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Abstract

We study Bethe/gauge correspondence at the special locus of Coulomb moduli where the integrable 
system exhibits the splitting of degenerate levels. For this investigation, we consider the four-dimensional 
pure N = 2 supersymmetric U(N) gauge theory, with a half-BPS surface defect constructed with the help of 
an orbifold or a degenerate gauge vertex. We show that the non-perturbative Dyson–Schwinger equations 
imply the Schrödinger-type and the Baxter-type differential equations satisfied by the respective surface 
defect partition functions. At the special locus of Coulomb moduli the surface defect partition function 
splits into parts. We recover the Bethe/gauge dictionary for each summand.
© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Supersymmetric gauge theories in various dimensions exhibit diverse connections with in-
tegrable systems. The four-dimensional gauge theory with N = 2 supersymmetry is one of the 
interesting cases to consider. The common feature of this class of theories is that the low-energy 
description achieved in [1,2] naturally reveals the structure of an algebraic integrable system 
[3,4]. The correspondence was promoted to the quantum level in [10], by putting the N= 2 gauge 
theory into the general framework of the Bethe/gauge correspondence [8,9]. When subject to the 
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Nekrasov–Shatashvili limit of the �-deformation (ε1 = h̄, ε2 → 0), the four-dimensional N = 2
gauge theory effectively becomes a two-dimensional theory with N = (2, 2) supersymmetry. The 
general Bethe/gauge correspondence states the chiral ring is the set of quantum Hamiltonians, 
while the set of supersymmetric vacua is identified with the (Hilbert) space of the corresponding 
quantum integrable system,

|eigen〉 ←→ vac. (1.1)

In particular, the spectrum of the Hamiltonian is calculated as the gauge theory vacuum expecta-
tion value of the corresponding chiral observable in the Nekrasov–Shatashvili limit,

〈eigen|HO|eigen〉 = 〈O〉|ε2→0,vac. (1.2)

The chiral ring is spanned by the gauge-invariant observables Ok = Trφk , where φ is the complex 
scalar in the N = 2 vector multiplet. In generic case, their vacuum expectation values are finite 
in the Nekrasov–Shatashvili limit, since they reduce to the vacuum expectation values of the 
twisted chiral observables in the effective two-dimensional N = (2, 2) theory. Therefore the right 
hand side of the dictionary (1.2) is well-defined, providing a way to compute the spectrum of 
the quantum Hamiltonian from gauge theory perspective. Note that the partition function of the 
gauge theory shows the asymptotic behavior logZ = W̃

ε2
+ O(ε0

2) in the Nekrasov–Shatashvili 

limit, where W̃ is the effective twisted superpotential of the effective two-dimensional theory.
The equations which describe the vacua in the low-energy theory correspond to the quan-

tization conditions on the integrable system side. The Nekrasov–Shatashvili limit of the four-
dimensional N = 2 gauge theory leads to several inequivalent quantization schemes, in particular, 
the type A and the type B quantizations [10,12]. In the present work we mainly focus on the type 
B quantization, in which we impose the condition

exp

(
2πi

aα

ε1
− iθα

)
= 1, θα ∈ [0,2π). (1.3)

Note that the θ -angles can be introduced in a gauge-invariant fashion. Namely, for given values 
of the gauge-invariant coordinates on the Coulomb moduli space, 〈Ok〉 = 〈Trφk〉, the Coulomb 
moduli aα are determined up to the permutations with each other. Therefore in the real slice 
that we are choosing in the type B quantization, aα

ε1
∈ R, the θ -angles are determined up to the 

permutations with each other. For the quantization condition (1.3), we look for the eigenfunctions 
which are quasi-periodic with the Bloch angles (θα). For example, for the pure N = 2 theory 
and for the N = 2∗ theory with the gauge group U(N), the formula (1.2) under the condition 
(1.3) computes the spectrum of the Hamiltonians of the N -particle periodic Toda system and the 
N -particle elliptic Calogero–Moser system respectively, whose eigenfunctions are quasi-periodic 
with the Bloch angles (θα). Note that the spectrum would have been (N !)-fold degenerate in the 
non-interacting limit had we tuned all the Bloch angles to be the same. For generic values of 
Bloch angles, the SN -symmetry of the 0-th order wavefunctions is completely broken, leaving 
non-degenerate level for each spectrum.

We can revive some of the degenerate levels at the 0-th order by tuning the corresponding 
Bloch angles, e.g. as θα = θβ . The integrable system is still well-defined, and the eigenvalues 
are expected to be non-degenerate. However, we observe the missing link in the correspondence 
with the gauge theory. According to the condition (1.3), tuning the Bloch angles as θα = θβ
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is equivalent to investigating the special locus of Coulomb moduli, 
{

aαβ

ε1
∈ Z \ {0}

}
.1 At the 

locus, the formula (1.2) breaks down since the right hand side becomes divergent due to the 
additional singularities in ε2 → 0. The asymptotic behavior of the partition function is no longer 

logZ = W̃
ε2

+O(ε0
2), and the effective twisted superpotential cannot be properly obtained by just 

taking W̃ = limε2→0 ε2logZ. Inspired by the well-established correspondence for the generic 
value of the Coulomb moduli, we now may attempt to recover the correspondence at the special 
locus, especially by first investigating the perturbative series in the integrable system side. This 
is the main subject of the present work.

We may try to approach the special locus of Coulomb moduli from the gauge theory with 
partial �-deformation and partial noncommutativity. Instead of turning on both �-deformation 
parameters and then taking the Nekrasov–Shatashvili limit, we can from the beginning turn on 
one of the parameters ε1 only. When the noncommutativity along the ε1-plane is turned on, the 
four-dimensional N = 2 theory can be described by a two-dimensional N= (2, 2) theory with an 
infinite dimensional gauge group. The investigation shows that the only massless modes around 
the trivial vacuum are the diagonal components of the gauge multiplet, which is consistent with 
the expectation that the low-energy effective theory is in Coulomb phase without any matter. 
However, when the Coulomb moduli assume the special values as aαβ

ε1
∈ Z \ {0}, additional mass-

less matter multiplets seem to arise, signifying the failure of the effective description.
The surface defect provides a tool for the investigation. The four-dimensional gauge theory 

with a half-BPS surface defect can be viewed as the theory on an orbifold. The equivariant local-
ization computation applied for the bulk theory immediately generalizes to compute the surface 
defect partition function [14]. The gauge theory observables are also naturally generalized to 
the theory in the presence of the surface defect. In particular, an important class of observables, 
called the qq-character, has its fractionalized counterpart in the theory with the surface defect 
[17]. In [19,20] the qq-characters with and without the surface defect were realized as the orb-
ifolded crossed instanton partition functions. The compactness theorem proved in [18] implied 
a certain vanishing theorem for the expectation value of the qq-characters. The vanishing equa-
tions, called the non-perturbative Dyson–Schwinger equations, can be used to derive the KZ 
equation satisfied by the surface defect partition function of quiver gauge theory [21]. In this 
paper, we show that the Dyson–Schwinger equation in the presence of the surface defect pro-
duces a Schrödinger-type equation satisfied by the orbifold surface defect partition function of 
the pure U(N) gauge theory. Therefore the surface defect partition function provides a construc-
tive approach to the eigenstate wavefunctions as well as the spectra of the Hamiltonians of the 
corresponding quantum integrable system.

Another type of half-BPS surface defect in quiver gauge theories can be obtained by a 2d–4d 
combined system [35,36]. In this construction, a half-BPS surface defect is constructed by 
weakly coupling the flavor group of the two-dimensional gauged linear sigma model to the four-
dimensional gauge field. In the IR, the effective action gets the twisted F-term contribution from 
the two-dimensional sigma model which has the Higgs branch as its target. This type of sur-
face defect was identified with the insertion of a simplest fully-degenerate field in the Toda CFT 
side [35]. In the dictionary of [33,34], this is equivalent to tuning the mass of a fundamental 
hypermultiplet coupled to a vector multiplet, in such a way that the contributions to the instanton 
partition function only come from single-column Young diagrams (or single-row, depending on 

1 We have excluded aαβ = 0 since in this case the splitting of the degeneracy at the 0-th order does not occur and (1.2)
works as it is.
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which plane we put the surface defect) [20]. For brevity, let us call a gauge vertex degenerate for 
such cases. The Dyson–Schwinger equations can be used to derive the BPZ equation satisfied by 
the partition function of the quiver gauge theory with a degenerate gauge vertex [21]. In this pa-
per, we show that the pure U(N) gauge theory partition function with this type of surface defect 
satisfies a Baxter-type equation.

The main observation of this work is that the orbifold surface defect partition function at the 

special locus 
{

aαβ

ε1
∈ Z \ {0}

}
splits into parts, schematically,

� =
∑
γ

�γ . (1.4)

This behavior accounts for the level splitting on the integrable system side. Each part of the 

surface defect partition function shows the proper asymptotic behavior of log�γ = W̃γ

ε2
+O(ε0

2), 
and the dictionary (1.2) is recovered to reproduce the spectrum of each split level. It should be 
noted that each split part �γ of the surface defect partition function shows the series expansion 
in fractional powers of the gauge coupling, which correctly accounts for the series expansions of 
the spectra of the split levels.

The rest of the paper is organized as follows. In section 2, we review the instanton partition 
function of the four-dimensional N = 2 quiver gauge theory, along with various gauge-invariant 
observables including the qq-characters. The Bethe/gauge correspondence is then explained with 
a description of two inequivalent types of quantization. In section 3, we study the special locus 
of Coulomb moduli in the four-dimensional gauge theory with partial �-deformation and partial 
noncommutativity. The investigation reveals the emergence of additional massless modes, which 
indicates a failure of the effective description of the theory. In section 4, we review the orbifold 
and the degenerate gauge vertex constructions of half-BPS surface defects, and compute the 
surface defect partition functions. We study the non-perturbative Dyson–Schwinger equations in 
the presence of surface defects. We verify that the partition functions of the A1-theory with a 
regular orbifold surface defect and of the A2-theory with a degenerate gauge vertex satisfy the 
Schrödinger-type and the Baxter-type equations, respectively. In section 5, we observe that at 
the special locus of the Coulomb moduli, the surface defect partition function splits into parts, 
recovering the correspondence with the quantum integrable system. We conclude in section 6
with possible generalizations and discussions.

2. Generalities

Let us begin by reviewing the general facts of the quiver gauge theory and the Bethe/gauge 
correspondence. First we study the instanton partition function of quiver gauge theories. The 
well-known correspondence between the pure N = 2 supersymmetric U(N) gauge theory in 
Nekrasov–Shatashvili limit and the quantum periodic Toda system is also discussed. We refer to 
[16,17] and their references for more general discussions of the N = 2 supersymmetric quiver 
gauge theories.

2.1. Instanton partition function of quiver gauge theories

In this section, we generally follow the discussion in [17]. A quiver is an oriented graph. For 
a given quiver γ , let Vertγ and Edgeγ be the sets of vertices and edges, respectively. We define 
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s, t : Edgeγ → Vertγ as the maps sending an edge to its source and target, respectively. We also 
assign two vectors of integers,

n = (ni)i∈Vertγ ∈ Z
Vertγ
>0 , m = (mi)i∈Vertγ ∈ Z

Vertγ
≥0 . (2.1)

The quiver gauge theory for γ is the four-dimensional N = 2 supersymmetric gauge theory 
with the gauge group

Gg = ×
i∈Vertγ

U(ni), (2.2)

and the flavor group

Gf =
⎛⎝ ×

i∈Vertγ

U(mi) × U(1)Edgeγ

⎞⎠/U(1)Vertγ , (2.3)

where the overall U(1)Vertγ gauge transformation has been quotiented out,

(ui)i∈Vertγ :
(
(gi)i∈Vertγ , (ue)e∈Edgeγ

)
	→
(
(uigi)i∈Vertγ , (us(e)ueu

−1
t (e))e∈Edgeγ

)
. (2.4)

In terms of the field content, we have the vector multiplets � = (
i)i∈Vertγ in the adjoint rep-
resentation of Gg , the fundamental hypermultiplets Qfund = (Qi)i∈Vertγ in the fundamental 
representation of Gg and the antifundamental representation of Gf , and finally the bifunda-
mental hypermultiplets Qbifund = (Qe)e∈Edgeγ

in the bifundamental representation (ns(e), nt(e))

of Gg . Given these fields, the action of the theory is fixed by the N= 2 supersymmetry up to the 
choice of complexified gauge couplings

qi = exp(2πiτi)

(
τi = ϑi

2π
+ 4πi

g2
i

)
, i ∈ Vertγ , (2.5)

and the masses of the hypermultiplets

m = ((mi)i∈Vertγ , (me)e∈Edgeγ
),

mi = diag(mi,1, · · · ,mi,mi) ∈ End(Cmi), me ∈ C, (2.6)

which are viewed as the equivariant parameters for the flavor group Gf . The vacuum expectation 
values of the complex scalars,

〈
i〉 = ai, ai = diag(ai,1, · · · , ai,ni) ∈ End(Cni), i ∈ Vertγ , (2.7)

break the gauge symmetry to the maximal torus, leading to the Coulomb phase of the theory. 
The Coulomb moduli a = (ai)i∈Vertγ parametrize the vacua of the theory. We also have the four-
dimensional rotation group

Grot = SO(4), (2.8)

for which we turn on the �-deformations with the equivariant parameters ε = (ε1, ε2). We denote 
the total global symmetry group as

H = Gg × Gf × Grot, (2.9)

whose maximal torus is denoted by TH ⊂ H . The instanton partition function is a TH -equivariant 
integral over the framed noncommutative instanton moduli space, and therefore is parametrized 
by (a, m, ε) ∈ Lie(TH ).
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The ADHM moduli space is useful for the equivariant localization, which can be explicitly 
written as

M(n, k) =
{

B1,2 : K → K,

I : N → K,J : K → N

∣∣∣∣∣ [B1,B2] + IJ = 0,

[B1,B1
†] + [B2,B2

†] + II † − J †J = ζ

}/
U(k),

(2.10)

(N = C
n,K =C

k)

for given n and k. Here, the parameter ζ corresponds to the noncommutativity of Euclidean 
spacetime. It is introduced to resolve the singularities of the Uhlenbeck compactification, on 
which we do not elaborate further in this paper. Given the vector of instanton charges k =
(ki)i∈Vertγ ∈ Z≥0, the total framed noncommutative instanton moduli space of the quiver gauge 
theory for γ is

Mγ (n,k) ≡ ×
i∈Vertγ

M(ni, ki). (2.11)

The TH -equivariant integration over the instanton moduli space (2.11) localizes on the 
set of fixed points of TH -action, Mγ (n, k)TH , which is the set of colored partitions λ =
((λ(i,α))

ni
α=1)i∈Vertγ , where each λ(i,α) is a partition,

λ(i,α) =
(
λ

(i,α)
1 ≥ λ

(i,α)
2 ≥ · · · ≥ λ

(i,α)

l(λ(i,α))
> λ

(i,α)

l(λ(i,α))+1
= · · · = 0

)
, (2.12)

with the size |λ(i,α)| =∑l(λ(i,α))
i=1 λ

(i,α)
i = ki,α constrained by ki =∑α ki,α = |λ(i)| [6,7]. There is 

an one-to-one correspondence between partitions and Young diagrams,

λ(i,α) ⇐⇒ {(i, j)|1 ≤ i ≤ l(λ(i,α)),1 ≤ j ≤ λ
(i,α)
i }, (2.13)

and we refer them interchangeably. For each element of λ ∈ Mγ (n, k)TH we associate the char-
acter

T [λ] =
∑

i∈Vertγ

(
NiK

∗
i + q1q2N

∗
i Ki − (1 − q1)(1 − q2)KiK

∗
i − M∗

i Ki
)

−
∑

e∈Edgeγ

eβme(Nt(e)K
∗
s(e) + q1q2N

∗
s(e)Kt(e) − (1 − q1)(1 − q2)Kt(e)K

∗
s(e)) (2.14)

where qi = eβεi for i = 1, 2 and

Ni =
ni∑

α=1

eβai,α , Ki[λ] =
ni∑

α=1

∑
�∈λ(i,α)

eβc�̂ , Mi =
mi∑

f =1

eβmi,f . (2.15)

Here we are abusing the notation so that the vector spaces and their characters under the 
TH -action are denoted by the same letters. Also we have defined the content of the box

c�̂ = ai,α + ε1(i − 1) + ε2(j − 1) for � = (i, j) ∈ λ(i,α) ⇐⇒ 1 ≤ j ≤ λ
(i,α)
i . (2.16)

Finally the instanton partition function of the quiver gauge theory for γ is

Zinst
γ (a;m;ε;q) =

∑
λ

∏
i∈Vertγ

q
|λ(i)|
i ε(−T [λ]), (2.17)
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where the ε-symbol2 converts a character into a product of weights

ε(R) =
∏

w∈W(R+) w(θ)∏
w∈W(R−) w(θ)

for θ ∈ Lie(TH ), R =
∑

w∈R+
ew(θ) −

∑
w∈R−

ew(θ). (2.18)

Therefore we can view the instanton partition function as the partition function of the 
grand canonical ensemble on the colored partitions {λ}, with the measure μλ(a, m, ε) =∏

i∈Vertγ q
|λ(i)|
i ε(−T [λ]).

2.2. qq-Characters

Let us first introduce the Y-observable, which is a local observable defined as the regularized 
characteristic polynomial of the adjoint scalar field evaluated at 0 ∈C

2 [15,16],

Yi(x) = xN exp
∞∑
l=1

[
− 1

lxl
Trφl

i |0
]

, i ∈ Vertγ . (2.19)

As we have seen in section 2.1, the supersymmetric partition function localizes on Mγ (n)TH =�k Mγ (n, k)TH which is the set of all colored partitions. Therefore the Y-observable is also 
reduced to an observable in this statistical model on Mγ (n)TH , expressed as

Yi(x)[λ] =
ni∏

α=1

⎛⎝(x − ai,α)
∏

�∈λ(i,α)

(x − c�̂ − ε1)(x − c�̂ − ε2)

(x − c�̂)(x − c�̂ − ε)

⎞⎠ , (2.20)

where we used the notation ε = ε1 + ε2 for brevity. As observed in (2.19), the Y-observable is 
the generating functional for the gauge-invariant chiral observables

Oi,k = Trφk
i |0. (2.21)

Therefore the statistical model expression for the gauge-invariant chiral observables can be ex-
tracted from (2.20) as

Oi,k[λ] =
ni∑

α=1

⎡⎣ak
i,α +

∑
�∈λ(i,α)

(
(c�̂ + ε1)

k + (c�̂ + ε2)
k − ck�̂ − (c�̂ + ε)k

)⎤⎦ . (2.22)

The qq-character is an observable defined as a certain explicitly computable Laurent polyno-
mial X(Y(x + · · · )) in Y with possibly shifted arguments [17]. In [19], it was shown that the 
qq-characters can be obtained as the crossed instanton partition functions, which are the par-
tition functions of the low-energy effective theories on intersecting branes. For example, the 
fundamental qq-character of the pure N = 2 U(N) gauge theory is defined as,

X(Y)(x) = Y(x + ε) + �2N

Y(x)
. (2.23)

From the compactness theorem proven in [18], it has been shown that the expectation value in 
the gauge theory,

2 Not to be confused with ε1,2 which are �-deformation parameters.
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〈X(Y)(x)〉 = 1

Zinst

∑
λ

X(Y[λ])(x)q|λ|μλ(a,ε) = T (x), (2.24)

is a polynomial in x. Namely, the qq-character provides the vanishing equations for the coeffi-
cients of the negative powers of x: the non-perturbative Dyson–Schwinger equations.

2.3. Bethe/gauge correspondence

It has been known that the low-energy effective theory of (un-deformed) four-dimensional 
N = 2 supersymmetric gauge theories can be described by classical integrable systems [3,4]. 
A well-established example is the correspondence between the class-S theories and the Hitchin 
integrable systems [15,25,27]. Setting the 6-dimensional N = (0, 2) superconformal theory on 
R

3 × S1 × Cg,n, where Cg,n is the Riemann surface with g genus and n punctures, and reducing 
on S1 × Cg,n in two different orders, we observe that the total space of the fibration of the 
Jacobian of the Seiberg–Witten curve on the Coulomb moduli space of the class-S theory is 
identical to the phase space of the Hitchin integrable system on Cg,n. The correspondence can be 
extended to more general four-dimensional N = 2 gauge theories with less hypermultiplets by 
taking proper decoupling limits. In this paper we are mainly interested in the pure U(N) gauge 
theory. It is well-known that the corresponding integrable system is the N -particle periodic Toda 
system [3,5].

The N -periodic Toda system is the algebraic integrable system of N non-relativistic particles 
in one dimension with the interaction

V (x1, · · · , xN) = �2
N∑

i=1

exi−xi+1 , (2.25)

and the periodicity xN+1 = x1. The Lax operator for this system can be written as

L(z) =

⎛⎜⎜⎜⎜⎜⎜⎝

p1 �2ex1−x2 0 · · · · · · �Nz−1

1 p2 �2ex2−x3 0 · · · 0
0 1 p3 �2ex3−x4 · · · 0
0 · · · · · · · · · · · · 0
0 · · · · · · · · · pN−1 �2exN−1−xN

�2−NexN−x1z 0 · · · 0 1 pN

⎞⎟⎟⎟⎟⎟⎟⎠ ,

(2.26)

from which we define the spectral curve

�(x, z) : 0 = Det(x − L(z)) = −�N(z + z−1) + xN + u1x
N−1 + u2x

N−2 + · · · + uN .

(2.27)

The standard Lax formalism tells that the (classical) Hamiltonians,

u1 = −
N∑

i=1

pi, u2 = −
∑
i<j

pipj + �2
∑

i

exi−xi+1 , · · · , (2.28)

mutually commute with respect to the Poisson bracket {pi, xj } = δij , and thus establishes the 
classical integrability. Note that the spectral curve (2.27) is precisely the Seiberg–Witten curve 
of the pure U(N) gauge theory, in which {uk = 〈Ok〉|k = 1, · · · , N} spans the Coulomb branch 
of the vacua. Therefore we observe the correspondence between the low-energy description of 
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the pure U(N) gauge theory and the classical N -particle periodic Toda system. (See also [23,24]
for the earlier work in the case of Toda/pure N= 2.)

In [10] the correspondence between the vacua of N = 2 theories and integrable systems was 
promoted further to the quantum level. Let us turn on the �-deformation and take the Nekrasov–
Shatashvili limit (ε1 �= 0, ε2 → 0). Since we have used one of the two orthogonal rotations to 
deform the theory, the theory can be now effectively described as a two-dimensional theory with 
N = (2, 2) supersymmetry. The low-energy effective action of this two-dimensional theory con-
tains the twisted F -term3 from the effective twisted superpotential W̃(a, ε1, q), which can be 
computed by the supersymmetric localization for generic (a, ε1) as

W̃(a, ε1,q) = lim
ε2→0

ε2logZ(a,ε,q). (2.29)

The effective twisted superpotential becomes important for determining vacua and expectation 
values of the twisted chiral observables, as we shall see below.

The space of vacua of the effective theory is a representation of the twisted chiral ring, which is 
spanned by the gauge-invariant polynomials of the complex adjoint scalar, (2.21).4 In [8,9], it was 
shown that the twisted chiral ring of a two-dimensional N= (2, 2) gauge theory is identified with 
the Hamiltonians of the corresponding integrable system. Namely, the problem of quantization 
becomes the spectral problem, with the identification

〈Ok〉|ε2→0,a∈vac = Ek(a, ε1), (2.30)

the eigenvalue of the corresponding quantum Hamiltonian Ĥk . Here the equation for the vacua of 
the two-dimensional effective theory corresponds to the quantization condition of the integrable 
system. As noted in [10,12], the Nekrasov–Shatashvili limit of the N = 2 supersymmetric gauge 
theory leads to several quantization conditions and correspondingly to different quantum inte-
grable systems. The choice of quantization condition becomes manifest in the topological sigma 
model description of the quantization. We can interpret the Nekrasov–Shatashvili limit of the 
�-deformation as the cigar metric R × S1 × DR , in which the cigar has the asymptotic behavior 
of DR ∼ I × S1 with I = [0, R]. Then by reducing the four-dimensional N = 2 gauge theory on 
R × I , the theory is reduced to the topological A-model with the worldsheet with the boundaries 
and the target space being the complexified phase space. We can make use of the brane quanti-
zation picture from this topological A-model description [13]. In particular, the quantization is 
realized by choosing the boundary condition at 0 ∈ I to be the canonical coisotropic A-brane 
and the boundary condition at R ∈ I to be the Lagrangian A-brane. There are two classes of the 
Lagrangian A-branes that can be chosen, which lead to two different types of the quantization:

Type A: exp

(
2π

∂W̃

∂aα

− iθα

)
= 1, (2.31a)

Type B: exp

(
2πi

aα

ε1
− iθα

)
= 1, θα ∈ [0,2π). (2.31b)

3 In the reduction from the four-dimensional N = 2 to the two-dimensional N = (2, 2), we are choosing the convention 
in which N = (2, 2) gauge multiplet is described by the twisted chiral superfield. Note that the complex adjoint scalar in 
the N = 2 vector multiplet becomes the one in the N = (2, 2) twisted chiral multiplet under this reduction. See section 3.

4 See footnote 3 and section 3. The chiral observables in the four-dimensional gauge theory are reduced to the twisted 
chiral observables in the effective two-dimensional theory.
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In the original four-dimensional gauge theory on R ×S1 ×DR , they correspond to the choices of 
the supersymmetric boundary conditions at R ∈ I . In particular, the type A condition corresponds 
to the Neumann boundary condition for the vector multiplet. In this case the four-dimensional 
vector multiplet is reduced to the two-dimensional vector multiplet in the effective theory on 
R ×S1, which is N = (2, 2) abelian gauge theory so that the vacua are determined by the effective 
twisted superpotential as (2.31a) (we included the θ -shift). The type B condition corresponds to 
the Dirichlet condition for the vector multiplet. The gauge symmetry is completely broken and 
both vector multiplets and hypermultiplets of the four-dimensional theory are reduced to chiral 
multiplets of the effective two-dimensional theory. We impose the vanishing condition for the 
holonomy around the boundary ∂DR to preserve the supersymmetry, yielding the quantization 
condition (2.31b). See [12] for more detail.

For the case of the pure U(N) gauge theory, type A and B reality conditions correspond to 
the following formulations of quantum periodic Toda system. In the type A quantization, we are 
taking the real slice of xi ∈ R. After decoupling the motion of the center of mass, we look for 
the L2-normalizable eigenfunctions with real and discrete spectra. It was shown that the vacuum 
equation (2.31a) precisely leads to the Gutzwiller quantization condition for this type of spectral 
problem [26]. See also [28–32] for previous works on the type A periodic Toda system.

In this paper, we mainly focus on the type B quantization of the periodic Toda system, which 
shows quite a different interesting feature. Here we have (quasi-)periodic eigenfunctions with the 
period 2πi. The spectra of the Hamiltonians are complex but still discrete. With the θ -shift, the 
quantization condition is

aα =
(

nα + θα

2π

)
ε1, nα ∈ Z, (2.32)

where θα is precisely the Bloch angle for the shift of xα by the period 2πi. The spectra of the 
Hamiltonians can be computed as the expectation value of the observables in the twisted chiral 
ring, under the Nekrasov–Shatashvili limit with the condition (2.32) imposed:

Ek(a, ε1) = 〈Ok〉|ε2→0,(2.32) = 1

Zinst

∑
λ

q|λ|Ok[λ]μλ(a,ε)

∣∣∣∣∣
ε2→0,(2.32)

, (2.33)

where the statistical model form of the observable Ok[λ] is given in (2.22). In particular, the 
spectra of two lowest order Hamiltonians O2 and O3 take simple form:

E2(a, ε1) =
[∑

α

a2
α − 1

N
ε1�

∂W̃

∂�

]∣∣∣∣∣
(2.32)

, (2.34a)

E3(a, ε1) =
[∑

α

a3
α − 3ε2

1

2N
�

∂W̃

∂�
− 6ε1 lim

ε2→0
ε2

〈 ∑
�∈K

c�̂
〉] ∣∣∣∣∣

(2.32)

. (2.34b)

For example, in the case of N = 2 the type B quantum periodic Toda system is reduced to the 
Mathieu system, whose discrete energy spectrum has been well-studied. For generic value of 
the Coulomb moduli a12 = a1 − a2 (on the integrable system side, generic value of θ1 − θ2) the 
gauge theory computation of the spectrum (2.34a) precisely reproduces the known perturbative 
computation, order by order in the series of �4. We also checked that the perturbative spectra of 
N = 3 periodic Toda system are reproduced by (2.34). The generalization of the computation to 
the higher N is straightforward.
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However, when the Coulomb moduli assume special values aαβ

ε1
∈ Z \ {0}, the correspondence 

breaks down as we now describe. A relation among the equivariant parameters implies that the 
maximal torus TH used for the equivariant localization becomes smaller than generic cases. 
When the torus becomes smaller, the set of fixed points M(N)TH in general becomes larger; as 
noted in [17], one may find a copy of P1’s or a even more complicated subvariety instead of 
isolated set of fixed points with the reduction of symmetry group.

It can be shown that for the specific case at hand, aαβ

ε1
∈ Z \ {0}, M(N)TH actually contains 

a product of P1’s. Recall that before taking aαβ

ε1
∈ Z \ {0} the isolated fixed points M(N)TH

are classified by N -tuples of Young diagrams {λ}. The boxes in these Young diagrams encode 
the weights of linearly independent vectors in the space K[λ] in terms of Coulomb moduli and 
�-deformation parameters, and these weights are all distinct. However, once we introduce the 
new constraint aαβ

ε1
∈ Z \ {0}, the weights now may overlap (or in terms of the Young diagrams, 

two boxes in different Young diagrams may collide). This implies two isolated fixed points dis-
appear into an emergent fixed point set P1 (so that when the symmetry group action is refined by 
an extra U(1) as it used to be, we recover two isolated fixed points on the emergent P1). Since 
we get an emergent P1 whenever this overlap occurs, the fixed point set M(N)TH now contains 
a product of multiple P

1’s.
Hence the integral that provides the instanton partition function remains finite due to the 

compactness of M(N)TH . Nevertheless, the integral over the emergent P1’s gives additional poles 
in ε2, altering the asymptotic behavior of the instanton partition function in the limit ε2 → 0. 
Most importantly, the effective twisted superpotential is not properly obtained by taking W̃ =
limε2→0 ε2logZ since the expression becomes divergent. Therefore we see that (2.34) cannot 
work as it is stated. The main subject of the present work is to recover the correspondence at this 
special locus.

3. Gauge theory with partial �-deformation and partial noncommutativity

To explore the gauge theoretical meaning of the special locus of Coulomb moduli, let us study 
the pure N = 2 U(N) gauge theory with partial �-deformation and partial noncommutativity. 
The four-dimensional N = 2 supersymmetry can be described by the super-covariant derivatives 
in the covariant basis,

{∇A
α , ∇̄Bα̇} = −iδA

B∇αα̇

{∇A
α ,∇B

β } = iεABεαβ�̄

{∇̄Aα̇, ∇̄Bβ̇} = iεABεα̇β̇�, (3.1)

where we are using the convention σμ
αα̇ = (1αα̇, �ταα̇). Here � is the N = 2 chiral superfield 

constrained by ∇α
A∇Bα� = −∇̄Bα̇∇̄α̇

A�̄ due to the Bianchi identities. The action for the pure 
N = 2 gauge theory can be written in the N= 2 chiral superspace as

L = 1

8π
Im
∫

d4θ
1

2
τTr�2. (3.2)

The partial �-deformation (ε1 �= 0, ε2 = 0) breaks the N = 2 supersymmetry, but preserves a 
N = (2, 2) subalgebra on the (x0, x3)-plane,

{∇1+, ∇̄1+̇} = −i∇++̇ = −i (∇0 + ∇3)

{∇2−, ∇̄2−̇} = −i∇−−̇ = −i (∇0 − ∇3) . (3.3)
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Let us choose the following convention for the reduced algebra

∇1+ ≡ ∇+, ∇2− ≡ ∇̄−,

∇̄1+̇ ≡ ∇̄+, ∇̄2−̇ ≡ ∇−, (3.4)

so that the restriction of the N = 2 chiral superfield � ≡ �| = i{∇̄+, ∇−} is a twisted chiral 
superfield in the reduced N = (2, 2) supersymmetry. Note that � contains the complex scalar of 
the N = 2 vector multiplet as its component field. Also it is important that we have the following 
relations from the Bianchi identities,

[∇̄±,∇−+̇] = 0. (3.5)

The N = 2 superspace action is reduced to the N= (2, 2) superspace,

L = − 1

2g2

∫
d4θTr�̄� − Im

[
τ

8π

∫
d2θ̃Tr

(
i�[∇+−̇,∇−+̇] − [∇−,∇−+̇][∇̄+,∇+−̇])] .

(3.6)

Now let us turn on the noncommutativity on the (x1, x2)-plane, [x1, x2] = iζ , while leaving the 
(x0, x3)-plane commutative. Define the raising and the lowering operators:

c = 1√
2ζ

(x1 + ix2), c† = 1√
2ζ

(x1 − ix2), [c, c†] = 1. (3.7)

The effect of the noncommutativity is that the covariant coordinate


 ≡ −i
1√
ζ

c − 1√
2
(A1 + iA2) (3.8)

can act by commutator as the covariant derivative along the noncommutative direction [46]. 
Namely, we can make a substitution ∇−+̇ → √

2
 except in the commutator of two such covari-
ant derivatives,

[∇−+̇,∇+−̇] = 2[
,
̄] − 2

ζ
, (3.9)

where we have the extra term from the commutator of c and c†. Note that 
 is an adjoint chiral 
superfield in the N = (2, 2) supersymmetry by the relation (3.5). The fields are now promoted 
to endomorphisms of the Fock space H that represents the algebra (3.7), on which the depen-
dence of the fields on the noncommutative coordinates are encoded. The integration along the 
noncommutative directions is replaced by the trace over the Fock space,∫

dx1dx2(· · · ) = ζTrH(· · · ). (3.10)

Thus, with the Wick rotation, we arrive at the Euclidean two-dimensional N= (2, 2) superspace 
action of the four-dimensional theory with the partial noncommutativity

L = i

8π

(
τ

∫
d2θ̃TrH⊗CN � + c.c

)
+ ζ

g2

∫
d4θTrH⊗CN

[
−1

2
�̄� + 
̄eV 


]
, (3.11)

with the following superfield contents5

5 Here we are denoting the complex scalar which descends from the N = 2 vector multiplet as σ , which has been 
denoted as φ so far. The convention may be confusing but is more traditional in N = (2, 2) context.
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Twisted chiral : � = (σ,λ+, λ̄−, iD + F43) (3.12a)

Adjoint chiral : 
 = (φ,ψ±,F ). (3.12b)

As is apparent from the definition of 
 as the covariant coordinate, the U(1) = SO(2)12 ⊂
Grot spacetime rotation becomes the flavor symmetry rotating the chiral multiplet 
. The partial 
�-deformation (ε1 �= 0, ε2 = 0) is simply weakly gauging this U(1) flavor symmetry to generate 
the twisted mass for the chiral multiplet,

Ṽε1 = −ε1θ
−θ̄+ − ε̄1θ

+θ̄−. (3.13)

Thus the final form of the action is

L = i

8π

(
τ

∫
d2θ̃TrH⊗CN � + c.c

)
+ ζ

g2

∫
d4θTrH⊗CN

[
−1

2
�̄� + 
̄eV +Ṽε1 


]
,

(3.14)

which can be expanded to an x-space action,

L = ζ

g2 TrH⊗CN

[
1

2
F 2

43 + Dμσ †Dμσ + 1

2
D2 − iD([φ,φ†] − 1

ζ
) + 1

2
[σ,σ †]2 + FF †

+ Dμφ†Dμφ + |[σ,φ] + ε1φ|2 + |[σ,φ†] − ε1φ
†|2

+ 2iλ̄+Dzλ+ − 2iλ̄−Dz̄λ− + 2iψ̄+Dzψ+ − 2iψ̄−Dz̄ψ−
+ √

2λ+[σ, λ̄−] − √
2[σ †, λ−]λ̄+

+ √
2ψ̄+([σ †,ψ−] + ε̄1ψ−) + √

2ψ̄−([σ,ψ+] + ε1ψ+)

− i
√

2ψ̄+[λ̄−, φ] + i
√

2ψ̄−[λ̄+, φ] − i
√

2[φ†, λ+]ψ−

+ i
√

2[φ†, λ−]ψ+
]

− iϑ

8π2 TrH⊗CN F43. (3.15)

The bosonic part of the action can be written as

Lbos = − iτ

4π
TrH⊗CN F43

+ ζ

g2 TrH⊗CN

[
1

2

(
F43 + [φ,φ†] − 1

ζ

)2

+ 4|Dz̄φ|2 + Dμσ †Dμσ + FF †

+1

2

(
D − i

(
[φ,φ†] − 1

ζ

))2

+ |[σ,φ] + ε1φ|2 + |[σ,φ†] − ε1φ
†|2

+1

2
[σ,σ †]2

]
, (3.16)

from which we read off the vacuum equations

F43 + [φ,φ†] − 1

ζ
= 0, Dz̄φ = 0, D − i

(
[φ,φ†] − 1

ζ

)
= 0,

Dμσ = 0, [σ,σ †] = 0, [σ,φ] + ε1φ = [σ,φ†] − ε1φ
† = 0. (3.17)

We focus on the trivial sector where F43 = 0. Then the vacuum equations are solved by
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D = 0,

σ = ε1c
†c ⊗ 1CN + 1H ⊗ diag(a1, a2, · · · , aN),

φ = 1√
ζ

c ⊗ 1CN , φ† = 1√
ζ

c† ⊗ 1CN , (3.18)

where aα are moduli that parametrize the vacua. Since σ is the complex scalar in the N = 2
vector multiplet, aα are nothing but the Coulomb moduli in the four-dimensional perspective. 
The low-energy effective action is obtained by integrating out all the massive modes and high 
energy modes around the vacuum (3.18). Thus we split the vacuum expectation value and the 
quantum fluctuation,

σ = σ0 + σ̂ , φ = φ0 + φ̂, (3.19)

and expand the action in fluctuation modes. We introduce the following gauge fixing term

Lfix = ζ

2g2 TrH⊗CN

[
∂μAμ − i[σ †

0 , σ̂ ] − i[σ0, σ̂
†] − i[φ†

0 , φ̂] − i[φ0, φ̂
†]
]2

, (3.20)

to cancel the mixing terms in the quadratic order. Then we are left with

Lbos +Lfix

= ζ

g2 TrH⊗CN

[
1

2
F 2

43 + |[Aμ,σ0]|2 + |[Aμ,φ0]|2

+ Dμσ̂ †Dμσ̂ + Dμφ̂†Dμφ̂ + 1

2
(∂μAμ)2 + FF †

− iD[φ̂, φ̂†] + 1

2

(
D − i([φ0, φ̂

†] + [φ̂, φ
†
0 ])
)2 + 2|[φ̂, φ

†
0 ]|2 + 1

2
[σ̂ , σ̂ †]2

+ [σ̂ , σ̂ †]
(
[σ0, σ̂

†] + [σ̂ , σ
†
0 ]
)

+ 2|[σ̂ , σ
†
0 ]|2

− [Aμ,σ
†
0 ][Aμ, σ̂ ] − [Aμ, σ̂ †][Aμ,σ0]

− [Aμ,φ
†
0 ][Aμ, φ̂] − [Aμ, φ̂†][Aμ,φ0] + |[σ, φ̂] + ε1φ̂|2 + |[σ, φ̂†] − ε1φ̂

†|2
+ |[σ̂ , φ0]|2 + |[σ̂ , φ

†
0 ]|2 + [σ̂ , φ̂][φ†

0 , σ̂ †]
+[φ̂†, σ̂ †][σ̂ , φ0] + [σ̂ , φ̂†][φ0, σ̂

†] + [φ̂, σ̂ †][σ̂ , φ
†
0 ]
]

− iϑ

8π2 TrH⊗CN F43 (3.21)

For generic values of Coulomb moduli, the only massless fluctuations are the modes of the 
abelian twisted chiral multiplet,

�̂ = σ̂ + · · · = 1H ⊗ diag(�1,�2, · · · ,�N). (3.22)

All the other modes are integrated out in the effective theory, possibly contributing to the effective 
twisted superpotential W̃(�α). Therefore the effective two-dimensional theory is a pure abelian 
gauge theory of rank N with a certain effective twisted superpotential.

However, we discover that additional massless modes emerge at the special locus of Coulomb 
moduli, {aαβ = mε1 | m ∈ Z \ {0}}. Namely, the mass term for the chiral multiplet mode
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̂ ≡ φ̂ + · · · =
{

(c†)m−1 ⊗ Eβ,α
αβ, if m > 0

(c†)−m−1 ⊗ Eα,β
αβ, if m < 0
(3.23)

vanishes at the locus. Here, Eα,β is the N × N matrix whose elements are all 0 except 1 for the 
element in the αth row and the βth column. A massless mode of chiral multiplet is generated 
for each such a pair of (α, β). The emergent massless modes signify the failure of the effective 
description of the theory. In [22], it was argued that this failure is cured by the appearance of 
solitonic particles, which prevent the massless modes to occur through the wall-crossing. It would 
be nice to directly see how this wall-crossing phenomenon interplays with the insertion of surface 
defects discussed in the following sections.

4. Surface defect

4.1. Construction

As non-local gauge-invariant observables, the surface defects enrich the study of N= 2 super-
symmetric gauge theories and Bethe/gauge correspondence. There are two ways of constructing 
the half-BPS surface defects in the context of the N = 2 gauge theory. One of them is orb-
ifolding the four-dimensional spacetime with respect to the action of the cyclic group Zp as 
Cε1 × (Cε2/Zp). This type of surface defect is referred as the orbifold surface defect. The sec-
ond way is inserting a degenerate gauge vertex in the quiver which defines the quiver gauge 
theory of interest. Even though these constructions seem to be distinct, there is an IR duality (at 
least in the A1 case) between the two types of surface defect that descends from the M-theory 
brane transition [39]. We introduce them both constructions below, although we mainly utilize 
the orbifold surface defect for our purpose. More general discussions on half-BPS surface defects 
on quiver gauge theories are in [20].

4.1.1. Orbifold construction
Throughout the discussion, let us restrict our attention to the pure U(N) gauge theory. The 

orbifold surface defect DZp,ρ is constructed by specifying the embedding

ρ : Zp −→ H = Gg × Grot, (4.1)

from which we define the surface defect as the prescription of performing the path integral over 
the space of Zp-invariant fields. The rotation group part of the embedding is always chosen to be

�(ζ) : (z1, z2) 	→ (z1, ζ z2), for ζ = exp

(
2πi

p

)
. (4.2)

To fully characterize the surface defect we need to further specify the gauge group part of the 
embedding ρ. It is assigned by the coloring function

c : [N ] = {0, · · · ,N − 1} −→ Zp, (4.3)

from which we define the gauge group part of the embedding ρ such that the vector space N
decomposes as

N =
∑
α

eβaαRc(α) =
∑

ω∈Zp

NωRω =⇒ Nω =
∑

α∈c−1(ω)

eβaα , (4.4)

where Rω is the one-dimensional irreducible representation of Zp of weight ω,
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Zp −→ End(Rω)

ζ 	−→ ζω. (4.5)

Then we also decompose

K =
∑

ω∈Zp

KωRω, where Kω =
∑
α

∑
(i,j)∈λ(α)

c(α)+j−1≡ω mod p

eβ(aα+ε1(i−1)+ε2(j−1)). (4.6)

We can identify the spacetime C2 with the orbifold C2/Zp through the map (z1, z2) 	→ (z̃1 =
z1, ̃z2 = z

p
2 ). This map is singular along the surface z2 = 0. Therefore the path integral over 

the space of the Zp-invariant fields on (z1, z2)-space is interpreted as the path integral over the 
(z̃1, z̃2)-space with the insertion of a defect along the surface z̃2 = 0.

An orbifold surface defect is called regular for the special case when p = N and c ∈ SN , 
where SN is the permutation group of [N ] = {0, · · ·N − 1}. This special kind of surface defects 
plays an important role in constructing the eigenstate wavefunctions of the integrable system in 
section 4.2.1 and section 5.

4.1.2. N = 2 supersymmetric gauge theory with orbifold surface defect
We now investigate the N = 2 gauge theory in the presence of the orbifold surface defect. In 

the presence of the surface defect, the coupling constant is fractionalized

q 	→ qω ≡ �2 zω

zω−1
, ω ∈ Zp, (4.7)

with zω+p ≡ zω. The surface defect partition function is the path integral over the space of 
Zp-invariant fields, which can be easily obtained from the bulk partition function. From (2.17), 
the instanton part of the surface defect partition function is immediately obtained

�inst
c (a,ε,q, z) =

∑
λ

∏
ω∈Zp

qkω
ω ε(−T [λ]Zp,c), (4.8)

where kω[λ] = dimKω[λ] is the fractionalized instanton number and (· · · )Zp,c is the prescription 
of keeping the Zp-invariant piece for the given coloring function c only. The Zp-invariant piece 
of the character (2.14) is given by

T[λ]Zp,c =
∑

ω∈Zp

[
NωK∗

ω + q1q2N
∗
ωKω−1 − (1 − q1)KωK∗

ω + q2(1 − q1)KωK∗
ω+1

]
. (4.9)

In the special case that the coloring function c : [N ] → Zp is chosen to be surjective, (4.8) is 
identical to the computation from the chain-saw quiver [14]. Note that the instanton part of the 
surface defect partition function also defines a statistical model on the set of colored partitions 
{λ}, with the measure μ

Zp,c

λ (a, ε) =∏ω∈Zp
q
kω
ω ε(−T [λ]Zp,c).

4.1.3. Degenerate gauge vertex construction
For the Ar -quiver gauge theory with the gauge group SU(N), the first gauge factor couples 

to a fundamental hypermultiplet which contributes to the partition function with its masses (see
Fig. 1). Let a1,α be the Coulomb moduli for the first gauge vertex as before, and a0,α be the 
mass of the hypermultiplet that couples to the first gauge vertex. If we tune the mass of the 
hypermultiplet as
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Fig. 1. Ar -quiver with a degenerate gauge vertex.

a0,1 = a1,1 + ε2

a0,α = a1,α α �= 1, (4.10)

it is apparent from (2.14) that the contributions to the instanton partition function from all the 
fixed points vanish except the ones from single-column Young diagrams [20],

λ(1) =

⎛⎜⎜⎝ ...

⎫⎪⎪⎬⎪⎪⎭d,∅, · · · ,∅

⎞⎟⎟⎠≡ λ(1)(d), d ≥ 0. (4.11)

Let us call a gauge vertex degenerate in this case. In the BPS/CFT correspondence, the degenerate 
gauge vertex corresponds to inserting a simplest fully-degenerate primary field in (r + 3)-point 
chiral block of AN−1-Toda CFT,6 which was identified in [35] with a half-BPS surface defect 
in the gauge theory. Hence the surface defect partition function is just the Nekrasov partition 
function (2.17) of the Ar -quiver gauge theory under the degenerate condition (4.10). Now the 
qq-characters play an interesting role in connecting the gauge theory, the CFT, and the integrable 
system. The non-perturbative Dyson–Schwinger equations of the Ar -quiver gauge theory can 
be used to derive the BPZ equation with a simplest fully-degenerate field [21]. The Nekrasov–
Shatashvili limit (the semi-classical limit of the CFT) of the equation yields the Fourier transform 
of the Baxter equation for the corresponding integrable system. We elaborate on the derivation 
for the non-conformal A2-theory with SU(3) gauge group in section 4.2.2.

4.2. Consequences of the non-perturbative Dyson–Schwinger equations

We now derive the differential equations that surface defect partition functions satisfy, using 
the non-perturbative Dyson–Schwinger equations. For generic quiver gauge theories with half-
BPS surface defects, the non-perturbative Dyson–Schwinger equations derived in [20] can be 
used to prove the KZ equation and the BPZ equation satisfied by the partition functions [21]. 
In this paper, we study the surface defects on the pure U(N) gauge theory which is relevant 
to the periodic Toda system. The orbifold surface defect partition function is shown to satisfy 
the Schrödinger-type equation, while the degenerate gauge vertex partition function satisfies the 
Baxter-type equation. Note that those differential equations are valid for all values of ε = (ε1, ε2), 
as the fact will be crucial for investigating the special locus of the Coulomb moduli.

4.2.1. A1-theory with orbifold surface defect
Let us consider the A1-theory with the gauge group U(N) in the presence of the regular orb-

ifold surface defect DZN ,ρ , with the coloring function s ∈ SN . With respect to the representations 
of ZN , the Y-observable factors as:

6 If we impose a0,1 = a1,1 + ε1, it corresponds to the other simplest degenerate field in the AN−1-Toda CFT and 
the surface defect on the other orthogonal plane. Here we choose to insert the degenerate vertex of type (4.10) to be 
consistent with the convention for the Nekrasov–Shatashvili limit, ε2 → 0, as we shall see.
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Y(x) =
∏

ω∈ZN

Yω(x), (4.12)

where

Yω(x)[λ] = (x − as−1(ω))
∏

�∈Kω

x − c�̂ − ε1

x − c�̂
∏

�∈Kω−1

x − c�̂ − ε2

x − c�̂ − ε
. (4.13)

In terms of these Yω’s we also have the fundamental refined qq-characters, which are obtained 
as the orbifolded crossed instanton partition functions [19],

Xω(x) = Yω+1(x + ε) + �2zωz−1
ω−1

Yω(x)
, (4.14)

whose expectation value in the gauge theory in the presence of the surface defect,

〈Xω(x)〉s ≡ 1

�inst
s

∑
λ

Xω(Y[λ])q|λ|μZN ,s
λ (a,ε) = Ts,ω(x), (4.15)

is a polynomial in x by the compactness theorem proven in [18]. In particular, we have the 
vanishing equations,

[x−n]〈Xω(x)〉s = 0, n ∈ Z>0. (4.16)

We study the coefficients of x−n of the fundamental refined qq-character in the large x limit. 
The lowest order coefficients are given by:

[x−1]Xω = ε2
1

2

(
kω − kω+1 − as−1(ω+1)

ε1

)2

− 1

2
a2
s−1(ω+1)

+ ε1ε2kω + �2zωz−1
ω−1

+ ε2
1

2
(kω − kω+1) + ε1

⎛⎝ ∑
�∈Kω

c�̂ −
∑

�∈Kω+1

c�̂
⎞⎠ , (4.17a)

[x−2]Xω = ε3
1

6
(kω − kω+1)

3 − ε3
1

2
(kω − kω+1)

2 + ε2
1ε2kω+1(kω − kω+1)

+ (ε − as−1(ω+1))

⎛⎝ε2
1

2
(kω − kω+1)

2 − ε2
1

2
(kω − kω+1) + ε1ε2kω+1

+ ε1

⎛⎝ ∑
�∈Kω

c�̂ −
∑

�∈Kω+1

c�̂
⎞⎠⎞⎠+ �2zωz−1

ω−1(as−1(ω)

+ ε1(kω − kω−1)) + ε2
1(kω − kω+1)

⎛⎝ ∑
�∈Kω

c�̂ −
∑

�∈Kω+1

c�̂
⎞⎠

+ ε3
1

3
(kω − kω+1) − ε2

1

⎛⎝ ∑
�∈Kω

c�̂ −
∑

�∈Kω+1

c�̂
⎞⎠+ ε1

⎛⎝ ∑
�∈Kω

c2�̂ −
∑

�∈Kω+1

c2�̂
⎞⎠

− ε1ε2εkω+1 + 2ε1ε2

∑
�∈Kω+1

c�̂. (4.17b)
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The expectation values of (4.17) yield the vanishing equations. We take the sum over ω ∈ ZN , 
while simplifying (4.17b) using (4.17a), to get the following differential equations,

0 =
[

ε2
1

2

∑
ω

(
zω

∂

∂zω

− as−1(ω+1)

ε1

)2

+ �2
∑
ω

zωz−1
ω−1 − 1

2

∑
ω

a2
s−1(ω+1)

+ 1

2
ε1ε2�

∂

∂�

]
�inst

s (a,ε,q, z), (4.18a)

0 =
[
−ε3

1

3

∑
ω

(
zω

∂

∂zω

− as−1(ω+1)

ε1

)3

+ �2
∑
ω

zωz−1
ω−1

(
−ε1

(
zω

∂

∂zω

+ zω−1
∂

∂zω−1
− as−1(ω+1)

ε1
− as−1(ω)

ε1

)
+ ε2

)

−1

3

∑
ω

a3
s−1(ω+1)

+ 1

2
ε1ε2ε�

∂

∂�
+ 2ε1ε2

〈 ∑
�∈K

c�̂
〉

s

]
�inst

s (a,ε,q, z). (4.18b)

Note that (4.18a) is the one-line rederivation of the results of [23,24]. In the Nekrasov–Shatashvili 
limit (ε2 → 0), these differential equations produce the spectral equations for the Hamiltonians 
O2 and O3 of the periodic Toda system, as we shall see shortly in section 5.

4.2.2. A2-theory with degenerate gauge vertex
The fundamental qq-characters for the A2-quiver gauge theory can be written as [17,19],

X1(x) = Y1(x + ε) + q1
Y0(x)Y2(x + ε)

Y1(x)
+ q1q2

Y0(x)Y3(x + ε)

Y2(x)
, (4.19a)

X2(x) = Y2(x + ε) + q2
Y1(x)Y3(x + ε)

Y2(x)
+ q1q2

Y0(x − ε)Y3(x + ε)

Y1(x − ε)
, (4.19b)

whose expectation values are polynomials 〈Xi(x)〉 = Ti(x) [18]. Here Y0(x) =∏N
α=1(x − a0,α)

and Y3(x) =∏N
α=1(x − a3,α) by definition, Y1,2(x) are Y-observables (2.20) for the two gauge 

vertices, and q1,2 are the respective gauge couplings. Note that some of the terms are simplified 
if we start from the non-conformal A2-theory with the gauge group SU(3), in which the second 
hypermultiplet decouples

q2 → 0, a3,α → ∞, q2

3∏
α=1

a3,α = �3 fixed. (4.20)

In the A2-Toda CFT side, this is equivalent to studying the irregular 4-point block (one irreg-
ular puncture, one full puncture, and two semi-degenerate punctures). Now we replace one of 
the semi-degenerate fields by a simplest fully-degenerate field, making the degenerate irregu-
lar 4-point block. As we have seen in section 4.1.3 this replacement corresponds to degenerate 
gauge vertex, which we choose to be the left-most one (see Fig. 2). When the first gauge vertex 
is degenerate in the sense of (4.10), it contributes to the instanton partition function only through 
the single-column Young diagrams (4.11), and the first Y-observable is simplified,

Y1(x)[λ(1)(d)] = Y0(x)
x − a0,1 + ε2 − dε1

x − a0,1 − dε1
. (4.21)
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Fig. 2. non-conformal A2-quiver with a degenerate gauge vertex, SU(3) gauge group.

Then the two qq-character equations (4.19) can be combined to yield a degree 4 equation

0 =
(

x − a0,1 − ε1q1
∂

∂q1

)
(T2(x)Z) + q1�

3
(

x − a0,1 − ε2 − ε1

(
1 + q1

∂

∂q1

))
Z

− q
−1
1

(
x − a0,1 + ε2 − ε1

(
−1 + q1

∂

∂q1

))
(T1(x)Z)

+ q
−1
1 Y0(x + ε)

(
x − a0,1 + 2ε2 − ε1

(
−1 + q1

∂

∂q1

))
Z. (4.22)

All the coefficients of positive powers of x actually yield trivial equations. The coefficient of x0

gives the following differential equation for the partition function with respect to q1 and �,

0 =
⎡⎣− q

−1
1

3∏
α=1

(
a0,1 − a0,α + ε1q1

∂

∂q1

)
+

3∏
α=1

(
a0,1 − a2,α + ε1

(
1 + q1

∂

∂q1

))

+ ε1ε2

(
ε + ε1 + a0,1 + ε1q1

∂

∂q1

)
1

3
�

∂

∂�
− �3(1 − q1)

+ 2ε1ε2

〈 ∑
�∈K2

c�̂
〉⎤⎦Z(a,ε,q1,�). (4.23)

In the context of the BPS/CFT correspondence, this is the BPZ equation [47] for the degenerate 
irregular 4-point block in the A2-Toda CFT. Note that it is valid in the full quantum regime of 
the CFT.

For our purpose of investigating the periodic Toda system, we can subject (4.23) to a further 
degeneration limit. First we make a change of variables,

q1 	→ z(q1),
dlog(z(q1))

dq1
= q

−2/3
1 (q1 − 1)−1/3, (4.24)

introduce a prefactor,

Z(a,ε,q1,�) = ef (q1)Z̃(a,ε, z, �̃), (4.25)

with
df (q1)

dq1
= −2a0,1 + a0,2 + a0,3 − ε1 + 3(a0,1 + ε1)q1

3ε1q
1/3
1 (q1 − 1)2/3

,

to bring the equation into the canonical form in which the coefficients of the highest order differ-
ential is 1 and of the second-highest order differential is 0. Then we get the degenerate irregular 
3-point block (two irregular punctures and one fully-degenerate puncture) by taking the limit

� → 0, a0,α → ∞, q1 → ∞,

�3
3∏

α=1

a0,α = �̃6,
q1∏3

α=1 a0,α

= z fixed. (4.26)
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Even though the result is fairly complicated in general case, only a few terms survive in the 
degeneration limit. The final result is

0 =
⎡⎣�̃6z + 1

z
+ ε3

1

(
z

∂

∂z

)3

− ε1

2

(
3∑

α=1

a2
2,α − 1

3
ε1ε2�̃

∂

∂�̃

)(
z

∂

∂z

)

−1

3

3∑
α=1

a3
2,α + 1

6
ε1ε2ε�̃

∂

∂�̃
+ 2ε1ε2

〈 ∑
�∈K2

c�̂
〉⎤⎦ Z̃(a,ε, z, �̃).

(4.27)

Thus we have derived the BPZ equation for the degenerate irregular 3-point block in the A2-Toda 
CFT. Note that this equation can be interpreted as the double quantization of the Seiberg–Witten 
curve (2.27) for the pure N = 2 SU(3) gauge theory. Under the Fourier transform

Z̃(a,ε, z, �̃) ≡
∑
x∈�

Q(x)z
− x

ε1 , (4.28)

where � is a lattice with the lattice spacing ε1, the equation becomes the Baxter-type equation

�̃6Q(x + ε1) +Q(x − ε1) = T (x)Q(x), (4.29)

where we have defined the spectral polynomial

T (x) = x3 − 1

2
〈O2〉x + 1

3
〈O3〉, (4.30)

whose coefficients are precisely the expectation values of the gauge-invariant chiral observables 
(2.22). Note that (4.29) indeed has the form of the Baxter equation for the periodic Toda sys-
tem7 [29], except it is more general since it is valid for generic values of ε = (ε1, ε2). In the 
Nekrasov–Shatashvili limit ε2 → 0 (the semi-classical limit of the CFT, h̄2

CFT = ε1ε2 → 0), the 
equation (4.29) is obviously reduced to the ordinary Baxter equation for the 3-particle periodic 
Toda system.

5. Splitting of the surface defect partition function

Finally we study the splitting behavior of the regular orbifold surface defect partition functions 
and its relation with integrable systems. A crucial remark is that the differential equations (4.18)

are still valid even at the special locus of the Coulomb moduli, 
{

aαβ

ε1
∈ Z \ {0}

}
. Thus the surface 

defect partition function can be used as a probe for the special locus, where the bulk partition 
function does not provide a simple picture for the correspondence. Meanwhile, on the integrable 
system side the special locus still gives the well-defined spectral problem of mutually commuting 
Hamiltonians, except that the spectra become degenerate at the 0-th order due to the specially 
tuned Bloch angles. In particular, the differential equations that define the spectral problem are 
still the same. Therefore the surface defect partition function is expected to detect such a splitting 
behavior of the corresponding integrable system. In particular, we will observe that, while the 
surface defect partition function still has the additional singularities in the limit ε2 → 0, it splits 
into parts in such a way that those extra singularities are resolved in each split part.

7 Since we have started with the gauge group SU(3) instead of U(3), the total momentum O1 has been decoupled.
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First note that for generic values of Coulomb moduli the surface defect partition function 
exhibits the typical asymptotic behavior in ε2 → 0,

�̃s(a,ε,�, z) ≡
∏
ω

z
− a

s−1(ω+1)
ε1

ω �inst
s (a,ε,�, z) = e

W̃(a,ε1,�)

ε2 (ψs(a, ε1,�, z) +O(ε2)),

(5.1)

up to some prefactor. Therefore the differential equations (4.18) realize the Schrödinger equa-
tions for the periodic Toda system[

ε2
1

2

∑
ω

(
zω

∂

∂zω

)2

+ �2
∑
ω

zωz−1
ω−1 − E2(a, ε1,�)

]
ψs(a, ε1,�, z) = 0, (5.2a)[

−ε3
1

3

∑
ω

(
zω

∂

∂zω

)3

− ε1�
2
∑
ω

zωz−1
ω−1

(
zω

∂

∂zω

+ zω−1
∂

∂zω−1

)

− E3(a, ε1,�)

]
ψs(a, ε1,�, z) = 0, (5.2b)

where

E2(a, ε1,�) = 1

2

∑
ω

a2
ω − 1

2
ε1�

∂W̃(a, ε1,�)

∂�
, (5.3a)

E3(a, ε1,�) = 1

3

∑
ω

a3
ω − 1

2
ε2

1�
∂W̃(a, ε1,�)

∂�
− 2ε1 lim

ε2→0
ε2

〈 ∑
�∈K

c�̂
〉

s

(5.3b)

are nothing but the eigenvalues of the Hamiltonians (2.34) we have derived in the theory without 
the surface defect.8,9 Note that even though the meaning of the expectation values in (2.34b) and 
(5.3b) are different, the final results agree in the limit ε2 → 0. Thus the surface defect partition 
function provides a constructive way to obtain both the eigenfunctions and the eigenvalues of the 
Hamiltonians of the corresponding integrable system.

Now we attempt an analogous construction at the special locus of the Coulomb moduli. The 
investigation reveals the splitting behavior of the surface defect partition functions.

5.1. N = 2

Let us first consider the simplest case, N = 2, in which there are two choices for the regular 
orbifold surface defect corresponding to the elements of S2 = {id, (01)}. The Schrödinger equa-
tion (5.2a) is precisely the Mathieu equation up to some change of variables. At the special locus 
{a01 = mε1 | m ∈ Z \ {0}}, we observe that the surface defect partition functions split into two 
parts,

8 The relative factor N in the second term is due to the map (z1, z2) 	→ (z1, zN
2 ) in the orbifold construction of the 

regular orbifold surface defect, which shifts the equivariant parameter as ε2 → Nε2.
9 Although the eigenvalue (5.3b) seems to depend on the choice s ∈ SN through the expectation value 〈· · · 〉s , it turns 

out not to. This is consistent with the computation in the absence of the surface defect, (2.34b).
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�̃id(a01 = mε1,ε,�, z) ± �̃(01)(a01 = mε1,ε,�, z) = e
W̃±

m(ε1,�)

ε2
(
ψ±

m(ε1,�, z) +O(ε2)
)
.

(5.4)

Note that (4.18a) guarantees the wavefunctions ψ±
m(ε1, �, z) to be the split eigenfunctions of the 

Schrödinger equation (5.2a) with the split energy spectrum

E±
2,m = m2ε2

1

8
− 1

4
ε1�

∂W̃±
m(ε1,�)

∂�
. (5.5)

We decoupled the irrelevant center of mass contribution and rescaled by a factor of 2 for con-
venience. The splitting behavior exactly accounts for the broken degeneracy due to the quantum 
tunneling effects on the integrable system side. Note that (5.4) is not obvious in the sense that 
the split twisted superpotential W̃±

m is non-divergent and is independent of the fractional gauge 
coupling z. Also, it should be emphasized that the split twisted superpotential W̃±

m shows the 
series expansion in �2, as opposed to the �4-expansion of the generic twisted superpotential.

We have checked that the split eigenfunctions ψ±
m and the split eigenvalues E±

2,m in (5.4) and 
(5.5) precisely match with the well-known results of the half-periodic and the periodic solutions 
for the Mathieu equation, for various m ∈ Z \ {0} to some order of �. Therefore the splitting 
of the surface defect partition functions accounts for the splitting of the degenerate levels in the 
integrable system, and the correspondence between the gauge theory and the integrable system is 
recovered for the special locus of the Coulomb moduli space. We present some specific examples 
of the computation in Appendix A.1.

5.2. N = 3

In the case N = 3, the Hamiltonians are no longer Hermitian and the eigenvalues are not nec-
essarily real, yet the perturbative series is well-defined including the degenerate case. Therefore 
we can still compare the spectra and the wavefunctions obtained from the gauge theory with the 
quantum mechanical computations. As mentioned in section 2.3, for the non-degenerate cases 
the known dictionary of the correspondence works as stated. Let us turn to the degenerate cases. 
There are three types of degeneracy possible, which are 2-fold, 3-fold, and 6-fold respectively. 
Without loss of generality, those degeneracies occur at the loci

2-fold : {a01 = mε1, a02 is generic | m ∈ Z \ {0}}
3-fold : {a01 = a02 = mε1 | m ∈ Z \ {0}}
6-fold : {a01 = mε1, a02 = lε1 | m, l ∈ Z \ {0},m �= l}.

There are some subtle issues for the 2-fold and 6-fold degeneracies that obstruct our understand-
ing of the splitting of the surface defect partition function, so we leave them to future work. Here 
we discuss the splitting of the surface defect partition function for the 3-fold degeneracy.

We have 6 different regular surface defects corresponding to the elements s ∈ S3. Due to the 
residual symmetry, only 3 out of 6 are independent of each another in the case of a12 = 0. We 
form the split surface defect partition functions as[

�̃(012)(a,ε,�, z) + ζ �̃(021)(a,ε,�, z) + ζ 2�̃id(a,ε,�, z)
] ∣∣∣∣∣

a01=a02=mε1

= e
W̃

ζ
m(ε1,�)

ε2
(
ψζ

m(ε1,�, z) +O(ε2)
)
,

(5.6)
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where ζ is any third root of unity, ζ 3 = 1. Therefore each surface defect partition function splits 
into three parts, accounting for the level splitting of the 3-fold degeneracy. The wavefunctions 
ψ

ζ
m(ε1, �, z) are the common split eigenfunctions of O2 and O3 by (4.18) with the split eigen-

values

E
ζ
2,m = m2ε2

1

3
− 1

2
ε1�

∂W̃
ζ
m(ε1,�)

∂�
, (5.7a)

E
ζ
3,m = 2m3ε3

1

27
− ε2

1

2
�

∂W̃
ζ
m(ε1,�)

∂�
− 2ε1c

ζ
1 (ε1,�), (5.7b)

where we have decoupled the irrelevant center of mass contribution and defined the split expec-
tation value

c
ζ
1 (ε1,�)

=
lim

ε2→0
ε2

〈∑�∈K c�̂
〉

(012)

�̃(012) + ζ

〈∑�∈K c�̂
〉

(021)

�̃(021) + ζ 2

〈∑�∈K c�̂
〉

id

�̃id

�̃(012) + ζ �̃(021) + ζ 2�̃id

∣∣∣∣∣
a01=a02=mε1

.

(5.8)

It is not obvious that cζ
1(ε1, �) neither diverges nor depends on the fractional coupling z; in 

those cases the split eigenvalue (5.7b) would not be well-defined. The computation shows that 
c
ζ
1 (ε1, �) indeed behaves as desired. Note that the split twisted superpotential W̃ζ

m and the split 
expectation value cζ

1 have the series expansions in �2, as opposed to the �6-expansion of the 
generic twisted superpotential and expectation value. We present some examples of computation 
in Appendix A.2.

6. Discussion

In this paper we have studied the Bethe/gauge correspondence for the special locus of the 
Coulomb moduli of the gauge theory, where the integrable system becomes degenerate in the 
non-interacting (free) limit. The analysis on the gauge theory with partial noncommutativity and 
partial �-deformation revealed the emergence of extra massless modes of matter multiplet at the 
special locus, which makes the generic effective description without matter multiplet inappli-
cable. We used half-BPS surface defects, which are constructed out of orbifold and degenerate 
gauge vertex, to investigate the problem. The orbifold surface defect provided a constructive 
approach for the common eigenfunctions as well as the spectra of the Hamiltonians of the inte-
grable system. Namely, the non-perturbative Dyson–Schwinger equations can be used to show 
that the surface defect partition function satisfies the Schrödinger-type equations, which indeed 
reduce to the spectral equations for the Hamiltonians in the Nekrasov–Shatashvili limit. The de-
generate gauge vertex partition function was shown to satisfy the BPZ equation of the dual CFT 
by the non-perturbative Dyson–Schwinger equation. In the Nekrasov–Shatashvili limit, the equa-
tion was reduced to the Fourier transform of the Baxter equation for the corresponding integrable 
system. We have seen that at the special locus of the Coulomb moduli the orbifold surface defect 
partition functions split into parts. Each split part assumes the desired asymptotic behavior in 
the Nekrasov–Shatashvili limit so that the degenerate perturbative series for the eigenfunctions 
and the eigenvalues could be precisely reproduced from the gauge theory perspective. We have 
presented some examples of the splitting.
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There is a natural generalization of the investigation, i.e. adding various flavors to the theory. 
It is manifest from the instanton counting procedure that the theories with various types of flavor 
share the same denominator in the effective twisted superpotential. Thus U(N) gauge theories 
with flavors show the same divergent phenomena at the special locus of the Coulomb moduli 
space, which are expected to correspond to the splitting of degeneracies in the integrable system 
side. We may introduce the regular surface defect in those theories, with some proper assign-
ment of the colorings for the flavors, and investigate the splitting behavior at the special locus. 
Some theories with fundamental hypermultiplets have non-Hermitian Hamiltonians even in the 
simplest case N = 2. It would be a nontrivial check to see how the splitting works for those 
theories.

Another interesting issue to be considered is the 5d uplift. While d = 4, N = 2 gauge theories 
correspond to the non-relativistic integrable systems realized on the Seiberg–Witten geome-
try, the d = 5, N = 1 gauge theories compactified on a circle correspond to their relativistic 
cousins [11]. The main difference is that the spectral equations become difference equations 
instead of differential equations. It was checked in [42] at some low instanton numbers that the 
codimension-two surface defect partition function satisfies those difference equations, for the ex-
ample of N = 1∗ theory. It would be nice to construct a rigorous analytic proof of those relations 
as done in this work for the four-dimensional case, using the 5d version of the qq-characters 
[17]. The algebraic engineering of codimension-two defect partition functions à la [44] can be 
useful for this study. The splitting of degeneracies would persist in those relativistic integrable 
systems, and the insertion of codimension-two defects is expected to detect this splitting through 
their partition functions.

The study of resurgence in integrable systems can have a connection with our story. For ex-
ample, let us consider the Mathieu system which corresponds to the pure N = 2 SU(2) gauge 
theory. The exact spectrum of the Mathieu system around a minimum of the Mathieu poten-
tial V (x) = �2cosx exhibits the trans-series expansion, which can be computed by the exact 
quantization condition [40]. In [41], it was argued that this exact quantization condition can be 
regarded as the Nekrasov–Shatashvili quantization condition in the strong coupling regime. The 
analysis showed that the prepotential at the strong coupling regime gets non-perturbative cor-
rections (in the sense of quantum mechanics). Using the connection between the weak and the 
strong coupling regimes described in [43], we may look for the gauge theoretical understanding 
of a nontrivial relation between the aforementioned non-perturbative effect in the strong coupling 
regime and the non-perturbative effect in the weak coupling regime, i.e. the splitting of the degen-
erate levels studied in this paper. The topological string point of view on the exact quantization 
in [45] can also be related along these lines.

It would also be interesting to clarify the implication of the other eigenfunctions for the split 
eigenvalues. For example, it is well-known that for the Mathieu system the second solution for the 
split eigenvalue includes a logz term. Actually the second solution for a01 = 0 (where the split-
ting does not occur) can be obtained by taking a derivative of the surface defect partition function 
with respect to the Coulomb moduli. When a01 = mε1 this procedure is not available since the 
surface defect partition function has discontinuity at the special locus. However, we may insert a 
’t Hooft line operator on top of the surface operator to get a ε2-shift of the Coulomb moduli [35,
37,38], which becomes infinitesimal in the Nekrasov–Shatashvili limit. Since the configuration 
is expected to have a well-defined effective twisted superpotential in the Nekrasov–Shatashvili 
limit, its partition function may produce the second solution with log. Unfortunately, the su-
persymmetric localization for such configuration of non-local observables is not available as of 
yet.
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Appendix A. Examples of split surface defect partition functions

A.1. N = 2

For N = 2 case we can compare the results from the gauge theory with the well-known Math-
ieu functions with half-period and whole-period, in [48] for example. We observe the precise 
match between the two.

i) a01 = ε1

�̃id(a01 = ε1,ε,�, z) ± �̃(01)(a01 = ε1,ε,�, z)

= e

1
ε2

(
± �2

ε1
+ �4

4ε3
1
∓ �6

12ε5
1
+ �8

96ε7
1
± 11�10

720ε9
1

+O(�12)

)
[
z1/2 ± z−1/2 + �2

ε2
1

z3/2 ± z−3/2

2

+ �4

ε4
1

(
z5/2 ± z−5/2

12
− z1/2 ± z−1/2

8
− z−3/2 ± z3/2

12

)

+ �6

ε6
1

(
z7/2 ± z−7/2

144
+ ∓z5/2 − z−5/2

18
− z3/2 ± z−3/2

48
+ ±z1/2 + z−1/2

8

)

+ �8

ε8
1

(
z9/2 ± z−9/2

2880
+ ∓z7/2 − z−7/2

192
+ 49(±z3/2 + z−3/2)

28
− 37(z1/2 ± z−1/2)

1152

)

+ �10

ε10
1

(
z11/2 ± z−11/2

86400
+ ∓z9/2 − z−9/2

3600
+ z7/2 ± z−7/2

5760

+41(±z5/2 + z−5/2)

1152
− 317(z3/2 ± z−3/2)

2304
− 121(±z1/2 + z−1/2)

1728

)

+O(�12) +O(ε2)

]
(A.1)

Using the dictionary (5.5) we compute

E±
2,m=1 = ε2

1

8
∓ �2

2
− �4

4ε2
1

± �6

8ε4
1

− �8

48ε6
1

∓ 11�10

288ε8
1

+O(�12). (A.2)

These split eigenvalues and split eigenstate wavefunctions exactly match with the known results 
for the Mathieu function.
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ii) a01 = 2ε1

�̃id(a01 = 2ε1,ε,�, z) ± �̃(01)(a01 = 2ε1,ε,�, z)

= e

1
ε2

((
− 1

3 ∓ 1
2

)
�4

ε3
1

+
(

379
864 ± 4

9

)
�8

ε7
1

+O(�12)

)
[
z ± z−1 + �2

ε2
1

(
z2 ± z−2

3
− (1 ± 1)

)
+ �4

ε4
1

(
z3 ± z−3

24
−
(

5

9
± 1

2

)
(z ± z−1)

)
+ �6

ε6
1

(
z4 ± z−4

360
+
(

− 7

72
∓ 1

18

)
(z2 ± z−2) + 49

18
(1 ± 1)

)

+ �8

ε8
1

(
z5 ± z−5

8640
−
(

1

120
± 1

576

)
(z3 ± z−3) +

(
25655

10368
± 133

54

)
(z ± z−1)

)

+ �10

ε10
1

(
z6 ± z−6

302400
−
(

11

25920
∓ 1

14400

)
(z4 ± z−4) +

(
91283

155520
± 37

64

)
(z2 ± z−2)

−134855

5184
(1 ± 1)

)
+O(�12) +O(ε2)

]
(A.3)

E±
2,m=2 = ε2

1

2
+
(

1

3
± 1

2

)
�4

ε2
1

−
(

379

432
± 8

9

)
�8

ε6
1

+O(�12) (A.4)

iii) a01 = 3ε1

�̃id(a01 = 3ε1,ε,�, z) ± �̃(01)(a01 = 3ε1,ε,�, z)

= e

1
ε2

(
− �4

8ε3
1
± �6

12ε5
1
− 13�8

1280ε7
1
∓ �10

64ε9
1
+O(�12)

)
[
z3/2 ∓ z−3/2 + �2

ε2
1

(
z5/2 ∓ z−5/2

4
− z1/2 ∓ z−1/2

2

)

+ �4

ε4
1

(
z7/2 ∓ z−7/2

40
− 5(z3/2 ∓ z−3/2)

32
− z1/2 ∓ z−1/2

4

)

+ �6

ε6
1

(
z9/2 ∓ z−9/2
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− 11(z5/2 ∓ z−5/2)

640
+ ∓z3/2 + z−3/2

8
+ z1/2 ∓ z−1/2

64

)

+ �8

ε8
1

(
z11/2 ∓ z−11/2

20160
− 11(z7/2 ∓ z−7/2)

11520
+ ∓z5/2 + z−5/2

64

− 1621(z3/2 ∓ z−3/2)

51200
+ 21(±z1/2 − z−1/2)

128

)

+ �10

ε10
1

(
z13/2 ∓ z−13/2

806400
− z9/2 ± z−9/2

32256
+ 3(∓z7/2 + z−7/2)

3200
− 12329(z5/2 ± z−5/2)

1843200

+9(±z3/2 − z−3/2)

128
+ 14061(z1/2 ∓ z−1/2)

102400

)
+O(�12) +O(ε2)

]
(A.5)
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E±
2,m=3 = 9ε2

1

8
+ �4

8ε2
1

∓ �6

8ε4
1

+ 13�8

640ε6
1

± 5�10

128ε8
1

+O(�12) (A.6)

A.2. N = 3

In the case of N = 3 we do not have a known result to compare to. Although the degenerate 
perturbative expansion can be done in principle for the non-Hermitian Hamiltonians, it quickly 
becomes tedious for increasing orders. The following results from gauge theory provides an 
alternative way to compute the split eigenfunctions and the split eigenvalues.

i) a01 = a02 = ε1

[�̃(012)(a,ε,�, z) + ζ �̃(021)(a,ε,�, z) + ζ 2�̃id(a,ε,�, z)]|a01=a02=ε1

= e

1
ε2

(
ζ �2

ε1
+ζ 2 �4

2ε3
1
+ �6

12ε5
1
−ζ 3�8

9ε7
1

+O(�10)

)
z
− a0

ε1
0 z

− a0
ε1

+1

1 z
− a0

ε1
+1

2[
1 + ζ

z0

z1
+ ζ 2 z0

z2
+ �2

ε2
1

(
z1

2z0
+ z2

z1
+ ζ

(
z0z2

2z2
1

+ z2
0

z1z2

)
+ ζ 2

(
z2

0

2z2
2

+ z1

z2

))

+ �4

ε4
1

(
− z0

2z1
− z2

1

12z2
0

− z2
0

4z2
2

− z1

2z2
+ ζ

(
3z2

0

4z2
1

− z1

4z0
+ z3

0

4z1z
2
2

− z0

2z2

)

+ ζ 2

(
−1

2
+ z3

0

12z3
2

+ 3z0z1

4z2
2

− z2
0

z1z2
+ z2

1

4z0z2

))

+ �6

ε6
1

(
1

8
+ z3

1

144z3
0

− z3
0

z3
2

− 3z0z1

4z2
2

− 5z2
0

4z1z2
− z2

1

6z0z2
− z0z2

4z2
1

+ z1z2

6z2
0

+ z2
2

4z0z1
+ z3

2

36z3
1

+ ζ

(
z0

8z1
− z2

1

18z2
0

+ z4
0

36z1z
3
2

− z2
0

4z2
2

+ z3
0

4z2
1z2

−5z1

4z2
− 5z1

4z2
− 3z2

4z0
+ z2

0z2

6z3
1

− z2
2

6z2
1

+ z0z
3
2

144z4
1

)

+ ζ 2

(
−3z2

0

4z2
1

− z1

4z0
+ z4

0

144z4
2

+ z2
0z1

6z3
2

− z3
0

6z1z
2
2

+ z2
1

4z2
2

+ z0

8z2
2

+ z3
1

36z2
0z2

− 5z2

4z1

− z0z
2
2

18z3
1

))

+ �8

ε8
1

(
−3z2

0

4z2
1

+ z1

4z0
+ z4

1

2880z4
0

− z4
0

192z4
2

− 7z2
0z1

36z3
2

− 25z3
0

72z1z
2
2

− 7z2
1

24z2
2

+ z3
1

48z2
0z1

+ 13z2

8z1
+ 5z2

1z2

288z3
0

+ 5z2
2

72z2
0

− z0z
2
2

24z3
1

+ 5z3
2

144z0z
2
1

+ z4
2

576z4
1

+ ζ

(
25

16
+ 5z3

0

72z3 − z3
1

192z3 + z5
0

576z z4 − z3
0

24z3 + 5z4
0

144z2z2 − 3z0z1

4z2 + 13z2
0

8z1z2
1 0 1 2 2 1 2 2
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− 25z2
1

72z0z2
+ z0z2

4z2
1

− 7z1z2

36z2
0

+ 5z2
0z

2
2

288z4
1

− 7z2
2

24z0z1
− z3

2

48z3
1

+ z0z
4
2

2880z5
1

)

+ζ 2

(
+25z0

16z1
− z2

1

24z2
0

+ z5
0

2880z5
2

+ 5z3
0z1

288z4
2

− z4
0

48z1z
3
2

+ 5z0z
2
1

72z3
2

+ z2
0

4z2
2

+ 5z3
1

144z0z
2
2

− 7z3
0

24z2
1z2

+ 13z1

8z2
+ z4

1

576z3
0z2

− 3z2

4z0
− 7z2

0z2

36z3
1

− 25z2
2

72z2
1

− z0z
3
2

192z4
1

))

+O(�10) +O(ε2)

]
(A.7)

From the dictionary (5.7) we compute

E
ζ
2,m=1 = ε2

1

3
− ζ�2 − ζ 2 �4

ε2
1

− �6

4ε4
1

+ ζ
3�8

2ε6
1

+O(�10) (A.8)

E
ζ
3,m=1 = 2ε3

1

27
+ ζ�2(−2a0 + ε1) − ζ 2 2(a0 − ε1)�

4

ε2
1

− (2a0 + ε1)�
6

4ε4
1

+ ζ
3(4a0 − 3ε1)�

8

4ε6
1

+O(�10). (A.9)

ii) a01 = a02 = 2ε1

[�̃(012)(a,ε,�, z) + ζ �̃(021)(a,ε,�, z) + ζ 2�̃id(a,ε,�, z)]|a01=a02=2ε1

= e

1
ε2

(
−ζ �4

2ε3
1
− 2�6

27ε5
1
+ζ 2 5�8

16ε7
1
+O(�10)
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z
− a0

ε1
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ε1
+2
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1 + ζ

z2
0
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1

+ ζ 2 z2
0

z2
2
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ε2
1
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z1
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+ ζ
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1z2
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(
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0
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0
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1
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0
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1
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2

8640z6
1

)

+ ζ 2

(
35

32
+ 2z3

0

27z3
1

+ z6
0

8640z6
2

+ z4
0z1

180z5
2

− z5
0

90z1z
4
2

+ z2
0z

2
1

192z4
2

+ 29z3
0
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0
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(A.10)

E
ζ
2,m=2 = 4ε2

1

3
+ ζ

�4

ε2
1

+ 2�6

9ε4
1

− ζ 2 5�8

4ε6
1

+O(�10) (A.11)
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ζ
3,m=2 = 16ε3
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4

ε2
1
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(A.12)
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