Hybrid implementation of the VEGAS Monte-Carlo algorithm

Gilles Grasseau¹, Stanislav Lisniak¹, David Chamont¹

¹LLR, Laboratoire Leprince-Ringuet, Ecole polytechnique, 91128 Palaiseau, France

DOI: http://dx.doi.org/10.3204/DESY-PROC-2014-05/19

Cutting edge statistical methods involving Monte-Carlo integrations are commonly used in the LHC analysis chains. Dealing with high dimensionality integration, the computing time can be a bottleneck to deploy such statistical methods at large scales. In this paper we present the first bricks to build an HPC implementation of the well known VEGAS algorithm. Thanks to the open programming standards

OpenCL and MPI, we target to deploy such tool on cluster of nodes handling various hardware like **GPGPU** or 'many-core' computing accelerators.

1 Motivations

Multidimensional integration based on Monte-Carlo (MC) techniques [1] are widely used in High Energy Physics (HEP) and numerous other computing domains. In HEP, they naturally arise from the multidimensional probability densities or from the likelihoods often present in the analysis. Due to computing intensive integrations and large data sets containing millions of events, the situation is difficult for an analysis team if the processing of all samples exceeds 2-3 weeks (elapsed time).

Today, HPC programming requires dealing with computing accelerators

like GPGPU or 'many-core' processors, but also taking into account the development portability and the hardware heterogeneities with the use of open programming standards like OpenCL. Among the available MC algorithms (MISER, Markov Chain, etc.) the choice has been driven by the popularity and the efficiency of the method. The 'VEGAS' algorithm [2, 3] is frequently used in LHC analyses as it is accessible from the ROOT environment [4], while providing reasonably good performance.

The parallel implementation of VEGAS for computing accelerators presents no major obstacle [5], even though some technical difficulties occur when dealing with portability and heterogeneity, mainly due to the lack of libraries and development tools (like

performance analysis tools).

Combining MPI and OpenCL, we present a scalable distributed implementation. Performance will be shown on different platforms (NVidia K20, Intel Xeon Phi) but also on heterogeneous platform mixing CPUs, and different kinds of computing accelerator cards.

The presented work is a canvas to integrate various multidimensional

functions for different analysis processes. It is planned to integrate and exploit this implementation in the future analyses by the CMS (Compact Muon Solenoid) experiment at CERN.

GPUHEP2014

2 Software design

2.1 Introduction to the VEGAS MC algorithm

The ROOT-based MC integration environment is popular within the High Energy Physics community. This environment actually provides an encapsulation of the GNU Scientific Library (GSL) MC integration functions [6]. GSL offers 3 kinds of MC algorithms : classical (or PLAIN), MISER, VEGAS. Since VEGAS converges more rapidly than the two other methods, and is widely used in the CMS collaboration data analysis, we will focus on this MC integration method.

A High-dimensional integral $I = \int d^n \vec{x} f(\vec{x})$ can be approximated by evaluating $f(\vec{x})$ at M points \vec{x} , drawn randomly in the domain Ω with the probability density $p(\vec{x})$:

$$\overline{I} = \overline{f_p} = \frac{V}{M} \sum_{\vec{x}} \frac{f(\vec{x})}{p(\vec{x})}, V \text{ is the volume of } \Omega,$$

with its estimated variance $\overline{\sigma}^2$:

$$\overline{\sigma}^2 = \frac{\overline{f_p^2} - (\overline{f_p})^2}{M-1} \simeq \sigma^2, \text{ where } \overline{f_p^2} = \frac{V}{M} \sum_{\vec{\tau}} (\frac{f(\vec{x})}{p(\vec{x})})^2$$

The classical MC integration method (PLAIN in GSL library) uses a uniform density probability $p(\vec{x}) = cst$ which ensures the process' convergence: $\lim_{M \to +\infty} \overline{f}_p \longrightarrow I$. Nevertheless, the convergence is slow and requires a great number of points M to obtain a good approximation of I.

In the VEGAS algorithm, two main ideas are used to reduce the variance and, as a result, accelerate the convergence of the estimated integral \overline{I} .

- 1. Importance sampling: the variance tends to zero if the probability density has the form $p(\vec{x}) \propto |f(\vec{x})|$ (quick justification for $f(\vec{x}) > 0$, $\frac{f(\vec{x})}{p(\vec{x})} = cst$, $\Rightarrow \sigma^2 = 0$, see [1] for more details). In other words, this means that the function sampling must be concentrated on the largest magnitudes of the function $f(\vec{x})$. Starting with $p(\vec{x})$ uniform, $p(\vec{x})$ gradually approximates $\frac{|f(\vec{x})|}{cst}$, thanks to the contributions of the different function evaluations.
- 2. Stratified sampling: this other strategy samples the highest variance domains in Ω , then subdivides it in sub-domains to decrease the local variance and thus the global variance of $|f(\vec{x})|$. With this strategy, the system converges with a sub-domain partition of Ω which minimizes the variance σ^2 . In **GSL** implementation, the probability distribution $p(\vec{x})$ is updated with the local sub-domain variance $\sigma^2(\vec{x})$; these sub-domains are called *boxes* and are used to discretize $p(\vec{x})$.

Depending on the number of points to evaluate (set by user), VEGAS chooses *Importance* sampling or *Stratified Sampling* according to the sampling density of the domain.

2.2 Parallelism and OpenCL considerations

The VEGAS algorithm can be sketched with 3 main embedded loops as shown in Fig.: 1. The internal loop evaluates the function $f(\vec{x})$ for M random points \vec{x} , according to the probability distribution $p_{k-1}(\vec{x})$. The accumulated values of $f(\vec{x})$ give the estimated integral $\overline{I_k}$. In the same loop, the estimated variance $\overline{\sigma_k}^2$, as well as the new probability distribution $p_k(\vec{x})$, are

updated. Several evaluations of the $\overline{I_k}$ integral are performed in the intermediate loop, in order to compute the Chi-square χ^2 by degree of freedom, thus determining the consistency of the sampling. Finally, the outer-loop is used to control the integral convergence $(\overline{I}, \overline{\sigma}^2, \chi^2)$.

From the parallelization point of view, the most computing intensive loop, i.e. the internal one, must be spread among different computing units, handling the shared variables $\overline{I_k}$, $\overline{\sigma_k}^2$, $p_k(\vec{x})$ with care. It is wellknown that opening a *parallel region* (with the OpenMP formalism) on the internal loop is much less efficient than opening a *parallel* region on the outer loop. In the same way, OpenCL (or CUDA) kernels must be as large as possible to avoid substantial overhead time to launch kernels and unnecessary work to split the initial kernel in several kernels. It is worth mentioning, in our algorithm, the embedded loops must be split in two *kernels* at the reduction step $(\overline{I_k}, \ldots)$ to synchronize the global memory between the different workgroups. As a result, split kernels will generate unexpected overhead time to launch and synchronize : $number_convergence_iterations \times$ $number_internal_iterations \times 2$ kernels.

 $number_internal_iterations \times 2$ kernels. Writing and managing a single kernel which takes into account all steps of the VE-GAS algorithm, presents no difficulty. It only resourced points contributing to the integral. In a Compute: $I = \int_{\Omega} f(\vec{x}) d^n x$, on a *d*-dimensional integration domain Ω Loop until convergence $(\overline{\sigma}^2, \chi^2)$ Loop internal iteration k $p_k(\vec{x}) \leftarrow 0$; Loop over N points $\vec{x} \in \Omega$ $| \vec{x} \leftarrow \operatorname{rand}();$ $\bar{f} \leftarrow \bar{f} + f(\vec{x});$ update $\overline{I_k}, \overline{\sigma_k}^2, p_k(\vec{x});$ End Loop update $\overline{I}, \overline{\sigma}^2, \chi^2;$ End Loop End Loop

Figure 1: the VEGAS algorithm. The integral \overline{I} of $f(\vec{x})$ is evaluated on the *d*-dimensional domain Ω . The standard deviation $\overline{\sigma}^2$ and the χ^2 can be used as convergence criteria. $p_k(\vec{x})$ is the probability distribution discretized on a grid.

GAS algorithm, presents no difficulty. It only requires that each computing element evaluates several points contributing to the integral. In addition it substantially increases the computing load per computing unit. However, the only way to synchronize the shared variables is to perform the computations in a single *work-group* (or *block* in CUDA). Although this solution works well on Intel Xeon Phi (thanks to OpenCL 1.2), it does not work properly on NVidia hardware for 2 reasons:

- The work-group size is limited (hardware limit, generally 1024).
- Two OpenCL *kernels* cannot be run simultaneously on NVidia GPGPUs (the situation is even more dramatic, two OpenCL *kernels* cannot be run simultaneously on two different GPGPUs in the same process).

With such limitation on NVidia OpenCL driver we were constrained to split the kernel and lose efficiency.

2.3 OpenCL and MPI event dispatchers

The expected speed-up factor of a single accelerator card will not be sufficient to minimize user waiting time when dealing with data-sets containing each 10^6 events to process. The CMS analysis team cannot afford to wait for long processing chains to end (each chain needs several weeks to be processed). With this requirement, it is mandatory to use several accelerator cards

GPUHEP2014

simultaneously, and even more, using several nodes themselves handling several accelerator cards to build a high performance computing application.

To gather the computing power available,

a two-level event dispatcher has been implemented: the OpenCL event dispatcher dealing with the distribution of events among several devices (i.e. several accelerator cards and CPUs) and the MPI event dispatcher to distribute events among the computation nodes.

The OpenCL event dispatcher takes advantage of the OpenCL abstract model, in which queues manage kernels to be executed on the hosted *devices*. In this way, we can benefit directly of the CPUs power without adding a multi-thread programming paradigm to build a hybrid application.

The OpenCL dispatcher feeds the device with an event to be processed, as soon as a queue is free. All copies from host node to accelerator cards and all kernels are launched asynchronously, with a dependence graph built thanks to OpenCL events. The computation of the integral is considered to be finished when the copy of the result - from the *device* to the host - is completed.

The second dispatcher level, called MPI event dispatcher aggregates computing power

form different nodes by distributing sets of events among several MPI processes (generally one MPI process per node). In the same way as the OpenCL dispatcher, the master MPI process sends a set of events to be processed, as soon as a *worker* MPI process is idle. Then, the MPI worker (or MPI master) delegates the treatment of its event set to the OpenCL dispatcher.

3 Performance studies

3.1**Benchmark** environment

As far as the integration is concerned, we choose for this benchmark the special function sinus integral to test the adaptive scheme for an oscillating function, whose result is known:

$$I = \int_0^{2\pi} \prod_{i=0}^n \frac{\sin(x_i)}{x_i} d^n x \simeq 5.7360, \text{ with } n = 5.$$

Often, the integration is done iteratively to control the convergence towards acceptable values of the standard deviation σ and chi-square χ^2 . In this test case, we want to

Product	Version/Options
Compiler	icc-13.0.1 / -03
MPI	OpenMPI $1.6.5$
OpenCL	Intel 1.2
OpenCL	NVidia 1.1

Table 1: Compiler and library versions.

GPUHEP2014

Figure 2: OpenCL dispatcher: the events are dispatched to different device queues. The different kernels to be processed are run asynchronously. The synchronization is performed thanks to OpenCL events

perform a fixed number of iterations, evaluating 5×10^5 points per integration. For these parameters, VEGAS draws 2 points per box (discretized volume element of $p_k(\vec{x})$), this means that only 12 boxes are used per dimension for the grid integration domain $(2 \times 12^5 = 497664)$.

Three kinds of clusters are available on our platform, called GridCL, for benchmarking:

- Two nodes connected with an InfiniBand link, each hosting 2 Intel Xeon E5-2650 processors (8 cores for each processor rated at 2.0 GHz). In addition, each node hosts 2 NVidia K20M GPGPU cards.
- Same as above concerning the node characteristics. Each node hosts 2 Intel Xeon Phi 5110P accelerator cards.
- The last node based on two Intel Xeon E5-2650 v2 (Ivy Bridge) processors (8 cores for each processor rated at 2.6 GHz) hosts 6 NVidia Titan GPU cards.

The software configuration used to build the VEGAS hybrid application is presented in Tab. 1.

3.2 Results

As shown in Tab. 2, the OpenCL implementation of VEGAS presents very good performance on CPUs (column 2). This improvement is not only accountable to OpenCL parallelization, but also to the Intel OpenCL implementation which both parallelizes and vectorizes the kernels, as Intel was claiming [7] (a speed-up of 18.5 is obtained with 32 MPI instantiations of the GSL implementation - column 1).

The acceleration obtained with the NVidia K2OM card seems to be good, but compared with CPUs performance, the gain is not excellent. As announced in paragraph section 2.2, no gain is obtained with two K2OM devices (column 4), assuming that the NVidia OpenCL

Speed-up	GSL	OCL	OCL	OCL	OCL	MPI
	(1)	(2)	(3)	(4)	(5)	(6)
# CPUs	32	32	-	-	32	-
# accelerators	-	-	1	2	2	2/6
K20M node	18.5	50.0	56.0	56.0	94.5	110
Xeon Phi node	18.5	50.0	27.3	54.1	80.3	-
Titan node	18.1	39.1	55.9	55.6	95.3	328

Table 2: Speed-up values obtained with different configurations (the reference time to calculate the speed-up values is the computing time obtained with the GSL library): (1) using GSL library executed on 32 processors (in fact 16 physical processors, 32 with hyper-threading), (2) OpenCL version on the 32 processors, (3) OpenCL version on a single accelerator card, (4) OpenCL with 2 accelerator cards, (5) OpenCL with all devices including CPUs, (6) 2 MPI processes (6 MPI processes on the Titan node), each handling one accelerator card (with OpenCL).

driver does not handle simultaneously several cards properly. Fortunately, we can bypass the lack of functionality, by launching 2 MPI processes each handling one device (see column 6).

Concerning Intel Xeon Phi, the speed-up shows that we do not use theses accelerators optimally. We will rely on the Intel performance analysis software VTune to highlight the bottleneck when we will start to optimize our *kernels*. However, the Intel OpenCL driver deals with the 2 cards simultaneously (column 4). Considering all computing devices, good overall performance is obtained (column 5), thanks to the efficiency of OpenCL CPUs.

Benchmarking the computing node holding 6 NVidia Titan cards, the performance profile is the same as above : moderated speed-up for one card (speed-up = 56). With all 6 cards the

speed up value is identical due to the NVidia driver issue, while the speed-up reaches 328 with 6 MPI processes.

The **OpenCL** and **MPI** event dispatchers provide good efficiency (see columns 5 and 6) even if the efficiency decreases when using several nodes. A time sampling has been added into the application to trace the event distribution, the overheads and the idle zones for future optimization work.

4 Conclusion

This preliminary version of our high performance MC integration implementation, based on OpenCL and MPI, already offers good efficiency on CPUs and OpenCL event dispatchers. The application however still needs several improvements to extract more computing power from accelerator cards, and requires tuning load-balancing parameters to efficiently run on MPI event dispatchers. Already substantial speed-up (> 300 - compared with sequential integrations based on GSL library) has been reached on the GridCL node hosting 6 NVidia Titan cards.

Before improving the application with all potential identified optimizations, we are going to focus our activity on a real application currently designed by the LLR CMS analysis team. Based on VEGAS integrations, the matrix-element methods (MEM) [8, 9], is a well known powerful approach in particle physics to extract maximal information from the events. Knowing that MEM require a huge computing power (processing one event can take 60s), we aim to provide a drastic speed-up to the MEM processing chain.

Acknowledgments

This work has been funded by the P2IO LabEx (ANR-10-LABX-0038) in the framework *Investissements d'Avenir* (ANR-11-IDEX-0003-01) managed by the French National Research Agency (ANR).

References

- [1] Stefan Weinzierl. Introduction to Monte Carlo methods. ArXiv e-prints, 2000.
- [2] G. Peter Lepage. A New Algorithm for Adaptive Multidimensional Integration. J. Comput. Phys., 27:192, 1978.
- [3] G. Peter Lepage. VEGAS: An Adaptive Multi-dimensional Integration Program. 1980. Cornell preprint CLNS 80-447.
- [4] Rene Brun and Fons Rademakers. ROOT An Object Oriented Data Analysis Framework. Nucl. Inst. & Meth. in Phys. Res. A, 389:81–86, 1997. http://root.cern.ch/.
- [5] J. Kanzaki. Monte Carlo integration on GPU. European Physical Journal C, 71:1559, February 2011.
- [6] M. Galassi et al. GNU Scientific Library Reference Manual. Network Theory Ltd, third edition, 2009. http://www.gnu.org/software/gsl/.
- [7] Intel developper note. Writing Optimal OpenCL Code with Intel OpenCL SDK. page 10, 2011. https://software.intel.com.
- [8] Abazov VM et al. A precision measurement of the mass of the top quark. NATURE, 429:638-642, 2004.
- [9] D. Schouten, A. DeAbreu, and B. Stelzer. Accelerated Matrix Element Method with Parallel Computing. ArXiv e-prints, July 2014.