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Abs t r ac t .  This article is a review of two original papers [1], [2]. We begin with 
a description of Kirillov symplectic form and quantum mechanics on a coadjoint 
orbits of a simple Lie group. This theory may be generalized for the case of a 
Poisson-Lie group. Both these theories axe important for understanding of the 
Chern-Simons model which may be treated as a 3D gauge theory interacting with 
coadjoint orbits sitting on Wilson lines. Due to topological nature of the Chern- 
Simons theory one can get rid of the gauge fields in exchange of modification of 
coadjoint theories. We discover that this modification is exactly the same as we 
find in the Poisson-Lie case. 

1 I n t r o d u c t i o n  

The nonabelian Chern-Simons theory in 3 dimensions has been solved in [3] using 
its relation to the 2-dimensional Wess-Zumino-Novikov-Witten model. Recently 
it has been proved that the Chern-Simons theory on the cylinder (Cartesian 
product of a Riemann surface and a real axis) may be efficiently reduced to 
the 2 dimensional topological gauged WZNW model [4], [5]. We learn from 
these examples that the topological 3-dimensional theory can be related to some 
solvable two-dimensional theory either conformal or topological. 

Here we advocate another approach to 3D-topological theories and demon- 
strate it on the example of the Chern-Simons model. Namely, instead of dealing 
with some 2-dimensional model we reduce the problem to a solvable quantum 
mechanics. The natural question in the Chern-Simons theory is to evaluate a 
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correlation function on some 3D manifold with several Wilson lines inserted. It 
was suggested in [3] and advocated in [6] that the Chern-Simons theory may be 
represented as a 3D gauge theory interacting with some quantum mechanical 
systems living on the Wilson lines. These systems give a physical interpretation 
of the representation theory of Lie algebras [7]. The models of these family are 
designed in such a way that their Hilbert spaces coincide with particular irre- 
ducible representations of a given Lie algebra. Our aim in this paper is to get rid 
of the gauge fields in the model and end up with somewhat modified quantum 
mechanics on the Wilson lines. We restrict ourselves to the geometry of the 
cylinder and fulfil the described program. 

When the gauge field disappears from the system the quantum mechanics 
on the Wilson lines changes. Fortunately, this particular way to modify the 
orbit quantum mechanics has been studied previously [8], [1]. It corresponds to 
the generalization of the notion of the Lie group to Poisson-Lie group when the 
group manifold carries a nontriv]al Poisson bracket. After quantization this idea 
leads to a definition of quantum groups. 

We always stay here on the classical level of consideration as quantum effects 
in the Chern-Simons model lead only to a finite renormalization of the coupling 
constant. 

The paper is organized as follows. In Section 2 we remind the construc- 
tion of Kirillov symplectic form and then define quantum mechanical systems 
appropriate for description of Wilson lines. Section 3 is devoted to machinery 
of Poisson-Lie groups. There we introduce the modified symplectic structures 
which will replace naive Kirillov form in the Chern-Simons model. In Section 
4 we turn to the main point of the paper and first represent the Chern-Simons 
theory on a cylinder as an interacting theory of 3D gauge fields and Wilson line 
quantum mechanics following [6]. As it was pointed out in [3] the problem re- 
duces to analysis of the moduli space of flat connections on a Riemann surface 
with marked points. We reexamine the symplectic structure of this space and 
discover that it splits into the direct sum of several terms. Some of these terms 
may be naturally assigned to the Wilson lines. They coincide with certain sym- 
plectic forms related to Poisson-Lie groups and described in Section 3. The other 
terms have a similar structure and take into account topology of a 3D-manifold. 
More exactly, each handle of the Pdemann surface is roughly speaking equivalent 
to two marked points. 

2 G e o m e t r i c  quant iza t ion  and Wi l son  lines 

For the purpose of selfconsistency we collect in this section some well-known 
results concerning Poisson and symplectic structures associated to Lie groups. 
The most important part of our brief survey is a theory of coadjoint orbits. We 
concentrate on Kirillov symplectic form and the corresponding action for the 
dynamical system on the orbit. It appears that a Wilson line observable may be 
represented as a quantum partition function for such system. 
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2 . 1  K i r i l l o v  f o r m  

Let us fix notations. The main object of our interest is a simple Lie group G. 
We denote the corresponding Lie algebra by g. The linear space g is supplied 
with Lie commutator  [,]. If {~a} is a basis in ~, we can define structure constants 
f2b in the following way: 

[~a,~b ] : ~ ab_c (2.1) 
£ 

The Lie group G has a representation which acts in g. It is called adjoint 
representation: 

~g =- Ad(g-1)~  . (2.2) 

For a matrix realization of the group G the adjoint action is represented by 
conjugation: 

Eg = g - l ~ g  . (2.3) 

The corresponding representation of the algebra g is realized by the commutator: 

ad(~)y = It, ~/] . (2.4) 

We denote elements of the algebra g by small Greek letters. 
Let us introduce a space g* dual to the Lie algebra g. There is a canonical 

pairing < ,  > between g* and ~ and we may construct a basis {la} in g* dual to 
the basis {ea} so that  

< la, b > =  . (2.5) 

We use small Latin letters for elements of g*. Each vector ~ from g defines a 
linear function on g*: 

H~( / )=<  l ,e  > (2.6) 

In particular, a linear function H a corresponds to an element e a of the basis 
in g. By duality the group G and its Lie algebra g act in the space g* via the 
coadjoint representation: 

< Ad*(g) l ,e  > = <  1 ,Ad(g-1)e  > , (2.7) 

< ad*(c) l ,~  > =  - < I, [e,~/] > (2.8) 

The space g can be considered as a space of left-invaxiant or right-invaxiant 
vector fields on the group G. Let us define the universal right-invariant one-form 
~a on G which takes values in g : 

~g(e) = - ~  . (2.9) 

We treat  e in the 1.h.s. of formula (2.9) as a right-invariant vector field whereas 
in the r.h.s, as an element of g. Since the one-form tgg and the vector field 
are right-invariant the result does not depend on the point g of the group. 8g is 
known as Maurer-Cartan form. 
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Similarly, the universal left-invariant one-form #a can be introduced: 

#g(e)  = e , #g = A d ( g - 1 ) S g  , (2.10) 

where e is a left-invariant vector field, A d  acts on values of Og. 
In the case of matrix group G the invariant forms 0g and #g look like follows: 

Og -- 6 g g  -1 , (2.11) 

#g = g - 1 6 g  . (2.12) 

For any group G there exist two covariant differential operators ~ and VR 
taking values in the space 6*. These are left and right derivatives: 

5 
< XTLf, e > (g) = - - ~ ] ( e x p ( t e ) g )  , (2.13) 

< VRf ,  e > (g) = ~ ] ( g  exp ( t e ) )  , (2.14) 

where e x p  is the exponential map from a Lie algebra to a Lie group. The simple 
relation for left and right derivatives of the same function f holds: 

V R f  = - A d * ( g - 1 ) V L ]  • (2.15) 

The space 6" carries a natural Poisson structure invariant with respect to the 
coadjoint action of G on g*. Let us remark that the differential of any function 
on g* is an element of the dual space,  i.e. of the Lie algebra 6. It gives us a 
possibility to define the following Kirillov-Kostant Poisson bracket: 

{ f ,  h)(1)  = <  1, [Sf ( l ) ,  6h(1)] > (2.16) 

In particular, for linear functions He the r.h.s, of (2.16) simplifies: 

{He, H , )  = Hie,o] , (2.17) 

{ H a , H  b} = ~ ' ~ f ~ b g c  (2.18) 
c 

The last formula simulates the commutation relations (2.1). 
In general situation the space g* supplied with Poisson bracket (2.16) is not a 

symplectic manifold. The Kirillov-Kostant bracket is degenerate. For example, 
in the simplest case of g = su(2) the space g* is 3-dimensional. The matrix of 
Poisson bracket is antisymmetric and degenerates as any antisymmetric matrix 
in an odd-dimensional space. 

The relation between symplectic and Poisson theories is the following. Any 
Poisson manifold with degenerate Poisson bracket splits into a set of symplectic 
leaves. A symplectic leaf is defined so that  its tangent space at any point consists 
of the values of all hamiltonian vector fields at this point: 

v h ( f )  ---- { h , f )  . (2.19) 
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Each symplectic leaf inherits the Poisson bracket from the manifold. However, 
being restricted onto the symplectic leaf the Poisson bracket becomes nondegen- 
erate and we can define the symplectic two-form 12 so that: 

~(v~,Vh) = {/,  h) . (2.20) 

The relation (2.20) defines 12 completely because any tangent vector to the sym- 
plectic leaf may be represented as a value of some hamiltonian vector field. 

If we choose dual bases {ea} and {e a} in tangent and cotangent spaces to the 
symplectic leaf we can rewrite the bracket and the symplectic form as follows: 

{J, h)  = - E p~b < 5f ,  ea > <  ~h, eb > , (2.21) 
ab 

1 
= e ° ® e  b = e ° A e  . ( 2 . 2 2 )  

ab ab 

Using definition (2.20) of the form ft and formulae (2.21), (2.22) one can check 
that the matrix ~ab is inverse to the matrix pab: 

E ~cPCb = 5ha " (2.23) 
c 

For the particular case of the space g* with Poisson structure (2.16), there 
exists a nice description of the symplectic leaves. They coincide with the orbits 
of coadjoint action (2.7) of the group G. Starting from any point 10, we can 
construct an orbit 

Olo = (l  = Ad*(g)lo , g E G} . (2.24) 

Any point of g* belongs to some coadjoint orbit. The orbit Oto can be regarded 
as a quotient space of the group G over its subgroup Slo: 

Olo ~ G/Slo , (2.25) 

where Slo is defined as follows: 

Szo = {g e G , Ad*(g)lo = 10} (2.26) 

In the case of G = SU(2) the coadjoint action is relSresented by rotations in 
the 3-dimensional space g*. The orbits are spheres and there is one exceptional 
zero radius orbit which is just the origin. The group Slo is isomorphic to U(1) 
and corresponds to rotations around the axis parallel to 10. For the exceptional 
orbit Sto = G and the quotient space G / G  is a point. 

Let us denote by Plo the projection from G to OZo: 

Plo : g , lg = Ad*(g)lo . (2.27) 

We may investigate the symplectic form 12 on the orbit directly. However, for 
• * ~  technical reasons it is more convenient to consider its pull-back nlao = Pro 

defined on the group G itself. We reformulate the famous Kirillov's result in 
the following form. Let Olo be a coadjoint orbit of the group G and Pro be the 
projection (2.27). The Poisson structure (2.16) defines a symplectic form ~ on 
Olo. 
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T h e o r e m  1 The pull-back of 12 along the projection Pro is the following: 

1 
 tco = < ,A 0.  > (2.28) 

We do not prove formula (2.28) but the proof of its Poisson-Lie counterpart 
in subsection 3.4 will fill this gap. Let us make only few remarks. First of all, 
the form ~2 G actually is a pull-back of some two-form on the orbit Oto. Then, l0 
~G is a closed form: lo 

5 f ~  = 0 . (2.29) 

This is a direct consequence of the Jacobi identity for the Poisson bracket (2.16). 
The form f~G is exact, while the original form f~ belongs to a nontrivial coho- 

1o . 

mology class. The left-invariant one-form 

-=< lg,Og > : <  10,#g > (2 .30)  

satisfies the equation 
53 = ~,e o (2.31) 

In physical applications the form a defines an action for a hamiltonian system 
on the orbit: 

f 
S = / . (2.32) 

This action plays a crucial role in the representation of a Wilson line via func- 
tional integral. (see section 2.2). 

The rest of this subsection is devoted to the cotangent bundle T*G of the 
group G. Actually, the bundle T*G is trivial. The group G acts on itself by 
means of right and left multiplications. Both these actions may be used to 
trivialize T*G. So we have two parametrizations of 

T*G = G × g* (2.33) 

by pairs (g, l) and (9, ra) where I and m are elements of g*. In the left parametriza- 
tion G acts on T*G as follows: 

L h:  (g,m) , (hg, m) , (2.34) 

R h:  (g,m) - -*  (gh-~,Ad*(h)m) (2.35) 

In the right parametrization left and right multiplications change roles: 

L h :  (g,l) , (hg, Ad*(h)l) , (2.36) 

R h: (g,l) ÷ (9h "1,1) 

The two coordinates I and m are related: 

(2.37) 

l = . (2 .3s )  
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The cotangent bundle T*G carries the canonical symplectic structure ~T*G 
[911 Using coordinates (g, l, m), we write a formula for f~T*G without proof: 

i2T. G 1 = 7(<  ~m A #g > + < ~l A 0g >) (2.39) 

The symplectic structure on T*G is a sort of universal one. We can recover 
the Kirillov two-form (2.28) for any orbit starting from (2.39). More exactly, let 
us impose in (2.39) the condition: 

m = m o  = c o n s t  . (2.40) 

It means that  instead of T*G we consider a reduced symplectic manifold with 
the symplectic structure (for justification see subsection 3.3): 

1 
f l r = ~ < ~ l , 0 g >  , (2.41) 

where 1 is subject to constraint 

l = A d * ( g ) m o  • (2.42) 

Formulae (2.41), (2.42) reproduce formulae (2.27), (2.28) and we can conclude 
that  the reduction leads to the orbit Omo of the point m0 in g*. 

2.2 Functional  integral for a coadjoint orbit 

Our main motivation to consider geometric quantization and Kirillov symplectic 
form is the application of this theory to the Chern-Simons model. More exactly, 
we rewrite the expression for a Wilson line observable as a certain functional in- 
tegral over a coadjoint orbit of the group G. It is convenient to restrict ourselves 
to the case of G being a simple Lie group as it is the main example which we 
are interested in in the framework of the Chern-Simons theory. 

First, let us remind that  the quantization of Kirillov-Kostant bracket (2.16) 
reproduces the Lie algebraic commutator (2.1). So, we expect that  after quanti- 
zation the Lie algebra g acts in the Hilbert space of the corresponding quantum 
system. If we start with an orbit we expect that  the corresponding representation 
is irreducible. This guess is based on the observation that  before quantization 
the group action can move any given point on the orbit to any other point. 
Procedure of geometric quantization [10] provides a mathematical proof of this 
conjecture. However, in this paper we use a physical language and treat the 
quantization procedure in the framework of path integral formulation. 

To begin with we need an action which describes our physical system. As we 
live on the orbit, our nearest concern is to introduce some efficient coordinates. 
Actually, it has been done in the previous subsection where we parametrized a 
point on the orbit by the group element (2.27): 

T = v - l D v .  (2.43) 
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Here we introduced special notations for the case of the simple group G. We 
denote a point on the orbit represented by matrix from g by T. The fixed point D 
is a diagonal matrix which defines the orbit. The group G acts by conjugations: 

T 9 = g-lTg.  (2.44) 

We remind T gives a momentum mapping corresponding to this action. In terms 
of D and v E G Kirillov form (2.28) looks as: 

w = TrD(~vv-1) 2. (2.45) 

So, the action for such a system may be written as 

so(v) -- / rrD( v  -I) (2.46) 

Here Hamiltonian H is an arbitrary function on the orbit. For our purposes it 
is convenient to choose it to be a linear function: 

H = iTr(AT), (2.47) 

where A = A(t) is a time-dependent source. The main problem of this theory is 
to evaluate the partition function: 

ZD(A) = / l) ve~S~(v). (2.48) 

We shall consider this integral with periodic boundary conditions. Strictly speak- 
ing, it is not well-defined because of the gauge symmetry with respect to the left 
action of the diagonal subgroup of G: u ~ hu. However, this symmetry may be 
taken into account by the standard renormalization of the integration measure. 
As for any functional integral, we can rewrite the partition function using an 
ordered exponent of the Hamiltonian: 

ZD(A) = TruPexp( f Z A"(t)T"dt)" (2.49) 
a 

Here ~a is an operator corresponding to T" after quantization, 7-/is a Hilbert 
space of the resulting theory. As we discussed, this Hilbert space is expected 
to be an irreducible representation of the Lie algebra g. The problem is how to 
find out which representation we get starting from the action SD (u). The answer 
looks like follows. Let us represent the highest weight w(D) of the corresponding 
representation as a diagonal matrix. Then 

w(D) = D - p, (2.50) 

for p being a half sum of positive roots of g. 
Let us conclude that we obtained a nice representation for a Wilson line 

observable in the Chern-Simons theory. Namely, such an observable may be 
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always represented as a partition function in the auxiliary theory on the certain 
coadjoint orbit: 

Ww(D)(F) = ZD(A(t)), (2.51) 

where A(t) is the restriction of the gauge field A on the curve F. 
For further information on the orbit functional integral we send the reader 

to original papers [11],[7],[12]. The representation (2.51) has been applied to the 
Chern-Simons theory in [6]. 

3 S y m p l e c t i c  s t r u c t u r e s  a s s o c i a t e d  t o  P o i s s o n -  

L i e  g r o u p s  

In this Section we develop machinery of Poisson-Lie groups and find out how 
Kirillov form modifies when we introduce a nontrivial Poisson bracket on a group 
manifold. We follow the approach of [1]. 

3.1 He i senberg  double  of  Lie bialgebra 

One of the ways to introduce deformation leading to Poisson-Lie groups is to 
consider the biaigebra structure on ~. Following [13], we consider a pair (g, ~*), 
where we treat 6" as another Lie algebra with the commutator [,]*. For a given 
commutator [,] in ~ we can not choose an arbitrary commutator [,]* in g*. The 
axioms of bialgebra can be reformulated as follows. The linear space 

with the commutator [,]9: 

= g ÷ g* (3.1) 

where in the r.h.s. 
that  

[e, 719 = [:, 71 , (3.2) 

Ix, Y]9 = [x,y]* , (3.3) 

It, x]v = ad* (z)x - ad* (x)e (3.4) 

must be a Lie algebra. In the last formula (3.4) ad* (~) is the usual ad*-operator 
for the Lie algebra g acting on ~*. The symbol ad*(x) corresponds to the coad- 
joint action of the Lie algebra g* on its dual space 9. 

The only thing we have to check is the Jacobi identity for the commutator 
[,]9. If it is satisfied, we call the pair (9, g*) Lie bialgebra. Algebra 9 is called 
Drinfeld double. It has the nondegenerate scalar product < ,  > 9  : 

< (~, x), (7, y) >9=< y,: > + < x, ~ > , (3.5) 

< ,  > is the canonical pairing of g and g*. It is easy to see 

<g,g>~----O , <g*,g*>~---O (3.6) 

In other words, g and g* are isotropic subspaces in ~ with respect to the form 
<, >9. We call the form <, >9 on the algebra ~) standard product in 9. 



68 

We shall need two operators P and P* acting in 9. P is defined as a projector 
onto the subspace g: 

P ( x  + ~) = ~ (3.7) 

The operator  P* is its conjugate with respect to form (3.5). It appears to be 
a projector onto the subspace g*: 

P * ( x  + ¢) = x . (3.8) 

The standard product in 9 enables us to define the canonical isomorphism 
J : 9* ~ 9 by means of the formula 

< J(a*) ,  b > 9 = <  a*, b > , (3.9) 

where a* is an element of 9" and b belongs to 9. In the r.h.s, we use the 
canonical pairing of 9 and 9*. The standard product can be defined on the 
space 9*: 

< a*, b* > 9 . = <  J(a*) ,  J(b*) > 9  , (3.10) 

where a* and b* belong to 9*. The scalar product < ,  > 9  is invariant with 
respect to the commutator  in 9: 

< [a, b], c > 9  + < b, [a, c] > 9 =  0 . (3.11) 

It is easy to check that  the operator J converts ad* into ad: 

J a d * ( a ) J  -1 = ad(a) (3.12) 

Using the standard scalar product in 9, one can construct elements r and r* 
in 9 ® 9 which correspond to the operators P and P*: 

< a ® b , r  > 9 ® 9 - - <  a, Pb  > 9  , (3.13) 

< a®b,r*  > 9 ® 9  = - < a ,P*b  > 9  (3.14) 

In terms of dual bases {~a} and {/a} in g a~d g* 

r=  o®lo, r* o (3.15) 
a a 

The Lie algebra 9 may be used to construct the Lie group D. We suppose 
that  D exists (for example, for finite dimensional algebras it is granted by the Lie 
theorem) and we choose it to be connected. Originally the double is defined as 
a connected and simply connected group. However, we may use any connected 
group D corresponding to Lie algebra 9. Proper ty  (3.12) can be generalized for 
A d  and Ad*: 

J A g * ( d ) J  -1 = Ad(d)  , (3.16) 

where d is an element of D. 
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Let us denote by G and G* the subgroups in D corresponding to subalgebras 
and ~* in v. In the vicinity Do of the unit element of D the following two 

decompositions are applicable: 

d = g g * = h * h  , (3.17) 

where d is an element of D, coordinates g, h belong to the subgroup G, coordi- 
nates g*, h* belong to the subgroup G*. In general, the subset Do does not cover 
the whole group D. However, it is open and dense. In the further consideration 
we restrict ourselves to the cell Do in D and send the reader to [1] for complete 
description. 

Now we turn to the description of the Poisson brackets on the manifold D. 
Double D admits two natural Poisson structures. First of them was proposed 
by Drinfeld [13]. For two functions f and h on D the Drinfeld bracket is equal 
to 

{ f , h } - - < ~ f ® V L h ,  r > - < V R f ® V R h ,  r >  , (3.18) 

where < ,  > is the canonical pairing between v ® v and z)* ® z)*. Poisson bracket 
(3.18) defines a structure of a Poisson-Lie group on D. However, the most 
important for us is the second Poisson structure on D suggested by Semenov- 
Tian-Shansky [14]: 

{ f , h }  = --(< VLf ® VLh, r > + < VRf ® VRh, r* >) . (3.19) 

The manifold D equipped with bracket (3.19) is called Heisenberg double or 
D+. It is a natural analogue of T*G in the Poisson-Lie case. When g* is abelian, 
G* = g* and D+ = T*G. If the double D is a matrix group, we can rewrite the 
basic formula (3.19) in the following form: 

{d 1, d 2) = - ( r d l  d 2 + dl d2r *) , (3.20) 

whered l = d ® I ,  d 2 = I ® d .  
For concrete calculations let us choose the left identification of the tangent 

space to D with z). We can rewrite the Poisson bracket (3.19) in terms of left 
derivatives %: 

{f, h}(d) = - ( <  % f  ® VLh, r > + < Ad*(d-1)VLf  ® Ad*(d-1)VLh, r * >) = 

= - < V L f ® V L h ,  r + A d ( d )  ®Ad(d) r*  > (3.21) 

Here we use relation (2.15) between left and right derivatives on a group. 
Given a hamiltonian h one can produce the hamiltonian vector field Vh so 

that the formula 
< 5f,  Vh >= {h, f} (3.22) 

holds for any function f .  Using (3.21), (3.22) we can reconstruct the field Vh: 

Vh =< VLh, r + Ad(d) ® Ad(d) r* >2 (3.23) 
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Having identified ~ and ~* by means of the operator J, we can rewrite the r.h.s. 
of (3.23) as follows: 

Vh[d = 7)~h = ( P  - A d ( d ) P * A d ( d - 1 ) ) J ( V L h ( d ) )  , (3.24) 

where P acts in ~: 
7 ~ = P - A d ( d ) P * A d ( d  -1)  (3.25) 

It is called Poisson operator. 
The problem which appears immediately in the theory of D+ is the possible 

degeneracy of Poisson structure (3.19) in some points of D. Stratification of D+ 
into the set of symplectic leaves is described in [1]. Here we need only a simple 
fact about this stratification: 

L e m m a  1 The subset 

Do = GG* N G* G 

is a symplectic leave in D with respect to the Poisson bracket (3.19). 

It means that the bracket (3.19) is actually nondegenerate on Do. 

(3.26) 

3 .2  S y m p l e c t i c  s t r u c t u r e  o f  t h e  H e i s e n b e r g  d o u b l e  

The subject of this subsection is to find an efficient description of the symplectic 
form O on Do. Let us introduce two sets of coordinates on Do: 

d = gg* = h*h. (3.27) 

In terms of (g,g*)  and (h*, h) we can write down the answer for 0.  

T h e o r e m  2 The symplectic f o r m  0 on Do can be represented as follows: 

1 
O = ~(< ~h* A, ~g > + < #g. A, #h >) (3.28) 

In the formula (3.28) 8g, 8h*, Ph, Pg* are Maurer-Cartan forms on G and G*. 
The pairing < ,  > is applied to their values, which can be treated as elements of 
g and g* embedded to 9 -- g + g*. So we can use < ,  > 9  as well as < ,  >. 

Proof  of  Theorem P 
The strategy of the proof is quite straightforward. We consider Poisson 

bracket (3.19) on the symplectic leaf Do. If we use dual bases {ea} and {e a} 
(a = 1 , . . . ,  n = d i m D )  of right-invariant vector fields and one-forms on D, the 
formula (3.19) acquires the following form: 

{f, h}(d) = - < VLf  ® VLh, r _4- Ad(d)  ® Ad(d)  r* > =  
n 

= -- ~ < VLf,  ea ~<~ ~TLh, eb >< e a , p J e  b > (3.29) 
a,b=l 
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The last multiplier in (3.29) is Poisson matrix corresponding to the bracket 
(3.19): 

79ab = <  e a, 79Je b > (3.30) 

Here 79 is the same as in (3.25). It is ensured by L e m m a  1 that  
the matrix 7 9ab is nondegenerate. The symplectic form ® can be represented 

as follows (see subsection 2.1): 

n 

0 = ~_, Oabea®e b , (3.31) 
a,b=l 

where the matrix O satisfies the following condition: 

n 

O~c79 ~b = ~ . (3.32) 
C-~1 

So what  we need is inverse matrix 79-I for 79ab. To this end let us introduce two 
operators 791 and 792: 

791 = P + Ad(d)P*  , (3.33) 

792 = P* - A d ( d ) P  . (3.34) 

79 may be decomposed in two ways, using 791 and 792: 

79 = 79179; = -79279; (3.35) 

The definition of 791 and 792 permit us to write down the answer for Oab: 

Oab = <  ea, Oeb > 9  , 0 = p79~-1 _ p ,792  1 (3.36) 

We must check condition (3.32): 

n , 

E O°c 79°b= 
c = l  

n 

= ~ < ea,Oec > <  eC,79J(e b) > =  
c = l  

= <  ea, 079J(e  b) > 9  

The product 079 can be easily calculated using (3.35), (3.36): 

p ,a~- l ,~  ,n, 079 = P79~-179179; + r 2 r 2 r  1 = 

= P ( P  - P * A d ( d - 1 ) )  + P*(P*  + P A d ( d - I ) )  = 

= P + P * = I  . 

(3.37) 

(3.38) 

So, the answer is 
< ea, 079J(e  b) > 9 - <  e b, ea > =  6 5 

as it is required by (3.32). 

(3.39) 
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We can rewrite formula (3.36) in more invariant way: 

O = <  0d ~ (90d >7) , (3.40) 

where 0d is the Maurer-Cartan on D. Expression (3.36) for the operator (9 still 
7 ~-1 implying that some equations must be solved. includes inverse operators 1,2 

To this end we represent the Maurer-Cartan form 0 d in two different ways: 

Od = Og + Ad(d)#g. , (3.41) 

0 d = Oh* "1- Ad(d)#h . (3.42) 

Representations (3.41), (3.42) allow us to calculate 79~p*Od explicitly: 

~ l l 0 d  = Og + ~g* , (3.43) 

p210d = Oh. -- #h • (3.44) 

Putting together (3.36), (3.40), (3.43) and (3.44), we obtain the following 
formula for the symplectic form: 

(9 = <  (09 + Ad(d)#g.) ~, Og >7) - < (Oh* + Ad(d)IZh) ~, Oh* >7)= 

= <  Ad(d)~g. ~, Og >v  - < Ad(d)#h ~, Oh. >7) (3.45) 

Actually, the form (3.45) is antisymmetric. To make it evident, let us consider 
the identity 

< p*Od ~ p*Od >7)= 
= <  Ad(d)lzg. ~ Og >7) + < Og ~, Ad(d)l~g. >z)= (3.46) 

= <  Ad(d)Izh ~, Oh* >7) + < Oh* ~ Ad(d)#h >7) 

Or, equivalently, 

< Ad(d)Izg. ~, Og >9 - < Ad(d)l~h ~, Oh* >7)= 

= - < Og ~, Ad(d)#g. >7) + < Oh. ~, Ad(d)#h >v (3.47) 

Applying 3.47 to make (3.45) manifestly antisymmetric, one gets: 

1 
(9 = 5(< Ad(d)Iza. ~ 0 a >7) + < Oh. ~ Ad(d)#h >79) • (3.48) 

Using representation of d in terms of (g, g*) and (h*, h), it is easy to check 
that formula (3.48) coincides with 

1 
O = - 5 ( <  #a A, 0g. >7) + < 0h A, #h* >•) • (3.49) 

To obtain formula (3.28) one can use (3.41), (3.42): 

tgd = Og + Ad(d)#a* = Oh* + Ad(d)l~h • (3.50) 
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Or, equivalently, 
Og - Ad(d)#h = Oh* -- Ad(d)#g.  

Due to antisymmetry we have 

Therefore, 

< (Og - Ad(d)#h)  A (Oh* -- Ad(d)#g . )  >79= 0 

(3.51) 

(3.52) 

1 ~(< 0h. A eg >79 + < #g. A, #h >79) = 

1 
= ~ (<  Ad(d)#g.  A, Og >79 + < Oh* ~ Ad(d)#h >79) = O , (3.53) 

which coincides with (3.28). 
One can easily check that  the r.h.s, of formula (3.28) does represent the 

pull-back of some two-form on Do. 
It is known from general Poisson theory that 

60  = 0 , (3.54) 

but it is interesting to check that form (3.28) is closed by direct calculations. 
Rewriting equation (3.51) we get: 

Og - Oh. = Ad(d)#h  - Ad(d)#g.  (3.55) 

Taking the cube of the last equation we get: 

< Og ~ Og ^ Og >79 - < Oh. I', Oh. A Oh. >79 + 

+3 < 0 a A, Oh* A Oh* >79 --3 < 0 a A Og A, Oh * >79....7. 

= <  IZh A, #h A #h >79 -- < #g* A, #g. A #g* >79 + (3.56) 

+3 < #h A, #g. A #g* >79 - 3  < /~h A #h A pg. >79 

As 0g A 0 a = 1 7[Og A, Og] and #h A #h = ½[#h ¢ #hi take values in g, 0h* A Oh* = 
1 • l[ou. A, Oh*] and #g* A/za. = ~[#g ,A #g*] take values in g* we may use the 

pairing < ,  >79 for them. Moreover, as both g and ~* are isotropic subspaces in 
79, we rewrite (3.56) as follows: 

< Og A Oh* A Oh* >79 - < Og A Og A, Oh* >79 - 

- < #h A, #g. A #g* >79 + < #h A #h A #g. >79= 0 . (3.57) 

We remind that 60 a = 0 a A 0 a and 6/~g = - # g  A #g. Thus, 

6 0  = - < 60g A, Oh. >79 + < Og '}, 60h* >79 -- 

-- < 6#h A, #g. >79 + < #h '}, 6tzg. >79= 0 . (3.58) 

Now it is interesting to consider the classical limit of our theory to recover 
the standard answer for T*G. There is no deformation parameter in bracket 
(3.19) but it may be introduced by hand: 

{f,  h}-r = 7{f ,  h} (3.59) 
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For the new bracket (3.59) we have the symplectic form: 

= ! o  . (3.60) 
7 

To recover coordinates on T*G one have to parametrize a vicinity of the unit 
element in the group G* by means of the exponential map: 

9" = exp(vm) , (3.61) 

h* = exp(7/) , (3.62) 

where m and l belong to g*. Coordinates m and 1 are adjusted in such a way 
that  they have finite values after the limit procedure. When 7 tends to zero, the 
formula 

d = gg* = h*h (3.63) 

leads to the following relations: 

9 =  h , l = A d * ( g ) m  • (3.64) 

Expanding the form 0 ~ into the series in 7 we keep only the constant term 
(singularity 7 -1 disappears from the answer because the corresponding two-form 
is identically equal to zero). The answer is the following: 

Or = 1 5 (<  6m A, #g > + < 61 A, Og >) (3.65) 

and it recovers classical answer (see subsection 2.1). Deriving formula (3.65), we 
use the expansions for the Maurer-Cartan forms on G*: 

Og. = 7 6 m  + 0(72) , (3.66) 

#h* = 7~l + 0(72) • (3.67) 

We have considered general properties of the symplectic structure on the 
main cell Do of the Heisenberg double D+. Our next aim is the Poisson-Lie 
analogue of the theory of coadjoint orbits. The necessary technical tools will be 
introduced 

in the next subsection. 

3.3 Dual pairs 

One of powerful tools in Hamiltonian mechanics is the language of dual pairs. 
Let X be a symplectic space. Obviously, it carries a nondegenerate Poisson 
structures. 

De f in i t i on  1 A pair of Poisson mappings 

# : X ~ Y ,  

u : X --+ Z i3.68) 
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{ { f , h } = O ,  V f  = ] o # , ] : Y ~ C } ~ { 3 h : Z ~ C , h = h o v } .  (3.69) 

In other words, any function lifted from Y is in involution with any function 
lifted from Z and moreover, if some function commute with any function lifted 
from Y it means that it is lifted from Z. 

The standard source of dual pairs is Hamiltonian reduction. If we have a 
Hamiltonian action of a group G on a symplectic manifold X, the following pair 
of projections is dual: 

iz : X -., g*, 

~, : X --* X / G .  (3.70) 

Here the mapping # is the momentum mapping from the manifold X to the 
space dual to the Lie algebra G. 

Dual pairs provide the method to classify symplectic leaves in the Poisson 
spaces Y and Z. For any point y E Y the subspace ~,(#-l(y)) is a symplectic 
leaf in Z. It carries nondegenerate symplectic structure. The same is true in 
the other direction. Take any point z E Z, then the subspace #(~-l(z)) is a 
symplectic leaf in Y. Actually, in this paper we don't need the full machinery 
of dual pairs. Only one simple fact will be of importance for us. 

L e m m a  2 Let the pair o] mappings (lZ, v) (3.68) be a dual pair. Under these 
conditions the restriction of the symplectic ]orm fl on X to the subspace #-1 (y) 
coincides with the pull back of the symplectic form Wy on the symplectic leave 
v(#-l(y)) along the projection v: 

f~ J,-l(y)= v*wy. (3.71) 

This lemma relates the symplectic structure of the reduced phase space with the 
symplectic structure of the global space X which is usually much simpler. 

3 .4  T h e o r y  o f  o r b i t s  

In this subsection we describe reductions of the Heisenberg double D+ which 
lead to Poisson-Lie analogues of coadjoint orbits. 

The coordinates g, g*, h, h* introduced in subsection 3.2 will be quite conve- 
nient for this purpose. Let us remark that the relation 

gg* = h*h 

may be used to define the action of G on G* 

g : g* --* g*'(g,g*) = h*. 

(3.72) 

(3.73) 
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This action usually appears in literature with the name dressing transformation 
[14]. 

The decomposition 

d = gg* = h*h (3.74) 

induces Poisson structures on the groups G and G*. Indeed, let us consider for 
example the realization of the group G* : G* L ~ D I G .  This formula is not quite 
correct because the decomposition D ,.~ G*G is not global. However, Poisson 
and symplectic structures are local objects and we can ignore this subtlety. 

We have used the notation G~ to indicate that we treat G* as a special 
quotient of D. 

Functions on G~ may be regarded as functions on D invariant with respect 
to right action of G : 

f ( d g )  = f ( d )  . (3.75) 

The right derivative Vnf is orthogonal to ~ for functions on G~: 

< VRf, g > =  0 . (3.76) 

For a pair of invariant functions f and h the second term in the formula (3.19) 
vanishes because r* E g*® g. The first term is an invariant function because 
the left derivative ~ preserves the condition (3.75). So we conclude that  the 
Poisson bracket 

{f, h} = - < ~ f  ® ~ h ,  r > (3.77) 

is well-defined on invariant functions and hence it can be treated as a Poisson 
bracket on G~. This bracket is consistent with the group multiplication in G* 
so that  the group G* equipped with such Poisson bracket becomes a Poisson-Lie 
group. The same is true for the other three quotients G* R = G \ D ,  GR = G* \ D  
and GI~ = D / G * .  The purpose of this subsection is to study the stratification of 
the space G~ into symplectic leaves and describe the corresponding symplectic 
forms on them. 

It is instructive to consider the classical limit, when g* and h* are very close 
to the identity. Then formula (3.73) transforms into the coadjoint action of G 
on ~*: 

g* = I + + . . .  , (3.78) 

h* = I + ~ / l '  + . . .  , (3.79) 

l' = Ad*(g) l  . (3.80) 

We denote the transformations (3.73) by AD* to remind their relation to the 
coadjoint action: 

h*(g, g*) = AD*(g)g* (3.81) 

In order to describe symplectic leaves in G* let us consider the following pair 
of Poisson mappings: 

Do 
~/ ",~ (3.82) 
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This pair is a dual pair [14],[15]. 
Let us apply the general prescription of the previous subsection to the dual 

pair (3.83). In order to find a symplectic leaf in G~ one should pick up some 
element h*G E D/G,  consider its preimage in D and project it into G \ D. It is 
easy to see that we get an orbit of dressing transformations 

Oh* = {g* e G*, g* -'- AD(g-1)h*}.  (3.83) 

The definition (3.83) introduces at the same time the projection p from G to 
Oh* : 

p:  g ~ g* = AD(g-1)h  *. (3.84) 

So, the orbits of dressing transformations coincide with symplectic leaves in G*. 
Our next task is to evaluate the corresponding symplectic forms. Due to Lemma 
2 the pull back of 

symplectic form on the orbit to its preimage in D coincides with the restric- 
tion of the symplectic form (3.49) on Do to this preimage. As h* is set to be 
equal to constant, the first term in (3.49) disappears and we end up with the 
following formula for the symplectic form ~ on the orbit: 

p,~ = .1 
< 0g., #a > .  (3.85) 

To consider the classical limit we can introduce a deformation parameter into 
the formula (3.85): 

1 
p*#~ = ~ < 0g., #9 > (3.86) 

In this way one can recover the classical Kirillov form (2.28) as we did it for T*G 
in subsection 3.2. 

3 .5  E x a m p l e :  s i m p l e  g r o u p  

In this subsection we rewrite formulae for symplectic forms on D+ and orbits 
of dressing transformations for the case of G being a simple Lie group. We 
begin with form (3.85) on the orbit. In order to make the expression for this 
form more transparent we need more detailed information about the group G*. 
Let us introduce two Borel subgroups B+ and B_ in the group G. In the 
case of G = SL(n)  these are subgroups of upper-triangular and lower-triangular 
matrices correspondingly. For both B+ and B_ one can define a canonical 
projection to the Cartan subgroup in G. For SL(n)  the projection picks up a 
diagonal part of upper- or lower-triangular matrix. If we denote elements of 
B+ or B_ by big letters, then the corresponding small letters always denote the 
diagonal parts. The group G* is defined as follows [14]: 

G * = { ( L + , L - ) E B +  × B_,  l+l_ = I}.  

Multiplication in G* is component-wise: 

(3.87) 
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(L+, L_)(M+, M_) = (L+M+, L_M_). (3.88) 

There is a natural mapping a from G* to G which is given by Gauss decompo- 
sition formula: 

a : (L+, L_) ~ L = L+LZ 1. (3.89) 

The group structures of G and G* are different and the mapping a is not a 
group homomorphism. However, we shall see in Section 4 that it may be useful 
to replace the requirements of group homomorphism by some weaker conditions. 
The mapping (3.89) provides an identification of the spaces g and g*. Then the 
pairing <, > may be replaced by the invariant form Tr on g. 

It is remarkable that for the element L the dressing action simplifies and 
acquires the form of group conjugations: 

AD(g)L = gLg -1. (3.90) 

Let us choose the orbit of dressing transformations which contains a Caftan 
matrix C: 

L = AD(g-~)C = g- iCg = L+L -1. (3.91) 

Here we specify the definition (3.83) for the case of simple group G. In the 
notations (3.91) the symplectic form (3.85) may be represented as: 

] 
0(g,C) = ~Tr(SL+L+ 1 - 5L-L  -~) Ag-~Sg = 

1 1 = ~Tr{CSgg- A c - lSgg  -1 + L+~SL+ A L-ISL_}.  (3.92) 

The second line may be obtained from the first by straightforward but lengthy 
calculation. 

Now we have an efficient formula for symplectic forms on the orbits and the 
symplectic form on D+ is in order. As we learn from formula (3.49), the sym- 
plectic form on D+ consists of two terms. Each term resembles the symplectic 
form on the orbit of dressing transformations. Let us make this statement more 
precise. In the simple case one can rewrite the relation (3.72) as follows: 

L' = gL- l  g -1. (3.93) 

Here L' represents an analogue of right momentum in D+. We have inverted 
matrix L in order to get similar Poisson brackets for L and L'. Following the 
pattern of the dressing orbits, we introduce the diagonal matrix C which consists 
of common eigenvalues of L and L ' - I :  

L -~ u - l V u ~  

L' = v - I C - l v .  (3.94) 
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The group variable g may be represented as a ratio of u and v: 

g = v-- l l£ .  

In the notations (3.94,3.95) the form 0 looks as 

(3.95) 

O(u ,v ,C)  = @(u,C) +@(v,C -1) + T r ~ C C  -1 A (~uu -~ - ~vv-~). (3.96) 

The last term in (3.96) corresponds to the fact that the diagonal matrix C is 
dynamical in D+. Speaking about the dressing orbits we have no analogue of 
this term because there C is constant. 

In the next Section we shall be considering the symplectic form on the moduli 
space of flat connections on a Riemann surface with marked points. We shall 
find that the orbit symplectic structure z9 may be naturally assigned to a marked 
point and the form O to a handle. Formula (3.96) demonstrates that in some 
sense one handle is equivalent to two marked points. 

4 S y m p l e c t i c  s t r u c t u r e  o f  t h e  m o d u l i  s p a c e  

This section is devoted to symplectic geometry of the Chern-Simons theory. As 
we discussed in Introduction, this theory is defined by the canonical symplectic 
structure on the moduli space of fiat connections on a Riemann surface. Sur- 
prisingly, this symplectic structure may be expressed in terms of Poisson-Lie 
symplectic forms introduced in the previous Section. 

4 . 1  C h e r n  - S i m o n s  m o d e l  

The purpose of this subsection is to provide some physical motivations for study 
of the moduli space of flat connections starting from the Chern-Simons theory. 
We follow the approach of [6]. 

The Chern-Simons theory is a gauge theory in 3 dimensions (in principle the 
CS term exists in any odd dimension). It is defined by the action principle 

c /A) = -Tr fM(AdA +  _A3) (4.1) 

Here M is a 3-dimensional (3D) manifold, the gauge field A takes values in some 
simple Lie Mgebra g 

A = A~t~dx~. (4.2) 

The generators t a form a basis in G and satisfy the commutation relations 

It °, t b] = Zbt c. (4.3) 

We concentrate on the very special case of the CS theory. Suppose that the 
manifold M locally looks like a cylinder ~ x R (Cartesian product of a Riemann 
surface ~ and a segment of the real line). In this case we may interpret the 
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theory in terms of Hamiltonian mechanics. We choose the direction parallel to 
the real line R to be the time direction. Two space-like components of the gauge 
field A become dynamical variables and we often denote by A the two component 
gauge field on the Riemann surface ~. As usual, the time-component A0 is a 
Lagrangian multiplier. After the change of variables the action (4.1) acquires 
the form 

CS(A)  = Tr  / ( A O o A  - 2AoF)dt,  (4.4) 

where the first term is a short action f pdq and the second term introduces a 
first class constraint 

F = dA + A 2 = 0. (4.5) 

The first term in (4.4) determines the Poisson brackets of dynamical variables. In 
particular, the Poisson bracket of the constraints (4.5) may be easily calculated: 

{Fa(Zl), Fb(z2)} = fabFC(zl)5(2)(zl -- z2). (4.6) 

As one expects, the constraints (4.5) generate gauge transformations 

A a = g - l A g  + g - l @ .  (4.7) 

Thus, the phase space in the Hamiltonian C$ theory is a quotient of the space 
.~ of fiat connections (4.5) over the gauge group ZG (4.7). We see that the 
moduli space (we shall often refer to the moduli space of fiat connections as to 
the moduli space) appears to be a phase space of the CS theory on the cylinder. 
The action principle (4.4) provides canonical Poisson brackets on the moduli 
space. The efficient description of this Poisson bracket was given in [16]. 

We continue our brief survey of the CS theory by consideration of possible 
observables. The CS model enjoys two important symmetries: gauge symmetry 
and the symmetry with respect to diffeomorphisms. The reparametrization sym- 
metry appears due to the geometric nature of the action (4.1) which is written 
in terms of differential forms and automatically invariant with respect to diffeo- 
morphisms of the  manifold M. It is natural to require that the observables in 
the CS model respect the invariant properties of the theory. Some observables 
of this type may be constructed starting from the following data. Let us choose 
the closed contour F in M and a representation I of the algebra G. Apparently 
the following functional of the gauge field A 

WI(F)  = T r i P e x p ( j f  r A I) (4.8) 

is invariant with respect to both gauge and reparametrization symmetries. Usu- 
ally the contour F and also the expression (4.8) are called a Wilson line and a 
Wilson line observable. The connection A I is equal to 

A I = AaT~, (4.9) 

where matrices T~ represent the algebra G in the representation I. 
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In the Hamiltonian formulation we may choose two special classes of Wilson 
lines-- vertical and horizontal. 

We call a Wilson line horizontal if it lies on an equal time surface. The observ- 
able corresponding to a horizontal Wilson line is a functional of two-dimensional 
gauge field and after quantization it becomes a physical operator. It is important 
to stress that Wilson lines do not cover the whole set of observables in the CS 
model. 

The Wilson line is called vertical if the contour F is parallel to the time axis. 
In Hamiltonian picture we do not actually control the fact that vertical Wilson 
lines are closed. They come from the past through reality and disappear in the 
future. The vertical Wilson line is characterized by the representation I and 
the point z where it intersects the Riemann surface ~. The choice of the time 
axis produces a big difference in the role of horizontal and vertical Wilson lines 
in the theory. Vertical Wilson lines do not correspond to observables in the 
Hamiltonian formulation. Instead they change the Hamiltonian system (4.4) so 
that both short action and the constraint get modified. 

Using the formula (2.51), one may treat the CS correlator with n vertical 
Wilson lines inserted 

Zk(I1,.. ., In) = / DAe~CS(A)wI 1 ... Win (4.10) 

as an expression where the gauge field is still classical, whereas some modes 
corresponding to the matrices TI are already quantized. The original functional 
integral would be 

iS~O ~ Z = DADgl... Dgne . (4.11) 

The action S t°t is defined by the formula 

i=1  

Here the first term coincides with the standard Chern-Simons action, the second 
term consists of two parts. The first part collects auxiliary orbit actions for each 
Wilson line, the second part represents contributions of the Wilson lines into the 
CS partition function (4.10). 

We have reformulated the Hamiltonian Chern-Simons model with vertical 
Wilson lines as a theory of the 2D gauge field A interacting with a set of finite 
dimensional systems with coordinates Ti localized at the points zi. As in the 
case of the pure CS theory, the Hamiltonian (4.12) is equal to zero. The action 
of the modified system may be rewritten as 

n n 

St°t= T r ( k  f AOoA+ ~ DiOoviv:l)+ Tr f Ao(~"~ T i ' ( z - z i ) -  k F ) .  
i=1  i=1  

(4.13) 
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The first term in (4.13) is a short action of the Hamiltonian system. It is 
responsible for the Poisson brackets of dynamical variables. The second term 
gives the modified constraint 

n L F  
iI~(z) = ~ TiS(z - zi) - 2r = 0. (4.14) 

i = 1  

Let us remark that after quantization the formula (4.14) is still true if we shift 
the central charge k in the standard way k ~ k + h (h is the dual Coxeter 
number of the algebra ~). Actually, the shift of the parameter k is of the same 
nature as a shift of the highest weight in formula (2.50). 

The constraints (4.14) satisfy the same algebra (4.6) as in the pure CS theory. 
They generate gauge transformations for the gauge field A and conjugations for 
the variables Ti: 

A g = g- lAg  + g-ldg, T~ = g(zi)-lTig(zi). (4.15) 

The analogue of flatness condition (4.14) together with the modified gauge trans- 
formations (4.15) lead to the definition of the moduli space of flat connections 
on a Riemann surface with marked points (see the next subsection). 

So the moduli space of flat connections emerges naturally as a phase space 
in the Chern-Simons theory. The rest of the paper is devoted to the analysis of 
the symplectic structure of this space. 

4.2 Def in i t ion  of the  symplec t ic  s t ruc tu re  on the  modul i  
space 

Let ~ be a Riemann surface of genus g with n marked points. Consider a 
connection A on ~ taking values in a simple Lie algebra 6. The canonical 
symplectic structure [17] on the space A of all smooth connections may be read 
from the action (4.4) 

f~x = k T r  / E ~ A A ~ A .  (4.16) 

The form (4.16) is obviously nondegenerate and invariant with respect to the 
action of the gauge group GE: 

A g = g- lAg  + g-ldg. (4.17) 

We denote the exterior derivative on the Riemann surface by d, whereas the ex- 
terior derivative on the space of connections, moduli space or elsewhere is always 
df. The action (4.17) is actually Hamiltonian and the corresponding momentum 
mapping is given (up to a multiplier) by the curvature: 

~(A) = - k F ;  

F = dA + A 2. (4.18) 
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Let us start  with a case when there is no marked points. 

D e f i n i t i o n  2 The space of fiat connections 9g on a Riemann surface of genus 
g is defined as a zero level surface of the momentum mapping (4.18): 

F(z) = 0. (4.19) 

D e f i n i t i o n  3 The moduli space of fiat connections is a quotient of the space of 
fiat connections .~g over the gauge group action (4.17): 

.Mg = ,,gg/Gs. (4.20) 

The curvature being the momentum mapping for the gauge group, the moduli 
space may be obtained by Hamiltonian reduction from the space of smooth 
connections. General theory of Hamiltonian reduction [9],[18] ensures that  the 
moduli space carries canonical nondegenerate symplectic structure induced from 
the symplectic structure (4.16) on .4. 

Now we turn to more sofisticated case of the Riemann surface with marked 
points. 

We have a coadjoint orbit assigned to each marked point z~. As the gauge 
field A may develop a singularity in the vicinity of a marked point we have to 
choose a class of connections different from smooth connections on E. To this 
end we introduce a notion of decoration. 

D e f i n i t i o n  4 A decorated Riemann surface with n marked points is a Riemann 
surface and a set of coadjoint orbits O1, . . . ,  On assigned to the marked points 
Z l  ~ . . . , Z n .  

In order to explain this definition let us introduce the local coordinate ¢i in the 
small neighborhood of the marked point z~ so that 

~ d¢i = 27r. (4.21) 
i 

Here Si is a closed contour which surrounds the marked point. Apparently, the 
coordinate ¢i measures the angle in the neighborhood of zi. On the surface with 
marked points we admit connections which have singularities of the form 

A(z)z~z, = A i d ( ~ )  + A(z), (4.22) 

where Ai are constant coefficients and .4(z) is a smooth connection. We call the 
coefficients Ai singular parts of A. 

D e f i n i t i o n  5 The space of connections .4g,n on a decorated Riemann surface 
with marked points is defined by the requirement that the singular parts of the 
connection belong to the coadjoint orbits assigned to the corresponding marked 
points: 

A k ~ E 0~. (4.23) 
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It is remarkable that  the symplectic structure (4.16) may be used for the space 
.Ag,n as well. It is convenient to introduce one more symplectic space which is 
the direct product of .Ag,n and its collection of coadjoint orbits: 

AtOt = Ag,n x 01 x x 0,~. (4.24) 

It carries the symplectic structure 

~ '  = ~ + ~ ~, ,  (4.25) 
i 

The action of the gauge group may be defined on the space A TM " "a,,~ as follows: 

A g = g - l A g  + g- ldg  : 

= g = vig(zi). (4.26) T[ g(z~)-lT~g(z~), v~ 

As we see, the modified gauge transformations are combined from the standard 
gauge transformations (4.17) and orbit conjugations (2.44). The momentum 
mapping is given by the coefficient before A0 in the action (4.13): 

n 

~(z) = Z T~(z - z~) - ~ F ( z ) .  (4.27) 
i 

It is easy to see that  the definition of .Ag,n ensures that there is a lot of solutions 
of the zero level conditions. 

De f in i t i on  6 The space of fiat connections on a decorated Riemann surface 
~g,n is defined as a space of solutions of the following equation which replaces 
the zero curvature condition: 

, (z)  = o. (4.28) 

Let us choose a loop Si surrounding the marked point zi. One can define 
the monodromy matrix (or parallel transport) Mi along this way. It is easy to 
check that  if A and {Ti} satisfy (4.28), the / monodromy matrix Mi belongs to 
the conjugancy class of the exponent of Di 

1 27r • 
Mi = u:~ exp(--~-Di)ui. (4.29) 

D e f i n i t i o n  7 The moduli space of fiat connections on a Riemann surface of 
genus g with n marked points A/lg,~ is defined as a quotient of the space of fiat 
connection on a decorated Riemann surface over the gauge group action (4.26): 

J~4g,n = ,gg,n/G~.. (4.30) 

It is important that  the moduli space .Mlg,n is obtained by Hamiltonian reduction 
from the symplectic space A t°~ This procedure provides the nondegenerate v - g ~ n  • 

symplectic form on A4g,~ which is the main object of this paper. 
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4.3 Combinatoria l  description of  the  symplect ic  s tructure  
on the  modul i  space 

As it was explained in subsection 3.3, the symplectic structure on the reduced 
phase space obtained by Hamiltonian reduction from some symplectic space is 
easy to describe. More exactly, we get the reduced phase space as a projection of 
some constant momentum surface to the quotient of the global phase space over 
the group action. The pull-back of the reduced symplectic form to the constant 
momentum surface is equal to the restriction of the global symplectic form to 
the same subspace. 

The moduli space of flat connections plays the role of the reduced phase space 
the global space being the space of smooth connections with the symplectic 
form (4.16). So our main concern is to restrict the form (4.16) to the space 
of flat connections efficiently. To this end it is convenient to introduce some 
intermediate finite dimensional space between the moduli space and the space 
of flat connections which admits an efficient parametrization. 

Let us choose a point P on the Riemann surface which does not coincide 
with marked points zi. One can define a subgroup of the gauge group G~ (P) 
by the requirement: 

Gz(P)  = {g e G~, g(P) = I).  (4.31) 

The quotient space 

M g , . ( p )  = (4.32) 

is already finite dimensional and admits efficient parametrization. 
Let us draw a bunch of circles on the Riemann surface so that there is only 

one intersection point P. In this bunch we have two circles for each handle 
(corresponding to a- and b- cycles) and one circle for each marked point. We 
shall denote the circles corresponding to the i's handle by ai and bi (i -= 1 , . . . ,  g) 
and we shall use symbols mi (i = 1 , . . . ,  n) for the circles surrounding marked 
points. We assume that the circles on Z are chosen in such a way that the only 
defining relation in 7rl(~g,n) looks as 

ml  . . .  mn(a lb{ la - l lb l ) . . .  (agb~la~lbg) = id. (4.33) 

To each circle we assign the corresponding monodromy matrix defined by the 
fiat connection A. Let us denote these matrices by Ai,Bi  and Mi for a-, b- and 
m-circles. The set of monodromy matrices provides coordinates on J~4a,n and a 
representation of the fundamental group 71"l(~g,n ). It implies the relation 

i l . . .  M,~(A1B~IA-~IB1). . .  (AgSgIA-~aBg) = I (4.34) 

imposed on the values of Ai,Bi  and )Vii. Actually, monodromies Mi are not 
arbitrary. They belong to conjugancy classes Ci(G) defined by 

Mi = u(1Ciu.  (4.35) 
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where 

2~r 
Ci : exp (-~-D~). (4.36) 

So the space A4g,n(P) is a subspace in 

n 

f = a29 × H c (a) (4.37) 
i=l  

defined by the relation (4.34). 
The original moduli space may be represented as a quotient of AJg,n over 

the residual gauge group which is isomorphic to the group G: 

Ma.,~ = Mg,n(P)/G. 

It is convenient to define some additional coordinates Ki on Ug,n: 

(4.38) 

Ko = I ,  

Ki : M1 . . .Mi ,  l < i < n 

K n + 2 i - 1  : Kn+2i-2Ai, 

Kn+2i : Kn+2i-lBi-lAT~ lBi. 

(4.39) 

It follows from the equation (4.34) that  

Kn+2g = K0 = I. (4.40) 

Unfortunately, coordinates A, B, M and K are not sufficient for analysis of 
the symplectic form on the moduli space and we have to introduce a new space 

= G n+2g x H n+g. (4.41) 

Here H is a Caftan subgroup of G. ~ may be parametrized by matrices ui, i = 
1 , . . . ,  n + 2g from the group G and by Caftan elements C/, i = 1 , . . . ,  n + g. We 
define a projection from ~ to ~ by the formulae: 

i i = u i l c i u i ~  
-1 u Ai = un+2i_lCn+i nT2i-1, (4.42) 

Bi = UnT2i~n~2i_ 1. 

Let us call JQg,,~(P) the preimage of .h4g,n(P) in 5 ~. 
After this lengthy preparations we are ready to formulate the main result of 

this subsection. 
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T h e o r e m  3 The pull-back of the canonical symplectic form on Mg,,~ to 2Qg,n(P) 
coincides with the restriction of the following two-form defined on ~ : 

n-{-2g n+2g 

fly = k T r [  E 5uiuT' lC~ A 5u~u;1C: 1 - E 5Kig:(-1A 5Ki_IK:A + 
i = 1  i = 1  

g 
--1 + ~ eC,~+,C~_, ̂  (Su,~+2,u~+2i- eu,~+2~_luX~.2,_,)lJ(4.43 ) 

i = 1  

The rest of the subsection is devoted to proof of Theorem 3. 
Proof. 
Let us cut the surface along every circle ai, bi, mi. We get n + 1 disconnected 

parts. The first n are similar. Each of them is a neighborhood of the marked 
point with the cycle mi as a boundary. We denote these disjoint parts by Pi. 
The last one is a polygon. There is no marked points inside and the boundary is 
composed of a-,b-, and m-cycles as it is prescribed by formula (4.33). We denote 
the polygon by P0. 

Being restricted to P0 a flat connection A becomes trivial: 

A Ipo = goldgo. (4.44) 

For any other part Pi we get a bit more complicated expression: 

1 1 A IP~ ~- -~g'i Digid¢i + gi-ldgi. (4.45) 

We remind that  Di is a diagonal matrix which characterizes the orbit attached 
to the marked point zi. There is a set of consistency conditions which tells 
that  the connection described by formulae (4.44,4.45) is actually smooth on the 
Riemann surface everywhere except the marked points. It means that when one 
approaches the cuts from two sides, one always gets the same value of A. To 
be explicit, let us consider the m-cycle which surrounds the marked point zi. 
Comparison of equations (4.44,4.45) gives: 

1 1 
goldgo I~n,= (-~g~- D~g~d¢~ + g~ldg~) Ira, • (4.46) 

This equation may be easily solved: 

go Ira,= NMgi Ira,, (4.47) 

where N is an arbitrary constant matrix and M is equal to 

M(¢i) = exp (kD~¢i). (4.48) 

Now we turn to consistency conditions which arise when one considers a- or 
b-cycles. In this case both sides of the cut belong to the polygon P0. Let us 
denote the restrictions of go on the cut sides by g' and g". So we have: 
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g ' - l d g  ' = f f " - i d g " .  (4.49) 

We conclude that the matrices g' and g" may differ only by a constant left 
multiplier: 

g" = Ng'. (4.50) 

By now we considered connection A in the region of the surface where it is 
flat. However, it is not true at the marked points. We calculate the curvat.ure 
in the region Pi and get a 5-function singularity: 

F(z) Ip,= 2rg~lD,g ,5 (z -  z,). (4.51) 
k 

Equations (4.51,4.27,4.28) imply that the value gi(zi) coincides with the ma- 
trix vi: 

= ( 4 . 5 2 )  

Let us remind that vi diagonalizes the matrix T~ attached to the marked point 
zi by definition of the decorated Riemann surface. 

Now we are prepared to consider the symplectic structure on the space of 
flat connections. First, let us rewrite the definition (4.25) in the following way: 

n 

~tot = Wo + Z w~, (4.53) 
i=1 

where the summands correspond to different parts of the Riemann surface: 

02i 

The next step must be to substitute (4.44,4.45) into formulae (4.54). The fol- 
lowing lemma provides an appropriate technical tool for this operation. 

L e m m a  3 Let A be a g-valued connection defined in the region P of the Rie- 
mann surface E. Suppose that 

A = g - lBg  + g-ldg. (4.55) 

Then the canonical symplectic form 

Tr IF ~A A 5A (4.56) 02p 

may be rewritten as 
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? 

Tr  I { S B  A S B  + 25[FBSgg-1]} + Tr  I {Sgg- ld (Sgg-1) -5[BSgg-1]}  ' ~2 p 
Jp Jo P 

(4.57) 
where FB is a curvature o/ the connection B 

FB = d B  - B 2. (4.58) 

One can prove Lemma 3 by straightforward calculation. 
Let us apply Lemma 3 to the polygon P0. In this case B = 0 and the answer 

reduces to 

Wo = k---Tr f 5gogold(Sgogol). (4.59) 
4~ JaPo 

The boundary of the polygon OPo consists of n + 4g cycles (4.33). So actually 
we have n + 4g contour integrals in the r.h.s, of (4.59). 

Now we use formula (4.57) to rewrite symplectic structures wi: 

fo  27r 1 wi = Tr  {Sgig~ld(Sgig~ -1) - -ffS[DiSgig-~ ]} - 
PI 

- T r  /PI ~{ DiSgig~l }5(z - zi) + TrDi(Sviv~l  ) 2. (4.60) 

The last term in (4.60) represents Kirillov form attached to the marked point 
zi. Taking into account relation (4.52) we discover that this term together with 
the third term in (4.60) cancel each other. 

At this point it is convenient to denote the values of go at the corners of 
the polygon. We enumerate the corners by the index i = 0 , . . . , n  + 4g - 1 so 
that  the end-points of the cycle m~ are labeled by i - 1 and i. One can easily 
read from formula (4.33) the enumeration of the ends of a- and b-cycles (see 
Fig. 1). For example, the end-points of ai are labeled by n + 4(i - 1) and 
n + 4(i - 1) + 1, whereas the end-points of a~ -1 entering in the same word are 
labeled by n + 4(i - 1) + 2 and n + 4(i - 1) + 3. We denote the value of go at 
the i 's corner by hi. 

Monodromies Ai,Bi  and Mi may be expressed in terms of hi as 

Mi = hT_llhi, (4.61) 

Ai = hn~4( i_ l )hn+4( i -1)+l  -~ hn~4(i_l)+3h4(i_l)+2,  (4.62) 

-1 (4.63) Bi = h~+4(i_l)+lhn+4(i-1)+2 = hn+41h4(i-1)+3. 

Let us remark that without loss of generality we can choose go in such a way 
that  its value ho is equal to unit element in G. After that some of the corner 
values hi may be identified with Ki; 
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K ~  n~ hn+4q 

Ko = Kn+2g n+4g PO 

B~~h~+4g_l 

B j-1 
hn+4(j-l~)) gi. jT2(j-1) 

hn+4(J- t )+ :hn+4(j_ l ) + ]/!~_ lKn+ 2(j_ l )+ l 

//~/A--i 
+1 h~+4(j-1)~+ hn+4~ 
7+1 K~+e~ Bi 

Figure 1 

hi for l < i < n  
Ki = h2i-~-1 for ( i - n )  odd (4.64) 

h2i-n for ( i -  n) even 

Our strategy is to adjust notations to the description of Poisson-Lie sym- 
plectic forms (see subsection 3.2). Using formula (4.47) one can diagonalize 
Mi 

Mi = u;1Ciui .  

Here u~ is the value of the variable gi at the point P. 
Let us rewrite formula (4.59) in the following way: 

(4.65) 

n g 

i = 1  i = 1  

Here ~oi is a contribution corresponding to the marked point: 

~a i = kTr  ~ ~gogold(~gogol), 

and ¢i is a contribution of the handle: 

(4.66) 

(4.67) 
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/ -  f 
~ : --~ Tr /aib:la;lb i ~gogo 1 d(Sgogo 1). (4.68) 

First, we are going to evaluate the total contribution of the given M-cycle 
which is equal to a sum of two terms: 

~i = wi + ~i. (4.69) 

Actually, each summand in (4.69) includes an integral over the m-cycle. How- 
ever, this sum of integrals is an integral of exact form and it depends only on 
some finite number of boundary values. This situation is typical and will repeat 
when we consider a contribution of a handle. 

L e m m a  4 The form wi depends only on finite number of parameters and may 
be written as 

k 1 
wi = --~Tr[Ci6uiu7 A C~-l Suiu; ' - ~ K i K ;  1 A ~Ki-1K~11]. (4.70) 

To prove Lemma ~ one should substitute formula (4.47) into expression for ~i, 
integrate by parts and compare the result with the expression for wi. The in- 
tegrals in ~i and wi cancel each other and after rearrangements the boundary 
terms reproduce formula (4.70). 

Now we turn to the contribution of a handle ¢i into the symplectic form on 
the moduli space. One can see that each a-cycle and each b-cycle enter twice 
into expression (4.66). These two contributions correspond to two sides of the 
cut. As usual, the result simplifies if we combine the contributions of two cut 
sides together. 

L e m m a  5 Let g', g" be two mappings from the segment [Xl, X2] into the group 
G with boundary values g1,2,gl,2. Suppose that these mappings differ by the 
x-independent left multiplier 

tr s 
g -- N g .  (4.71) 

Then the following equality holds: 

~'2  IX2 [x~,x2] : Tr 5g"g"-ld(Sg"g"-l)  - Tr 5g'g'-id(Sg'g '-1) = 
1 1 

I I I 1 I I I  I I  

= Tr(gl-l~gl A g:-15g I - g2 5g2 A g2-15g2). (4.72) 

Proof is straightforward. 
Let us parametrize Ai and Bi as in (4.43): 

Ai : un~_2i_lCn+iun+2i-1, uu+2i : Biun+2i-1. (4.73) 
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One of the motivations for such notations is the following identity: 

B~IA.~IBi = u -1 C-1 n+2i n+iUn+2i" 

In principle, one can introduce the following uniformal variables 

(4.74) 

Mn+2i-i = Ai = un~2i_iCn+iun+2i-i, 

Mn+2i Bi-i A'~I Bi -I -I ~ un+2iCn+iUn+2i. 

so that the defining relation (4.34) looks as 

(4.75) 

M1 . . .  M,~Mn+I . . .  Mn+2g = I. (4.76) 

In these variables we treat handles and marked points in the same way. Roughly 
speaking, one handle produces two marked points which have the inverse values 
of C: C1 = Cn+i, C2 = C ~  i. It resembles the relation between the double 
D+ and two orbits of dressing transformations (see subsection 3.4). Using the 
definition of M (4.75) we can clarify the definition of K~: 

K~ = M i . . .  M~. (4.77) 

Now we turn to the contribution ¢i of a handle into symplectic form (4.66). 

L e m m a  6 The handle contribution into symplectic form depends only on the 
values of go at the end-points of the corresponding a- and b-cycles and may be 
written as 

k --1 
#)i = -4-~Tr[Cn+i#Un+2i-lUn+2i-1 A C~-~iSun+2i-lUn-~2i_ 1 - 

-- ~Kn+2i_lKn~2i_ 1 A ~Kn+2(i_l)Kn+2(i_l) + 

~--I 5U ~--i U--1 Jr ~n+i n+2it~n+2i A Cn+i~Un+2i n+2i - -  

- 5K.+: Kg :i n 5K.+2i-lKg   _i + 

+ 5Cn+iC~ i A (~n+2i- iUn~2i_i  - ~Un+2iUn~2i)]. (4.78) 

If we take into account Lemma 5, the proof of Lemma 6 becomes straightforward 
but long calculation. Let us remark that the terrible formula (4.78) contains 
two copies of the marked point contribution (4.70) with parameters C,~+i and 
C~¢ i. The last term includes 5Cn+iC~ i and coincides with the corresponding 
additional term in formula (3.96) for the symplectic form on the double D+. 

Summarizing Lemma ~ and Lemma 6 we get the proof of Theorem 3 com- 
pleted. 

4 . 4  E q u i v a l e n c e  t o  P o i s s o n - L i e  s y m p l e c t i c  s t r u c t u r e  

Formula (4.43) contains cross-terms with different indices i. In this subsection 
we represent the canonical symplectic structure as a direct sum of several terms. 
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Using the results of Section 3, each term may be identified with either Kirillov 
form for the Poisson-Lie group G* or symplectic form on the Heisenberg double 
D+ of the Poisson-Lie group G.. To achieve this result we have to make a change 
of variables. The new set of variables is designed to "decouple" contributions of 
different handles and marked points. 

The following remark is important for understanding of the construction of 
decoupled variables. Monodromy matrices Mi, A~ and B~ are elements of the 
group G. In accordance with this fact we use G-multiplication to define the 
variables Ki (4.77) and to constraint monodromies (4.34). On the other hand, 
natural variables for description of orbits of dressing transformations or double 
D+ must belong to G*. In subsection 3.5 we defined the mapping a : G* ~ G. 
Unfortunately, a is not a group homomorphism. So, we would face difficulties 
applying a to identities (4.77,4.34). This is a motivation to introduce a notion 
of a weak group homomorphism. 

Def in i t i on  8 Let G and G' be two groups. A set of mappings 

a (n) : G ~ --* G 'n (4.79) 

is called a weak homomorphism if the following diagram is commutative for any 
i: 

G n a (~) e jn  
! 

mi ~ m i 

Gn_ 1 a ( n - l )  GI n_l  ) 

(4.80) 

i 

Here mi  and m i are multiplication mappings in G and G' correspondingly which 
map the product o / n  copies of the group into the product o / n  - 1 copies: 

m i : ( g l , . . . , g i , g i + l , . . . , g n )  --* (g l , . . . , g ig i+ l , . . . , gn )  : 
i i ~ ! i l i i i 

m~: (g~,..., g~,g~+~,... ,g,~) -~ ( g l , . . .  , g i g i + 1 , . . .  ,g~)  : 

(4.81) 

The mapping a (3.89) may be considered as a first mapping of a weak homo- 
morphism from G* to G. To define the other mappings a (n) we introduce the 
products 

K±(i)  = L±(1) . . .  L±(i).  (4.82) 

The action of a ('~) looks as follows. A tuple (L+(i) ,L_(i))  E G*,i = 1 , . . . n  is 
mapped into the tuple Mi E G, i = 1 , . . .  n: 

Mi = g _ ( i  - 1)LiK_(i  - 1) -1. (4.83) 

Here L~ is the image of the pair (L+(i) ,L_(i))  under the action of a: 
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Li = L+( i )L- ( i )  -1. (4.84) 

One can easily check that  the set of mappings (4.83) satisfies the requirements 
of a weak homomorphism. 

The next step is to implement the definition (4.83) to the space ~ .  Let us 
introduce a set of variables on ~ which'consists of vi, i  = 1 , . . .  ,n  + 2g taking 
values in G and Ci, i = 1 , . . . ,  n + g taking values in H. In addition we introduce 
the elements of G*: 

1 I 
L i = v [  Civi f o r l < i < n ;  

Ln+2i-1 = vn+2i-lC'n+ivn+2i-1 for1 < i < g; (4.85) 

nn+2i ---- Vn+2iCr~+lvn+2i f o r l  < i < g. 

together with their Gauss components (3.89). So, we have natural variables to 
describe n copies of the orbit of dressing transformations in G* and g copies of 
the Heisenberg double. The canonical symplectic form on this object is equal to 
the sum of symplectic forms for each copy of the orbit (3.92) and each copy of 
double (3.96): 

n g 

~'~pL -.~ ~ ~(?.ti, Ci)--~- ~ O(un+2i_l,un+2i, C'n+i). (4.86) 
i = 1  i = 1  

Let us compare the forms (4.43) and  (4.86). Motivated by the definition (4.83) 
we introduce the mapping ~ : fi" ~ ~c defined by the relations: 

ui = vi K - 1  (i -- 1), Ci = C~. (4.87) 

Here K_ (i) are defined as in (4.82). It is easy to see that the mapping cr induces 
the mapping c~(n+2g) from the set of pairs (L+(i),L+(i)) into the set of mon- 
odromies Mi. It is guaranteed by the definition of weak homomorphism that 
G-product in the relation (4.34) is now replaced by G*-product: 

K+(n  + 2g) = L+ (1) . . . L+ (n + 2g) -- I. (4.88) 

Equation (4.88) defines the preimage of 2Qg,,~ in Y with respect to the mapping 
~. It is worth mentioning that  the matrices Ki from the previous subsection 
may be represented as 

Ki = K+( i )K- ( i )  -1. (4.89) 

This also a consequence of the definition of weak homomorphism. Indeed, Ki has 
been defined as a product in G of the first i monodromies. Formula (4.82) defines 
a product in G* of i first elements (L+(i), L+(i)). Using the basic property of 
weak homomorphism (i - 1) times we check (4.89). 

The mapping a provides a possibility to compare two-forms f~= and ftpL. 
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L e m m a  7 The two-forms f~y is proportional to the pull-back of the form ~PL 
along the mapping a: 

1 _  

f~F = ,x---_a*(f~PL ). (4.90) 
~Tf 

Lemma 7 may be proved by straightforward calculation. Theorem 3 and 
Lemma 7 imply the following theorem which is the main result of this paper. 

T h e o r e m  4 Being restricted to the subset (4.88), the direct sum of n copies of 
Kirillov symplectic form on the orbit of dressing transformations in G* and g 
copies of the canonical form on the Heisenberg double of the group G coincides 
up to a scalar multiplier with the pull-back of the canonical symplectic form on 
the moduli space of fiat connections on the Riemann surface of genus g with n 
marked points. 

5 Conc lu s i ons  

We have started in Section 4 from the correlator of the Chern-Simons theory on 
the cylinder with inserted vertical Wilson lines. This system may be represented 
as a 3D gauge field interacting to a finite number degrees of freedom living on 
the Wilson lines. As there is no Hamiltonian, the system is completely defined 
by the symplectic form on the phase space. We proved that this symplectic form 
may be decomposed into the direct sum of Poisson-Lie symplectic structures 
subject to constraint (4.34). So, the functional integral for the correlator (4.10) 
may be rewritten as: 

f n+2g n+9 

II II 
i = 1  i = n + l  

~+h 
×e '" f 5-~{EL~ o(u,,c,)+E~=a O(u,,+,,_~,~,~+2,,c,,+,)}6(M1.. "B,). (5.91) 

Here we took into account the standard shift k ~ k + h in the Chern-Simons 
action and used the symbol di -1 as in Wess-Zumino action.. If we compare 
expression (5.91) with original formula (4.10), we find that the gauge field dis- 
appeared and the Wilson line insertions got modified. One can say that the 
Chern-Simons theory in the bulk quantizes the group variables living on the 
Wilson lines. In addition to the modified Wilson lines one finds in the partition 
function (5.91) the finite number of degrees of freedom which carry topological 
information about genus of the Riemann surface. 

If we turn to operator approach, each Wilson line multiplier in (5.91) presents 
a deformed analogue of the orbit quantum mechanics considered in subsection 
2.2. It is natural to expect that quantization leads to the Hilbert space which 
coincides with the space of certain irreducible representation of the quantum 
group with the highest weight w given by the formula (2.50). Each multiplier 
corresponding to a handle gives a regular representation ~ of the same quantum 
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group. The parts of the system corresponding to the different summands in 
the action (5.91) are related only by the constraint (4.34). It prescribes that 
the Hilbert space of the whole system is equal to the space of invariants in the 
tensor product. 

= Invq(I1 ® . . .  In ® ~®"), (5.92) 

in agreement with the known results. 
More detailed information about operator formalism and the corresponding 

representation theory may be found in [19], [20]. It would be interesting to 
work out the functional integral (5.91) by direct calculation and generalize this 
procedure for 3D topologies different from the cylinder. 
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