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Preface

Studies on nuclear reactions with stable and unstable loosely bound projectiles has 

gained widespread popularity in recent years because of improved experimental fa­

cilities. This has been possible because of the availability of intense beams of stable 

loosely bound nuclei (6Li, 7Li and 9Be) as well as unstable or radioactive loosely 

bound nuclei (6He, 8B, 7Be, etc.). Hence, in the last two decades a large number of 

nuclear reactions have been performed around the world with loosely bound nuclei 

as projectiles. Having a low breakup threshold energy, these projectiles are easily 

susceptible to breakup and this gives rise to many new interesting features. The 

theoretical side is largely unexplored and the present thesis embodies theoretical 

work that has been carried out on some important properties of reactions induced 

by loosely bound projectiles.

From the analysis of experimental fusion cross section data, the empirical values 

of fusion barrier parameters of a large number of reactions induced by stable loosely 

bound projectiles on mediuip and heavy targets (209Bi, 152Sm, 144Sm, 208Pb, 124Sn, 

etc.) have become available. We first determine the fusion barrier parameters of 

thirteen number of such reactions using eight different versions of the the proximity 

potential. The potentials chosen are Prox 77, Prox 88, Bass 73, Bass 77, Bass 80, 

CW 76, BW 91 and AW 95 as earlier work had shown that these potentials are highly 

effective in reproducing the barrier parameters of reactions induced by tightly bound 

projectiles. The results of all the potentials are found to be satisfactory. However, 

the potentials Bass 80 and BW 91 are found to be most effective in reproducing the

x



height (Vg) and position (Rb) of the barrier, respectively. The parametrized formula 

(VB = 1.4AZiZ2(Rb — 0.7b)/Rg) connecting Vg and Rb has also been tested for the 

above reactions, and the formula is found to be extremely effective. For the reaction 

6Li+152Sm, the deviations of the barrier parameters from the empirical values is 

found to be unusually large, and this is attributed to the large static deformation 

(P2 = 0.26) of the target (152Sm). On application of the correction of the Coulomb 

potential for the deformed target, the new values of the barrier parameters are found 

to be much closer to the empirical values. Study of the nature of the potentials for 

the case of deformed target reveals the emergence of distinct potential pocket for 

the potentials Bass 77, Bass 80, BW 91 and AW 95 in addition to the potentials 

Prox 77 and Prox 88 for which the pocket exists even for the spherical target case.

Then, fusion cross section for the reactions 6Li+209Bi, 9Be+208Pb, 7Li+209Bi and 

6Li+152Sm is studied using the Wong’s formalism and the barrier parameters are 

taken from the earlier results. The fusion cross section is also calculated from the 

single barrier penetration model (SBPM) using the code CCFULL. The fusion cross 

section calculated from Wong’s formalism is found to be in agreement with the 

SBPM cross section, and is also found to be fractionally greater than the experi­

mental cross section. The reason for the decrease of the experimental cross section 

is because of projectile breakup, and this phenomenon is called fusion suppression. 

Also, we find that fusion cross section calculated from Bass 80 barrier parameters 

gives a much better reproduction of the SBPM cross section. For the reaction 

6Li+152Sm, fusion cross section is calculated considering the cases of spherical as 

well as deformed target. The fusion cross section for the case of deformed target is 

in much better agreement with the results of the SBPM cross section than the case 

of spherical target. This proves conclusively that deformation of nuclei has a great 

role to play in fusion cross section.

The most important part of our work is the semiclassical model for the expla­

nation of fusion suppression. Technically speaking, fusion suppression is the ratio

xi



between the experimental and the theoretical fusion cross section. The cause of 

fusion suppression, as noted earlier, is due to breakup of the projectile. We apply 

the model to the three 6Li induced reactions : 6Li+209Bi, 6Li+144Sm and 6Li+152Sm. 

6Li has the lowest breakup threshold energy of 1.48 MeV, and easily breaks up into 

a deuteron and an a-particle. The experimental fusion suppression factors observed 

for the three reactions at energies « 1.1 to 1.5 times the barrier energy are 0.36, 

0.32 and 0.28, respectively. The basic idea of the model is to find out the cutoff 

impact parameter for fusion. Then the fraction of projectiles undergoing breakup 

within the cutoff impact parameter for fusion is determined which is then directly 

related to the fusion suppression factor. The cutoff impact parameter for fusion is 

determined by the single barrier penetration model (SBPM), as fusion cross section 

above the barrier can be approximated by the results of SBPM.

We apply the two-dimensional classical trajectory method for determining the 

fraction of projectiles undergoing breakup. From the three-body Lagrangian for 

the system of target and two-body projectile, the classical equations of motion are 

obtained. For obtaining numerical solutions, initial conditions have to be provided. 

For obtaining the initial conditions, we propose a semiclassical model of the 6Li 

nucleus. The two postulates of the 6Li (—>• 4He-l-2H) cluster model are : (a) The 

total energy of the deuteron and the a-particle system is equal to the breakup 

threshold energy (binding energy) of the 6Li nucleus, .and (b) The total angular 

momentum of rotation of the deuteron and the a-particle about an axis through 

its centre of mass is equal to \/l(I + l)'h, where I is the spin quantum number of 

the 6Li nucleus. From the calculations, the distance between the deuteron and the 

a-particle comes out to be 2.27 fm. Using the initial conditions, numerical solutions 

are obtained and the trajectories are studied. Three distinct types of trajectories are 

obtained and these are : scattering-like, incomplete fusion and no-capture breakup. 

We define a breakup condition for a trajectory or projectile. If the distance of 

separation between the deuteron and the a-particle is greater than 2.27 fm then its

Xll



a breakup trajectory, otherwise its a nobreakup trajectory.

Taking a sample of fifty trajectories at each impact parameter, the breakup 

fraction is determined. Then a formula is proposed for the explanation of fusion 

suppression according to which fusion suppression is given by the average of breakup 

fractions calculated at different impact parameters. The range of impact parameters 

lie between a head-on collision and the cutoff impact parameter for fusion. On 

application of the above formula to the three 6Li induced systems, we find that 

there is excellent agreement between the experimental fusion cross section (o^p) 

and the calculated fusion cross section (crca/). However, for the reaction 6Li+152Sm 

there is slight disagreement at higher energies because of deformed nature of the 

target 152Sm. Also, the relationship between the cutoff angular momentum for fusion 

(Lc) and energy (Ecm) is studied, and a linear relationship is establised. Using the 

proximity potential, the linear relationship is explained.

The last part of our study concerns the reduced reaction cross section of radioac­

tive halo projectiles. For systematic analysis of reaction cross section data, Gomes’ 

reduction procedure is widely followed in which the dependence of the cross section 

on the barrier radius (Rb) is eliminated, and the energy is scaled with respect to 

the barrier height (Vb)- Study of reduced reaction cross section (ared) versus re­

duced energy (Erej) for a variety of systems has revealed that separate trajectories 

are followed for reactions induced by tightly bound, loosely bound, and radioactive 

halo projectiles. Also it has been pointed out that the reason for the separation of 

the trajectories of loosely bound and radioactive halo systems is that the Coulomb 

barrier is slightly lowered, and the barrier radius is marginally increased for rar 

dioaetive systems in comparison with normal loosely bound systems. The reactions 

considered for radioactive halo systems are, eHe+27Al, 6He+mZn, 9 IIe+209 B% and 

8B+B8Ni. The corresponding reactions induced by normal nuclei are, 4He+27Al, 

4He+64Zn, 4Iie+209Bi and l0B+B8Ni. Using six different versions of global nuclear 

potentials on the above reactions we provide an explanation for the separation of
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the barrier parameters. However, for the proton halo system 10,8B+58Ni, the change 

in the barrier parameters can only be accounted if proper radius of the halo nucleus 

8B and the normal nucleus 10B is taken into account. This is because of the fact 

that experimentally the radius of the halo nucleus 8B is found to be greater than 

10B, but all the six global nuclear potentials predict a decrease in the radius of 8B. 

The study is extended to Be-projectile induced systems, and similar conclusions are 

drawn. Also, using the modified Wong’s formula, the total reaction cross section is 

explained for the reactions 7Be+27Al and 6He+27Al. The modified Wong’s formula 

is a phenemenonological formula containing three dimensionless parameters whose 

values are chosen by the %2 minimization technique.

There is potential future research prospect, particularly, in the semiclassical 

model of fusion suppression. The model of fusion suppression developed here is 

a two-dimensional classical trajectory model. The obvious generalization would be 

a, three-dimensional model. It would be interesting to see whether the formula 

for fusion suppression proposed here for the two-dimensional model would still be 

applicable for the three-dimensional model. In the three-dimensional model, the 

orientation of the projectile is not necessarily confined to a single plane which is the 

case for the two-dimensional model. Finally, a fully quantum mechanical model of 

fusion suppression could be attempted in future even though it may be a highly chal­

lenging task. For this it would be necessary to develop a fully quantum mechanical 

version of the model of 6Li nucleus that has been proposed here.

xiv



Chapter 1

Introduction

1.1 ‘The nuclear interaction

Since the discovery of the neutron by Chadwick in 1932, there has been unprece­

dented attempts in understanding the nuclear force. In 1953, the noted physicist 

Hans Bethe stated that, ’’more man-hours have been given to this problem than to 

any other scientific question in the history of mankind”. A variety of methods and 

procedures have been adopted in studying the problem. The nuclear force is power­

fully attractive and operates at distances in the femtometer (10“15m) regime. The 

magnitude of the force is maximum at distances around 1 fm, and quickly decreases 

to insignificance at distances greater than 2.5 fm. The first attempt at understand­

ing the nuclear force problem was developed in 1935 by the Japanese physicist, 

Hideki Yukawa [1], who proposed that massive particles (called ’’mesons”) were ex­

changed between the nucleons during their interaction. The theory was developed 

in analogy to the theory of electromagnetic interaction in which massless ’’photons” 

are exchanged between the particles. These models became known as one-boson- 

exchange models, and were very successful in explaining essentially all properties of 

the nucleon-nucleon interaction at low energies.

Apart from short-range and strong-attraction, some other remarkable properties
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V(r)

r(fm

Figure 1.1: Diagram showing the nucleon-nucleon interaction.

of the nuclear force have been noted [2]. The nuclear force is dependent upon 

the direction of the spin of the nucleons due to which nuclear force has a tensor 

component. In heavier nuclei, a shell structure has been observed due to which it is 

essential to introduce a spin-orbit force. The nature of these forces can be studied 

through scattering experiments between nucleons. Moreover, the nucleon-nucleon 

force turns repulsive at distances shorter than 0.6 fm. Besides the force between 

two nucleons, there are also three-nucleon forces, four-nucleon forces, and so on. 

Their contribution is small, but crucial. The nuclear force or the nucleon-nucleon 

interaction is diagrammatically shown in Fig. 1.1. With all these properties the 

potential between two nucleons (the NN interaction) becomes quite complicated. 

Therefore, trying to solve the Schrodinger equation becomes a hopeless task even 

for the simplest nuclei. In the 60s and the early 70s, it became known that the
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nucleons were no longer fundamental particles, but are instead composed of three 

quarks. Hence, it was realized that the fundamental theory of the nuclear force 

is quantum chromodynamics (QCD) and not meson theory [3]. Hence, the two- 

body nucleon problem becomes a six body quark problem. A lot of progress has 

been made, but still there are immense practical difficulties in trying to solve the 

six body problem by brute force. However, a true picture of the nuclear force has 

emerged. The modem view of the nuclear force is that it is a residual interaction 

of the even stronger force between quarks, which is mediated by the exchange of 

gluons and holds the quarks together inside a nucleon. This is somewhat similar to 

the van der waals interaction between neutral atoms, which is a residual interaction 

of the strong electromagnetic force between the electrons and the nuclei.

1.2 Heavy ion potentials

Prom the discussion in section 1.1, we can conclude that it would be a daunting task 

to study the nuclear force from a completely theoretical viewpoint. As such, the 

phenomenological approach has evolved in which simple nuclear models have been 

developed for explaining the results of experiments. A successful phenomenological 

approach is to ignore the individual nucleon-nucleon interaction and consider a sin­

gle potential for the whole nucleus*. Many heavy-ion systems may be understood in 

terms of empirical parametrizations of the nuclear potential. One such example is 

the optical model which is used for describing scattering data. The optical model 

potential has a real part and an imaginary part for describing the scattering and 

absorption, respectively. Phenomenological Woods-Saxon potential is used for de­

scribing both the real and imaginary parts of the optical potential. As many as two 

dozen other nuclear potentials are available in the literature. In chapter 2, we use 

a few nuclear potentials, and these are the two versions of the proximity potential 

(Prox 77 and Prox 88), three versions of the Bass potential (Bass 73, Bass 77 and
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Bass 80), the Christensen and Winther potential (CW 76), the Broglia and Winther 

potential (BW 91), and the Aage Winther potential (AW 95). The proximity po­

tential is obtained from the proximity theorem, whereas all the other potentials are 

obtained phenomenologically through analysis of scattering and fusion cross section 

data. Besides the above potentials, there are other potentials like the single fold­

ing potential, double folding potential [4], Skyrme energy density potential [5], etc. 

which are also successful in explaining a variety of phenomena.

1.3 Direct and compound-nucleus reactions

Figure 1.2: Diagram showing compound nucleus reactions and direct reactions for 
12C+208Pb. Reactions proceeding from the rectangular box are the compound nu­
cleus reactions, whereas the other reactions are the direct reactions.

A nuclei whose atomic number, A > 4, is called a heavy-ion by convention. 

Heavy-ion reactions have displayed properties which are quite different from reac­

tions in which one of the participants is a light ion. Many different types of nuclear 

reactions [6] have been observed, and they are mainly categorized under two main
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groups : direct reactions and compound-nucleus (CN) reactions. A third cate­

gory, called deep inelastic collisions have also been categorized in recent years. In 

compound-nucleus reactions, the projectile and the target fuse to form a compound 

nucleus. In the formation of the compound nucleus, the total kinetic energy of the 

projectile is redistributed among all the nucleons of the compound nucleus. Hence, 

the compound-nucleus loses all memory of its formation process, and its decay is 

governed by the properties of the compound nucleus. The typical lifetime of a com­

pound nucleus is 10~16 s, and they usually take place at smaller impact parameters or 

head-on collisions. All types of fusion reactions are examples of compound-nucleus 

reactions. At the opposite extreme we have direct reactions. Examples of direct 

reactions axe elastic and inelastic reactions, transfer and breakup reactions, etc. 

These are diagrammatically shown in Fig. 1.2 with proper examples. Direct reac­

tions are peripheral processes in which the incident particle interacts primarily at 

the surface of the target. Another criteria for direct reactions is that the incident 

particle must be highly energetic. As such the time of interaction between projectile 

and target in direct reaction is usually about 10“21 s, which is orders of magnitude 

smaller than that of compound nucleus reactions. Experimentally, these two incred­

ibly short periods of time can be distinguished with present day facilities. Also, the 

angular distribution of the outgoing particles in direct reactions tend to be more 

sharply peaked in the forward direction. However, for compound-nucleus reactions 

the detected particles usually have forward and backward symmetry.

1.4 Types of heavy-ion nuclear reactions

Heavy-ion reactions are often treated in semi-classical approximation because of the 

complexities of the interaction between the two colliding nuclei. However, in view 

of the large masses it would be convenient to view the reaction first in the limit of 

classical scattering. Hence, the angular momentum of the projectile approaching a
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target with energy, E, and impact parameter, b, is given by,

L = by/2mE (1.1)

In the semi-classical approximation, we have, L~£Ti, where, l is the angular momen­

tum of the projectile. Hence, in terms of the wave number, k=V2mE/U, we may 

write,

£ = b
y/2 m,E

n = bk (1.2)

In order to describe the different categories of heavy ion reactions with increasing 

energy, the grazing angular momentum (£g) may be defined,

£g = kRg (1.3)

where, Rg is the grazing radius at which the colliding pairs start to feel the attrac- 

tive nuclear force between them. It is usually taken to be slightly larger than the 

geometric ’’touching” distance between the two heavy-ions,

R = ro(A{/3 + Al/3) ; r0 «1.2 fm (1.4)

where, A\ and Ai are the mass numbers of the two heavy ions.

According to the relative values of £ and £g, heavy ion nuclear reactions may be 

classified as follows :

1.4.1 t > lg

Reactions in this category doesn’t involve transfer of mass or charge. Because of 

high impact parameter the Coulomb force is important in this category. Reactions 

under this category include the following :
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Rutherford scattering

It takes place at the highest impact parameters and is also called the Coulomb scat­

tering. Rutherford scattering can be entirely studied by applying classical laws. The 

Rutherford cross-section, originally derived by Rutherford using classical mechanics, 

matches the exact quantum mechanical cross section.

Coulomb excitation

In heavy ions, the Coulomb force is quite large, and this may cause excitations 

in both the target and projectile. Due to simplicity of the Coulomb force, the 

experimental results can be studied with great accuracy. The excited nucleus usually 

decays by the emission of 7-rays.

1.4.2 i>£g

At these intermediate values of t, the projectile reaches a distance close to the grazing 

radius (Rg)- The nuclear effects start to dominate and as a result many new reaction 

channels open up. Transfer of a few number of nucleons are usually involved. For 

experimental reasons, these reactions are also called quasi-elastic. Reactions under 

this category include elastic nuclear scattering, inelastic scattering, nucleon-transfer 

reactions, knockout and breakup reactions and capture reactions.

Elastic Nuclear scattering

As the energy of the projectile is slowly increased, the Rutherford cross-section start 

showing deviations because of the nuclear force. The elastic nuclear scattering shows 

alternate maxima amd minima and bears a strong resemblance to the diffraction of 

light from an opaque object. All the participating partners remain in ground state 

before and after the scattering.
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Inelastic scattering

This is similar to Coulomb excitation where either or both the target and projec­

tile are excited to higher states. The excitation is primarily due to the nuclear 

interaction.

Nucleon transfer reactions

As the two nuclei come extremely close to each other, nucleon-transfer takes place 

due to quantum mechanical tunnelling. They can be either single nucleon transfer or 

multi-nucleon transfer reactions. Stripping and pick up reactions fall under single­

nucleon transfer reactions. In stripping reactions, a nucleon is transferred from 

projectile to target. The reverse takes place in a pick up reaction. In multi-nucleon 

transfer reactions upto three-four nucleons may be exchanged between target and 

projectile.

Knockout and breakup reactions

In knockout reactions, a few nucleons are knocked out of the target or the projec­

tile. In breakup reactions, the target breaks up into two or more fragments. Such 

reactions are only possible at very high energies.

Quasi-elastic scattering

The sum of the elastic scattering, inelastic scattering and transfer reactions is called 

quasi-elastic scattering. During measurement, when detector resolution is severe, 

the above reactions are not distinctly separated. Hence, they are grouped together 

under quasi-elastic scattering.

Capture reactions

In this type of reaction, an electron is captured by the target nucleus, and there is 

a decrease in the atomic number of the target by one unit. Eg : 7Be+e~ —>• 7Li.
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1.4.3 £ < ig

All compound-nucleus reactions fall under this category. Since, the life time of 

the compound nucleus is comparatively higher, hence, they are also called fusion 

reactions. The compound nucleus formed in fusion is usually unstable because they 

are generally proton-rich or neutron-deficient. For example, 40Ca-F90Zr produces the 

compound nucleus 130Nd which has 12 neutrons less than the most proton-rich stable 

neodymium isotope. Since, the collision process usually involves large masses at high 

velocities, hence, the compound-nucleus possesses high angular momentum, of the 

order of many tens to hundreds of Ti. Depending upon the mode of disintegration 

of the compound nucleus, they are classified as :

Fusion-fission

For attaining stability, the compound nucleus decays by fission of two or more frag­

ments of comparable mass. The angular momentum carried by the fission fragments 

is also large, and not much appears as spins of the fragments. Probability for fission 

is high only if the charge of the compound nucleus is greater than about 70.

Fusion-evaporation

On the other hand, if there are barriers against fission, the compound nucleus shall 

attain stability by evaporation of lighter particles (like neutrons, protons or a- 

particles) or through 7-ray emission. The angular momentum carried away by these 

lighter particles is usually small (< 2-3 units of K), and the residual nucleus is left 

with a very high spin. This process is called evaporation because it is similar to the 

evaporation of a liquid drop in which molecules escape from the surface. Fig. 1.3 

shows the different types of fusion reactions.
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Figure 1.3: Three types of fusion reactions : (a) fusion (b) fusion-evaporation, and 
(c) fusion-fission
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1.5 Heavy ion fusion reaction

As discussed above, fusion is defined as a reaction where two separate nuclei combine 

to form a composite system (compound nucleus) whose properties and mode of decay 

are independent of the formation process [7].

The two nuclei must collide at small impact parameters and must have suffi­

cient energy to overcome the Coulomb barrier. The study of fusion of two nuclei is 

extremely important for a number of reasons. The process of nucleosynthesis (for­

mation of new nuclei) in stars is due to the fusion of smaller nuclei to form heavier 

nuclei. In this process elements from carbon to iron are created. Experimentally, 

new radioactive nuclei are created which are far from the line of stability. The the­

oretical understanding of such processes has been a great challenge for the Physics 

community.

When the incident energy is not so large and the system is not so light, the 

reaction process is predominantly governed by quantum tunnelling over the Coulomb 

barrier created by the strong cancellation between the repulsive Coulomb force and 

the attractive nuclear interaction. The details of fusion cross section, including 

the single barrier penetration model (SBPM) and the Wong’s formalism is given 

in section 3.4. Until about the early 1980s, fusion was understood in terms of a 

simple model of a single barrier whose parameters were varied to fit the measured 

cross-section. The results of a number of experiments during this period showed 

that the sub-barrier fusion cross-section is much larger than those expected from 

the simplified model. That this is not due to the ineffectiveness of the potential was 

elegantly showed by Balantekin [8]. He found that unphysical potentials are obtained 

if the experimental data is inverted to obtain the one-dimensional fusion barrier. 

The first successful explanation for this phenomenon came in terms of coupling- 

assisted tunnelling. Successive improvements in the couplings of the relative motion 

of the colliding nuclei provided better and better agreement between theory and 

experiment. The computer code CCFULL (coupled channels calculation for all

11



order couplings) [9], developed by K. Hagino, calculates the fusion cross section by 

solving the coupled second order differential equations and includes couplings upto 

all orders. Details of CCFULL code are given in section 3.5.

1.6 Loosely bound nuclei

Some of the lighter atomic nuclei (like 6 Li, 7Li and 9Be) are classified as loosely 

bound because they are easily susceptible to breakup into smaller nuclei [10,11], The 

breakup takes place because of low breakup threshold energy (binding energy) among 

its constituents. The breakup threshold energy is defined as the mass deficit (ex­

pressed in terms of energy) between the nucleus and its breakup fragments. Hence, if 

a nucleus, A, breaks up into fragments A\ and A2 (A —> A% + A2) then the breakup 

threshold energy is given by,

S=(MAl+MA2-MA)c2 (1.5)

where, MA, MAl and MA2 are the masses and c is the velocity of light. For the 

nuclei, 6Li, 7Li and 9Be, the breakup channels along with their respective breakup 

threshold energies are given below,

6Li -> 4He + 2H ; Sa = 1.475 MeV

7Li -> 4He + 3H ; Sa = 2.45 MeV

9Be -> 4He + 4He + n ; Sn = 1.67 MeV

9Be -* 4He + 5He ; Sa = 2.55 MeV

We see that there are two prominent modes of decay for 9Be. However, the first 

mode of decay is more probable because the breakup threshold energy is less. Besides 

the above stable loosely bound nuclei, radioactive (or unstable) loosely bound nuclei 

have become available in recent years. Examples of such nuclei are 6He, 11Li, 8B,
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7Be and nBe [12, 13, 14, 15]. These nuclei are generally neutron-rich or proton 

rich, and most of them display halo properties, i.e., their r.m.s. matter radii are 

much greater than expected values. Out of the above nuclei, nLi, nBe and 6He 

are neutron halo nuclei, whereas 8B is a proton halo nucleus. In these nuclei, the 

separation energy of the last nucleon is extremely small (less than 1 MeV). The 

neutron (or proton) density distribution in radioactive loosely bound nuclei shows 

an extremely long tail, called the neutron (or proton) halo. Although the density of 

the halo is very low, it strongly affects the reaction cross section and leads to new 

properties in such nuclei.

1.7 Review work on reactions induced by loosely 

bound projectiles

With the availability of intense beams of loosely bound nuclei, a great deal of ex­

perimental work has become available. Most of this work concerns the study of 

fusion cross section (and fusion suppression) of these reactions. Fusion reactions 

induced by stable loosely bound projectiles have been studied on a wide range of 

medium and heavy targets like 209Bi, 208Pb, 159Tb, 152Sm, 144Sm, 124Sn, 89Y, etc 

[10, 11, 16, 17, 18]. As discussed in the previous section, the loosely bound projec­

tiles are easily susceptible to breakup into two fragments or in some cases even three 

fragments. The situation becomes more complicated than the case of fusion with a 

stable projectile. Experimentally, at least four different types of events have been 

identified [10, 19]. When the whole of the projectile fuses with the target without 

breakup, then it is called direct complete fusion (DCF). After breakup, if both the 

fragments fuse with the target, then it is called sequential complete fusion (SCF).

If one of the breakup fragments fuse with the target, then it is called incomplete 

fusion (ICF). If none of the breakup fragments fuse with the target, then it is called 

no-capture breakup (NCBU). Because of projectile breakup, the experimental fu-
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sion cross section falls below the theoretically expected fusion cross section. This 

phenomenon is called fusion suppression, and the ratio between aexp and atheo is 

called fusion suppression. The fusion suppression factor that has been observed for 

various loosely bound systems varies from « 15-36 %. A detailed review of fusion 

suppression is given in chapter 4 in which we present a semiclassical model of fusion 

suppression.

Apart from the work undertaken by us, here we provide a brief review of the im­

portant work done with loosely bound projectiles. Some active groups are engaged in 

the analysis of elastic scattering data, and*also in the simultaneous analysis of fusion 

and scattering data. The most popular and successful explanation is provided by 

the single-channel description of the process which is often called the optical model 

analysis. In the one channel description, the nuclear interaction can be written as 

the sum of two complex terms: the optical potential (V^,t(r, E)+iWopt(r, E)) and the 

dynamic polarization potential (Vpoi(r, E)+iWpoi(r,E)). The real part of the optical 

potential represents the static interaction between frozen nuclear matter distribu­

tions in the projectile and in the target, whereas its imaginary part accounts for the 

average flux lost to a large number of reaction channels. The dynamic polarization 

potential handles the strong coupling of these channels with the elastic channel. The 

real (Kpt(r, E)) and imaginary (W0?,t(r, E)) parts of the optical potential are energy 

independent, or have a very weak dependence on E. On the other hand, the real 

{VPoi(r, E)) and imaginary (VFpo|(r,E)) parts of the dynamic polarization potential 

are strongly dependent on the colliding energy. For the elastic scattering of tightly 

bound projectiles, a phenomenon called the threshold anomaly (TA) has been ob­

served for a number of systems. This involves a characteristic peak in the energy 

dependence of Vpoi around the Coulomb barrier, and the corresponding decrease in 

Wpoi as the bombarding energy decreases below the Coulomb barrier. A different 

type of energy dependence from that of the TA is observed for the scattering of 

loosely bound projectiles ; this is often termed as the breakup threshold anomaly
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(BTA). In the case of the BTA, a repulsive polarization potential is generated due to 

the coupling of breakup channels to the elastic channel, which causes an increase in 

the imaginary potential and corresponding decrease in the real part of the potential. 

Several works on the elastic scattering of 6Li on various targets such as 27A1 [20], 

^Ni [21], 64Zn [22], 80Se [23], 90Zr [24], 116-112Sn [25],138Ba [26], 144Sm [27], 208Pb [28], 

and 209Bi [29] have indicated the presence of the breakup threshold anomaly (BTA). 

In these cases it has been observed that there is a small increase in the imaginary 

part of the optical potential rather than decreasing to zero at energies below the 

Coulomb barrier, indicating the absence of the normal TA. However, in the case of 

elastic scattering of 7Li projectile on different targets such as 59Co [30], 80Se [23], 

138Ba [31], 208Pb [32], and 232Th [33] the conventional TA has been identified. This 

is attributed to the large breakup threshold energy of 7Li in comparison to that of 

6Li. For 9Be induced reactions, the usual TA is not present [34]. Since, 9Be can 

breakup in two different ways (section 1.6) having comparable breakup threshold 

energies, hence the type of breakup is also crucial for an understanding of elastic 

scattering data. It was found that the cluster structure of 9Be (-44f/e + 4He + n) 

is able to explain the sub-barrier elastic scattering data for 9Be+208Pb, whereas the 

cluster structure of9Be (-* 4He + 5He) is needed to explain the elastic scattering 

data around and above the barrier [35].

1.8 Motivation for the thesis

In recent years a lot of experimental work has been done on nuclear reactions in­

duced by loosely bound projectiles. This is due to the breakup properties of these 

projectiles (6Li, 7 Li and 9Be). Reactions induced by 6Li is of particular interest 

because it has the lowest breakup threshold energy and hence, the highest breakup 

probability. The theoretical side of this huge amount of experimental work is largely 

unexplored, because within a short span of time a huge amount of experimental work
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has been done. Hence, we would be pursuing theoretical work on some important 

properties of reactions induced by these projectiles. The properties investigated by 

us are the fusion barrier, fusion cross section and the fusion suppression for these 

reactions. Two factors which are very crucial in the study of fusion barrier and 

cross section is the nuclear potential, and the deformation properties of the target. 

Hence, a comparison among the predictions of different potentials is also a purpose 

of our study. Also a comparison of the results (with and without deformation) for 

the highly deformed target (152Sm) is also done. The determination of fusion barrier 

parameters using global potentials has been extensively done for reactions induced 

by tightly bound projectiles. Since, such work has not been done for loosely bound 

systems, hence, as a first task we would be studying the fusion barrier parameters 

for loosely bound systems [10]. However, the most important motivation of our 

work is to provide an explanation of the phenemenon of fusion suppression. As far 

as we know no purely theoretical work on above barrier fusion suppression has been 

done. Although some authors (e.g., Diaz-Torrez [36]) have succeeded in explaining 

fusion suppression but they have done so only through the introduction of adhoc 

inputs like the breakup probability function. Reactions induced by 6Li projectile 

is chosen because it has the highest breakup probability and also, the breakup of 

6 Li is simpler compared to the breakup of 7Li and 9Be. The dominant channel for 

breakup of 7Li involves a proton pickup from the target to form 8Be, which then 

breaks up into two a-particles [37]. For 9Be, the breakup process involves a neu­

tron transfer to the target to form 8Be, which finally breaks up into two a-particles 

[36]. However, the breakup of 6Li takes place directly without any intermediate 

process like breakup of 7Li or 9Be. Finally we explain fusion suppression for the 

three reactions ; 6Li+144Sm, 6Li+209Bi and 6Li+152Sm [19]. The three reactions are 

chosen because precise experimental fusion cross section data is available for all the 

three systems, and also very high fusion suppression (« 30%) is observed for all the 

systems. For obtaining the equations of motion of the three systems, we propose a
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model for the 6Li nucleus in which the deuteron and the ct-particle revolve around 

their common centre of mass [19]. The model is semiclassical and is motivated by the 

Bohr’s model of the hydrogen atom in which electrons revolve around the nucleus in 

classical orbits. In the last part of our work we are investigating the reaction cross 

section induced by radioactive projectiles. Recent analysis of the reduced reaction 

cross section of a variety of systems has revealed that the trajectories of radioactive 

halo systems and normal loosely bound systems are clearly separated. The above 

fact is explained in terms of the global parametrization of nuclear potentials.

1.9 Plan of the thesis

In chapter 1, we present the introductory information regarding our work which 

is mainly concerned with determination of barrier parameters, fusion cross section 

and explanation of fusion suppression for reactions induced by loosely bound projec­

tiles. The introduction provides brief discussion about the nuclear force, heavy-ion 

potentials, different categories of nuclear reactions with special emphasis on fusion 

reactions, and loosely bound nuclei. Chapter 2 deals with the determination of 

barrier parameters of 13 numbers of reactions induced by 6Li, 7Li and 9Be projec­

tiles. For determination of the barrier parameters, we use 8 different versions of 

the nuclear proximity potential. The results are compared with experimental data, 

and a comparison of the potentials is also done in regard to their effectiveness in 

reproducing experimental data. In chapter 3 we investigate the fusion cross section 

for some reactions on the basis of the Wong’s formula. A comparison with exper­

imental fusion cross section is also done. We also present the complete theory of 

fusion cross section based upon the single barrier penetration model, and also the 

Wong’s formula. Chapter 4 concerns the semiclassical model for the explanation 

of fusion suppression for the reactions 6Li+144Sm, 6Li+209Bi and 6Li+152Sm. We 

derive the classical equations of motion for the three systems. In the process, we
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propose a model for the 6 Li nucleus through which we obtain the initial conditions 

of the differential equations [19]. Then, we define a breakup condition for a trajec­

tory (projectile). Based upon this we propose a formula for explanation of fusion 

suppression, according to which fusion suppression is given by the average of the 

breakup fractions evaluated at impact parameters ranging from head-on collision up 

to the cutoff impact parameter. On application of the above formula, we discuss 

the results for the three systems. The relationship between the cutoff angular mo­

mentum (Lc), and the energy (E^) is also discussed. In chapter 5 we would be 

examining the reaction cross section induced by radioactive projectiles (6He, 7Be 

and 8B). First, an explanation for the shift in the barrier parameters of radioactive 

halo systems with respect to normal loosely bound systems is provided, and this 

result is compared with the experimental shift obtained from reduced reaction cross 

section analysis. Next, the total reaction cross section of the reactions 6He + 27Al 

and 7Be+27Al is explained in terms of the modified Wongs5 formula (MWF). Finally, 

we give the conclusion in chapter 6. In each of the chapters 2, 3 and 4 we present 

an exhaustive review work concerning the determination of fusion barrier parame­

ters, fusion cross section using Wong’s formalism, and fusion suppression including 

projectile breakup, respectively.
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Chapter 2

Fusion barriers for reactions 

induced by loosely bound nuclei

2.1 Introduction

The total potential energy between two interacting nuclei is given by the sum of the 

nuclear and Coulomb potential energies. The Coulomb potential energy is inversely 

proportional to distance, and hence, shows a smooth variation with distance. On 

the other hand, the nuclear potential energy is effective at short distances (few fm) 

between the two nuclei. At distances just outside the overlapping region of the two 

nuclei (7-12 fin), the nuclear potential energy has an order of magnitude almost equal 

(but slightly less) as that of the Coulomb potential energy, but with the opposite 

sign. This unique coincidence gives rise to the Coulomb (or fusion) barrier, and 

a potential well immediately inside the barrier. Fusion between two nuclei takes 

place, when the projectile overcomes the Coulomb (or fusion) barrier and enters the 

potential well (Fig 2.1).

In this chapter, we shall focus on the determination of the fusion barrier param­

eters of reactions induced by loosely bound nuclei (6Li, 7Li and 9Be). For determi­

nation of the fusion barriers, eight different versions of nuclear potentials are being
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Figure 2.1: Total potential energy (MeV) between two nuclei vs distance (in fm).

used. The primary purpose of this exercise is to check the effectiveness of these 

nuclear potentials in reproducing the fusion barrier parameters. Secondly, these pa­

rameters are used for study of the fusion cross section of these reactions through 

the Wong’s model (next chapter). Then, we check the validity of a parameterized 

formula connecting the barrier parameters. The above mentioned formula has also 

been tested for reactions induced by tightly bound projectiles. Lastly, we explain 

the large deviation of the barrier parameters of the reaction 6Li+152Sm in terms of 

the deformation of the target nucleus.

2.2 Review work on fusion barrier and nuclear 

potentials

The theoretical study of fusion barriers using global potentials has been done by 

a number of authors in the past. C. Ngo’s group calculated the fusion barriers 

within the framework of the energy density formalism [1]. They proposed a graphical
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method for the extraction of fusion barriers and found that experimental data is well 

reproduced up to Z\Z2 ~ 2700-2800. However, above this value, only an estimate 

was given, due to changes in the interaction energy curves. An improvement was 

made when the Fermi distribution of nuclear densities was used in the calculations 

[2]. FI. Stancu and D.M. Brink used the Skyrme interaction density functional 

to study the interaction potential for several pairs of magic nuclei by taking into 

account exchange effects due to antisymmetrization [3]. An improvements over the 

previous results was noted when an approximation introduced by Kirzhnits and 

others for the kinetic energy density was included in the calculations [4]. In another 

study [5], L. C. Vaz and J. M. Alexander used the proximity potential for analysing 

the fusion cross section and the fusion barrier parameters of 48 pairs of colliding 

nuclei. They found that excellent fitting of the experimental data could be obtained 

by slight variation of the parameters (R, b and 7) of the proximity potential.

Next, the Panjab University group under R. K. Puri and Raj K. Gupta has made 

substantial contribution to the study of interaction potential and fusion barriers 

using a variety of nuclear potentials. In 1992 [6], they used the Skyrme interaction 

energy-density model to determine the fusion barrier parameters for light systems 

(each nucleus, Z < 40, and A < 90). They found that the calculated barrier heights 

he within ±1 MeV of the empirical estimates. Spin density effects were also studied, 

and it was found that such effects increased the barrier heights by ~ 1 MeV, and 

shifted the barriers inside by 0.1-0.2 fm. More recently, they made a detailed study 

of light as well as heavy systems using as many as 12 different versions of the nuclear 

potential. They found that for symmetric colliding nuclei, the potentials could 

reproduce the experimental data, on average, within 8% [8] and for asymmetric 

colliding nuclei to within 10% [7]. In another study, they analysed the effects of 

various versions of the surface energy coefficients of the proximity potential on the 

fusion barriers. It was concluded that surface energy coefficients 7-MN 1976 and 

7-MN 1995 may be better choices for studying fusion barriers [9]. Some Chinese
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workers are also active in this field of study. C. L. Guo et al. [10], calculated the 

nuclear potential for symmetric systems by using the double folding model with 

density dependent NN interaction. They also obtained a Universal function of the 

proximity potential around the Coulomb barrier position by a parametric fitting of 

a simple Woods-Saxon type function. Using the Universal function they found that 

the fusion barrier parameters are reproduced satisfactorily for the systems studied.

We shall be using the same potentials that has been used by the Panjab Uni­

versity group in determining the fusion barrier parameters of reactions induced by 

loosely bound projectile. Also, we retain the same nomenclature in naming the po­

tentials. The nuclear potentials are the two versions of the proximity potential (Prox 

77 and Prox 88), three versions of the Bass potential (Bass 73, Bass 77 and Bass 80), 

the Christensen and Winther potential (CW 76), the Broglia and Winther potential 

(BW 91), and the Aage Winther potential (AW 95). Besides the study of fusion bar­

riers, these potentials have been successfully used by the Panjab University group 

for the study of cluster radioactivity [11]. Cluster or heavy-ion radioactivity is an 

intermediate process between alpha decay and nuclear fission, where clusters heavier 

than alpha particles but lighter than fission fragments are produced. According to 

the preformed cluster model (PCM), the clusters are preborn in the parent nucleus 

with preformation probability P0, hit the barrier with impinging frequency u0, and 

penetrate it with transmission coefficient P. The form of the nuclear potential comes 

into play in the determination of the barrier, and hence in the determination of the 

transmission coefficients by the WKB method. It was observed that the proximity 

potentials could reproduce the experimental half lives very well. Besides, the po­

tentials Bass 80, CW 76 and BW 91 were found to be equally useful for the study 

of cluster dynamics.

In particular, the proximity potential has been used by a number of authors for 

studying a variety of phenomena. K. P. Santosh of Kannur University had used 

the potential for the study of fusion excitation functions and barrier distributions
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for the fusion of 12C, 160, 28Si, and 35C1 on 92Zr target [12]. Then he used it for 

the study of a-decay of nuclei in the range 67<Z<91 [13], as well as in the super­

heavy region (271'”294115, 293>294n7) [14} 15]. Also, he had used the above potential 

for working out a semi-empirical formula for spontaneous fission half life for nuclei 

in the mass range of 232Th and 286114 [16]. Using the proximity potential in the 

Wong formula, Raj Kumar et al. had studied the capture cross-section data from 

48Ca+238U, 48Ca+244Pu, and 48Ca+248Cm reactions in the super-heavy mass region, 

and also the fusion-evaporation cross section for the reactions 58Ni+58Ni, 64Ni+64Ni, 

and 64Ni+100Mo, respectively [17].

2.3 Experimental determination of fusion barrier

The study of the fusion barrier (or Coulomb barrier) is very important, because it 

reveals a lot of information about the nucleus-nucleus interaction and also about the 

fusion mechanism. More recently, synthesis of super-heavy elements is a hot topic 

of research for which knowledge of the fusion barrier is crucial. Experimentally, the 

fusion barrier cannot be extracted by direct methods. It is indirectly obtained from 

analysis of precisely measured fusion cross section data. For energies greater than 

the fusion barrier, the extraction of the fusion barrier can be done from a fitting of 

the measured fusion cross section (a) with Wong’s formula (see chapter 3) [18],

a=+exp
2 tt(E — Eq)

?UjJq
(2.1)

where, Uloq is the curvature of the fusion barrier (-£=0). Eq and Rb are the height 

and position of the fusion barrier, respectively, and E is the energy in the centre-of- 

mass frame. In a nutshell, Vb, Rb and Tiloq are known as the barrier parameters. For 

energies (E) much above the barrier {Eq), the above formula reduces to the classical
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equation for touching collision between spheres,

cr = 7T Rl (2.2)

Figure 2.2: Diagram showing experimental and theoretical cP(Ecr)/dE2 vs FJan. 
Dots represent the experimental barrier distribution, whereas line represents the 
theoretical barrier distribution [19].

The most widely followed procedure is Rowley’s method [19]. Rowley proposed 

in 1991 that the distribution of barriers could be extracted directly by taking the 

second derivative of the quantity (aE) with respect to E. Experimentally, it is 

obtained from a point-difference formula. At energy, E=(Ei + 2E2 + £73) /4, it is 

given by,

#(Ea) ((Ea)z-(Ea)2 _ (Ea)2 - (Eo)t\ ( 1 \
dE2 V Ez - E2 E2-E1 ) {e3-eJ

for, equal energy steps, AE = E2 — E\ = E$ — E2, we get,

d?(Ea) (Ea)3-2(Ea)2-(Ea)1 
exp dE2 AE2

(2.4)

27



When, is plotted against energy (E), a distribution of barriers is obtained. The 

fusion (Coulomb) barrier corresponds to the prominent peak of the distribution. 

The above formula will only work if fusion cross section (cr) is evaluated at small 

intervals of energy (E). In Fig. 2.2 we have shown the experimental (dots) and the 

theoretical fusion barrier distribution (line) for the reaction 160+1MSm as a function 

of the centre of mass energy (E^) [19]. The fusion barrier (occuring around 60 MeV) 

is clearly seen. A second resolved bump occurs because of the coupling to the target 

phonon states. Some other methods have also been proposed for extraction of fusion 

barrier parameters from fusion cross section.

v*

2.4 Methodology for finding fusion barrier

The interaction potential between the target nucleus and the projectile can be writ­

ten as the sum of nuclear, Coulomb and centrifugal potentials. Hence,

V = Vc(r) + VN(r)+mV-+1] (2.5)

where, r is the distance between the centres of the target and projectile, l is the 

angular momentum quantum number, and jj, is the reduced mass of the system. 

Assuming the size of the projectile to be much smaller than the radius of the target 

nucleus, rc, the Coulomb potential Vc(r) can be approximated by the relation,

V0 =
^(s-iI) *r<rc. 

^ if r > rc
(2.6)

where Z\, Z-i are the atomic numbers of the target and projectile. For f?—0 the 

maximum or peak value of the potential V is called the fusion barrier (or Coulomb 

barrier). The respective values of V and r are called the height (Vg) and position 

(Rb) of the fusion barrier. For Vjv(r) we have used a total of eight different types
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of nuclear potentials which are briefly discussed in the next section. In naming the 

potentials we have retained the same nomenclature as in Ref. [7].

Ideally, the fusion barrier heights and positions for the different potentials men­

tioned can be determined by applying the rules of calculus to the potential in Eq. 

(2.5),

dV(r)
dr

0 and #V(r)
r=Rb dr2

< 0 (2.7)
r=Rb

However, the derivatives may become too complicated for a few of the nuclear 

potentials. An easier option is to obtain the potential (V) against distance (r) at 

small intervals of the distance (Ar=0.01 fm). Studying the output, VB and RB 

are easily obtained upto sufficient accuracy level. All calculations are done in the 

Fortran programming language.

2.5 Nuclear potentials

In recent years, a large number of nuclear models depending upon a variety of as­

sumptions have been proposed. As many as two dozen potentials and their different 

versions are available in the literature. For the purpose of finding the fusion barrier 

we had chosen eight versions of commonly used nuclear proximity potentials. We 

have used these potentials in particular because earlier studies have shown that these 

potentials are reliable and effective for the study of fusion barriers [7, 8]. Moreover, 

the barrier parameters could be accurately determined with the -minimum number 

of parameters. These potentials are described below :

2.5.1 Proximity 1977 (Prox 77)

The nuclear potential of Bloeki [20] has its origin on the fact that the force between 

two bodies in close proximity is directly proportional to the interaction potential 

per unit area between two flat surfaces made of the same material and the mean

29



curvature of the two bodies provided the curvature is small. It leads to a formula for 

the interaction potential between two curved objects (eg., two atomic nuclei) which 

is the product of a universal function and a simple geometrical factor, characteristic 

of the material of which the objects are made. The potential is given by,

Vjv(r) = 47T7&
C\C2 

Ci + C2
$(r C) °2) MeV 

b
(2.8)

where C\, C2 are the Sussmann central radius [21. 22] of the target and projectile, 

and is related to the sharp radius as,

Ci = Rl-
R*

(2.9)

Here, b « 1 fm, and Ri is given by the semi-empirical formula in terms of the mass 

number Ai,

Ri = 1.28A1/3 + 0.8At"1/3 - 0.76 fm (»=1,2) (2.10)

The nuclear surface tension coefficient 7 is given by

7 = 7o
(N - Zf 

''a(N + Z)2 (2.11)

where, N and Z are respectively the total number of neutrons and protons. 70 

and ks are respectively the surface energy constant and the surface asymmetry con­

stant. Their values are given by the Myers-Swiateeki mass formula [23, 24] and are 

7o=0.9517 MeV//m2 and fcs=1.7826, respectively. The universal proximity function 

$(£) can be obtained using the nuclear Thomas-Fermi model with Seyler-Blanchard 

phenomenological nucleon-nucleon interaction [25, 26, 27], For practical applica­

tions one uses a simple analytical representation of the function $(£). One such
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approximation is given by the following ’’cubic exponential” pocket formula [20, 28],

I
-Ut ~ 2.54f - 0.0852(£ - 2.54)3 if £ < 1.2511,

2 (2-12)

-3.437ezp(-£/0.75) if £ > 1.2511.

2.5.2 Proximity 1988 (Prox 88)

Based upon a refined mass formula, the value of the co-efficients 70 and ks were 

later on modified by Moller and Nix [29] to the new set of values 1.2496 MeV//m2 

and 2.3, respectively. In this model, the mass excess is given by the sum of a 

macroscopic and a microscopic term. The macroscopic part contains a term due 

to surface energy which is dependent upon the nuclear surface tension coefficient 

given by Eq. (2.11). All the constants appearing in the macroscopic term were 

determined by selective consideration of experimental data. The co-efficients 70 and 

ks were determined from the experimental fission-barrier heights because fission- 

barrier heights are particularly sensitive to these constants.

2.5.3 Bass 1973 (Bass 73)

Based on the classical liquid drop model, Bass [30, 31] gave an expression of the 

nuclear potential. In this model, the surface energy of two spheres having half­

density radii R\ and R2 is given by,

E, 7 S\ + S2
47rdi?ii?2 

1?i + R2
exp (2.13)

where S\ and S2 are the surface areas of the two spheres, s is the distance between 

the nuclear surfaces, 7 is the specific surface energy and d is the range parameter. 

The nuclear potential is now obtained as the difference in surface energies for infinite 

and finite separation s( = t—R12).
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It is given by ,

VN{r) = ~~ha’A !/3^/3exp(^!-^H)MeV <2-14)

with J?i2 = ro = 1-07 fm, and as = Att^Tq = 17.0 MeV. The value of

d is obtained after fitting experimental fusion barrier and is given by 1.35 fm.

2.5.4 Bass 1977 (Bass 77)

It can be shown by use of the liquid-drop model and general geometrical arguments 

that the nuclear potential can be written as [30, 31, 32, 33],

VN(r) = - fo-fe $(r - fit - Re) MeV (2.15)
iXl + -TL2

where, R4 is given as

Ri = 1.16Aj/3 - 1.39471/3 fin (2.16)

Using the available data for fusion-cross section, Bass determined the experimental 

points for the function $(s) [33]. He found that the data can be fitted by an empirical 

function of the form,

4<s)=[^(i)+Bexp(i)r (2-17)

with A=0.03 MeU_1ftn, B=0.0061 MeV-1 fin, di=3.30 fin, and ^2=0.65 fm.

2.5.5 Bass 1980 (Bass 80)

Later Bass slightly modified the empirical function and also the radius parameter 

[23]. Here, #(s) is now given as,

*M = °.°33exp(^jr) + °.°07exp(“g) (2.18)
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where s= r - R\ - R2 (fm) measures the separation between the half-density surfaces 

of the interacting nuclei.

Central radius is given as,

^ = ^<(1-^) (2.19)

where Rai is given as,

Rsi = 1.2841/3 - 0.T6 + 0.8A;1/3 fm (2.20)

2.5.6 Christensen and Winther 1976 (CW 76)

Christensen and Winther [34] derived the nucleus-nucleus interaction potential by 

analysing the heavy-ion elastic scattering data, based on the semiclassical arguments 

and the recognition that optical-model analysis of elastic scattering determines the 

real part of the interaction potential only in the vicinity of a characteristic distance. 

The potential has been tested for more than 60 reactions, and is given by,

VN(r) = -50 $(r - Rx - R2) MeV (2.21)
Hi + K2

The radius parameter is given as,

Ri = 1.2334/3 - 0.978.471/3 fm (2.22)

and the Universal function <h(s) has the following form, '

i(s) = exp(-r~^^ (2.23)
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2.5.7 Broglia and Winther 1991 (BW 91)

Broglia and Winther gave a Woods-Saxon parametrization of the nuclear potential 

from a knowledge of the densities of the colliding nuclei and an effective two-body 

force [23, 35, 36]. The potential is given by,

VN(r) Vo
!+exP(w)

MeV

with,

Here, a=0.63 fin, and

Fo = 16tt
R1R2

Ri + R2ia

Ro — Ri T T 0.29

Radius, Ri is given by,

• Ri = 1.233,4V3 - 0.98A71/3 fxn

(2.24)

(2.25)

(2.26)

(2.27)

And, the surface energy co-efficient 7 is given by,

7 = 7o 1 — k. (*?)(*^)] (2.28)

where, 70=0.95 MeV//m2 and k8=1.8. The subscripts ’p’ and !t’ refer to the pro­

jectile and target. The second term takes into account the mass asymmetry of the 

reaction. The parametrization has been constructed such that the force

SVn
Sr

Vo
4(0.63)

cosh 2(
r-Ro, 

1.26 ] (2.29)

has its maximum at r=i?o and is equal to the maximum force predicted by the 

potential Prox 77.
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2.5.8 Aage Winther 1995 (AW 95)

The parameters of the above potential were slightly refined by Winther [37] after an 

extensive comparison with experimental data for heavy-ion elastic scattering. The 

refined values of a and 72* are,

11.17(1 + 0.53(AT1/3 + 1/3))J
and,

R, = 1.20A1/3 - 0.09 fm

Here, Rq=Ri+R2 only. The magnitude of the potential is given by,

(2.30)

(2.31)

VN(r) Vo
1 +

MeV

with,

Vo 167T RlR2
Ri + R-Pa

where, 7 is given by Eq. (2.28).

(2.32)

(2.33)

2.6 Nature of the potentials

The interaction potential using the above nuclear potentials are shown in Figs. 2.3 

and 2.4 for the reactions 6Li+209Bi, 7Li+159Tb and 9Be+208Pb [18]. As we had 

used a linear scale for the potential (y-axis) and since there is large variation of the 

potential at r < Rb, hence we have adjusted the distance (x-axis) so that the shape 

of the potential could be studied. The fusion barrier (Coulomb barrier) is shown 

by the peak of the potential. Apart from CW 76, the barrier is distinct for all the 

other nuclear models. At distances greater than the barrier radius (r > Rb), the 

force is repulsive because the Coulomb potential is dominant and the nuclear force 

is negligible. In the region immediately inside the barrier radius (r < Rb), the force
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is attractive because the nuclear potential dominates the Coulomb potential. For 

the proximity potentials (Prox 77 and Prox 88), a distinct potential pocket exists 

because the force turns repulsive at smaller distances (r < 6 fm).

2.7 Results and Discussion

Our present study is conducted on a total of 13 reactions induced by loosely bound 

projectiles, namely, 6Li, 7 Li and 9Be. The reactions considered are : 6Li+6iZn, 

6Li+imTb, &Li+luSm, *Li+152Sm, 6Li+208Pb, 6Li+209Bi, 7Li+imTb, 7Li+209Bi, 

9Be+208Pb, 9Be+124Sn, 9Be+89Y, 9Be+luSm and 9Be+209Bi. All nuclei are con­

sidered to be spherical, except 152Sm, for which both spherical and deformed cases 

(section 2.8) are considered. We find the height (VB) and position (Rb) of the fusion 

barrier as explained in section 2.4. The results are shown in Tables 2.1 and 2.3 [18]. 

The results are compared with the empirical values of the heights and positions of 

the fusion barriers obtained from the literature.

The procedure for obtaining the empirical values of the fusion barriers needs to 

be briefly highlighted. Apart from the reaction 6Li+6iZn} VB and RB are obtained 

from analysis of fusion reaction data. For 6Li+64Zn, only VB is obtained from 

analysis of elastic scattering data. Using the best fit parameters for the optical 

model, the maximum of the real nuclear plus Coulomb potential is extracted to 

give the value of VB. For the other reactions, VB is extracted from the peak of 

the barrier distribution (section 2.3). The standard procedure for obtaining RB is 

through a fitting of the fusion cross section data by the fusion code CCFULL [38]. 

Then, RB is obtained from the output of the CCFULL code. The parameters for 

the input nuclear Woods-Saxon potential are obtained by trial and error. For a few 

of the reactions RB has not been reported, and we determine them by running the 

CCFULL code [38]. The parameters of the Woods-Saxon potential needed for the 

program are given as : 9Be+luSm (Vq=140 MeV, ro=1.06 fm, a=0.71 fm) [39],
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Table 2.1: Fusion barrier heights (in MeV) and positions (in fin) using the potentials 
Prox 77, Prox 88 and Bass 73. The corresponding experimental values are also 
indicated.

Reaction Prox 77
VB Re

Prox 88
VB Rb

Bass 73
VB Rb

Empirical
VB R%g RPbT

Ref.

6Li+6iZn 13.91 8.49 13.56 8.73 11.33 9.87 13.22 - 8.98 [42]
6Li+159Tb 25.97 10.01 25.44 10.23 22.98 10.67 24.48 10.53 10.66 [43]
6Li+14iSm 25.26 9.79 24.72 10.02 22.25 10.49 24.65 10.20 10.06 [44]
8Li+152Sm 24.96 9.92 24.46 10.14 21.99 10.63 25.10 9.98 9.86 [40]
6U+208Pb 31.17 10.56 30.59 10.78 28.21 11.02 30.10 11.00 10.96 [45]
6Li+209Bi 31.53 10.57 30.94 10.78 28.58 11.00 30.10 11.24 11.11 [41]
7Li+159Tb 25.50 10.20 25.00 10.42 22.61 10.88 23.81 11.03 10.99 [46]
7Li+209Bi 30.99 10.76 30.42 10.98 28.12 11.21 29.70 11.40 11.27 [41]
°Be+2mPb 40.53 10.85 39.80 11.06 37.50 11.06 38.10 11.66 11.55 [41]
9Be+124Sn 27.02 9.85 26.47 10.07 23.86 10.52 25.87 10.25 10.32 [47]
9Be+mY 22.26 9.27 21.76 9.51 19.17 10.16 21.60 9.63 9.59 [48]
9Be+144Sm 32.79 10.08 32.11 10.31 29.58 10.52 31.20 10.68 10.64 [39]
9Be+209Bi 41.00 10.85 40.25 11.07 37.98 11.05 39.40 11.30 11.33 [49]

Table 2.2: Percentage deviations of the theoretical values of VB and RB from the 
empirical values for the potentials Prox 77, Prox 88, Bass 73, Bass 77.

Reaction Prox 77
A Vb ARb

Prox 88
AVs A Rb

Bass 73 
AVb A Rb

Bass 77 
AVg A Rb

6Li+e4Zn 5.24 - 2.56 - -14.29 - 2.53 -

6Li+159Tb 6.09 -4.94 3.93 -2.85 -6.12 1.33 4.22 -2.85
eLi+U4Sm 4.34 -4.02 2.42 -1.76 -5.32 2.84 2.49 -1.76
6Li+152Sm -0.54 -0.57 -2.57 1.63 -12.40 6.55 -2.37 1.73
6Li+208Pb 3.55 -4.00 1.63 -2.00 -6.28 0.18 2.06 -2.36
8Li+209Bi 4.73 -5.96 2.78 -4.09 -5.06 -2.06 3.29 -4.39
7Li+159Tb 2.47 -7.53 0.28 -5.53 -9.74 -1.36 0.69 -4.99
7Li+209Bi 7.10 -5.61 5.00 -3.68 -5.04 -1.67 4.83 -3.51
*Be+208Pb 5.96 1.63 4.05 -5.15 -1.96 -5.17 3.52 -4.43
9Be+124Sn 4.46 -3.95 2.33 -1.81 -7.78 2.66 1.19 -0.15
9Be+89Y 3.06 -3.70 0.73 -1.21 -11.23 5.48 -0.39 0.50
9Be+U4Sm 5.10 -5.62 2.92 -3.46 -5.19 -1.50 2.28 -2.53
9Be+209Bi 4.06 -3.98 2.16 -2.03 -3.60 -2.21 1.70 -1.33
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Table 2.3: Fusion barrier heights (in MeV) and positions (in fm) using the potentials 
Bass 77, Bass 80, CW 76, BW 91 and AW 95.

Reaction Bass 77
VB Rb

Bass 80
VB Rb

CW 76
vB rb

BW 91
VB Rb

AW 95
VB Rb

6Li+64Zn 13.55 8.80 13.22 9.05 13.41 8.99 i3.49 8.91 13.19 9.13
6Li+159Tb 25.51 10.23 24.74 10.58 24.99 10.57 25.14 10.47 24.89 10.58
6Li+144Sm 24.82 10.02 24.08 10.35 24.33 10.34 24.48 10.23 24.20 10.37
6Li+152Sm 24.51 10.15 23.77 10.50 24.02 10.48 24.16 10.38 23.91 10.51
6Li+208Pb 30.72 10.74 29.72 11.35 30.00 11.13 30.17 11.03 29.97 11.12
6Li+209Bi 31.09 10.75 30.07 11.15 30.36 11.14 30.54 11.04 30.33 11.13
7Li+159Tb 24.96 10.48 24.33 10.78 24.54 10.78 24.74 10.65 24.60 10.72
7Li+209Bi 30.44 11.00 29.59 11.35 29.83 11.35 30.08 11.22 30.00 11.26
9Be+208Pb 39.60 11.14 38.70 11.43 38.85 11.49 39.18 11.35 39.27 11.33
9Be+124Sn 26.18 10.24 25.72 10.43 25.85 10.47 26.07 10.35 26.00 10.38
9Be+89Y 21.52 9.68 21.2 9.84 21.32 9.87 21.48 9.76 21.34 9.83
9Be+144Sm 31.91 10.41 31.31 10.64 31.43 10.69 31.67 10.57 31.64 10.59
9Be+209Bi 40.07 11.15 39.16 11.43 39.31 11.49 39.64 11.35 39.73 11.33

Table 2.4: Percentage deviations of the theoretical values of VB and Rb from the 
empirical values for the potentials Bass 80, CW 76, BW 91 and AW 95.

Reaction Bass 80 
AFb A Rb

CW 76 
AFS A Rb

BW 91
AVb A Rb

AW 95
AVb A Rb

. 6Li+64Zn 0.023 - 1.43 - 2.03 - -0.22 -

6U+159Tb 1.07 0.48 -6.07 0.38 2.70 -0.47 1.68 0.47
6Li+144Sm -0.37 1.47 0.44 1.37 1.28 0.29 1.01 1.67
6Li+152Sm -5.28 5.21 -4.30 5.00 -3.74 4.05 -4.74 5.28
6Li+208Pb -1.26 1.36 -0.33 1.18 0.23 0.27 -0.43 1.09
6Li+209Bi -0.10 -0.79 0.86 -0.87 1.45 -1.80 0.75 -1.02
7U+159Tb -2.31 -2.27 -1.30 -2.27 -0.69 -3.45 -1.83 -2.81
7U+209Bi 2.18 -0.44 3.07 -0.44 3.91 -1.58 3.32 -1.23
9Be+208Pb 1.17 -1.98 1.56 -1.45 2.43 -2.67 2.66 -2.87
9Be+124Sn -0.56 1.79 -0.07 2.15 0.76 0.96 0.49 1.29
9Be+mY -1.85 2.16 -1.31 2.44 -0.55 1.33 -1.20 2.08
9Be+144Sm 0.35 -0.38 0.74 0.09 1.51 -1.03 1.41 -0.85
9Be+209Bi -0.61 1.15 -0.23 1.68 0.61 0.44 0.84 0.26
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6Li+imSm (V0=131 MeV, ro=1.01 fin, a=0.64 fin) [40], 6Li+mBi (Vo=107 MeV, 

r0—1.12 fin, a=0.63 fin), 7Li+209Bi (V0=113 MeV, r0=1.12 fin, a=0.63 fin), and 

gBe+2mPb (Vo=198 MeV, ro=1.10 fm, a=0.63 fin) [41]. We find that in general 

the agreement between the calculated barrier parameters and the empirical barrier 

parameters is quite satisfactory for all the potentials. However, there is marginal 

variation from potential to potential which has also been investigated.

There is a well known parametrized formula [50, 51, 52] which connects the 

height (Vb) and the position (Rb) of the Coulomb barrier. The formula has been 

tested for a large number of reactions induced by tightly bound projectiles. Here, 

we would like to test the validity of the formula for reactions induced by loosely 

bound projectiles. The parameterized formula is given as,

rrpar   1 .AAZ\Z2 .
'B jr>par ^

0.75 \
RPBr) (2.34)

On the last column of Table 2.1, the parametrized value of the position of the 

Coulomb barrier (R^r) is evaluated. We use the following formula where VB is the 

empirical value of the height of the barrier,

RpBr =
1.44£iZ2 + ^2.0736^^1 - 4.32^^^ 

2Vb
(2.35)

We note that the agreement between the empirical value of the position of the 

barrier (R%c) and the parametrized value {RpBr) is very good. The effectiveness of 

the parametrized formula in reproducing the value of Rb can be checked by finding 

the standard deviation of the parametrized value (RPBT) with respect to the

experimental value (RBC)- Hence, crRp^ is given by,

aRPar = Y!rJ! [A#r]2_ (2.36)

where, AR*£T is given by,
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ARPBT = B T)CC B X 100 (2.37)
Rb

The value of aRi«»■ comes out to be 0.89 %, which proves that the parametrized 

formula can reproduce the value of Rg within 1 % of the true value. This shows 

that the empirical formula connecting VB and Rg is extremely effective for reactions 

induced by loosely bound projectiles.

In order to compare the predictions of the different potentials we compute the 

standard deviation (ovs and agB) of the theoretical values over the experimental 

values for the barrier height and the position. These are given by,

GVb

VRb
Ei=f [ARg}2

N

(2.38)

(2.39)

Here, A Vg and A Rg are the percentage deviations and are given by,

AVb =
ythecrr _ yexpt

yCXpt, x 100 (2.40)

rytheor jyexpt
A Rb = ~g..~^ptB...x 100

kb
(2.41)

where, VBheor is the theoretically calculated value of Vg, VBpt is the empirical 

value of Vg, RBef}r is the theoretically calculated value of Rg, and ReBpt is the empir­

ical value of Rg. For R^pt we take the values of R%c from Table 2.1. The percentage 

deviations (AVjg(%), ARg{%)) are shown in Tables 2.2 and 2.4 respectively. Using 

Eqs. (2.38) and (2.39), the values of oyB and <jrb are determined and they are 

shown in Table 2.5 [18].

As seen from Table 2.5, the potentials Bass 80, AW 95 and BW 91 are most 

effective in reproducing the height of the fusion barrier as they have the minimum
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Table 2.5: Standard deviations (oyB, crvR) of the theoretical values against the 
experimental values of VB and Re­

Prox 77 Prox 88 Bass 73 Bass 77 Bass 80 CW 76 BW 91 AW 95

<JvB 4.66 2.85 8.03 2.73 1.89 2.39 2.04 2.02

®rb 4.65 3.24 3.33 2.95 2.05 2.04 1.94 2.19

values of oyB (around 1.9-2.05). This is in agreement with earlier work [7, 8] where 

it was concluded that the fusion barriers formed by the potentials of Bass 80, and 

the different versions by Winther and collaborators are close to experimental data. 

If we consider only the above three potentials the fusion barrier is best reproduced 

for the reaction 9Be+l24Sn, and is least accurate for the reaction 6Li+152Sm. For, 

the position of the fusion barrier the top 3 potentials turn out to BW 91, CW 76 and 

Bass 80. Again if we consider only the 3 potentials, then the position of the fusion 

barrier is best reproduced for the reaction 6Li+159Tb, and is least accurate for the 

reaction 6Li+152Sm. The potential AW 95, having done a good job in reproducing 

the height of the fusion barrier, has dropped to the fourth place in reproducing the 

position of the fusion barrier. This is because of an unusually large deviation in 

reproducing the position of the fusion barrier for the reaction 6Li+152Sm as the 

target 152Sm is a highly deformed one. The effect of target deformation is quite 

evident for the above reaction as the height of the fusion barrier for all the eight 

nuclear potentials used has been systematically lowered from the empirical value of 

25.1 MeV. Also the position of the fusion barrier has been raised from the empirical 

value of 9.98 fin for all but one (Prox 77) of the nuclear potentials used.

2.8 Coulomb potential correction for the deformed 

target

For the reaction 6Li+152Sm, we apply a correction to the Coulomb potential for 

the deformed target nucleus (152Sm). Many methods are available in the literature
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Figure 2.5: Diagram showing angle 0* between collision axis and symmetry axis of 
the ith nucleus.

for calculating the Coulomb interaction between two deformed and oriented nuclei. 

Here we apply Wong’s correction [53] for two deformed charge distributions,

,,, Z,Z2e2 , [l-ZAe^rtv 
K(r,«) = —— + Y ^3 2-,

i=1
(^)^-T,^‘P^os9i)]2 (2.42)

here, 0j is the orientation angle between the collision axis and the symmetry 

axis of the ith nucleus (Fig. 2.5). The deformation parameter of the target nucleus 

(1525m) is taken as /?2=0.26 [40] and the projectile (6Li) is assumed spherical. As the 

Coulomb potential is dependent upon the orientation of the target nucleus, hence, 

the effective Coulomb potential is found by averaging over all possible orientations. 

Because of symmetry, averaging over the angles from 0=0° to 0=90° is sufficient. 

Because of the target deformation, there is a slight raising of the total potential 

which is shown in Figs. 2.6 and 2.7 [18]. As a result we see that the effect of the
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Table 2.6: Height and position of the fusion barrier for 6Li+152Sm after applying 
correction of the Coulomb potential for the deformed target. Values of Vb and Rb 
without correction are given in Tables 2.1 & 2.3.

Prox 77 Prox 88 Bass 73 Bass 77 Bass 80 CW 76 BW 91 AW 95
Vb 25.36 24.82 22.32 24.87 24.11 24.36 24.51 24.25
Rb 9.88 10.11 10.58 10.12 10.47 10.45 10.36 ,10.48

target deformation is to make the potential more repulsive at shorter distances which 

is indeed expected. The effect is particularly 'pronounced for the potentials Bass 77, 

Bass 80, BW 91 and AW 95 where the repulsion is substantial at short distances 

for the deformed case as compared to the spherical case. For distances greater than 

Rb there is only a marginal difference between the spherical and deformed cases. 

However, for the potentials, Bass 73 and CW 76 there is no noticeable change even 

for short distances for the two cases. This is due to the exponential nature of the 

nuclear potentials due to which change of the Coulomb potential is overridden by 

large changes in the nuclear potential. A distinct feature of the potentials for the 

deformed case is the emergence of the potential pocket for the potentials Bass 77, 

Bass 80, BW 91 and AW 95. As we had observed earlier, for the spherical case 

potential pocket exists only for the proximity potentials. As can be seen from the 

Figs. 2.6 and 2.7, the height and position of the fusion barriers are shifted towards 

the empirical values. The new values of Vb and Rb for6 Li+152Sm are shown in Table 

2.6 [18]. The correction for the barrier is about 0.35 MeV, and the correction for 

the position is about 0.03-0.04 fm with slight variation from potential to potential. 

Apart from Prox 77, all the corrections are in the right direction. This is probably 

due to the fact that Prox 77 had overestimated the measurements by about 4% [54].
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2.9 Summary and Outlook

We determine the fusion barriers for thirteen number of reactions induced by loosely 

bound nuclei (6Li, 7Li, and 9Be). For calculating the barriers, we use eight different 

versions of the nuclear potential. They are Prox 77, Prox 88, Bass 73, Bass 77, Bass 

80, CW 76, BW 91 and AW 95. In general, all the potentials could reproduce the 

height and position of the barrier satisfactorily. In order to compare the predictions 

of the different potentials, we compute the standard deviation of the theoretical with 

respect to the experimental values (ovB> <?rb)- We find that the best potentials for 

reproducing the height (VB) and position (RB) of the barrier are Bass 80 and BW 

91, respectively. The well known parametrized formula connecting VB and Rb has 

also been checked. We find that the formula is well applicable to reactions induced 

by loosely bound projectiles as the prediction of the values of RB is extremely 

accurate. For the reaction, 6Li+152Sm, the deviations of the barrier parameters from 

the empirical values is found to be unusually large. This is because of the deformed 

nature of the target (152Sm). Applying correction to the Coulomb potential for the 

deformed target, we find that the new values of the barrier parameters are closer to 

the empirical values. The graphical plot of the potential for the deformed case of 

6Li+152Sm shows the emergence of distinct potential pocket for the potentials Bass 

77, Bass 80, BW 91 and AW 95, in addition to the potentials Prox 77 and Prox 

88 for which potential pocket exists for both the spherical as well as the deformed 

cases.

Many other potentials are available in the literature, besides the ones that are 

considered here. Examples are the Denisov potential [55], the double-folding po­

tential [56] with various versions of the NN interaction, the Skyrme nuclear inter­

action [6, 57], etc. In future, all these potentials could be used in order to find the 

barrier parameters of reactions induced by loosely bound projectiles. Some other 

parametrized formulae for VB and RB have been discussed by other authors, and 

these could also be studied in connection with the reactions discussed here. For

48



example, Puri and Gupta discusses a parameterized formula of the form [6],

(2.43)

Rb — fa + k^AiA?) + fa(A\A2)2 + k^AiA^f (2.44)

where, fa, fa, fa, fa, fa and fa are unknown constants which can be determined

by fitting the data. For calculating the Coulomb potential between a spherical

and a deformed target some other prescriptions (e.g., Takigawa et al. [58]) are 

also available which would give slightly improved results. Correction to the nuclear 

proximity potential for deformed nuclei can also be done. For the proximity potential 

(Prox 77 and Prox 88), the essential quantity is the shortest distance, so, between 

the two colliding nuclei. Various methods are discussed in the literature [59, 60, 61] 

for finding so and hence, the nuclear proximity potential for deformed nuclei.
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Chapter 3

Fusion cross section for reactions 

induced by loosely bound nuclei

3.1 Introduction

The study of fusion of heavy nuclei is extremely important for a number of reasons. 

In general, the fusion of two heavy nuclei produces a nucleus which is proton-rich 

and lies far away from the line of stability. The discovery and measurement of 

properties of previously unknown, proton-rich nuclei has formed a major part of 

the programme of heavy-ion fusion research. The study of heavy-ion fusion is also 

motivated by the search for superheavy or transuranic elements. Extrapolations of 

the nuclear shell model towards larger masses indicates that the next major shell 

closure should occur at Z=120, 124 or 126 and N=126 [1], The recent progress in 

accelerator technologies has encouraged the experimentalists to reach this ’’island 

of stability”. Heavy-ion fusion research is also important for astrophysics! reasons 

as the heavier elements inside stars are formed by the successive fusion of lighter 

elements.

In this chapter we shall concentrate on the study of fusion cross-section of re­

actions induced by loosely bound projectiles. The study of fusion cross-section of
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such nuclei is important because such nuclei are known to breakup in a nuclear re­

action. Only a comparison of a carefully measured experimental fusion cross-section 

and the theoretical predictions can tell us whether breakup of such projectiles take 

place. In case of breakup, the experimental fusion cross-section must fall below the 

theoretically calculated cross-section. The contents of this chapter are as follows. 

In the next section, we shall give a brief review work of the study of fusion cross 

section. Then, we shall give a brief description of the experimental methods for the 

measurement of fusion cross-section. This will be followed by elaborate description 

of the theory of fusion cross-section, and the Wong’s formula. Then we give a brief 

description of the CCFULL code for the calculation of fusion cross section. Finally 

our results are presented for the study of fusion cross-section of selected systems on 

the basis of the Wong’s formula.

3.2 Review work on fusion cross section

The study of fusion cross section using the Wong’s formalism has been done by a 

number of authors. K. P. Santosh of Kannur University had used the Wong’s for­

mula for the study of fusion cross section of reactions induced by 12C, 16O, 28Si, and 

35 C7 projectiles on 92 Zr target [2]. He found that near and above the barrier, Wong’s 

formula satisfactorily explains the fusion cross section for these reactions. However, 

below the barrier, fusion cross section is well explained if Z\Z2 has a low value, and 

for higher values of Z\Z2 fusion cross section below the barrier is only explained 

with barrier parameters evaluated from Reisdorf’s value of the nuclear surface ten­

sion coefficient. I. Dutt and R. K. Puri of Panjab University had studied the fusion 

excitation function of symmetric as well as asymmetric colliding nuclei using Wong’s 

formalism. They found that for both the systems, the above barrier fusion cross sec­

tion is well explained with barrier parameters evaluated from the potentials Bass 80, 

AW 95 and Denv 02 [3, 4], Using Wong’s formalism, Raj Kumar et al. had stud-
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ied the capture cross-section data from A8Ca+23SU, 48Ca+2UPu, and i9,Ca+2i8Cm 

reactions in the super-heavy mass region, and also the fusion-evaporation cross sec­

tion for the reactions 58Ni+SBNi, uNi+uNi, and mNi+WQMo [5]. The fusion cross 

section for the 48Ca based reaction is well explained by a slight modification of the 

Wong’s formula where the ^-dependent barriers are introduced via the ^-summation. 

For the 58’64Ni based reactions the experimental data is well explained only if a fur­

ther modification of the barrier is introduced. Their calculations were done using 

the proximity potential, with effects of multipole deformations included upto hex- 

adecapole term, and orientation degrees of freedom integrated for both the coplanar 

and noneoplanar configurations. In an improvement of the previous work [6], Raj 

Kumar studied the fusion cross section of the above reactions using various versions 

of the proximity potential with different isospin dependence. Among all the previous 

versions of proximity potential, they found that the results of Prox 88 are closest to 

experimental data. Then they introduced another variation of the Prox 88 potential 

(mod-Prox 88), which when used within the extended Wong’s formalism could ex­

plain the fusion cross section for all the above reactions above and below the fusion 

barrier with a smooth variation of £max{Ecm)- More recently [7], Raj Kumar studied 

the fusion cross section of the above reactions using the Wong’s model where the 

barrier parameters have been calculated using the semielassical extended Thomas 

Fermi (ETF) approach within the Skyrme energy density formalism (SEDF). They 

found that the capture cross section data for Ca-induced reactions could be fitted to 

any Skyrme force, such as Sill, SV and GSkI, whereas the fusion-evaporation cross 

sections in Ni-induced reactions at sub-barrier energies required different Skyrme 

forces.
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3.3 Experimental methods of determining fusion 

cross section

The measurement of the total fusion cross section is an intricate business, and re­

quires extremely sophisticated experimental setup. As discussed earlier, fusion is 

defined as a reaction where two separate nuclei combine together to form a com­

pound nucleus. As the compound nucleus formed in heavy-ion fusion is highly 

excited, hence, it decays either by emitting neutrons, protons, a-particles, 7 and 

X-rays, or by fission. The probability for fission is high only if the charge of the 

compound nucleus is greater than 70, otherwise the compound nucleus decays by 

the former processes, i.e., evaporation. During evaporation, the decay product has 

a mass and charge close to the compound nucleus, and is called the evaporation 

residue. For a heavier compound nucleus, decay by fission competes successfully 

with evaporation. The total fusion cross section is defined by the sum of the fission 

and the evaporation residue cross section.

Detection of evaporation residues

Evaporation residue cross sections can be determined by direct detection of the 

evaporation residues or by detection of the radiation emitted in their deexcitation. 

In the direct detection methods, the evaporation residues which are forward peaked, 

must be physically separated from the direct beam and the intense flux of elastically 

scattered beam particles. One of the methods employed for separation is the compact 

velocity filter of the Canberra group [8]. Particles entering the velocity filter are 

subjected to orthogonal electric and magnetic fields. Assuming, the velocity of the 

particles to be in the z-direetion, the electric and magnetic fields are imposed in the 

x- and y- directions, respectively. The force acting on the particles is then directed
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towards the x-direction and its strength is given by,

F = q{£ — vB) (3.1)

where, q is the charge of the particle, v its velocity, and S and B are the strength 

of the electric and the magnetic fields, respectively. One can, therefore, select a 

particular ratio of the electric and the magnetic fields so that the force acting on a 

particle having a certain velocity is zero.

Detection of fission fragments

Kinematic coincidence in two detectors is a common method for identifying fission 

fragments [9]. Single detectors are also employed which uses energy-loss or time-of- 

flight information to detect these particles [10, 11]. Fission fragments are usually 

spread to all angles, giving good separation from beam particles. However, their 

angular distribution can change quite rapidly with beam energy, requiring careful 

placement of the detector or measurement of the angular distribution at many beam 

energies.

Once the number of events, Y, are determined, then the differential cross-section 

can be calculated from the following relation,

do{6,E) Y(6,E) 1
dQ ~ IN An (3.2)

where, I is the number of beam particles per unit time, N is the number of target 

nuclei per unit area, and, AO is the solid angle of the detector. The product IN 

can be determined by monitoring the the elastic scattering at a certain angle 6m- 

If we assume that the cross section of scattering is well described by Rutherford 

scattering at 6m, then

(3.3)
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where, Ym is the number of elastically scattered events, and AQm is the solid angle 

of the detector. don/dYl is the Rutherford differential cross section and is given by,

dffR(E, 6m)

dQ
/ZpZpe2\ 
V 2 E )

1.291

sin4(0M/2) 
ZpZp\^ 1 

2E ) sin4(0Af/2) mb/sr

(3.4)

(3.5)

Usually the scattering cross section is measured in the laboratory system. We 

should multiply it with the Jacobian, J, in order to obtain the scattering cross section 

in the centre of mass system.

(1 - x2m?9L)1/2 

xcosOp + (1 — x2sm29L)1/2
(3.6)

where, x=Mp/Mp, Mp is the mass of the projectile, MT is the mass of the target, 

and 9i is the angle of scattering in the laboratory frame. Combining Eqs. (3.2) and 

(3.3) we get,
da(0,E) _ Y(0, E) AQM doR(E,9M) , ,

dtt ym{om,e) ao dn { ' ’

The total fusion cross section is then obtained by integrating Eq. (3.7) over all 

angles 0.

3.4 Theory of fusion cross section and Wong’s for­

mula

Let us first work out the classical cross-section for fusion. If a projectile is approach­

ing a target nucleus with impact parameter b, then the collision cross-section is given 

by 7r62. Initially, the total energy of the system (E) is equal to the kinetic energy of 

the projectile. At the distance of closest approach (R), this energy appears partly 

as the kinetic energy (E') of the projectile, and partly as the potential energy (B)
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projectile

Figure 3.1: Diagram showing linear momentum and energy of the projectile at a 
distance far from the target (p, E) and at the distance of closest approach (p , E').

of the system of projectile and target. The potential energy is composed of the sum 

of the Coulomb potential energy and the nuclear potential energy. Hence,

E = E’ + B

Applying law of conservation of momentum, we get,

L = pb = p'R

where, p and p1, are the projectile momenta initially and at the distance of closest 

approach (Fig. 3.1). Since, E=p2/2m, hence,

v = (l)2=(i)2
B \p1 \RI

from which it follows,

a = irR2^ = nR2(l-^j for E> B (3.8)
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Fusion takes place when the projectile penetrates the fusion barrier, and enters 

the potential well or pocket. Hence, the classical cross-section for fusion is given 

by the above equation, where, B denotes the height of the fusion barrier, and R 

denotes the position of the fusion barrier. The above expression is only valid at high 

energies where the de-broglie wavelength of the projectile is small compared with 

the nuclear dimensions. At lower energies the de-broglie wavelength of the projectile 

is comparable to the nuclear dimensions and quantum effects become important. 

According to quantum mechanics, the angular momentum of the projectile can take 

integral values of h, hence,

pb = lh

b = t- = l ^- = i\ 
p 2n (3.9)

where, A=A/27t is called the reduced de-Broglie wavelength, and also, A=k~1, the 

wave-number. Hence, for particles interacting between impact parameters Ifi and 

(£ + l)h, the area of interaction must be quantized, and is given by, n[(l + 1)2A2 — 

n(£X)2} = (2£ + 1)7tA2. Hence, the total cross-section is,

<7 = ^(2£+1)ttA2 (3.10)
e=o

where, lc is the cut-off angular momentum for the event under consideration. Ac­

cording to the quantum-mechanical description, fusion takes place when the projec­

tile penetrates the fusion barrier with transmission coefficient (Tj). So, for each of 

these partial waves, the transmission coefficients must be evaluated, and the total 

fusion cross-section is given by,

OO

e=o
(3.11)

where, Ti is the transmission coefficient for the Ith partial wave, and k2= 2p,Ecm/U2.
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Using WKB approximation, the transmission co-efficients are given by [12],

Ti{E)
1

1 + exp 2 dx^$(Ei(x) - E)
(3.12)

Here, xa and Xb are the inner and outer turning points defined by Et(x)=E, 

respectively. This formula is valid both below and above the Coulomb barrier. When 

the energy is well below the barrier, the second term dominates in the denominator 

in Eq. (3.12), and the formula in the primitive WKB approximation is obtained. 

For energies above the barrier, the turning points are found in the complex x plane. 

The integral in Eq. (3.12) is then carried out between the complex turning points. 

It was noted by Hill and Wheeler [13] that the fusion barriers can be approximately 

treated as inverted parabolas. Hence, the fusion barriers can be written as,

Et(x) = Ei(x=o) - -fituix2 (3.13)

Evaluation of the integral in Eq. (3.12) leads to n(E^x=0) — E)/huii, which gives the 

following expression for the transmission coefficients [13, 14],

Te(E) =
__________ 1__________

1 + - £))
(3.14)

where, Et=E^x=o) is the fusion barrier for the tth partial wave, and Uujt is the 

curvature of the barrier. Eq. (3.14) gives the exact transmission coefficients for 

a parabolic potential because WKB approximation has the unique property that 

if the potential is quadratic, then Eq. (3.12) gives the exact solution. Replacing 

the sum by an integral, and assuming that the barrier position and curvature are 

independent of £, we arrive at Wong’s formula [15, 16] for the fusion cross-section,

+ 1) = £(2<?+!)&£=£ A* ^ / dX 
e i e J
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_ 2?r f°°_______________dx______________°F k2 J1/A 1 + exp [g- iVB - E + h2x/2pR%)]
where, X=(^+^) (3"15)

a
R2hwg 

2 E
In^l + exp 2ir(E - Eq)

hujn } (3.16)

where, hu0 is the curvature of the fusion barrier (£=0). E0 and RB are the height 

and position of the fusion barrier respectively. For E » E0, the above formula 

reduces to the classical formula (Eq. 3.8),

^ = ^(l-f) (3.17)

The primary assumption of the Wong’s formula is that the barrier parameters 

for the Ith partial wave is approximated by the barrier parameters of the s-wave 

(£=0). In this connection, Balantekin has improved Wong’s formula by taking into 

account the angular momentum dependence of the barrier parameters. They make 

the assumption that the barrier position can be written as an infinite series,

Ri = Rq + c\A + C2A2 +...... (3.18)

where, Cj are unknown constants, and h=t{t + 1). Retaining only the first order 

correction, the values of the barrier parameters are given by,

Ri = Ro~
£(£+1)%2 
p2uj2R%

E[ — Eq +
+ 1 )n2 P(£ + i )2h4

2pR* 2/r3w2i?§

(3.19)

(3.20)

Making these corrections, Balantekin obtained a new expression for the fusion cross
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section [17],

<r = nl%(l-^ --^(E-Eof (E^E0) (3.21)

The above equation suggests that Wong’s formula slightly overestimates fusion 

cross section at energies well above the Coulomb barrier.

3.5 CCFULL code

The code CCFULL [18] is a FORTRAN 77 program that calculates the fusion cross 

section and the mean angular momenta of the compound nucleus in a heavy ion 

collision under the influence of coupling between the relative motion of projectile and 

target. The program essentially solves the coupled channel equations and includes 

all order couplings. For reducing the dimensions of the coupled-channel equations, 

the no-coriolis approximation is employed in which the angular momentum of the 

relative motion in each channel is replaced by the total angular momentum, J. The 

coupled channels equations then read,

r %2 <P J(J +1) (Q) ZPZTe2
. 2/i dr2 2/zr2 N r

■E Mr) + Y,V™^r) = ° (3'22)

where, E is the c.m. energy, p is the reduced mass, and en is the excitation energy 

of the nth channel. Vnm are the matrix elements of the coupling Hamiltonian, which 

consists of the Coulomb and nuclear components in the collective model. The nuclear 

potential, vjp is assumed to have a Woods-Saxon form and is given by,

Up
1 + exp((r - Rq)/a)’

i?p = ro(4/3 + 4/3) (3.23)
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Table 3.1: Format of input file for CCFULL code

Line 1 AP, ZP, AT, ZT
Line 2 RP, IVIBROTP, RT, IVIBROTT
Line 3 OMEGAT, BETAT, LAMBDAT, NPHONONT (if IVIBROTT=0)

E2T, BETA2T, BETA4T, NROTT (if IVIBROTT=l)
Line 4 OMEGAT2, BETAT2, LAMBDAT2, NPHONONT2
Line 5 OMEGAP, BETAP, LAMBDAP, NPHONONP (if rVIBROTP=0)

E2P, BETA2P, BETA4P, NROTP (if IVIBROTP=l)
Line 6 NTRANS, QTRANS, FTR
Line 7 VO, RO, AO
Line 8 EMIN, EMAX, DE
Line 9 UMAX, DR

The program calculates the transmission coefficients, Tj(E), and the details of the 

theory can be found in Ref. [18]. The fusion cross-section is then given by,

<7/„(B) = p^(2J+l)rJ(B) (3.24)
Kq j

The program considers either rotational or vibrational coupling for the target 

and projectile excited states. The program has the option of choosing the coupling 

and setting the parameters.

The input file of CCFULL has format shown in Table 3.1. The first line con­

tains the parameters specifying the system. AP (AT) is the projectile (target) mass 

and ZP (ZT) is the projectile (target) charge. The second line is for the coupling 

Hamiltonian. RP (RT) is the radius parameter r^p of the projectile (target) used 

in the coupling Hamiltonian. IVIBROTP (IVIBROTT) is an option which speci­

fies the property of the intrinsic motion of the projectile (target). If it is set to be 

-1, the projectile (target) is assumed to be inert and the fifth (the third and the 

fourth) fine will be ignored. The fusion cross sections in the absence of channel cou­

pling can be therefore obtained by setting both the IVIBROTP and the IVIBROTT 

to -1. When IVIBROTP (IVIBROTT) is set to zero, the CCFULL assumes that 

the coupling in the projectile (target) is vibrational, while if it is set to one, the 

rotational coupling is assumed. The third line is for detailed information on the
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target excitation. If IVIBROT is zero (i.e., the vibrational coupling), the CCFULL 

reads OMEGAT, BETAT, LAMBDAT, and NPHONONT. OMEGAT is the exci­

tation energy of the single phonon state, BETAT is the deformation parameter, 

and LAMBDAT is the multipolarity of the vibrational excitation. NPHONONT is 

the maximum phonon number to be included. For example, if it is two, up to two 

phonon states are included in the calculation. If IVIBROTT is one (i.e., the rotar 

tional coupling), the CCFULL reads E2T, BETA2T, BETA4T, and NROTT. E2T 

is the excitation energy of the first 2+ state in the ground rotational band of the 

target nucleus, BETA2T and BETA4T are the quadrupole and hexadecapole defor­

mation parameters, respectively. NROTT is the number of levels in the rotational 

band to be included. For instance, if it is 3, the 2+ , 4+ and 6+ states are included 

together with the ground state. The fourth line is for the second mode of excita­

tion in the target nucleus. The meaning of OMEGAT2, BETAT2, LAMBDAT2 and 

NPHONONT2 is the same as OMEGAT, BETAT, LAMBDAT and NPHONONT, 

respectively. The second mode is not included when NPHONONT2 is set to zero. 

OMEGAT2, BETAT2, and LAMBDAT2 are then ignored. The fifth line is the same 

as the third line, but for the projectile excitations. The sixth line is for the pair 

transfer coupling. QTRANS is the Q-value for the pair transfer channel, while FTR 

is the coupling strength. NTRANS is the number of the pair transfer channel. In 

the present version of the CCFULL, NTRANS is restricted to be either one or zero. 

If it is zero, the pair transfer channel is not included and QTRANS and FTR are 

ignored. The seventh line is for the nuclear potential in the entrance channel (Eq. 

3.23). Vo is the depth parameter of the Woods-Saxon potential, RO is the radius 

parameter Rq in Eq. 3.23, and AO is the surface diffuseness parameter a. EMIN, 

EMAX, and DE in the next line are the minimum and the maximum value of the 

colliding energy in the center of mass frame and the interval in the energy scale, 

respectively. The CCFULL constructs the distribution of partial cross sections oj 

as a function of J if a single value of the energy is entered, i.e. either when EMIN
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= EM AX or DE = 0. The accuracy of the calculation is controlled by the matching 

radius RMAX and the mesh for the integration DR in the ninth line. For many 

applications, especially for asymmetric systems such as 16 0 + UiSm, RMAX = 30 

fm and DR = 0.05 fm provides sufficiently accurate results. For heavier systems, 

such as 64IVi + 92 Zr, RMAX may have to be extended to a value as large as 50 fm.

3.6 Results and Discussion

We first apply Wong’s formula to find the fusion cross-section for the reactions 

6Li+209Bi, 9Be+208Pb and 7Li+209Bi, and the results are shown in Table 3.2. We 

need the values of the barrier parameters (Vg, Rb) for use in the Wongs’ formula 

(Eq. 3.16 ), and these are taken from Tables 2.1 and 2.3 for all the potentials. The 

values of the curvature (Tioj0) are taken from Ref. [19] and are given by, 4.8 MeV, 

4.4 MeV and 4.4 MeV, respectively, for the three reactions.

The results of the single BPM are obtained by running the code CCFULL [18]. 

Line 2 of the input file (Table 3.1) is taken as 1.2,-1,1.06,-1. Lines 3, 4, and 5 

are automatically ignored as the target and projectile are assumed to be inert by 

setting the second and fourth parameter of line 2 as -1. NTRANS in fine 6 is set 

to 0, and hence pair transfer coupling is ignored. Line 7 is for the parameters of 

the Woods-Saxon potential, and these values are the same as the ones mentioned in 

section 2.7. In line 8 we specify the energy interval, and in line 9 we put the values 

0.05, 30 [18].

A graphical plot of the results are shown in Figs. 3.2 (a), 3.2(b) and 3.2(c) on 

a log scale [20], For comparison both the experimental data points and the results 

of the single barrier penetration model (SBPM) are also shown. From the results, 

we observe that the experimental fusion cross section falls short of the theoretically 

expected results of single BPM. This is because fusion suppression is dominant in 

these reactions [21]. Hence, we make a comparison of the theoretical results with
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Table 3.2: Fusion cross section for 6Li+209Bi, 9Be+208Pb and 7Li+209Bi.

Prox77 Prox88 Bass73 Bass77 Bass80 CW 76 B W91 AW 95 SBPM

Ecm a (mb) for 6Li+209Bi.
(MeV)
25.27 .029 .066 1.505 .054 .221 .151 .117 .157 .517
27.22 .347 .781 16.58 .638 2.588 1.774 1.379 1.841 2.24
29.16 4.051 8.902 114.1 7.333 27.22 19.34 15.29 20.01 29.11
31.11 39.14 72.48 312.3 62.80 152.2 124.2 106.4 126.7 156.0
33.05 172.0 238.5 514.7 221.7 354.2 320.2 294.3 323.1 352.5
35.00 348.5- 423.6 697.2 405.8 550.1 516.8 487.9 519.2 352.5
36.94 514.3 593.3 860.6 575.2 726.7 694.7 663.7 696.7 544.5
38.88 664.1 746.2 1008 728.0 885.7 855.0 822.0 856.5 715.7
40.83 799.7 884.6 1141 866.3 1030 1000 965.3 1001 868.0
42.77 923.0 1010 1262 992.0 1160 1132 1096 1133 1005
44.72 1036 1125 1372 1107 1280 1252 1215 1253 1126
46.66 1139 1231 1474 1212 1389 1363 1323 1363 1336
Ecm o- (mb) for 9Be+208Pb.

(MeV)
32.59 .001 .003 .074 .004 .014 .012 .007 .006 .089
33.55 .004 .011 .283 .014 .055 .044 .027 .024 .051
35.47 .053 .155 4.038 .209 .794 .648 .395 .346 1.22
37.38 .768 2.24 44.11 3.01 10.90 9.01 5.60 4.93 18.35
39.30 10.48 27.27 181.1 34.83 88.53 78.71 56.41 51.34 117.6
41.22 81.64 140.2 347.0 159.3 252.6 240.6 203.7 194.7 287.6
41.13 224.8 297.7 502.2 319.9 422.2 412.2 371.4 361.7 456.7
45.05 371.4 448.1 644.4 471.9 578.8 571.1 527.6 517.7 612.6
46.01 440.7 518.9 711.0 543.4 652.3 645.7 601.0 591.0 685.2
47.93 571.0 651.9 836.4 677.6 790.50 785.8 738.9 728.7 821.3
48.88 632.4 714.5 895.4 740.8 855.5 851.8 803.8 793.5 883.2
49.84 691.4 774.7 952.1 801.6 918.0 915.2 866.2 855.9 943.7
Ecm cr (mb) for 7Li+209Bi.

(MeV)
25.16 0.02 0.20 1.58 0.06 0.20 0.14 0.10 0.11 .08
28.06 1.37 10.76 64.17 3.11 10.76 7.75 5.36 6.03 9.89
31.93 125.7 299.9 471.7 186.9 299.9 270.7 235.3 246.3 287.2
34.83 401.8 609.5 761.2 479.8 609.5 581.6 540.0 553.0 588.4
36.77 571.9 790.5 929.0 654.6 790.5 764.1 719.8 733.6 763.7
38.70 725.2 953.4 1080 812.0 953.4 928.3 881.6 896.1 918.6
40.64 864.0 1101 1217 954.4 1101 1077 1028 1043 1058
42.57 990.1 1235 1341 1084 1235 1212 1161 1177 1182
44.51 1105 1357 1454 1202 1357 1335 1283 1299 1294
46.44 1211 1469 1558 1311 1469 1448 1394 1411 1395
48.38 1308 1572 1654 1410 1573 1552 1497 1514 1532
50.31 1398 1668 1742 1502 1668 1648 1591 1609 1571
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Table 3.3: Fusion cross section for 6Li+152Sm considering both spherical 
(#2=0) and deformed (#2=0.26) target.

Prox77 Prox88 Bass73 Bass77 Bass80 CW 76 BW 91 AW 95 SBPM

Ecm a (mb) for 6Li+152Sm (#2 =0)

(MeV)
20.20 0.14 0.30 9.96 0.28 0.84 0.59 0.48 0.69 .052
21.16 0.52 1.09 32.96 1.02 3.04 2.14 1.73 2.51 .299
22.13 1.89 3.94 91.13 3.69 10.76 7.66 6.22 8.94 1.49
23.09 6.78 13.76 190.5 12.92 35.07 25.77 21.21 29.68 6.33
24.05 22.78 43.05 310.1 40.76 93.68 73.44 62.46 82.28 22.48
25.01 64.67 106.5 430.7 102.4 188.2 159.0 141.2 172.3 62.94
25.97 139.3 198.6 545.2 193.4 298.4 265.8 243.7 281.2 132.7
26.94 232.0 299.8 652.2 294.6 408.5 375.3 350.9 391.4 220.9
27.90 327.1 399.0 752.2 394.0 513.1 480.3 454.3 496.7 311.9
28.86 418.4 492.9 845.5 488.3 611.3 579.1 551.7 595.6 399.9
29.82 504.4 581.2 932.8 576.9 703.3 671.7 643.1 688.4 482.8
30.78 585.2 663.9 1014 660.0 789.6 758.6 728.75 775.3 560.3
31.75 661.2 741.8 1091 738.1 870.7 840.2 809.3 857.0 633.4
32.71 732.7 815.0 1163 811.6 947.0 917.0 885.1 933.9 700.8
33.67 800.2 884.0 1232 881.0 1019 989.4 956.6 1006.4 763.8
34.63 863.8 949.2 1296 946.4 1087 1058 1024 1075 822.8
35.59 924.1 1010 1357 1008 1151 1122 1088 1140 878.1
36.56 981.2 1069 1416 1067 1212 1184 1148 1201 930.5
37.52 1035 1125 1470 1123 1270 1242 1206 1259 979.3
Fem a (mb) for 6Li+152Sm (/?2=0.26)

(MeV)
20.20 0.08 0.18 6.31 0.17 0.52 0.37 0.29 0.43
21.16 0.30 0.66 21.61 0.61 1.89 1.33 1.06 1.56
22.13 1.08 2.39 64.56 2.23 6.77 4.80 3.84 5.61
23.09 3.90 8.50 149.19 7.96 22.99 16.65 13.46 19.28
24.05 13.60 28.08 262.1 26.48 66.92 55.10 42.46 57.91
25.01 42.12 76.93 381.0 73.49 148.9 122.7 106.6 134.5
25.97 102.5 158.9 495.6 154.1 254.1 222.8 201.5 237.4
26.94 188.1 256.8 603.1 251.6 363.3 330.8 306.9 346.4
27.90 281.4 355.6 703.5 350.6 468.3 436.0 410.5 452.0
28.86 372.7 450.1 797.3 445.4 567.3 535.41 508.7 551.6
29.82 459.2 539.0 885.1 534.6 660.0 628.7 601.0 645.1
30.76 540.7 622.5 967.4 618.5 747.0 716.3 687.6 732.8
31.75 617.2 701.0 1045 697.3 828.8 798.6 769.0 815.2
32.71 689.3 774.8 1117 771.4 905.8 876.1 845.6 892.7
33.67 757.3 844.5 1186 841.4 978.3 949.1 917.8 965.8
34.63 821.5 910.2 1251 907.4 1047 1018 986.0 1035
35.59 882.2 972.5 1312 969.9 1112 1083 1051 1100
36.56 939.7 1031 1370 1029 1173 1145 1112 1162
37.52 994.3 1087 1425 1085 1231 1204 1170 1221
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respect to the results of single BPM. We find that the potentials Bass 80 and 

BW 91 have an edge over the other potentials for the reaction 6Li+209Bi. For the 

reactions 9Be+2mPb and 7Li+209Pb the potentials Bass 80 and CW 76 turn out to 

be better.

Similarly we calculate the fusion cross-section for the reaction 6Li+152Sm con­

sidering both spherical as well the deformed case [20] of the target nucleus. The 

results are shown in Table 3.3. The barrier parameters are taken from Tables 2.1 

and 2.3 for the spherical target case, and from Table 2.6 for the deformed target 

case. The curvature of the barrier is taken to be 4.5 MeV [19]. Same as above, 

we make the comparison with respect to results of single BPM as there is a very 

high fusion suppression of 0.28 for this reaction [22]. The single BPM cross section 

is determined from CCFULL in exactly similar way as that mentioned above. The 

graphical plot of the results is shown in Figs. 3.3 (a), (b), (c) and (d). We see that 

for all the potentials the fusion cross-section for the deformed case (/32=0.26) comes 

out closer to the results of single BPM than the spherical case (/32=0). As such, the 

role of deformation of the target nuclei 152Srn is clearly seen. Overall we see that 

the fusion cross-section for the potentials of CW 76 and BW 91 are better than the 

rest.
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(a) eId+209Bi (b) 9Be+208Pb

(c) 7Li+209Bi

Figure 3.2: Fusion cross-section vs energy calculated from Wong’s formula for eight 
versions of the nuclear Potential for the reactions (a) 6Li+209Bi, (b) 9Be+208Pb, 
and (c) 7Lt+209Bi. Expt. data are taken from Ref. [21].
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(a) Prox 77 and Prox 88 (b) Bass 73 and Bass 77

Ecm(MeV) EcraCMeV)

(c) Bass 80 and CW 76 (d) BW 91 and AW 95

Figure 3.3: Fusion cross-section from Wong’s formula for 6Li+152Sm assuming 
spherical (P2—O) and deformed (/?2=0.26) target. Expt. data is taken from Ref. 
[22].
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3.7 Summary and Outlook

Using Wong’s formula, we find the fusion cross section for the reactions 6Li+209Bi, 

9Be+208Pb and 7Li+209Bi. Values of the barrier parameters are taken from chapter 

2. The fusion cross section is greater than the experimental fusion cross section, 

which is because of the fact that fusion suppression is dominant in these reactions. 

If comparison is made with respect to the results of single BPM (calculated from 

CCFULL), then we see that the prediction of the potential Bass 80 is better than 

the other potentials. For the reaction 6Li+152Sm, fusion cross section is determined 

on the assumption of spherical as well as deformed target. The results of fusion cross 

section for deformed target are closer to the results of single BPM. Hence, effects of 

deformation of the target nucleus 152Sm is clearly seen.

The Wong’s formalism gives accurate results for energies greater than about 1.2 

times the barrier energy. For energies near or below the barrier one must resort to the 

exact coupled channels calculations which can be done with the code CCFULL with 

proper consideration of target (and projectile) excited (rotational or vibrational) 

states. For the reactions considered here the fusion cross section can also be studied 

through the Wong’s formalism using the barrier parameters deduced from other 

nuclear potentials like the the Denisov potential, double-folding potential or the 

Skyrme nuclear interaction. Further improvement of fusion cross section can be 

done through the extended Wong’s formalism in which the ^-dependent barriers are 

introduced via the ^-summation, or through Balantekin’s improvement of Wong’s 

formula (Eq. 3.21).
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Chapter 4

Semi-classical model of fusion 

suppression for reactions induced 

by 6Li

4.1 Introduction

During the last decade and a half there has been marked improvement in exper­

imental facilities, and also intense beams of loosely bound nuclei as well as the 

radioactive-ion beam have become available [1, 2, 3]. Hence, heavy ion collisions 

with loosely bound nuclei has become an active and exciting field of research [4, 5]. 

A huge amount of fusion cross-section data has been collected over the years. One 

common feature is that the experimentally measured fusion cross-section is frac­

tionally less than the theoretically expected fusion cross-section. This fact has been 

noted in the previous chapter, where the theoretically calculated fusion cross-section 

from Wong’s formula and the SBPM model is found to be somewhat greater than the 

experimentally measured fusion cross section. The theoretical fusion cross-section 

can be obtained from the one-dimensional barrier penetration model (for energies 

above the barrier), or from the code CCFULL (for low energies). The ratio between
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the experimental (<7^) and theoretical fusion cross section (atheo) is called fusion 

suppression [6],

„ _ . experimental fusion cross section crexD ., .
Fusion Suppression = ........ ....— ;-------------------- = (4-1)

theoretical fusion cross section crtheo

The reason for the decrease in the experimental fusion cross-section is attributed to 

the breakup of the loosely bound projectile. Because of the strong interaction with 

a heavy target nuclei (eg. 144 Sm, 209Bi), the loosely bound projectile breaks up 

which results in a decrease of the fusion cross section. Here, at least four different 

types of events have been identified [6]. When the whole of the projectile fuses 

with the target without breakup, then it is called direct complete fusion (DCF). 

After breakup, if both the fragments fuse with the target, then it is called sequential 

complete fusion (SCF). If one of the breakup fragments fuse with the target, then 

it is called incomplete fusion (ICF). If none of the breakup fragments fuse with the 

target, then it is called no-capture breakup (NCBU). The four type of events are 

shown schematically in Fig 4.1.

In this chapter, we present a semiclassical model for the explanation of fusion 

suppression. In the next section (section 4.2), we provide the review work for fusion 

suppression, and also discuss the the theoretical work that has been done by various 

authors for explanation of projectile breakup and fusion suppression. This would 

be followed by a brief outline (section 4.3) of our approach in tackling the problem. 

Sections 4.4, 4.5 and 4.6 discuss the theory for obtaining the classical equations of 

motion. In the next section, we discuss the model of 6Li that we have introduced 

for obtaining solutions. In sections 4.8 and 4.9 we discuss the method for obtaining 

numerical solutions and the nature of the solutions respectively. Section 4.10, 4.11 

and 4.12 discusses the complete methodology for the explanation of fusion suppres­

sion including evaluation of cutoff impact parameter. In the next section, results 

and discussion are presented. Finally in section 4.15, we provide the summary and
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also discuss possible future outlook.

4.2 Review work on projectile breakup and fusion 

suppression

As noted in section 4.1, reactions initiated by loosely bound projectiles (6Li ,7Li, 

9Be) have led to four distinct types of events. These are direct complete fusion 

(DCF), sequential complete fusion (SCF), incomplete fusion (ICF) and no-capture 

breakup (NCBU). These events are a direct consequence of the breakup of the 

projectile before they reach the target. As a result, the experimental cross section 

falls below the theoretically expected value, and the ratio between the two is often 

called fusion suppression. Fusion reactions induced by loosely bound projectiles have 

been studied on a wide range of medium and heavy targets like 209Bi, 208Pb, 159Tb, 

152Sm, 144Sm, 124Sn, 89Y, etc [7, 8, 9,10,11,12,13]. M. Dasgupta et. al. [7], studied 

the fusion cross section for the reactions 6Li+209Bi, 7Li+209Bi, and 9Be+208Pb at 

energies near and above the Coulomb barrier using the 14UD tandem accelerator at 

the Australian National University. By using three different and conclusive methods 

it was shown that fusion cross-section is suppressed by « 30 % for the three reactions. 

Using the 14UD BARC-TIFR pelletron accelerator facility at Mumbai, P. K. Rath 

et al. performed fusion cross-section measurements of 6Li on Samarium isotopes 

(144Sm and 152Sm) [8, 9]. For both the reactions evaporation of neutrons (In, 2n, 

3n, 4n and 5n) are the primary decay modes, and these were measured using the 

recoil catcher technique followed by off-line 7-ray spectrometry. Statistical model 

calculations using PACE code were done for estimating the contribution from the 

missing channels. After comparison with theoretical expectations, it was found that 

fusion cross section is suppressed by « 32 % and 28 % for the reactions 6Li+144Sm 

and 6Li+152Sm, respectively. M. K. Pradhan found that the fusion suppression 

for the reaction 6Li+159Tb is as 34 % [12]. Through a comparison of the fusion
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suppression factors for the reactions 7Li+159T6 and 10B+159Tb, he could show that 

the suppression factor is inversely related with the a breakup threshold energy of 

the projectile. C. S. Palshetkar [14] found that the fusion excitation functions for 

9Be+89Y is suppressed by (20±5)% as compared to the ones predicted by coupled- 

channels calculations that do not include couplings to the projectile continuum. 

Further confirmation of fusion suppression was obtained by comparison of fusion 

data for two more systems, namely, for 4He+93Nb and 12C+89Y, which involve 

tightly bound projectiles and form compound nuclei nearby to that formed in the 

reaction 9Be+89Y. Similar work involving 9Be projectile has been done by other 

authors, namely, V. V. Parker on 124Sn target [15], P. R. S Gomes on luSm target 

[10], and Z. H. Liu on 209Bi target [16]. The theoretically expected value of the 

fusion cross section in the absence of breakup can be calculated from the computer 

code CCFULL [17]. This code is remarkably successful in explaining the fusion cross 

section of tightly bound projectiles.

The calculation of breakup yields for reactions induced by loosely bound pro­

jectiles has been done by quantum as well as classical methods. The continuum- 

discretized coupled channels method (CDCC) [18] is the most widely applied quan­

tum method for treating the breakup of a projectile. In the early seventies it became 

clear that the breakup of deuteron beams couldn’t be well described by Born ap­

proximation, and required a careful treatment of the continuum. Since those early 

days, CDCC methods have evolved for the description of three-body as well as four- 

body breakup. A brief description of the three-body CDCC method is as follows. 

Here, the total wave function of the 3-body system (projectile + target) is expanded 

in terms of the complete eigen functions of the 2-body projectile. The eigen func­

tions are composed of bound and continuum states and breakup of the projectile 

takes place when it reaches the continuum states. For practical applications, the 

continuum states are truncated at some maximum values of the angular momentum 

(4ai) and the linear momentum (kmax). Accurate results may not always be pos-
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sible [19, 20] with the CDCC method because of the above approximation and also 

due to discretization of the continuum. Also, CDCC methods cannot distinguish 

between complete fusion and incomplete fusion events because it requires a time 

dependent description of the process. These difficulties are overcome by the clas­

sical trajectory model in which the time evolution of the breakup fragments of the 

projectile can be studied through solutions of the Newtonian equations of motion.

The chief contributors towards the development of the classical model are K. 

Hagino, M. Dasgupta, Alexis Diaz-Torres, and others. Hagino’s two-dimensional 

classical trajectory model [21] is developed by constructing the classical equations 

of motion of the three body (target+projectile) system. Events like scattering, 

incomplete fusion and no-capture breakup could be obtained from numerical so­

lutions of the equations of motion. The loosely bound projectile is considered to 

be a two-body system held under the combined influence of Coulomb and nuclear 

potentials. However, the initial conditions for the equations of motion were ob­

tained arbitrarily, without reference to any physical principles. He concluded by 

remarking that his work could be incorporated into the CDCC formalism. In Alexis 

Diaz-Torres’s classical dynamical model [22, 23, 24], breakup of the projectile is de­

termined through an empirically obtained breakup probability function. Sub-barrier 

no-capture breakup measurements are used for determining the parameters of this 

function. The method has been successfully used to determine the breakup yields 

of reactions induced by 9Be on a number of targets, and also to predict the fusion 

suppression factors [24]. However, the method has a disadvantage as it can only 

work with inputs from precise experimental data in order to determine the breakup 

probability function. Classical trajectory method has been applied to study other 

problems like ionization of an atom. Ionization is in some respects similar to the 

breakup of a projectile as it involves the removal of an electron from an atom. In 

Ref. [25], ionization of the hydrogen atom in an intense laser field has been studied 

by classical trajectory method. It was found that the classical results match the
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exact quantum mechanical results only if tunnelling is taken into account at the 

classical turning points.

4.3 Brief outline of our approach

In this work, we present a semi-classical model for determining the fusion suppres­

sion factor, and shall be applying it to the reactions 6Li+209Bi, 6Li+152Sm and 

6Li+144Sm. The problem is separated into two parts. In the first part, the cutoff 

impact parameter (bc) for fusion is determined, and in the second part we find out 

the fraction of projectiles undergoing breakup within this cutoff impact parameter. 

As fusion is a quantum mechanical barrier transmission problem, hence the cutoff 

impact parameter is evaluated by applying quantum mechanical methods. For deter­

mining the relative number of projectile breakup, we use Hagino’s two-dimensional 

classical trajectory method [21]. Then the breakup fraction of the projectile is de­

termined as a function of the impact parameter. A simple formula for explanation of 

fusion suppression is introduced, according to which fusion suppression is given by 

the average of the breakup fractions evaluated at impact parameters ranging from 

head-on collision up to the cutoff impact parameter.

The choice of the targets (209Bi, 144Sm and 152Sm) have been motivated due to 

the availability of precise fusion excitation data for these reactions, and also due 

to the fact that very high fusion suppression is observed for these reactions. We 

have limited our work to 6Li projectile because breakup of 7Li and 9Be involves 

complicated process. The dominant channel for breakup of 7Li involves a proton 

pickup from the target to form 8Be, which then breaks up into two a-particles [26], 

For 9Be, ,the breakup process involves a neutron transfer to the target to form 8Be, 

which finally breaks up into two a-particles [24].
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4.4 Lagrangian for the system

We first construct the Lagrangian in two dimensions for the system of projectile and 

target [21]. We consider the projectile to be composed of two point particles, and 

the target is assumed to be a sphere of radius rc. The nuclear potential energy is 

assumed to have a Woods-Saxon form, whose parameters are obtained from optical 

model analysis of elastic scattering data. The Lagrangian assumes the form,

£ = + y\) + ^m2(x \ + y\) + + y\) V12 - Vi., - V,13 '23 (4.2)

where, subscripts 1 and 2 denote the two projectile fragments, and subscript 3 denote 

the target. V12 is the potential energy between the two components of the projectile, 

and is given by,

Vi2 =
Vl

1 + exp(r~nWai + e2Z1Z2 r = y (a?i - x2f + (yi - y2f (4.3)

Vi3 is the potential energy between one component of the projectile and the target 

and is given by,

V^ = ~l + J^r-r2)/a2+^ , T = \j{xX ~ XZf + (j/i ~ Vzf (4.4)

V23 is the potential energy between the remaining component of the projectile 

and the target and is given by,

Fs3~_i + ^l-rsj/as +U23 ! r-y^-^f + im-ysf (4.5)

here, (vu rt, at) (i=l,2,3) are the parameters of the respective Woods-Saxon 

potential, and Uv is the Coulomb potential energy between the projectile fragment 

and the target. As we had assumed the charge of the target nucleus to be uniformly
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distributed over a sphere of radius rc, hence,

ZiZ3e2 /,} _ r2 \ 
2rc ^ r2 ) if r<rc,

Uij <

ZtZ,e2 if r > rc,

(4.6)

where, rc is the radius of the target nucleus and is given by, Tj=l .28 J4 V3+0.8J4~1,/3- 

0.76 fin [4, 5]. The boundary conditions of the problem are well defined in Cartesian 

coordinates. Hence, we rewrite the Lagrangian in Cartesian coordinates,

C = + y\) + \m2{xl + yl) + \mZ{x\ + yl)----- -
V (xi - + (Vl - V2 f

Vl U\3 + V2
l _|_ e\/(xi-i2)2+(yi-3/2)2-r1)/a1 j _j_ e\J(xi-xs^+lyi-y-if-r^j/a-z

V3
U2z +

J _|_ g\/(2:2—S3)2+(l/2— jo)2— rz)/a&
(4.7)

The Coulomb potential energy between a component of the projectile and the target 

is given by,

U,
ZlZ3e2

2Tc
3 — ~ * X})2$y‘..if ^{xi~xJf + {yi-y3f<rc

if ^ (Xi - x3f + {y% - y3f > rcZlZ,e2
(4.8)

\/\xi xj) ^ (Vi Vi)

4.5 Equations of motion for the system

Prom the Lagrangian given by Eqs. 4.7 and 4.8, we construct the equations of 

motion from Lagrange’s equation,

±d£_dC
dt dqj dq3 (4.9)

85



where, the generalized coordinate (qj) stands for the the x and y coordinates of 

the three particles, i.e., xi, x2, x3, yi, y2 and y3. The equations of motion are given 

by,

dC
m\X\ = (4.10)

..

mi?/1 = % (4.11)

dC
,m2x2 =

ox2
(4.12)

.. dC m2y2 = — oy2 (4.13)

dC
m3x 3 =

OX 3
(4.14)

..

m3!ft = * (4.15)

The derivative of the Lagrangian with respect to the independent variables (xi, 

Vi, x2, y2, x3, yz) are given below,

dC _ dUi3 _ dU23_____e2ZiZ2(xi - x2)
[(xj_x.2f+(!/1 _V2ff2

wf ri)/oi — X^)

1 -|- eV(si-E2)2+(vi-S2)2-ri)/ai 2 \/(xi — X2)2 + (1/1 — y2)

(u2/a2)eV/(a;i-a:3)2+(yi-i«)2-’-2)/a2

l 4. eV(xi-®3)2+(yi~i/3)2-r2)/o2 \/(ri — a^)2 + (2/1 — j/3)2
(4.16)

where,
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dUi3 
xx

^-(xx - x3)

___ZiZae2(xi—13)
[(zi -®3)2+(2/l-y3')2]

if (^1 - Z3)2 + (yx - y3f < rc, 

if }/(®i ~ X3)2 + (yx ~ Jfe)2 > rc.
(4.17)

dU23
dxx

= 0 (4.18)

dC _ dUx3 _ dU23 _____ e2ZxZ2(yx — V2)
9VI~ Vl Vl [(*, - X2)2 + (yi - yrff1

(ui/ai)e'/(n“»)2+(wi)/« [Vl _ V2)

|l _j_ eV(xi-x2)2+(yi-3/2)2-n)/aij 2 \/(&1 — a^2)2 + (t/i — gfe)2

(yi _ te)
1 + eV(xi-x3)2+(m-y3)2-r2)/a2l 2 V'^l - X3)2 + (yx ~ Vif

(4.19)

where,

dUy*
Vi

-gl$^{yi - ife)
' c

____ ZiZze2(yi-y3)r -i 3/2[(xi-®3)2+(yi-j/3)2J

if yj(xx - xzf + (yx - y3f < rc, 

if yj(xx - X3)2 + (yi - y3f > rc.
(4.20)

dU2 3 

dyx
= 0 (4.21)
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dC_ = _dUu, _m3 + e2Z1Z2(x1-x2)
dx2 dx2 dx2 [(Xl - X2f + (yx - y2ff2

(i;i/ai)e^(ll-S2)2+(ai-^)2~ri)/ai (xt - x2)

l _)_ eV{xi-X2)2+{yi-y2)2-ri)/ai yj(X\ ~ X2)2 + (?/i — y2)2

iv3/a3)e^^X2 X3^2+^2 y3^2 r3^°3 (x2 — X3)

X -f g\/(X2~x3)2+(y2~ys)2-r2)/a2 y/(x2 — X3)2 + (1/2 — 2/3)2
(4.22)

where,

<9f/23
<9s2

^pF~(x2 ~ S3)' c
Z^Zitp-jy^-ys)_ - ' t 3/2

[(®2-X3)Z+(j/2-J/3)2J

if ^{x2-xs)2 + (y2 ~y3f < rc, 

if a/(s2 ~ a?3)2 + (ife ~ Z/s)2 > rc.
(4.23)

^13
9^2

= 0 (4.24)

_ dUis _ dU23______ Z\Z2e2{yi — y2)
dy2~ dy2 dy2 [(x, - x2f + (y, - ytff2

(vi/aiJeVfo-^+lm-w)1 -n)/ai (»1 - S2)
1 -j- e\/(xi-x2f->r{vi-!nf~ri)/ax 2 %/(t/l ~ J/2)2 + (?/l “ ?/2)

(i;3/a3)eV'(:r2-^)2+(y2-j/3)^r3)/a3

1 I)- g\/(x2—I3)2+fe2.?/3)2—r3)/a3 2 \/(x2 — X3)2 + (y2 — 7/3)2
(4.25)
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where,

dlh3 
%2

^^(y2~y3)

ZiZ3f?(,y2-ya)
"jr *j 3/2
[(X2— 2J3)2+(j/2— J/3)2J

if yj(®2 - a*)2 + (2/2 - Vsf < rc, 

if yj(X2 - x3f + (t/2 - Vsf > rc.
(4.26)

dU13

dy2
= 0 (4.27)

dC
dx'i

dU13 [V2/a2)e^f(-xl~X3)2+(‘vl~y^2~T2^a2 (*1 - *3)
dx3 l _|_ eV{xi-x3)2+(yi-y3)2-r2)/a2 yj(^l — £3) 2 + (?/i — y3)2

5C/23^
dx3

(^3/a3)e^(x2_a:3)2+(y2_J,3)2“r3)/o3 (ar2 - ®s)

1 + ev'(*2-*s)a+(iB-w)a-r8)A«8l V(®2-®3)2 + (lfc -2/3)2
(4.28)

where,

^13
0®s

a^23
dz3

^“^(ah - *3)
' c

___^iZ3e2(zi—J3)___
^ [(*l-X3)2+(j/l-l«)2]

'

Zf£(X2-X3)
' c

___Z2Z3e2(x2—x3)
k [(X2 —3:3 )2+{V2 —2/3 )2]

if yj(xi - xsf + (yi - y3f < rc,

if yj(®i - xzf + (yi - y3f > re.

if y/(»2 - x3f + (ife - yzf < re,

if yj(®2 - ®3)2 + (2/2 - 2/s)2 > rc.

(4.29)

(4.30)
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d£
dy3

dUi3 {v2/o2)e^{x i-^)2+(3/i-y3)2-r2)/a2 (yi ~ 2/3)
fl _|_ eV(*i-*»)a+(w-»)a-ra)/«a]2 V(®i - x3)2 + (yi - y3)2

dU23
dyz

+
(vz/a3)e^^X2 x^2+(y2 y^2 r3)/as (222 — 2/3)

1 -|_ g\/(x2-i3)2+(i/2 -y3)2-n)/a3 2 \/(^2 —.Z3)2 + (2/2 — 2/3)!
(4.31)

where,

<92713
dy3

^(yi-ys)
< c

ZiZ3e2(yl-yj)

k [(ai-a:3)2+(j/i-?fl)2]

5^3
^2/3

/
- 2/3)

' c

Z2Z3e2(y2—ys)
[(X2~a:3)2+(y2-y3)2]

if \j(xi - xzf + (2/1 - y3f < rc,

if yj(®i - Z3)2 + (2/1 - 2/s)2 > rc.

if )/(®2 - z3)2 + (2/2 - 2/3f < rc,

if (*2 - ^s)2 + {y2 ~ yzf > rc.

4.6 Initial conditions of the system

(4.32)

(4.33)

The system under consideration basically consists of three particles in two dimen­

sions (x and y coordinates). Hence, from the Lagrange’s equations of motion, six 

second order differential equations are obtained. By a change of variable twelve first 

order differential equations are constructed. These twelve first order differential 

equations can be solved only if twelve initial conditions are known. These twelve 

initial conditions are the positions and velocities of the x and y components of the 

deuteron, a-partiele and the target. The position of the target is conveniently cho­

sen to be at the origin, and is initially at rest. The deuteron and the a-particle 

constituting the 6Li nucleus, is arbitrarily oriented at an angle 9 which is measured 

from their centre of mass to the direction of the y-axis. Therefore, the 12 initial
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conditions are,

:ri(0) = R — risin(6)

£i(0) = V + Vi cos (6)

2/i(0) = b + ricos(6)

2/i(0) = vi sin{6) 

x2(0) = R + r2sin{0)

£2(0) = V — v2cos(0)

2/2(0) = b- r2cos(0)

2/2(0) = -v2sin(0) 

x3(0) = 0 

2:3(0) = 0 

2/3(0) = 0

2/3(0) = 0 (4.34)

here, subscripts 1, 2 and 3 denote the deuteron, a-particle and the target, respec­

tively, and, V=^/(‘2Eiab)/m is the velocity of the projectile. R is the initial distance 

of the centre of mass of the projectile from the target and b is the impact parameter. 

vi, v2 and n, r2 are the velocities and distances of the deuteron and the a-particle 

with respect to their centre of mass.

4.7 Model of 6Li

Initially, for obtaining numerical solutions arbitrary values of vi, v2 and ri, r2 were 

used. In general, chaotic solutions are obtained from arbitrary values of V\, v2 and 

ri, r2. Afterwards the values of v\, v2 and n, r2 are changed and we observed the
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nature of the solutions. The process was continued until stable solutions (free from 

chaos) were obtained. After repeated trial and error, we choose the values, r%= 2r2 

= 1.513 fm , vi= 2v2— 0.645xlO7 m.s-1 because we could consistently obtain three 

distinct types of trajectories. These three types of trajectories are : scattering-like, 

incomplete fusion and no-capture breakup, and these are discussed in section 4.9. 

Next an attempt was made to derive the values of v\, v2 and rq, r2 from some 

fundamental properties of the 6Li nucleus like spin and breakup threshold energy 

(binding energy).

It was found that these values can be derived by considering a cluster model 

of the 6Li nucleus which is based upon semiclassic-al ideas. The motivation for the 

model is Bohr’s model of the hydrogen atom in which the electron revolves around 

the proton in classical orbits. It has been known for quite some time that 6Li exists 

as a cluster of a deuteron and an a-particle, and fully quantum mechanical treatment 

is available in the literature [27], However, we need a model which is consistent with 

the idea of classical trajectories. The nucleus 6Li is considered to be composed of a 

deuteron and an alpha-particle, rotating in circular orbits about their centre of mass 

with a fixed distance of separation (see fig. 4.2). The positions and velocities of the 

deuteron and the o-particle are determined from consideration of the total energy 

and the angular momentum of the system. Hence, two postulates are proposed for 

the 6Li cluster model : (a) The total energy of the deuteron and the o-particle 

system is equal to the breakup threshold energy (binding energy) of the 6Li nucleus, 

and (b) The total angular momentum of rotation of the deuteron and the a-particle 

about an axis through its centre of mass is equal to \/l(I + 1)A, where I is the spin 

quantum number of the 6Li nucleus. The calculations are as follows : The deuteron 

and the o-partiele cluster (6Li projectile) are rotating with angular velocity uj about 

their common centre of mass. Since, the mass of the o-particle is twice the mass of 

the deuteron, hence, 7q= 2r2, and vi= 2v2- Here, vi, v2 and rq, r2 are the velocities 

and distances of the deuteron and the a-particle with respect to their centre of mass.
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y-axis deuteron

x-axis

a-particle

Figure 4.2: Model of 6Li proposed for obtaining boundary conditions
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The total energy is given by the sum of the kinetic and potential energies of the two

- particles,
E = ^mxvf + im2v\ + ZxZ2e2

r
Vo

1 4. g(r-r0)/a (4.35)

The centrifugal force needed for rotation is provided by the resultant of the Coulomb

and nuclear forces,
mxvj _ y-ro>/a 

rx ~ [1 + e(r-r°)/“]2
ZxZ2e2

1 2 ZxZ2e2rx
2mlVl = [1 + e(-o)/a]2 -

Similarly, for the other particle,

(4.36)

1 2 far2e^/a ZxZ2e2r2
2m2V2 ^ + e(r_ro)/aj2 2r2 (4.37)

After substituting (4.36) and (4.37) in (4.35), we obtain an expression for the total 

energy. Here, i=rx+r2 is the total distance between the deuteron and the o-particle.

VQ.rf,(T—r0)/a
P _ 2a' c_______

[1 4- g(r-ro)/aJ2
Vo ZxZ2e2

1 + e(r~r°Wa 2 r
(4.38)

Taking, E = 1.48 MeV, the breakup threshold energy of 6Li (-» 2H+4He), and 

numerically solving the above equation for the Woods-Saxon parameters (V0, r0, a)= 

( 75.5 MeV, 1.85 fm, 0.71 fm) ([28]), we obtain r= 2.27 fm. Using the conditions, 

r*i= 2r2 and r=rrfr2, we obtain, rx= 2r2 = 1.513 fm.

To determine the angular velocity of rotation, we use the second postulate which 

states that the total angular momentum of rotation of the two body system is equal 

to y/2%, which is the spin of the 6Li nucleus. Hence,

Ixuj + I2oj — y/2% (4.39)

here, ui is the angular velocity of rotation. Ix and I2 are the moments of inertia of
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the deuteron and the a-particle, respectively, and are given by,

Ii = fmiRl + m\r\ (4.40)
5

h = ^rn2R% + m2r% (4.41)

In the above expression we have assumed the deuteron and the a-particle to 

be spheres of radii R\ and R2, respectively. Determining radius from the approx­

imate relation, R =1.33J41/3 fm, we get u= 0.427xl022 rad.s-1, and hence, v\= 

riu;=0.645xl07 m.s-1, and v2 = r2u)= 0.323xl07 m.s-1.

4.8 Numerical solutions

For obtaining numerical solutions, we convert the six second order differential equa­

tions (Eqs. 4.10, 4.11, 4.12, 4.13, 4.14, 4.15) into twelve first order differential 

equations through a change of variable. The twelve first order differential equa­

tions are easily solved by applying Euler’s method. The actual solution is obtained 

through the FORTRAN programming language. The twelve first order differential 

equations are,

Xi = Wi ; m 1W1 = dC
dx\ (4.42)

Vi = zi ! mizi =
dC
dyi (4.43)

x2 = w2 ; m2W2 =
dC
dx2

(4.44)

m = Z2 ; m2z2 =
dC
dy2

(4.45)

x3 =■w3 ; m3w3 = dC
dx3 (4.46)

Vs = Z3 ; m3z3 = d£
dy3

(4.47)

The Euler’s method is used to solve each of the above first order differential
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equations. For a first order differential equation of the form,

V = fit) (4.48)

Euler’s solution is given as,

Vn+i = yn + h* f(t) (4.49)

where, ’n’ is the iteration step and ’h1 is an infinitesimal increment of the variable ’t\ 

In our problem, the variable’t’ can be identified with the time variable. Applying, 

Euler’s solution to each of the above differential equations,

•E\(n+1) — ®l(n) 4~ h* Wi , i£i(n+i) ■
h dc

- l£l (n) 4- -m\ ox 1
(4.50)

2/1(ti+1) = 2/l(n) 4" h * Z\ ! ^(ti+I)
h dC

— 4“ «mi oyi
(4.51)

^2(n+l) = #2(n) 4~ h * W2 w2{n+\) ~
h ac

- ££2(71) 4- „m2 ox2
(4.52)

2/2(«+l) = 2/2(n) + h* Z2 ; ^(n+i)
h dC

— 22in) 4" Qm2 oy2
(4.53)

■£3(71+1) = £3(71) + h* W3 ; ££3(71+1) -
h dC

- ££3(71) 4- am3 OX 3
(4.54)

2/3(71+1) = 2/3(n) + h* z% ; 23(71+1)
h dC

— 23fn) 4- Q
d]j3

(4.55)

For obtaining the solutions, the values of the variables (initial conditions) have to 

be provided at the first step. The above numerical recipe automatically calculates 

the values of the variables in the second step. Taking these values as input, the 

new values of the variables are obtained in the third step. The process is continued 

and ideally we could obtain solutions for any desired number of steps. However, in 

reality the number of steps that can be carried out is limited by the memory and 

the processing speed of the computer. Hence, the initial distance between target 

and projectile is chosen in such a way that the projectile travels a sufficient distance
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after interaction with the target so that the nature of the trajectory (scattering-like, 

incomplete fusion and no capture breakup) can be determined. The calculations 

are done through the FORTRAN programming language which can easily handle 

iterative calculations under a DO loop [Ref. Appendix A].

4.9 Nature of solutions and trajectories

Some of the typical trajectories obtained from the numerical solutions are shown in 

Fig. 4.3. Fig. 4.3(a) shows a scattering-like event, Fig. 4.3(b) shows incomplete 

fusion in which the deuteron is captured by the target, whereas Fig. 4.3(c) shows 

no-capture breakup in which none of the breakup fragments are captured by the 

target. All these trajectories have one feature in common and that is the projectile 

(or its fragments) are carrying away the angular momentum. In complete fusion 

event the projectile fuses with the target to form the compound nucleus, and the 

total angular momentum is manifested as the spin of the compound nucleus. Our 

model is incapable of handling complete fusion events. This is because the target 

is considered to be a point particle, and hence it cannot possess internal excitation 

energy and angular momentum. However, we can argue that every no-breakup 

event (including scattering-like events) below the cutoff impact parameter (to be 

discusssed in the section 4.11) has to be interpreted as a complete fusion event. This 

is because we had employed the sharp cutoff model for fusion, which assumes that 

complete and incomplete fusion event takes place within a cut-off impact parameter. 

Our model is effective for studying the breakup of the projectile. Hence, in the next 

chapter we employ the model to study fusion suppression which we explain as taking 

place due to the breakup of the projectile.
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Figure 4.3: Typical trajectories of the projectile fragments obtained from numerical 
solutions.
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4.10 Classification of breakup and no breakup tra­

jectories

In this chapter we shall provide an explanation of fusion suppression for the reac­

tions 6Li+u4Sm, 6Li+152Sm and 6Li+209Bi. As explained earlier fusion suppres­

sion takes place due to the breakup of a projectile. Hence, explanation of fusion 

suppression essentially rests upon the concept of breakup (or no-breakup) for a 

particular trajectory. Hence, some facts and arguments are presented in order to 

establish the point that breakup of the projectile takes place. In technical terms, 

breakup would mean that the distance of separation between the deuteron and the 

a-particle increases with time. In quantum mechanical language, the position of a 

particle can be calculated from their wave function and the associated probability 

distribution. However, in our model the positions are determined by the classical 

Newtonian equations, and breakup would mean that the distance of separation be­

tween the positions of the deuteron and the cc-particle increases with time. A total 

of about 18000 trajectories were studied. We found that in more than 99 percent 

of the cases, the distance of separation between the deuteron and the a-particle 

were concentrated in two regions ; one between 0 - 2.27 fm and the other between 

80 - 100 fm. The former region represents the no-breakup case, whereas the lat­

ter region represents the breakup case. The second region tended to increase when 

the iteration (time variable) was increased. This clearly indicates that breakup of 

the projectile has taken place. The determination of the number of breakup and 

no-breakup trajectories is done through a Fortran programme. Here, 2.27 fm is the 

distance that we had obtained between the deuteron and the a-particle in our sim­

plified cluster model of 6Li nucleus (see section 4.7). In less than 1 percent of the 

cases, the solutions turned chaotic, and these were ignored in the calculations. This 

is probably due to the fact that the differential equations picked up the right initial 

conditions (during random Monte Carlo simulation) for the solutions to turn chaotic.
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In our programme breakup trajectory is identifed by setting the condition that the 

distance of separation between the deuteron and the a-particle is greater than 2.27 

fm when they are far away from the target after interaction. It may be mentioned 

that out of the three types of trajectories obtained by us, incomplete fusion and 

no-capture breakup fall under the category of breakup, whereas scattering-like fall 

under the category of no-breakup. The Fortran code for determination of breakup 

and nobreakup trajectories is given in Appendix A.

4.11 Determination of cutoff impact parameter 

for fusion

For an explanation of fusion suppression factor we need to have an idea of the relative 

number of projectiles undergoing breakup. For this, the cutoff impact parameter for 

fusion must be determined. The cutoff impact parameter for fusion can be deter­

mined from the cutoff angular momentum for fusion. The cutoff angular momentum 

for fusion is determined through a comparison of the fusion cross section of the sin­

gle barrier penetration model (SBPM) and the fusion cross section predicted by the 

computer code CCFULL [17].

According to SBPM, fusion between two nuclei takes place due to quantum me­

chanical tunnelling over the fusion barrier. Since, many partial waves are involved, 

the total fusion cross section is given by the sum of the partial fusion cross sections

[29],
oo

a = (4.56)
e=o

where, % is the transmission coefficient for the Ith partial wave, Pe is the probability 

for fusion once the barrier is crossed and k2=2fj,EcirJ%2. Using WKB approximation 

and treating the Coulomb barrier as inverted parabolas, Hill and Wheeler [30] arrived
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at a simple expression for the transmission coefficients,

T,(Em) =
1 + exp(jSrSEl - B™))

(4.57)

where, Eg is the fusion barrier for the Ith partial wave, and Juoi is the curvature of 

the parabolic barrier. We assume a sharp cutoff model for Pe, which is based on 

the idea that fusion is more probable for head-on collisions rather than peripheral 

collisions [31]. Hence,

1 if £ < Lc
(4.58)

0 if £ > Lc

where, Lc is the cutoff angular momentum quantum number. Hence, the sum in 

Eq. (4.56) can be replaced by an integral having Lc as its upper limit. Finally, we 

obtain as a function of Lc [31],

Pt=<

^ f US ■

R2bhuo

2 Erm,
In 1 + e~V0 

1 + e~z (4.59)

where,

and,

z = Vo +
7r ULC(LC + 1)

Vo

uioRfrj,

MEo ~ Eam) 
huo

(4.60)

(4.61)

If the Coulomb barrier parameters Tiujq, Eq and Rb are known, then Eq. (4.59) can 

be solved to find Lc for every pair of cifus and E^. <7fus is taken from the output of 

the computer code CCFULL. Once Lc is known, the cutoff impact parameter (6C) 

can be determined from the relation [32],

LrTl
V2mEiab

(4.62)

which is derived from the condition that the angular momentum of the projectile is
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Lc times h. The position of the projectile (needed for locating the impact parameter) 

is given by the centre of mass of the deuteron a-particle cluster of the 6Li nucleus.
t

4.12 Methodology for finding fusion suppression

Our methodology in explaining fusion suppression is essentially to find the fraction 

of projectiles undergoing breakup at each impact parameter (perpendicular distance 

between the velocity vector of the projectile and target). We define this quantity 

as the breakup fraction which is the ratio of the number of trajectories undergoing 

breakup and the total number of trajectories [6],

Breakup Erection (B<) = °™ber of breakup trajectories
total number of trajectories

where, subscript i denotes the impact parameter at which B{ is evaluated.

The breakup fraction is a well defined quantity for each impact parameter and 

needs to be evaluated precisely in view of the problem we have. Initially, we kept a 

fixed distance of separation between the target and the projectile, and varied angle 

6 for all possible angles between 0° and 360°. The breakup fraction evaluated in this 

mannner was very low, and we found that it couldn’t explain the fusion suppression 

factor. There was an additional problem as the precise value of the breakup fraction 

at each impact parameter tend to vary with the distance of separation between the 

target and projectile. After some trial and error we found that the breakup fraction 

tends to have a maximum value for 8=0°. Hence, for a particular impact parame­

ter the breakup fraction is determined by taking 9=0°, and randomly varying the 

distance of separation between the target and the projectile. The random variation 

of the distance between the target and projectile is done in order to eliminate the 

effects of the dependence of the breakup fraction on the distance between the target 

and the projectile. As the projectile is composed of a deuteron and an a-particle, 

hence the position of the projectile is calculated from the centre of mass of the
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deuteron and the a-particle.

After evaluation of the breakup fractions, fusion suppresion is explained through 

introduction of a simple formula [6]. According to it, the fusion suppression factor 

is given by the average of the breakup fractions (Bj) evaluated at different impact 

parameters with weightage given by the fusion probability (Pi). The range of impact 

parameters starts from zero (i.e., a head-on collision) and is increased in steps of 0.2 

fm until the cutoff impact parameter (bc) is reached. Therefore,

Fusion Suppression = E, BjP, 

E. ^ (4.64)

For a sharp cutoff model,

1 if
<

0 if

i < bc 

i > bc

4.13 Results and Discussion

(4.65)

The formalism described above is now applied for finding the fusion suppression 

for the three reactions : 6Li+209Bi, 6Li+152Sm and 6Li+144Sm. In order to obtain 

numerical solutions, Woods-Saxon parameters (v, r, a) of the nuclear potentials have 

to be provided. The following parameters are used : Vd_a = (75.5 MeV, 1.85 fm, 

0.71 fm), —209Bi = (91.0 MeV, 1.16 fm, 0.83 fm ), Va_209Bi = (60.0 MeV, 1.392 fm, 

0.656 fm) [21, 28], Vd^mBm = (91.82 MeV, 1.013 fm, 0.938 fm ), VQ_i62Sm = (60.5 

MeV, 1.107 fm, 0.607 fm) [8, 33, 34], Vd_i44Sm = (99.72 MeV, 1.15 fm, 0.85 fm) and 

K*-144Sm = (185.0 MeV, 1.40 fm, 0.52 fm) [35]. For calculating the breakup fraction, 

a sample of 50 trajectories are chosen for each impact parameter. As explained 

above, the random sampling of the trajectories is done in which the initial distance 

between the target and projectile is randomly varied between two limits.
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Table 4.1: Breakup fraction versus impact parameter at different ener­
gies for 6Li+209Bi.

Impact
Parameter (fin) Breakup fraction for 6Li+209Bi at Ei^

34 MeV 36 MeV 38 MeV 40 MeV 44 MeV 48 MeV

0.0 0.06 0.22 0.26 0.24 0.30 0.36
0.2 0.12 0.24 0.34 0.26 0.46 0.24
0.4 0.20 0.14 0.40 0.48 0.40 0.46
0.6 0.32 0.12 0.36 0.46 0.50 0.52
0.8 0.32 0.40 0.46 0.44 0.44 0.58
1.0 0.30 0.38 0.66 0.52 0.58 0.50
1.2 0.28 0.36 0.50 0.44 0.64 0.54
1.4 0.32 0.54 0.64 0.44 0.64 0.74
1.6 0.32 0.64 0.54 0.66 0.54 0.68
1.8 0.54 0.48 0.62 0.54 0.66 0.64
2.0 0.50 0.58 0.50 0.60 0.52 0.54
2.2 0.60 0.66 0.66 0.58 0.58 0.48
2.4 0.42 0.50 0.62 0.66 0.64 0.64
2.6 0.34 0.30 0.48 0.56 0.56 0.52
2.8 0.52 0.38 0.52 0.46 0.42 0.52
3.0 0.28 0.46 0.36 0.54 0.28 0.50
3.2 0.22 0.18 0.32 0.28 0.34 0.36
3.4 0.16 0.26 0.24 0.30 0.42 0.36
3.6 0.22 0.20 0.24 0.14 0.26 0.20
3.8 0.14 0.16 0.18 0.2 0.18 0.36
4.0 0.04 0.08 0.16 0.14 0.20 0.26
4.2 0.06 0.06 0.20 0.08 0.06 0.12
4.4 0.10 0.0 0.12 0.08 0.10 0.08
4.6 0.02 0.0 0.0 0.10 0.06 0.06
4.8 0.0 0.0 0.0 0.06 0.08 0.0
5.0 0.0 0.0 0.0 0.0 0.04 0.0
5.2 0.0 0.0 0.0 0.0 0.02 0.0
5.4 0.0 0.0 0.0 0.0 0.0 0.0

104



Table 4.2: Breakup fraction versus impact parameter at different ener­
gies for 6Li+152Sm.

Impact

Parameter (fin) Breakup fraction for 6Li+152Sm at Eian,

28 MeV 30 MeV 32 MeV 34 MeV 36 MeV 40 MeV

0.0 0.02 0.08 0.24 0.14 0.48 0.24
0.2 0.12 0.12 0.18 0.34 0.30 0.48
0.4 0.16 0.20 0.22 0.24 0.36 0.44
0.6 0.24 0.12 0.16 0.22 0.30 0.32
0.8 0.16 0.12 0.22 0.32 0.38 0.38
1.0 0.20 0.24 0.26 0.14 0.46 0.50
1.2 0.32 0.24 0.30 0.30 0.54 0.58
1.4 0.28 0.40 0.54 0.54 0.38 0.66
1.6 0.38 0.36 0.40 0.62 0.52 0.66
1.8 0.26 0.26 0.36 0.52 0.60 0.60
2.0 0.42 0.38 0.44 0.46 0.58 0.64
2.2 0.26 0.40 0.48 0.48 0.58 0.60
2.4 0.30 0.48 0.54 0.54 0.48 0.46
2.6 0.28 0.40 0.50 0.64 0.58 0.56
2.8 0.38 0.36 0.36 0.24 0.58 0.68
3.0 0.28 0.28 0.36 0.38 0.34 0.44
3.2 0.36 0.28 0.22 0.32 0.28 0.34
3.4 0.26 0.24 0.18 0.16 0.24 0.20
3.6 0.26 0.24 0.12 0.18 0.26 0.22
3.8 0.10 0.26 0.10 0.06 0.18 0.32
4.0 0.16 0.24 0.12 0.06 0.14 0.12
4.2 0.14 0.20 0.20 0.06 0.10 0.12
4.4 0.14 0.08 0.08 0.12 0.12 0.12
4.6 0.10 0.12 0.0 0.10 0.16 0.10
4.8 0.04 0.04 0.0 0.00 0.06 0.08
5.0 0.0 0.04 0.0 0.00 0.0 0.04
5.2 0.0 0.0 0.0 0.0 0.00 0.0
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Table 4.3: Breakup fraction versus impact parameter at different ener­
gies for 6Li+144Sm.

Impact

Parameter (fm) Breakup fraction for 6Li+144Sm at Eua

30 MeV 32 MeV 34 MeV 36 MeV 38 MeV 40 MeV
0.0 0.36 0.44 0.60 0.48 0.52 0.50
0.2 0.58 0.56 0.60 0.66 0.62 0.52
0.4 0.74 0.70 0.60 0.66 0.52 0.64
0.6 0.82 0.74 0.78 0.74 0.76 0.58
0.8 0.86 0.58 0.72 0.80 0.76 0.62
1.0 0.74 0.88 0.76 0.80 0.76 0.68
1.2 0.64 0.76 0.88 0.78 0.74 0.78
1.4 0.64 0.58 0.88 0.74 0.70 0.72
1.6 0.38 0.52 0.68 0.72 0.74 0.72
1.8 0.30 0.44 0.40 0.72 0.76 0.76
2.0 0.18 0.34 0.32 0.42 0.66 0.72
2.2 0.20 0.24 0.24 0.52 0.54 0.60
2.4 0.04 0.20 0.22 0.28 0.38 0.38
2.6 0.00 0.04 0.14 0.24 0.22 0.24
2.8 0.00 0.00 0.02 0.06 0.06 0.16
3.0 0.00 0.00 0.00 0.00 0.08 0.06
3.2 0.00 0.00 0.00 0.00 0.00 0.00
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Figure 4.4: Breakup .fraction vs impact parameter at given energies. The Bezier 
curve is also drawn.
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Since, only a sample of 50 trajectories are chosen, the results may be biased if 

the trajectories don’t possess a high degree of randomness. Inbuilt random number 

generators in Linux Ubuntu produce the same random numbers in every cycle. In 

order to overcome this problem, we generate successive random numbers by taking 

the output of the random number generator after it had completed k cycles under 

a DO loop. The number k is a randomly chosen five digit number. Each time 

a random number is desired, it is ensured that the value k is different from the 

previous entries. This method gave us very good random numbers. The lower 

limit of the distance is taken to be 20 fin, and the upper limit of the distance 

is actually limited by the computational facilities available to us. A maximum 

initial distance of 55 fm between target and projectile could only be considered 

so that sufficient memory is available in the hardware for studying the trajectory 

of the projectile after interaction with the target. Using the Fortran code given 

in appendix A, we could determine the distance between the deuteron and the a- 

particle after interaction with the target. Using the condition of a breakup trajectory 

(section 4.10), we could identify whether a particular trajectory is a breakup or a 

no-breakup trajectory. Finding the number of breakup trajectories out of the 50 

trajectories, the breakup fraction is calculated. The breakup fraction calculated at 

different impact parameters is shown in Table 4.1 for 6Li+209Bi, in Table 4.2 for 

6Li+152Sm and in Table 4.3 for 6Li+144Sm, respectively [6]. The breakup fraction is 

calculated at 6 different energies which are « 1.1 to 1.5 times the barrier energy, as 

because in this energy range fusion cross section is suppressed by « 36 %, 28 % and 

32 %, respectively, for the three reactions [7, 8, 9], Fig. 4.4 (a),(b) and (c) shows 

graphical plot of breakup fraction for the three reactions at selected energies [6]. 

One distinct feature of the breakup fraction, which is also confirmed by the Bezier 

fit, is that the breakup fraction slowly increases and reaches a maximum, and finally 

falls to zero for higher impact parameters. For the reaction 6Li+144Sm, the breakup 

fraction falls off to zero at 2.8 fm which is much lower than the respective values
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Table 4.4: Parameters of input file of CCFULL code for 6Li+152Sm

Line 1 6., 3., 152., 62.
Line 2 1.05, 1, 1.06, 1
Line 3 0.122, 0.26, 0.05, 2
Line 4 1.66, 0.13, 2, 0
Line 5 2.186, 0.87, 0, 1
Line 6 0, 0., 0.3
Line 7 131.0, 1.01, 0.64
Line 8 18., 40., 1
Line 9 30, 0.05

for the other two reactions. This fact is compensated by the comparatively larger 

values of the breakup fraction.

For determination of the empirical value of fusion suppression (fexp), we first 

determine the theoretical value of fusion cross section (atheo), which is expected in 

the absence of breakup. For the reactions 6Li+209Bi and 6Li+144Sm, atheo is obtained 

by running the code CCFULL [17]. For the above reactions, the above barrier fusion 

cross section (atheo), with and without coupling, are practically identical [7]. As such 

the parameters of the input file for lines 2, 6 and 9 of CCFULL code are exactly 

similar as mentioned in section 3.6. In line 7, the parameters of the Woods-Saxon 

potential are put. For 6Li+209Bi, the parameters of the Woods-Saxon potential are 

(V0, r0, a)=(107 MeV, 1.12 fm, 0.63 fm) [7], and for 6Li+144Sm the parameters are 

(Vo, r0, a)=(47.0 MeV, 1.10 fm, 0.63 fm) [9], As 15sSm is a highly deformed nucleus, 

hence for the reaction 6Li+152Sm, atheo is obtained by running the CCFULL code by 

considering both target and projectile rotational excited states [8]. The parameters 

of the input file are shown in Table 4.4. The target (152Sm) is a deformed nucleus in 

its ground state. Hence, in line 3 we have included both quadrupole (2+, 0.122 MeV) 

and hexadecapole (4+) rotational states with deformation parameters, /32=0.26, and 

/34=0.05. The unbound first excited state (3+, 2.186 MeV) of the projectile (6Li) 

with deformation parameter, /32=0.87 [7], is included in the fifth line. Woods-Saxon 

parameters [8] of the nuclear potential are put in line 7.

Knowing the experimental value of fusion cross section (a^p) [7, 8, 9], the em-
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pirical fusion suppression factor is determined from the relation,

/«* = 1 - ^ (4-66)
&theo

and the results are shown in Tables 4.5, 4.6 and 4.7, respectively [6]. Using the 

value of atheo and using Eqs. (4.59), (4.60) and (4.61), the cutoff angular momentum 

(Lc) is determined for the reactions 6Li+209Bi and 6Li+144Sm. The values of the 

barrier parameters (hu)o, E0 and i?&) needed in the above calculations are known 

from the output of the CCFULL code. The justification for this comes from the 

fact that the energy region of consideration falls in region I (energy immediately 

above the barrier) [31, 29], where fusion and total reaction cross sections practically 

coincide. For the reaction 6Li+152Sm, Lc is determined as above, but this time, 

atheo is given by the results of the single barrier penetration model (SBPM) because 

Eq. (4.59) is derived on the assumption that atheo is approximated by the results 

of the SBPM. The SBPM cross section for 6Li+152Sm can be obtained by running 

the CCFULL code with Woods-Saxon parameters of the nuclear potential given in 

Ref. [8], The Woods-Saxon parameters are (V0, U), a)=(131.0 MeV, 1.01 fm, 0.64 

fm). Then from Eq. (4.62), the cutoff impact parameter (bc) is determined for 

the three reactions. Using the cutoff impact parameter (bc), the calculated value of 

fusion suppression {fad) is evaluated using eqs. (4.63) and (4.64), and the results 

are shown in Tables 4.5, 4.6 and 4.7 [6].
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For calculating we take the ratio between the values of ]T\ P{ (in column 

9) and ]F\ BiPi (in column 8) of the respective Tables. It is to be noted that the 

breakup fraction values (Bx) and the corresponding values of JT Px and Yji 

are determined in steps of 0.2 fm. However, Px and have to be summed up 

precisely upto the cut off impact parameter (bc). In some of the cases, the cut off 

impact parameter lies at a value where the breakup fraction becomes zero. In the 

rest of the cases (34 MeV for 6Li+209jBi, and 28, 30, 32, 34 MeV for 6Li+152Sm) the 

cutoff impact parameter lies at a value where the breakup fraction is not zero. In 

all these cases the cutoff impact parameter value lies between successive multiples 

of 0.2 fm. For these cases, we used linear extrapolation for determining the precise 

values of Pi and PxBi at the position of the cutoff impact parameter (6$),

/ bj - kj
\kj+i ~ k3

(4.67)

B,Pi = . t)(6i ~ki)+B1 (4-68)

Here, k3 and kj+i are the successive impact parameters between which the cutoff 

impact parameter (b{) is located, and B3 and BJ+1 are the respective values of the 

breakup fraction. From the values, we determine the calculated fusion cross 

section from the relation,

@cal — ®th.eo (1 fcal) ■ (4,69)

A comparison of the experimental and calculated fusion cross sections is shown 

in Fig. 4.5 (a), (b) and (c) for the three reactions, where uncertainties in the 

experimental fusion cross section are shown by the error bars [6]. It can be concluded 

that there is very good agreement between the values of aexp and crca;.
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In the eases discussed above (where breakup fraction is not zero at cutoff impact 

parameter), the breakup of the projectile extends beyond the cutoff impact param­

eter for fusion. This has been the case in the low energy region for the reactions 

&Li+2mBi and 6Li+152Sm. This is indeed expected because at lower energies the 

projectile spends more time in the vicinity of the target nucleus which would lead to 

its breakup. Inspite of the fact that breakup of the projectile is extending beyond 

the cutoff impact parameter, we are getting approximately constant values of fusion 

suppression for all energies considered, and this is in agreement with the experi­

mental values. For 6Li+152Sm, a^i is slightly lower than cr^p for higher energies. 

This is because of the fact that the cutoff angular momentum (Lc), as calculated 

from Eq. (4.59), is slightly lowered from the true value as SBPM values of ajus are 

used in the calculations. The agreement is excellent for the reaction 6Li+144Sm, fol­

lowed by 6Li+209Bi and 6Li+152Sm. In fact, for the system 6Li+144Sm, if the small 

experimental uncertainty is ignored, a^i values follow the exact trend of the aejx,p 

(Table 4.7) values evaluated at different energies. The reason is that 144Sm is least 

deformed, 209Bi is intermediate and 152Sm is most deformed.

4.14 Relationship between and Lc

The energy (E^) dependence of cutoff Lc has also been studied. The values of Lc 

have been calculated using both the values of fusion cross section, viz., atheo and a^p, 

and the results are shown in Fig. 4.6 [6]. As expected, a perfect linear relationship 

between Lc(calculated from crtheo) and is observed. We also observe a very good 

linear relationship between Lc(calculated from a^p) and E^. For comparison, the 

best fit line using least square method is also drawn. Equations of the best-fit line 

are,
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For 6Li+209Bi, with Lc calculated from atheo,

Lc = 0.753 (Eon - 22.469) (4.70)

For 6Li+209Bi, with Lc calculated from a^p,

Lc = 0.744(^-15.19) (4.71)

For 6Li+152Sm, with Lc calculated from cr^e0,

^ = 0.701(^- 15.758) (4.72)

For 6Li+152Sm, with Lc calculated from cr^,

Lc = 0.648 (Ecrn - 9.95) (4.73)

For 6Li+144Sm, with Lc calculated from cr^eo,

Lc = 0.729 (Ecm - 18.215) (4.74)

For 6Li+144Sm, with Lc calculated from aexp,

Lc = 0.572 (Em - 7.575) (4.75)

The conclusion made in Ref. [31] that for loosely bound systems the energy {Eon) 

dependence of Lc is on the verge of transition of a linear dependence and a depen­

dence on LC(LC+1) doesn’t seem to hold, at least for these three systems. One reason 

may be that the systems studied in Ref. [31] are low-medium targets, whereas the 

targets of the present system are relatively heavier. A qualitative understanding of 

the linear relationship between Lc and E^n is given below. The angular momentum
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carried by the projectile can be approximately calculated by equating the energy of 

the projectile with total potential energy, V(r), between the projectile and target. 

V(r) is given by,

V = Vc( r) + VN(r) + 1J (4.76)

The cut-off angular momentum for fusion, Lc, is given by the value of the angular 

momentum £ in the above equation at the position of the fusion barrier (r=.Re­

calculations done with the proximity potential (Prox 88 of chapter 2) reproduced 

the linear relationship between Lc (calculated from atheo) and E^. The results are 

shown in Table 4.8.

Table 4.8: Cut-off angular momentum for fusion, Lc, and Ecm calculated from prox­
imity potential.

Lc
6Li+™Bi

Elab (MeV) Lc
6Li+152S'm

Eiab (MeV) Lc
6Li+luSm

Eiab (MeV)

13.3 36.93 11.32 29.50 12.44 30.96
14.49 38.05 11.98 30.09 12.97 31.50
16.11 39.72 13.32 31.42 14.16 32.80
17.69 41.54 14.72 32.97 15.39 34.29
20.62 45.43 16.05 34.60 16.58 35.85
23.24 49.48 18.54 38.08 17.71 37.46

Comparison with the values of Lc and E[ab of Tables 4.5, 4.6 and 4.7 shows a 

qualitatively good agreement. The fact that the linear relationship is nicely ex­

plained is due to the existence of the fusion barrier (or the potential pocket) for the 

highest energies of the above three reactions. This may not be the case for even 

higher energies because in that case the potential pocket may disappear, and Lc 

would be given by the angular momentum, £, for which the potential pocket exists 

in Eq. 4.76.
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4.15 Summary and Outlook

In this chapter, we explain the fusion suppression of three reactions induced by 

6Li projectile, namely, 6Li+209Bi, 6Li+152Sm and 6Li+l44Sm. Some other authors 

(eg. Diaz Torrez) have also succeeded in explaining fusion suppression through the 

introduction of a breakup probability function whose parameters are determined 

from sub-barrier fusion cross section data. However, we have attempted to explain 

fusion suppression purely from first principles without the need for introducing any 

adhoc inputs. Considering the projectile to be a cluster of a deuteron and an a- 

particle, we construct the classical equations of motion for the system of projectile 

and target in two-dimensions. As the system has six degrees of freedom, hence we 

obtain six-second order differential equations. Numerical solutions for the above 

equations can be obtained only if twelve initial conditions are known. These initial 

conditions are the positions and velocities of the x and y components of the three 

particles. Using stable (not chaotic) solutions as an indicator, we obtain the initial 

conditions for the deuteron and the a-partiele which constitute the 6Li nucleus. We 

propose a semi-classical model of the 6 Li nucleus from which the initial conditions 

of the deuteron and the a-particle are derived. The model utilizes the binding en­

ergy (breakup threshold energy) and the spin of the 6Li nucleus for deriving these 

initial conditions. After studying the numerical solutions, we could identify three 

distinct kinds of trajectories : scattering-like, incomplete fusion and no capture 

breakup. Next, we define the breakup condition for a trajectory. If distance be­

tween deuteron and a-particle after interaction with the target is greater than 2.27 

fin, then its a breakup trajectory, otherwise it is not. Then the breakup fraction at 

different impact parameters (in steps of 0.2 fm) is obtained. Next we determine the 

cutoff impact parameter for fusion by using rigourous quantum mechanical concepts. 

Then we introduce a formula for explaining fusion suppression, according to which 

fusion suppression is given by the average of breakup fractions evaluated at impact 

parameters ranging from a head on collision upto the cutoff impact parameter for
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fusion. On application of the above formula, we find that there is very good agree­

ment between the calculated (iJci) and the experimental (a^p) fusion cross sections 

for all the three systems. For the system 6Li+152Sm, falls below a^ at higher 

energies because of deformed nature of the target. The relationship between cutoff 

angular momentum (Lc) and the energy (EJ is also studied, and we found that 

there is an excellent linear relationship between the two. By using the proximity 

potential, an understanding of the linear behaviour is provided.

In future, the fusion suppression of other 6Li induced reactions may be studied 

provided Woods-Saxon parameters of the nuclear potential are obtained through 

optical model analysis of elastic scattering data. Some of the reactions for which 

precise fusion suppression factors are available are 6LH-208Pb [36], 6Li+159Tb [37] 

and 6Li+90Zr [38], and fusion suppression analysis could be carried out for these 

reactions. Reactions induced by 9Be (7Li) are a bit complicated as they involve a 

neutron transfer (proton pickup) to (from) target to form the nucleus 8Be [24, 26]. 

However, fusion suppression factor of the same order as 6Li induced reactions have 

been observed for reactions induced by 9Be and 7Li. Modelling the breakup of 

9Be induced reactions has been done by Diaz Torrez through the introduction of 

an empirically obtained breakup probability function [24]. Similar analysis could 

also be tried for 7Li induced reactions [39], although the number of experiments is 

quite limited. Modelling the breakup of 7Li and 9Be induced reactions, without the 

introduction of an empirically obtained breakup probability function may also be 

attempted. However, this may require some serious theoretical effort. A complete 

quantum mechanical model of fusion suppression could be attempted in future. 

Much progress has to be done in computational techniques (both in theory and in 

practice) before succeeding in such an attempt.
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Chapter 5

Reduced reaction cross section 

induced by radioactive projectiles

5.1 Introduction

The last two decades has seen a sudden rise in the study of reaction cross section 

[1, 2, 3, 4] between a variety of target and projectile. This has been possible due to 

tremendous improvement in experimental facilities over the years. The availability 

of intense beams of loosely bound nuclei [5], and the radioactive ion beam has added 

impetus to this exciting field of study. As a result a huge database of reaction cross 

section data for a range of target and projectile has become available. For purposes 

of comparison, various reduction procedures have been proposed which are aimed at 

eliminating trivial geometrical effects of size and charge. Also, using these reduction 

procedures it is possible to say whether there is an enhancement or reduction of 

fusion cross section with respect to some benchmark cross section. Of late, Gomes’s 

reduction procedure [6] has been widely followed in which the dependence of the 

reaction cross section on the barrier radius (Re) is eliminated, and the energy is 

scaled with respect to the barrier height (V#).

For purposes of comparing reaction cross section data using a variety of target
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and projectile, various authors have compared the reduced reaction cross section 

(ared) against the reduced energy (Ered). Recently, it was noted that the trajectory 

of the reduced cross section for tightly bound, normal loosely bound and radioactive 

halo projectiles are clearly separated [7, 8, 9]. Both, neutron halo and proton halo 

nuclei are considered in case of radioactive halo nuclei. It was also noted that the 

reason for the separation of the trajectories is that the Coulomb barrier is slightly 

lowered, and the barrier radius is marginally increased for radioactive halo systems 

in comparison with normal loosely bound systems [9]. In the first part of our work, 

a satisfactory explanation of the above fact is provided by using some common 

global nuclear potentials. The potentials chosen are the latest version of the Bass 

potential, the Christensen and Whither potential, the Broglia and Winther poten­

tial, Aage Winther potential, the Proximity potential and the Denisov potential. 

Straight forward application of the nuclear potentials can explain the shift in the 

barrier parameters for the case of reactions induced by the neutron halo nucleus 

6He. However, for the reaction induced by the proton halo nucleus (8B), the shift 

of the barrier parameters in the right direction can only be explained if we take into 

consideration the increase in radius of 8B with respect to its normal counterpart 

(10J3). Hence, first we shall be explaining the shift in the barrier parameters of rar 

dioactive halo systems with respect to normal loosely bound systems and compare 

them with the shift obtained from experimental reduced reaction cross section data. 

In the next part of the study, we obtain a theoretical fit for the reaction cross section 

of reactions induced by radioactive projectiles. The explanation is done on the basis 

of the modified Wong’s formula [10]. In section 5.2, we provide the necessary for­

malism and in the next section (5.3) we review the procedure for the determination 

of the fusion barrier. In section 5.4 we discuss the nuclear potentials used, and in 

the next section (5.5) we discuss the nature (or shape) of the potentials. In Section 

5.6, we present the results (including discussion), and in the last section (5.7) we 

provide a summary of our results.
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5.2 Formalism

The total reaction cross-section is given by the sum of the fusion and quasi-elastic 

cross sections. Quasi-elastic reaction cross section includes the sum of the elastic, 

inelastic and the transfer cross sections,

& quasi
/■ .......... ....................................\

&R = (Jfus 4“ &el 4“ &inel 4” &trans

However, in some of the systems, <rqua3t is quite insignificant, and we have, oR « 

(Tfus. This is quite true for low intensity (104"'5 pps) radioactive ion beams. For 

the study of reaction cross section, Wong’s formula [11, 12] provides a convenient 

expression in terms of three parameters characterizing the barrier,

<Jr
Rfhojc
2iw ln< 1 4- exp 2n(Ecm-Eo)

huio
]} (5.1)

where, Tiwo is the curvature of the Coulomb barrier (^=0). E0 and Rb are the height 

and position of the Coulomb barrier, respectively. In a naive picture, the position 

and height of the Coulomb barrier is given by [9],

E0

Rb = hJA1/3 + A1/') fin 

ZpZpe2

h(Af + 4/3)

MeV

(5.2)

(5.3)

In order to reduce the complexity of reaction cross data among various combinations 

of target and projectile, the concept of reduced reaction cross section has emerged. 

Gomes devised a reduction procedure in order to eliminate the dependence of the 

reaction cross section on the atomic and mass number of the target and projectile. 

Hence, in Gomes’ reduction procedure, the cross section is divided by the square of 

(Ap34-3), and the energy is divided by ZpZr/iA1/3 + A^3,). Applying the above
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reduction, Wong’s formula reduces to,

(5.4)

where
er

(5.5)

(5.6)

(5.7)

(5.8)

The values of the constants kb and kr can be obtained from the best fit of the 

reduced experimental reaction cross-section at various energies. In this manner the 

reduced reaction cross section for a variety of systems have been obtained. According 

to the study conducted in Ref. [7, 9], the following facts are reported. For tightly 

bound projectiles, the best fitting can be done with kb = 1.56, kr — 1.65 and eo=0.14. 

For normal loosely bound projectiles (6Li, 7 Li and 9Be), the Wong’s model fit can 

be done with kb = 1.64, kr = 1.76 and e0=0.34. For radioactive halo projectiles,(eHe 

and BB), the fitting can be done with kb = 1.79, kr = 1.83 and eo=0.49. The above 

fact can be interpreted by saying that in moving from normal to radioactive halo 

systems, the barrier is lowered by 4% and its position is increased by about 9% [9], 

Hence, the trajectories for the three types of systems (tightly bound, loosely bound 

and radioactive halo) are clearly separated in the reduced reaction cross section 

analysis (erred vs Ered). This is diagrammatieally shown in Fig 5.1. In the above 

study, different sets of reactions were considered for normal weakly bound systems 

as well as for radioactive halo systems. For radioactive halo systems, the following 

four reactions were considered : 6He+27Al, 6He+t>iZn, 0He+209Bi and sB+58Ni. 

The corresponding reactions induced by normal nuclei are : 4He+27Al, 4 H e+64 Zn,
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Figure 5.1: Diagram showing crTed vs Ered for various systems. The trajectories for 
tightly bound, loosely bound and radioactive halo systems are clearly separated.

4He+209Bi and mB+mNi. Here, 4He is the normal counterpart of the neutron 

halo nucleus 6He, and 10B is the normal counterpart of the proton halo nucleus 8J5. 

We shall be showing that in moving from normal to radioactive halo systems, the 

barrier parameters (VB, Rb) are shifted as mentioned above. The shift in the barrier 

parameters is determined by taking an average of the shifts for the above reactions, 

as well as the average of the shifts for the different nuclear potentials.

5.3 Determination of the barrier parameters

The interaction potential between the target nucleus and the projectile can be writ­

ten as the sum of nuclear, Coulomb and centrifugal potentials. Hence,

V = Vc(r) + Vjv(r) + X) (5.9)
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where, r is the distance between the centres of the target and projectile, l is the 

angular momentum quantum number, and fi is the reduced mass of the system. The 

maximum value of the above potential for ^=0 is called the height of the fusion (or 

Coulomb) barrier (Vb), and the corresponding value of r is called the position of 

the barrier (Rb)■ As a few of the target nuclei are deformed, hence for accurate 

determination of the Coulomb barrier (Vb,Rb), we use Wong’s prescription [11] for 

the Coulomb potential between two deformed nuclei,

TT ( a\ / 9 Z1Z2e2Y^D2/0 r> t d\ivc(r,0) = —-— + y 207r r3 2^ Rip2iP2{cos6i)+
i=i

(^)^?"^fl'[&P2(cos(W|2 (5-10)

^ ' i=l

here, R\, 1?2 and /32i , B22 are the charge radii and the deformation parameters of the 

two nuclei, respectively. 6i is the angle between the collision axis and the symmetry 

axis of the ith nucleus, and is averaged with respect to angles from 0 to 7r/2 (see 

Fig. 2.5).

5.4 Nuclear potentials

We shall be using six different versions of the nuclear potential for the determination 

of the barrier parameters. These are the Bass potential (Bass 80), Christensen and 

Winther potential (CW 76), Broglia and Winther potential (BW 91), Aage Winther 

potential (AW 95), proximity potential (Prox 88) and the Denisov potential (Denv 

02). We had used the above potentials as the barrier parameters could be easily 

and accurately determined with the minimum number of parameters. Apart from 

the Denisov potential, all the other potentials are discussed in section 2.5. A brief 

description of the Denisov potential is given below :
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5.4.1 Denisov potential (Denv 02)

Denisov [13] calculated the semi-microscopic potential for various colliding nuclei 

in the framework of extended Thomas-Fermi approximation where the proton and 

neutron densities of each ion are obtained in the Hartree-Fock-Bogoliubov approxi­

mation with SkM parameter set of the Skyrme force [14]. By evaluating 7140 ion-ion 

potentials at 15 distances around the touching point, Denisov gave the following an­

alytical expression for the nuclear potential,

R R r / A A \ ^VN(r) = -1.989843- -...|-$(r -R1-R2- 2.65) 1 + 0.003525139 (-I + -1)
R\ + R2 L V A2 A\ /

- 0.4113263(1! + J2)l (5.11)

with,

l=^r (i=1>2) (5-12)

where, N ,Z and A are the number of neutrons, protons and mass number of the 

nuclei, respectively. R^ is the effective nuclear radius and is given as,

where, the proton radius (Rip) is given by [15],

RiP = IMA1/3 , 1.646 n^n,At-2Zi,
1 + —;------0.191 (—^—j------)

AiA (5.14)

.The function 4> is given by Eq. (5.15) for, -5.65 < s < 0, and by Eq. (5.16) for s >

0.
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$(s) = 1 - A. S-~- + 1.229218s2 - 0.2234277s3 - 0.1038769s4 
v ’ 0.7881663

■ (0.1844935s2 + 0.07570101s3) + {h +12) (0.04470645s2 + 0.03346870s3)
R\ + it2

(5.15)

1 - s2f0.05410106- RiR% ■exp(~s/l.760580)
Ri + R2

0.5395420(1! + I2)exp(-s/2A2U08)}] x exp(-s/0.7881663) (5.16)

5.5 Nature of the potentials

In this section we show the shape or nature of the potentials for the reactions 

4He+20gBi, 6He+20gBi, 4He+6iZn and 6He+6iZn. For plotting the potential 

curves from Eq. 5.9, we use the simplified expression for the Coulomb potential 

between projectile and target which assumes that the projectile is a point charge in 

comparison to the target.

Vc =
ag£(3-|§) if r < rc, 

if r > rc,
(5.17)

where, rc is the radius of the target nucleus. Using the six different versions of 

the nuclear potentials (section 5.4), we plot the potentials for the above mentioned 

reactions in Figs. 5.2 and 5.3, respectively. We see that the maximum value of the 

potentials is quite distinct for all the six different types of potentials used. This peak 

value of the potential (for £=0) is the Coulomb barrier (Vb) and the corresponding 

value of r is the position of the Coulomb barrier (Rb)■ Also, among the reactions 

induced by the normal projectile and the corresponding halo projectile, we observe
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(a) Bass 80

(b) CW 76

r(fin)

(c) BW 91

Figure 5.2: Total potential (MeV) vs distance (fm) for the reactions 4He+209Bi, 
6He+2WBi, 4He+MZn and 6He+64Zn using the nuclear potentials Bass 80, CW 76 
and BW 91.
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(a) AW 95

(b) Prox 88

(c) Denv 02

Figure 5.3: Total potential (MeV) vs distance (fm) for the reactions 4He+209Bi, 
6He+209Bi, 4He+uZn and 6He+(AZn using the nuclear potentials AW 95, Prox 88 
and Denv 02.
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that noticeable differences of the total potential begin to show only for distances 

less than Rb- Also for r < Rb, the potential is more steeper for the halo projectile 

case than the normal projectile case which suggests that the magnitude of the force 

is greater for the halo projectile case than in comparison to the normal projectile 

case. Also, we notice that in moving from normal to radioactive halo projectiles, Vg 

is lowered and Rb is increased by small amount.

5.6 Results and Discussion

Using the different nuclear potentials we have found the height and position of 

the Coulomb barrier for the three reactions induced by the neutron halo nucleus 

6 He, namely, 6He+27Al, 6He+64Zn and 6He+20gBi. Also the corresponding values 

induced by the normal nucleus (AHe) for the three reactions, namely, 4He+27Al, 

4He+64Zn and 4He+209Bi are also determined. The static deformation parameters 

used for the target nuclei are as follows : 0.31 (27Al) [16], 0.242 (64Zn) and 0.1828 

(58Ni) [17]. The results are shown in Table 5.1. As can be seen, the height of 

the barrier (Vg) is slightly reduced and the position (Rb) is marginally raised for 

reactions induced by the halo nuclei in comparison to the normal nuclei. However, 

for the reaction 8B+58Ni (induced by the proton halo nuclei 8B) straight application 

of the potentials give erroneous results as the barrier parameters are shifted in the 

opposite direction. This is because the rms matter radius of 8B is larger than 

its normal counterpart 10B even though there are lesser number of nucleons. The 

excess proton tend to form a halo outside the core which increases its matter radius 

[18]. This increase in the radius of proton halo nucleus is not accounted in the 

calculation of matter radii for the above potentials (Eqs. 2.10, 2.16, 2.19, 2.22, 

2.27, 2.31 and 5.13). However, the increase of the radius of neutron halo nuclei is 

automatically accounted as the radius formulae for the different potentials show a 

direct dependence with the nucleon number. Taking experimental results into
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Figure 5.4: Diagram showing determination of effective radius of 8B projectile.

consideration, we calculate effective radii for 8B and 10R, and then evaluate Vb 

and Rb for the reactions 8B+S8Ni and 10B+5sNi. For 10B, the radius is taken as 

2.49 fm which is the average of experimentally reported values of 2.42 [19] and 2.56 

fin [20].

Since, 8B has a small one proton separation energy (Sp = 137 keV), hence it has 

exceptional proton halo character. Also, it has been shown that standard treatments 

like point Coulomb multipole expansion doesn’t apply in case of 8B nucleus [21]. 

The outer proton resides at a halo radius of r^=4.2 fin, which is much larger than 

the experimental matter radius (2.33 fm) of its core (7Be) (see Fig. 5.4). Straight 

forward calculation (Eq. 15 of Ref. [18]) yields r.m.s. matter radius of 2.60 fm for 8B. 

However, instead of using the r.m.s. matter radius, we calculate an effective radius 

of 8B nucleus by the following method. For an 8B projectile incident on a target
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nucleus, the effective radius would be the projection of r on a plane perpendicular 

to the direction of motion of the projectile, where "r7 is the vector from the centre 

of the 8B nucleus to the outer halo proton (see Fig. 5.4). The length of "r* is taken 

as 5.01 fin which is the sum of the halo radius (r^) and the proton radius (rp = 0.81 

fin) [18]. For random orientations of 8 J5 projectile, we calculate the average of the 

projections with the condition that if the projection is less than 2.33 fin (radius of 

7Be core), then consider the projection as 2.33 fin. Straight forward Monte Carlo 

simulation yields the value 2.84 fin, which we consider as the effective radius of the 

8B projectile. With these new values of radii, we find the barrier parameters for 

10>8B+58Ni, and these are shown in Table 5.1. The percentage change in the barrier 

parameters can be determined by,

yJV _ yH pN _ pH
AVb{%) -Bvk— X 100 ; ARb{%) = -~rN b X 100 (5.18)

where, VB, RB and VB, RB stand for the barrier parameters of reactions induced 

by normal nuclei ('4He, 10B) and halo nuclei (6He, 8B), respectively.

Using the barrier parameters from Table 5.1, AVB(%) and ARB(%) are calcu­

lated and these values are shown in Fig. 5.5(a) and 5.5(b), respectively. The highest 

shift in the barrier parameters is observed for 4,6He+27Al, followed by 4sHe+64Zn, 

1Q’8B+58Ni and 4fiHe+2mBi. Among the potentials the highest shift in the barrier 

parameters is observed for CW 76, which is marginally ahead of BW 91. They are 

followed by Prox 88, Bass 80, Denv 02 and AW 95. For the reactions 4,6He+27Al, 

4,6He+uZn, 10,8B+58Ni and 4,6He+209Bi, the average values of AVB(%) for the six 

potentials turn out to be 5.63, 4.99, 4.50 and 3.68, respectively. The corresponding 

values for ARB(%) are -6.06, -5.29, -4.95 and -3.88, respectively. This gives an over­

all average of 4.70 for AVB(%) and -5.05 for ARB(%), For comparison the values 

reported in Ref. [9] are « 4% and -9%, respectively. Therefore, a qualitative
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explanation for the shift in the barrier parameters in moving from normal to 

radioactive halo systems is contained within the global parametrization of nuclear 

potentials. As explained earlier, this shift in the barrier parameters ultimately 

explains the separation of the trajectories of normal loosely bound systems and 

radioactive halo systems in the reduced experimental reaction cross section analysis.

It would be interesting to observe the shift in the barrier parameters for Berellium 

(Be) projectile induced systems. Be has many isotopes out of which 7 Be and 9Be 

are loosely bound, whereas the isotope 11 Be has proven neutron halo properties. 

Using the six nuclear potentials, we did similar calculations as above to determine 

the barrier parameters for reactions induced by the above projectiles on the targets 

27Al, 64Zn and 209 Hi. The results are shown in Table 5.2. As expected we notice 

that the barrier height (VB) is reduced, whereas the barrier position {Rb) is slightly 

raised as we move from normal loosely bound to radioactive halo systems. Again 

using Eq. (5.18) we find the shift in the barrier parameters. However, this time 

we determine two sets for the shift in the barrier parameters, one each for reactions 

induced by the two loosely bound nuclei (7Be and 9Be) with respect to reactions 

induced by the halo nucleus (nBe). The average values of AVg(%) for the six 

potentials for the reactions 7,nBe+27Al, 7,11Be+6iZn and 7,11 Be+209 Bi are 5.79, 

7.04 and 4.72 respectively. The corresponding values of ARB(%) are -6.31, -7.66 

and -4.84, respectively. Similarly, for the reactions 9,11 Be+27Al, 9,11 Be+6iZn and 

9,11Be-|-209J5i the average values of AVg(%) are 4.12, 3.05 and 1.57, respectively. 

The corresponding values of ARB{%) are -2.98, -3.32 and -2.22, respectively. This 

gives an overall average of 4.38 and -4.56 for AVb(%) and ARb(%), respectively, 

which is a qualitatively good agreement with the values of « 4% and -9% [9]. The 

above results suggest that the reduced reaction cross section for reactions induced 

by the neutron halo projectile 11 Be is very likely to fall on the same trajectory as 

that of radioactive halo projectiles [9]. Also, the reduced reaction cross section for 

reactions induced by the loosely bound projectiles (7Be, 9Be) will certainly lie on
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the same trajectory as that of the normal loosely bound projectiles [9]. This 

would ensure that the above calculated shift (which matches the experimental shift 

from reduced reaction cross section analysis) in the barrier parameters is obtained

as we move from normal to radioactive halo systems.

Out of the reactions considered above, we have obtained a Wong’s model fit for 

the total reaction cross section for the reactions 6He + 27Al and 7 Be+27AL We 

use the barrier parameters obtained from the Bass 80 and the AW 95 potentials 

for use in the Wong’s formula, as our earlier work [4] had shown that these two 

potentials are best in reproducing the barrier parameters. The results are shown in 

Figs. 5.6 and 5.7, where the fusion cross section (oreac) predicted by the unmodified 

Wong’s formula (UWF) (with barrier parameters calculated from Bass 80 and AW 

95 potentials) is compared with experimental data. There is not much difference in 

the predictions of UWF-Bass 80 and UWF-AW 95 for the two reactions. However, 

for the reaction 7Be+27Al, the prediction is below the experimental data. This is due 

to a proton transfer of 7Be to the target which tends to increase the experimental 

reaction cross section. The unmodified Wong’s formula assumes the projectile and 

target to be inert and no breakup and transfer (of nucleons) is allowed.

As suggested in [10], the total reaction cross section for all types of systems 

(tightly bound, loosely bound and halo) can be described by the modified Wong’s 

formula (MWF).

a IMRlhup
2 £cm

1 + exp
27r(£cm - Eq)

(5.19)

where, I, M and P are three dimensionless parameters whose values are derived by 

fitting the data. Here, the parameter I accounts for the Coulomb barrier dependency 

of the cross section, M indicates increase of the cross section for loosely bound and 

halo systems, and P makes an adjustment of the Coulomb barrier with respect to the 

collision energy in case the cross section starts to increase sharply. The parameters
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Figure 5.6: Fitting of reaction cross section (areac) using the unmodified Wong’s for­
mula (UWF) and the modified Wong’s formula (MWF) for the reaction 6He+27Al. 
The barrier parameters are taken from Bass 80 and AW 95 potentials. Expt. data 
is taken from [22]
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The barrier parameters are taken from Bass 80 and AW 95 potentials. Expt. data 
is taken from [16].
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Table 5.3: Values of the parameters I, M, P and the minimized y2-values obtained 
by fitting the experimental reaction cross-section data with the modified Wong’s 
formula (MWF) for the reactions 6He + 27Al and 7J9e+27A/. The barrier parameters 
are derived from the Bass 80 and AW 95 potentials.

Parameter 7Be+27Al 6He+27Al

Bass 80 AW 95 Bass 80 AW 95
I 0.8 0.8 0.6 0.6

M 1.59 1.53 1.52 1.48
,P -0.23 -0.24 0.17 0.17
x2 1.95 1.95 0.28 0.29

are derived in way such that the deviation of the calculated and the experimentally 

measured cross section is minimum. Initially, we make a choice of the parameter 

I taking into account its direct dependence with the barrier height [10]. The y2 

minimization technique of the best fit distribution is utilized to derive the other 

two parameters (M and P). The y2 value for a particular fitting of observed or 

experimental (0) value and the expected or theoretical value (E) is given by,

x2 = ~ E*)2
El

(5.20)

Initially the expected values (E) are determined from the modified Wong’s formula 

with arbitrary values of the parameters (I, M and P). Then using Fortran program­

ming y2 values are minimized by simultaneous change of the variables x (=IM) and 

P. Then, the total reaction cross section is obtained for the three reactions by using 

the modified Wong’s formula (MWF) and the results are shown in Figs. 5.6 and 

5.7. We see that the fitting is quite good and there is vast improvement over the 

predictions of the unmodified Wong’s formula (UWF). This is because the modified 

Wong’s formula (MWF) is a phenomenological formula with additional parameters 

(I, M and P) to explain the increase in the reaction cross-section induced by halo 

and radioactive projectiles. The values of the parameters and the minimized y2 val­

ues are given in Table 5.3. We note that the value of M is in good agreement with
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the values given in [10]. For the reaction 6He + 27 Al, the value of the parameter P 

is more or less in agreement with the values in [10]. However, for the reaction 7Be 

+ 27Al, parameter P is not in agreement with the value reported in [10] which is 

probably due to the fact that there is a substantial transfer cross section.

5.7 Summary and Outlook

Reduced reaction cross section analysis of a variety of reactions has revealed that 

the trajectories for reduced reaction cross section for reactions initiated by normal 

loosely bound projectiles, and radioactive halo projectiles are clearly separated when 

plotted against their reduced energy. Also, it has been pointed out that the reason 

for the separation of the trajectories is that the barrier parameters {VB, Rb) are 

slightly shifted. This result can be explained within the global parametrization of 

nuclear potentials if the correct radius of nucleus is taken into consideration. Direct 

application of the potentials Bass 80, CW 76, BW 91, AW 95, Prox 88 and Denv 02 

can explain the shift of the barrier parameters of reactions induced by the neutron 

halo nucleus (6He). For the proton halo system (8B + 58 Ni), the shift cannot be 

explained by straight application of the potentials. The potentials predict a decrease 

in radius of proton halo nucleus (8B) with respect to the normal counterpart (10B), 

but experimentally an increase in matter radius is observed. Taking experimental 

data into consideration, the average matter radius for 10B is determined. Since, 8B 

has exceptional proton halo character, we determine an effective radius for 8B. The 

experimental shift in the barrier parameters for the proton halo system can be sat­

isfactorily explained by taking into consideration the radii for 10B and 8B. Similar 

analysis is carried out for reactions induced by Be projectile. We found that the cal­

culated shift of the barrier parameters for radioactive halo system (induced by nBe) 

with respect to normal loosely bound systems (induced by 7Be and 9Be) matches the 

experimentally obtained shift of the barrier parameters obtained from reduced cross
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section analysis of reactions induced by 6He and 8B projectiles. For the reactions 

6He 4- 27 Al and 7 Be+27Al (induced by radioactive projectiles), we have obtained 

a best fit for the total reaction cross section using the modified Wong’s formula 

(MWF). This phenomenological formula contains three dimensionless parameters 

whose values are chosen by the y2 minimization technique. The total reaction cross 

section is reproduced quite satisfactorily for the two reactions.

We note that only one proton halo system has been taken into consideration for 

study of the reduced reaction cross section. Hence, more experimental data regard­

ing proton halo systems is needed in order to make a universal conclusion regarding 

its reduced reaction cross section. More study (experimental and theoretical) is 

needed for accurate determination of r.m.s. matter and charge radii of proton halo 

nuclei. This would help us in better treatment of the nuclear potentials of proton 

halo nuclei.
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Chapter 6

Conclusion

In the present thesis we have carried out a theoretical investigation on the properties 

of reactions induced by loosely bound projectiles. To some extent, our work is 

motivated by the huge amount of experimental data that has become available in 

the last decade and a half. The properties studied by us are the fusion barrier, 

fusion cross section, fusion suppression and also the reduced reaction cross section 

analysis of radioactive systems. In chapter 2, the fusion barrier parameters (VB, 

Rb) of thirteen reactions induced by the loosely bound projectiles, 6Li, 7Li and 9Be 

are studied. For evaluation of the fusion barriers, eight different versions of the 

proximity potential are employed. The potentials Bass 80 and BW 91 are found 

to be most effective in reproducing the values of VB and RB, respectively. The 

parametrized formula (VB = 1.44ZiZ2(-Rb — 0.75)/R%) connecting VB and RB has 

also been tested for the above reactions, and the formula is found to be extremely 

effective. For the reaction 6Li+152Sm, the deviation of the barrier parameters from 

the experimental values are quite large. On applying the correction to the Coulomb 

potential for the deformed target (152Sm), the new values of the barrier parameters 

are found to be much closer to the empirical values.

In the third chapter we studied the fusion cross section for the reactions 6Li+209Bi, 

9Be+208Pb, 7Li+209Bi and 6Li+152Sm. Wong’s formula is used for determination
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of the fusion cross section, and the barrier parameters needed for use in the Wong’s 

formula are taken from chapter 2. For all the reactions, the fusion cross section is 

in agreement with the results of the single barrier penetration model (SBPM). We 

also note that the experimental results are much below the theoretical expectations. 

This is because of the fact that fusion suppression is dominant in these reactions 

which takes place due to breakup of the projectile. For the reaction 6Li+l52Sm we 

also observe that the fusion cross section for the deformed target case is in much 

better agreement with the theoretical predictions than in case of spherical target. 

This proves that target deformation has a great role to play in the study of fusion 

cross section.

In the fourth chapter we present a semiclassical model for the explanation of 

fusion suppression. The problem is essentially separated into two parts. In the first 

part the cutoff impact parameter for fusion is determined, and in the second part we 

find the fraction of projectiles undergoing breakup within this cutoff impact param­

eter. The cutoff impact parameter for fusion is obtained through rigorous quantum 

mechanical concepts as fusion is a quantum mechanical barrier transmission problem 

having no classical analogue. We applied the classical trajectory method in order to 

determine the fraction of projectiles undergoing breakup within the cutoff impact 

parameter for fusion. Studying the numerical solutions, a breakup condition for a 

trajectory is defined. Then for each impact parameter, the breakup fraction is deter­

mined by taking a sample of 50 trajectories. Then, a simple formula for explanation 

of fusion suppression is proposed, according to which fusion suppression is given by 

the average of the breakup fractions evaluated at impact parameters ranging from 

head-on collision up to the cutoff impact parameter. On application of the above 

formula, we find that there is very good agreement between ocai and for the 

three systems 6Li+209Bi, 6Li+152Sm and 6Li+144Sm. The agreement of our results 

with experimental data also suggests that the above barrier breakup of 6Li nucleus 

in the field of a heavy target nucleus can be fruitfully studied by applying classi-
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cal Newtonian laws. This is especially important in view of the fact that quantum 

mechanical methods (like CDCC), employed for studying breakup, can work only 

under approximations which may not lead to accurate results under all conditions. 

Another contribution in this chapter is the development of a semiclassical model 

of the 6Li nucleus. The model is essential for obtaining the initial conditions for 

solving the classical equations of motion.

In the fifth chapter, we present an analysis of reaction cross section induced by 

radioactive projectiles (6He, 8B and 7Be). It is now well known that the reduced 

reaction cross section ( vs reduced energy ) shows separate trajectories for tightly 

bound, loosely bound and radioactive halo systems. Also it has been pointed out 

that this existence of well-defined paths is due to the separation of the barrier 

parameters for the three types of systems. In this work we sought an explanation 

for the shift in the barrier parameters of radioactive halo systems with respect 

to normal loosely bound systems by using six different nuclear potentials. The 

calculated shift of the barrier parameters closely matches the experimental shift of 

the barrier parameters obtained from reduced reaction cross section analysis. This 

result proves that the separation of the trajectories of the reduced reaction cross 

section of different systems is contained within the global parametrization of nuclear 

potentials. For the proton halo system, the shift can only be explained if new values 

of the radii (for 10B and 8B) are taken into consideration which is because of the fact 

that the radius of the halo nucleus (8B) is greater than the normal nucleus (10B). For 

the reactions 6He + 27Al and 7Be+27Al, fitting of the total reaction cross section 

is done using the modified Wong’s formula (MWF) (PRC, 86, 057603). From the 

quality of the fit, it can be concluded that for halo and loosely bound systems, the 

modified Wongs’ formula (MWF) gives a better reproduction of the experimental 

reaction cross section than the unmodified Wongs’ formula (UWF).

In our opinion, the work presented here has a lot of scope for future research. 

Many other potentials,1 like, single-folding, double-folding and Skyrme energy den-
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sity, could be used for the evaluation of the barrier parameters (Vs, Rb) of loosely 

bound systems. It would be interesting to see how they compare with the predictions 

of the proximity potentials that has been reported here. For the system 6Li+152Sm, 

correction of the nuclear potential for the deformed target can also be tried, espe­

cially for the potentials Prox 88 and BW 91. For the determination of the fusion 

cross section above the barrier, improved versions of Wong’s formula (Balantekin’s 

correction) can be used for accurate determination of the fusion cross section.

Fusion suppression factor for other 6Li based reactions can also be studied. In­

stead of using Wood’s-Saxon potential, other nuclear potentials can also be used 

in the classical equations of motion. It would be interesting to observe which other 

nuclear potentials (apart from Wood’s-Saxon) can predict an accurate picture of 

breakup of the projectile. The model of fusion suppression developed here is a 

two-dimensional classical trajectory model. The obvious generalization would be a 

three-dimensional model. It would be interesting to see whether the formula for 

fusion suppression proposed here for the two-dimensional model (Eq. 4.64 ) would 

still be applicable for the three-dimensional model. In the three-dimensional model, 

the orientation of the projectile is not necessarily confined to a single plane which 

is the case for the two-dimensional model. Finally, a fully quantum mechanical 

model of fusion suppression could be attempted in future even though it may be a 

highly challenging task. For this it would be necessary to develop a fully quantum 

mechanical version of the model of 6Li nucleus that has been proposed here.
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Appendix A

Fortran code for determining 

breakup and nobreakup 

trajectories

program breakup 

implicit none

real::funl,fun2,rl,al,r2,a2,r3,a3,k0,kl,k2,k3,k4,k5,r,wl,zl,w2,z2Iw3,z3,nl,n2,n3,h,t,x 

real::cl,02,03,04,05,06,07,08,09,010,011,012,013,014,015,016,017,018,019,020,021,022,023,024 

real: :rO,e,b, v3, v, vl ,v2,rdl ,ra,d 

real: :xl ,x2,y 1 ,y2,x3,y3 

integer: :i,n,m,il

open (unit=1 ,file=’data22bl ’ ,status= ’unknown’)

open (unit=2 ,file=’ deutron2 ’ ,status=’unknown ’)

open(unit=3,file=’alpha-particle2!,status=’unknown’)

open(unit=4,file=’target2’,status=’unknown’)

read*,m

rl=1.850

al=0.710
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r2=1.160

a2=0.830

r3=1.392

a3=0.656

kO—2.880

kl=106.338

k2=109.630

k3=91.460

k4—119.520

k5=239.040

r=6.970

h=0.01

n=1700

nl=2

n2=4

n3=209

t=0

x3=0

w3=0

y3=0

z3=0

r0=2.27

e=33.0

b=0.8

v3=0.47952/sqrt(r0)

v=sqrt(0.31936*e)

vl=2*v3

v2=v3
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do il=l,m

rdl=rand()

enddo

ra=25+rdl*30

xl=-ra-(0.666667)*r0*sin(x)

yl=b+(0.66667)*r0*cos(x)

x2=-ra+ (0.33333) *r0*sin(x)

y2=b- (0.33333) *r0*cos(x)

wl=v+vl*cos(x)

zl=vl*sin(x)

w2=v-v2*cos(x)

z2=-v2*sin(x)

do i=l,n

cl=k0* (xl-x2) / (funl (xl,x2,y 1 ,y2) )**3

c2=-kl *fun2(xl ,x2 ,y 1 ,y2,rl ,al) * (xl-x2) /funl (xl ,x2,y 1 ,y2)

c3=-k2*fun2 (xl ,x3,y 1 ,y3 ,r2, a2) * (xl-x3) / funl (xl ,x3 ,y 1 ,y3)

if(funl(xl,x3,yl,y3).lt.r)then

c4= (k4/r**3) * (xl-x3)

else

c4=k4*(xl-x3) / (funl(xl,x3,yl,y3))**3 

endif

wl=wl+h*0.95808* (cl+c2+c3+e4) /n 1 

xl=xl+h*wl

c5=k0*(yl-y2)/(funl(xl,x2,yl,y2))**3 

C6=4d*fun2(xl,x2,yl,y2,rl,al)*(yl-y2)/funl(xl,x2,yl,y2) 

c7=-k2*fun2(xl ,x3 ,y 1 ,y3,r2,a2) * (y l-y3) /funl (xl ,x3,y 1 ,y3) 

if(funl (xl ,x3,y 1 ,y3) .It .r)then 

c8=(k4/r**3)*(yl-y3)
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else

c8=k4* (y l-y3) / (funl (xl ,x3,y 1 ,y3)) **3 

endif

zl=zl+h*0.95808* (c5+c6+e7+c8) / nl 

yl=yl+h*zl

C9=-k0* (xl-x2) / (funl (xl ,x2,y 1 ,y2)) **3

cl0=kl*fun2(xl ,x2,y 1 ,y2 ,r 1 ,al) * (xl-x2)/funl (xl ,x2,y 1 ,y2)

cl l=-k3*fun2(x2,x3,y2 ,y3,r3,a3)* (x2-x3) /funl (x2 pc3,y2 ,y3)

if(funl(x2,x3,y2,y3).lt.r)then

el2=(k4/r**3)*(x2-x3)

else

Cl2=k4*(x2-x3)/(funl(x2,x3,y2,y3))**3

endif

w2=w2+h*0.95808*(c9+cl0+cll+cl2)/n2

x2=x2+h*w2

cl3=-k0*(yl-y2)/(funl(xl,x2,yl,y2))**3

Cl4=kl*fun2(xl,x2,yl,y2,rl,al)*(yl-y2)/funl(xl,x2,yl,y2)

Cl5=-k3*fun2(x2,x3,y2,y3,r3,a3)*(y2-y3)/funl(x2,x3,y2,y3)

if(funl (x2,x3,y2,y3) .It .r)then

cl6=(k5/r**3)*(y2-y3)

else

el6=k5*(y2-y3) / (funl(x2,x3,y2,y3))**3 

endif

z2=z2+h*0.95808*(cl3+cl4+el5+cl6)/n2

y2=y2+h*z2

Cl7=k2*fun2(xl,x3,yl,y3,r2,a2)*(xl-x3)/funl(xl,x3,yl,y3) 

Cl8=k3*fun2(x2,x3,y2,y3,r3,a3)*(x2-x3)/funl(x2,x3,y2,y3) 

if(funl (xl ,x3,y 1 ,y3) .It ,r)then
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cl9=-(k4/r**3)*(xl-x3)

else

cl9=-k4*(xl-x3) / (funl (xl ,x3,yl ,y3)) **3 

endif

if (funl (x2,x3,y2,y3) .It .r)then 

c20=-(k5 / r**3) *(x2-x3) 

else

c20=-k5*(x2-x3)/(funl(x2,x3,y2,y3))**3

endif

w3=w3+h*0.95808*(cl7+cl8+cl9+c20)/n3

x3=x3+h*w3

C21=k2*fun2(xl,x3,yl,y3,r2,a2)*(yl-y3)/funl(xl,x3,yl,y3)

C22=k3*fun2(x2,x3,y2,y3,r3,a3)*(y2-y3)/funl(x2,x3,y2,y3)

if (funl (xl ,x3,y 1 ,y3) .lt.r)then

c23=-(k4/r**3)*(yl-y3)

else

c23=-k4*(y l-y3)/ (funl (xl ,x3,y 1 ,y3)) **3 

endif

if (fun 1 (x2 ,x3 ,y 2 ,y 3). It .r) then 

c24=- (k5/r * *3) * (y 2-y 3) 

else

c24=-k5*(y2-y3) / (funl(x2,x3,y2,y3))**3 

endif

z3=z3+h*0.95808*(c21+c22+c23+c24)/n3

y3=y3+h*z3

t=t+h

write(2,*)xl,yl

write(3,*)x2,y2
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write(4,*)x3,y3

enddo

d=sqrt((xl-x2)**2+(yl-y2)**2)

print*,d

stop

end

real function funl(bl,b2,b3,b4) 

implicit none 

reai::bl,b2,b3,b4

funl=sqrt( (bl-b2) **2+(b3-b4) **2) 

end function funl

real function fun2(b5,b6,b7,b8,b9,bl0) 

implicit none 

real::b5,b6,b7,b8,b9,bl0

fun2=exp((sqrt((b5-b6)**2+(b7-b8)**2)-b9)/bl0)/(l+exp((sqrt((b5-b6)**2+(b7-b8)**2)~

b9)/bl0))**2

end function fun2
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