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Introduction 

The goal of this paper is to formulate and to begin an exploration of 
the enumerative geometry of the set of all curves of arbitrary genus g. 
By this we mean setting up a Chow ring for the moduli space Mg  of 
curves of genus g and its compactification .M 9, defining what seem to be 
the most important classes in this ring and calculating the class of some 
geometrically important loci in Rg in terms of these classes. We take as a 
model for this the enumerative geometry of the Grassmannians. Here the 
basic classes are the Chern classes of the tautological or universal bundle 
that lives over the Grassmannian, and the most basic cycles are the loci of 
linear spaces satisfying various Schubert conditions: the so-called Schubert 
cycles. However, since Harris and I have shown that for g large, Mg is not 
unirational [II-M] it is not possible to expect that .M g  has a decomposition 
into elementary cells or that the Chow ring of .M9  is as simple as that of the 
Grassmannian. But in the other direction, J. Harer [Ha] and E. Miller (Mil 
have strong results indicating that at least the low dimensional homology 
groups of Mg  behave nicely. Moreover, it appers that many geometrically 
natural cycles are all expressible in terms of a small number of basic classes. 

More specifically, the paper is divided into 3 parts. The goal of the first 
part is to define an intersection product in the Chow group of -Mg. The 
problorn is that due to curves with automorphisms, M g  is singular, but in a 
mild way. In fact it is a "Q-variety", locally the quotient of a smooth variety 
by a finite group. If it were globally the quotient of a smooth variety by a 
finite group, it would be easy to define a product in A • (.M ) 0  Q. Instead 
we have used the fact that .Mg  is globally the quotient of a Cohen-Macaulay 
variety by a finite group, plus many of the ideas of Fulton and MacPherson, 
and especially a strong use of both the Grothendieck and Baum-Fulton-
MacPherson forms of the Riemann-Hoch theorem to achieve this goal. To 
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handle an arbitrary Q-variety, Gillet has proposed using higher K-theory 
(//m(Km) = An) and this may well be the right technique. 

The goal of the second part is to introduce a sequence of "tautological" 
classes xi E Ai(.M y)0Q, derive some relations between them, and calculate 
the fundamental class of certain subvarieties, such as the hyperelliptic locus, 
in terms of them. Again the C rothendieck Riemann-Roch theorem is one 
of the main tools. Some of these results have been found independently 
by E. Miller [Mi], and it seems reasonable to guess, in view of the results 
of Harer and Miller (op. cit.), that in low coditnensions 111(JM,)® Q is a 
polynomial ring in the 

Finally, to make the whole theory concrete, we work out 111.1vt2) com-
pletely in Part III. An interesting corollary is the proof, as a consequence 
of general results only, that M 2  is alline. It seems very worthwhile to work 
out A'()%4 g) or IF(M g) for other small values of g, in order to get some 
feeling for the properties of these rings and their relation to the geometry 
of Mg . The techniques of Atiyah-Bott [A-B] may be very useful in doing 
this. 

Part I: Defining a Chow Ring of the Moduli Space 

§1. Fulton's Operational Chow Ring 

If X is any quasi-projective variety, Fulton a.nd Fulton-MacPherson have 
defined in two papers ([F1], p. 157, [F-M], p. 92) two procedures to attach to 
X a kind of Chow cohomology theory: a ring-valued contravariant functor. 
We combine here the 2 definitions taking the simplest parts of them in a way 
that is adequate for our applications. The theory also becomes substantially 
simpler if we take the coefficients for our cycles to be Q, and we assume 
that char k = 0. This is the case we are interested in, so we will restrict 
ourselves to this case henceforth. We call the resulting ring opk(X). To 
form this ring, take: 

generators : elts(f , a), 

f: X --4Y a morphism 

Y smooth, quasi-projective 

a a cycle onY 
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relations : (f , a) — 0 if, for all g: Z --->• X, we have: 

(f o g)* a rationally equivalent to 0 on Z 

via the induced map 
(I og)• 

Ak(Y) 	An—k(Z) 
(k = codim of a, n = dim of Z) 

Equivalently, we may define 

°pit (X) = Image 	lim A* (Y) 	ll End (A.(Z))} 

( x 	y) 	(z 	x) 	
111  

where the map is given by cap product 

Ilk  (Y) X iti(Z) 

(cf. [1■ 1], §2). This makes it clear that op A' is a ring and a contravarient 
functor and that opA(X) acts on A.(X) by cap product. If X is smooth, 
then opA'(X) = A'(X). 

Moreover, as in Fulton [Fl], §3.2, for all. coherent sheaves 1 with finite 
projective resolutions, we can define the Chern classes ck(7) E opAk(X), 
(by resolution of 1, twisting and pull-back of Schubert cycles from maps 
of X to Grassmannians). 

Using a resolution of X, we can give a very simple description of the 
relations in opk(X): 

Proposition 1.1. 	If 7r: 	X is a resolution of X, then 

(f, a) — 0 <= (f o 7r)*(a) = 0 in Ak(X), 

i.e., 
opA.(X) C Mk.  ). 

Proof. We must show that if 

g: Z X 

is any test morphism, then l(f o7r)*a rationally equivalent to 0 on X implies 
r(f o g)* a rationally equivalent to 0 on Z for some 1'. But by taking a 
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suitable subvariety of Z Xx X we get a diagram 

2• 
P 
z !1+ x L r 

where p is proper, surjective, generically finite of degree /11 . Therefore 

I" o gr cx 	p,,((f o go p)*a)  
= ps (-g* ((f o 7r)*a)) 

hence 
l.l"(f o 	= p,,("gr* (l(f o it a)) — 0. 

This uses the formula: 

h 
Y Y smooth, a a cycle on Y, 

For all p  i 
(*)

II  

Z Y 

p.h (a) ^ dh*(a). 

p proper, surjective, generically finite of degree d 

(See [Fib §2.2, part 2 of lemma). 	 Q.E.D. 

In fact, we can say more: 

Proposition 1.2. In the situation of Prop. 1.1, the image of opAk(X) 
in Ak(X) is contained in the subgroup of Ak (X) generated by irreducible 
subvarieties W of X such that W = 7r-1(7r(W)). 

Proof. Let (f, a) be a generator of opAk(X), where f: 	Y is a 
morphism and Y is smooth, quasi-projective. Let p = f o 7r, and 

Yk = fy E Y I dim p-1(y) > k}. 

Then use the moving lemma on Y to represent a as a cycle E 
whose components Wi meet properly all the Yk. Then each component 
Wit of p'(Wi) meets the open set of X where it is an isomorphism and 
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p: 	p(k) is equidimensional. Therefore, p* a is represented by a com- 
bination of the Wij  with suitable multiplicities and each Wij  satisfies 

Wig = 71* -1(7r(WiA- 
	 Q.E.D. 

There is also another natural way to give generators for opit(X): 

Proposition 1.3. 	Using rational coefficients in K(X) too, the homo- 
morphism 

ch : K(X)--+ opAf(X) 

is surjective, hence opA.*(X) can be defined to be 

Image [K(X) — A.(k 

ch(7r* E) 

(ir: X —+X a resolution of X). 

Proof. It is well known that for any smooth quasi-projective Z, 
ch: gr K(Z)—,  A.(Z) is a graded isomorphism, hence taking the total Chern 
characters, ch: K(Z) --+ A*(Z) is also an isomorphism!. 	Therefore 
ch: K(X)--+ opil:(X) is surjective. 

opil:(X) has a much subtler covariance for certain morphisms f, whose 
existence is tied up with the version of the Grothendieck-Riemann-Roth 
theorems for owl'. The result is this: 

Theorem 1.4 (Fulton). Let f: X 	Y be a projective local-complete- 
intersection morphism. Define Tcli  E opA'(X) in the usual way. Then 
there is a homomorphism 

f,„: opA*(X)--4 °pit' (Y) 

such that 

!This sounds a bid odd, but it is perhaps clarified by the observation that for any rank 
r and dimension n, there are universal polynomials Pk  such that for all vector bundles 
e of rank r on n-dimensional varieties, 

ck(e)= Pk(ch e ,ch A2 e,..., ch Ar e) 
where ch 6 is the total Chern character, and these elements lie in any cohomology ring 
with the usual Chern formalism and rational coefficients. 
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1) for all cartesian diagrams 

h 

---P■ X 

f'1 	if 
Y' y 

9 

and all a E A.(371), 13 E opil.(X) 

.f03  n a = Is(13  n [fly'(a)) in A.(r) 

([fly, defined as in Fulton-MacPherson 	p. 95). 

2) for all locally free sheaves e on X, 

f * (ch E.T d f ). 

This is proven in Fulton [F2], Ch.18: here opil.  is a possibly larger Chow 

Ring  in which (1) is the definition of f * . In this ring  (2) is proven, and (2) 

shows that f*I3 actually lies in the subring  opil.  considered here. 

§2. Q-Varieties and Mg  

The moduli space Mg of stable curves is an example of a variety which 

is locally in the etale topology a quotient of a smooth variety by a finite 

group. The approach we take to defining  a Chow ring  for Ng is best studied 
in this more general context. Because these varieties are quite close to the 
objects introduced by Matsusaka [Ma], we shall call them quasi-projective 

Q-varieties. We define a quasi-projective Q-variety to be: 

1) a quasi-projective variety X, 

2) a finite atlas of charts: 



D Xa 

Pi 

	

kolc, = )(c, 

kc, open in X stabilized by 
II~ C G, 

Ha = normal subgroup of /Pc, 
with Go, 224 H'„/I-1,,. 
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where pa is etale, Go is a finite group acting, faithfully on a quasi-projective 
smooth X„ and 

X =U(Im pa), 

3) The charts should be compatible in the sense that for all a, /3, let 

X co = normalization of Xa X x 

Then the projections 
X a 13 

Xa 	 Xp 

should be etale. 

Here, of course, a new chart can be added if it satisfies the compatibility 
conditions (3) with the old ones. For any such Q-variety, we can normalize 
X in a Galois extension of its function field k(X) containing copies of 
the field extensions k(X,) for all a. This leads to a covering p: 5C—* X 
with a group G acting faithfully on X and X = X/G. The fact that 
k(X) 3 k(X,,) leads to a factorization of p locally: 

P. 

Q-varieties come in various different grades. The best ones are those such 
that for some atlas, X can be chosen to be itself smooth. Not so nice, 
but still amendable to the techniques we shall use are those where X can 
be chosen to be Cohen-Macaulay. We call these Q-varieties with a smooth 
global cover and with a Cohen-Macaulay global cover respectively. 

Another important concept is that of a Q-sheaf on a Q-variety X. By 
this, we do not mean a coherent sheaf on X, but rather a family of coherent 
sheaves 7„ on X,,„ plus isomorphisms 

7a Ox„ OX‘,0 = .7-P Ox, OX.0 

compatible on the triple overlaps. Note that such a coherent sheaf pulls 
back by tensor product to a family of coherent sheaves on 5C„, which 
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glue together to one coherent sheaf I" on X on which G acts. Therefore, 

equivalently we can define a coherent sheaf on the Q-variety X to be a 

coherent G-sheaf I on X such that for all a, Ilk.  with its Hicc -action 

is the pull-back of a coherent sheaf on X. The importance of X being 

Cohen-Macaulay is illustrated by the simple fact: 

Proposition 2.1. 	If X is Cohen-Macaulay, then for any coherent 

sheaf .T on the Q-variety X, I has a finite projective resolution. 

Proof. In fact, if X is Cohen-Macaulay and X,„ is smooth, 5C",, 	X,, is 

flat. But 7„ has a finite projective resolution, so this resolution pulls back 

to such a resolution for 	 Q.E.D. Q.E.D. 

Consider the case of the moduli space 9 . Choose an integer n > 3 

prime to the characteristic. Fix a free IL/n71-module V of rank 2g with an 

alternating non-degenerate form 

e: V X V --41in• 

Fix, moreover, a flag of isotropic free submodules: 

(0) C Vi  C V2 C • • • C Vg  = V C • • • C 0-2  C V 1  C V 

where rk(Vi) = i. Then for all stable curves C of genus g, let h be the 

sum of the genera of the components of its normalization. Then there is 
an isomorphism 

,Z Inn = V gth  

such that the form 

Ht  X HI  u H 2 f'at class 
tin 

corresponds to e. We may consider the auxiliary moduli space 

(Tv-i9n,h))1  
= set of pairs (C, 0), C stable curve, 

± 	injective 
: Vg h 	• .111 (C 1,ZInZ) a sympl. map 
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which can be constructed by standard arguments. Inside this space, define 
an open subset by: 

Flg 	=-- those pairs (C,0)such that every automorphism 

a: 	C fixes the submodule Im 4  C I/1(C, 7L/n7L) 

and, if a 	lc, then a acts non-trivially on Im 0. 

( 
Since the pairs (C, 0) in this subset have no automorphisms, Mg

,h) 
 is 

smooth and represents the universal deformation space of any curve oc- 
( 

curing in it. Note that every curve C occurs in the space 
mgn,h) 

 such that 
g + h = rk Hl(C) (see [D-M1, Th. 1.13). Next consider the finite groups 

G = Sp(V,ZInZ) 

U 

Hh =(stabilizer of Vg —h) 

U 

(elements which 

Hh  = act identically 

on Ve h  
_L Gh =111h/Hh = (induced group of automorphisms of V g _ h). 

Then Gh acts on 
.M(n,h) 

and we have canonical morphisms 

N (gn,h) 

ph 
-mg(n,h)/Gh  

P'h 

-Mg 
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	( 
I claim that phis etale. In fact, if (C, 0) E Ng

n,h) 
 , then Aut(C) can be 

identified with a subgroup of GI, and formally near [C, qS] , the isomorphism 

„ (n,h) 
-41 	  

g 	formal Isom. 

commutes with the action of Aut(C). 

Therefore we have a diagram 

Def (C) 

n,h) 
M g 	-"4 	  Def(C) 

M g(n'h)/ Aut(C) -4— Def (C)/ Aut(C) 

 

Spec aTc4g,fai  

 

where the horizontal arrows are formal isomorphisms. Now Def (C)/ Aut(C) 
i.e., Spec of the Aut(C)-invariants in the complete local ring representing 
the deformations of C, is isomorphic to Spec of the complete local ring of 
M g  at [C]. Thus the morphism indicated by q o p in the diagram is etale at 
[C, (/)]. Therefore so is q. 

—( 
This proves that the atlas {ph: 

Mg71,h) 	
.M 9 ) puts a structure of 

Q-variety on N g . In this setting, what is the variety X dominating all the 
charts? This is 

.7v1 
(n) 

= (normalization of N in this field extension 	'g)). 

Note that the full group G acts on .M
(n)

. Moreover,M (rt,g)  is the open subset 
( 

of Mg
n) 

 lying over the open set Mg of smooth curves. 

p– 	g) 	gf 9) 	C Mg(n) 

4-g(")/G  C Mg(n)/G 

Mg C 
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n,h) 
What we call M g  , for h < g, however, is recovered by dividing an open 

( 
subset of .M g

n) 
 by Hh. 

Life would be particularly simple if Mg(n)  were smooth. However, it is not, 

nor is it known whether the normalization of .M (n)  in any finite extension 
field is smooth. However, fortunately .M g  does have a Cohen-Macaulay 
global cover, because: 

---( 	 ( 

	

Proposition 2.2. 	Mg
(n,g) 

c M g
n) 

 is a toroidal embedding, i.e., M g
n) 
 

is formally isomorphic to PO" modulo an abelian group acting diagonally, 
—(n) 	( 

and with M g  - Mg
,g) 

 isomorphic to the image of a union of coordinate 
hyperplanes in A3g-3. 

Proof. At every point of --M-9(n), .M (gn)  is a Galois covering of one of the 

smooth varieties M
(n,h) 

 with group Hh. Note that Hh is abelian of order 
(h) 

prime to char (k). The covering is ramified only on Mg
n, 	1 

-ph  (Mg). Since.  

.M
(n,h) 

is formally the universal deformation space of some curve C, this is 
formally a ramified cover of A39-3, ramified only in coordinate hyperplanes. 
But if char (k) /n, the n-cyclic extensions k[[xi, 	x39_3]1 ramified only 
over the ideals (xi) are all given by 

( 
lE/ 

`:*) 	/ C {1, ..., 3g — 3}. 

Thus the covering in hand is sandwiched between k[[x , 	, x3g_3]] and 

k[[xl/n, 	C3 
 
g_3]], 3]], hence, by Galois theory, is as described. 

Corollary 2.3. N(gn)  is Cohen-Macaulay. 

§2b. Q-Stacks 

Unfortunately, the concept of Q-variety, although adequate to deal with 
.M g, g > 3, or with any moduli variety whose general object has no 
automorphisnis, breaks down for N2 and 711,1 where the general object 
has automorphism group Z/2-§. Consider, for instance, 712. Let .M C 712 
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be the open set of smooth curves C such that Aut(C) = OZ. Then, 
although ./N42 gives a local deformation space for its curves, it does not carry 
a universal family of curves. And if .W2  is an etale cover of ./q carrying 
some family 

p: 	.W2  

the sheaf E = 	on .W2  will not be a Q-sheaf. In fact, to compare 
p,*2 E on .W2  X 	.W2, we want an isomorphism of the 2 families 

C' x M2 .W2  = .W2  x xt2  C' 

x 

and although these families are fibrewise isomorphic, the isomorphism is 
not unique and may not globalize. 

To deal with this, one must use some variant of the ideal of stack 
(cf. [D-M], §4). The most natural thing is to replace the normalization 
of X„ X x  Xp by a scheme Xa p which must be given as part of the data 
and cannot be derived from the rest. _Yap should map to Xa  Xx  X0  and 
given x E Xap, y E X0, with the same projection to Xp, a "composition" 
x o y E Xa7  should be defined. A point x E Xa p lying over u E Xa , 
v E Xp should be thought of as meaning an isomorphism from the object 
Cu  corresponding to u to the object Cu  corresponding to v. 

Definition 2... 	A Q-stack is a collection of quasi-projective varieties 
and morphisms: 

TT TT 
Pt 

LL Xap IT: 	X,„11 

Xa, Xa p smooth, X normal, pi, p2  etale 

TT Xa  X surjective 

'Cap Xa  X x Xp surjective, finite 
pi 0 E = identity 

P  X 
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plus morphisms2: 

	

Xar3  X xo  X13.1 	Xai  

	

Xa p 	.A./30  

making TI  Xao  into a pseudo-group (i.e., o is associative where defined, —1  

is its inverse and E is an identity). 

It is an interesting exercise in categorical style constructions to show 

that this collection of data can be derived from a finite group G acting on 

a normal variety X, plus open sets X,„ C X stabilized by Ha  C G, very 

much as above: 
D k 

P 

	 = Xa  

X =-- .1( 1G 

and satisfying: 

	

(2.5) 	a) For all x E Xa  n g(k,a) 	and all h E H„, such that h(x) ,---- x 

then g — lhg E Hp. 
b) 1I,, acts faithfully on Xa. 

Then define 

X a  p 
	 j-Ca, n g(Xs)/II  n 

=repree. of double 
coset• 

P1 = natural map ke, n g(kp)/ Fla  n gHpg—I  Xa/Ha 

P2 = the map induced by g-1  

Xa  n g(Xp)/Ha  n 	—÷ 5CdHp 

and if 
x E Xa  n g(5(p) maps toYE Xap 

y E Xp n gi(ki ) maps to --ff Xfry  

2The maps o can also be introduced by giving as extra data more of a semi-simplicial 
variety: 

II x,  Y 
	x 0- 1 R- 	 a/3 

in the usual way. 
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so that 
g-lx = hy, 	h e Hp 

then let 
(39-  (image of x EXa (1 gh4X7 ) in X,7 ). 

The object so constructed is a Q-variety if G acts faithfully on X, but in 
general only a Q-stack. 

Note that M2 and .M1,1 are in a natural way Q-stacks. We let M 2, .K41,1 
be the normalization of .M 2 , .Nt Li  in the level n covering, some n > 3 and 
let G = Sp(4, Zinn, SL(2, Zinn resp. The open sets Xa  and subgroups 
Ha  are defined exactly as in the case g > 3 treated above. The most general 
chart is any Xe, ---■ 	(resp. M i, i ) such that X„, comes with a family of 
the corresponding curves over it which represents locally everywhere the 
universal deformation space. Given 2 charts Xa , Xr3, with families Ca,Cp, 
then Xa p is by definition: 

Isom (C,„ Cs) 	{(x, y, 0)1 x E Xa, y E X fi, ck an isom. of Ca,z  with C/3,y} 

Finally morphisms between Q-stacks X, Y are given by sets of mor-
phisms and commuting diagrams: 

11X0  llXa-4 X 

fop 	f 	if 

11)70 JJ Ya 

provided the atlas for X is suitably refined. For suitable X and Y the 
morphism will be induced by a morhism 

j": 

which is equivariant with respect to a homomorphism Cx- 	Gy of the 
finite groups acting on X, Y. However, if the Q-stack X is already presented 
as X/Gx for one X, one may have to pass to a bigger covering before 
will be defined. This gives a diagram 

Xi-. 
-""k 

Xi/Glx = X/Cx 	 = /Gy. 
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Among morphisms of Q-stacks, the simplest class consists of those that 
satisfy: 

Va, let X'««  = {x E X«« I f«.(x)= cy(fa(pi(x)))}. 
Then Xa«  acts freely on X,„ 

These are the morphisms whose fibres are bona fide varieties, not just 
Q-varieties or Q-stacks. For such morphisms, it is possible to choose X, Y 
with the same finite group G acting and f G-equivariant: 

5( 

k/G 	Y =Y/G 

such that, moreover, locally, ka  = (X«/H«) sx' , 	/H.)  Ya  • The fibres of 

f are then the "true fibres" of f . The typical example of this is 

(n) 	(n) 
Cg 	 g 

where 
Zrg = moduli space of pairs (C, 	C a stable 

curve, x E C 
moduli space of pairs (C, x), a 1-pointed 

stable curves  

= normalization of --Cg  in the covering 

defined by the moduli space of triples 

(C, x, C a smooth curve, x E C 
and (1) a level n structure on C. 

Such morphisms may be called representable morphisms of Q-stacks. We 
do not need to develop the theory of Q-stacks for our applications, so we 
stop at merely these definitions. 

3An n-pointed stable curve (C, 	xn) is a reduced, connected curve C with at most 
ordinary double points plus n distinct smooth points xi  E C such that every smooth 
rational component E of C contains at least 3 points which are either xi's or double 
points of C. 

(2.6) 

r(n) 

9 
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§3. The Chow Group for Q-Varieties with Cohen-Macaulay Global Covers 

We want to study a quasi-projective Q-variety {pc,: X, 	X} of dimen- 
sion n such that the big global cover X is Cohen-Macaulay. We use the 
notation of §2, esp. X = X/G. We also choose a resolution of singularities 

71": 5C- 	X . 

Then we assert: 

Theorem 3.1. 	With the above hypotheses, there is a canonical isomor- 
phism -y between the Chow group of X and G-invariants in the operational 
Chow ring of X, (as usual after extending the coefficients to Q): 

An—k(X) oPAk(jOG  0 < k < n. 

This key result does two important things for us: 

a) it defines a ring structure on A.(X), 
b) for all Q-sheaves on the Q-variety X, we can define Chern classes 

ck(7) E A.(X). 

I don't know if these things can be done if we drop the hypothesis that X 
is Cohen-Macaulay. My guess is that this hypothesis can be dropped, but 
more powerful tools seem to be needed to treat this case. 

Proof. The first step is to define, for all subvarieties Z C X, an element 
-y(Z) E opA:(X)G  ®Q. We use the local covers pc,: X, 	X and let pc,--1(Z) 
be the reduced subscheme of X,„ with support p-1(Z). Then {Opv(z)} is 
a Q-sheaf on the Q-variety X. As above, let p factor locally 

5G, 	5came, = X,, 124 X 

and lift pc,-1(Z) to its scheme-theoretic inverse image q';,(p,;1(Z)). Define 

-= G-invariant subscheme of supported 

• on p-1(Z) such that 215c. 	qa* (p-,,-1(Z))  
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Note that because X is Cohen-Macaulay, and Xa  is smooth, qa  is flat. 
Since 0v. -1(z) has a finite projective resolution on X„, this implies that 

Oz has a finite projective resolution on X. Therefore, by Fulton's theory 
[F1], the Chem classes ck(02) are defined in opAk(X). Next define the 
"ramification index": 

e(Z) = order of the stabilizer in Ca  of almost all points of p;I(Z). 

Here a is any index such that 22;1(Z) 	0: the definition does not depend 
on a. Then let 

k—i. 

—1)! 
-y(Z) f_n "  

(k 	
ck(02), if k = codim Z, 

 
(or = e(Z)chk(02), using lemma 3.3 below). 

An important point in the study of Z is that the family of subschemes 
{p-1(Z)} can be simultaneously resolved: 

Theorem 3.2 (Hironaka). 	For all subvarieties Z C X, there is a 
birational map 7r: Z* 	Z, Z* normal, such that for all a 

(pc,1(z) x z z*Lo, 

is smooth. 

This is a Corollary of Hironaka's strong resolution theorem, giving a 
resolution compatible with the pseudo-group of all local analytic isomor-
phisms between open sets in the original variety: see [H], Theorem 7.1, 
p. 164. One may proceed as follows: first resolve pc,—;1(Z) as in[H]. Since 

((ka,111„)Xx(ka,IIIa, ))nor  is etale over k,,,/Hai  this equivalence rela-

tion extends to one on the resolution rcil (Z)+, hence there is a blow-up 
WI : 	Z such that p,-;i1 (Z)* = (p,,,—ii(Z) X z zi)nor . Secondly, resolve 

(Pa2I(Z) X z Zi),20  by a blow-up over X — p(Xa„) so as not to affect the 
first step. Again, descend this to a further blow-up (7r2 : Z2  —+ 	Z) 
of Z. Eventually, we get the needed resolution. 

Lemma 3.3. For all Q-sheaves I on the Q-variety X, let S C X be 
the support of F. Then in opi1*(X), 
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a) ekrY-) = 0 if k < codim S 

b) if k = codim S, and St, • • • , Sn are the codimension k components 

of S, then 

Ck( 	liCk(0:§i ) 

where li is the length of the stalk of Ja  at the generic point of pc7, 1 (S.i) when 
Si meets p(Xa). 

Proof. This results from an application of Fulton's Grothendieck-Rie-
mann-Roch Theorem 1.4 and Hironaka's resolution 3.2. By the usual 
devissage, reduce the lemma to the case where S is irreducible of codimen- 
sion k, and I is an 0.§-module. Let S* 	S be a "resolution" as in 3.2. 
This gives a family of resolutions 

= (p; 1(S) X s Slnor 	K i(S) C 

which are local complete intersection or 1.c.i.) morphisms. Therefore, by 
fibre product with the flat morphism X„ 

S,, X (k /H.) X,„ 	)(„, 

are 1.c.i. morphisms. These glue together to an l.c.i. morphism 

- 
S 

such that 3 is a rr*Os- module. Let .7* 	7rV). Then by 1.4: 

ch 7r! 	= 71*  (ch 	• T 

Now if i > 0, RiT- 	) are Q-sheaves on the Q-variety X with supports 
properly contained in S, so by induction we can assume 

ci(lli  •ir 	= 0 if 1 < k, i > 0. 

Therefore 
chi(7r!3*)-= chi(n-s si-* )=-- chi(.) if 1 < k. 

But 7r* : opA'(S*)-+ 	raises the codimension of a cycle by k. So 

chi(.l) = 0 if / < k 
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and 

chkrP) = (generic rank of I i  as free N.-module) • x.,,(1) 

= (length of le, at generic point of pc,—I (S)) • chk(N). 

Q.E.D. 

Lemma 3.4. 	If two cycles E niZi, E rniWi  on X are rationally 
equivalent, then 

E ni-y(Zi) = >2 
	

in opA.(k). 

Proof. Let L be an ample line bundle on X. Rational equivalence on 

X may be defined by requiring that for all subvarieties Y C X and all 

si, 32  E F(Y,Ln 	00, if Di  is the divisor of zeroes of si on X, then 

D1  Tat D2 * 

So to prove the lemma, it will suffice to prove that for all s E F(Y, Ln  Oy), 
if D = E nizi  is the divisor of zeroes of s, then 

E ni^i(Zi) = e(Y) • [chk(00— chk (L —n 0 001. 

To see this, use the exact sequence of Q-sheaves 

n  0 g: 	013 0 

where D C X is the scheme of zeroes of s in Y and the local calculation4  

that on p-1(Y): 

(*) 	(Divisor of zeroes of p,*(s) on pV(Y)) =-- L n• e(i
)  ) " 

—1(Wi) 
e( P  

4We use the lemma that if a finite group G acts faithfully on a variety Y and 4/ is a 
G-invariant function on Y, zero on a subvariety W C Y of codimension 1, and is the 
induced function on Y/G, then: 

ordw(q) #{g EC, Ig = id. on W} • ord w/G(i). 
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(n.b., pc,-1(Y), p- 1(Wi) are the reduced inverse images). Therefore 

chkOk - chkL-1 	= chk0t, 

= (k - 1)! ek°1)  
(length of OD. at 	(-1)k-1   

gen.pt. of ycl (Wi)) (k - 1)! 
ck  0 

 

ord -1 	(p* 8) 
l(Wt)  by derl of 1,  P. (w) 	e(Wi) 

by (3.3) 

1 
= 	 e(Y) 

by (*). 

This proves (3.4), which shows that y factors: 

y: 	opi1.(k)G  

Lemma 3.5. The composition of maps 

A.(X) 	 )G 
 n[k] AVC )

G  —11**-11.-A.(X) 

is multiplication by n, the degree of p. 

Proof. To prove this we use another Riemann-Roch theorem: the ver-
sion of Baum-Fulton-MacPherson [13FM]. This says that there is a natural 
transformation r: K°(Z) —> A.(Z) for all varieties Z such that 

K°(Z)®K°(Z) --+ K°(Z) 
ch Or 	1 7- 

n 
opil*(Z)0A.(Z) 	A.(Z) 

commutes. By the lemma, p. 129 of [BFM] and devissage, r satisfies: 

for all I with support uZ, of codimension k, r(3') has 
codimension k and 

E  (length of I at 
T(.7)k 	class of 	 [Z1]. 

gen. pt. of Zi 



AN ENUMERATIVE GEOMETRY OF THE MODULI SPACE 	291 

We apply this to Z = X and .7 = OE where Z C X is a subvariety. 
It follows that 

ch(02) fl 7-(0k) = 7(02). 

Therefore if k --= codimension Z, 

p,„(-y(Z) n [Xi) = e(Z) • ps (chk(Ok)n [k]) 
= e(Z) • p.01) 

= e(Z) • [2 : Z] • class of Z 

= n • class of Z. 

Q.E.D. 

Lemma 3.6. 	If 7r: ir—■ 5C is a resolution, and Z C X is a sub- 
variety of codimension k such that for all components Zi of p-1(Z), 7r-1(Z;) 
is irreducible of codimension k, then 7-*(7(Z)) is represented by a cycle 

c.E7r-1(Zi), some c E Q, c > 0. 

Proof. Let U C X be the open set over which 7r is an isomorphism. 
Then Zi fl U 	0, all i. Now 

ir*  (-1(Z)) = e(Z) . 7r* (chk(0 k)) 

e(Z) • (E(-1)Ichk(tori(02, Of.))). 

But these tor/ are supported on proper subsets of Tr-1(Z;), hence have no 
kth Chern character. Therefore: 

7r* (-7(Z)) = e(Z) • chk(02 ® Or) 

e(Z) • class of 7r-1(Z) 

by the Riemann-Roch theorem on X. 	 Q.E.D. 

Corollary 3.7. 	7 is bijective. 

Proof. 3.5, 3.6 and 1.2. 
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This proves the theorem. A few comments can be made on the ring 
structure that this introduces in A.(X). First of all, suppose WI , W2 are 

two cycles on X that intersect properly. Then the product [W1], [W2] in 

the above ring structure can also be defined directly by assigning suitable 
multiplicities to the components of Supp W1  n Supp W2. In fact, define: 

WI • W2 
	E 	n 1472; u) • u 

comp.Uof 
Supp Wi nSupp W2 

where if 73;1(U) 	0, then 

) • 
U)

W2)n e( 

	

i(wi  n vv2; u) 
= e(Wi

e( 	
i(pwi)n pnw2); PVU). 

Note that the intersection multiplicity on the right is taken on the smooth 
ambient variety kc,/lf,„ hence is defined, e.g., by 

E(_1(length at gen. pt. 0 	 ) 
(tori(Op;i , Opv w  )). 

opf p; 1U 

The proof that this is the same as the product in op/V(5C) is straightforward, 

i.e., 

-y(Lt) • ••/(Z2) = e(Zi )e(Z2)chk,(07zi ) • chk 2(0-22 ) 

e(Z1)e(Z2)chici-i-k2(°2i 	()kJ 

( 0 means take tensor product of projective resol.) 

= E evoeczoi(pnwi) n pnw2); 	• chki+k2(0o) 
U 

	

( 

e(  

i) 	2) 

	

e(Z  	
" E e  	

i(p 'two n pnw2); 'u) • 1(U). 
U)  

This product could be introduced directly without relating it to the product 
in opil.(X). This has been done by Matsusaka in his book "Theory of 
Q-varieties", [Ma], where associativity and other standard formulae are 
proven. The missing ingredient, however, is the moving lemma. This 
follows as a Corollary of the isomorphism of A.(X) with opil:(X), i.e., by 
representing a cycle on X as the projection from X of the Chern class of 
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a sheaf with finite resolution. In particular, I don't know any way to get a 
moving lemma unless sonic X is Cohen-Macaulay. 

Henceforth, in the study of the Chow rings of Q-varieties we shall iden-
tify An_k(X) and opAk(X)G  via the map -y, and write this as Ak (X) just 
like the k-codimension piece of the Chow ring of an ordinary non-singular 
variety. This does not usually lead to any confusion, except with regard to 
the concept of the fundamental class of a subvariety Y C X. The impor-
tant thing to realize here is that there are really two different notions of 
fundamental class, differing by a rational number, and both are important. 
Thus for all Y of codimension k, we will write 

[Y] =class of the cycle Y in the Chow group 

An_k(X)= Ak(X) 

and 
[Y]Q = the class chk(01-,) in opAk (X)G  = Ak(X). 

Since we are using the identification -y, we have: 

[31(2 = e(Y) [Y]. 

When one makes calculations of intersections in local charts .4/Fre„ then 
one is verifying an identity between classes [Y]Q. But when one has a 
rational equivalence between cycles on X, one has an identity between [Il]'s: 
e.g., if X is unirational, then for all points Pt, P2 E X, 

	

[P1] 	[P2], 

but the point classes [P]c2 are fractions 1/e(P) of the basic point class 
[P] E A.(X). 

If X is a Q-stack, exactly the same theorem holds and we have an 
isomorphism 

	

-y: A.(X) 	opA*(k)G  

The only difference is that a subgroup Z C G acts identically on X. 
If #Z = z, then the effect of this is merely to modify the ring structure on 
A•(X) as follows. Let Wt , W2  be cycles on X and consider: 

i) the Q-variety structure on X given by the action of G/Z on X, and 
the multiplication 	var W2 
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ii) the Q- stack structure on X given by the action of G on X, and the 

multiplication WI. st  W2. 

Then by the moving lemma plus the formula above for proper intersections, 
it follows: 

Wl' stW2 = • W1 v ar W2 • 

In particular, the identity in the Chow ring of a Q-stack X is [X]Q, 

not [X]. 
The Chow ring for Q-varieties, or more generally Q-stacks, has good 

contravariant functorial properties. We consider morphisms of Q-stacks 
with global Cohen-Macaulay covers: 

X Y 

as defined in §2. Then I claim: 

Proposition 3.8. 	There is a canonical ring homomorphism 

f * : itt.(Y) 	.11.  (X) 

satisfying: 

i) f,,(a.f*b) = ha.b (1. being defined from A.(X) to A.(Y) as usual), 

ii) f *(cke)= ck(f * E) for all Q-vector bundles e on Y 

iii) if W is a subvariety of Y such that codim f –t (W) = codim W then 

f 1[W]) = class of E ik • [Vk] 
comp. vk  
of I — I (w) 

where ik  is calculated on suitable charts f a: 	—* 	by pull-backs in the 
smooth case adjusted by e(W)I e(Vk). 

Proof. Although the moving lemma plus (iii) provides us with the simpl-
est formula for f* , to see that f* is well-defined, we use owl'. There is one 
complication. Xand Y have global Cohen-Macaulay covers X, Y but f may 
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not lift to 2: X 	Y. Instead, we may have to 'refine' X: 

` 
\ 

P 
f 

Y 

and then X' may not longer be Cohen-Macaulay. Still, once one has one 
Cohen-Macaulay X with which to set up the theory, one proves that 

(3.9) 	 op.A.  (X)G  x 9.  op A.  (56G4x 

is an isomorphism, hence f' may be defined by: 

A.(Y) 	°pit' (k)G  Y f opt'(X )Gix 	op.A.(5C)G  x 	A.(X). 

To check (3.9), use 

A.(X) OpA-VOGX 	°RN (56G,  A.  (X") 
nt.k1 

(poq). 

A.(X') 

(X = resolution of X') and argue as in lemmas 3.5 and 3.6. There is one 
hitch: namely, in 3.5, we get 

(p o q)*(q* ("i(Z)) n [4) = e(Z)(p o q)* (q* (chk(0 2)) n 	1) 

	

= e(Z)(p o q)*(chk(°2 	°5(') n [ X'}) 

where (1-1) means take a resolution of OZ and tensor it with 0 k, . But now 
1, 

if X'  is not Cohen-Macaulay, OZ 0 0 k, will not be a resolution of some 
OE, and we get instead: 

= e(Z) E,(-1)'(p o q)* (chk  tori(02, Ox') n Pei) 

= e(Z) • (p o q)*( 	in • 12„1) 
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where Z1 are the components of (p o q)-1  Z and 

(-1)1(length at gen. pt. of 4,)(tori°k  (02, 0,-(,)) 

= E(_1)I(length at gen. pt. of 4)(tor7x-(0p71 (z), 

= ulit. of 27, in the cycle Va* (p;1  (Z)) 

where we factor p o q: 
- 	 / 
X D Xa  

qa 

Xa  

X Pa 

Thus 

e( Z)(p o q)* (E i[4]) 

= e(Z)po,,,, (class of 9i„,*  (V„* (p7,1  Z))) 

= deg Va  • e(Z) . pc,,„(pVZ) 

= n.class of Z. 

f * being defined, the rest of the proof is straightforward. 

For representable morphisms f : X 	Y of Q-stacks, there is a further 
important compatibility. For such f, let 

be a G-equivariant morphism such that X = 	= Y/G and 

(3.9) 	 5ce, = x„, xy. Ya  

as in §2b. Then we have: 

Proposition 3.10. If the morphism f on local charts 

fa Xa Ya 
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is a local complete intersection and Y is Cohen-Macaulay, then f is l.c.i.  
and the diagram 

f. 

	

opA* (X)" - 	op.A*(ir)G  

7T 	

I. 	

1 

A.(X) 	A.(Y) 

commutes. 

Proof. Let W be a codimension k subvariety of X such that W is 
generically finite over f (W). Then we must check 

-L(7w) = [14I 1144]. -t(fw), 

e(X) • f ,,(chk(OW)) = [W fW • e(fW)• chk(Opif). 

But by Riemann-Rock for f, 

ft (chk(0i,v))= eirk(f,,011,) 

= [Wc, : f ,,(147,0] • chk(0 

because L,(011,) is generically a locally free Of fs-algebra of length 
: fa Wa] by (3.9). But now use: 

[W, : W].[W : f W] 	[Wc, : f ,,Wc,] • [f „,Wof  : W] 

and 
[Wa  : W] • e(W) = 	: X] • e(X) 

= : 

-=- c, : Y] • e(Y ) 

= [f (W)a fW] e(fW) 

and the equality of the coefficients follows. 



298 	 D. MUMFORD 

Part II: Basic Classes in the Chow Ring of the Moduli Space 

§4. Tautological Classes 

Whenever a variety or topological space is defined by some universal 
property, one expects that by virtue of its defining property, it possesses 
certain cohomology classes called tautological classes. The standard ex-
ample is a Grassmannian, e.g., the Grassmannian Grass of k-planes in C. 
By its very definition, there is a universal bundle E on Grass of rank k, and 
this induces Chern classes ci(E), 1 < 1 < k, in both the cohomology ring of 
Grass and the Chow ring of Grass. These two rings are, in fact, isomorphic 
and generated as rings by {ci(E)}. Moreover, one gets tautological relations 
from the fact that E is a sub-bundle of the trivial bundle Cn X Grass. This 
gives an exact seqUence: 

0 E On F —■ 0, F a bundle of rank n — k, 

hence 
+ ci(E)+ • • • + ek(E)) 1  =0, 1> n— k. 

As is well known, these are a complete set of relations for the cohomology 
and Chow rings of Grass. 

We shall begin a program of the same sort for the Chow ring (or cohomol-
ogy ring) of -Mg. Our purpose is merely to identify a natural set of tautologi-
cal classes and some tautological relations. To what extent these lead to a 
presentation of either ring is totally unclear at the moment. 

The natural place to start is with the universal curve over 	This This 
is the same as the coarse moduli space of 1-pointed stable curves (C, P) 
(see Knudsen [K], Ilarris-Mumford [I1-4), which we call .M g,1  or 	alter- 
natively. Cg  is a Q-variety, too, and everything we have said about M g  
applies to C9  too. The morphism Cg 	.M, is a representable morphism, 
and via level n structures, we have a covering Cg  of Cg  and a morphism: 

71-  • o • 9 

which is a flat, proper family of stable curves, with a finite group G acting 
on both, and Cg  = C g /G, M g  = M g /G. If g > 3, then 

Cg  = (normalization of C X 	fit ) Cg T40  g 
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but if g = 2, the generic curve has automorphisms, Sp(4,7117.11) does not 

act faithfully on :M2, and C2 is a double cover of this normalization. In any 

case, Cg  has a Q-sheaf (.0.90-,
r9 
 represented by the invertible sheaf co-e0/ i,,t9  

on a. Henceforth, whenever we talk of sheaves on r-  or ,M we shall mean 

Q-sheaves and they are always represented by usual coherent sheaves on C g 

and ,M g  with C-action. Furthermore, we shall make calculations in A:("Kg ) 

and AfCr 9 ) by implicitly identifying these with opittM g )G  and opk(C0 )G. 

Now define the tautological classes: 

C 9 /149 
	ci(coug/T,;(9 ) E Al (Cg) 

(7r,,K C1+9113.-4-j E 	g) 

E = 7r* (w-m9/.-Tt. ) : a locally free Q-sheaf of rank g on jrlg 

Xi = CI(E), 1 < 1 < g. 

I believe that the tc/ are the natural tautological classes to consider on Ng. 

On the other hand, the X/ are the natural classes for abelian varieties. Let 

me sketch this link, which will not be used subsequently. In fact, if 

A ; 
space of principally polarized abelian varieties 

then there is a natural morphism 

t: .1■'1 g 

carrying the point [C] to the point of Ag* defined by the Jacobian of C. This 
morphism lifts to a G-equivariant morphism 

.1V1 g 	g 

where ; 49 is a suitable toroidal compactification of the level n covering of 

Ag: see Namikawa [N]. Moreover, A9 carries a universal family 

7r: 

(Satake's.  compactification of the moduli 

of semi-abelian group schemes, i.e., 9774 is a group scheme whose fibres are 
extensions of abelian varieties by algebraic tori (C1h. The family 9 7 pulls 
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back on .M 9  to the family of Jacobians and generalized Jacobians of C y . 
Over .71y, define 

= 	lo-section, a locally free sheaf of rank g 

Xc = ck(0, 1 < 1 < g. 

Then it follows that 
t E

, 	
E 

and 
r>4 = Xt. 

The class K—C01.m  played a central role in the basic paper [A] of Arakelov, , 
who proved the essential case of: 

Theorem 4.1 (Arakelov). 	The divisor Ke-9/R  is numerically effec- 
tive on Zr  g , i.e., for all curves C C ZC g , 

degcK-c-swf.  0. 

Proof. In fact, Arakelov proved that for all normal surfaces F fibred 
in stable curves over a smooth curve C, co fivc  is ampte on F. This implies 
that for all curves C C Cg  such that 7r(C)n 

de gc.iceg ii49  > 0. 

Now suppose C C C g  and 7r(C) C Flg  — M g . 

Case 1: ir(C) = one pt. Then degc  K > 0 because w is ample on all 
fibres of Cy 	.M y. 

Case 2: d7ric  = 0, i.e., C is in the locus Sing C of double points of the 
fibres. But Sing C has an etale double cover Sing' C parametrizing pairs 
consisting of a double point of a fibre of 7T and a branch through this point. 
By residue 

coep iSt9  0 °Sing'C 	°Sing'C 

so degc  K = 0. 
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Case 3: Other. After a suitable case change 

C' 	7r(C) C -M g  

we can assume that the pull-back family C9  X )74,,  C' is obtained by glueing 

several generically smooth stable families 	C' along a set of sections 
to: C' ----∎  Y. Lying over C there will be a curve C" contained in one of 
the Y,'s, say Y,0 , mapping onto C' and not equal to t c,0 0(C1), any 0. The 
pull-back of co-egi jcig  to Ya  will be equal to coy./c,(E0  tc,,,,p(61) and, by 

Arakelov, this will have non-negative degree on C' if genus C' > 2. If genus 
== 0 or 1, it is easy to check that this is still the case. 	Q.E.D. 

Corollary 4.2. 	The classes xi  are numerically effective, i.e., for all 
subvarieties W C '.M y  of dimension 1, 

(W.ici) > 0. 

Proof. K--1— numerically effective implies K i+74.1  numerically effecitve 

(see [KI]), hence IT(K1+-1  ) is numerically effective. * Tim 
In fact, x i  is ample, see [M], §5. 

§5. Tautological Relations via Grothendieck-Riemann-Roth 

Grothendieck's Riemann-Roth theorem (G-R-R) is, in many cases, tailor-
made to find relations among tautological classes. For example, see Atiyah-
Bott [A-B], §9. We can compute the classes Xk in terms of the classes tck• 
To do this, we apply the CI-R-R to the morphism 

fi4 a. 

This gives us 
ch in C4)/-m = 7i* (Ch 

Here we use the notaion Tdv(E) to write the universal multiplicative poly-
nomial in the Chem classes of e such that for line bundles L, 

T dv (L) = e 	x
X 

1X=ci(L) 
—  

k  = 1 — —
2

X — E(_1)k-1 
(
B
2 )! 

X2k, 

k=1 
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(i.e., the usual Td(L) is X/1— e — x or 1+ 2 X + • • •). Since R1 71-,,uzTt 	°To  
this means: 

chE = 1 + 71-* (eK. Tdv(14-/M)). 

Now use the exact sequence: 

	

0 ---+ — 	— —+ C/M 	T/M 	L'i./R 	°SingU 	° 

(compare [M], pf. of 5.10). Let Sing' be the double cover of Sing C 
consisting of singular points plus branches: as a Q-variety, it is an etale 
double cover, i.e., the map between the charts 

(Sing' Zr),, 	(Sing Z),, 

which are local universal deformation spaces, is etale. Then via residue 

wC/.M (S)  °SingT = °Singre• 

Therefore: 

chE = 1+ lr. (elc  • T dv  (w-c-  u-i ) • Tdv(OSing 1 

= 1 + Irs (eK  • 	 [ 	( eK 	+T dv °SingC)
-1 

 — 1]) 

since K intersects any cycle on Sing Z' in zero. Now use the lemma: 

Lemma 5.1. 	There is a universal power series P such that for all 
is Z —4 X, an inclusion of a smooth codimension two subvariety in a smooth 
variety, 

(Tdv  Oz)-1 — 1 = i* [P(ciN , c2N)] 

where N is the normal bundle 1z/.12z. 

Proof. In fact 

(Tdv0z)-1  = 1 -I- (polyn. in chk(0z), k > 1) 

and by G-R-R for i, chk(0z) is i*  of a polynomial in c i N, c2 N. 
To compute this polynomial P, say Z = D1 • D2. Then use 

0 —* Ox(—Di  — D2 ) Ox(—D1)(1) Ox(—D2) Ox Oz -4  0. 



1 	1 
= _  

2 720((Di  
+ D2)2  — 3D1D2) + 

1  
1 

30, 240
((D1 + D2)4  — 5D1D2(Di + D2)2  + 5D1D2) + • • 
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This gives us 

Tdv Oz  = (Tdv0x(—DI )) 1  • (Tdv Ox(—D2)) 1  -Tdv0x(—D1 — D2) 

—D1 	1 	—D2 	
1 	

—D1  —  D2  
	i) 	( e—D2 	1 	 1).  

D1 + D2 
	1 

Thus 

D1D2 • P(D1 + D2, D1 • D2) = TdV(04-1  —1 

D1 	D2 
	

1 — 

1 — 	1— e — D2 

D + D2 [Di 

D2 • ( Di 
— e- 

—De2—D2 1)4-  

— D1  • D2] 

DiD2 \-` (-1)"Bk (1921k-1 + D22k-1) 
+ D2 	(2k)! 

( 	Do r,2k-1 2k-1 

	

P(D1 + D2, Di  • D2) = E 	"k Di  k-1  D2 

	

k=1 	(2k)! 	 + D2 

So 

Therefore 

ch E = 1 + Ir.  	r o i).P(ci N,c2 N). 

Now Sing C breaks up into pieces depending on whether the double point 
disconnects the fibre in which it lies or not, and if it does, what the genera 
are of the two pieces. Thus: 

Sing C = fl64, 
0 _lt<Iii/21 
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where 	are are the non-disconnecting double points and if h > 1, Oh are 

the points for which one piece has genus h. Moreover, looking at the two 

pieces, one sees that 

Ch X Cg _h if 1 < h < g/2 

while 
A;/2 	 2 X C g/2 /(7L/27L)if g is even 

.M g_1,2 /(7/22) 

where Ng_1,2 is the space of stable curves with two ordered points Pi , P2  

and 7L/2/ permutes either the two factors or the two points. In fact, 

specifying a branch too, we get: 

Sing'C = 	oh 
0<h<[02] 

Aft, 7,* 2 copies of Ch X Cg-h 1 < h < g 12 

Zrg/2 X t g/ 2  if h = g/2 

.71 g  _ 2 if h.= 0. 

Let K1, K2  be the divisor classes defined 

a) on Z`h X Vg —h by K1 = 	 K2 = P; ICZ.g _h/.749-n 

h) on Mg_1,2  by Kt  = conormal bundle at the ith  point. 

Writing out ch E finally we get 

(5.2) 

chE = g + 
1=1 

K21-1-1 [ 

(-1)1+1  . B1 

+ 
K21 2) 

(21)! 

1 g-1 

+ 
2 
 2_, ih,* (K11-2  - K11-3  . K2 -I-  • • • 

h=0 

Here we have expanded Kil — e-K  and used the fact that 7r.K is (2g — 2) 

times the fundamental class of Mg. The morphism ih is 

io: 	 Sing.0 

ih: 	x g-h -■ Sing 	 < h < g — 1. 

. 
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Note that io  and ig/2  have degree 2 and the other ih's are repeated twice 
in the sum: hence the factor 1/2. Moreover, we have evaluated the normal 
bundle to Singh in C as the direct sum of the tangent bundle to the two 
branches of the curve at the singular point: 

(In a transversal to Singe, 	looks like xy = t, and the tangent 
bundle to the x, y-surface at (0, 0) is the sum of the tangent line to the 
branch x = 0 and to the branch y = 0.) 

The formula (5.2) specializes in codimension 1 to the formula of [M], 
p. 102: 
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= t(E) = 2(k1 + 6 ) 

where 

h=0 

= fundamental class of Nig 
- Mg. 

Moreover, it proves 

Corollary (5.3). 	For all even integers 2k, 

(chE)2k = 0. 

This formula can be proven in cohomology from the Gauss-Marvin con-
nection. We sketch this proof. First look at the smooth curves C g /M g. For 
these we have the Denham complex 

f cgimg:0 —+ 0c, 4 fie-  gi.mg 	0 

along the fibres of 71". This gives: 

0 	7r4/c9/Ma  —*R I ffs ircidAto  —+ R1x-.0c9  —+ 0. 

By Serre duality, this gives: 

0 	E 	R1 7r* I c./),49 	[E" 	0. 

The vector bundle in the middle has rank 2g, is isomorphic to R ix,,C and 
possesses the Gauss-Manin connection. Therefore its Chern classes are zero 
and over M g: 

(5.4) 	 c(E) • c(Ev) = 1. 

This identity can be extended to Mg if we use the complex 

 W C g  /Mg: 0 	 W7.  , 	
0 

9R9 

g -1 
5 = 2  E ih,„(1) 
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from which we get the sequence: 

(5.5) 	 0 E 	 rg.  Ev  0. 

Although the Gauss-Mania connection does not extend regularly to 

118 17r* 	— it has regular singularities with a polar part which is nilpotent. 

This is enough to conclude that its Chern classes zero, extending (5.5) to 

Mg. This means equivalently that 

ch (E) + ch(Ev) = 0 

or 
ch(E)2k  = 0, k > 1. 

This identity in fact holds on Ag, the toroidal compactification of Ag. It can 

be deduced, for instance, from the extension of Hirzebruch's proportionality 

theorem to A g  (see [M21). 
The conclusion to be drawn from (5.2) and (5.3) is that the even Xk's are 

polynomials in the odd ones, and that all the Xk's are polynomials in the 

eck 's and in boundary cycles. Moreover, applying (5.2) in odd degree above 

g, we can express ick  for k odd, k > g, in terms of lower ice's and boundary 

cycles. We shall strengthen this in the next section, where we find a simpler 

way to get identities on the ick's. 
The exact sequence (5.4) is remarkable in another way that reveals 

something of the nature of Mg. Note that E tends to be a positive bundle: 

at least ci  (E) is the pull-back of an ample line bundle by a birational map. 

But it is also a sub-bundle of a bundle with connection, i.e., the DeRham 

bundle R i irsco' is unstable yet has a connection. 

§6. Tautological Relations via the Canonical Linear System 

There is another very different way to get relations on the X1 and tei. 

For this, we will not try to get the full relations in il'(.h4 g) as the boundary 

terms seem to be a bit involved, but instead get the relations in Al.M g ). 
Because of the exact sequence: 

AlTvig  — Mg) 11.(144 g) 	A:(.M g)—* 0 

this is the same as a relation in ill.Mg) with an undetermined boundary 

term. 
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The method is based on the fact that for all smooth curves C, the sheaf 
we is generated by its global sections.5  

Now if we let C g /.M g  temporarily stand for the family of smooth stable 

curves, i.e., replace Cg  by -r-1(M g), then we have an exact sequence: 

0 —■ I —■ 7r*.n-s we./ 	co-egi 	0 

where all these sheaves are Q-sheaves and F is locally free of rank g —1. 
Taking Chem classes, we get: 

c(1) = ir*(1 + Xi  + • • + X g) • (1 + 

Using the fact that en(F)-= 0 if n > g, this says: 

(IQ/JO— r*(Xi)• (K'c-'7A) + • • • + (-1)g7r'(Xg)  (K!èil) = 0 

for all n > g. Taking ir k , this means 

Xn-1 — X1 • Kn-2-1-• • • (-1)9 X9 • Kn—g-1 = 0 if n > g + 2 
Kg  —Xi  • reg_i +• • • + (-1)gX g •(2g — 2) =0 if n = g +1 

Kg —i — Xt • Kg-2 d••• • : (-1)" X6,1 . (2g — 2)=. 0 if n = g. 

51f C is a singular stable curve, then one can show that c(coc) generates the subsheaf of 
we  of sections which are zero 
1) at all double points P for which C — P is disconnectd, 

ii) on all components E0 of C which are isomorphic to P1  and such that all double 

P1= Eo 

   

   

  

E3 
E1  

 

points P on E0  are disconnecting double points. 
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Corollary 6.2. For all g, all the classes Xi, is restricted to il'(.M) are 

polynomials in ni, K2, • • • , Kg-2- 

Proof. This is clear except for tcg ,K9_1. Here we must combine the 

above relations with (5.2). There are two cases depending on whether g is 
even or odd. Recalling that 

jr-1 cn(EI  • 
chnE = 

	

	 + polyn. in lower Chem class 
(n — 1)! 

it follows that if g = 2k or 2k — 1, then 

(— 1 (2k)! 

Bk 
— 	

X 
K2k1 = 	— Ch2klE 	

( 2k 	
(polyn. in lower X's). 

— 

2k-1 

2)!  

If g = 2k, we want to show that the 2 equations 

{(-1)k±tBk  •K2k-1 -= 2k • (2k — 1)X2k_t + lower 

K2k-1 = 2 • (2k — 1)X2k_i + lower 

have independent leading terms, and if g = 2k —1, then we want to do the 
same with 

{(___i)k-FlD . iik te2k-1 = 2k • (2k — 1)X2k-1 + lower 

K2k-1 = 4(k — 1) • X2k-1 + lower. 

This follows, however, by inspection if k < 10 and for larger k by the 

estimate: 

2 • (2k/e)2 k 	k  ) 	
> 2 . k if k > 11.

2k  
13kk = 

2 • (2k)! 
 c(2k) > 	  =- 2 (2702k 	 (27r)2 k 	 e • 7i 

Q.E.D. 

With this approach, the first relation between 	 that we get 
occurs in codimension g +1 or g + 2. One should, however, get the relation 
Kl = 0 in il.(M 3) so we clearly do not have all the relations on the 
xi's and Xi 's yet. It does seem reasonable to conjecture, however, that 
tc1, 	icg_2  have no relations up to something like codimension g, e.g., 

g —(small constant). 
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§7. The Tautological Classes via Arbarello's Flag of Subvarieties of .M9  

We want to consider the following subsets of C 9  and M g  : 

Wi = {C, x E C 9  1 h°(Cc(/ • x)) > 2} 

{C, x E C 9  I ] a morphism 7r: c —.■ P l  of degree 

Wi= 7r(W1) C Mg 

where 2 < 1 < g. Thus Wg* =locus of Weierstrass points in Cg, 
Wg_1  = curves with an exceptional Weierstrass of one of the two simplest 
types, and W2  = hyperelliptic curves. Note that: 

Cg  D W; D Wg*_i  D • D W; 

Wg  D Wg_i D • • ij W2 • 

I first heard of this flag from E. Arbarello who proposed (see [Arb]s) that 
they might be used as a ladder to climb from the reasonably well-known 
space W2  to the still mysterious Mg. 

Let me first recall and sketch the proof of the following well-known facts: 

Proposition 7.1. 	147; is irreducible of codimension g — 1 + 1 and 
14P; —1411_ 1  is an open dense subset smooth in the local charts for C9, i.e., 
the local deformation space for the pairs (C, x). 

Sketch of proof. Firstly, Wi is a determinantal subvariety of C9. In 
fact, consider 

pk a g X Ag p2  A, diagonal 

Cg  

k,••• 
g 

Let 

= R IP2, *(°6( (/6̀ ))-  

Then over a point [C, E 

k([C, x]) = H 1  (C, Oc(l.x)). 

d < 1 with 7T-1(00) 	d.x 

BUnfortunately, the proof of Theorem 3.27 in [Arb] is incomplete as it stands. 
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Now if [C, x] 0 W7, h°(0c(lx)) = 1 and h1(0c(/x)) = g — 1, while if 
[C, x] E W7, both numbers are bigger. Thus J is locally free of rank g —1 
on C g  —W7 and not locally free anywhere on W7. But look at the sequence: 

0 —* 0-e x 	0.xe(LA)--■ 0e x -e(1.6.)10c- x e 	0 

which gives us: 

(7.2) 	0 -9  P2) .(0 x e.(16)1 0 b- x e) 	Ri  P2, .(0-e x .e) 	0. 

The first sheaf is locally free of rank 1, the second locally free of rank g, 
hence 

VV;` = {[C, x] E C9 I r [G. ,y1(a) < 1}. 

Thus the codimension of W7 is at most g — +1. But describing W7 —W7_1  
as the set of /-fold covers of Pt, totally ramified at oo, one gets the upper 
bound 2g +11  —3 on dim W71  — W7i  _1  for all 11, hence the same upper bound 
on dim W. Comparing the two, it follows that codim W7 is exactly g —1+ 1 
and W7 is determinantal as well as that W7 — W7_1  is dense in W7. The 
irreducibility of W7 — W7_1  is a classical result of hiiroth, describing all 
/-fold covers of P t  as branched covers with a standard set of transpositions. 

The smoothness of W7 — W7_1  in the universal deformation space may 
be checked by the following calculation: let f have an /-fold pole at x E C 
and make an infinitesimal deformation C of C over C[c] by glueing open 
sets Uc, X Spec C[e] via a 1-cocycle Da p of derivations zero at x.. Then I 
lifts to a rational function on C with /-fold pole at x if there are functions 
ge, with /-fold poles at x and: 

(1 + cD0)(f + cga) = f + egp. 

This means that {Don E H l(C , 0(1x)) is zero. But Dad  f = (Dap, df) is 
the image: 

(7.3) 	{Dap} E H 1(C, Tc(—x)) 	,,f)  Hi  (C, Oc(lx))• 

Note that Hl(C,Tc(—x)) is the tangent space to the universal deformation 
space of (C,x). Moreover (7.3) is dual to the injective map 

H°(C, 0 (2Kc + 	H°  (C , 0(K 	lx)) 



312 	 D. MUMFORD 

hence (7.3) is surjective, i.e., the subscheme of the universal deformation 
space where f lifts is smooth of codimension hq0c(/x)) = g —1. 

In order to work out the fundamental class of Wt, it is convenient to 
split up (7.2) into pieces as follows. Starting with 

0 	10 )< ((/ —1)A) 	0 >< -(/0)—■ Oe- x -e(1.6.)/ CY• x A(1 -- 1).60 	0 

II 
°A ® 14 0e(-11( 1.0 

we get via R'p2,.: 

(7.4) 

It follows that on 	Wt_i  where 	is locally free: 

Wi = {[C, E Cg  I fl[C,,] = 0} 

= zeroes of the section Q' E r(Cg,Ii_1(tiq/ A)). 

Moreover, on the universal deformation space of [C, x], this section 01  
vanishes to 1st  order along Vri: in fact, the differential of 	at a point 
of 144; is a map 

T[c,z],c. 

 

71_1(1k)Ok([C, x]) 

 

Hi(C,Tc( — x)) 111(C, Oc(/x))0(ffiziffq)°1  

which is readily seen to be the surjective map (7.3) (the factor (M x /AV 
is hidden in (7.3) in the choice of f). Thus 

(7.5) 	[WN Q  = cg_i+I (.71_ 1(1ICe1M)), on Cg  W7_1. 

But Wt_i  has codimension g — l + 2 so 

Ag--,±qcg ) 	Ag--̀ 41(c9  — 144;_1). 

Thus (7.5) holds as an equation in Ag-1+1(Cg), hence in opAg-14-1(C 9). 
Now let's calculate the fundamental class of 1447: 

[M]Q = cg_i+I (Fi_ 1(/K)) 

= cg_i+  (.7i(il()) 

= eg-1-1-1(71)• 
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Here we have abbreviated IQ/A  to K, and the last equality follows from 
the general fact 

en(g(D))= 

c7,(9)+ (r - n +1)D.c.--1(9)+ 

(r = generic rank 9), whence 

c,.+1(9(D)) = er+1(9), all divisors D. 

But now 

c(71_ 1).(1 - 1K)--1  

c(11_ 2)41- (1 -- 1)K). 1(1 - 1K)--1  

= c(1).(1 -K)-4.(1 - 210-1.. • •.(1 -1K)-1  

= rr2(c(R1 71- 1,4,0ti m )).(1 - 10-.1.. • ..(1 - 1K)-.1  

7r;(1 - XI + x2  - • • • + (-1)gX9).(1 - K)-1.• • •.(1. - 1K) 

Thus 

(7.6) 
7r*(1 - 	+ X 2  - • • • + 	1rXg).(1 - 

If we define 13/4 as a cycle as 71-.(14/1), we get also 

(7.7) [W/]Q =(g 
- /)th-component of 

(1 - XI  + a2 - • • • + (-1)9X0.7r.{(1 - K)-1  .....(1-1K)-4]. 

This shows that [147/ ]Q  is a polynomial in the tautological classes xi. Pre-
sumably the coefficient of frci  is always non-zero and hence we can solve for 
the rci 's in terms of the classes [Wj], but this looks like a messy calculation. 

Let's work out the hyperelliptic locus )1 as an example. Note that 

141; vv2 

(r - 
2  
n + 2) 2en_2(g) 	(r) Dn  

j 

[W ;1Q =(g - 1 + 1)st  component of 

is a covering of degree 2g +2 because for all hyperelliptic curves C, there are 
exactly 2g + 2 points x such that h°(0G(2x)) > 2 - namely the Weierstrass 
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2g + 2 (1 — X + • • • + (-1)9  Xt,) zr*  ((1 — K)
—

'• (1 — 2K)-1) 

1 
= 

2g + 2 
{(2g — 1)kg_2 — (2g-1  — 1)x, K9_3 + • • •± 

(-09-3  • 7 -X g _ 3  • tc3 +(-1)g-2  . (6g — 6)X9-2 }- 

Finally every hyperelliptic curve has an automorphism of order 2, so 

pr]. 2 • [M1(2 
1 

g + 1 
{(2g — 1)reg_ 2  — • • + (-1)9-2(6g — 2)X g_ 2 }. 

Part III: The Case g = 2 

§8. Tautological Relations in Genus 2 

First of all, let's specialize the calculations of Part II to the case g = 2 
and see what we have. From E, we get 2 elements 

Xi E A1(N2) 

X2 C A2(X2) 

and because ch2(E) = 0, we get 

X2 = X1/2. 

From K on C2, we get 

Kt E Ai(N2), 	i = 1, 2, 3. 

The calculations of §5 give us the relation: 

(8.1) 	 Xi  = 172-(K1  + 8). 

points. Thus 

PliQ = 	1  [W2k2 2g + 2 

1 	(g — 2)" component of 	{ 
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Here M 2  — .M 2  has 2 components Ao  and A t , Ao  the closure of the locus 
of irreducible singular curves, A t  the locus of singular curves C1  U C2, 

CI  n C2  = one pt., MCI) = pt (C2) = 1. By definition 

[Ao](2 + [Ar]Q• 

We shall write bo  for [Ao](2 and St  for [A11(2. We don't need (5.2) in 
codimension 3 but it provides an interesting check on the calculations later. 

It gives: 

 

6 	

[ 
X 	

2
I — XI X2  = ch3E = —

720 - 1 
its + • 2 	+ K2)2  — 3K1. K2) 

2 h=0 

Or 
1 

60X31  = 	
1 

+ —
2 	

- K1K2  + K22). 
h=0 

In 510b we shall work out these terms numerically and check this. 
We can refine the calculations of §6 by working out the boundary term 

too. It is easy to see that if C is a stable curve of genus 2, wc is generated 
by its global sections, unless C = Ct U 02, C1 n 02 = {P}, in which case 

.1(wc) generates mp • wc. Therefore, working over the whole of C2 we get: 

0 —■ ---,e7ro.veal s12 --+ IA:•we.m.--■ 0 

(following the notation of §5). ./,24 has two generators at every point, so its 
projective dimension is 1, i.e., 3 is locally free, hence invertible. Now use: 

0 	1.64 •W--■ W--OWOOA:---90 

and the fact that via residue, w is trivial on the double cover Ail  of 

hence w2  is trivial on Asp  It follows that 

c(7) = A-11 + X1 + X2) • (1 + 	 OA:). 

A useful lemma that we can use here is: 

Lemma 8.2. If Y C X is a local complete intersection of codimen- 
sion 2, and i: Y 	X is the inclusion, then 

c(Or) = 1 — i.(c(/y/4)-1). 
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Proof. If Y = D1.D2 globally, then this formula is easily checked. But 
by the G-R-R, 

c(0y) = 1 + i*  (univ. polyn. in c j(/P 2 ), c2(///2)) 

and the universal polynomial must be c(///2)-1  because the two are equal 
whenever Y = D1.D2. 

As in §5, D1 = M1,1 X N1,1, i.e., there is a 2-1 map: 

it 	1,1 X 

and iI(///2) = K1  -I- K2. Thus 

. 
c(OA.) = 1 — 1 • 21,((1 — K1  — K2)-1). 

Thus 

c(j) =T11+ X1+ X2)- 

(1— K + K 2  — K 3  + K 4)-(1— .210 (1+ K1  + K2  + K1• K2)). 

In particular, 

0 = c2(J) = 7r+ X2 — K.7r*Xi  + K2  — [•64]2• 

Multiplying this by K and K2, we get even simpler formulae: 

0 = K • 7r*X2  — K2  • 7r*Xi  + K3  

0 = K2  • 7r*X2  — K 3  • ir'X1  + K4. 

Taking 7r* , this gives 

frc i  = 2X1  + bl  

K2 = K1 • X1 2X2 = X1 ' (X1 + 451) 
1, 2,, 

1C3 	IC2X1 	K1 A2 	-2 Ailoi)• 

(8.3) 
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Combining (8.1) and (8.3), we see that both xi  and X1  are expressible in 
terms of bo, 

(8.4) 
	

iox t  = 50  + 261 

(8.5) 	 5K1 = bo + 761. 

As rci  is ample, this implies the well-known fact that .M 2  is affine! 
This relation (8.4) has a very simple analytic proof. Consider the modular 

form of weight 10 on Siegel's space )12  given by 

f(Z) -=[ II  O[6](0, Z) 
a,b even 

	

12 

(Each 0 has weight 1/2 and there are ten even a, b's.) It vanishes on )12 
precisely when 

-yZ = V) (Z  2
2  

1 	), some -y• E Sp(4, 7L) 

and then to order 2. At the principal cusp 

(moo w) 
kw z 

it has the form 

[1 12  [i 
(unit) 0 	• 0 

0 0 	0 
= (unit) • (eri(112  Sill 18 

= unit • e21̀ inii 

0
1

2 
op_ 012  01-1 

1.0 1] 11 

i.e., it vanishes to order 1. Thus f defines a section of (A2 E)®10  whose 
zeroes in .M 2  are 2A1  Ao. This reproves (8.4). 

§9. Generators of A.(N2). 

We use the exact sequence: 

A.(Y) A.(X) A.(X — Y) —* 0 
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(Y C X closed subvariety) to get generators of A.(M2). Recall that .M2 is 
known from Igusa's results [I] to be isomorphic to C3  modulo 7L/57L acting 
by 

(x, y, 	(cx, c2 x, c3y)• 

Then 
A.(C3) A.(M2) 

is surjective, hence Af,(.M 2) = (0), if k < 3. Thus 

Ak(A0) ®Ak (A1) -+ Ak(N2) 

is surjective if k < 3. In particular, A2(M 2) is generated by 80  and 51. 
Define the dimension 1 subsets: 

Aoo= closure of curve in .M 2  parametrizing 

irreducible rational curves with 2 nodes 

AonAi 
= Curve in R2  parametrizing curves Co  U C2, 

where Cl  n C2 = {x}, Cl is elliptic or 
rational with one node and 

C2  is rational with one node 

curves in A00  curves in Aoi 
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Note that Aoo  contains, besides the irreducible curves illustrated, the two 
reducible curves 

C000: 

Cool : 

Int A i  -= (Ai — Doi) is the locus of curves C1  U C2 where C1 fl C2  = {x}, 

C1, C2 smooth elliptic. It is isomorphic to Symm 2 .M1,1, i.e., to the product 
of the affine j-line by itself mod the involution interchanging the factors. 
Therefore it is coordinatized by j(Cl ) + j(C2), j(C1).j(C2): 

Int A I  ------ C2 . 

Moreover, Int Ao  = Ao — (Aoo U A01) is the locus of irreducible elliptic 
curves with one node, i.e., the space .M1,2  of triples (E, xi , x2), xi, x2  E E, 

xi 	x2  mod the involution interchanging the 2 points. Write all elliptic 
curves as 

y2  = x(x — 1)(x — X), X 0, 1 

and take x1  = pt. at co, x2  = (x, y). Interchanging x1, x2  carries (x, y) to 

(x, —y). So we get a surjective map 

{(x,  X) I X 	0,1} 	Int Ao. 
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Putting this together 

Ak(Ai — Aoi) == (0), k < 2 

Ak(Ao — (Am U Am)) = (0), 

Thus Ai(72) is generated by: 

Soo = [Aoo]Q 

and 

k < 2. 

Sot = [Aot]Q• 

Finally, 7 2 is unirational so all points of 7c 2  are rationally equivalent 
and we have proven: 

Proposition 9.1. 	.M 2  is the disjoint union of 7 cells: 

= M2 1.1 Int Ao II Int At II Int A00 II Int Aoi  11{C000} ll{Cool}. 

Correspondingly, A'(M2) is generated by 

a) 1 in codimension 0, 

b) So, Si  in codimension 1, 

c) Soo, Sot in codimension 2, 

d) the class [x] of a point in codimension 3: call this p. 

Note that by the results of §8, X1  and xi are also generators in codimen-
sion 1. We shall see that all the above cycles are independent. This will 
follow as a Corollary once we work out the multiplication table for these 
cycles. 

§10. Multiplication in AI7 -2) 

We shall prove: 

Theorem 10.1. 	The ring A'(72) has a Q-basis consisting of 1, So, 



AN ENUMERATIVE GEOMETRY OF THE MODULI SPACE 	321 

Si, Soo, Sot , p and multiplication table: 

og = —5  
3

600 — 28ot 

bo • 61 =Sot 

1 
621 = 12Sot 

1 
bo • Soo = — 47) 

1 
So • 601 = —4P 

1 
61 • Soo = — 8— P 

1 
61 • bot 	— 48P 

An easier way to describe the ring structure is via X1. Using the identities 
10X1  = 80  + 281, we can describe the multiplication by: 

a) 60 • 61 	6ot 

1 
b) Soo • 61 = 8P 

c) Ooo • X1 = 0 

1 
d)SI X1 = —

12 bot 

1 
e) So • X1 = —6800• 

The reader can check that these are equivalent to the relations of the 
Theorem. 
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Relations (a) and (b) are proper intersections of cycles and are proved by 
the explicit formula of §3: thus (a) follows because the lifts of 80, 81  to the 
universal deformation space of a curve C E Aoi  are smooth divisors meeting 
transversely in the smooth curve lifting A0i . And for (b), A00 fl Al is the 
one curve C001  whose automorphism group has order 8. In the universal 
deformation space of C001, A00  and Al  lift to a smooth curve and surface 
meeting transversely, so 

1 
800.81 = [Cool]c2 = e• 

c) is an immediate consequence of the general theory of Knudsen [K] or of 
the fact that 600 is blown down to a point in the Satake compactification 
.4:12̀ of A2. To prove (d), consider 

i .M1,1 X M1,1 -4 01 C ,A42. 

We check that iI(X1 — 112-80) = 0, hence (X1  — 1-2-80).6i = 0. But 

i;(X12)) = 74(0 + p2(1") 
where, for the sake of clarity, we write 

XV)  = the class X1  in A.(7f2) 
XV )  = the class X1  in A.(Ni.,1). 

This is simply because on curves E1 U E2, E1 elliptic, E1  fl E2 = one point, 

r(Ei  u E2,w.E.uE2) = r(Ei,wEi) r(E2,wE.). 

Moreover, 

a5(02)) = 14(8,0) + 74(5,0). 

But in A*(Ni,i), the relation 

1 
= —126 

holds. This is well known and is just the specialization to genus 1 of the 
theory of §5. Or else it may be seen using the elliptic modular form A of 
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weight 12 with a simple pole at the cusp. Finally, to prove 	consider: 

io: N1,2 	AO C R2. 

Then i0,*(1—)412 ) = 280. One should be careful here to note that the 

presence of automorphisms generically on N2 does not affect this: in fact 

= jo,*(Fil1,21) 

= [Ao] (because M1,2 	A0  is birational) 

= 250  (because Aut(C) = 7Li27L, [C] E 6.0 generic). 

Therefore 

Now let 

1 
X1.4 2 = 	• io,*(13--42  ) 

1
, 

N1,2 -4  .1%41,1 

be the natural projection. Note that .M1,1  is the Pine and M1,2  is the 
universal family over the j-line of elliptic curves mod automorphisms. Then 

i0(x(12)) = 7rIxil)) 

by Knudsen's theory. This corresponds to the fact that if E' is elliptic with 
one node P, and E is the normalization of E', then there is a canonical 
sequence 

0 r(wE) 	r(wEi) r8■ k(P) 	0 

hence A2 (F(wEi)) = F(LoE). Therefore 

x1.8o  = 
1. 

 

24
j0,* (7r*  (6(1))). 

But 7r*(8(1)) = [a], [a] C N1,2 being the closure of the locus of triples 
(C, xi , x2 ), C a rational curve with a node, xi , x2  distinct smooth points 
of C. a maps birationally to 6100  in .M 2, and the automorphism group of 
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the generic rational curve with 2 nodes is (//272)2, hence: 

1 = 24 [A oo] 

1 
= — coo. 

Q.E.D. 

§10b. A Check 

An interesting check that these Q-stack-theoretic calculations are OK is 
to evaluate all terms in the identity 

1 
60x31 = re3 + —

2 
E 	- K11C2+ 

obtained in §8. Using Theorem 10.1, one finds 

3 	1  60X = Tie •  

Using (8.3) plus theorem 10.1, one finds 

1 

To calculate 

,c3 	 • 1152 P  

Kilf 2 + 

let 7r: 7t1,2 	N1,1 be the natural map and in Xi 1,2 consider the points 
7r-1([E]), i.e., representing (E, xi, x2), with E fixed. Up to automorphisms 
of E, x1 can be normalized to be the identity. Letting x2 vary, we parametr-
ize this subset of .M1,2 by E itself, and describe the universal family of 
triples (E, xi, x2) as E X E over E with x1 being given by .91(x) = e(x), x2  
by the diagonal s2(x) = (x, x): 

h=0 



B(e,e)(ExE) 
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EXE 

E 

  

However, this allows xi = x2 over e E E, where we should have instead 
E U P1, xi, x2 E P' — E n P', xl 	x2. Thus we must blow up 
(e, e) E E x E, getting: 

Si 
	

j  S2 

1 
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This is now a family of 2-pointed stable elliptic curves. The conormal 
bundle Ki  to si  is OE(+e). Thus on .M1,2 , the invertible (2-sheaf 0(Ki), 
restricted to the fibres over M1,1,  is 0—x i.(+Ei) where E1  C .M1,2  is the 

locus of 2-pointed stable curves: 

	

X2 	 V- 

Therefore K1  ==. K2  = 7r*(A) + E l, for some Q-divisor class A 
on .M1,1. But along El, a canonical coordinate can be put on P I  making 
E n [pi = {00}, x1  = 0, x2  = 1, hence 0-gi, (Ki), restricted to El, is 

trivial. Now 7T * 0--( X 1) - .M2,1/.M -I,i' hence the conormal bundle to E i   
is 0(X1). This proves: 

K1  = K2 = 7r*(X1) + El. 

Therefore 
— K !K2 	-=-- 7r * Xi. • Ei 

= 
2 

—
1

n-*(5.Ei 

1 
= 24 p 

hence 

2 	
1 —i0*(K1— K1K2 	

, 
= 

Finally to calculate 

Ki1C2+ 
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note that on M1,1 X Rio., Ki = K2 = 0, and Ki is the pull back from 
.M1,1 of Xi. Since Xi  

1 	 1 . 
—2 ii'.(K1 — K1K2 + K1) = — ( 

1 1 
2 	24 24 P)  

1 
	 • 1152 P  

This checks! 
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