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Abstract This paper discusses a new type of thin-shell wormhole constructed
by applying the cut-and-paste technique to two copies of a charged black hole in
generalized dilaton-axion gravity, which was inspired by low-energy string theory.
After analyzing various aspects of this thin-shell wormhole, we discuss its stability
to linearized spherically symmetric perturbations.
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1 Introduction

The study of traversable wormholes has received considerable attention from researchers
for the past two decades. Although lacking observational evidence, wormholes
are just as good a prediction of the general theory of relativity as black holes. In
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particular, we refer to the pioneering work of Visser [1], who proposed a theo-
retical method for constructing a new class of traversable Lorentzian wormholes
from black-hole spacetimes. This construction proceeds by surgically grafting two
Schwarzschild spacetimes together in such a way that no event horizon is permit-
ted to form. The resulting structure is a wormhole spacetime in which the throat is
a three-dimensional thin shell. In recent years, Visser’s approach was adopted by
various authors for constructing thin-shell wormholes by similar methods, gener-
ally requiring spherical symmetry [2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15;
16; 17; 18; 19; 20]. The approach is of special interest because it minimizes the
amount of exotic matter required. All the exotic matter is confined to the shell.

More recently, Sur, Das and SenGupta [21] discovered a new black-hole solu-
tion for Einstein-Maxwell scalar field systems inspired by low-energy string the-
ory. They considered a generalized action in which two scalar fields are minimally
coupled to an Einstein–Hilbert–Maxwell field in four dimensions,

I =
1

2κ

∫
d4x

√
−g

[
R− 1

2
∂µ ϕ∂

µ
ϕ−W

]
, (1)

where

W =
1
2

ω(ϕ)∂µ ζ ∂
µ

ζ −α(ϕ,ζ )Fµν Fµν −β (ϕ,ζ )Fµν Fµν∗,

κ = 8πG,R is the curvature scalar, Fµν is the Maxwell field tensor, while ϕ and ζ

are two massless scalar or pseudo scalar fields, which are coupled to the Maxwell
field. This coupling is described by the functions α and β . Here ζ acquires a non-
minimal kinetic term ω . In the context of low-energy string theory, fields φ and ξ

can be identified as massless scalar dilaton and pseudo scalar axion fields, respec-
tively.

With the above action, Eq. (1), Sur et al. [21] found the most general class
of black-hole solutions and obtained two types of metrics, classified as asymp-
totically flat and asymptotically non-flat. Since we are interested in obtaining a
thin-shell wormhole from this new black hole, we adopt the asymptotically flat
metric given by

ds2 =− f (r)dt2 + f (r)−1dr2 +h(r)(dθ
2 + sin2

θdφ
2), (2)

where

f (r) =
(r− r−)(r− r+)

(r− r0)2−2n(r + r0)2n , (3)

and

h(r) =
(r + r0)2n

(r− r0)2n−2 , (4)

where, according to Ref. [21], the exponent n is a dimensionless constant strictly
greater than 0 and strictly less than 1. In addition, various other parameters are
given by
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r± = m0±
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0 −

1
8

(
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n
+
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1−n

)
, (5)

r0 =
1

16m0

(
K1

n
− K2

1−n

)
, (6)

m0 = m− (2n−1)r0, (7)

K1 = 4n
[
4r2

0 +2r0(r+ + r−)+ r+r−
]
, (8)

K2 = 4(1−n)r+r−, 0 < n < 1, (9)

m =
1

16r0

(
K1

n
− K2

1−n

)
+(2n−1)r0, (10)

where m is the mass of the black hole. The parameters r+ and r− are the inner
and outer event horizons, respectively. Also, r = r0 is a curvature singularity; the
parameters obey the condition r0 < r− < r+.

In this paper we present a new kind of thin-shell wormhole by surgically graft-
ing two charged black holes in generalized dilaton-axion gravity. The exotic mat-
ter required for its physical existence may possibly be collected from scalar fields
that built the black holes. Various aspects of this thin-shell wormhole are analyzed,
particularly the equation of state relating pressure and density. Also discussed is
the attractive or repulsive nature of the wormhole, as well as the energy conditions
on the shell. Our final topic is a stability analysis to determine the conditions under
which the wormhole is stable to linearized radial perturbations. A comparison to
the stability of other thin-shell wormholes in the literature is also made.

2 Thin-shell wormhole construction

The mathematical construction of our thin-shell wormhole begins by taking two
copies of the black hole and removing from each the four-dimensional region

Ω
± = {r ≤ a | a > r+}.

We now identify (in the sense of topology) the timelike hypersurfaces

∂Ω
± = {r = a | a > r+},

denoted by Σ . The resulting manifold is geodesically complete and consists of
two asymptotically flat regions connected by a throat. The induced metric on Σ is
given by

ds2 =−dτ
2 +a(τ)2(dθ

2 + sin2
θdφ

2), (11)

where τ is the proper time on the junction surface. Using the Lanczos equations
[1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20], one can obtain
the surface stress energy tensor Si

j = diag(−σ , pθ , pφ ), where σ is the surface
energy density and pθ and pφ are the surface pressures. The Lanczos equations
now yield [7]

σ =− 1
4π

h′(a)
h(a)

√
f (a)+ ȧ2 (12)
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Fig. 1 Plot for p versus a. The heavy, medium, and light colors represent n = 0.98, 0.5 and
0.02, respectively. For every category, thin, thick, and thicker curves, respectively, represent
r+ = 10,8, and 6. For every combination of r+ and n, we plot three different sets, (r− = 5,r0 =
2),(r− = 5,r0 = 3), and (r− = 4,r0 = 2), which are represented by chain and solid curves,
respectively

and

pθ = pφ = p =
1

8π

h′(a)
h(a)

√
f (a)+ ȧ2 +

1
8π

2ä+ f ′(a)√
f (a)+ ȧ2

. (13)

To understand the dynamics of the wormhole, we assume the radius of the throat
to be a function of proper time, or a = a(τ). Also, overdot and prime denote,
respectively, the derivatives with respect to τ and a. For a static configuration
of radius a, we obtain the respective values of the surface energy density and the
surface pressures. For a static configuration of radius a, we obtain (assuming ȧ = 0
and ä = 0) from Eqs. (12) and (13),

σ =−4[a+(1−2n)r0]
D

(a− r−)(a− r+)
(a− r0)(a+ r0)

(14)

and

pθ = pφ = p =
2a− r−− r+

D
(15)

where

D = 8π(a− r0)1−n(a+ r0)n
√

(a− r−)(a− r+). (16)

Observe that the energy density σ is negative. The pressure p may be positive,
however. This would depend on the position of the throat and hence on the physical
parameters r0,r−, and r+ defining the wormhole. Similarly, σ + p,σ + 2p , and
σ +3p, obtained by using the above equations, may also be positive under certain
conditions, in which case the strong energy condition is satisfied.

Keeping in mind the condition r+ > r− > r0 for different radii defining the
wormhole, we plot p versus a in Fig. 1. We choose typical wormholes whose radii
(r0,r−, and r+) fall within the range 2 to 12 km. Also taken into account is the
sensitivity of the plots with respect to n, as described in the caption of the figure.

3 The gravitational field

We now turn our attention to the attractive or repulsive nature of our wormhole.
To perform the analysis, we calculate the observer’s four-acceleration aµ = uµ

;ν uν ,
where uν = dxν/dτ = (1/

√
f (r),0,0,0). In view of the line element, Eq. (2), the

only non-zero component is given by

ar = Γ
r

tt

(
dt
dτ

)2

=
1
2

Ar2−Br +C
(r− r0)3−2n(r + r0)2n+1 (17)
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where,

A = r−+ r+ +4nr0−2r0,

B = 2r2
0 +(r−+ r+)(4nr0−2r0)+2r−r+,

and

C = r2
0(r−+ r+)+(4nr0−2r0)r−r+.

A radially moving test particle initially at rest obeys the equation of motion

d2r
dτ2 =−Γ

r
tt

(
dt
dτ

)2

=−ar. (18)

If ar = 0, we obtain the geodesic equation. Moreover, a wormhole is attractive
if ar > 0 and repulsive if ar < 0. These characteristics depend on the parameters
r0,r−,r+, and n, the conditions on which can be conveniently expressed in terms
of the coefficients A,B, and C. To avoid negative values for r, let us consider only
the root r = (B +

√
B2−4AC)/(2A) of the quadratic equation Ar2−Br +C = 0.

It now follows from Eq. (17) that ar = 0 whenever(
r− B

2A

)2

=
B2−4AC

4A2 .

For the attractive case, ar > 0, the condition becomes(
r− B

2A

)2

>
B2−4AC

4A2 .

For the repulsive case, ar < 0, the sense of the inequality is reversed.

4 The total amount of exotic matter

In this section we determine the total amount of exotic matter for the thin-shell
wormhole. This total can be quantified by the integral [7; 8; 9; 10; 11; 12; 13]

Ωσ =
∫

[ρ + p]
√
−gd3x. (19)

By introducing the radial coordinate R = r−a, we get

Ωσ =
2π∫
0

π∫
0

∞∫
−∞

[ρ + p]
√
−gdRdθ dφ .

Since the shell is infinitely thin, it does not exert any radial pressure. Moreover,
ρ = δ (R)σ(a). So

Ωσ =
2π∫
0

π∫
0

[ρ
√
−g]

∣∣
r=a dθ dφ = 4πh(a)σ(a)

= −16π[a+(1−2n)r0]
D

[
(a− r−)(a− r+)

(a− r0)2n−1(a+ r0)1−2n

]
. (20)
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Fig. 2 Plot for σ versus a. The description of the curves is the same as in Fig. 1

Here D is given in Eq. (16).
This NEC violating matter can be reduced by taking the value of a closer

to r+, the location of the outer event horizon. The closer a is to r+, however, the
closer the wormhole is to a black hole: incoming microwave background radiation
would get blueshifted to an extremely high temperature [22]. On the other hand,
it follows from Eq. (20) that for a� r+,Ωσ will depend linearly on a:

Ωσ ≈−2a. (21)

5 An equation of state

Taking the form of the equation of state (EoS) to be p = wσ , we obtain from
Eqs. (14) and (15),

p
σ

= w =
1
4

(2a− r−− r+)(r2
0 −a2)

(a− r−)(a− r+)[a+(1−2n)r0]
. (22)

Observe that if the location of the wormhole throat is very large, i.e., if a → +∞,
then w → − 1

2 . On the other hand, if a → r+ (from the right), then ω → −∞.
So the distribution of matter in the shell is of the dark-energy type. Now, purely
mathematically speaking, if a→ 1

2 (r−+ r+), then p→ 0. Since 1
2 (r−+ r+) < r+,

however, such a dust shell is never found.
Our spacetime metric implies that the surface mass of this thin shell is given

by Mshell = 4πh(a)σ . (For a static solution, we have ȧ = 0 and ä = 0.) Thus

Mshell = 2
[a+(1−2n)r0]

(r2
0 −a2)

× (a− r0)1−n(a+ r0)n
√

(a− r−)(a− r+). (23)

Now observe that for n > 1
2 , the mass of the black hole in Eq. (7) is increasing

with r0. At the same time, for a fixed value of the throat radius a, the mass of the
thin shell is decreasing with r0, as long as r0 remains much less than a (Fig. 2).

6 Stability

Now we will focus our attention on the stability of the configuration under small
perturbations around a static solution at a0. The starting point is the definition of
a potential, extended to our metric [Eq. (2)]. Rearranging Eq. (12), we obtain the
thin shell’s equation of motion

ȧ2 +V (a) = 0. (24)

Here the potential V (a) is defined as

V (a) = f (a)−
[

4πh(a)σ(a)
h′(a)

]2

. (25)
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Expanding V (a) around a0, we obtain

V (a) = V (a0)+V ′(a0)(a−a0)+
1
2

V ′′(a0)(a−a0)2

+O
[
(a−a0)3], (26)

where the prime denotes the derivative with respect to a, assuming a static solution
situated at a0. Since we are linearizing around a = a0, we must have V (a0) = 0
and V ′(a0) = 0. The configuration will then be in stable equilibrium if V ′′(a0) > 0.

To carry out this analysis, we start with the energy conservation equation.
Using Eqs. (12) and (13), one can verify that

d
dτ

(σA )+ p
dA

dτ
= {[h′(a)]2−2h(a)h′′(a)} ȧ

√
f (a)+ ȧ2

2h(a)
, (27)

where A = 4πh(a) by Eq. (2). The first term on the left side corresponds to a
change in the throat’s internal energy, while the second term corresponds to the
work done by the throat’s internal forces. According to Ref. [19], the right side
represents a flux. From Eq. (27), we get

d
da

[σh(a)]+P
d

da
[h(a)] =−{[h′(a)]2−2h(a)h′′(a)} σ

2h′(a)
,

and, finally,

h(a)σ ′+h′(a)(σ + p)+{[h′(a)]2−2h(a)h′′(a)} σ

2h′(a)
= 0. (28)

It is also shown in Ref. [19] that

V ′′(a) = f ′′(a)+16π
2×

{[
h(a)
h′(a)

σ
′(a)+

(
1− h(a)h′′(a)

[h′(a)]2

)
σ(a)

]
×[σ(a)+2p(a)]+

h(a)
h′(a)

σ(a)[σ ′(a)+2p′(a)]
}

. (29)

Next, we define a parameter β , which is interpreted as the subluminal sound speed,
by the relation

β
2(σ) =

∂ p
∂σ

∣∣∣∣
σ

. (30)

To do so, observe that

σ
′(a)+2p′(a) = σ

′(a)[1+2p′(a)/σ
′(a)] = σ

′(a)(1+β
2).

Using Eq. (28), we can now rewrite V ′′(a) as follows:

V ′′(a) = f ′′(a)−8π
2
{

[σ(a)+2p(a)]2

+2σ(a)
[(

3
2
− h(a)h′′(a)

[h′(a)]2

)
σ(a)+ p(a)

]
(1+2β

2)
}

. (31)
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Fig. 3 Plot for β 2 versus a0

Fig. 4 All functions are the same. See Fig. 3

At the static solution a = a0, the conditions V (a0) = 0 and V ′(a0) = 0 are indeed
met.

Now consider the stability criterion V ′′(a0) > 0 starting with Eq. (31): first let
V ′′(a0) = 0 and solve for β 2. We then find that the graph of

β
2 =−1

2
+

f ′′/8π2− (σ +2p)2

4σ

[(
3
2 −

hh′′
(h′)2

)
σ + p

] (32)

has a single vertical asymptote (Fig. 3.) To the right of the asymptote,

4σ

[(
3
2
− hh′′

(h′)2

)
σ + p

]
> 0, (33)

also determined graphically. Returning now to the inequality V ′′(a0) > 0, we
therefore have at a = a0,

β
2 <−1

2
+

f ′′/8π2− (σ +2p)2

4σ

[(
3
2 −

hh′′
(h′)2

)
σ + p

] . (34)

So to the right of the asymptote, the region of stability is below the graph of
Eq. (32), as shown in Fig. 3.

To the left of the asymptote, the sense of the inequality in (33) is reversed and
we obtain at a = a0,

β
2 >−1

2
+

f ′′/8π2− (σ +2p)2

4σ

[(
3
2 −

hh′′
(h′)2

)
σ + p

] . (35)

So to the left of the asymptote, the region of stability is above the graph.
Figure 3 does indeed show typical regions of stability using somewhat arbi-

trary values of the various parameters: r0 = 1,r− = 2,r+ = 3, and n = 1/2. As
noted above, the region is below the curve on the right and above the curve on the
left. The sign change is determined by inequality (33). These results, including
the graphs, are similar to those in Refs. [2] and [19] (dealing with Schwarzschild
and dilaton thin-shell wormholes, respectively) in the sense that the regions do not
correspond to any value in the interval 0 < β 2 ≤ 1. Since β is ordinarily inter-
preted as the speed of sound, it is highly desirable to obtain a region for which
β 2 < 1. This is indeed possible for our wormhole: if we choose r = r− close to
r = r+, then we typically get a region of stability for β 2 < 1. For example, in
Fig. 4, r0 = 1,r− = 2,r+ = 2.05, and n = 0.8. The closer r− is to r+, the more the
region of stability extends below β 2 = 1.
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7 Conclusion

A new black-hole solution by Sur et al., for Einstein–Maxwell scalar fields was
inspired by low-energy string theory. This paper discusses a new thin-shell worm-
hole constructed by applying the cut-and-paste technique to two copies of such
black holes. We analyzed various aspects of this wormhole, such as the amount
of exotic matter required, the attractive or repulsive nature of the wormhole, and
a possible equation of state for the thin shell. The stability analysis concentrated
on the parameter β , normally interpreted as the speed of sound. It was found that
whenever the two event horizons are close together, a stability region exists for
some values of β 2 less than unity, unlike the the cases discussed in Refs. [2] and
[19] for Schwarzschild and dilaton thin-shell wormholes, respectively.
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