ia Yair La,) = VaVji ~4(1)($jz‘7yaz‘, Laa)} 5ab}

=1 kM2 t
D)o =~ (X aal X Jas b (Yo L) (C.11)
ot
X

All auxiliary functions introduced here can be found in app. C.5. The following functions
(Xt have been calculated previously: [A7]f and [Fgl& in [99,100] and [Bi]E and [CY]E
in [101]. The results for the functions [G3]5, [E4)s, [BY]& and [DY]L are new.

C.4 Quartic Squark-Vertex Contributions

The evaluation of Feynman diagrams contributing to b — s+ (light particles) Green functions
within the MSSM mediated by “chargino — up squark” loops containing the quartic squark
vertex? instead of gluon corrections and denoted by the index 7 = @ in (4.15) yields

[G3](lg =0
kM2 ¥
[Eig = mzw Py PY (1 + La,) (X7 oa X s 0" (Yais i)
X
kM2
[Ar]g = m—zw Pyywi Py (1+ La,)
-

3

2Strictly speaking these matching contributions originate from the part of the quartic squark vertex
proportional to the strong coupling constant gs.
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f . e f -
L X 6 )+ DX o X 6 )

kMR,
[FS]ég m2 — Py, abYbi Pb(é (1+ Lg,)

o+

7

f M f
L X 0 ) + X X ) )

1 KM%/SW

7 T
[BSI)Z,IO]Q =+ 3e2m Pab Ybi Pbli (1 + Lﬂb) [X](]L ]2a[XiUL]c3

A

T
X {[XiNL ]lK[X;VL]Klfg(O)<xjiayaivyciv'UKi)

T
:FQ[XiNR ]lK[X]]'VR]Kl\/fL'jifl((()))($ji7yaiayciaUKi)}

I t
[C‘ll)l] 6Pab Ybi Pb[é (]- + Lﬂb) [XJUL ]Qd[XiUL]e?,
X {(PULFULT)gf [f5(0) (yeia Ytis ygi)(saféceédg + f5(0) (ydi7 Yeis ygi>6ad5cgdefi| 52]
+ [ZUﬁUjh/sz‘féO)(xﬂ,yaz‘, Yei) — thﬁfé())(xji, ym‘,ym’)} 5ad5066f1691}
a1 kM3 i
[Dg)l]Q = m = Pab Ybi Pbli (1 + Lﬁb) [XZUL ]Qa[XiUL]C3 qél)(yaiaycz’) (Cl2)

ot

7

All auxiliary functions introduced here can be found in app. C.5. The following functions
[X3]5 have been calculated previously: [A7]} and [Fy]} in [100] and [BY)]} and [CH] in [101].

The result for the functions [Gs]g), [E4lg, [BYL, and [D”]Q are new.

C.5 Auxiliary Functions

Here we present explicit formulae for the loop functions hl(o), fi(o), hgl), fl f; (1 (1 and

q~i(1) introduced in app. C.3 and C.4. They read

h§0)<x) — 302y 0y 8’ bad7

3z—1)3 18(z—1)3
h () = S5 I + 520
hgo) (z) = 763:(3;19195;72 Inz+ 529554?;011?43
W (x) = g Ine + Bt

—22 4542
= 07 0T+ S
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0 z —r—

0 zlnz In
3 (0 y) = T + o

y—1)(y—z)
(0) o 22lnz y2lny
,(T,y) = (z—1)(z—y) T (y—1)(y—=)

0 z2Inx
I )(Jfay’Z):(:c_l)(ggler(wHy)Jr(tz)

0 xrinx
fé )(%yaz):m—k(ﬂﬁHy)—i—(:ﬂHz)

0 z2lnzx
1@y, 20) = ot s @ o y) + (o 2) + (@ o w)

0 zlnx
fl((])(xa Y, 2, w) = (x_l)(x_y;(z_z)(m_w) + (93 — y) + (x = Z) + ($ — w)

(1) _ —4823-104z%+64zT : 1 —378z3—1566x2+850x+86
hy“(z,y) = ST L2 (1-3)+ 81(z—1)5 Inz

+ 2060x3+379822 —2664x—170 + 1223 —12422+64x
243(z—1)4

—56234+258x24242—82
S T+ 27(@—1)1 Yy

1 22967 ; —24x3 2 —1282—
hg )(x,y) _ 2%%35_1{)9? L12(1 _ %) 4 =2 +S?x2_1)4128 32 1 o

—340x24132x+40 —2423 417622 —80x —2822—108z+64
+ 9(z—1) + 9(z—1) Inz+ 9(z—1)3 Y

by () = BB i, (1 - 1)

_ 4 3_ 2_ _ 3_ 2 _
+ 1082* 41058z~ —898x“ —1098x+710 IHZL'—F 304x° —136862-+29076x—12062

81(z—1)° 729(z—1)%
54023 —97222 42322456 —66423 45422 +19442—902
+ 81(z—1)° Inz + 243(z—1)2
(1) _ —562234110122-42024+101 7 : 1 —56223 4160422 — 79924429
hy'(z,y) = 54(z—1)7 Liz(1-3) + 54(z—1)5 Inz

+ 1747023 —4721722 4310982 —13447 + [ 89x+55

3823 —135224542—821
972(z—1)4 Inz + Y

27(z—1)5 162(z—1)%

(1) _ 92344622449z T - 1 8123459422 +1270z+71
hs (z,y) = 6(z_1)7 L12(1 x) + 54(z—1)° Inz

+ —9232°3 —304222—6921x—1210 + [1:(3)12

438z —72343022—1412—26
324(z—1)7 1)5 Inz + }

(z 9(z—1)4
1 —3222—24x T ; —5222—109z—
hé )(Qﬁ,y) = 72? 1)234 1112(1 — —1) + —523( 11%% 7 Inz

952241802461 —2022—52zx —222460z+14
T e T | oy mr s | Y

(C.13)

(C.14)

(C.15)

(C.16)
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hgl)(x, y) = 72013;76(%2520%20L12 (1 _ %) 4 76%:32(;3%)?4 Inz

(C.17)

13222 —38224-186 20 —2022470x—110
T T Sieo1p +[27(x71)4 Inz + =505 Y

(1) _ 28 2z (112+43y) 2y[x(25—11y) —y(11+3y)]

J37(#.9) = — 5= 1 5e-0a-07 0T T T sepreenr Y
4(1+y) : _ 1 4(z+y) : _ =z

+ (H)(yfl)LIZ(l y) + <x71>(xfy>L‘2<1 y>

592 (1—y)—y(59—3y) + 4x(722 —32y+3y?) Inz+ 4y2[xgl(8x:zl)g)(;i/%;f4y)] lny

(1) _
fi (@ y) = 6=y 3(@—1)(@—y)?

2 41492 71 1 A +y?) 7+ _z
+2n"y + (xfl)(yfl)le(l y) ™ (a:fl)(aefy)L12 (1 y)

1 83427z (y—1)—27 0
77wy = S+ A (1o 4y ) 1 )

. {4x[1+x(12+y)—y—6x2} lnz— 2[1+6x2§3(4$—_13)—2%23_(;;)—(;)_—:33(31;—4)] ln2 T

3(z—1)*(z—y)

4y[3z2 (y—1)+zy(3—2y)+y*(y—2)] 1 ; _ =z
+ 3(—1) (2—9)2(y—1) L12<1 y)

(C.18)

4[1—3x—22(3—6y)—x3] 1 - 1
+ 3(9371)(%@,)(371) Lig(1 - 1) + (z & y)}

(1) . 2892 4z (722 —32y+3y2)
s (T.9:2) = — 56— T [3<w—1>(m—y@§2<iz> o+ (z < 2)]
_ 4Ay%a[4y®+18z—11y(142)]+y[3y> —11z+4y(1+2)] In
3(z—y)2(y—1)%(y—2) Y

_ 4(1+y?) . 1 4(z2+y?) . o
<x—1)<y—1><z—1)L12<1 y> + [—(z_l)(m_y)(gg_z)%(l y> + (z Z)}

(1) _ 28 2z(112+3y)
o (@.y.2) = —sapgne—a T [3@71)(%@2@&%) Inz+(z < Z)]
2yx[3y2—252+11y(142)]+y[112—17y>+3y(1+2)]
T B2 D2 (5—2)? Iny

_ 4(1+y) : _1 4(z+y) : _z
<x71><y71><zf1>L12(1 y> + [(mflxxiy)(H)Lu(l y) + (z < 2)} (C.19)

£, y) + 42 (1 + y%) 3 (2, )

3
@y, 2) = [0 (@y) + 42 (1 + y%) ) (@y)

i (z,y,2) =

(C.20)

F(,y,2) = fiV(2,y) + 42 (1 +ag+ ya%) (@ y)
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fél)(q:,y,z,w) = fél)(xvyvz) +4w (1 + ya%/) f5(0)(l’,y, Z)

f{gl)($ay>z,w) = f{gl)($ay>z) +4w <1 + y%) fG(O)(x’y’ Z)

- (-1 (y—1)7

(LU ) _ 4 -x2 Inz y2Iny 4x%y? +10xy? —2y% 41022y —44xy+10y— 222 +10z+4
QY = 36—y [@-)7 T =D?

(1)<x )_ 4 [ 2lnz _ ylny + —22292+10xy2+4y% +10x2y—20xy —14dy+4x? —14x+22
B2 \TY) = 3a—y) |17 ~ -1)7 9@ 1)°(y—1)°

(1) _ 8 [-22ma 21n —12ay+4y+4z-+4
43 (#:Y) = 55 | T T é—n%] + S0

(1) _ 8 [ 2z In —4dzy—4y—4x+12
9 (@) = 55 [Gor T (5711313] t St

(z—1)* (y—1)*

1 623 —9224+2) Inx 6y3—9y2+2) In
i (w9) = gty [T - e

104z2y>% —202zy% 486y —202x2y+380zy — 154y + 8622 — 1542456

+ 81(z—1)3(y—1)3
(1) (.’L‘ ) _ 4 Inz Iny + 4x%y? —14xy® 422y% — 1422 y+ 520y —62y+222° —622+52
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~(1 1 1
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