
Hybrid implementation of the VEGAS Monte-

Carlo algorithm

Gilles Grasseau1, Stanislav Lisniak1, David Chamont1

1LLR, Laboratoire Leprince-Ringuet, Ecole polytechnique, 91128 Palaiseau, France

DOI: http://dx.doi.org/10.3204/DESY-PROC-2014-05/19

Cutting edge statistical methods involving Monte-Carlo integrations are commonly used in
the LHC analysis chains. Dealing with high dimensionality integration, the computing time
can be a bottleneck to deploy such statistical methods at large scales. In this paper we
present the first bricks to build an HPC implementation of the well known vegas algorithm.
Thanks to the open programming standards

OpenCL and MPI, we target to deploy such tool on cluster of nodes handling various hardware
like GPGPU or ’many-core’ computing accelerators.

1 Motivations

Multidimensional integration based on Monte-Carlo (MC) techniques [1] are widely used in High
Energy Physics (HEP) and numerous other computing domains. In HEP, they naturally arise
from the multidimensional probability densities or from the likelihoods often present in the
analysis. Due to computing intensive integrations and large data sets containing millions of
events, the situation is difficult for an analysis team if the processing of all samples exceeds 2-3
weeks (elapsed time).

Today, HPC programming requires dealing with computing accelerators

like GPGPU or ’many-core’ processors, but also taking into account the development portabil-
ity and the hardware heterogeneities with the use of open programming standards like OpenCL.
Among the available MC algorithms (miser, Markov Chain, etc.) the choice has been driven by
the popularity and the efficiency of the method. The ’vegas’ algorithm [2, 3] is frequently used
in LHC analyses as it is accessible from the root environment [4], while providing reasonably
good performance.

The parallel implementation of vegas for computing accelerators presents no major ob-
stacle [5], even though some technical difficulties occur when dealing with portability and
heterogeneity, mainly due to the lack of libraries and development tools (like

performance analysis tools).

Combining MPI and OpenCL, we present a scalable distributed implementation. Performance
will be shown on different platforms (NVidia K20, Intel Xeon Phi) but also on heterogeneous
platform mixing CPUs, and different kinds of computing accelerator cards.

The presented work is a canvas to integrate various multidimensional

functions for different analysis processes. It is planned to integrate and exploit this imple-
mentation in the future analyses by the CMS (Compact Muon Solenoid) experiment at CERN.

GPUHEP2014 1GPUHEP2014 103

2 Software design

2.1 Introduction to the VEGAS MC algorithm

The root-based MC integration environment is popular within the High Energy Physics com-
munity. This environment actually provides an encapsulation of the GNU Scientific Library
(GSL) MC integration functions [6]. GSL offers 3 kinds of MC algorithms : classical (or plain),
miser, vegas. Since vegas converges more rapidly than the two other methods, and is widely
used in the CMS collaboration data analysis, we will focus on this MC integration method.

A High-dimensional integral I =
∫
dn~x f(~x) can be approximated by evaluating f(~x) at M

points ~x, drawn randomly in the domain Ω with the probability density p(~x):

I = fp =
V

M

∑

~x

f(~x)

p(~x)
, V is the volume of Ω,

with its estimated variance σ2 :

σ2 =
f2p − (fp)

2

M − 1
' σ2, where f2p =

V

M

∑

~x

(
f(~x)

p(~x)
)2.

The classical MC integration method (plain in GSL library) uses a uniform density probability
p(~x) = cst which ensures the process’ convergence: limM→+∞ fp −→ I. Nevertheless, the
convergence is slow and requires a great number of points M to obtain a good approximation
of I.

In the vegas algorithm, two main ideas are used to reduce the variance and, as a result,
accelerate the convergence of the estimated integral I.

1. Importance sampling: the variance tends to zero if the probability density has the form

p(~x) ∝ |f(~x)| (quick justification for f(~x) > 0, f(~x)
p(~x) = cst,⇒ σ2 = 0, see [1] for more

details) . In other words, this means that the function sampling must be concentrated on
the largest magnitudes of the function f(~x). Starting with p(~x) uniform, p(~x) gradually

approximates |f(~x)|cst , thanks to the contributions of the different function evaluations.

2. Stratified sampling: this other strategy samples the highest variance domains in Ω, then
subdivides it in sub-domains to decrease the local variance and thus the global variance of
|f(~x)|. With this strategy, the system converges with a sub-domain partition of Ω which
minimizes the variance σ2. In GSL implementation, the probability distribution p(~x) is
updated with the local sub-domain variance σ2(~x); these sub-domains are called boxes
and are used to discretize p(~x).

Depending on the number of points to evaluate (set by user), vegas chooses Importance
sampling or Stratified Sampling according to the sampling density of the domain.

2.2 Parallelism and OpenCL considerations

The vegas algorithm can be sketched with 3 main embedded loops as shown in Fig.: 1. The
internal loop evaluates the function f(~x) for M random points ~x, according to the probability
distribution pk−1(~x). The accumulated values of f(~x) give the estimated integral Ik. In the
same loop, the estimated variance σk

2, as well as the new probability distribution pk(~x), are

2 GPUHEP2014

GILLES GRASSEAU, STANISLAV LISNIAK, DAVID CHAMONT

104 GPUHEP2014

updated. Several evaluations of the Ik integral are performed in the intermediate loop, in order
to compute the Chi-square χ2 by degree of freedom, thus determining the consistency of the
sampling. Finally, the outer-loop is used to control the integral convergence (I, σ2, χ2).

Compute: I =
∫
Ω f(~x) dnx, on

a d-dimensional integration domain Ω
Loop until convergence (σ2, χ2)

Loop internal iteration k
pk(~x)← 0;
Loop over N points ~x ∈ Ω

~x← rand();
f̄ ← f̄ + f(~x);
update Ik, σk

2, pk(~x);
End Loop

update I, σ2, χ2;
End Loop

End Loop

Figure 1: the vegas algorithm. The integral
I of f(~x) is evaluated on the d-dimensional do-
main Ω. The standard deviation σ2 and the χ2

can be used as convergence criteria. pk(~x) is the
probability distribution discretized on a grid.

From the parallelization point of view, the
most computing intensive loop, i.e. the in-
ternal one, must be spread among different
computing units, handling the shared vari-
ables Ik, σk

2, pk(~x) with care. It is well-
known that opening a parallel region (with
the OpenMP formalism) on the internal loop
is much less efficient than opening a parallel
region on the outer loop. In the same way,
OpenCL (or CUDA) kernels must be as large as
possible to avoid substantial overhead time
to launch kernels and unnecessary work to
split the initial kernel in several kernels. It is
worth mentioning, in our algorithm, the em-
bedded loops must be split in two kernels at
the reduction step (Ik, . . .) to synchronize the
global memory between the different work-
groups. As a result, split kernels will generate
unexpected overhead time to launch and syn-
chronize : number convergence iterations×
number internal iterations× 2 kernels.

Writing and managing a single kernel
which takes into account all steps of the ve-
gas algorithm, presents no difficulty. It only requires that each computing element evaluates
several points contributing to the integral. In addition it substantially increases the computing
load per computing unit. However, the only way to synchronize the shared variables is to per-
form the computations in a single work-group (or block in CUDA). Although this solution works
well on Intel Xeon Phi (thanks to OpenCL 1.2), it does not work properly on NVidia hardware
for 2 reasons:

• The work-group size is limited (hardware limit, generally 1024).

• Two OpenCL kernels cannot be run simultaneously on NVidia GPGPUs (the situation is
even more dramatic, two OpenCL kernels cannot be run simultaneously on two different
GPGPUs in the same process).

With such limitation on NVidia OpenCL driver we were constrained to split the kernel and
lose efficiency.

2.3 OpenCL and MPI event dispatchers

The expected speed-up factor of a single accelerator card will not be sufficient to minimize user
waiting time when dealing with data-sets containing each 106 events to process. The CMS
analysis team cannot afford to wait for long processing chains to end (each chain needs several
weeks to be processed). With this requirement, it is mandatory to use several accelerator cards

GPUHEP2014 3

HYBRID IMPLEMENTATION OF THE VEGAS MONTE-CARLO ALGORITHM

GPUHEP2014 105

simultaneously, and even more, using several nodes themselves handling several accelerator
cards to build a high performance computing application.

Platform 1

GPGPU GPGPU

clEvent clEvent

Device 1,2

Platform 2

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

clEvent

Device 1

Platform N

CPU CPU

CPU CPU

clEvent

clEvent

clEvent

clEvent

Device 1,2,3,4

MPI Event
Dispatcher

OpenCL Event
Dispatcher

Events

Ev
en
ts

E
ve
n
ts Events

Figure 2: OpenCL dispatcher: the events are dis-
patched to different device queues. The dif-
ferent kernels to be processed are run asyn-
chronously. The synchronization is performed
thanks to OpenCL events

To gather the computing power available,
a two-level event dispatcher has been imple-
mented: the OpenCL event dispatcher dealing
with the distribution of events among sev-
eral devices (i.e. several accelerator cards and
CPUs) and the MPI event dispatcher to dis-
tribute events among the computation nodes.

The OpenCL event dispatcher takes advan-
tage of the OpenCL abstract model, in which
queues manage kernels to be executed on the
hosted devices. In this way, we can benefit
directly of the CPUs power without adding a
multi-thread programming paradigm to build
a hybrid application.

The OpenCL dispatcher feeds the device
with an event to be processed, as soon as a
queue is free. All copies from host node to
accelerator cards and all kernels are launched
asynchronously, with a dependence graph
built thanks to OpenCL events. The computa-
tion of the integral is considered to be finished
when the copy of the result - from the device
to the host - is completed.

The second dispatcher level, called MPI

event dispatcher aggregates computing power
form different nodes by distributing sets of events among several MPI processes (generally one
MPI process per node). In the same way as the OpenCL dispatcher, the master MPI process sends
a set of events to be processed, as soon as a worker MPI process is idle. Then, the MPI worker
(or MPI master) delegates the treatment of its event set to the OpenCL dispatcher.

3 Performance studies

3.1 Benchmark environment

Product Version/Options

Compiler icc-13.0.1 / -O3

MPI OpenMPI 1.6.5
OpenCL Intel 1.2
OpenCL NVidia 1.1

Table 1: Compiler and library
versions.

As far as the integration is concerned, we choose for this
benchmark the special function sinus integral to test the
adaptive scheme for an oscillating function, whose result is
known:

I =

∫ 2π

0

n∏

i=0

sin(xi)

xi
dnx ' 5.7360, withn = 5.

Often, the integration is done iteratively to control the
convergence towards acceptable values of the standard de-
viation σ and chi-square χ2. In this test case, we want to

4 GPUHEP2014

GILLES GRASSEAU, STANISLAV LISNIAK, DAVID CHAMONT

106 GPUHEP2014

perform a fixed number of iterations, evaluating 5 × 105 points per integration. For these pa-
rameters, vegas draws 2 points per box (discretized volume element of pk(~x)), this means that
only 12 boxes are used per dimension for the grid integration domain (2× 125 = 497664).

Three kinds of clusters are available on our platform, called GridCL, for benchmarking:

• Two nodes connected with an InfiniBand link, each hosting 2 Intel Xeon E5-2650

processors (8 cores for each processor rated at 2.0 GHz). In addition, each node hosts 2
NVidia K20M GPGPU cards.

• Same as above concerning the node characteristics. Each node hosts 2 Intel Xeon Phi

5110P accelerator cards.

• The last node based on two Intel Xeon E5-2650 v2 (Ivy Bridge) processors (8 cores for
each processor rated at 2.6 GHz) hosts 6 NVidia Titan GPU cards.

The software configuration used to build the vegas hybrid application is presented in Tab. 1.

3.2 Results

Speed-up GSL OCL OCL OCL OCL MPI

(1) (2) (3) (4) (5) (6)

CPUs 32 32 - - 32 -
accelerators - - 1 2 2 2/6

K20M node 18.5 50.0 56.0 56.0 94.5 110
Xeon Phi node 18.5 50.0 27.3 54.1 80.3 -
Titan node 18.1 39.1 55.9 55.6 95.3 328

Table 2: Speed-up values obtained with different configu-
rations (the reference time to calculate the speed-up val-
ues is the computing time obtained with the GSL library):
(1) using GSL library executed on 32 processors (in fact 16
physical processors, 32 with hyper-threading), (2) OpenCL
version on the 32 processors, (3) OpenCL version on a sin-
gle accelerator card, (4) OpenCL with 2 accelerator cards,
(5) OpenCL with all devices including CPUs, (6) 2 MPI pro-
cesses (6 MPI processes on the Titan node), each handling
one accelerator card (with OpenCL).

As shown in Tab. 2, the OpenCL

implementation of vegas presents
very good performance on CPUs

(column 2). This improvement is
not only accountable to OpenCL par-
allelization, but also to the Intel

OpenCL implementation which both
parallelizes and vectorizes the ker-
nels, as Intel was claiming [7] (a
speed-up of 18.5 is obtained with 32
MPI instantiations of the GSL imple-
mentation - column 1).

The acceleration obtained with
the NVidia K20M card seems to be
good, but compared with CPUs per-
formance, the gain is not excel-
lent. As announced in paragraph
section 2.2, no gain is obtained
with two K20M devices (column 4),
assuming that the NVidia OpenCL

driver does not handle simultaneously several cards properly. Fortunately, we can bypass the
lack of functionality, by launching 2 MPI processes each handling one device (see column 6).

Concerning Intel Xeon Phi, the speed-up shows that we do not use theses accelerators
optimally. We will rely on the Intel performance analysis software VTune to highlight the
bottleneck when we will start to optimize our kernels. However, the Intel OpenCL driver deals
with the 2 cards simultaneously (column 4). Considering all computing devices, good overall
performance is obtained (column 5), thanks to the efficiency of OpenCL CPUs.

Benchmarking the computing node holding 6 NVidia Titan cards, the performance profile
is the same as above : moderated speed-up for one card (speed-up = 56). With all 6 cards the

GPUHEP2014 5

HYBRID IMPLEMENTATION OF THE VEGAS MONTE-CARLO ALGORITHM

GPUHEP2014 107

speed up value is identical due to the NVidia driver issue, while the speed-up reaches 328 with
6 MPI processes.

The OpenCL and MPI event dispatchers provide good efficiency (see columns 5 and 6) even
if the efficiency decreases when using several nodes. A time sampling has been added into
the application to trace the event distribution, the overheads and the idle zones for future
optimization work.

4 Conclusion

This preliminary version of our high performance MC integration implementation, based on
OpenCL and MPI, already offers good efficiency on CPUs and OpenCL event dispatchers. The
application however still needs several improvements to extract more computing power from
accelerator cards, and requires tuning load-balancing parameters to efficiently run on MPI event
dispatchers. Already substantial speed-up (> 300 - compared with sequential integrations based
on GSL library) has been reached on the GridCL node hosting 6 NVidia Titan cards.

Before improving the application with all potential identified optimizations, we are going
to focus our activity on a real application currently designed by the LLR CMS analysis team.
Based on vegas integrations, the matrix-element methods (MEM) [8, 9], is a well known powerful
approach in particle physics to extract maximal information from the events. Knowing that
MEM require a huge computing power (processing one event can take 60s), we aim to provide a
drastic speed-up to the MEM processing chain.

Acknowledgments

This work has been funded by the P2IO LabEx (ANR-10-LABX-0038) in the framework In-
vestissements d’Avenir (ANR-11-IDEX-0003-01) managed by the French National Research
Agency (ANR).

References
[1] Stefan Weinzierl. Introduction to Monte Carlo methods. ArXiv e-prints, 2000.

[2] G. Peter Lepage. A New Algorithm for Adaptive Multidimensional Integration. J.Comput.Phys., 27:192,
1978.

[3] G. Peter Lepage. VEGAS: An Adaptive Multi-dimensional Integration Program. 1980. Cornell preprint
CLNS 80-447.

[4] Rene Brun and Fons Rademakers. ROOT - An Object Oriented Data Analysis Framework. Nucl. Inst. &
Meth. in Phys. Res. A, 389:81–86, 1997. http://root.cern.ch/.

[5] J. Kanzaki. Monte Carlo integration on GPU. European Physical Journal C, 71:1559, February 2011.

[6] M. Galassi et al. GNU Scientific Library Reference Manual. Network Theory Ltd, third edition edition,
2009. http://www.gnu.org/software/gsl/.

[7] Intel developper note. Writing Optimal OpenCL Code with Intel OpenCL SDK. page 10, 2011. https:

//software.intel.com.

[8] Abazov VM et al. A precision measurement of the mass of the top quark. NATURE, 429:638–642, 2004.

[9] D. Schouten, A. DeAbreu, and B. Stelzer. Accelerated Matrix Element Method with Parallel Computing.
ArXiv e-prints, July 2014.

6 GPUHEP2014

GILLES GRASSEAU, STANISLAV LISNIAK, DAVID CHAMONT

108 GPUHEP2014

