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Preface

Studies on nuclear reactions with stable and unstable loosely bound projectiles has
gained widespread popularity in recent years because of improved experimental fa-
cilities. This has been possible because of the availability of intense beams of stable
loosely bound nuclei (®°Li, "Li and °Be) as well as unstable or radioactive loosely
bound nuclei (*He, 8B, "Be, etc.). Hence, in the last two decades a large number of
nuclear reactions have been performed around the world with loosely bound nuclei
as projectiles. Having a low breakup threshold energy, these projectiles are easily
susceptible to breakup and this gives rise to many new interesting features. The
theoretical side is largely unexplored and the present thesis embodies theoretical
work that has been carried out on some important properties of reactions induced
by loosely bound projectiles.

From the analysis of experimental fusion cross section data, the empirical values
of fusion barrier parameters of a large number of reactions induced by stable loosely
bound projectiles on medium and heavy targets (2Bi, 152Sm, 44Sm, 208Pb, 124Sn,
etc.) have become available. We first determine the fusion barrier parameters of
thirteen number of such reactions using eight different versions ofA the the proximity
potential. The potentials chosen are Prox 77, Prox 88, Bass 73, Bass 77, Bass 80,
CW 76, BW 91 and AW 95 as earlier work had shown that these potentials are highly
effective in reproducing the barrier parameters of reactions induced by tightly bound
projectiles. The results of all the potentials are found to be satisfactory. However,

the potentials Bass 80 and BW 91 are found to be most effective in reproducing the



height (V) and position (Rp) of the barrier, respectively. The parametrized formula
(Vg = 1.44Z, Zy(Rp —0.75)/ R%) connecting Vp and Rp has also been tested for the
above reactions, and the formula is found to be extremely effective. For the reaction
6Li+152Sm, the deviations of the barrier parameters from the empirical values is
found to be unusually large, and this is attributed to the large static deformation
(B2 = 0.26) of the target (***Sm). On application of the correction of the Coulomb
potential for the deformed target, the new values of the barrier parameters are found
to be much closer to the empirical values. Study of the nature of the potentials for
the case of deformed target reveals the emergence of distinct potential pocket for
the potentials Bass 77, Bass 80, BW 91 and AW 95 in addition to the potentials
Prox 77 and Prox 88 for which the pocket exists even for the spherical target case.

Then, fusion cross section for the reactions $Li+2%9Bi, 9Be+2%Pb, “Li+2%Bj and
61i4-152Sm is studied using the Wong’s formalism a.zid the barrier parameters are
taken from the earlier results. The fusion cross section is also calculated from the
single barrier penetration model (SBPM) using the code CCFULL. The fusion cross
section calculated from Wong’s formalism is found to be in agreement with the
SBPM cross section, and is also found to be fractionally greater than the experi-
mental cross section. The reason for the decrease of the experimental cross section
is because of projectile breakup, and this phenomenon is called fusion suppression.
Also, we find that fusion cross section calculated from Bass 80 barrier parameters
gives a much better reproduction of the SBPM cross section. For the reaction
6Li4152Sm, fusion cross section is calculated considering the cases of spherical as
well as deformed target. The fusion cross section for the case of deformed target is
in much better agreement with the results of the SBPM cross section than the case
of spherical target. This proves conclusively that deformation of nuclei has a great
role to play in fusion cross section.

The most important part of our work is the semiclassical model for the expla-

nation of fusion suppression. Technically speaking, fusion suppression is the ratio



between the experimental and the theoretical fusion cross section. The cause of
fusion suppression, as noted earlier, is due to breakup of the projectile. We apply
the model to the three ®Li induced reactions : SLi+2?%Bi, Li+**Sm and ®Li+%*Sm.
81 has the lowest breakup threshold energy of 1.48 MeV, and easily breaks up into
a deuteron and an a-particle. The experimental fusion suppression factors observed
for the three reactions at energies = 1.1 to 1.5 times the barrier energy are 0.36,
0.32 and 0.28, respectively. The basic idea of the model is to find out the cutoff
impact parameter for fusion. Then the fraction of projectiles undergoing breakup
within the cutoff impact parameter for fusion is determined which is then directly
related to the fusion suppression factor. The cutoff impact parameter for fusion is
determined by the single barrier penetration model (SBPM), as fusion cross section
above the barrier can be approximated by the results of SBPM.

We apply the two-dimensional classical trajectory method for determining the
fraction of projectiles undergoing breakup. From the three-body Lagrangian for
the system of target and two-body projectile, the classical equations of motion are
obtained. For obtaining numerical solutions, initial conditions have to be provided.
For obtaining the initial conditions, we propose a semiclassical model of the °Li
nucleus. The two postulates of the °Li (— “He+2H) cluster model are : (a) The
total energy of the deuteron and the a-particle system is equal to the breakup
threshold energy (binding energy) of the SLi nucleus, .and (b) The total angular
momentum of rotation of the deuteron and the a-particle about an axis through
its centre of mass is equal to \/TU‘IT)h, where I is the spin quantum number of
the Li nucleus. From the calculations, the distance between the deuteron and the
a-particle comes out to be 2.27 fm. Using the initial conditions, numerical solutions
are obtained and the trajectories are studied. Three distinct types of trajectories are
obtained and these are : scattering-like, incomplete fusion and no-capture breakup.
We define a breakup condition for a trajectory or projectile. If the distance of

separation between the deuteron and the a-particle is greater than 2.27 fm then its

xii
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a breakup trajectory, otherwise its a nobreakup trajectory.

Taking a sample of fifty trajectories at each impact parameter, the breakup
fraction is determined. Then a formula is proposed for the explanation of fusion
suppression according to which fusion suppression is given by the average of breakup
fractions calculated at different impact parameters. The range of impact parameters
lie between a head-on collision and the cutoff impact parameter for fusion. On
application of the above formula to the three ®Li induced systems, we find that
there is excellent agreement between the experimental fusion cross section (Oesp)
and the calculated fusion cross section (0.,). However, for the reaction 6Li+%2Sm
there is slight disagreement at higher energies because of deformed nature of the
target 12Sm. Also, the relationship between the cutoff angular momentum for fusion
(L.) and energy (E.n,) is studied, and a linear relationship is establised. Using the
proximity potential, the linear relationship is explained.

The last part of our study concerns the reduced reaction cross section of radioac-
tive halo projectiles. For systematic analysis of reaction cross section data, Gomes’
reduction procedure is widely followed in which the dependence of the cross section
on the barrier radius (Rpg) is eliminated, and the energy is scaled with respect to
the barrier height (Vg). Study of reduced reaction cross section (oyeq) versus re-
duced energy (Feq) for a variety of systems has revealed that separate trajectories
are followed for reactions induced by tightly bound, loosely bound, and radioactive
halo projectiles. Also it has been pointed out that the reason for the separation of
the trajectories of loosely bound and radioactive halo systems is that the Coulomb
barrier is slightly lowered, and the barrier radius is marginally increased for ra-
dioactive systems in comparison with normal loosely bound systems. The reactions
considered for radioactive halo systems are, 6 He+3" Al, $ He4-%4Zn, ¢ He+2%° By and
8 B4+ Nj. The corresponding reactions induced by normal nuclei are, *He+2"Al,
‘He+%4Zn, *He+2°Bi and 1 B+8 Ni. Using six different versions of global nuclear

potentials on the above reactions we provide an explanation for the separation of

xiii



the barrier parameters. However, for the proton halo system %8B+ Ni, the change
in the barrier parameters can only be accounted if proper radius of the halo nucleus
8B and the normal nucleus !°B is taken into account. This is because of the fact
that experimentally the radius of the halo nucleus ®B is found to be greater than
0B, but all the six global nuclear potentials predict a decrease in the radius of ®B.
The study is extended to Be—projectile induced systems, and similar conclusions are
drawn. Also, using the modified Wong’s formula, the total reaction cross section is
explained for the reactions "Be+27Al and He+%"Al. The modified Wong’s formula
is & phenemenonological formula containing three dimensionless parameters whose
values are chosen by the x? minimization technique.

There is potential future research prospect, particularly, in the semiclassical
model of fusion suppression. The model of fusion suppression developed here is
a two-dimensional classical trajectory model. The obvious generalization would be
a_three-dimensional model. It would be interesting to see whether the formula
for fusion suppression proposed here for the two—dimensional model would still be
applicable for the three-dimensional model. In the three-dimensional model, the
orientation of the projectile is not necessarily confined to a single plane which is the
case for the two-dimensional model. Finally, a fully quantum mechanical model of
fusion suppression could be attempted in future even though it may be a highly chal-
lenging task. For this it would be necessary to develop a fully quantum mechanical

version of the model of ®Li nucleus that has been proposed here.

xiv



Chapter 1

Introduction

1.1 ‘The nuclear interaction

Since the discovery of the neutron by Chadwick in 1932, there has been unprece-
dented attempts in understanding the nuclear force. In 1953, the noted physicist
Hans Bethe stated that, ”more man-hours have been given to this problem than to
any other scientific question in the history of mankind”. A variety of methods and
procedures have been adopted in studying the problem. The nuclear force is power-
fully attractive and operates at distances in the femtometer (10~°m) regime. The
magnitude of the force is maximum at distances around 1 fm, and quickly decreases
to insignificance at distances greater than 2.5 fm. The first attempt at understand-
ing the nuclear force problem was developed in 1935 by the Japanese physicist,
Hideki Yukawa [1], who proposed that massive particles (called ”mesons”) were ex-
changed between the nucleons during their interaction. The theory was developed
in analogy to the i:heory of electromagnetic interaction in which massless ” photons”
are exchanged between the particles. These models became known as one-boson-
exchange models, and were very successful in explaining essentially all properties of
the nucleon-nucleon interaction at low energies.

Apart from short-range and strong-attraction, some other remarkable properties
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Figure 1.1: Diagram showing the nucleon-nucleon interaction.

of the nuclear force have been noted [2]. The nuclear force is dependent upon
the direction of the spin of the nucleons due to which nuclear force has a tensor
component. In heavier nuclei, a shell structure has been observed due to which it is
essential to introduce a spin-orbit force. The nature of these forces can be studied
through scattering experiments between nucleons. Moreover, the nucleon-nucleon
force turns repulsive at distances shorter than 0.6 fm. Besides the force between
two nucleons, there are also three-nucleon forces, four-nucleon forces, and so on.
Their contribution is small, but crucial. The nuclear force or the nucleon-nucleon
interaction is diagrammatically shown in Fig. 1.1. With all these properties the
potential between two nucleons (the NN interaction) becomes quite complicated.
Therefore, trying to solve the Schrodinger equation becomes a hopeless task even

for the simplest nuclei. In the 60s and the early 70s, it became known that the



nucleons were no longer fundamental particles, but are instead composed of three
quarks. Hence, it was realized that the fundamental theory of the nuclear force
is quantum chromodynamics (QCD) and not meson theory [3]. Hence, the two-
body nucleon problem becomes a six body quark problem. A lot of progress has
been made, but still there are immense practical difficulties in trying to solve the
six body problem by brute force. However, a true picture of the nuclear force has
emerged. The modern view of the nuclear force is that it is a residual interaction
of the even stronger force between quarks, which is mediated by the exchange of
gluons and holds the quarks together inside a nucleon. This is somewhat similar to
the van der waals interaction between neutral atoms, which is a residual interaction

of the strong electromagnetic force between the electrons and the nuclei.

1.2 Heavy ion potentials

From the discussion in section 1.1, we can conclude that it would be a daunting task
to study the nuclear force from a completely theoretical viewpoint. As such, the
phenomenological approach has evolved in which simple nuclear models have been
developed for explaining the results of experiments. A successful phenomenological
approach is to ignore the individual nucleon-nucleon interaction and consider a sin-
gle potential for the whole nucleus: Many heavy-ion systems may be understood in
terms of empirical parametrizations of the nuclear potential. One such example is
the optical model which is used for describing scattering data. The optical model
potential has a real part and an imaginary part for describing the scattering and
absorption, respectively. Phenomenological Woods-Saxon potential is used for de-
scribing both the real and imaginary parts of the optical potential. As many as two
dozen other nuclear potentials are available in the literature. In chapter 2, we use
a few nuclear potentials, and these are the two versions of the proximity potential

(Prox 77 and Prox 88), three versions of the Bass potential (Bass 73, Bass 77 and



Bass 80), the Christensen and Winther potential (CW 76), the Broglia and Winther
potential (BW 91), and the Aage Winther potential (AW 95). The proximity po-
tential is obtained from the proximity theorem, whereas all the other potentials are
obtained phenemenologically through analysis of scattering and fusion cross section
data. Besides the above potentials, there are other potentials like the single fold-
ing potential, double folding potential [4], Skyrme energy density potential [5], etc.

which are also successful in explaining a variety of phenomena.

1.3 Direct and compound-nucleus reactions

Elastic scattering

(12C ,ZOBPb)

Inelastic scattering

(12C 208Pb*)
_» (p}lgFr)
:__» (4He,216Rn)
! E ...» (3n,217Ra)

12C

(13C,2°7Pb)

(1OB +2H,208Pb)

Transfer reactions

Breakup reactions

Figure 1.2: Diagram showing compound nucleus reactions and direct reactions for
12C+28Pb, Reactions proceeding from the rectangular box are the compound nu-
cleus reactions, whereas the other reactions are the direct reactions.

A nuclei whose atomic number, A > 4, is called a heavy-ion by convention.
Heavy-ion reactions have displayed properties which are quite different from reac-
tions in which one of the participants is a light ion. Many different types of nuclear

reactions [6] have been observed, and they are mainly categorized under two main

4



groups : direct reactions and compound-nucleus (CN) reactions. A third cate-
gory, called deep inelastic collisions have also been categorized in recent years. In
compound-nucleus reactions, the projectile and the target fuse to form a compound
nucleus. In the formation of the compound nucleus, the total kinetic energy of the
projectile is redistributed among all the nucleons of the compound nucleus. Hence,
the compound-nucleus loses all memory of its formation process, and its decay is
governed by the properties of the compound nucleus. The typical lifetime of a com-
pound nucleus is 1071¢ s, and they usually take place at smaller impact parameters or
head-on collisions. All types of fusion reactions are examples of compound-nucleus
reactions. At the opposite extreme we have direct reactions. Examples of direct
reactions are elastic and inelastic reactions, transfer ;md breakup reactions, etc.
These are diagrammatically shown in Fig. 1.2 with proper examples. Direct reac-
tions are peripheral processes in which the incident particle interacts primarily at
the surface of the target. Another criteria for direct reactions is that the incident
particle must be highly energetic. As such the time of interaction between projectile
and target in direct reaction is usually about 10~%' s, which is orders of magnitude
smaller than that of compound nucleus reactions. Experimentally, these two incred-
ibly short periods of time can be distinguished with present day facilities. Also, the
angular distribution of the outgoing particles in direct reactions tend to be more

sharply peaked in the forward direction. However, for compound-nucleus reactions

the detected particles usually have forward and backward symmetry.

1.4 Types of heavy-ion nuclear reactions

Heavy-ion reactions are often treated in semi-classical approximation because of the
complexities of the interaction between the two colliding nuclei. However, in view
of the large masses it would be convenient to view the reaction first in the limit of

classical scattering. Hence, the angular momentum of the projectile approaching a



target with energy, E, and impact parameter, b, is given by,

L =bV2mE (1.1)

In the semi-classical approximation, we have, L=/h, where, £ is the angular momen-
tum of the projectile. Hence, in terms of the wave number, k=v2mE/h, we may

write,

= bk (1.2)
In order to describe the different categories of heavy ion reactions with increasing
energy, the grazing angular momentum (£,) may be defined,

¢, = kR, (1.3)

where, R, is the grazing radius at which the colliding pairs start to feel the attrac-
tive nuclear force between them. It is usually taken to be slightfy larger than the

geometric ”touching” distance between the two heavy-ions,
R=rgA*+ A% ; ry=12fm (1.4)

where, A; and A; are the mass numbers of the two heavy ions.
According to the relative values of £ and ¢,, heavy ion nuclear reactions may be

classified as follows :

1.41 2>,

Reactions in this category doesn’t involve transfer of mass or charge. Because of
high impact parameter the Coulomb force is impcrtant in this category. Reactions

under this category include the following :



Rutherford scattering

It takes place at the highest impact parameters and is also called the Coulomb scat-
tering. Rutherford scattering can be entirely studied by applying classical laws. The
Rutherford cross-section, originally derived by Rutherford using classical mechanics,

matches the exact quantum mechanical cross section.

Coulomb excitation

In heavy ions, the Coulomb force is quite large, and this may cause excitations
in both the target and projectile. Due to simplicity of the Coulomb force, the
experimental results can be studied with great accuracy. The excited nucleus usually

decays by the emission of y-rays.

1.4.2 (>,

At these intermediate values of £, the projectile reaches a distance close to the grazing
radius (R,). The nuclear effects start to dominate and as a result many new reaction
channels open up. Transfer of a few number of nucleons are usually involved. For
experimental reasons, these reactions are also called quasi-elastic. Reactiéns under
this category include elastic nuclear scattering, inelastic scattering, nucleon-transfer

reactions, knockout and breakup reactions and capture reactions.

Elastic Nuclear scattering

As the energy of the projectile is slowly increased, the Rutherford cross-section start
showing deviations because of the nuclear force. The elastic nuclear scattering shows
alternate maxima amd minima and bears a strong resemblance to the diffraction of
light from an opaque object. All the participating partners remain in ground state

before and after the scattering.



Inelastic scattering

This is similar to Coulomb excitation where either or both the target and projec-
tile are excited to higher states. The excitation is primarily due to the nuclear

interaction.

Nucleon transfer reactions

As the two nuclei come extremely close to each other, nucleon-transfer takes place
due to quantum mechanical tunnelling. They can be either single nucleon transfer or
multi-nucleon transfer reactions. Stripping and pick up reactions fall under single-
nucleon transfer reactions. In stripping reactions, a nucleon is transferred from
projectile to target. The reverse takes place in a pick up reaction. In multi-nucleon
transfer reactions upto three-four nucleons may be exchanged between target and

projectile.

Knockout and breakup reactions

In knockout reactions, a few nucleons are knocked out of the target or the projec-
tile. In breakup reactions, the target breaks up into two or more fragments. Such

reactions are only possible at very high energies.

Quasi-elastic scattering

The sum of the elastic scattering, inelastic scattering and transfer reactions is called
quasi-elastic scattering. During measurement, when detector resolution is severe,
the above reactions are not distinctly separated. Hence, they are grouped together

under quasi-elastic scattering.

Capture reactions

In this type of reaction, an electron is captured by the target nucleus, and there is

a decrease in the atomic number of the target by one unit. Eg : "Be+e~ — "Li.



1.43 <,

All compound-nucleus reactions fall under this category. Since, the life time of
the compound nucleus is comparatively higher, hence, they are also called fusion
reactions. The compound nucleus formed in fusion is usually unstable because they
are generally proton-rich or neutron-deficient. For example, “°Ca+°"Zr produces the
compound nucleus ***°Nd which has 12 neutrons less than the most proton-rich stable
neodymium isotope. Since, the collision process usually involves large masses at high
velocities, hence, the compound-nucleus possesses high angular momentum, of the
order of many tens to hundreds of h. Depending upon the mode of disintegration

of the compound nucleus, they are classified as :

Fusion-fission

For attaining stability, the compound nucleus decays by fission of two or more frag-
ments of comparable mass. The angular momentum carried by the fission fragments
is also large, and not much appears as spins of the fragments. Probability for fission

is high only if the charge of the compound nucleus is greater than about 70.

Fusion-evaporation

On the other hand, if there are barriers against fission, the compound nucleus shall
attain stability by evaporation of lighter particles (like neutrons, protons or a-
particles) or through «-ray emission. The angular momentum carried away by these
lighter particles is usually small (< 2-3 units of %), and the residual nucleus is left
with a very high spin. This process is called evaporation because it is similar to the
evaporation of a liquid drop in which molecules escape from the surface. Fig. 1.3

shows the different types of fusion reactions.
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Figure 1.3: Three types of fusion reactions : (a) fusion (b) fusion-evaporation, and
(c) fusion-fission
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1.5 Heavy ion fusion reaction

As discussed above, fusion is defined as a reaction where two separate nuclei combine
to form a composite system (compound nucleus) whose properties and mode of decay
are independent of the formation process [7].

The two nuclei must collide at small impact parameters and must have suffi-
cient energy to overcome the Coulomb barrier. The study of fusion of two nuclei is
extremely important for a number of reasons. The process of nucleosynthesis (for-
mation of new nuclei) in stars is due to the fusion of smaller nuclei to form heavier
nuclei. In this process elements from carbon to iron are created. Experimentally,
new radioactive nuclei are created which are far from the line of stability. The the-
oretical understanding of such processes has been a great challenge for the Physics
community.

When the incident energy is not so large and the system is not so light, the
reaction process is predominantly governed by quantum tunnelling over the Coulomb
barrier created by the strong cancellation between the repulsive Coulomb force and
the attractive nuclear interaction. The details of fusion cross section, including
the single barrier penetration model (SBPM) and the Wong’s formalism is given
in section 3.4. Until about the early 1980s, fusion was understood in terms of a
simple model of a single barrier whose parameters were varied to fit the measured
cross-section. The results of a number of experiments during this period showed
that the sub-barrier fusion cross-section is much larger than those expected from
the simplified model. That this is not due to the ineffectiveness of the potential was
elegantly showed by Balantekin [8]. He found that unphysical potentials are obtained
if the experimental data is inverted to obtain the one-dimensional fusion barrier.
The first successful explanation for this phenomenon came in terms of coupling-
assisted tunnelling. Successive improvements in the couplings of the relative motion
of the colliding nuclei provided better and better agreement between theory and

experiment. The computer code CCFULL (coupled channels calculation for all

t
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order couplings) [9], developed by K. Hagino, calculates the fusion cross section by
solving the coupled second order differential equations and includes couplings upto

all orders. Details of CCFULL code are given in section 3.5.

1.6 Loosely bound nuclei

Some of the lighter atomic nuclei (like Li, "Li and °Be) are classified as loosely
bound because they are easily susceptible to breakup into smaller nuclei {10, 11]. The
breakup takes place because of low breakup threshold energy (binding energy) among
its constituents. The breakup threshold energy is defined as the mass deficit (ex-
pressed in terms of energy) between the nucleus and its breakup fragments. Hence, if
a nucleus, A, breaks up into fragments A; and A; (A — A; + A5) then the breakup

threshold energy is given by,

S = (MA1 + MA2 - I‘/IA)CZ (1.5)

where, M4, M4, and M, are the masses and c¢ is the velocity of light. For the
nuclei, 8Li, "Li and °Be, the breakup channels along with their respective breakup

threshold energies are given below,

6Li - ‘He +2H ; S,=1475MeV

Li »%*He +3H ; S,=245MeV

°Be — *He + *He + n . S, =1.67 MeV
°Be — “He +3He ; S, =2.55MeV

We see that there are two prominent modes of decay for ® Be. However, the first
mode of decay is more probable because the breakup threshold energy is less. Besides
the above stable loosely bound nuclei, radioactive (or unstable) loosely bound nuclei

have become available in recent years. Examples of such nuclei are ®He, 1!Li, ®B,

12



"Be and 'Be [12, 13, 14, 15]. These nuclei are generally neutron-rich or proton
rich, and most of them display halo properties, i.e., their r.m.s. matter radii are
much greater than expected values. Out of the above nuclei, 1'Li, "'Be and ®He
are neutron halo nuclei, whereas ®B is a proton halo nucleus. In these nuclei, the
separation energy of the last nucleon is extremely small (less than 1 MeV). The
neutron (or proton) density distribution in radioactive loosely bound nuclei shows
an extremely long tail, called the neutron (or proton) halo. Although the density of
the halo is very low, it strongly affects the reaction cross section and leads to new

properties in such nuclei.

1.7 Review work on reactions induced by loosely
bound projectiles

With the availability of intense beams of loosely bound nuclei, a great deal of ex-
perimental work has become available. Most of this work concerns the study of
fusion cross section (and fusion suppression) of these reactions. Fusion reactions
induced by stable loosely bound projectiles have been studied on a wide range of
medium and heavy targets like 20°Bi, 208Pb, 597D, 152Sm, 144Sm, 1%4Sn, 8%Y, etc
[10, 11, 16, 17, 18]. As discussed in the previous section, the loosely bound projec-
tiles are easily susceptible to breakup into two fragments or in some cases even three
fragments. The situation becomes more complicated than the case of fusion with a
stable projectile. Experimentally, at least four different types of events have been
identified [10, 19]. When the whole of the projectile fuses with the target without
breakup, then it is called direct complete fusion (DCF). After breakup, if both the
fragments fuse with the target, then it is called sequential complete fusion (SCF).
If one of the breakup fragments fuse with the target, then it is called incomplete
fusion (ICF). If none of the breakup fragments fuse with the target, then it is called

no-capture breakup (NCBU). Because of projectile breakup, the experimental fu-
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sion cross section falls below the theoretically expected fusion cross section. This
. phenomenon is called fusion suppression, and the ratio between .., and e, is
called fusion suppression. The fusion suppression factor that has been observed for
various loosely bound systems varies from =~ 15-36 %. A detailed review of fusion
suppression is given in chapter 4 in which we present a semiclassical model of fusion
suppression. |

Apart from the work undertaken by us, here we provide a brief review of the im-
portant work done with loosely bound projectiles. Some active groups are engaged in
the analysis of elastic scattering data, andalso in the simultaneous analysis of fusion
and scattering data. The most popular and successful explanation is provided by
the single-channel description of the process which is often called the optical model
analysis. In the one channel description, the nuclsar interaction can be written as
the sum of two complex terms: the optical potential (Vo (r, E)+iWep(r, E)) and the
dynamic polarization potential (Vpoi(r, E)+iWyu(r,E)). The real part of the optical
potential represents the static interaction between frozen nuclear matter distribu-
tions in the projectile and in the target, whereas its imaginary part dccounts for the
average flux lost to a large number of reaction channels. The dynamic polarization
potential handles the strong coupling of these channels with the elastic channel. The
real (Vope(r, E)) and imaginary (Wou(r, E)) parts of the optical potential are energy
independent, or have a very weak dependence on E. On the other hand, the real
(Vpar(r, E)) and imaginary (Wpy(r,E)) parts of the dynamic polarization potential
are strongly dependent on the colliding energy. For the elastic scattering of tightly
bound projectiles, a phenomenon called the threshold anomaly (TA) has been ob-
served for a number of systems. This involves a characteristic peak in the energy
dependence of V,,; around the Coulomb barrier, and the corresponding decrease in
Wpo as the bombarding energy decreases below the Coulomb barrier. A different
type of energy dependence from that of the 'I:"A is observed for the scattering of

loosely bound projectiles ; this is often termed as the breakup threshold anomaly
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(BTA). In the case of the BTA, a repulsive polarization potential is generated due to
the coupling of breakup channels to the elastic channel, which causes an increase in
the imaginary potential and corresponding decrease in the real part of the potential.
Several works on the elastic scattering of ®Li on various targets such as 27Al [20],
G4Ni [21], %4Zn [22], 8°Se [23], %°Zr [24], 1161128 [25],1%8Ba [26], 144Sm [27], 2%Pb [28],
and 2%°Bi [29] have indicated the presence of the breakup threshold anomaly (BTA).
In these cases it has been observed that there is a small increase in the imaginary
part of the optical potential rather than decreasing to zero at energies below the
Coulomb barrier, indicating the absence of the normal TA. However, in the case of
elastic scattering of “Li projectile on different targets such as **Co [30], 8Se [23],
13883 [31], 2%Pb [32], and 22Th [33] the conventional TA has been identified. This
is attributed to the large breakup threshold energy of “Li in comparison to that of
®Li. For °Be induced reactions, the usual TA is not present [34]. Since, ®Be can
breakup in two different ways (section 1.6) having comparable breakup threshold
energies, hence the type of breakup is also crucial for an understanding of elastic
scattering data. It was found that the cluster structure of Be (—*He + *He + n)
is able to explain the sub-barrier elastic scattering data for Be+2%Pb, whereas the
cluster structure of °Be (— *He + 5He) is needed to explain the elastic scattering

data around and above the barrier [35].

1.8 Motivation f(_)r the thesis

In recent years a lot of experimental work has been done on nuclear reactions in-
duced by loosely bound projectiles. This is due to the breakup properties of these
projectiles (°Li, "Li and ®Be). Reactions induced by ®Li is of particular interest
because it has the lowest breakup threshold energy and hence, the highest breakup
probability. The theoretical side of this huge amount of experimental work is largely

unexplored, because within a short span of time a huge amount of experimental work
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has been done. Hence, we would be pursuing theoretical work on some important
properties of reactions induced by these projectiles. The properties investigated by
us are the fusion barrier, fusion cross section and the fusion suppression for these
reactions. Two factors which are very crucial in the study of fusion barrier and
cross section is the nuclear potential, and the deformation properties of the target.
Hence, a comparison among the predictions of different potentials is also a purpose
of our study. Also a comparison of the results (with and without deformation) for
the highly deformed target (*>2Sm) is also done. The determination of fusion barrier
parameters using global potentials has been extensively done for reactions induced
by tightly bound projectiles. Since, such work has not been done for loosely bound
systems, hence, as a first task we would be studying the fusion barrier parameters
for loosely bound systems [10]. However, the most important motivation of our
work is to provide an explanation of the phenemenon of fusion suppression. As far
as we know no purely theoretical work on above barrier fusion suppression has been
done. Although some authors (e.g., Diaz-Torrez [36]) have succeeded in explaining
fusion suppression but they have done so only through the introduction of adhoc
inputs like the breakup probability function. Reactions induced by ®Li projectile
is chosen because it has the highest breakup probability and also, the breakup of
611 is simpler compared to the breakup of ?Li and °Be. The dominant channel for
breakup of Li involves a proton pickup from the target to form 8Be, which then
breaks up into two a-particles [37]. For °Be, the breakup process involves a neu-
tron transfer to the target to form 8Be, which finally breaks up into two a-particles
[36]. However, the breakup of °Li takes place directly without any intermediate
process like breakup of “Li or ?Be. Finally we explain fusion suppression for the
three reactions ; ®Li+*4Sm, SLi+2®Bi and ®Li+!%2Sm [19]. The three reactions are
chosen because precise experimental fusion cross section data is available for all the
three systems, and also very high fusion suppression (= 30%) is observed for all the

systems. For obtaining the equations of motion of the three systems, we propose a

16



model for the Li nucleus in which the deuteron and the a-particle revolve around
their common centre of mass [19]. The model is semiclassical and is motivated by the
Bohr’s model of the hydrogen atom in which electrons revolve around the nucleus in
classical orbits. In the last part of our work we are investigating the reaction cross
section induced by radioactive projectiles. Recent analysis of the reduced reaction
cross section of a variety of systems has revealed that the trajectories of radioactive
halo systems and normal loosely bound systems are clearly separated. The above

fact is explained in terms of the global parametrization of nuclear potentials.

1.9 Plan of the thesis

In chapter 1, we present the introductory information regarding our work which
is mainly concerned with determination of barrier parameters, fusion cross section
and explanation of fusion suppression for reactions induced by loosely bound projec-
tiles. The introduction provides brief discussion about the nuclear force, heavy-ion
potentials, different categories of nuclear reactions with special emphasis on fusion
reactions, and loosely bound nuclei. Chapter 2 deals with the determination of
barrier parameters of 13 numbers of reactions induced by ®Li, "Li and °Be projec-
tiles. For determination of the barrier parameters, we use 8 different versions of
the nuclear proximity potential. The results are compared with experimental data,
and a comparison of the potentials is also done in regard to their effectiveness in
reproducing experimental data. In chapter 3 we investigate the fusion cross section
for some reactions on the basis of the Wong’s formula. A comparison with exper-
imental fusion cross section is also done. We also present the complete theory of
fusion cross section based upon the single barrier penetration model, and also the
Wong’s formula. Chapter 4 concerns the semiclassical model for the explanation
of fusion suppression for the reactions ®Li+!4Sm, SLi+?®Bi and ®Li+'%2Sm. We

derive the classical equations of motion for the three systems. In the process, we
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propose a model for the °Li nucleus through which we obtain the initial conditions
of the differential equations [19]. Then, we define a breakup condition for a trajec-
tory (projectile). Based upon this we propose a formula for explaination of fusion
suppression, according to which fusion suppression is given by the average of the
breakup fractions evaluated at impact parameters ranging from head-on collision up
to the cutoff impact parameter. On application of the above formula, we discuss
the results for the three systems. The relationship between the cutoff angular mo-
mentum (L), and the energy (E.n,) is also discussed. In chapter 5 we would be
examining the reaction cross section induced by radioactive projectiles (°He, "Be
and ®B). First, an explanation for the shift in the barrier parameters of radioactive
halo systems with respect to normal loosely bound systems is provided, and this
result is compared with the experimental shift obtained from reduced reaction cross
section analysis. Next, the total reaction cross section of the reactions 6 He + %7 Al
and "Be+?" Al is explained in terms of the modified Wongs’ formula (MWTF). Finally,
we give the conclusion in chapter 6. In each of the chapters 2, 3 and 4 we present
an exhaustive review work concerning the determination of fusion barrier parame-
ters, fusion cross section using Wong’s formalism, and fusion suppression including

projectile breakup, respectively.
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Chapter 2

Fusion barriers for reactions

induced by loosely bound nuclei

2.1 Introduction

The total potential energy between two interacting nuclei is given by the sum of the
nuclear and Coulomb potential energies. The Coulomb potential energy is inversely
proportional to distance, and hence, shows a smcoth variation with distance. On
the other hand, the nuclear potential energy is effective at short distances (few fm)
between the two nuclei. At distances just outside the overlapping region of the two
nuclei (7-12 fm), the nuclear potential energy has an order of magnitude almost equal
(but slightly less) as that of the Coulomb potential energy, but with the opposite
sign. This unique coincidence gives rise to the Coulomb (or fusion) barrier, and
a potential well immediately inside the barrier. Fusion between two nuclei takes
place, when the projectile overcomes the Coulomb (or fusion) barrier and enters the
potential well (Fig 2.1).

In this chapter, we shall focus on the determination of the fusion barrier param-
eters of reactions induced by loosely bound nuclei (°Li, “Li and °Be). For determi-

nation of the fusion barriers, eight different versions of nuclear potentials are being
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Figure 2.1: Total potential energy (MeV) between two nuclei vs distance (in fm).

used. The primary purpose of this exercise is to check the effectiveness of these
nuclear potentials in reproducing the fusion barrier parameters. Secondly, these pa-
rameters are used for study of the fusion cross section of these reactions through
the Wong’s model (next chapter). Then, we check the validity of a parameterized
formula connecting the barrier parameters. The above mentioned formula has also
been tested for reactions induced by tightly bound projectiles. Lastly, we explain
the large deviation of the barrier parameters of the reaction 6Li+%2Sm in terms of

the deformation of the target nucleus.

2.2 Review work on fusion barrier and nuclear
potentials

The theoretical study of fusion barriers using global potentials has been done by
a number of authors in the past. C. Ngo’s group calculated the fusion barriers

within the framework of the energy density formalism [1]. They proposed a graphical
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method for the extraction of fusion barriers and found that experimental data is well
reproduced up to Z;Z, = 2700-2800. However, above this value, only an estimate
was given, due to changes in the interaction energy curves. An improvement was
made when the Fermi distribution of nuclear densities was used in the calculations
[2]. Fl. Stancu and D.M. Brink used the Skyrme interaction density functional
to study the interaction potential for several pairs of magic nuclei by taking into
account exchange effects due to antisymmetrization [3]. An improvements over the
previous results was noted when an approximation introduced by Kirzhnits and
others for the kinetic energy density was included in the calculations [4]. In another
study [5], L. C. Vaz and J. M. Alexander used the proximity potential for analysing
the fusion cross section and the fusion barrier parameters of 48 pairs of colliding
nuclei. They found that excellent fitting of the experimental data could be obtained
by slight variation of the parameters (R, b and «y) of the proximity potential.
Next, the Panjab University group under R. K. Puri and Raj K. Gupta has made
substantial contribution to the study of interaction potential and fusion barriers
using a variety of nuclear potentials. In 1992 [6], they used the Skyrme interaction
energy-density model to determine the fusion barrier parameters for light systems
(each nucleus, Z < 40, and A < 90). They found that the calculated barrier heights
lie within 1 MeV of the empirical estimates. Spin density effects were also studied,
and it was found that such effects increased the barrier heights by ~ 1 MeV, and
shifted the barriers inside by 0.1-0.2 fm. More recently, they made a detailed study
of light as well as heavy systems using as many as 12 different versions of the nuclear
potential. They found that for symmetric colliding nuclei, the potentials could
reproduce the experimental data, on average, within 8% [8] and for asymmetric
colliding nuclei to within 10% [7]. In another study, they analysed the effects of
various versions of the surface energy coefficients of the proximity potential on the
fusion barriers. It was concluded that surface energy coefficients v-MN 1976 and

v-MN 1995 may be better choices for studying fusion barriers [9]. Some Chinese
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workers are also active in this field of study. C. L. Guo et al. [10], calculated the
nuclear potential for symmetric systems by using the double folding model with
density dependent NN interaction. They also obtained a Universal function of the
proximity potential around the Coulomb barrier position by a parametric fitting of
a simple Woods-Saxon type function. Using the Universal function they found that
the fusion barrier parameters are reproduced satisfactorily for the systems studied.

We shall be using the same potentials that has been used by the Panjab Uni-
versity group in determining the fusion barrier parameters of reactions induced by
loosely bound projectile. Also, we retain the same nomenclature in naming the po-
tentials. The nuclear potentials are the two versions of the proximity potential (Prox
77 and Prox 88), three versions of the Bass potential (Bass 73, Bass 77 and Bass 80),
the Christensen and Winther potential (CW 76), the Broglia and Winther potential
(BW 91), and the Aage Winther potential (AW 95). Besides the study of fusion bar-
riers, these potentials have been successfully used by the Panjab University group
for the study of cluster radioactivity [11]. Cluster or heavy-ion radioactivity is an
intermediate process between alpha decay and nuclear fission, where clusters heavier
than alpha particles but lighter than fission fragments are produced. According to
the preformed cluster model (PCM), the clusters are preborn in the parent nucleus
with preformation probability Py, hit the barrier with impinging frequency vy, and
penetrate it with transmission coefficient P. The form of the nuclear potential comes
into play in the determination of the barrier, and hence in the determination of the
transmission coefficients by the WKB method. It was observed that the proximity
potentials could reproduce the experimental half lives very well. Besides, the po-
tentials Bass 80, CW 76 and BW 91 were found to be equally useful for the study
of cluster dynamics.

In particular, the proximity potential has been used by a number of authors for
studying a variety of phenomena. K. P. Santosh of Kannur University had used

the potential for the study of fusion excitation functions and barrier distributions
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for the fusion of 2C, 0, %8Si, and 35Cl on 92Zr target [12]. Then he used it for
the study of a-decay of nuclei in the range 67<Z<91 [13], as well as in the super-
heavy region (271-294115, 293:2%4117) [14, 15]. Also, he had used the above potential
for working out a semi-empirical formula for spontaneous fission half life for nuclei
in the mass range of 32Th and %6114 [16]. Using the proximity potential in the
Wong formula, Raj Kumar et al. had studied the capture cross-section data from
48(1+238), “8(Ca-+24Py, and **Ca+28Cm reactions in the super-heavy mass region,
and also the fusion-evaporation cross section for the reactions 58Ni+-58Ni, 84Ni-64Ni,

and 84Ni+1%Mo, respectively [17].

2.3 Experimental determination of fusion barrier

The study of the fusion barrier (or Coulomb barrier) is very important, because it
reveals a lot of information about the nucleus-nucleus interaction and also about the
fusion mechanism. More recently, synthesis of super-heavy elements is a hot topic
of research for which knowledge of the fusion barrier is crucial. Experimentally, the
fusion barrier cannot be extracted by direct metheds. It is indirectly obtained from
analysis of precisely measured fusion cross section data. For energies greater than
the fusion barrier, the extraction of the fusion barrier can be done from a fitting of

the measured fusion cross section (o) with Wong’s formula (see chapter 3) [18],

- RZhuwg
 2FE

2m(E ~ Eo)] } (2.1)

in{1 -+ ean|
nyl +exp o
where, hwg is the curvature of the fusion barrier ({=0). Ey and Rp are the height
and position of the fusion barrier, respectively, and E is the energy in the centre-of-

mass frame. In a nutshell, Vg, Rp and hiwg are known as the barrier parameters. For

energies (E) much above the barrier (Ey), the above formula reduces to the classical
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equation for touching collision between spheres,

Ey
=rR?(1-= 2.2
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Figure 2.2: Diagram showing experimental and theoretical d*(Eo)/dE? vs Eqp.
Dots represent the experimental barrier distribution, whereas line represents the
theoretical barrier distribution [19].

The most widely followed procedure is Rowley’s method [19]. Rowley proposed
in 1991 that the distribution of barriers could be extracted directly by taking the
second derivative of the quantity (cE) with respect to E. Experimentally, it is
obtained from a point-difference formula. At energy, E=(E; + 2F, + E3)/4, it is

given by,

= O [

for, equal energy steps, AE = Fy — E; = F3 — Fo, we get,

_ &*(Eo) _(Eo)s —2(Eo)y — (Eo),
De:cp = B2 = N (24)
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When, D.,, is plotted against energy (E), a distribution of barriers is obtained. The
fusion (Coulomb) barrier corresponds to the prominent peak of the distribution.
The above formula will only work if fusion cross section (o) is evaluated at small
intervals of energy (E). In Fig. 2.2 we have shown the experimental (dots) and the
theoretical fusion barrier distribution (line) for the reaction 60+!44Sm as a function
of the centre of mass energy (F.,) [19]. The fusion barrier (occuring around 60 MeV)
is clearly seen. A second resolved bump occurs because of the coupling to the target
phonon states. Some other methods have also been proposed for extraction of fusion

barrier parameters from fusion cross section.

v

2.4 Methodology for finding fusion barrier

The interaction potential between the target nucleus and the projectile can be writ-
ten as the sum of nuclear, Coulomb and centrifugal potentials. Hence,

RA(L+1)

V = V(;('l") + VN(T) + 2,[”_2

(2.5)

where, r is the distance between the centres of the target and projectile, [/ is the
angular momentum quantum number, and p is the reduced mass of the system.
Assuming the size of the projectile to be much smaller than the radius of the target

nucleus, 7., the Coulomb potential V(r) can be approximated by the relation,
Vo = B (2.6)

where Z,, Z, are the atomic numbers of the target and projectile. For ¢=0 the
maximum or peak value of the potential V is called the fusion barrier (or Coulomb
barrier). The respective values of V and r are called the height (V) and position

(Rp) of the fusion barrier. For Vy(r) we have used a total of eight different types
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of nuclear potentials which are briefly discussed in the next section. In naming the
potentials we have retained the same nomenclature as in Ref. [7].

Ideslly, the fusion barrier heights and positions for the different potentials men-
tioned can be determined by applying the rules of calculus to the potential in Eq.
(2.5),

<0 (2.7)

1‘=R5

dr dr?

r=Ry

However, the derivatives may become too complicated for a few of the nuclear
potentials. An easier option is to obtain the potential (V) against distance (r) at
small intervals of the distance (Ar=0.01 fm). Studying the output, Vz and Rg

are easily obtained upto sufficient accuracy level. All calculations are done in the

Fortran programming language.

2.5 Nuclear potentials

In recent years, a large number of nuclear models depending upon a variety of as-
sumptions have been proposed. As many as two dozen potentials and their different
versions are available in the literature. For the purpose of finding the fusion barrier
we had chosen eight versions of commonly used nuclear proximity potentials. We
have used these potentials in particular because earlier studies have shown that these
potentials are reliable and effective for the study of fusion barriers (7, 8]. Moreover,
the barrier parameters could be accurately determined with the minimum number

of parameters. These potentials are described below :

2.5.1 Proximity 1977 (Prox 77)

The nuclear potential of Blocki [20] has its origin cn the fact that the force between
two bodies in close proximity is directly proportional to the interaction potential

per unit area between two flat surfaces made of the same material and the mean
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curvature of the two bodies provided the curvature is small. It leads to a formula for
the interaction potential between two curved objects (eg., two atomic nuclei) which
is the product of a universal function and a simple geometrical factor, characteristic

of the material of which the objects are made. The potential is given by,

CICQ ‘I)(T—Cl —Cg
Ci+Cy b

Va(r) = 47r7b[ ) MeV (2.8)

where Cq, C, are the Sussmann central radius [21, 22] of the target and projectile,

and is related to the sharp radius R, as,
C;=R,— — (2.9)

Here, b = 1 fm, and R; is given by the semi-empirical formula in terms of the mass
number A;,

R;=128AY 408472076 fm (i=1,2) (2.10)

The nuclear surface tension coefficient -y is given by

(N — 2)2} (2.11)

’7’:’)’0{1”]‘33'(—1‘\7—_|_—Z)'5

where, N and Z are respectively the total number of neutrons and protons. <,
and k; are respectively the surface energy constant and the surface asymmetry con-
stant. Their values are given by the Myers-Swiatecki mass formula [23, 24] and are
70=0.9517 MeV/ fm? and k,=1.7826, respectively. The universal proximity function
®(&) can be obtained using the nuclear Thomas-Fermi model with Seyler-Blanchard
phenomenological nucleon-nucleon interaction [25, 26, 27]. For practical applica-

tions one uses a simple analytical representation of the function ®(¢). One such
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approximation is given by the following ” cubic exponential” pocket formula [20, 28],

—l(f — 2.54)% — 0.0852(¢ — 2.64)% if £ < 1.2511,
oe)=4 ° (2.12)

—3.437ezp(—£/0.75) if ¢ > 1.2511.

2.5.2 Proximity 1988 (Prox 88)

Based upon a refined mass formula, the value of the co-efficients vy and k; were
later on modified by Moller and Nix [29] to the new set of values 1.2496 MeV/ fm?
and 2.3, respectively. In this model, the mass excess is given by the sum of a
macroscopic and a microscopic term. The macroscopic part contains a term due
to surface energy which is dependent upon the nuclear surface tension coefficient
given by Eq. (2.11). All the constants appearing in the macroscopic term were
determined_ by selective consideration of experimental data. The co-efficients vy and
k, were determined from the expgrimental fission-barrier heights because fission-

barrier heights are particularly sensitive to these constants.

2.5.3 Bass 1973 (Bass 73)

Based on the classical liquid drop model, Bass [30, 31] gave an expression of the
nuclear potential. In this model, the surface energy of two spheres having half-

density radii R; and R; is given by,

dwdRy Ry ( —=s ) }

E'S::fy{Sl—%—Sg—mexp d

(2.13)

where S; and S; are the surface areas of the two spheres, s is the distance between
the nuclear surfaces, 7 is the specific surface energy and d is the range parameter.
The nuclear potential is now obtained as the difference in surface energies for infinite

and finite separation s( = r—Rys).
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It is given by ,
T — R12
d

Va(r) = -Rima,,A}/"'A;/f"exp( - ) MeV (2.14)

with Ryg = ro(AY*+A4Y3), ro = 1.07 fm, and a, = 4myr2 = 17.0 MeV. The value of

d is obtained after fitting experimental fusion barrier and is given by 1.35 fm.

2.5.4 Bass 1977 (Bass 77)

It can be shown by use of the liquid-drop model and general geometrical arguments

that the nuclear potential can be written as [30, 31, 32, 33],

_ RiR
VN(T) = R1 T R2q)(’l' R1 - Rg) MeV (215)
where, R; is given as
R; = 1.16A)% — 1.3947"3 fm (2.16)

Using the available data for fusion-cross section, Bass determined the experimental
points for the function ®(s) [33]. He found that the data can be fitted by an empirical
function of the form,

®(s) = [Aexp (as;) + Bexp (&%)]_—1 (2.17)

with A=0.03 MeV~1fm, B=0.0061 MeV~'fm, d;=3.30 fm, and dy=0.65 fm.

2.5.5 Bass 1980 (Bass 80)

Later Bass slightly modified the empirical functicn and also the radius parameter

[23]. Here, ®(s) is now given as,

B(s) = [O.O33exp(3—'})> + 0.007exp (686”5')] - (2.18)
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where s=r - R; - R, (fm) measures the separation between the half-density surfaces
of the interacting nuclei.

Central radius R, is given as,

0.98
R, =R, (1 - @-) (2.19)
where R, is given as,
Ry =128AY° ~0.76 4+ 084"/ fm (2.20)

2.5.6 Christensen and Winther 1976 (CW 76)

Christensen and Winther [34] derived the nucleus-nucleus interaction potential by
analysing the heavy-ion elastic scattering data, based on the semiclassical arguments
and the recognition that optical-model analysis of elastic scattering determines the
real part of the interaction potential only in the vicinity of a characteristic distance.

The potential has been tested for more than 60 reactions, and is given by,

R1R,
Vi = —50 - R, - i
N('I‘) Rl T RQ(I)(T Rl Rg) MeV (2 21)
The radius parameter is given as,
R; = 1.233A13 — 0.978 47"/ fm (2.22)

and the Universal function ®(s) has the following form, -

(2.23)

B(s) = exp( _ fﬁ:ﬁ)

0.63
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2.5.7 Broglia and Winther 1991 (BW 91)

Broglia and Winther gave a Woods-Saxon parametrization of the nuclear potential
from a knowledge of the densities of the colliding nuclei and an effective two-body
force [23, 35, 36]. The potential is given by,

Vo
VN(T) =TT T ERas MeV (224)
with,
R Ry
= 2
Vo 167rR1 gL (2.25)
Here, a=0.63 fm, and
Ry=R;+ Ry +0.29 (2.26)
Radius, R; is given by,
- Ry =1.23343 — 0.98A4;" fm (2.27)

And, the surface energy co-efficient +y is given by,

=" [1 — (N”;p Z”) (Nt/; Z”)] (2:28)

where, 7,=0.95 MeV/fm? and k,=1.8. The subscripts 'p’ and ’t’ refer to the pro-
jectile and target. The second term takes into account the mass asymmetry of the

reaction. The parametrization has been constructed such that the force

Wy Y .
5~ 4063 !

r— Ry
1.26 )

(2.29)

has its maximum at r=Rj and is equal to the maximum force predicted by the

potential Prox 77.
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2.5.8 Aage Winther 1995 (AW 95)

The parameters of the above potential were slightly refined by Winther [37] after an
extensive comparison with experimental data for heavy-ion elastic scattering. The

refined values of a and R, are,

1

B [1.17(1 +0.53(A7 + A;l/s))] (230)

and,
R, =1.20A° —0.09 fm (2.31)

Here, Ry=R;+ R, only. The magnitude of the potential is given by,

Vio(r) = “ITX‘S(*?; MeV (2.32)

with,
Vo = 167 Ri%:_R}% ya (2.33)

where, 7 is given by Eq. (2.28).

2.6 Nature of the potentials

The interaction potential using the above nuclear potentials are shown in Figs. 2.3
and 2.4 for the reactions ®Li+2%Bi, "Li+'°Tb and °Be+%%Pb [18]. As we had
used a linear scale for the potential (y-axis) and since there is large variation of the
potential at r < Rp, hence we have adjusted the distance (x-axis) so that the shape
of the potential could be studied. The fusion barrier (Coulomb barrier) is shown
by the peak of the potential. Apart from CW 76, the barrier is distinet for all the
other nuclear models. At distances greater than the barrier radius (r > Rp), the
force is repulsive because the Coulomb potential is dominant and the nuclear force

is negligible. In the region immediately inside the barrier radius (r < Rp), the force
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is attractive because the nuclear potential dominates the Coulomb potential. For
the proximity potentials (Prox 77 and Prox 88), a distinct potential pocket exists

because the force turns repulsive at smaller distances (r < 6 fm).

2.7 Results and Discussion

Our present study is conducted on a total of 13 reactions induced by loosely bound
projectiles, namely, 6Li, "Li and ®Be. The reactions considered are : 5Li+%Zn,
S Li4+159Tb, 6 Li+1*4Sm, SLi+'52Sm, 6Li+2%® Pb, 6 Li+?® Bi, "Li+*%9Tb, " Li+**Bi,
9Be-+2% Pb, 9 Be+'%Sn, °Be+%Y, °Be+'*4Sm and °*Be+2®Bi. All nuclei are con-
sidered to be spherical, except 1%28m, for which both spherical and deformed cases
(section 2.8) are considered. We find the height (V) and position (Rp) of the fusion
barrier as explained in section 2.4. The results are shown in Tables 2.1 and 2.3 [18].
The results are compared with the empirical values of the heights and positions of
the fusion barriers obtained from the literature.

The procedure for obtaining the empirical values of the fusion barriers needs to
be briefly highlighted. Apart from the reaction ¢Li-+%Zn, Vz and Rg are obtained
from analysis of fusion reaction data. For ®Li+5¢Zn, only V3 is obtained from
analysis of elastic scattering data. Using the best fit parameters for the optical
model, the maximum of the real nuclear plus Coulomb potential is extracted to
give the value of V3. For the other reactions, Vi is extracted from the peak of
the barrier distribution (section 2.3). The standard procedure for obtaining Rp is
through a fitting of the fusion cross section data by the fusion code CCFULL [38].
Then, Rp is obtained from the output of the CCFULL code. The parameters for
the input nuclear Woods-Saxon potential are obtained by trial and error. For a few
of the reactions Rg has not been reported, and we determine them by running the
CCFULL code [38]. The parameters of the Woods-Saxon potential needed for the
program are given as : °Be+4Sm (V5=140 MeV, r,=1.06 fm, a=0.71 fm) [39],
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Table 2.1: Fusion barrier heights (in MeV) and positions (in fm) using the potentials
Prox 77, Prox 88 and Bass 73. The corresponding experimental values are also
indicated.

Reaction Prox 77 Prox 88 Bass 73 Empirical Ref.
Vo9 Rsg Vg Ry Vs Rsg Vg RE°S RET
SLi+%4Zn 1391 849 1356 873 11.33 987 1322 - 8.98  [42]
6Ls+1%9Th 2597 10.01 2544 1023 2298 1057 2448 1053 10.66 [43]
SLi4+1448m 2526 9.79 24.72 10.02 2225 1049 24.65 10.20 10.06 [44]
SLi+1%28m 2496 9.92 2446 10.14 21.99 1083 2510 9.98 9.86 [40]
6I4+208pp 3117 1056 30.59 10.78 28.21 11.02 30.10 11.00 10.96 [45]
61+4+29B;  31.53 10.57 30.94 10.78 28.58 11.00 30.10 11.24 1111 [41]
TLi+1%9Th 2550 10.20 25.00 1042 2261 1088 23.81 11.03 10.99 [46]
TLi+2°B; 3099 10.76 30.42 10.98 28.12 11.21 29.70 1140 11.27 [41]
SBe+2®pPp 4053 10.85 39.80 11.06 37.50 11.06 38.10 11.66 11.55 [41]
Be+?4Sn  27.02 9.85 2647 10.07 23.86 1052 2587 10.25 10.32 [47]
Be+8%Y 2226 9.27 21.76 951 19.17 10.16 21.60 9.63 9.59 [48]
SBe+'%Sm 3279 10.08 32.11 1031 2958 1052 31.20 10.68 10.64 [39]
SBe+2Bi 41.00 10.85 40.25 11.07 37.98 11.05 39.40 11.30 11.33 [49]

Table 2.2: Percentage deviations of the theoretical values of Vp and Rp from the
empirical values for the potentials Prox 77, Prox &8, Bass 73, Bass 77.

Reaction Prox 77 Prox 88 Bass 73 Bass 77
AVg ARp AVy AR AVy ARp AVy ARp
6Li+%4Zn 5.24 - 2.56 - -1429 - 253 -

SLi+'9Th  6.09 -494 393 -285 -6.12 133 422 -285
6Li+1%48m 434 -4.02 242 -1.76 -5.32 2.84 249 -1.76
6Li4+1%28m -0.54 -0.57 -257 163 -1240 655 -2.37 1.73
67;+°98pp 355 -4.00 1.63 -200 -628 0.18 2.06 -2.36
6Li+29°B; 473 -596 278 -4.09 -506 -2.06 3.29 -4.39
TLi+159Th 247 -753 028 -553 -974 -1.36 0.69 -4.99
TLi+29B; 710 -561 5.00 -3.68 -5.04 -1.87 4.83 -3.51
SBe+208pPp 596 163 4.05 -515 -1.96 -5.17 3.52 -4.43
SBe+1?4Sn 446 -3.95 233 -1.81 -7.78 266 119 -0.15
9Be+8%Y 3.06 -3.70 073 -1.21 -11.23 548 -039 0.50
9Be+Sm 5.10 -562 292 -346 -519 -1.30 228 -2.53
9Be+2°B; 406 -398 216 -203 -360 -221 170 -1.33
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Table 2.3: Fusion barrier heights (in MeV) and positions (in fm) using the potentials
Bass 77, Bass 80, CW 76, BW 91 and AW 95.

Reaction Bass 77 Bass 80 CW 76 BW 91 AW 95
V& Rg Vs Rp Vs Rg Vs Rg Ve Rgp
67i4+64Zn 1355 8.80 1322 9.05 1341 899 1349 891 1319 9.13
6Li+1%9Th 2551 10.23 24.74 1058 24.99 1057 2514 10.47 24.89 10.58
6Li+149m 24.82 10.02 2408 1035 24.33 1034 2448 1023 2420 1037
SLi+1528m 2451 10.15 23.77 1050 24.02 1048 2416 10.38 23.91 10.51
674+208pp 3072 10.74 29.72 11.35 30.00 11.13 30.17 11.03 29.97 11.12
6744+209B;  31.09 10.75 3007 11.15 30.36 11.14 3054 11.04 3033 11.13
TLi+159Th 2496 10.48 2433 10.78 24.54 10.78 24.74 10.65 24.60 10.72
TLi+2°Bi  30.44 11.00 2959 11.35 29.83 11.35 30.08 11.22 30.00 11.26
9Be+2%8pp 3960 11.14 38.70 11.43 3885 1149 39.18 11.35 39.27 11.33
9Be+1249n  26.18 10.24 25.72 1043 25.85 1047 26.07 10.35 26.00 10.38
9Be+%Y 2152 9.68 212 9.84 21.32 987 2148 9.76 21.34 9.83
9Be+1%Sm 31.91 1041 31.31 1064 31.43 1069 31.67 1057 31.64 10.59
9Be+-29B;  40.07 11.15 39.16 11.43 39.31 1149 39.64 11.35 39.73 11.33

Table 2.4: Percentage deviations of the theoretical values of Vg and Rp from the
empirical values for the potentials Bass 80, CW 76, BW 91 and AW 95.

Reaction Bass 80 CW 76 BW 91 AW 95
AVy ARp AVg ARg AVy ARy AVy ARp
. 8Li+%4Zn  0.023 - 1.43 - 2.03 - -0.22 -

SLi+1%9Th  1.07 048 607 038 270 -047 168 047
SLi+14Sm -037 147 044 137 128 029 101 1.67
6ri+1%28m -528 521 -430 5.00 -3.74 4.05 -474 528
5I.4+%%8pp -126 136 -0.33 118 023 027 -043 1.09
6Li+2%°B;  -0.10 -0.79 0.86 -0.87 145 -1.80 0.75 -1.02
TLi+1%9Th  -2.31 -227 -1.30 -227 -0.69 -3.45 -1.83 -2.81
TLi+%%°Bi 218 -044 3.07 -0.44 391 -1.58 332 -1.23
Be+2%%pp 117 -1.98 156 -145 243 -267 266 -2.87
9Be+'28n  -0.56 1.79 -0.07 215 076 096 0.49 1.29
9Be+3%Y -185 216 -1.31 244 -055 1.33 -1.20 2.08
SBe+'%8m 035 -0.38 0.74 0.09 151 -1.03 141 -0.85
Be+2°Bi -061 115 -023 1.68 061 044 084 026
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8Li+'%2Sm (V=131 MeV, 7y=1.01 fm, a=0.64 fm) [40], Li+?®Bi (V=107 MeV,
ro=1.12 fm, a=0.63 fm), "Li+?®Bi (V,=113 MeV, ry=1.12 fm, a=0.63 fm), and
®Be+2%Pb (V=198 MeV, r0=1.10 fm, a=0.63 fm) [41]. We find that in general
the agreement between the calculated barrier parameters and the empirical barrier‘
parameters is quite satisfactory for all the potentials. However, there is marginal
variation from potential to potential which has also been investigated.

There is a well known parametrized formula [50, 51, 52] which connects the
height (Vg) and the position (Rp) of the Coulomb barrier. The formula has been
tested for a large number of reactions induced by tightly bound projectiles. Here,
we would like to test the validity of the formula for reactions induced by loosely
bound projectiles. The parameterized formula is given as,

par _
Vg =

1.44% 7 75
—--l—"’(1 0 ) (2.34)

B\
On the last column of Table 2.1, the parametrized value of the position of the

Coulomb barrier (RE") is evaluated. We use the following formula where Vp is the

empirical value of the height of the barrier,

1,442, 75 + /2.0736 23 Z2 — 4.32Vp Z1 Z,

par __
Rp' = 2Vp

(2.35)

We note that the agreement between the empirical value of the position of the
barrier (RE°) and the parametrized value (R%") is very good. The effectiveness of
the parametrized formula in reproducing the value of Rp can be checked by finding
the standard deviation (ogsar) of the parametrized value (R%") with respect to the

experimental value (R$?). Hence, ogper is given by,

Opoer = (2.36)

\/ Zz—N A Rpar

where, ARZ" is given by,
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par CC
Ry — Ry

A R%G.T — Rgc

x 100 (2.37)

The value of O geer comes out to be 0.89 %, which proves that the parametrized
formula can reproduce the value of Rg within 1 % of the true value. This shows
that the empirical formula connecting Vp and Rp is extremely effective for reactions
induced by loosely bound projectiles.

In order to compare the predictions of the different potentials we compute the
standard deviation (ov, and og,) of the theoretical values over the experimental

values for the barrier height and the position. These are given by,

Ovg = \/Z_;:iv_]EfA_Yé_]__ (238)
Ry = \/ Tt ][VARB] (2.39)

Here, AVp and ARp are the percentage deviations and are given by,

Vthear _ yeapt
AVp = —&?—L x 100 (2.40)

expl
B

Rgzeor _ Re-‘BPt

ARp = o — % 100 (2.41)
RB

where, Vi is the theoretically calculated value of Vi, V5™ is the empirical
value of Vi, R is the theoretically calculated value of Rg, and RE? * is the empir-
ical value of Rp. For R5™" we take the values of REC from Table 2.1. The percentage
deviations (AVg(%), ARg(%)) are shown in Tables 2.2 and 2.4 respectively. Using
Egs. (2.38) and (2.39), the values of oy, and og, are determined and they are
shown in Table 2.5 [18].

As seen from Table 2.5, the potentials Bass 80, AW 95 and BW 91 are most

effective in reproducing the height of the fusion barrier as they have the minimum
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Table 2.5: Standard deviations (oy,, ov,) of the theoretical values against the
experimental values of Vp and Rp.

Prox 77 Prox 88 Bass73 Bass77 Bass8 CW 76 BW 91 AW 95
Ovg 4.66 2.85 8.03 2.73 1.89 2.39 2.04 2.02
ORp 4.65 3.24 3.33 2.95 2.05 2.04 1.94 2.19

values of oy, (around 1.9-2.05). This is in agreement with earlier work (7, 8] where
it was concluded that the fusion barriers formed by the potentials of Bass 80, and
the different versions by Winther and collaborators are close to experimental data.
If we consider only the above three potentials the fusion barrier is best reproduced
for the reaction ®Be+?4Sn, and is least accurate for the reaction 6Li+'52Sm. For,
the position of the fusion barrier the top 3 potentials turn out to BW 91, CW 76 and
Bass 80. Again if we consider only the 3 potentials, then the position of the fusion
barrier is best reproduced for the reaction 8Li+'°Tb, and is least accurate for the
reaction ®Li+'*Sm. The potential AW 95, having done a good job in reproducing
the height of the fusion barrier, has dropped to the fourth place in reproducing the
position of the fusion barrier. This is because of an unusually large deviation in
reproducing the position of the fusion barrier for the reaction 8Li+'%2Sm as the
target °2Sm is a highly deformed one. The effect of target deformation is quite
evident for the above reaction as the height of the fusion barrier for all the eight
nuclear potentials used has been systematically lowered from the empirical value of
25.1 MeV. Also the position of the fusion barrier has been raised from the empirical
value of 9.98 fm for all but one (Prox 77) of the nuclear potentials used.

2.8 Coulomb potential correction for the deformed
target

For the reaction 8Li-+'52Sm, we apply a correction to the Coulomb potential for

the deformed target nucleus (**Sm). Many methods are available in the literature
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Figure 2.5: Diagram showing angle 6; between collision axis and symmetry axis of
the i nucleus.
for calculating the Coulomb interaction between two deformed and oriented nuclei.

Here we apply Wong’s correction [53] for two deformed charge distributions,

Z122€2 n ’ 9 Zl

Vc(rs 0) =

226222:12% Py (cost;)+
207 P & 302008

2

(%) 21TZ3262 Z R2[BaiPa(cost;))?  (2.42)
i=1

here, 6; is the orientation angle between the collision axis and the symmetry
axis of the i* nucleus (Fig. 2.5). The deformation parameter of the target nucleus
(*52Sm) is taken as $,=0.26 [40] and the projectile (6Li) is assumed spherical. As the
Coulomb potential is dependent upon the orientation of the target nucleus, hence,
the effective Coulomb potential is found by averaging over all possible orientations.
Because of symmetry, averaging over the angles from §=0° to §=90° is sufficient.
Because of the target deformation, there is a slight raising of the total potential

which is shown in Figs. 2.6 and 2.7 [18]. As a result we see that the effect of the
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Table 2.6: Height and position of the fusion barrier for ®Li+'52Sm after applying
correction of the Coulomb potential for the deformed target. Values of Vg and Rp
without correction are given in Tables 2.1 & 2.3.

Prox 77 Prox 88 Bass73 Bess77 DBass8 CW76 BW91 AW
Vi 25.36 24.82 22.32 24 .87 24.11 24.36 24.51 24.25
Rp 9.88 10.11 10.58 10.12 10.47 10.45 10.36 10.48

target deformation is to make the potential more repulsive at shorter distances which
is indeed expected. The effect is particularly pronounced for the potentials Bass 77,
Bass 80, BW 91 and AW 95 where the repulsion is substantial at short distances
for the deformed case as compared to the spherical case. For distances greater than
Rp there is only a marginal difference between the spherical and deformed cases.
However, for the potentials, Bass 73 and CW 76 there is no noticeable change even
for short distances for the two cases. This is due to the exponential nature of the
nuclear potentials due to which change of the Coulomb potential is overridden by
large changes in the nuclear potential. A distinct feature of the potentials for the
deformed case is the emergence of the potential pocket for the potentials Bass 77,
Bass 80, BW 91 and AW 95. As we had observed earlier, for the spherical case
potential pocket exists only for the proximity potentials. As can be seen from the
Figs. 2.6 and 2.7, the height and position of the fusion barriers are shifted towards
the empirical values. The new values of Vg and Rp for 8 Li+528m are shown in Table
2.6 [18]. The correction for the barrier is about 0.35 MeV, and the correction for
the position is about 0.03-0.04 fm with slight variation from potential to potential.
Apart from Prox 77, all the corrections are in the right direction. This is probably

due to the fact that Prox 77 had overestimated the measurements by about 4% [54].

45



(poyeorpur se) ,, sseq pue g/, sseq ‘g X01d ‘L.
x01J s[erjuejod oY} 10] (9g'0="%) 10818} psuriojep pue (=% ) [eoueyds SBUINSSe WG o +1T, 10} [81jUS}0d UONORINU] :9°7 SINSIY

12 sseg (p) g, sseq (9)
() 1 (wy) 1
4 0l 8 9 b z ¥1 Tl Ol 8 9 A 4
. : : : . 00Z- : : . . ’ 00Z-
I © oSt 1 0S1-
1 001 m 001 m
L - ] g - =t
.............. o.onmh e a W
! 97'0="¢ 7 loes- B los- 2
(¢ o
S S
10
: : : : : 0S
88 x01J (q) L1, %01 (®)
(wy) 2 (wy) 1
1 T Ol 8 9 v T O P1 EL TI 1T O 6 8 L 9 S +
J O L
t L b
fos 8 :
& I 4
1001 A e
1081
002 - dTed L L L 0L

46



“(peyetpur se) g6 MV PU® 16 M ‘9L MO 08
sseq] sperjuejod oy} 10] (97'0=2%) 1081e] peurIojep pus ((=%) [edueyds SUIUNSSe ULG . +VT 4 10} [e13usjod UOIFOBISIU] 1) SINSI]

a6 MV (P) 16 Mg (2)
(wy) 1 (wy) 1
2 S/ G ) 8 9 14 4
| | _ . , 0
i {0z
0z
o3 %
2 v =B
S 08 S
R o.cuum 1 09
— 97°0=¢
1 1 ot 1. 1 oo.—
92 M0 () 08 sseg (€)
¥1 €1 T 11 Ol 6 8 ¥p1 71 0ol 8 9 v T
| | | | _ _ _ _ _ : 002Z-
I 1 0S1-
gg N O.OHN% \..\ &
3 K 5
2 S
i 1 op

47



2.9 Summary and Outlook

We determine the fusion barriers for thirteen number of reactions induced by loosely
bound nuclei (6Li, 7Li, and °Be). For calculating the barriers, we use eight different
versions of the nuclear potential. They are Prox 77, Prox 88, Bass 73, Bass 77, Bass
80, CW 76, BW 91 and AW 95. In general, all the potentials could reproduce the
height and position of the barrier satisfactofily. In order to compare the predictions -
of the different potentials, we compute the standard deviation of the theoretical with
respect to the experimental values (ov,, org). We find that the best potentials for
reproducing the height (V) and position (Rpg) of the barrier are Bass 80 and BW
91, respectively. The well known parametrized formula connecting Vg and Rp has
also been checked. We find that the formula is well applicable to reactions induced
by loosely bound projectiles as the prediction of the values of Rp is extremely
accurate. For the reaction, ®Li+!52Sm, the deviations of the barrier parameters from
the empirical values is found to be unusually large. This is because of the deformed
nature of the target (152Sm). Applying correction to the Coulomb potential for the
deformed target, we find that the new values of the barrier parameters are closer to
the empirical values. The graphical plot of the potential for the deformed case of
6Li+152Sm shows the emergence of distinct potential pocket for the potentials Bass
77, Bass 80, BW 91 and AW 95, in addition to the potentials Prox 77 and Prox
88 for which potential pocket exists for both the spherical as well as the deformed
cases.

Many other potentials are available in the literature, besides the ones that are
considered here. Examples are the Denisov potential [55], the double-folding po-
tential [56] with various versions of the NN interaction, the Skyrme nuclear inter-
action [6, 57], etc. In future, all these potentials could be used in order to find the
barrier parameters of reactions induced by loosely bound projectiles. Some other .
parametrized formulae for Vé and Rp have been discussed by other authors, and

these could also be studied in connection with the reactions discussed here. For
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example, Puri and Gupta discusses a parameterized formula of the form [6],

ZIZZ ( Z]_Zz ).2
Vg = ki—— + ko| ———= 2.43
B 1Ai/3 x A;/3 2 Ai/B n Aé/g ( )
Rg =k + k4(A1A2) -+ ks(AlAg)z + kﬁ(AlAQ)s (244)

where, ki, ko, k3, k4, ks and kg are unknown constants which can be determined
by fitting the data. For calculating the Coulomb potential between a spherical
and a deformed target some other prescriptions (e.g., Takigawa et al. [58]) are
also available which would give slightly improved results. Correction to the nuclear
proximity potential for deformed nuclei can also be done. For the proximity potential
(Prox 77 and Prox 88), the essential quantity is the shortest distance, sy, between
the two colliding nuclei. Various methods are discussed in the literature [59, 60, 61]

for finding s8¢ and hence, the nuclear proximity potential for deformed nuclei.
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Chapter 3

-

Fusion cross section for reactions

induced by loosely bound nuclei

3.1 Introduction

The study of fusion of heavy nuclei is extremely important for a number of reasons.
In general, the fusion of two heavy nuclei produces a nucleus which is proton-rich
and lies far away from the line of stability. The discovery and measurement of
properties of previously unknown, proton-rich nuclei has formed a major part of
the programme of heavy-ion fusion research. The study of heavy-ion fusion is also
motivated by the search for superheavy or transuranic elements. Extrapolations of
the nuclear shell rﬁodel towards larger masses indicates that the next major shell
closure should occur at Z=120, 124 or 126 and N=126 [1]. The recent progress in
accelerator technologies has encouraged the experimentalists to reach this ”island
of stability”. Heavy-ion fusion research is also important for astrophysical reasons
as the heavier elements inside stars are formed by the successive fusion of lighter
elements.

In this chapter we shall concentrate on the study of fusion cross-section of re-

actions induced by loosely bound projectiles. The study of fusion cross-section of
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such nuclei is important because such nuclei are known to breakup in a nuclear re-
action. Only a comparison of a carefully measured experimental fusion cross-section
and the theoretical predictions can tell us whether breakup of such projectiles take
place. In case of breakup, the experimental fusion cross-section must fall below the
theoretically calculated cross-section. The contents of this chapter are as follows.
In the next section, we shall give a brief review work of the study of fusion cross
section. Then, we shall give a brief description of the experimental methods for the
measurement of fusion cross-section. This will be followed by elaborate description
of the theory of fusion cross-section, and the Wong’s formula. Then we give a brief
description of the CCFULL code for the calculaticn of fusion cross section. Finally
our results are presented for the study of fusion cross-section of selected systems on

the basis of the Wong’s formula.

3.2 Review work on fusion cross section

The study of fusion cross section using the Wong'’s formalism has been done by a
number of authors. K. P. Santosh of Kannur University had used the Wong’s for-
mula for the study of fusion cross section of reactions induced by *2C, 160, 2Si, and
35Cl projectiles on *2Zr target [2]. He found that near and above the barrier, Wong’s
“formula satisfactorily explains the fusion cross section for these reactions. However,
below the barrier, fusion cross section is well explained if Z;Z, has a low value, and
for higher values of Z;Z, fusion cross section below the barrier is only explained
with barrier parameters evaluated from Reisdorf’s value of the nuclear surface ten-
sion coeflicient. I. Dutt and R. K. Puri of Panjab University had studied the fusion
excitation function of symmetric as well as asymmetric colliding nuclei using Wong’s
formalism. They found that for both the systems, the above barrier fusion cross sec-
tion is well explained with barrier parameters evaluated from the potentials Bass 80,

AW 95 and Denv 02 [3, 4]. Using Wong’s formalism, Raj Kumar et al. had stud-
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ied the capture cross-section data from “4Ca+2#U, Ca+24 Pu, and ®Ca+28Cm
reactions in the super-heavy mass region, and also the fusion-evaporation cross sec-
tion for the reactions % Ni+*8Ni, 4 Ni+% Ni, and  Ni+1% Mo [5]. The fusion cross
section for the 48Ca based reaction is well explained by a slight modification of the
Wong’s formula where the /-dependent barriers are introduced via the {-summation.
For the %%4Ni based reactions the experimental data is well explained only if a fur-
ther modification of the barrier is introduced. Their calculations were done using
the proximity potential, with effects of multipole deformations included upto hex-
adecapole term, and orientation degrees of freedom integrated for both the coplanar
and noncoplanar configurations. In an improvement of the previous work [6], Raj
Kumar studied the fusion cross section of the above reactions using various versions
of the proximity potential with different isospin dependence. Among all the previous
versions of proximity potential, they found that the results of Prox 88 are closest to
experimental data. Then they introduced another variation of the Prox 88 potential
(mod-Prox 88), which when used within the extended Wong’s formalism could ex-
plain the fusion cross section for all the above reactions above and below the fusion
barrier with a smooth variation of £,,4;(Ecm). More recently 7], Raj Kumar studied
the fusion cross section of the above reactions using the Wong’s model where the
barrier parameters have been calculated using the semiclassical extended Thomas
Fermi (ETF) approach within the Skyrme energy density formalism (SEDF). They
found that the capture cross section data for Ca-induced reactions could be fitted to
any Skyrme force, such as SIII, SV and GSkI, whereas the fusion-evaporation cross
sections in Ni-induced reactions at sub-barrier energies required different Skyrme

forces.
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3.3 Experimental methods of determining fusion
cross section

The measurement of the total fusion cross section is an intricate business, and re-
quires extremely sophisticated experimental setup. As discussed earlier, fusion is
defined as a reaction where two separate nuclei combine together to form a com-
pound nucleus. As the compound nucleus formed in heavy-ion fusion is highly
excited, hence, it decays either by emitting neutrons, protons, a-particles, v and
X-rays, or by fission. The probability for fission is high only if the charge of the
compound nucleus is greater than 70, otherwise the compound nucleus decays by
the former processes, i.e., eva;;oration. During evaporation, the decay product has
a mass and charge close to the compound nucleus, and is called the evaporation
residue. For a heavier compound nucleus, decay by fission competes successfully
with evaporation. The total fusion cross section is defined by the sum of the fission

and the evaporation residue cross section.

Detection of evaporation residues

Evaporation residue cross sections can be determined by direct detection of the
evaporation residues or by detection of the radiation emitted in their deexcitation.
In the direct detection methods, the evaporation residues which are forward peaked,
must be physically separated from the direct beam and the intense flux of elastically
scattered beam particles. One of the methods employed for separation is the compact
velocity filter of the Canberra group [8]. Particles entering the velocity filter are
subjected to orthogonal electric and magnetic fields. Assuming, the velocity of the
particles to be in the z-direction, the electric and magnetic fields are imposed in the

x- and y- directions, respectively. The force acting on the particles is then directed
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towards the x-direction and its strength is given by,

F = q(€ —vB) (3.1)

where, q is the charge of the particle, v its velocity, and £ and B are the strength
of the electric and the magnetic fields, respectively. One can, therefore, select a
particular ratio of the electric and the magnetic fields so that the force acting on a

particle having a certain velocity is zero.

Detection of fission fragments

Kinematic coincidence in two detectors is a common method for identifying fission
fragments [9]. Single detectors are also employed which uses energy-loss or time-of-
flight information to detect these particles [10, 11]. Fission fragments are usually
spread to all angles, giving good separation from beam particles. However, their
angular distribution can change quite rapidly with beam energy, requiring careful
placement of the detector or measurement of the angular distribution at many beam
energies.

Once the number of events, Y, are determined, then the differential cross-section

can be calculated from the following relation,

do(9,E) Y(0,E) 1
dY — IN AQ

(3.2)

where, I is the number of beam particles per unit time, N is the number of target
nuclei per unit area, and, A{2 is the solid angle of the detector. The product IN
can be determined by monitoring the the elastic scattering at a certain angle 8.
If we a.‘ssume that the cross section of scattering is well described by Rutherford

scattering at 0y, then

IN = AQpy (

dor(E, OM))—I

o (3.3)
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where, Yy is the number of elastically scattered events, and Af},y is the solid angle

of the detector. dogr/dQ? is the Rutherford differential cross section and is given by,

dO'R(E, 9M) 1 ZPZT62 2 1
T IM) 2 34
dQ 4( 2E )sin4{:9M/2) (34)
ZpZr\2 1
=1, 3.
129( 2F ) e o (8:5)

Usually the scattering cross section is measured in the laboratory system. We
should multiply it with the Jacobian, J, in order to obtain the scattering cross section

in the centre of mass system.

(1 — z%sin?0)"/?

J= . an \1/2]°
[mcosGL + (1 — 22%sin“0y) }

(3.6)

where, x=Mp/Mrp, Mp is the mass of the projectile, My is the mass of the target,
and @y, is the angle of scattering in the laboratory frame. Combining Egs. (3.2) and

(3.3) we get,
do(6, E) Y(0,E) AQudor(E,0u)

i Yulbu,E) AQ 40 (3.7)

The total fusion cross section is then obtained by integrating Eq. (3.7) over all

angles 6.

3.4 Theory of fusion cross section and Wong’s for-
mula

Let us first work out the classical cross-section for fusion. If a projectile is approach-
" ing a target nucleus with impact parameter b, then the collision cross-section is given
by 7b?. Initially, the total energy of the system (E) is equal to the kinetic energy of
the projectile. At the distance of closest approach (R), this energy appears partly

as the kinetic energy (E') of the projectile, and partly as the potential energy (B)
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Figure 3.1: Diagram showing linear momentum and energy of the projectile at a
distance far from the target (p, E) and at the distance of closest approach (p’, E').

of the system of projectile and target. The potential energy is composed of the sum

of the Coulomb potential energy and the nuclear potential energy. Hence,
E=FE+B
Applying law of conservation of momentum, we get,
L=pb=9p'R

where, p and p’, are the projectile momenta initially and at the distance of closest

approach (Fig. 3.1). Since, E=p?/2m, hence,

from which it follows,

!
o= wRQ—EE— = R? (1 - %) for E>B (3.8)
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Fusion takes place when the projectile penetrates the fusion barrier, and enters
the potential well or pocket. Hence, the classical cross-section for fusion is given
by the above equation, where, B denotes the height of the fusion barrier, and R
denotes the position of the fusion barrier. The above expression is only valid at high
energies where the de-broglie wavelength of the projectile is small compared with
the nuclear dimensions. At lower energies the de-broglie wavelength of the projectile
is comparable to the nuclear dimensions and quantum effects become important.
According to quantum mechanics, the angular momentum of the projectile can take

integral values of %, hence,

pb = (h
D W
b=t =t =03 (3.9)

where, 5\:)\/ 27 is called the reduced de-Broglie wavelength, and also, :\zk‘l, the
wave-number. Hence, for particles interacting between impact parameters £A and
(€+ 1)h, the area of interaction must be quantized, and is given by, 7[(£ + 1)2X2 —
7(£X)?] = (2¢ 4+ 1)7)2. Hence, the total cross-section is,

£e

o= (2041)r)? (3.10)

£=0

where, £, is the cut-off angular momentum for the event under consideration. Ac-
cording to the quantum-mechanical description, fusion takes place when the projec-
tile penetrates the fusion barrier with transmission coefficient (7;). So, for each of
these partial waves, the transmission coefficients must be evaluated, and the total

fusion cross-section is given by,

kﬂz 20+ 1)T; (3.11)
=0

where, T} is the transmission coefficient for the £* partial wave, and k*= 2uFE,,/h*.
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Using WKB approximation, the transmission co-efficients are given by [12],

T(E) = .

_ 3.12
1+ exp[z [ dw\/%%(:El(:v) — E)J .12

Here, z, and z, are the inner and outer turning points defined by F;(z)=E,
respectively. This formula is valid both below and above the Coulomb barrier. When
the energy is well belgw the barrier, the second term dominates in the denominator
in Eq. (3.12), and the formula in the primitive WKB approximation is obtained.
For energies above the barrier, the turning points are found in the complex x plane.
The integral in Eq. (3.12) is then carried out between the complex turning points.
It was noted by Hill and Wheeler [13] that the fusion barriers can be approximately

treated as inverted parabolas. Hence, the fusion barriers can be written as,

1
Ey(z) = Eyz=0) — -ﬁuwla:z (3.13)

Evaluation of the integral in Eq. (3.12) leads to 7(Ey—0) — E)/huw;, which gives the

following expression for the transmission coefficients [13, 14],

1
1+ e:z:p(—h?f;(Eg - E))

T/(E) = (3.14)

where, Ey=Fj-o) is the fusion barrier for the £* partial wave, and fw; is the
curvature of the % barrier. Eq. (3.14) gives the exact transmission coefficients for
a parabolic potential because WKB approximation has the unique property that
if the potential is quadratic, then Eq. (3.12) gives the exact solution. Replacing
the sum by an integral, and assuming that the barrier position and curvature are

independent of ¢, we arrive at Wong’s formula [15, 16] for the fusion cross-section,

d(2e+1)=) 2+ 1)Al=> Ax — /dx
14 13

¢
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2 [*® dx
k2 a1+ ea:p[gg-(vg — E +h*x/2uR%)]

2
o = ;  where,x = (€+%) (8715)

Rzm’“ ln{l + zp[ﬂ%—EQ]} (3.16)

where, fiwg is the curvature of the fusion barrier (¢=0). Ey and Rp are the height
and position of the fusion barrier respectively. For E > E,, the above formula

reduces to the classical formula (Eq. 3.8),

E,
o=mR} (1 - EO) (3.17)

The primary assumption of the Wong’s formula is that the barrier parameters
for the ¢£** partial wave is approximated by the barrier parameters of the s-wave
(£=0). In this connection, Balantekin has improved Wong’s formula by taking into

account the angular momentum dependence of the barrier parameters. They make

the assumption that the barrier position can be written as an infinite series,

=Ro+ A+ oA+ ... (3.18)

where, ¢; are unknown constants, and A=¢(¢ + 1). Retaining only the first order

correction, the values of the barrier parameters are given by,

£(€+ 1)R?
R =Ry~ BRI (3.19)
e+ 1A% 2 +1)%
E,=Ey+ e + 2P B (3.20)

Making these corrections, Balantekin obtained a new expression for the fusion cross
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section [17],

o=nR (1 - %‘3) — ujfE(E —E)? (E> E) (3.21)

The above equation suggests that Wong’s formula slightly overestimates fusion

cross section at energies well above the Coulomb barrier.

3.5 CCFULL code

The code CCFULL [18] is a FORTRAN 77 program that calculates the fusion cross
section and the mean angular momenta of the compound nucleus in a heavy ion
collision under the influence of coupling between the relative motion of projectile and
target. The program essentially solves the coupled channel equations and includes
all order couplings. For reducing the dimensions of the coupled-channel equations,
the no-coriolis approximation is employed in which the angular momentum of the
relative motion in each channel is replaced by the total angular momentum, J. The

coupled channels equations then read,

2
[_££+J_('Ltl_)+v}so)

+ Z PZT62
24 dr? 2pr? T

+en— E] Un(r) + S Vimthn(r) = 0 (3.22)
where, E is the c.m. energy, p is the reduced mass, and ¢, is the excitation energy
of the n** channel. V,, are the matrix elements of the coupling Hamiltonian, which
consists of the Coulomb and nuclear components in the collective model. The nuclear

potential, V,f,o) is assumed to have a Woods-Saxon form and is given by,

©y_ Vo _ 1/3 1/3
) = et Ty To = oA + ALY (3.23)

65



Table 3.1: Format of input file for CCFULL code

Linel AP, ZP, AT, ZT
Line2  RP, IVIBROTP, RT, IVIBROTT

Line 3 OMEGAT, BETAT, LAMBDAT, NPHONONT (if IVIBROTT=0)
E2T, BETA2T, BETA4T, NROTT (if IVIBROTT=1)

Line 4 OMEGAT?2, BETAT2, LAMBDAT2, NPHONONT?2

Line 5 OMEGAP, BETAP, LAMBDAP, NPHONONP (if IVIBROTP=0)
E2P, BETA2P, BETA4P, NROTP (if IVIBROTP=1)

Line 6 NTRANS, QTRANS, FTR
Line 7 V0, RO, A0

Line 8 EMIN, EMAX, DE

Line 9 RMAX, DR

The program calculates the transmission coefficients, T;{E), and the details of the

theory can be found in Ref. [18]. The fusion cross-section is then given by,

0 tus(E) = kig Y @7+ 1)Ty(E) (3.24)

The program considers either rotational or vibrational coupling for the target
and projectile excited states. The program has the option of choosing the coupling
and setting the parameters.

The input file of CCFULL has format shown in Table 3.1, The first line con-
tains the parameters specifying the system. AP (AT) is the projectile (target) mass
and ZP (ZT) is the projectile (target) charge. The second line is for the coupling
Hamiltonian. RP (RT) is the radius parameter 7., of the projectile (target) used
in the coupling Hamiltonian. IVIBROTP (IVIBROTT) is an option which speci-
fies the property of the intrinsic motion of the projectile (target). If it is set to be
-1, the projectile (target) is assumed to be inert and the fifth (the third and the
fourth) line will be ignored. The fusion cross sections in the absence of channel cou-
pling can be therefore obtained by setting both the IVIBROTP and the IVIBROTT
to —1. When IVIBROTP (IVIBROTT) is set to zero, the CCFULL assumes that
the coupling in the projectile (target) is vibrational, while if it is set to one, the

rotational coupling is assumed. The third line is for detailed information on the
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target excitation. If IVIBROT is zero (i.e., the vibrational coupling), the CCFULL
reads OMEGAT, BETAT, LAMBDAT, and NPHONONT. OMEGAT is the exci-
tation energy of the single phonon state, BETAT is the deformation parameter,
and LAMBDAT is the multipolarity of the vibrational excitation. NPHONONT is
the maximum phonon number to be included. For example, if it is two, up to two
phonon states are included in the calculation. If IVIBROTT is one (i.e., the rota-
tional coupling), the CCFULL reads E2T, BETA2T, BETA4T, and NROTT. E2T
is the excitation energy of the first 2% state in the ground rotational band of the
target nucleus, BETA2T and BETAAT are the quadrupole and hexadecapole defor-
mation parameters, respectively. NROTT is the number of levels in the rotational
band to be included. For instance, if it is 3, the 27 , 4% and 6T states are included
together with the ground state. The fourth line is for the second mode of excita-
tion in the target nucleus. The meaning of OMEGAT2, BETAT2, LAMBDAT?2 and
NPHONONT?2 is the same as OMEGAT, BETAT, LAMBDAT and NPHONONT,
respectively. The second mode is not included when NPHONONT? is set to zero.
OMEGAT?2, BETATZ2, and LAMBDAT? are then ignored. The fifth line is the same
as the third line, but for the projectile excitations. The sixth line is for the pair
transfer coupling. QTRANS is the Q-value for the pair transfer channel, while FTR
is the coupling strength. NTRANS is the number of the pair transfer channel. In
the present version of the CCFULL, NTRANS is restricted to be either one or zero.
If it is zero, the pair transfer channel is not included and QTRANS and FTR are
ignored. The seventh line is for the nuclear potential in the entrance channel (Eq.
3.23). V; is the depth parameter of the Woods—Saxon potential, RO is the radius
parameter Ry in Eq. 3.23, and AO is the surface diffuseness parameter a. EMIN,
EMAX, and DE in the next line are the minimum and the maximum value of the
colliding energy in the center of mass frame and the interval in the energy scale,
respectively. The CCFULL constructs the distribution of partial cross sections o

as a function of J if a single value of the energy is entered, i.e. either when EMIN
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= EMAX or DE = 0. The accuracy of the calculation is controlled by the matching
radius RMAX and the mesh for the integration DR in the ninth line. For many
applications, especially for asymmetric systems such as 60 + 44Sm, RMAX = 30
fm and DR = 0.05 fm provides sufficiently accurate results. For heavier systems,
such as ¥ Ni + 2Zr, RMAX may have to be extended to a value as large as 50 fm.

3.6 Results and Discussion

We first apply Wong’s formula to find the fusion cross-section for the reactions
6i+2%Bj. °®Be+2% Pp and 7Li+2% Bi, and the results are shown in Table 3.2. We
need the values of the barrier parameters (Vp, Rp) for use in the Wongs’ formula
(Eq. 3.16 ), and these are taken from Tables 2.1 and 2.3 for all the potentials. The
values of the curvature (fiwg) are taken from Ref. [19] and are given hy, 4.8 MeV,
4.4 MeV and 4.4 MeV, respectively, for the three reactions.
" The results of the single BPM are obtained by running the code CCFULL [18].
Line 2 of the input file (Table 3.1) is taken as 1.2-1,1.06,-1. Lines 3, 4, and 5
are automatically ignored as the target and projectile are assumed to be inert by
setting the second and fourth parameter of line 2 as —1. NTRANS in line 6 is set
to 0, and hence pair transfer coupling is ignored. Line 7 is for the parameters of
the Woods~Saxon potential, and these values are the same as the ones mentioned in
section 2.7. In line 8 we specify the energy interval, and in line 9 we put the values
0.05, 30 [18].

A graphical plot of the results are shown in Figs. 3.2 (a), 3.2(b) and 3.2(c) on
a log scale [20]. For comparison both the experimental data points and the resuits
of the single barrier penetration model (SBPM) are also shown. From the results,
we observe that the experimental fusion cross section falls short of the theoretically
expected results of single BPM. This is because fusion suppression is dominant in

these reactions [21]. Hence, we make a comparison of the theoretical results with
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Table 3.2: Fusion cross section for 8Li+2%Bi, “Be+2%Pb and "Li+-?%Bi.

Prox77 Prox88 Bass73 DBass77 Bass80 CW 76 B W91 AW 95 SBPM

Eem o (mb) for ®Li+2Bi.

(MeV)
25.27 | .029 .066 1.505 054 221 151 117 157 517
27.22 | .347 781 16.58 .638 2.588 1.774 1.379 1.841 2.24
29.16 | 4.051 8.902 114.1 7.333 27.22 19.34 15.29 20.01 29.11
31.11 | 39.14 72.48 312.3 62.80 152.2 124.2 106.4 126.7 156.0
33.05 | 172.0 238.5 514.7 221.7 354.2 320.2 294.3 323.1 352.5
35.00 | 3485- 4236 697.2 405.8 550.1 516.8 4879 519.2 352.5
36.94 | 5143 593.3 860.6 575.2 726.7 694.7 663.7 696.7 544.5
38.88 | 664.1 746.2 1008 728.0 885.7 855.0 822.0 856.5 715.7
40.83 | 799.7 884.6 1141 866.3 1030 1000 965.3 1001 868.0
42.77 | 923.0 1010 1262 992.0 1160 1132 1096 1133 1005
44.72 | 1036 1125 1372 1107 1280 1252 1215 1253 1126
46.66 | 1139 1231 1474 1212 1389 1363 1323 1363 1336
Ecn o {mb) for *Be+2%Pb.

(MeV)
32.59 | .001 .003 .074 .004 .014 012 .007 .006 .089
3355 | .004 011 283 014 .055 044 027 .024 051
35.47 | .053 155 4.038 209 794 648 .395 .346 1.22
37.38 | .768 2.24 44.11 3.01 10.90 9.01 5.60 4.93 18.35
39.30 | 10.48 27.27 181.1 34.83 88.53 78.71 56.41 51.34 1176
41.22 | 81.64 140.2 347.0 159.3 252.6 240.6 203.7 194.7 287.6
41.13 | 224.8 297.7 502.2 319.9 422.2 412.2 3714 361.7 456.7
45.06 | 3714 448.1 644.4 471.9 578.8 571.1 527.6 517.7 612.6
46.01 | 440.7 518.9 711.0 543.4 652.3 645.7 601.0 591.0 685.2
4793 | 571.0 651.9 836.4 677.6 79050 785.8 738.9 728.7 821.3
48.88 | 6324 714.5 8054 740.8 855.5 851.8 803.8 793.5 883.2
49.84 | 6914 774.7 952.1 801.6 918.0 915.2 866.2 855.9 943.7
Ecm o (mb) for "Li+2%Bi.

(MeV)
25.16 | 0.02 0.20 1.58 0.06 0.20 0.14 0.10 0.11 08
28.06 | 1.37 10.76 64.17 3.11 10.76 7.75 5.36 6.03 9.89
31.93 | 125.7 299.9 471.7 186.9 299.9 270.7 235.3 246.3 287.2
34.83 | 401.8 609.5 761.2 479.8 609.5 581.6 540.0 553.0 588.4
36.77 | 571.9 790.5 929.0 654.6 790.5 764.1 719.8 733.6 763.7
38.70 | 725.2 953.4 1080 812.0 953.4 928.3 881.6 896.1 918.6
40.64 | 864.0 1101 1217 954.4 1101 1077 1028 1043 1058
42,57 | 990.1 1235 1341 1084 1235 1212 1161 1177 1182
4451 | 1105 1357 1454 1202 1357 1335 1283 1299 1294
46.44 | 1211 1469 1558 1311 1469 1448 1394 1411 1395
48.38 | 1308 1572 1654 1410 1573 1552 1497 1514 1532
50.31 | 1398 1668 1742 1502 1668 1648 1591 1609 1571
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Table 3.3: Fusion cross section for °Li+%2Sm considering both spherical
(B2=0) and deformed ((,=0.26) target.

Prox77 Prox88 Bass73 DBass77 Bass80 CW76 BW YL AW 95 SBPM

Eem o (mb) for ®Li+52Sm (B,=0)
(MeV)
20.20 | 0.14 0.30 9.96 0.28 0.84 0.59 0.48 0.69 .052
21.16 | 0.52 1.09 32.96 1.02 3.04 2.14 1.73 2.51 299
2213 | 1.89 3.94 91.13 3.69 10.76 7.66 6.22 8.94 1.49
23.09 | 6.78 13.76 190.5 12.92 35.07  25.77 21.21 29.68 6.33
24.05 | 22.78 43.05 310.1 40.76 93.68 73.44 62.46 82.28 22.48
25.01 | 64.67 106.5 430.7 102.4 188.2 159.0 141.2 172.3 62.94
25.97 | 139.3 198.6 545.2 193.4 298.4 265.8 243.7 281.2 132.7
26.94 | 232.0 299.8 652.2 294.6 408.5 375.3 350.9 391.4 220.9
27.90 | 327.1 399.0 752.2 394.0 513.1 480.3 454.3 496.7 311.9
28.86 | 4184 492.9 8455 488.3 611.3 579.1 551.7 595.6 399.9
29.82 | 504.4 581.2 932.8 576.9 703.3 671.7 643.1 688.4 482.8
30.78 | 585.2 663.9 1014 660.0 789.6 758.6 728.75 775.3 560.3
31.75 | 661.2 741.8 1091 738.1 870.7 840.2 809.3 857.0 633.4
32.71 | 732.7 815.0 1163 811.6 947.0 917.0 885.1 933.9 700.8
33.67 | 800.2 884.0 1232 881.0 1019 989.4 956.6 1006.4  763.8
34.63 | 863.8 949.2 1296 946.4 1087 1058 1024 1075 822.8
35.59 [ 924.1 1010 1357 1008 1151 1122 1088 1140 878.1
36.56 | 981.2 1069 1416 1067 1212 1184 1148 1201 930.5
37.52 | 1035 1125 1470 1123 1270 1242 1206 1259 979.3

Ecm o (mb) for 6Li+152Sm (,=0.26)

(MeV)
20.20 | 0.08 0.18 6.31 0.17 0.52 0.37 0.29 0.43
21.16 | 0.30 0.66 21.61 0.61 1.89 1.33 1.06 1.56
2213 | 1.08 2.39 64.56 2.23 6.77 4.80 3.84 5.61
23.09 | 3.90 8.50 149.19 7.96 22.99 16.65 13.46 19.28
24.05 | 13.60 28.08 262.1 26.48 66.92 55.10 42.46 57.91
25.01 | 42.12 76.93 381.0 73.49 148.9 122.7 106.6 134.5
25.97 | 1025 158.9 495.6 154.1 254.1 222.8 201.5 237.4
2694 | 188.1 256.8 603.1 251.6 363.3 330.8 306.9 3464
2790 | 2814 355.6 703.5 350.6 468.3 436.0 410.5 452.0
28.86 | 372.7 450.1 797.3 445.4 567.3 53541 508.7 551.6
29.82 | 459.2 539.0 885.1 534.6 660.0 628.7 601.0 645.1
30.76 | 540.7 622.5 967.4 618.5 747.0 716.3 687.6 732.8
31.75 | 617.2 701.0 1045 697.3 828.8 798.6 769.0 815.2
32.71 | 689.3 774.8 1117 771.4 905.8 876.1 845.6 892.7
33.67 | 757.3 844.5 1186 841.4 978.3 949.1 917.8 965.8
34.63 | 821.5 910.2 1251 907.4 1047 1018 986.0 1035
35.59 | 882.2 972.5 1312 969.9 1112 1083 1051 1100
36.56 | 939.7 1031 1370 1029 1173 1145 1112 1162
3752 | 994.3 1087 1425 1085 1231 1204 1170 1221
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respect to the results of single BPM. We find that the potentials Bass 80 and
BW 91 have an edge over the other potentials for the reaction ¢Li+2%Bi. For the
reactions ? Be+2% Pb and 7 Li+2% Pb the potentials Bass 80 and CW 76 turn out to
be better.

Similarly we calculate the fusion cross-section for the reaction 8Li+152Sm con-
sidering both spherical as well the deformed case [20] of the target nucleus. The
results are shown in Table 3.3. The barrier parameters are taken from Tables 2.1
and 2.3 for the spherical target case, and from Table 2.6 for the deformed target
case. The curvature of the barrier is taken to be 4.5 MeV [19]. Same as above,
we make the comparison with respect to results of single BPM as there is a very
high fusion suppression of 0.28 for this reaction [22]. The single BPM cross section
is determined from CCFULL in exactly similar way as that mentioned above. The
graphical plot of the results is shown in Figs. 3.3 (a), (b), (c) and (d). We see that
for all the potentials the fusion cross-section for the deformed case (8,=0.26) comes
out closer to the results of single BPM than the spherical case (82=0). As such, the
role of deformation of the target nuclei 28m is clearly seen. Overall we see that
the fusion cross-section for the potentials of CW 76 and BW 91 are better than the

rest.
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Figure 3.3: Fusion cross-section from Wong’s formula for 8Li+'%2Sm assuming
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3.7 Summary and Outlook

Using Wong’s formula, we find the fusion cross section for the reactions ¢Li+2%Bi,
9Be+2%8Pb and “Li+2%Bi. Values of the barrier parameters are taken from chapter
2. The fusion cross section is greater than the experimental fusion cross section,
which is because of the fact that fusion suppression is dominant in these reactions.
If comparison is made with respect to the results of single BPM (calculated from
CCFULL), then we see that the prediction of the potential Bass 80 is better than
the other potentials. For the reaction ®Li+!52Sm, fusion cross section is determined
on the assumption of spherical as well as deformed target. The results of fusion cross
section for deformed target are closer to the results of single BPM. Hence, effects of
deformation of the target nucleus 52Sm is clearly seen.

The Wong’s formalism gives accurate results for energies greater than about 1.2
times the barrier energy. For energies near or below the barrier one must resort to the
exact coupled channels calculations which can be done with the code CCFULL with
proper consideration of target (and projectile) excited (rotational or vibrational)
states. For the reactions considered here the fusion cross section can also be studied
through the Wong’s formalism using the barrier parameters deduced from other
nuclear potentials like the the Denisov potential, double-folding potential or the
Skyrme nuclear interaction. Further improvement of fusion cross section can be
done through the extended Wong’s formalism in which the ¢-dependent barriers are
introduced via the /-summation, or through Balantekin’s improvement of Wong’s

formula (Eq. 3.21).
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Chapter 4

Semi-classical model of fusion

suppression for reactions induced

by °Li

4.1 Introduction

During the last decade and a half there has been marked improvement in exper-
imental facilities, and also intense beams of loosely bound nuclei as well as the
radioactive-ion beam have become available [1, 2, 3]. Hence, heavy ion collisions
with loosely bound nuclei has become an active and exciting field of research [4, 5].
A huge amount of fusion cross-section data has been collected over the years. One
common feature is that the experimentally measured fusion cross-section is frac-
tionally less than the theoretically expected fusion cross-section. This fact has been
noted in the previous chapter, where the theoretically calculated fusion cross-section
from Wong’s formula and the SBPM model is found to be somewhat greater than the
experimentally measured fusion cross section. The theoretical fusion cross-section
can be obtained from the one-dimensional barrier penetration model (for energies

above the barrier), or from the code CCFULL (for low energies). The ratio between
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the experimental (0.,,) and theoretical fusion crass section (oyne,) is called fusion

suppression [6],

experimental fusion cross section = Oexp

Fusion Suppression = (4.1)

theoretical fusion cross section Otheo

The reason for the decrease in the experimental fusion cross-section is attributed to
the breakup of the loosely bound projectile. Because of the strong interaction with
a heavy target nuclei (eg. *4Sm, 2 Bji), the loosely bound projectile breaks up
which results in a decrease of the fusion cross section. Here, at least four different
types of events have been identified [6]. When the whole of the projectile fuses
with the target without breakup, then it is called direct complete fusion (DCF).
After breakup, if both the fragments fuse with the target, then it is called sequential
complete fusion (SCF). If one of the breakup fragments fuse with the target, then
it is called incomplete fusion (ICF). If none of the breakup fragments fuse with the
target, then it is called no-capture breakup (NCBU). The four type of events are
shown schematically in Fig 4.1.

In this chapt\er, we present a semiclassical model for the explanation of fusion
suppression. In the next section (section 4.2), we provide the review work for fusion
suppression, and also discuss the the theoretical work that has been done by various
authors for explanation of projectile breakup and fusion suppression. This would
be followed by a brief outline (section 4.3) of our approach in tackling the problem.
Sections 4.4, 4.5 and 4.6 discuss the theory for obtaining the classical equations of
motion. In the next section, we discuss the model of SLi that we have introduced
for obtaining solutions. In sections 4.8 and 4.9 we discuss the method for ob’;aining
numerical solutions and the nature of the solutions respectively. Section 4.10, 4.11
and 4.12 discusses the complete methodology for the explanation of fusion suppres-
sion including evaluation of cutoff impact parameter. In the next section, results

and discussion are presented. Finally in section 4.15, we provide the summary and
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also discuss possible future outlook.

4.2 Review work on projectile breakup and fusion
suppression

As noted in section 4.1, reactions initiated by loosely bound projectiles (®Li ,Li,
9Be) have led to four ;iistinct types of events. These are direct complete fusion
(DCF), sequential complete fusion (SCF), incomplete fusion (ICF) and no-capture
breakup (NCBU). These events are a direct consequence of the breakup of the
projectile before they reach the target. As a result, the experimental cross section
falls below the theoretically expected value, and the ratio between the two is often
called fusion suppression. Fusion reactions induced by loosely bound projectiles have
been studied on a wide range of medium and heavy targets like 20°Bi, 28Pb, 1%Tb,
1528m, 144Sm, 124Sn, 39Y, etc [7, 8, 9, 10, 11, 12, 13]. M. Dasgupta et. al. [7], studied
the fusion cross section for the reactions SLi+2%Bi, "Li+2%Bi, and 9Be+2®Pb at
energies near and above the Coulomb barrier using the 14UD tandem accelerator at
the Australian National University. By using three different and conclusive methods
it was shown that fusion cross-section is suppressed by = 30 % for the three reactions.
Using the 14UD BARC-TIFR pelletron accelerator facility at Mumbai, P. K. Rath
et al. performed fusion cross-section measurements of Li on Samarium isotopes
(*#Sm and *2Sm) [8, 9]. For both the reactions evaporation of neutrons (1n, 2n,
3n, 4n and 5n) are the primary decay modes, and these were measured using the
recoil catcher technique followed by off-line y-ray spectrometry. Statistical model
calculations using PACE code were done for estimating the contribution from the
missing channels. After comparison with theoretical expectations, it was found that
fusion cross section is suppressed by =~ 32 % and 28 % for the reactions ®Li-+'*4Sm
and Li+'%2Sm, respectively. M. K. Pradhan found that the fusion suppression

for the reaction SLi+'°Tb is =~ 34 % [12]. Through a comparison of the fusion
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suppression factors for the reactions “Li+'*Tb and °B4-**Tb, he could show that
the suppression factor is inversely related with the a breakup threshold energy of
the projectile. C. S. Palshetkar [14] found that the fusion excitation functions for
9Be+-8%Y is suppressed by (20+5)% as compared to the ones predicted by coupled-
channels calculations that do not include couplings to the projectile continuum.
Further confirmation of fusion suppression was obtained by comparison of fusion
data for two more systems, namely, for ‘He-+?*Nb and 2C+%Y, which involve
tightly bound projectiles and form compound nuclei nearby to that formed in the
reaction *Be+%Y. Similar work involving °Be projectile has been done by other
authors, namely, V. V. Parker on ?4Sn target [15], P. R. S Gomes on *4Sm target
[10], and Z. H. Liu on 2%Bi target [16]. The theoretically expected value of the
fusion cross section in the absence of breakup can be calculated from the computer
code CCFULL [17]. This code is remarkably successful in explaining the fusion cross
section of tightly bound projectiles.

The calculation of breakup yields for reactions induced by loosely bound pro-
jectiles has been done by quantum as well as classical methods. The continuum-
discretized coupled channels method (CDCC) [18] is the most widely applied quan-
tum method for treating the breakup of a projectile. In the early seventies it became
clear that the breakup of deuteron beams couldn’t be well described by Born ap-
proximation, and required a careful treatment of the continuum. Since those early
days, CDCC methods have evolved for the description of three-body as well as four-
body breakup. A brief descriptién of the three-body CDCC method is as follows.
Here, the total wave function of the 3-body system (projectile + target) is expanded
in terms of the complete eigen functions of the 2-body projectile. The eigen func-
tions are composed of bound and continuum states and breakup of the projectile
takes place when it reaches the continuum states. For practical applications, the
continuum states are truncated at some maximum values of the angular momentum

(£maz) and the linear momentum (kp.;). Accurate results may not always be pos-
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sible [19, 20] with the CDCC method because of the above approximation and also
due to discretization of the continuum. Also, CDCC methods cannot distinguish
between complete fusion and incomplete fusion events because it requires a time
dependent description of the process. These difficulties are overcome by the clas-
sical trajectory model in which the time evolution of the breakup fragments of the
projectile can be studied through solutions of the Newtonian equaﬁons of motion.
The chief contributors towards the development of the classical model are K.
Hagino, M. Dasgupta, Alexis Diaz-Torres, and others. Hagino's two-dimensional
classical trajectory mpdel [21] is developed by constructing the classical equations
of motion of the three body (target+projectile) system. Events like scattering,
incomplete fusion and no-capture breakup could be obtained from numerical so-
lutions of the equations of motion. The loosely bound projectile is considered to
be a two-body system held under the combined influence of Coulomb and nuclear
potentials. However, the initial conditions for the equations of motion were ob-
tained arbitrarily, without reference to any physical principles. He concluded by
remarking that his work could be incorporated into the CDCC formalism. In Alexis
Diaz-Torres’s classical dynamical model [22, 23, 24], breakup of the projectile is de-
termined through an empirically obtained breakup probability function. Sub-barrier
no-capture breakup nfleasurements are used for determining the parameters of this
function. The method has been successfully used to determine the breakup yields
of reactions induced by °Be on a number of targets, and also to predict the fusion
suppression factors [24]. However, the method has a disadvantage as it can only
work with inputs from precise experimental data in order to determine the breakup
probability function. Classical trajectory method has been applied to study other
problems like ionization of an atom. Ionization is in some respects similar to the
breakup of a projectile as it involves the removal of an electron from an atom. In
Ref. [25], ionization of the hydrogen atom in an intense laser field has been studied

by classical trajectory method. It was found that the classical results match the
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exact quantum mechanical results only if tunnelling is taken into account at the

-

classical turning points.

4.3 Brief outline of our approach

In this work, we present a semi-classical model for determining the fusion suppres-
sion factor, and shall be applying it to the reactions Li+2%Bi, 8Li+'%2Sm and
61i4+44Sm. The problem is separated into two parts. In the first part, the cutoff
impact parameter (b.) for fusion is determined, and in the second part we find out
the fraction of projectiles undergoing breakup within this cutoff impact parameter.
As fusion is a quantum mechanical barrier transmission problem, hence the cutoff
impact parameter is evaluated by applying quantum mechanical methods. For deter-
mining the relative number of projectile breakup, we use Hagino’s two-dimensional
classical trajectory method [21]. Then the breakup fraction of the projectile is de-
termined as a function of the impact parameter. A simple formula for explanation of
fusion suppression is introduced, according to which fusion suppression is given by
the average of the breakup fractions evaluated at impact parameters ranging from
head-on collision up to the cutoff impact parameter.

The choice of the targets (2Bi, 1*Sm and 5?Sm) have been motivated due to
the availability of precise fusion excitation data for these reactions, and also due
to the fact that very high fusion suppression is observed for these reactions. We
have limited our work to Li projectile because breakup of “Li and °Be involves
qomplicated process. The dominant channel for breakup of “Li involves a proton
pickup from the target to form ®Be, which then breaks up into two a-particles [26].
For °Be, the breakup process involves a neutron transfer to the target to form ®Be,

which finally breaks up into two o-particles [24].
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4.4 Lagrangian for the system

We first construct the Lagrangian in two dimensions for the system of projectile and
target [21]. We consider the projectile to be composed of two point particles, and
the target is assumed to be a sphere of radius r.. The nuclear potential energy is
assumed to have a Woods-Saxon form, whose parameters are obtained from optical

model analysis of elastic scattering data. The Lagrangian assumes the form,

1 ) . 1 . . 1 . .
L= §m1(-’lf'§ +91) + §m2(w§ +95) + 5ma(Es + 93)~Vie—Via— Vs (42)

where, subscripts 1 and 2 denote the two projectile fragments, and subscript 3 denote
the target. Vj, is the potential energy between the two components of the projectile,

and is given by,

2
- U1 e“Z1 7y ] 2 5
Vo=~ 1+ explr—r/a t r , T=y (21— 22)" + (11 — ) (4.3)

Vis is the potential energy between one component of the projectile and the target

and is given by,

Va /

_ RY 2
Trepem TUs o r=y (@) ) (44)

Vis =

Vas is the potential energy between the remaining component of the projectile

and the target and is given by,

U3

Ve = T e

U , r=y(@—o)+@-w’ (45

here, (v, 7, a,) (i=1,2,3) are the parameters of the respective Woods-Saxon
potential, and U,, is the Coulomb potential energy between the projectile fragment

and the target. As we had assumed the charge of the target nucleus to be uniformly

84



distributed over a sphere of radius 7., hence,

p
Z‘2€j2 (3 - ':'g') f r < Tes
Ui_; = 4 (46)

2,2,6 :
Sl if r>r.,
\ T

where, 7, is the radius of the target nucleus and is given by, r;=1 .28A: / 3+0.8A: 173
0.76 fm [4, 5]. The boundary conditions of the problem are well defined in Cartesian
coordinates. Hence, we rewrite the Lagrangian in Cartesian coordinates,

221Z2
m3 233 + U3 +

\/ (wl ~ )” ~92)°

1 1
—ma(23 + 75) +

1
L le(ml+y1)+ 9 9

(%1

~ U+
1 -+ e\/(:c]—a:2)2+(y1—y2)2—r1)/a1 13 + e\/(a;l—:c;;) +(yl—y3) ~ra)/az

V3
1 + eV (@2—=3)*+(y2—ys)*—r3)/as

— Uy + (4.7)

'The Coulomb potential energy between a component of the projectile and the target
is given by,

ztzzr,:‘«‘ [3 _ (m,—z,)iw;(yz-y])z} if \/(3,;z — x})z + (y; — y3)2 < 7,
U, = : (4.8)

Z.Z.e? . 9 5
v (:sa—zs);—riyi—yg)z if \/(',E‘ )+ —y) >re

4.5 Equations of motion for the system

From the Lagrangian given by Eqs. 4.7 and 4.8, we construct the equations of

motion from Lagrange’s equation,

doL oc
i55 7g " (4.9)
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where, the generalized coordinate (g;) stands for the the x and y coordinates of

the three particles, i.e., z1, z2, T3, 1, Y2 and ys. The equations of motion are given

by,

mi, = (%;; (4.10)
miy = gy% (4.11)
Tty = % (4.12)
oty = g—i; (4.13)
gy = §§; (4.14)
mays = 2_5; (4.15)

The derivative of the Lagrangian with respect to the independent variables (x,

Y1, T2, Yo, T3, Y3) are given below,

oL _ _8U13 . 3(]23 + €2Z122(.’L'1 - 2?2)

Oy T1 T (1 —22) + (1 — y2)2]3/2

(v1/ay)eV @122V +a—y2)* =r1)/ax (21 — )

146V (xl—z2)2+(y1—y2)2~r1)/&1}2 Ve =) + (1 — 1)’

('U2/a2)e\/(""l_33)2+(yl”?}3)2‘72)/a2 (3?1 —_ .’133)

[1 + e‘/(zl“ma)2+(y1~y3)2—T2)/a2]2 \/(971 —23)% + (.7!1 - ?J3)2

(4.16)

where,
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6U13 _ch§e2 (zl - $3) lf \/(xl - I3)2 + (yl - y3)2 S Te,

2 (4.17)
T ~Afselmrm) \/ (@1 — 23)* + (1 — 4)” > 7.
{(x1~z3)2+(y1—y3‘)2]
_0 4.18
o (4.18)
2& B .,an B OUss + 62Z122(?}1 — Y)
= 3/2
o % hn [(z1 — 22)* + (31 — ?/2)2] !
Y m)e\/(“‘“)?*“("”“”2)2_”)/ o (1 — 1)
[1 4+ V@ —~y2)2—n)/al]2 V(e —z2)* + (31 — 32)?
Y a2)8\/ (@1~23)*+(y1~p3)* ~2) /a2 (1 —vs) (4.19)
[1 -+ 6\/(21—23)2+(y1—y3)2—7'2)/a2]2 \/(-771 - 333)2 + (yl - y3)2
where, ’
_ BT, _ if — a3+ —ys)’ <
oUys 3 (y1 — u3) if /(21— 23)" + (v —93)” <7,
_ (4.20)
Ui o rmcire R RUCEES N RO
[(ml—m3)2+(y1—y3)2]
OUy;s
_0 421
Oyt ( )
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oL _8U13 _ 8U23 4 62Z122($1 — .’Eg)
Oz O0m 0w (g — gy 4 (1y — )]

3/2

(vl/al)e\/(zl—zz)z*'(yx—yz)z~r1)/a1 (1111 — sz)

[1 + e\/(wl—w2)2+(y1—y2)2~r1)/al]2 V(1 — 22)2 + (31 — 2)?

_ (vs/ag)eV Ere ) ra)fan (22 — 3) (4.22)
[1 teV (xz~ws)2+(yz-ys)“-fﬂ)/@]2 Vizz =zl + (g —ys)?
where,
U | R @—z) (-2 + (- ) <
Oozy _ Z2Z3¢* (y2—ys) s if \/(1;2 _ 1_3)2 ¥ (yg — y3)2 > (423)
[(mz—~m3)2+(yz~y3)2] ! . “
OUy3
18 _ 9
o (4.24)
oL _ _OUys  OUss 21 Zpe*(y1 — )
3/2
O O (o — @)+ (- )
(v/ay)eV @22V +n—wa)*—r1)/ax (z1 — 22)
1+ eV (E1—22)*+mn—m)*~m) /a1 2 \/(yl —42)% + (41 — 12)?
+
v/a e'\/ (w2—z3)%+(y2—ys)*—13) /a3 -

[1 + e\/(w2~w3)2+(yz~ya)2—rs)/aa]2 V(w2 — 73)2 + (y2 — y3)?
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where,

OUys _“'Z'Z&(yz - 3) if \/(3?2 ~ )+ (e —v)* < 7,
= 2 — .
" B [¢ Zmz):;i((y2 -W))Q] i \/(352 - z3)" + (32 — 1) > 7.
T2—IT3 y2—ys3
ouU
Oys
oL _ OUy + (va/ az)e\/(zl—ws)zﬂm—ys)z—m)/az (z1 — 73)

Oz Ox3 [1 + e\/($1—23)2+(y1—ya)zwm)/@] 2 \/("’31 —x3)2 + (y1 — u3)?

_ OUss + (’03/0,3)6\/(“’2_$3)2+(y2_3’3)2"r3)/“3 (ze — x3)

Oz [1 + e\/(wz—$3)2+(w—y3)2-ra)/as]2 V(@2 = 23)2 + (y2 — y3)?

where,

(
o0U13 £ TZ§ . (1 - s) if \/("El —z5) 4+ ( — )’ < 7

O0z3 Z) Zze® (1 —3) s if \/(2:1 - $3)2 + (- y3)2 > Te:
L [(x1—$3)2+(91—93)2]

(

AU B “?"Z“le_(w2 - -LS) if \/(382 - 373)2 + (y2 - 'y3)2 <7
8.’1)3 N ZaZ3e2 (zg—z3)

if \/(5132 —z3)’ + (g2 —y3)* > 1.

L [(xz —183)2+(y2"113)2] V2
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oL B _6U13 . (v2/a2)e (m1—23)*+(n—v3)~72)/az (yl - ya)
Oys Oys [1 + e\/(21—33)2+(m~?/3)2—T2)/02}2 \/(3"1 = z3)% + (11 — ya)?

_ s (vs/ ag)eV @ +n—va)'=rs)/as (2~ vs) (4.31)
Oys [1 + e\/(:vz—m3)2+(y2~y3)2—7‘3)/a3] ? \/($2 —.3)2 + (42 — 9a)?
where,
)
2z, if 4/ (1 — 25)” + (31— 9s)’ <
oy _, 22 (y1 — vs) \/ T Es T T =T (4.32)
B3 71 Zae (g ~33) o if \/ (21— 23)* + (31 — 93)* > 7.
L [(x1—$3)2+(y1—y3)2]
)
Zngez(y ._y) 1f\/(27 _$)2+( - )2<T
: — bl
OUp _ ) & 258 S G (4.33)
dys Z3Z3¢%(ya—y3) o5 if \/ (z3 — x3)2 + (v2 — y3)2 > Te.
{ [(32—23)2+(y2_y3)2]

P

4.6 Initial conditions of the system

The system under consideration basically consists of three particles in two dimen-
sions (x and y coordinates). Hence, from the Lagrange’s equations of motion, six
second order differential equations are obtained. By a change of variable twelve first
order differential equations are constructed. These twelve first order differential
equations can be solved only if twelve initial conditions are known. These twelve
initial conditions are the positions and velocities of the x and y components of the
deuteron, a-particle and the target. The position of the target is conveniently cho-
sen to be at the origin, and is initially at rest. The deuteron and the a-particle
constituting the ®Li nucleus, is arbitrarily oriented at an angle § which is measured

from their centre of mass to the direction of the y-axis. Therefore, the 12 initial
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conditions are,

21(0) = B — ry5in(6)
#1(0) = V + vycos(6)
11(0) = b+ ricos(9)
91(0) = vysin(6)
23(0) = R + rasin(0)
#2(0) = V' = weos(6)
y2(0) = b — racos(0)

92(0) = —vqsin(8)

23(0) = 0
£3(0) = 0
ys(0) =0
§3(0) = 0 (4.34)

here, subscripts 1, 2 and 3 denote the deuteron, a-particle and the target, respec-
tively, and, V:W is the velocity of the projectile. R is the initial distance
of the centre of mass of the projectile from the target and b is the impact parameter.
v1, v and 11, 79 are the velocities and distances of the deuteron and the a-particle

with respect to their centre of mass.

4.7 Model of °Li

Initially, for obtaining numerical solutions arbitrary values of vy, v3 and 71, 7y were
used. In general, chaotic solutions are obtained from arbitrary values of vy, vo and

r1, T9. Afterwards the values of vy, v2 and 71, 7o are changed and we observed the

91



nature of the solutions. The process was continued until stable solutions (free from
chaos) were obtained. After repeated trial and error, we choose the values, 1= 2r;
= 1.513 fm , v;= 2u;= 0.645x 107 m.s~! because we could consistently obtain three
distinct types of trajectories. These three types of trajectories are : scattering-like,
incomplete fusion and no-capture breakup, and these are discussed in section 4.9.
Next an attempt was made to derive the values of vy, vo and 7y, 7 from some
fundamental properties of the 8Li nucleus like spin and breakup threshold energy
(binding energy).

It was found that these values can be derived by considering a cluster model
of the ®Li nucleus which is based upon semiclassical ideas. The motivation for the
model is Bohr’s model of the hydrogen atom in which the electron revolves around
the proton in classical orbits. It has been known for quite some time that ®Li exists
as a cluster of a deuteron and an a-particle, and fully quantum mechanical treatment
is available in the literature [27]. However, we need a model which is consistent with
the idea of classical trajectories. The nucleus 5Li is considered to be composed of a
deuteron and an alpha-particle, rotating in circular orbits about their centre of mass
with a fixed distance of separation (see fig. 4.2). The positions and velocities of the
deuteron and the a-particle are determined from consideration of the total energy
and the angular momentum of the system. Hence, two postulates are proposed for
the SLi cluster model : (a) The total energy of the deuteron and the a-particle
system is equal to the breakup threshold energy (binding energy) of the ®Li nucleus,
and (b) The total angular momentum of rotation of the deuteron and the a-particle
about an axis through its centre of mass is equal to mh, where I is the spin
quantum number of the ®Li nucleus. The calculations are as follows : The deuteron
and the a-particle cluster (6Li projectile) are rotating with angular velocity w about
their common centre of mass. Since, the mass of the a-particle is twice the mass of
the deuteron, hence, r1= 2rq, and v;= 2v,. Here, vy, v5 and r1, 79 are the velocities

and distances of the deuteron and the a-particle with respect to their centre of mass.
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Figure 4.2: Model of %Li proposed for obtaining boundary conditions
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The total energy is given by the sum of the kinetic and potential energies of the two

. particles,
Z]_de2 Vb
T 14 elrro/e

1
E = -myv? + zmqvk + (4.35)

2 2

The centrifugal force needed for rotation is provided by the resultant of the Coulomb

and nuclear forces,

myv? %Qe(’““’)/" B AVA
r - [1 + e(r—ro)/a]2 r2
1 2 EV%T;[ B(T_m)/a 7 22627‘1
gmvy = L ool — %3 (4.36)
Similarly, for the other particle,
1 2 '21%7'26(7‘—7‘0)/& 2122627'2
3R T [ e T o (437)

After substituting (4.36) and (4.37) in (4.35), we obtain an expression for the total
energy. Here, r=r;-+r; is the total distance between the deuteron and the a-particle.

_Q‘_fg,re(r—ro)/a Ve 21Z262

E= [1+ e—ro/a2 ~ 14 glr—ro)/a + or

(4.38)

Taking, E = 1.48 MeV, the breakup threshold energy of ®Li (— 2H+*He), and
numerically solving the above equation for the Woods-Saxon parameters (V4, 1o, a)=
( 75.5 MeV, 1.85 fm, 0.71 fm) (]28]), we obtain r= 2.27 fm. Using the conditions,
r1= 2ry and r=r;-+rs, we obtain, ri= 2ry = 1.513 fm.

To determine the angular velocity of rotation, we use the second postulate which
states that the total angular momentum of rotation of the two body system is équal

to v/2h, which is the spin of the 8Li nucleus. Hence,
Lw+ Lw = v2h (4.39)

here, w is the angular velocity of rotation. I; and I, are the moments of inertia of

94



the deuteron and the a-particle, respectively, and are given by,

3

.[1 = gmlR% + mlrf (440)
3

L= ngRg + mara (4.41)

In the above expression we have assumed the deuteron and the a-particle to
be spheres of radii R; and Ry, respectively. Determining radius from the approx-
imate relation, R =1.3341/3 fm, we get w= 0.427x10% rad.s™!, and hence, v;=

riw=0.645x107 m.s~!, and vy = row= 0.323x107 m.s~!.

4.8 Numerical solutions

For obtaining numerical solutions, wé convert the six second order differential equa-
tions (Egs. 4.10, 4.11, 4.12, 4.13, 4.14, 4.15) into twelve first order differential
equations through a change of variable. The twelve first order differential equa-
tions are easily solved by applying Euler’s method. The actual solution is obtained
through the FORTRAN programming language. The twelve first order differential

equations are,

1 = Wy ; miw; = —6672 (4.42)
Yi=2  ;  muA= gyﬁ—l (4.43)
Ty = Wy ; Moy = g—x% (4.44)
Y=z . Mgk = %% (4.45)
T3 = W3 : MWz = g—:: (4.46)
Yz = 23 ; m32y = % (4.47)

The Euler’s method is used to solve each of the above first order differential
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equations. For a first order differential equation of the form,

y=f@) (4.48)

Euler’s solution is given as,

Ynt1 =Yn + h * f(t) (449)

where, 'n’ is the iteration step and ’h’ is an infinitesimal increment of the variable 't’.
In our problem, the variable ’t’ can be identified with the time variable. Applying,

Euler’s solution to each of the above differential equations,

Ti(nt1) = Tin) + h* wy ; Wilnt1) = Wi(n) + _n}:—gf; (4.50)
Yint1) = Y1) T h* 21 ; 2(nt1) = Z1in) + 7:: g;l (4.51)
Tant1) = Ta(n) + h * wy ; Want1) = Wan) + n}: gf; (4.52)
Votmt1) =Yom) +h*zo 29(n+1) = Za(n) + n}; (69;2 (4.53)
Tint1) = Tam) +h¥ws 5 Wsni) = Wam) + 7: gfa (4.54)
Y3(nt1) = Ysm) + A * 23 ; 23(n+1) = 23(n) + n}; g;; (4.55)

For obtaining the solutions, the values of the variables (initial conditions) have to
be provided at the first step. The above numericsl recipe automatically calculates
the values of the variables in the second step. Taking these values as input, the
new values of the variables are obtained in the third step. The process is continued
and ideally we could obtain solutions for any desired number of steps. Howeve(r, in
reality the number of steps that can be carried out is limited by the memory and
the processing speed of the computer. Hence, the initial distance between target

and projectile is chosen in such a way that the projectile travels a sufficient distance
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after interaction with the target so that the nature of the trajectory (scattering-like,
incomplete fusion and no capture breakup) can be determined. The calculations
are done through the FORTRAN programming language which can easily handle

iterative calculations under a DO loop [Ref. Appendix A].

4.9 Nature of solutions and trajectories

Some of the typical trajectories obtained from the numerical solutions are shown in
Fig. 4.3. Fig. 4.3(a) shows a scattering-like event, Fig. 4.3(b) shows incomplete
fusion in which the deuteron is captured by the target, whereas Fig. 4.3(c) shows
no-capture breakup in which none of the breakup fragments are captured by the
target. All these trajectories have one feature in common and that is the projectile
(or its fragments) are carrying away the angular momentum. In complete fusion
event the projectile fuses with the target to form the compound nucleus, and the
total aJ;gulaJ: momentum is manifested as the spin of the compound nucleus. Our
model is incapable of handling complete fusion events. This is because the target
is considered to be a point particle, and hence it cannot possess internal excitation
energy and angular momentum. However, we can argue that every no-breakup
event (including scattering-like events) below the cutoff impact parameter (to be
discusssed in the section 4.11) has to be interpreted as a complete fusion event. This
is because we had employed the sharp cutoff model for fusion, which assumes that
complete and incomplete fusion event takes place within a cut-off impact parameter.
Our model is effective for studying the breakup of the projectile. Hence, in the next
chapter we employ the model to study fusion suppression which we explain as taking

place due to the breakup of the projectile.
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Figure 4.3: Typical trajectories of the projectile fragments obtained from numerical
solutions.
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4.10 Classification of breakup and no breakup tra-
jectories

In this chapter we shall provide an explanation of fusion suppression for the reac-
tions 8Li+144Sm, 6Li+%2Sm and Li+2®Bi. As explained earlier fusion suppres-
sion takes place due to the breakup of a projectile. Hence, explanation of fusion
suppression essentially rests upon the concept of breakup (or no-breakup) for a
particular trajectory. Hence, some facts and arguments are presented in order to
establish the point that breakup of the projectile takes place. In technical terms,
breakup would mean that the distance of separation between the deuteron and the
a-particle increases with time. In quantum mechanical language, the position of a
particle can be calculated from their wave function and the associated probability
distribution. However, in our model the positions are determined by the classical
Newtonian equations, and breakup would mean that the distance of separation be-
tween the positions of the deuteron and the a-particle increases with time. A total
of about 18000 trajectories were studied. We found that in more than 99 percent
of the cases, the distance of separation between the deuteron and the a-particle
were concentrated in two regions ; one between 0 — 2.27 fm and the other between
80 — 100 fm. The former region represents the no-breakup case, whereas the lat-
ter region represents the breakup case. The second region tended to increase when
the iteration (time variable) was increased. This clearly indicates that breakup of
the projectile has taken place. The determination of the number of breakup and
no-breakup trajectories is done through a Fortran programme. Here, 2.27 fm is the
distance that we had obtained between the deuteron and the a-particle in our sim-
plified cluster model of °Li nucleus (see section 4.7). In less than 1 percent of the
cases, the solutions turned chaotic, and these were ignored in the calculations. This
is probably due to the fact that the differential equations picked up the right initial

conditions (during random Monte Carlo simulation} for the solutions to turn chaotic.
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In our programme breakup trajectory is identifed by setting the condition that the
distance of separation between the deuteron and the a-particle is greater than 2.27
fm when they are far away from the target after interaction. It may be mentioned
that out of the three types of trajectories obtained by us, incomplete fusion and
no-capture breakup fall under the category of breakup, whereas scattering-like fall
under the category of no-breakup. The Fortran code for determination of breakup

and nobreakup trajectories is given in Appendix A.

4.11 Determination of cutoff impact parameter
for fusion

For an explanation of fusion suppression factor we need to have an idea of the relative
number of projectiles undergoing breakup. For this, the cutoff impact parameter for
fusion must be determined. The cutoff impact parameter for fusion can be deter-
mined from the cutoff angular momentum for fusion. The cutoff angular momentum
for fusion is determined through a comparison of the fusion cross section of the sin-
gle barrier penetration model (SBPM) and the fusion cross section predicted by the
computer code CCFULL [17].

According to SBPM, fusion between two nuclei takes place due to quantum me-
chanical tunnelling over the fusion barrier. Since, many partial waves are involved,
the total fusion cross section is given by the sum of the partial fusion cross sections
29), i}

o= 71% Y (2 + )TP, (4.56)

£=0
where, T} is the transmission coefficient for the £** partial wave, P, is the probability
for fusion once the barrier is crossed and k*>=2uF,/h*. Using WKB approximation

and treating the Coulomb barrier as inverted parabolas, Hill and Wheeler [30] arrived
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at a simple expression for the transmission coefficients,

B 1
1 + exp (%(Eg - Ecm))

Ty(Ecm) (4.57)

where, E; is the fusion barrier for the £** partial wave, and hw; is the curvature of
the parabolic barrier. We assume a sharp cutoff model for P,, which is based on
the idea that fusion is more probable for head-on collisions rather than peripheral
collisions [31]. Hence,

1 if £<I,
P = (4.58)

0 if £>1L,
where, L. is the cutoff angular momentum quantum number. Hence, the sum in
Eq. (4.56) can be replaced by an integral having L. as its upper limit. Finally, we
obtain oy, as a function of L, [31],

. thwo 14 et

Ofus = E_ ln{ T e“z} (4.59)

where,

whL(L,+ 1
z=1yo+ ﬁ—l (4.60)
and,
2n(FEy — Eon

Yo = ,..________( ;)iwo ) (4.61)

If the Coulomb barrier parameters fiwg, Fo and R, are known, then Eq. (4.59) can
be solved to find L, for every pair of oy, and E.,. 04y is taken from the output of
the computer code CCFULL. Once L, is known, the cutoff impact parameter (b.)

can be determined from the relation [32],

L.
bc == --—c—. -
Vomb (4.62)

which is derived from the condition that the angular momentum of the projectile is
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L. times h. The position of the projectile (needed for locating the impact parameter)

is given by the centre of mass of the deuteron a-particle cluster of the Li nucleus.

i

4.12 Methodology for finding fusion suppression

Our methodology in explaining fusion suppression is essentially to find the fraction
of projectiles undergoing breakup at each impact parameter (perpendicular distance
between the velocity vector of the projectile and target). We define this quantity
as the breakup fraction which is the ratio of the number of trajectories undergoing

breakup and the total number of trajectories [6],

number of breakup trajectories
total number of trajectories

Breakup Fraction (B;) = (4.63)

where, subscript i denotes the impact parameter at which B; is evaluated.

The breakup fraction is a well defined quantity for each impact parameter and
needs to be evaluated precisely in view of the problem we have. Initially, we kept a
fixed distance of separation between the target and the projectile, and varied angle
6 for all possible angles between 0° and 360°. The breakup fraction evaluated in this
mannner was very low, and we found that it couldn’t explain the fusion suppression
factor. There was an additional problem as the precise value of the breakup fraction
at each impact parameter tend to vary with the distance of separation between the
target and projectile. After some trial and error we found that the breakup fraction
tends to have a maximum value for §=0°. Hence, for a particular impact parame-
ter the breakup fraction is determined by taking #=0°, and randomly varying the
distance of separation between the target and the projectile. The random variation
of the distance between the target and projectile is done in order to eliminate the
effects of the dependence of the breakup fraction on the distance between the target
and the projectile. As the project'ﬂe is composed of a deuteron and an a-particle,

hence the position of the projectile is calculated from the centre of mass of the
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deuteron and the a-particle.

After evaluation of the breakup fractions, fusion suppresion is explained through
introduction of a simple formula [6]. According to it, the fusion suppression factor
is given by the average of the breakup fractions (B;) evaluated at different impact
parameters with weightage given by the fusion probability (P;). The range of impact
parameters starts from zero (i.e., a head-on collision) and is increased in steps of 0.2

fm until the cutoff impact parameter (b;) is reached. Therefore,

Fusion Suppression = %113# (4.64)
For a sharp cutoff model,
1 if i<y,
P, = (4.65)
0 if i>b,

4.13 Results and Discussion

The formalism described above is now applied for finding the fusion suppression
for the three reactions : ®Li+2%Bi, ¢Li+'%2Sm and °Li+'*Sm. In order to obtain
numerical solutions, Woods-Saxon parameters (v, 7, a) of the nuclear potentials have
to be provided. The following parameters are used : V;_, = (756.5 MeV, 1.85 fm,
0.71 fm), Vj_aep; = (91.0 MeV, 1.16 fm, 0.83 fm ), V,,_z00; = (60.0 MeV, 1.392 fm,
0.656 fm) [21, 28], Vy_is2gm = (91.82 MeV, 1.013 fm, 0.938 fm ), V,_s2gm = (60.5
MeV, 1.107 fm, 0.607 fm) [8, 33, 34], Vj_1ssm = (99.72 MeV, 1.15 fm, 0.85 fm) and
Vy_taagy = (185.0 MeV, 1.40 fm, 0.52 fm) [35]. For calculating the breakup fraction,
a sample of 50 trajectories are chosen for each impact parameter. As explained
above, the random sampling of the trajectories is done in which the initial distance

between the target and projectile is randomly varizsd between two limits.
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Table 4.1: Breakup fraction versus impact parameter at different ener-
gies for $Li+209Bi.

Impact
Parameter (fm) Breakup fraction for 6Li4-2"Bi at Ej,
34 MeV 36 MeV 38 MeV 40 MeV 44 MeV 48 MeV

0.0 0.06 0.22 0.26 0.24 0.30 0.36
0.2 0.12 0.24 0.34 0.26 0.46 0.24
0.4 0.20 0.14 0.40 0.48 0.40 0.46
0.6 0.32 0.12 0.36 0.46 0.50 0.52
0.8 0.32 0.40 0.46 0.44 0.44 0.58
1.0 0.30 0.38 0.66 0.52 0.58 0.50
1.2 0.28 0.36 0.50 0.44 0.64 0.54
14 0.32 0.54 0.64 0.44 0.64 0.74
1.6 0.32 0.64 0.54 0.66 0.54 0.68
1.8 0.54 0.48 0.62 0.54 0.66 0.64
2.0 0.50 0.58 0.50 0.60 0.52 0.54
2.2 0.60 0.66 0.66 0.58 0.58 0.48

‘2.4 0.42 0.50 0.62 0.66 0.64 0.64
2.6 0.34 0.30 0.48 0.56 0.56 0.52
2.8 0.52 0.38 0.52 0.46 0.42 0.52
3.0 0.28 0.46 0.36 0.54 0.28 0.50
3.2 0.22 0.18 0.32 0.28 0.34 0.36
3.4 0.16 0.26 0.24 0.30 0.42 0.36
3.6 0.22 0.20 0.24 0.14 0.26 0.20
3.8 0.14 0.16 0.18 0.2 0.18 0.36
4.0 0.04 0.08 0.16 0.14 0.20 0.26
4.2 0.06 0.06 0.20 0.08 0.06 0.12
44 0.10 0.0 0.12 0.08 0.10 0.08
4.6 0.02 0.0 0.0 0.10 0.06 0.06
4.8 0.0 0.0 0.0 0.06 0.08 0.0
5.0 0.0 0.0 0.0 0.0 0.04 0.0
5.2 0.0 0.0 0.0 0.0 0.02 0.0
5.4 0.0 0.0 0.0 0.0 0.0 0.0
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Table 4.2: Breakup fraction versus impact parameter at different ener-
gies for *Li+'%2Sm.

Impact
Parameter (fm) Breakup fraction for ®Li+'°2Sm at
28 MeV 30 MeV 32 MeV 34 MeV 36 MeV 40 MeV

0.0 0.02 0.08 0.24 0.14 0.48 0.24
0.2 0.12 0.12 0.18 0.34 0.30 0.48
0.4 0.16 0.20 0.22 0.24 0.36 0.44
0.6 0.24 0.12 0.16 0.22 0.30 0.32
0.8 0.16 0.12 0.22 0.32 0.38 0.38
1.0 0.20 0.24 0.26 0.14 0.46 0.50
12 0.32 0.24 0.30 0.30 0.54 0.58
14 0.28 0.40 0.54 0.54 0.38 0.66
1.6 0.38 0.36 0.40 0.62 0.52 0.66
1.8 0.26 0.26 0.36 0.52 0.60 0.60
2.0 0.42 0.38 0.44 0.46 0.58 0.64
2.2 0.26 0.40 0.48 0.48 0.58 0.60
2.4 0.30 0.48 0.54 0.54 0.48 0.46
2.6 0.28 0.40 0.50 0.64 0.58 0.56
2.8 0.38 0.36 0.36 0.24 0.58 0.68
3.0 0.28 0.28 0.36 0.38 0.34 0.44
3.2 0.36 0.28 0.22 0.32 0.28 0.34
34 0.26 0.24 0.18 0.16 0.24 0.20
36 0.26 0.24 0.12 0.18 0.26 0.22
3.8 0.10 0.26 0.10 0.06 0.18 0.32
40 0.16 0.24 0.12 0.06 0.14 0.12
42 0.14 0.20 0.20 0.06 0.10 0.12
44 0.14 0.08 0.08 0.12 0.12 0.12
46 0.10 0.12 0.0 0.10 0.16 0.10
48 0.04 0.04 0.0 0.00 0.06 0.08
5.0 0.0 0.04 0.0 0.00 0.0 0.04
5.2 0.0 0.0 0.0 0.0 0.00 0.0
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Table 4.3: Breakup fraction versus impact parameter at different ener-
gies for 6Li+'44Sm.

Impact
Parameter (frm) Breakup fraction for 6Li+*Sm at Ejg
30MeV 32MeV  34MeV  36MeV  38MeV 40 MeV
0.0 0.36 0.44 0.60 0.43 0.52 0.50
0.2 0.58 0.56 0.60 0.66 0.62 0.52
0.4 0.74 0.70 0.60 0.66 0.52 0.64
0.6 0.82 0.74 0.78 0.74 0.76 0.58
0.8 0.86 0.58 0.72 0.80 076 - 0.62
1.0 0.74 0.88 0.76 0.80 0.76 0.68
12 0.64 0.76 0.88 0.78 0.74 0.78
14 0.64 0.58 0.88 0.74 070 . 0.72
16 0.38 0.52 0.68 0.72 0.74 0.72
1.8 0.30 0.44 0.40 0.72 0.76 0.76
2.0 0.18 0.34 0.32 0.42 0.66 0.72
2.2 0.20 0.24 0.24 0.52 0.54 0.60
2.4 0.04 0.20 0.22 0.28 0.38 0.38
2.6 0.00 0.04 0.14 0.24 0.22 0.24
2.8 0.00 0.00 0.02 0.06 0.06 0.16
3.0 0.00 0.00 0.00 0.00 0.08 0.06
3.2 0.00 0.00 0.00 0.06 0.00 0.00
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Since, only a sample of 50 trajectories are chosen, the results may be biased if
the trajectories don’t possess a high degree of randomness. Inbuilt random number
generators in Linux Ubuntu produce the same random numbers in every cycle. In
order to overcome this problem, we generate successive random numbers by taking
the output of the random number generator after it had completed k cycles under
a DO loop. The number k is a randomly chosen five digit number. Each time
a random number is desired, it is ensured that the value k is different from the
previous entries. This method gave us very good random numbers. The lower
limit of the distance is taken to be 20 fm, and the upper limit of the distance
is actually limited by the computational facilities available to us. A maximum
initial distance of 55 fm between target and projectile could only be considered
so that sufficient memory is available in the hardware for studying the trajectory
of the projectile after interaction with the target. Using the Fortran code given
in appendix A, we could determine the distance between the deuteron and the a-
particle after interaction with the target. Using the condition of a breakup trajectory
(section 4.10), we could identify whether a particular trajectory is a breakup or a
no-breakup trajectory. Finding the number of breakup trajectories out of the 50
trajectories, the breakup fraction is calculated. The breakup fraction calculated at
different impact parameters is shown in Table 4.1 for SLi+2%“Bi, in Table 4.2 for
6Li+2Sm and in Table 4.3 for °Li+4*Sm, respectively [6]. The breakup fraction is
calculated at 6 different energies which are = 1.1 to 1.5 times the barrier energy, as
because in this energy range fusion cross section is suppressed by ~ 36 %, 28 % and
32 %, respectively, for the three reactions (7, 8, 9]. Fig. 4.4 (a),(b) and (c) shows
graphical plot of breakup fraction for the three reactions at selected energies [6].
One distinct feature of the breakup fraction, which is also confirmed by the Bezier
fit, is that the breakup fraction slowly increases and reaches a maximum, and finally
falls to zero for higher impact parameters. For the reaction 6Li+'*Sm, the breakup

fraction falls off to zero at 2.8 fm which is much lower than the respective values
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Table 4.4: Parameters of input file of CCFULL code for ¢ Li+%25m

Line 1 6., 3., 152,, 62.
Line 2 1.05, 1, 1.06, 1
Line 3 0.122, 0.26, 0.05, 2
Line 4 1.66, 0.13, 2,0
Line 5 2.186, 0.87,0, 1
Line 6 0,0,03

Line 7 131.0, 1.01, 0.64
Line 8 . 18.,40.,1

Line 9 30, 0.05

for the other two reactions. This fact is compensated by the comparatively larger
values of the breakup fraction.

For determination of the empirical value of fusion suppression (fesp), we first
determine the theoretical value of fusion cross section (6ine,), Which is expected in
the absence of breakup. For the reactions SLi+2?%Bi and éLi+44Sm, 641, is obtained
by running the code CCFULL [17]. For the above reactions, the above barrier fusion
cross section (Oyne,), with and without coupling, are practically identical [7]. As such
the parameters of the input file for lines 2, 6 and 9 of CCFULL code are exactly
similar as mentioned in section 3.6. In line 7, the parameters of the Woods—-Saxon
potential are put. For ®Li+2%Bi, the parameters of the Woods-Saxon potential are
(Vo, 7o, 8)=(107 MeV, 1.12 fm, 0.63 fm) [7], and for 5Li+'**Sm the parameters are
(Vo, 70, 2)=(47.0 MeV, 1.10 fm, 0.63 fm) [9]. As *2Sm is a highly deformed nucleus,
hence for the reaction 6Li+%2Sm, o4, is obtained by running the CCFULL code by
considering both target and projectile rotational excited states [8]. The parameters
of the input file are shown in Table 4.4. The target (*°2Sm) is a deformed nucleus in
its ground state. Hence, in line 3 we have included both quadrupole (2%, 0.122 MeV)
and hexadecapole (41) rotational states with deformation parameters, ,=0.26, and
B+=0.05. The unbound first excited state (3%, 2.186 MeV) of the projectile (°Li)
with deformation parameter, 8,=0.87 [7], is included in the fifth line. Woods-Saxon
parameters [8] of the nuclear potential are put in line 7.

Knowing the experimental value of fusion cross section (0ezp) |7, 8, 9], the em-
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pirical fusion suppression factor is determined from the relation,

Ocs
Jemp =1— == (4.66)

and the results are shown in Tables 4.5, 4.6 and 4.7, respectively [6]. Using the
value of o446, and using Eqgs. (4.59), (4.60) and (4.61), the cutoff angular momentum
(L.) is determined for the reactions ®Li+?%Bi and ®Li+'*4Sm. The values of the
barrier parameters (fiwp, Fo and R;) needed in the above calculations are known
from the output of the CCFULL code. The justification for this comes from the
fact that the energy region of consideration falls in region I (energy immediately
above the barrier) [31, 29|, where fusion and total reaction cross sections practically
coincide. For the reaction SLi+!%2Sm, L. is determined as above, but this time,
Oiheo 18 given by the results of the single barrier penetration model (SBPM) because
Eq. (4.59) is derived on the assumption that oy, is approximated by the results
of the SBPM. The SBPM cross section for ®Li+'*Sm can be obtained by running
the CCFULL code with Woods-Saxon parameters of the nuclear potential given in
Ref. [8]. The Woods-Saxon parameters are (Vp, 79, 2)=(131.0 MeV, 1.01 fm, 0.64
fm). Then from Eq. (4.62), the cutoff impact parameter (b,) is determined for
the three reactions. Using the cutoff impact parameter (b.), the calculated value of
fusion suppression (fe) is evaluated using eqs. (4.63) and (4.64), and the results
are shown in Tables 4.5, 4.6 and 4.7 [6].
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For calculating f,;, we take the ratio between the values of 3, P, (in column
9) and Y, B;P; (in column 8) of the respective Tables. It is to be noted that the
breakup fraction values (B,) and the corresponding values of }, P, and Y, P,B;
are determined in steps of 0.2 fm. However, P, and P;B; have to be summed up
precisely upto the cut off impact parameter (b.). In some of the cases, the cut off
impact parameter lies at a value where the breakup fraction becomes zero. In the
rest of the cases (34 MeV for 6 Li+2% Bi, and 28, 30, 32, 34 MeV for 6Li+!52Sm) the
cutoff impact parameter lies at a value where the breakup fraction is not zero. In
all these cases the cutoff impact parameter value lies between successive multiples
of 0.2 fm. For these cases, we used linear extrapolation for determining the precise

values of P; and P, B; at the position of the cutoff impact parameter (b;),

b — k
P=|-—2 4.67
(kjﬂ - k]) ( )
B;P, = M) (bi — k,) + B, (4.68)
kyr1— k}

Here, k;, and k;; are the successive impact parameters between which the cutoff
impact parameter (b;) is located, and B, and B,; are the respective values of the
breakup fraction. From the f., values, we determine the calculated fusion cross

section from the relation,

Ocal = athw(l - fcal)- (469)

A comparison of the experimental and calculated fusion cross sections is shown
in Fig. 4.5 (a), (b) and (c) for the three reactions, where uncertainties in the
experimental fusion cross section are shown by the error bars [6]. It can be concluded

that there is very good agreement between the values of oe, and o,
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Figure 4.5: Calculated (o.q) and experimental fusion cross sections (Gezp) V8 Eem
(MeV) for the 3 reactions. The experimental fusion cross sections are taken from
Refs. [7, 8, 9].

115



In the cases discussed above (where breakup fraction is not zero at cutoff impact
parameter), the breakup of the projectile extends beyond the cutoff impact param-
eter for fusion. This has been the case in the low energy region for the reactions
6[i+2°B; and SLi+1%2Sm. This is indeed expected because at lower energies the
projectile spends more time in the vicinity of the target nucleus which would lead to
its breakup. Inspite of the fact that breakup of the projectile is extending beyond
the cutoff impact parameter, we are getting approximately constant values of fusion
suppression for all energies considered, and this is in agreement with the experi-
mental values. For SLi+!%2Sm, oy is slightly lower than o, for higher energies.
This is because of the fact that the cutoff angular momentum (L.), as calculated
from Eq. (4.59), is sligiltly lowered from the true value as SBPM values of oy,, are
used in the calculations. The agreement is excellent for the reaction 8Li+44Sm, fol-
lowed by 8Li+?%Bi and Li+'52Sm. In fact, for the system SLi+'#4Sm, if the small
experimental uncertainty is ignored, o,y values follow the exact trend of the oeyp,
(Table 4.7) values evaluated at different energies. The reason is that 4Sm is least

deformed, 2%Bi is intermediate and *2Sm is most deformed.

4.14 Relationship between E_, and L,

The energy (E,,,) dependence of cutoff L. has also been studied. The values of L,
have been calculated using both the values of fusion cross section, viz., gy, and Ocaps
and the results are shown in Fig. 4.6 [6]. As expected, a perfect linear relationship
between L.(calculated from oye,) and F, is observed. We also observe a very good
linear relationship between L.(calculated from o.,,) and E.,. For comparison, the
best fit line using least square method is also drawn. Equations of the best-fit line

are,
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For ®Li+%%Bi, with L. calculated from ope,,

L. = 0.753(Em — 22.469)
For SLi+2%Bi, with L. calculated from ey,

L. = 0.744(E,n, — 15.19)
For 8Li+%2Sm, with L. calculated from oo,

L. = 0.701 (B, — 15.758)
For Li+152Sm, with L, calculated from ez,

L, = 0.648(E., — 9.95)
For SLi-+'*4Sm, with L. calculated from 6heo,

L. = 0.729(E,, — 18.215)
For ®Li+4Sm, with L, calculated from gy,

L. = 0.572(Em — 7.575)

(4.70)

(4.71)

(4.72)

(4.73)

(4.74)

(4.75)

The conclusion made in Ref. [31] that for loosely bound systems the energy (E.,)

dependence of L, is on the verge of transition of a linear dependence and a depen-

dence on L,(L.+1) doesn’t seem to hold, at least for these three systems. One reason

may be that the systems studied in Ref. [31] are low-medium targets, whereas the

targets of the present system are relatively heavier. A qualitative understanding of

the linear relationship between L. and E, is given below. The angular momentum
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carried by the projectile can be approximately caleulated by equating the energy of
the projectile with total potential energy, V(r), between the projectile and target.

V(r) is given by,

B2 +1)

V =Vo(r)+ Vn(r) + Dy

(4.76)

The cut-off angular momentum for fusion, L., is given by the value of the angular
momentum £ in the above equation at the position of the fusion barrier (r=Rp).
Calculations done with the proximity potential (Prox 88 of chapter 2) reproduced
the linear relationship between L. (calculated from oye,) and E,. The results are

shown in Table 4.8.

Table 4.8: Cut-off angular momentum for fusion, L., and E, calculated from prox-
imity potential.

SLi+™Bi SLi+™2Sm SLi+*Sm
L, B (MeV} L, Ei (MeV) L, Ei (MeV)
13.3 36.93 11.32 29.50 1244 30.96
14.49 38.05 11.98 30.09 12.97 31.50
16.11 39.72 13.32 31.42 14.16 32.80
17.69 41.54 14.72 32.97 15.39 34.29
20.62 45.43 16.05 34.60 16.58 35.85
23.24 49.48 18.54 38.08 17.71 37.46

Comparison with the values of L, and FEj,, of Tables 4.5, 4.6 and 4.7 shows a
qualitatively good agreement. The fact that the linear relationship is nicely ex-
plained is due to the existence of the fusion barrier (or the potential pocket) for the
highest energies of the above three reactions. This may not be the case for even
higher energies because in that case the potential pocket may disappear, and L.
would be given by the angular momentum, £, for which the potential pocket exists

in Eq. 4.76.
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4.15 Summary and Outlook

In this chapter, we explain the fusion suppression of three reactions induced by
8Li projectile, namely, SLi4+-2%Bi, 6Li+%?Sm and ®Li+“4Sm. Some other authors
(eg. Diaz Torrez) have also succeeded in explaining fusicn suppression through the
introduction of a breakup probability function whose parameters are determined
from sub-barrier fusion cross section data. However, we have attempted to explain
fusion suppression purely from first principles without the need for introducing any
adhoc inputs. Considering the projectile to be a cluster of a deuteron and an o-
particle, we construct the classical equations of motion for the system of projectile
and target in two-dimensions. As the system has six degrees of freedom, hence we
obtain six-second order differential equations. Numerical solutions for the above
equations can be obtained only if twelve initial conditions are known. These initial
conditions are the positions and velocities of the x and ¥ components of the three
particles. Using stable (not chaotic) solutions as an indicator, we obtain the initial
conditions for the deuteron and the o-particle which constitute the Li nucleus. We
propose a semi-classical model of the Li nucleus from which the initial conditions
of the deuteron and the a-particle are derived. The model utilizes the binding en-
ergy (breakup threshold energy) and the spin of the ®Li nucleus for deriving these
initial conditions. After studying the numerical solutions, we could identify three
distinct kinds of trajectories : scattering-like, incomplete fusion and no capture
breakup. Next, we define the breakup condition for a trajectory. If distance be-
tween deuteron and a-particle after interaction with the target is greater than 2.27
fm, then its a breakup trajectory, otherwise it is not. Then the breakup fraction at
different impact parameters (in steps of 0.2 fm) is obtained. Next we determine the
cutoff impact parameter for fusion by using rigourous quantum mechanical concepts.
Then we introduce a formula for explaining fusion suppression, according to which
fusion suppression is given by the average of breakup fractions evaluated at impact

parameters ranging from a head on collision upto the cutoff impact parameter for
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fusion. On application of the above formula, we find that there is very good agree-
ment between the calculated (0.,) and the experimental (o.,,) fusion cross sections
for all the three systems. For the system ®Li+!%2Sm, 0., falls below oy, at higher
energies because of deformed nature of the target. The relationship between cutoff
angular momentum (L) and the energy (E.y) is also studied, and we found that
there is an excellent linear relationship between the two. By using the proximity
potential, an understanding of the linear behaviour is provided.

In future, the fusion suppression of other ®Li induced reactions may be studied
provided Woods-Saxon parameters of the nuclear potential are obtained through
optical model analysis of elastic scattering data. Some of the reactions for which
precise fusion suppression factors are available are SLi+?%Pb [36], ¢Li+!*Tb [37]
and SLi+%7r [38], and fusion suppression analysis could be carried out for these
reactions. Reactions induced by °Be ("Li) are a bit complicated as they involve a
neutron transfer (proton pickup) to (from) target to form the nucleus ®Be [24, 26].
However, fusion suppression factor of the same order as ®Li induced reactions have
been observed for reactions induced by ?Be and "Li. Modelling the breakup of
9Be induced reactions has been done by Diaz Torrez through the introduction of
an empirically obtained breakup probability function [24]. Similar analysis could
also be tried for “Li induced reactions [39], although the number of experiments is
quite limited. Modelling the breakup of “Li and ?Be induced reactions, without the
introduction of an empirically obtained breakup probability function may also be
attempted. However, this may require some serious theoretical effort. A complete
quantum mechanical model of fusion suppression could be attempted in future.
Much progress has to be done in computational techniques (both in theory and in

practice) before succeeding in such an attempt.
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Chapter 5

Reduced reaction cross section

induced by radioactive projectiles

5.1 Introduction

The last two decades has seen a sudden rise in the study of reaction cross section
[1, 2, 3, 4] between a variety of target and projectile. This has been possible due to
tremendous improvement in experimental facilities over the years. The availability
of intense beams of loosely bound nuclei [5], and the radicactive ion beam has added
impetus to this exciting field of study. As a result a huge database of reaction cross
section data for a range of target and projectile has become available. For purposes
of comparison, various reduction procedures have been proposed which are aimed at
eliminating trivial geometrical effects of size and charge. Also, using these reduction
procedures it is possible to say whether there is an enhancement or reduction of
fusion cross section with respect to some benchmark cross section. Of late, Gomes’s
reduction procedure [6] has been widely followed in which the dependence of the
reaction cross section on the barrier radius (Rp) is eliminated, and the energy is
scaled with respect to the barrier height (Vp).

For purposes of comparing reaction cross section data using a variety of target
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and projectile, various authors have compared the reduced reaction cross section
(0rea) against the reduced energy (E,.q). Recently, it was noted that the trajectory
of the reduced cross section for tightly bound, normal loosely bound and radioactive
halo projectiles are clearly separated [7, 8, 9]. Both, neutron halo and proton halo
nuclei are considered in case of radioactive halo nuclei. It was also noted that the
reason for the separation of the trajectories is that the Coulomb barrier is slightly
lowered, and the barrier radius is marginally increased for radioactive halo systems
in comparison with normal loosely bound systems [9]. In the first part of our work,
a satisfactory explanation of the above fact is provided by using some common
global nuclear potentials. The potentials chosen are the latest version of the Bass
potential, the Christensen and Winther potential, the Broglia and Winther poten-
tial, Aage Winther potential, the Proximity potential and the Denisov potential.
Straight forward application of the nuclear potentials can explain the shift in the
barrier parameters for the case of reactions induced by the neutron halo nucleus
6He. However, for the reaction induced by the proton halo nucleus (®B), the shift
of the barrier parameters in the right direction can only be explained if we take into
consideration the increase in radius of 8B with respect to its normal counterpart
(*°B). Hence, first we shall be explaining the shift in the barrier parameters of ra-
dioactive halo systems with respect to normal loosely bound systems and compare
them with the shift obtained from experimental reduced reaction cross section data.
In the next part of the study, we obtain a theoretical fit for the reaction cross section
of reactions induced by radioactive projectiles. The explanation is done on the basis
of the modified Wong’s formula [10]. In section 5.2, we provide the necessary for-
malism and in the next section (5.3) we review the procedure for the determination
of the fusion barrier. In section 5.4 we discuss the nuclear potentials used, and in
the next section (5.5) we discuss the nature (or shape) of the potentials. In Section
5.6, we present the results (including discussion), and in the last section (5.7) we

provide a summary of our results.
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5.2 Formalism

The total reaction cross-section is given by the sum of the fusion and quasi-elastic
cross sections. Quasi-elastic reaction cross section includes the sum of the elastic,

inelastic and the transfer cross sections,

G'quasi
OR = O fys + Oel + Oinel + Otrans

However, in some of the systems, o4u.s is quite insignificant, and we have, o =~
Ofus- This is quite true for low intensity (10*° pps) radioactive ion beams. For
the study of reaction cross section, Wong’s formula [11, 12] provides a convenient

expression in terms of three parameters characterizing the barrier,

or = R”h‘”"zn{l +e p[ﬁ%—fﬁ]} (5.1)

where, fuvg is the curvature of the Coulomb barrier (¢=0). Eq and R, are the height
and position of the Coulomb barrier, respectively. In a naive picture, the position

and height of the Coulomb barrier is given by [9],

= ky(AY® + AY®) fm (5.2)
ZpZTe
T (AT AM3

MsV (5.3)

In order to reduce the complexity of reaction cross data among various combinations
of target and projectile, the concept of reduced reaction cross section has emerged.
Gomes devised a reduction procedure in order to eliminate the dependence of the
reaction cross section on the atomic and mass number of .the target and projectile.
Hence, in Gomes’ reduction procedure, the cross section is divided by the square of

(A + AY®), and the energy is divided by ZpZr/(AY* + AY*). Applying the above
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reduction, Wong’s formula reduces to,

kgéo 27r(Ered - ";‘ed)
o = 2004 ] ' 5.4
et = g {1+ eap| ==} (54
where,
a
A3 4 AL '
red = Ecm"‘P__"'—L‘ 5.6
E d ZPZTG2 ( )
AP A
reg = Bg——L  — — 7
Ved EO ZPZT€2 kr (5 )
AL+ AL
€ = MO—W (58)

The values of the constants k;, and k, can be obtained from the best fit of the
reduced experimental reaction cross-section at various energies. In this manner the
reduced reaction cross section for a variety of systems have been obtained. According
to the study conducted in Ref. [7, 9], the following facts are reported. For tightly
bound projectiles, the best fitting can be done with k; = 1.56, k. = 1.65 and €,=0.14.
For normal loosely bound projectiles (°Li, 7Li and °Be), the Wong’s model fit can
be done with k, = 1.64, k. = 1.76 and ¢y=0.34. For radioactive halo projectiles.(¢ He
and ®B), the fitting can be done with k, = 1.79, k. = 1.83 and ¢;=0.49. The above
fact can be interpreted by saying that in moving from normal to radioactive halo
systems, the barrier is lowered by 4% and its position is increased by about 9% [9].
Hence, the trajectories for the three types of systems (tightly bound, loosely bound
and radioactive halo) are clearly separated in the reduced reaction cross section
analysis (0yed V8 Freq). This is diagrammatically shown in Fig 5.1. In the above
study, different sets of reactions were considered for normal weakly bound systems
as well as for radioactive halo systems. For radioactive halo systems, the following
four reactions were considered : $He+2"Al, $He454Zn, S He+2 Bi and 8 B+5%8Ni.

The corresponding reactions induced by normal nuclei are : *He+2"Al, *He+%Zn,
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Figure 5.1: Diagram showing o, vs E,¢q for various systems. The trajectories for
tightly bound, loosely bound and radioactive halo systems are clearly separated.

4He+?Bi and 1°B+8Ni. Here, *He is the normal counterpart of the neutron
halo nucleus ® He, and 1B is the normal counterpart of the proton halo nucleus ®B.
We shall be showing that in moving from normal to radioactive halo systems, the
barrier parameters (Vp, Rp) are shifted as mentioned above. The shift in the barrier
parameters is determined by taking an average of the shifts for the above reactions,

as well as the average of the shifts for the different nuclear potentials.

5.3 Determination of the barrier parameters

The interaction potential between the target nucleus and the projectile can be writ-
ten as the sum of nuclear, Coulomb and centrifugal potentials. Hence,

RA(L+1)

V = Vc('l") + VN(T) + 9[,&7'2

(5.9)
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where, r is the distance between the centres of the target and projectile, £ is the
angular momentum quantum number, and u is the reduced mass of the system. The
maximum value of the above potential for /=0 is called the height of the fusion (or
Coulomb) barrier (Vg), and the corresponding value of r is called the position of
the barrier (Rg). As a few of the target nuclei are deformed, hence for accurate
determination of the Coulomb barrier (Vp,Rg), we use Wong’s prescription [11] for

the Coulomb potential between two deformed nuclei,

Zl Z2€2 9 Zl 2262 2 2
Vc(’r, 9) = + Z Ri ﬂgng(cos&)-!-
r Voor 13 —

2
(%) ?lf—;cf S R2{BuPy(cos)f? (5.10)

i=1

here, Ry, Ry and (1, B2 are the charge radii and the deformation parameters of the
two nuclei, respectively. 6; is the angle between the collision axis and the symmetry
axis of the i** nucleus, and is averaged with respect to angles from 0 to 7/2 (see

Fig. 2.5).

5.4 Nuclear potentials

We shall be using six different versions of the nuclear potential for the determination
of the barrier parameters. These are the Bass potential (Bass 80), Christensen and
Winther potential (CW 76), Broglia and Winther potential (BW 91), Aage Winther
potential (AW 95), proximity potential (Prox 88) and the Denisov potential (Denv
02). We had used the above potentials as the barrier parameters could be easily
and accurately determined with the minimum number of parameters. Apart from
the Denisov potential, all the other potentials are discussed in section 2.5. A brief

description of the Denisov potential is given below :
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5.4.1 Denisov potential (Denv 02)

Denisov [13] calculated the semi-microscopic potential for various colliding nuclei
in the framework of extended Thomas-Fermi approximation where the proton and
neutron densities of each ion are obtained in the Hartree-Fock-Bogoliubov approxi-
mation with SkM parameter set of the Skyrme force [14]. By evaluating 7140 ion-ion
potentials at 15 distances around the touching point, Denisov gave the following an-

alytical expression for the nuclear potential,

B R\ R, A | An\*?
Vi(r) = 1989843 22 0(r — s — By — 2.65) [1+0.003525139 (Z; + 7{2)
— 0.4113263(I; + Iz)} (5.11)
with,
[ Z‘l .
=% - (i=1,2) (5.12)

where, N ,Z and A are the number of neutrons, protons and mass number of the

nuclei, respectively. R, is the effective nuclear radius and is given as,

3.413817 0.44
g 11— . AUl —
Ri= Ry R?p ) +1.284589( i ) =12 (513)
where, the proton radius (R,,) is given by [15],
- 1/3 1.646 _ A, —27;
Ry = 1244714 T 0 (R )] (5.14)

.The function @ is given by Eq. (5.15) for, -5.65 < s < 0, and by Eq. (5.16) for s >
0.
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S
=1 +1.2292185% — 0.22342775° — 0.1038769s*
®(s) =1 - G7gsrees T 1229218 5
RiR,

) (0.18449355% + 0.07570101s%) + (I, + 1,)(0.044706455 -+ 0.03346870s°)
1 2

(5.15)

RiR
B(s) = [1 ~ £°[0.05410106 - ;2 exp(—s/1.760580)

— 0.5395420(]; + Ig)6$p(-8/2.424408)]] x exp(—s/0.7881663) (5.16)

5.5 Nature of the potentials

In this section we show the shape or nature of the potentials for the reactions
‘He+2Bi, SHe+2®Bi, *He+%Zn and $He+%Zn. TFor plotting the potential
curves from Eq. 5.9, we use the simplified expression for the Coulomb potential
between projectile and target which assumes that the projectile is a point charge in
comparison to the target.

%ﬁé@—%) ifr<r,,

Vo = ¢ (5.17)

2 .
Lzpe ifr > r,,

T

where, 7, is the radius of the target nucleus. Using the six different versions of
the nuclear potentials (section 5.4), we plot the potentials for the above mentioned
reactions in Figs. 5.2 and 5.3, respectively. We see that the maximum value of the
potentials is quite distinct for all the six different types of potentials used. This peak
value of the potential (for £=0) is the Coulomb barrier (V) and the corresponding
value of r is the position of the Coulomb barrier (Rp). Also, among the reactions

induced by the normal projectile and the corresponding halo projectile, we observe
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Figure 5.2: Total potential (MeV) vs distance (fm) for the reactions *He+2% Bi,
6 He+2®Bi, *He+54Zn and 6 He+-% Zn using the nuclear potentials Bass 80, CW 76

and BW 91.
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Figure 5.3: Total potential (MeV) vs distance (fm) for the reactions *He+2% Bi,
6 He+2%Bi, *He+54Zn and ® He4-%4Zn using the nuclear potentials AW 95, Prox 88
and Denv 02.
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that noticeable differences of the total potential begin to show only for distances
less than Rg. Also for r < Rp, the potential is more steeper for the halo projectile
case than the normal projectile case which suggests that the magnitude of the force
is greater for the halo projectile case than in comparison to the normal projectile
case. Also, we notice that in moving from normal to radioactive halo projectiles, Vg

is lowered and Rp is increased by small amount.

5.6 Results and Discussion

Using the different nuclear potentials we have found the height and position of
the Coulomb barrier for the three reactions induced by the neutron halo nucleus
6He, namely, S He+2" Al,  He+% Zn and S He+-2® Bi. Also the corresponding values
induced by the normal nucleus (*He) for the three reactions, namely, *He+% Al,
4He+%Zn and *He+2% Bi are also determined. The static deformation parameters
used for the target nuclei are as follows : 0.31 (27 Al) [16], 0.242 (%*Zn) and 0.1828
(°8N3) [17]. The results are shown in Table 5.1. As can be seen, the height of
the barrier (Vp) is slightly reduced and the position (Rp) is marginally raised for
reactions induced by the halo nuclei in comparison to the normal nuclei. However,
for the reaction ® B+ Ni (induced by the proton halo nuclei 8 B) straight application
of the potentials give erroneous results as the barrier parameters are shifted in the
opposite direction. This is because the rms matter radius of 8B is larger than
its normal counterpart °B even though there are lesser number of nucleons. The
excess proton tend to form a halo outside the core which increases its matter radius
[18]. This increase in the radius of proton halo nucleus is not accounted in the
calculation of matter radii for the above potentials (Egs. 2.10, 2.16, 2.19, 2.22,
2.27, 2.31 and 5.13). However, the increase of the radius of neutron halo nuclei is
automatically accounted as the radius formulae for the different potentials show a

direct dependence with the nucleon number. Taking experimental results into
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Figure 5.4: Diagram showing determination of effective radius of ®B projectile.

consideration, we calculate effective radii for 8B and B, and then evaluate V3
and Rp for the reactions $B4-*3Ni and *B+5Ni. For 1B, the radius is taken as
2.49 fm which is the average of experimentally reported values of 2.42 [19] and 2.56
fm [20].

Since, ® B has a small one proton separation energy (S, = 137 keV), hence it has
exceptional proton halo character. Also, it has been shown that standard treatments
like point Coulomb multipole expansion doesn’t apply in case of ®B nucleus [21].
The outer proton resides at a halo radius of r,=4.2 fm, which is much larger than
the experimental matter radius (2.33 fm) of its core (“Be) (see Fig. 5.4). Straight
forward calculation (Eq. 15 of Ref. [18]) yields r.m.s. malter radius of 2.60 fm for &B.
However, instead of using the r.m.s. matter radius, we calculate an effective radius

of 8B nucleus by the following method. For an 8B prajectile incident on a target
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nucleus, the effective radius would be the projection of 7 on a plane perpendicular
to the direction of motion of the projectile, where 7 is the vector from the centre
of the 8B nucleus to the outer halo proton (see Fig. 5.4). The length of T is taken
as 5.01 fm which is the sum of the halo radius (r,,) and the proton radius (r, = 0.81
fm) [18]. For random orientations of ® B projectile, we calculate the average of the
projections with the condition that if the projection is less than 2.33 fm (radius of
"Be core), then consider the projection as 2.33 fm. Straight forward Monte Carlo
simulation yields the value 2.84 fm, which we consider as the effective radius of the
8B projectile. With these new values of radii, we find the barrier parameters for
108 B4 58 Ni, and these are shown in Table 5.1. The percentage change in the barrier
parameters can be determined by,

VY v
Vi

RE — RY
Ry

AVg(%) = x 100 ; ARp(%) = x 100 (5.18)

where, V', RN and V¥, RY stand for the barrier parameters of reactions induced
by normal nuclei (*He, 1°B) and halo nuclei (®He, 8 B), respectively.

Using the barrier parameters from Table 5.1, AVp(%) and ARg(%) are calcu-
lated and these values are shown in Fig. 5.5(a) and 5.5(b), respectively. The highest
shift in the barrier parameters is observed for 46 He+27 Al, followed by ¢ He+54Zn,
108158 Nj and 6 He+-2%° Bi. Among the potentials the highest shift in the barrier
parameters is observed for CW 76, which is frlargina,lly ahead of BW 91. They are
followed by Prox 88, Bass 80, Denv 02 and AW 95. For the reactions #® He+2" Al,
45 He+%4Zn, 198 B4+58 Ni and “®He+2% Bi, the average values of AVp(%) for the six
potentials turn out to be 5.63, 4.99, 4.50 and 3.68, respectively. The corresponding
values for ARg(%) are -6.06, -5.29, -4.95 and -3.88, respectively. This gives an over-
all average of 4.70 for AVg(%) and -5.05 for ARg(%). For comparison the values

reported in Ref. [9] are = 4% and -9%, respectively. Therefore, a qualitative
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tentials. The radioactive halo systems are $He+27Al, $He+%Zn, SHe+2®Bi and
8 B+-58 Ni. The normal loosely bound systems are He+2"Al, *He+5¢Zn, *He+?Bi
and °B+5%8Ni. Fig. (a) shows percentage changes in Vp, and Fig. (b) shows per-
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explanation for the shift in the barrier parameters in moving from normal to
radioactive halo systems is contained within the global parametrization of nuclear
potentials. As explained earlier, this shift in the barrier parameters ultimately
explains the separation of the trajectories of normal loosely bound systems and
radioactive halo systems in the reduced experimental reaction cross section analysis.

It would be interesting to observe the shift in the barrier parameters for Berellium
(Be) projectile induced systems. Be has many isatopes out of which “Be and °Be
are loosely bound, whereas the isotope ! Be has proven neutron halo properties.
Using the six nuclear potentials, we did similar calculations as above to determine
the barrier parameters for reactions induced by the above projectiles on the targets
27 Al, %4 Zn and 2°Bi. The results are shown in Table 5.2. As expected we notice
that the barrier height (V) is reduced, whereas the barrier position (Rp) is slightly
raised as we move from normal loosely bound to radioactive halo systems. Again
using Eq. (5.18) we find the shift in the barrier parameters. However, this time
we determine two sets for the shift in the barrier parameters, one each for reactions
induced by the two loosely bound nuclei (“Be and ®Be) with respect to reactions
induced by the halo nucleus (*Be). The average values of AVg(%) for the six
potentials for the reactions ! Be+%"Al, "' Be+%Zn and "'!Be+2?®Bj are 5.79,
7.04 and 4.72 respectively. The corresponding values of ARg(%) are -6.31, -7.66
and -4.84, respectively. Similarly, for the reactions %! Be+2"Al, %1 Be4%4Zn and
%11 Be+*® Bi the average values of AVp(%) are 4.12, 3.05 and 1.57, respectively. _
The corresponding values of ARg(%) are -2.98, -3.32 and -2.22, respectively. This
gives an overall average of 4.38 and -4.56 for AVp(%) and ARgp(%), respectively,
which is a qualitatively good agreement with the values of ~ 4% and -9% [9]. The
above results suggest that the reduced reaction cross section for reactions induced
by the neutron halo projectile ' Be is very likely o fall on the same trajectory as
that of radioactive halo projectiles [9]. Also, the reduced reaction cross section for

reactions induced by the loosely bound projectiles ("Be, ®Be) will certainly lie on
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the same trajectory as that of the normal loosely bound projectiles [9]. This
would ensure that the above calculated shift (which matches the experimental shift
from reduced reaction cross section analysis) in the barrier parameters is obtained
as we move from normal to radioactive halo systems.

Out of the reactions considered above, we have obtained a Wong’s model fit for
the total reaction cross section for the reactions ¢He + *” Al and "Be+2"Al. We
use the barrier parameters obtained from the Bass 80 and the AW 95 potentials
for use in the Wong’s formula, as our earlier work [4] had shown that these two
potentials are best in reproducing the barrier parameters. The results are shown in
Figs. 5.6 and 5.7, where the fusion cross section (0ye.c) predicted by the unmodified
Wong’s formula (UWF) (with barrier parameters calculated from Bass 80 and AW
95 potentials) is compared with experimehtal data. There is not much difference in
the predictions of UWF-Bass 80 and UWF-AW 95 for the two reactions. However,
for the reaction ” Be+%" Al, the prediction is below the experimental data. This is due
to a proton transfer of “Be to the target which tends to increase the experimental
reaction cross section. The unmodified Wong’s formula assumes the projectile and
target to be inert and no breakup and transfer (of nucleons) is allowed.

As suggested in [10], the total reaction cross section for all types of systems
(tightly bound, loosely bound and halo) can be described by the modified Wong’s
formula (MW F).

o= yg%m{l + ezp[ﬂg“%l@ + P] } (5.19)

where, I, M and P are three dimensionless parameters whose values are derived by
fitting the data. Here, the parameter I accounts for the Coulomb barrier dependency
of the cross section, M indicates increase of the cross section for loosely bound and
halo systems, and P makes an adjustment of the Coulomh barrier with respect to the

collision energy in case the cross section starts to increase sharply. The parameters
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Figure 5.6: Fitting of reaction cross section (0yeqc) using the unmodified Wong’s for-
mula, (UWF) and the modified Wong’s formula (MWF) for the reaction ® He+%7 Al
The barrier parameters are taken from Bass 80 and AW 95 potentials. Expt. data
is taken from [22]
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Table 5.3: Values of the parameters I, M, P and the minimized x2-values obtained
by fitting the experimental reaction cross-section data with the modified Wong’s
formula (MWF) for the reactions ¢ He + 2 Al and “ Be+27 Al. The barrier parameters
are derived from the Bass 80 and AW 95 potentials.

Parameter "Be+2" Al 6He+2" Al
Bass 80 AW 95 Bass 80 AW 95
I 0.8 0.8 0.6 0.6
M 1.59 1.53 1.52 1.48
P -0.23 -0.24 0.17 0.17
X |19 195 [0.98 0.29

are derived in way such that the deviation of the calculated and the experimentally
measured cross section is minimum. Initially, we make a choice of the parameter
I taking into account its direct dependence with the barrier height [10]. The 2
minimization technique of the best fit distribution is utilized to derive the other
two parameters (M and P). The x? value for a particular fitting of observed or
experimental (O) value and the expected or theoretical value (E) is given by,
2\~ (0i = E;)?

=) = (5.20)

=1

Initially the expected values (E) are determined from the modified Wong’s formula
with arbitrary values of the parameters (I, M and P). Then using Fortran program-
ming x* values are minimized by simultaneous change of the variables x (=IM) and
P. Then, the total reaction cross section is obtained for the three reactions by using
the modified Wong’s formula (MWF) and the results are shown in Figs. 5.6 and
5.7. We see that the fitting is quite good and there is vast improvement over the
predictions of the unmodified Wong’s formula (UWF). This is because the modified
Wong’s formula (MWF) is a phenomenological formula with additional parameters
(I, M and P) to explain the increase in the reaction cross-section induced by halo
and radioactive projectiles. The values of the parameters and the minimized x? val-

ues are given in Table 5.3. We note that the value of M is in good agreement with
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the values given in [10]. For the reaction ®He -+ 27 Al, the value of the parameter P
is more or less in agreement with the values in [10]. However, for the reaction “Be
+ 27 Al, parameter P is not in agreement with the value reported in [10] which is

probably due to the fact that there is a substantial transfer cross section.

5.7 Summary and Outlook

Reduced reaction cross section analysis of a variety of reactions has revealed that
the trajectories for reduced reaction cross section for reactions initiated by normal
loosely bound projectiles, and radioactive halo projectiles are clearly separated when
plotted against their reduced energy. Also, it has been pointed out that the reason
for the separation of the trajectories is that the barrier pa.raméters (Vs, Rp) are
slightly shifted. This result can be explained within the global parametrization of
nuclear potentials if the correct radius of nucleus is taken into consideration. Direct
application of the potentials Bass 80, CW 76, BW 91, AW 95, Prox 88 and Denv 02
can explain the shift of the barrier parameters of reactions induced by the neutron
halo nucleus (°He). For the proton halo system (8B + 58Ni), the shift cannot be
explained by straight application of the potentials. The potentials predict a decrease
in radius of proton halo nucleus (8 B) with respect to the normal counterpart (1°B),
but experimentally an increase in matter radius is observed. Taking experimental
data into consideration, the average matter radius for °B is determined. Since, B
has exceptional proton halo character, we determine an effective radius for ®B. The
experimental shift in the barrier parameters for the proton halo system can be sat-
isfactorily explained by taking into consideration the radii for 1°B and 8B. Similar
analysis is carried out for reactions induced by Be projectile. We found that the cal-
culated shift of the barrier parameters for radioactive halo system (induced by ' Be)
with respect to normal loosely bound systems (induced by "Be and ?Be) matches the

experimentally obtained shift of the barrier parameters obtained from reduced cross
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section analysis of reactions induced by ®He and ®B projectiles. For the reactions
6He + 2" Al and "Be+2" Al (induced by radioactive projectiles), we have obtained
a best fit for the total reaction cross section using the modified Wong’s formula
(MWF). This phenomenological formula contains three dimensionless parameters
whose values are chosen by the x? minimization technique. The total reaction cross
section is reproduced quite satisfactorily for the two reactions.

We note that only one proton halo system has been taken into consideration for
study of the reduced reaction cross section. Hence, more experimental data regard-
ing proton halo systems is needed in order to make a universal conclusion regarding
its reduced reaction cross section. More study (experimental and theoretical) is
needed for accurate determination of r.m.s. matter and charge radii of proton halo
nuclei. This would help us in better treatment of the nuclear potentials of proton

halo nuclei.
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Chapter 6

Conclusion

In the present thesis we have carried out a theoretical investigation on the properties
of reactions induced by loosely bound projectiles. To some extent, our work is
motivated by the huge amount of experimental data that has become available in
the last decade and a half. The properties studied by us are the fusion barrier,
fusion cross section, fusion suppression and also the reduced reaction cross section
analysis of radioactive systems. In chapter 2, the fusicn barrier parameters (Vp,
Rp) of thirteen reactions induced by the loosely bound projectiles, 6Li, “Li and °Be
are studied. For evaluation of the fusion barriers, eight different versions of the
proximity potential are employed. The potentials Bass 80 and BW 91 are found
to be most effective in reproducing the values of Vp and Rpg, respectively. The
parametrized formula (Vg = 1.44Z,Z,(Rp — 0.75)/R%) connecting Vg and Rp has
also been tested for the above reactions, and the formula is found to be extremely
effective. For the reaction ®Li+%2Sm, the deviation of the barrier parameters from
the experimental values are quite large. On applying the correction to the Coulomb
potential for the deformed target (**>Sm), the new values of the barrier parameters
are found to be much closer to the empirical values.
In the third chapter we studied the fusion cross section for the reactions ¢ Li-+2%° B,

9Be+2%8Ph, "Li+2%Bi and ®Li+'%2Sm. Wong’s formula is used for determination
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of the fusion cross section, and the barrier parameters needed for use in the Wong’s
formula are taken from chapter 2. For all the reactions, the fusion cross section is
in agreement with the results of the single barrier penetration model (SBPM). We
also note that the experimental results are much below the theoretical expectations.
This is because of the fact that fusion suppression is dominant in these reactions
which takes place due to breakup of the projectile. For the reaction ®Li+52Sm we
also observe that the fusion cross section for the deformed target case is in much
better agreement with the theoretical predictions than in case of spherical target.
This proves that target deformation has a great role to play in the study of fusion
cross section.

In the fourth chapter we present a semiclassical model for the explanation of
fusion suppression. The problem is essentially separated into two parts. In the first
part the cutoff impact parameter for fusion is determined, and in the second part we
find the fraction of projectiles undergoing breakup within this cutoff impact param-
eter. The cutoff impact parameter for fusion is obtained through rigorous quantum
mechanical concepts as fusion is a quantum mechanical barrier transmission problem
having no classical analogue. We applied the classical trajectory method in order to
determine the fraction of projectiles undergoing breakup within the cutoff impact
parameter for fusion. Studying the numerical solutions, a breakup condition for a
trajectory is defined. Then for each impact parameter, the breakup fraction is deter-
mined by taking a sample of 50 trajectories. Then, a simple formula for explanation
of fusion suppression is proposed, according to which fusion suppression is given by
the average of the breakup fractions evaluated at impact parameters ranging from
head-on collision up to the cutoff impact parameter. On application of the above
formula, we find that there is very good agreement between o,y and oy, for the
three systems SLi+2%°Bi, ¢Li+%2Sm and ®Li+!**Sm. The agreement of our results
with experimental data also suggests that the above barrier breakup of Li nucleus

in the field of a heavy target nucleus can be fruitfully studied by applying classi-
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cal Newtonian laws. This is especially important in view of the fact that quantum
mechanical methods (like CDCC), employed for studying breakup, can work only
under approximations which may not lead to accurate results under all conditions.
Another contribution in this chapter is the development of a semiclassical model
of the 8Li nucleus. The model is essential for obtaining the initial conditions for
solving the classical equations of motion.

In the fifth chapter, we present an analysis of reaction cross section induced by
radioactive projectiles (*He, 8B and "Be). It is now well known that the reduced
reaction cross section ( vs reciuced energy ) shows separate trajectories for tightly
bound, loosely bound and radioactive halo systems. Also it has been pointed out
that this existence of well-defined péths is due to the separation of the barrier
parameters for the three types of systems. In this work we sought an explanation
for the shift in the barrier parameters of radioactive halo systems with respect
to normal loosely bound systems by using six different nuclear potentials. The
calculated shift of the barrier parameters closely matches the experimental shift of
the barrier parameters obtained from reduced reaction cross section analysis. This
result proves that the separation of the trajectories of the reduced reaction cross
section of different systems is contained within the global parametrization of nuclear
potentials. For the proton halo system, the shift can only be explained if new values
of the radii (for 1°B and ®B) are taken into consideration which is because of the fact
that the radius of the halo nucleus (®B) is greater than the normal nucleus (°B). For
the reactions *He + 2" Al and "Be+2" Al, fitting of the total reaction cross section
is done using the modified Wong’s formula (MWF) (PRC, 86, 057603). From the
quality of the fit, it can be concluded that for halo and loosely bound systems, the
modified Wongs’ formula (MWF) gives a better reproduction of the experimental
reaction cross section than the unmodified Wongs’ formula (UWF).

In our opinion, the work presented here has a lot of scope for future research.

Many other potentials; like, single-folding, double-folding and Skyrme energy den-
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sity, could be used for the evaluation of the barrier parameters (Vp, Rp) of loosely
bound systems. It would be interesting to see how they compare with the predictions
of the proximity potentials that has been reported here. For the system Li+!52Sm,
correction of the nuclear potential for the deformed target can also be tried, espe-
cially for the potentials Prox 88 and BW 91. For the determination of the fusion
cross section above the barrier, improved versions of Wong’s formula (Balantekin’s
correction) can be used for accurate determination of the fusion cross section.
Fusion suppression factor for other ®Li based reactions can also be studied. In-
stead of using Wood’s-Saxon potential, other nuclear potentials can also be used
in the classical equations of motion. It would be interesting to observe which other
nuclear potentials (apart from Wood’s-Saxon) can predict an accurate picture of
breakup of the projectile. The model of fusion suppression developed here is a
two-dimensional classical trajectory model. The obvious generalization would be a
three—dimensional model. It would be interesting to see whether the formula for
fusion suppression proposed here for the two-dimensional model (Eq. 4.64 ) would
still be applicable for the three-dimensional model. In the three-dimensional model,
the orientation of the projectile is not necessarily confined to a single plane which
is the case for the two-dimensional model. Finally, a fully quantum mechanical
model bf fusion suppression could be attempted in future even though it may be a
highly challenging task. For this it would be necessary to develop a fully quantum

mechanical version of the model of éLi nucleus that has been proposed here.

154



Appendix A

Fortran code for determining
breakup and nobreakup

trajectories

program breakup

imi)licit none
real::funl,fun2,rl,al,r2,a2 r3,a3 k0,k1,k2 k3,k4 k5,r,wl,z1,w2,z2,w3,2z3,n1,n2,n3 h,t x
real::cl,c2,¢3,c4,¢5,¢6,c7,c8,¢9,c10,c11,c12,¢13,¢14,¢15,¢16,¢17,¢18,¢19,¢20,c21,¢22,023,¢24
real::r0,e,b,v3,v,vl,v2,rd1,ra,d

real::x1,x2,y1,y2,x3,y3

integer::i,n,m,il

open(unit=1 file="data22bl’ status="unknown’)

open(unit=2,file="deutron2’ status="unknown’)
open(unit=3,ﬁle=’aipha—paxticle?,status=’unknown’)

open(unit=4,file="target2’ status="unknown’)

read*,m

r1=1.850

al=0.710
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r2=1.160
a2=0.830
r3=1.392
a3=0.656
k0=2.880
k1=106.338
k2=109.630
k3=91.460
k4=119.520
k5=239.040
r=6.970
h=0.01
n=1700
nl=2

n2=4
n3=209
t=0

x3=0

w3=0

y3=0

z3=0
r0=2.27
e=33.0
b=0.8
v3=0.47952/sqrt(r0)
v=sqrt(0.31936*¢)
v1=2%y3
v2=v3
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do il=1m

rdl=rand()

enddo

ra=25+rd1*30

x1=-ra~(0.666667)*r0*sin(x)

y1=b+(0.66667)*r0*cos(x)

x2=-ra+(0.33333)*r0*sin(x)

y2=b-(0.33333)*10*cos(x)

wl=v+vl*cos(x)

zl=v1*sin(x)

w2=v-v2¥cos(x)

z2=-v2*sin(x)

do i=1,n

cl=k0*(x1-x2)/(funl(x1,x2,y1,y2))**3
c2=-k1*fun2(x1,x2,y1,y2,r1,al )*(x1-x2) /funl (x1,x2,y1,y2)
c3=-k2*fun2(x1,x3,y1,y3,r2,a2)*(x1-x3) /funl(x1,x3,y1,y3)
if(fun1(x1,x3,y1,y3).It.r)then

cd=(k4/r**3)*(x1-x3)

else

c4=k4*(x1-x3) /(funl(x1,x3,y1,y3))*¥*3

endif

wl=w1+h*0.95808*(c1+c2+c3+c4)/nl

x1=x1+h*wl

c5=k0*(y1-y2)/(funl(x1,x2,y1,y2))**3
cb=-k1*fun2(x1,x2,y1,y2,rl,al)*(y1-y2)/funl(x1,x2,y1,y2)
c7=-k2*fun2(x1,x3,y1,y3,r2,a2)*(y1-y3)/funl(x1,x3,y1,y3)
if(funl(x1,x3,y1,y3).1t.r)then

o8=(kd/r**3)*(y1-y3)
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else

c8=k4*(y1-y3)/(funl(x1,x3,y1,y3))**3

endif

z1=21+4-h*0.95808*(c5+c6+c7+c8)/nl

yl=yl+h*zl

c9=-k0*(x1-x2)/(funl(x1,x2,y1,y2))**3
c10=k1*fun2(x1,x2,y1,y2,r1,al)*(x1-x2) /fun1(x1,x2,y1,y2)
c11=-k3*fun2(x2,x3,y2,y3,r3,a3)*(x2-x3) /fun1(x2,x3,y2,y3)
if(fun1(x2,x3,y2,y3).1t.r)then

c12=(k4/r**3)*(x2-x3)

else

c12=k4*(x2-x3)/(funl(x2,x3,y2,y3))**3

endif ‘
w2=w2+h*0.95808*(c9+c10+c11+c12)/n2

x2=x2+h*w2

c13=-k0*(y1-y2)/(funl(x1,x2,y1,y2))**3
cl4=k1*fun2(x1,x2,y1,y2,rl,al)*(y1-y2)/funl(x1,%2,y1,y2)
c15=-k3*fun2(x2,x3,y2,y3,r3,a3)*(y2-y3) /funl(x2,x3,y2,y3)
if(funl(x2,x3,y2,y3).lt.r)then

c16=(k5/r**3)*(y2-y3)

else

c16=k5*(y2-y3)/(fun1(x2,x3,y2,y3))**3

endif

22=22+h*0.95808*(c13+c14+c15+c16)/n2

y2=y2+h*z2

c17=k2*fun2(x1,x3,y1,y3,r2,a2)*(x1-x3) /fun1(x1,%x3,y1,y3)
¢18=k3*fun2(x2,x3,y2,y3,r3,a3) *(x2-x3) /fun1(x2,x3,y2,y3)
if(fun1(x1,x3,y1,y3).It.r)then
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c19=-(k4/r**3)*(x1-x3)

else
c19=-k4*(x1-x3)/(funl(x1,x3,y1,y3))**3
endif

if(fun1(x2,x3,y2,y3).1t.r)then
c20=—(k5/r**3)* (x2-x3)

else

c20=-k5*(x2-x3) /(fun1(x2,x3,y2,y3))**3
endif

W3=w3+h*0.95808* (c17+c18+¢19+¢20) /n3
x3=x3+h*w3
c21=k2*fun2(x1,x3,y1,y3,r2,a2)*(y1-y3) /funl(x1,x3,y1,y3)
c22=k3*fun2(x2,x3,y2,y3,r3,a3)*(y2-y3) /fun1(x2,x3,y2,y3)
if(funl(x1,x3,y1,y3).1t.r)then
c23=-(k4/1**3)*(y1-y3)

else
c23=-k4*(y1-y3)/(funl(x1,x3,y1,y3))**3
endif

if(fun1(x2,x3,y2,y3).It.r)then
c24=-(k5/r**3)*(y2-y3)

else
c24=-k5*(y2-y3)/(funl(x2,x3,y2,y3))¥*3
endif
z3=23-+h*0.95808*(c21+c22+¢23+c24)/n3
y3=y3+h*z3

t=t+h ‘

write(2,*)x1,y1

write(3,%)x2,y2
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write(4,*)x3,y3

enddo
d=sqrt((x1-x2)**2+(y1-y2)**2)
print*,d

stop

"end

real function funl(bl,b2,b3,b4)
implicit none

real::b1,b2,b3,bd
funl=sqrt((bl-b2)**2+(b3-b4)**2)
end function funl

real function fun2(b5,b6,b7,b8,b9,b10)

implicit none

real::b5,b6,b7,b8,b9,b10

fun2=exp((sqrt((b5-b6)**2+(b7-b8)**2)-b9) /b10)/ (1+exp((sqrt((b5-b6)**24(b7-b8)**2)-
b9)/b10))**2

end function fun2
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