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capear todo lo que supone hacer el doctorado y todos los buenos momentos, desde la escapada
a Bled con los colegas de Invisibles hasta la estancia de Berkeley. Pero sobre todo gracias
por mostrarme otra forma de ver la vida. Gracias también mis otras hermanas de doctorado,
Ilaria y a Sara, y a mi hermanastra, Raquel, por enseñarme distintos aspectos sobre gravedad
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y por ser mi compañera de viaje. Por eso muchos de estos agradecimientos tienen que ver
contigo. Tu contribución a esta tesis (además del dibujito del instanton) está presente en todos
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Abstract

Despite the great success of the Standard Model of Particle Physics in describing Nature, it
cannot account for some crucial experimental observations and theoretical issues. Therefore,
the Standard Model requires to be extended. This thesis is devoted to the study of two of the
theoretical issues: the absence of CP violation in the strong interactions, e.g. the strong CP
problem, and the tantalizing pattern of masses and mixings of the elementary fermions, that
is, the flavor puzzle. For both problems, novel (ultraviolet complete) dynamical solutions are
proposed. Complementarily, the model-independent techniques of effective field theories are
applied to chart new territory in parameter space.

In the flavor arena, the leptonic flavor symmetry of the Standard Model is gauged, promoting
the Yukawa couplings to dynamical fields. The results of this theory are compared with those
expected from the effective ansatz of minimal flavour violation.

In the strong CP arena, two composite (dynamical) axion solutions to the strong CP problem
are proposed: in a first work the axion mass is raised in a framework with an unified strong
sector, while in a second work an invisible axion with an accidental Peccei-Quinn symmetry is
constructed.

In addition, new regions in parameter space for the effective couplings of axions and axion-
like particles are explored. In particular, this thesis goes beyond the one-coupling-at-a-time
approach, considering the simultaneous effect of several effective couplings: the axion coupling
to electroweak gauge bosons and the gluonic coupling in the first work, and the full bosonic
electroweak basis for a generic axion-like particle without gluonic coupling in the second one.



Resumen

A pesar del gran éxito del Modelo Estándar de la f́ısica de part́ıculas a la hora de describir
la naturaleza, todav́ıa existan ciertas observaciones experimentales y enigmas teóricos que este
paradigma no es capaz de acomodar. Por ello el Modelo Estándar debe ser ampliado. Esta
tesis se ha centrado en el estudio de dos de estos enigmas teóricos: el problema CP fuerte y la
desconcertante estructura de masas y parámetros mezcla de los fermiones elementales, el llamado
puzle del sabor. Para ambos problemas, se han propuesto nuevas soluciones dinámicas completas
en el ultravioleta. De forma complementaria, se han aplicado las técnicas de teoŕıas efectivas
de campos, que permiten no depender del modelo concreto, para explorar nuevo territorio en el
espacio de parámetros.

En el campo de la f́ısica del sabor, se ha convertido la simetŕıa de sabor del sector leptónico en
una simetŕıa gauge. Para ello, los acoplos de Yukawa de los leptones son considerados campos
dinámicos. Los resultados de esta teoŕıa han sido comparados con los esperados del tratamiento
efectivo basado en la hipótesis de violación mı́nima del sabor .

En el campo del problema CP fuerte, se han propuesto dos soluciones de tipo axión compuesto
(dinámico): en un primer trabajo la masa del axión es aumentada en una teoŕıa con el sector
fuerte unificado, mientras que en un segundo trabajo se ha construido una teoŕıa de axión
“invisible” en la que la simetŕıa de Peccei-Quinn surge de forma accidental.

Además, se han explorado nuevas regiones del espacio de parámetros de los acoplos efectivos
de axiones y part́ıculas de tipo axion. En particular, esta tesis ha ido un paso más allá del
tratamiento en el que los efectos de cada acoplo son considerados de forma independiente para
estudiar los efectos de la presencia simultánea varios acoplos efectivos: el acoplo del axión a los
bosones electrodébiles y el acoplo gluónico en el primer trabajo, y la base bosónica electrodébil
completa para part́ıculas de tipo axión genéricas en el segundo.
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Motivation and goals

The Standard Model of particle physics (SM) is one of the greatest achievements of scientific
endeavor. This theory brings together special relativity and quantum mechanics, in a consistent
theory describing three of the four fundamental forces of the Universe: strong, weak and
electromagnetic interactions. It also includes the full set of fundamental particles that compose
all the known Universe. This theory has been able to explain essentially all experimental facts
of the visible Universe and predict a large variety of phenomena below the TeV scale with an
unprecedented accuracy.

The fourth fundamental interaction, gravity, governs the dynamics of large scale structures
and it is satisfactory described at the classical level by the theory of General Relativity (GR).
Within this framework, and thanks to recent astronomical data, a new era of cosmology has
been opened. Fundamental questions related to the origin and evolution of the Universe, that
have been historically in the realm of Philosophy, can now be addressed scientifically. Moreover,
with the discovery of gravitational waves by the LIGO and Virgo collaborations (a long-time
prediction of General Relativity) a new window to explore the Universe has been opened.

Nevertheless, despite the great success of the SM and GR in describing nature, there are still
experimental observations that cannot be accounted for:

• Dark Matter: Around a 25% of the energy budget of the Universe is most plausibly
composed by a new type of matter that the SM does not account for.

• Dark Energy: The accelerated expansion of the Universe that has been observed can
be included in the GR Einstein’s equations via a cosmological constant term. The energy
involved in this acceleration amounts to ∼70% of the energy of the Universe and its nature
remains unknown.

• Matter-antimatter asymmetry: The observed Universe is almost entirely made of
matter and comparatively not much antimatter. The SM interactions are not completely
equivalent for matter and antimatter, but this asymmetry alone does not suffice to explain
the observed asymmetry.

• Neutrino masses: Within the SM, neutrinos are massless. However, the measurement
of neutrino oscillations implies that at least two neutrinos are massive and the SM needs
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to be extended to account for this fact. In particular, it also remains unknown whether
neutrinos are Majorana or Dirac particles.

Apart from these well-established experimental facts that remain unexplained by the SM, there
are also some unsatisfactory issues of our theoretical description of nature that have fostered
active research in particle physics. They correspond generically to fine-tunings in the parameters
that describe the different SM interactions and represent interesting hints that guide us in the
search for new physics. Indeed, the quest to explain small parameters has been shown in the
past to be an exceptional tool to gain a deeper understanding of nature. The main such tensions
or fine-tunings are:

• Electroweak hierarchy problem: The lightness of the Higgs particle is not well
understood, since its mass is not protected by any symmetry, and it is expected to be very
sensitive to high-energy extensions of the SM. The Higgs mass can still be accommodated
within the SM, at the cost of a severe fine tuning in the parameters.

• Flavor puzzle: While quark and charged lepton masses present a large hierarchy,
neutrinos do not. Furthermore, the mixing is small in the quark sector while large in the
leptonic one. This tantalizing pattern of masses and mixings of the elementary fermions
composing the visible universe calls for an underlying explanation.

• Strong CP problem: The fact that the strong interactions do not seem to violate the
CP symmetry is not well understood, since this symmetry is indeed violated in the weak
sector. Or in other words, why is the θ-parameter describing the QCD vacuum so small,
θ̄ < 10−10? Again this fact does not contradict the SM since it can be accommodated but
at the cost of a fine tuning.

My research within this thesis has been mainly devoted to these last two issues: new dynamical
solutions to the strong CP problem and to the flavor puzzle; and their phenomenological
consequences have been examined.

As guiding principles, symmetries and the promotion of couplings of the SM to dynamical
fields will play a crucial role in this thesis. Particularly important will be anomalies, i.e. classical
symmetries that do not survive at the quantum level, since their cancellation in gauge theories
provides a robust consistency condition and also are essential in axion solutions to the strong
CP problem.

Symmetries, and in particular, gauge symmetries have led to our understanding of particle
dynamics. Indeed, the gauge sector of the SM requires only 3 free parameters of order one, i.e.
the interaction couplings, while being highly predictive in terms of number and properties of the
particles mediating the interactions (the gauge bosons) and the nature and strength of them.
On the other hand, the flavor sector has been built completely ad hoc requiring 20 parameters in
order to reproduce fermion masses and mixings. The only available method grasp to understand
the fermionic matter content of the SM is, again, the gauge principle: complete families are
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required by the cancellation of gauge anomalies. This provides consistency conditions on the
hypercharges and gauge representations of the SM fermions. These cancellations occur within
each generation, though, and hence they fail to explain the origin of the three generations and
their Yukawa couplings. In the same way that the distinct structure of the periodic table of
elements could be understood in terms of electronic configurations in atomic orbitals, the peculiar
pattern of masses and mixings in the fermionic sector calls for an underlying explanation.

Given the success of symmetries in explaining our most fundamental knowledge of nature, it
seems very suggestive to try to explain flavor through a symmetry principle. In this direction,
the flavor group of the SM, i.e. the global symmetries of the SM in the massless fermion limit,
may offer a hint. A ground-breaking possibility is to promote it to a gauge symmetry. This was
first attempted in Ref. [7] for the quark sector and we will extend it in Chapter 4 for the lepton
sector. Within this framework, the Yukawa couplings are promoted to dynamical fields whose
vacuum expectation values (vevs) spontaneously break the flavor group and generate the mass
and mixing pattern. The gauging of the lepton flavor group is considered in the Standard Model
context and in its extension with three right-handed neutrinos. The gauge anomaly cancellation
conditions will be shown to lead to a Seesaw mechanism as underlying dynamics for all leptons,
requiring Majorana masses for the neutral sector.

Closely related to the flavor structure of the SM, another problem arises: that of the absence
of CP violation in the strong interactions. Measurements of the electric dipole moment of the
neutron imply that the strong CP phase θ̄ (containing a phase from the quark mass matrix)
is very small θ̄ < 10−10, and the lack of an explanation of such small value is the so called
strong CP problem. Again symmetries and, in particular, anomalous symmetries could shed
some light on this problem, and the solution may lie in the Peccei-Quinn (PQ) mechanism [8,9].
This solution introduces a U(1)PQ symmetry which is anomalous under QCD and allows one to
fully reabsorb the θ̄-parameter, making it unphysical and solving the strong CP problem. As
a consequence of this mechanism, a new pseudoscalar degree of freedom arises, the axion. The
QCD axion is necessarily very light so as to avoid phenomenological constraints with a large
decay constant. Although the QCD axion solution was proposed in the 1980’s, it is currently a
very active topic of research and new ideas both in the theoretical and experimental sides are
being proposed. In this context, a change of perspective is spreading. One of the theoretical
avenues to allow PQ solutions with low scales consists n relaxing the tight relation between the
axion mass and scale by introducing new confining forces that generate a large mass for the
axion without spoiling the strong CP solution. In Chapter 5, we will develop a new solution
to the strong CP problem via massless fermions and color unification, where a composite axion
with large mass arises, due to the extra mass contribution of the small-size instantons of the
unified color group. Consequently, the strong CP problem is solved while no axion remains at
low scales.

These type of heavy axion models allow one to lower the axion scale, solving one of the issues
of QCD axion models: that of the PQ quality. Indeed, QCD axion models typically require
the PQ symmetry to be imposed in the Lagrangian, therefore new physics at high scales could
induce effective operators that break the PQ symmetry spoiling the Strong CP solution. This
constitutes the so-called PQ quality problem. In particular, effective operators stemming from
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non-perturbative gravitational corrections have been considered as a possible threat to QCD
axion models, when the scale fa is not very far from the Planck scale. Alternative to lowering
the axion scale as in heavy axions, models in which the PQ symmetry arises accidentally can
be protected against these operators. Several setups have been proposed in the literature,
implementing an accidental PQ symmetry for that purpose. Nonetheless, they typically require
extra symmetries either gauge or discrete ones. In Chapter 6 we study a new theoretical proposal
in which a minimal composite axion arises from the confinement of a chiral gauge SU(5) with two
massless quarks. Gauge anomaly cancellations again guide us in terms of the representations of
the exotic fermions under the SU(5) group, 5̄ + 10 being the simplest anomaly free combination.
Within this setup, a PQ symmetry arises automatically as a consequence of gauge symmetry
and chirality and presents an inherent protection from quantum gravitational corrections.

Nevertheless, axions are not the only well-motivated scalar extensions of the SM. The discovery
of the Higgs boson, probably the first fundamental scalar particle, has finally completed the
SM with its last missing piece. At the same time, it has opened new territory, the Higgs
particle may not be the only fundamental scalar, and new spin zero particles may be awaiting
discovery. Indeed, (pseudo)-scalars appear in plenty of theories that go Beyond the SM (BSM),
such as extra dimensions, majorons, flavor models à la Froggatt-Nielsen, string theory, etc.
They appear commonly in tight connection with hidden symmetries, or spontaneously broken
symmetries. These kinds of spin zero particles, when CP odd (i.e. pseudoscalar), are typically
called axion-like particles (ALPs). Strikingly, both axions and ALPs represent, in large regions
of the parameter space, excellent candidates to explain the nature of Dark Matter (DM), even
if motivated by other problems.

Axions and ALPs have been mainly probed through their coupling to photons, fermions and
gluons. Nonetheless, in the current context in which new theoretical ideas are being put up
such as heavy axion models or photophobic/nucleophobic axions, it is pertinent to also study
the putative couplings of axions and ALPs to electroweak (EW) gauge bosons. In Chapter 7,
we have studied these axion couplings. Using effective field theories (EFTs), we computed for
the first time the model independent contribution to the axion couplings to EW gauge bosons,
stemming from the mixing of the axion with the neutral mesons. Furthermore, we perform a two-
coupling-at-a-time phenomenological study, where the gluonic coupling together with individual
gauge boson couplings are considered.

Regarding the experimental detection of axion and ALPs, flavor physics plays a very important
role. Within the SM, Flavor Changing Neutral Currents (FCNCs) are only possible at loop level
and are highly suppressed due to the Glashow-Iliopoulos-Maiani (GIM) mechanism, in agreement
with the experimental constraints. Flavor observables are so precise that they provide a very
powerful tool for the search of New Physics, since effects that correspond to UV complete theories
at energies of even 105 TeV can compete with the suppressed SM contributions, and therefore be
accessible by current experiments. In particular, K- and B-meson decays provide an exceptional
tool to probe the axion and ALP parameter space. In Chapter 8, we study the signals of ALPs in
FCNC processes, considering the most general effective linear Lagrangian for ALP couplings to
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the electroweak bosonic sector, and computing its contribution to FCNC decays up to one-loop
order.

In the first part of this thesis – Chapters 1 to 3 – the SM, the strong CP problem and axions
and ALPs are reviewed, whereas the original contributions of the thesis are contained in the
second part, Chapters 4 to 8.



Part I

Foundations



CHAPTER

1 The Standard Model

The Standard Model of particle physics encompasses our current knowledge of both the matter
content of the visible Universe and the three fundamental interactions that have been understood
at the quantum level: strong, weak and electromagnetic interactions. It is a particular realization
of a Quantum Field Theory (QFT) in which symmetries play a fundamental role. On the one
hand, the particles are understood as excitations of more fundamental degrees of freedom, fields
that correspond to different representations of the Lorentz symmetry group: scalar (spin-0)
for the Higgs, fermionic (spin-1/2) for quarks and leptons, and vectorial (spin-1) for the gauge
bosons. On the other hand, interactions among these fields are determined by a local (spacetime
dependent) symmetry: the gauge symmetry.

Based on the fundamental principles of locality and causality, and with Lorentz and gauge
symmetries at its core, the SM has faced a variety of experimental tests with astonishing success.
Its extremely accurate predictions can be beautifully condensed in the following Lagrangian:

LSM = Lgauge + LDirac + LYukawa + LΦ + Lθ+

=− 1

4
GµνA GAµν −

1

4
Wµν
a W a

µν −
1

4
BµνBµν

+ iQL /DQL + iUR /DUR + iDR /DDR + i`L /D`L + iER /DER

−QLYuΦ̃UR −QLYdΦDR − `LYeΦER + h.c. (1.0.1)

+
(
DµΦ

)†
DµΦ + µ2Φ†Φ− λ

(
Φ†Φ

)2

+ θ
αs
8π
GµνA G̃Aµν ,

where Gµν , Wµν and Bµν stand for the field strengths of the groups SU(3)c, SU(2)L and U(1)Y ,
respectively. Φ is the Higgs doublet, QL and `L are the left-handed (LH) quark and leptonic
doublets, and UR, DR and ER stand for the right-handed (RH) up, down-type quark singlets
and leptonic singlet, respectively.

In the following we will briefly review the key aspects of the SM and then focus on some
general aspects of symmetries in QFT.
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1.1 The gauge sector

Gauge theories have incredible richness and complexity. They are highly predictive in terms of
the number and properties of the particles mediating the forces and nature of the interactions.
The SM gauge group is

GSM = SU(3)c × SU(2)L × U(1)Y , (1.1.1)

where each symmetry group is associated with a fundamental force of nature: SU(3)c
corresponds to the strong interactions described by Quantum Chromodynamics (QCD) and
SU(2)L × U(1)Y corresponds to the unified electroweak interactions. The number of bosons
that mediate a particular interaction corresponds with the number of infinitesimal generators of
the group associated to it. Thus, the SM includes 8 massless gluons Gaµ mediating the strong

interactions, and four gauge fields in the electroweak sector W b
µ, b = 1, 2, 3 and Bµ.

SU(3)c : GAµ , A = 1 = 1, ..., 8

SU(2)L : W a
µ , a = 1 = 1, 2, 3

U(1)Y : Bµ . (1.1.2)

The kinetic terms of the gauge bosons in the Lagrangian of the SM are given by

Lgauge = −1

4
GµνA GAµν −

1

4
Wµν
a W a

µν −
1

2
BµνBµν , (1.1.3)

where Gµν , Wµν , Bµν stand for the field strengths:

SU(3)c : GAµν = ∂µG
A
ν − ∂νGAµ + gsfABCG

B
µG

C
ν ,

SU(2)L : W a
µν = ∂µW

a
ν − ∂νW a

µ + g εabcW
b
µW

c
ν , (1.1.4)

U(1)Y : Bµν = ∂µBν − ∂νBµ ,

and g and gs are the weak and strong coupling constants, and fABC and εabc are the structure
constants of the generators of the non-abelian groups SU(3)c and SU(2)L, respectively.

This first part of the Lagrangian describes massless mediator bosons and their self-interactions
(only present in the non-abelian groups). However, this description is not complete since it does
not account for the fact that the short range of the weak interactions indicates that the W and
Z bosons are massive. An explicit mass term for the gauge bosons would break gauge invariance
so the introduction of an electroweak symmetry breaking sector is needed. Within the SM this
problem is explained through the famous Brout-Englert-Higgs mechanism [10–12], that assumes
that the Lagrangian remains gauge invariant while the vacuum of the theory (i.e. the ground
state) is not. This mechanism introduces a SU(2)L scalar doublet, the higgs boson Φ, that
transforms under the gauge group as shown in the Table 1.1. The most general renormalizable
Lagrangian involving the Higgs doublet reads,

LΦ =
(
DµΦ

)†
DµΦ + µ2Φ†Φ− λ

(
Φ†Φ

)2
, (1.1.5)
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where the usual partial derivative ∂µΦ in the kinteic term has been substituted by the covariant
derivative DµΦ that ensures gauge invariance,

DµΦ =
(
∂µ + ig

σa

2
W a
µ + ig′

1

2
Bµ

)
Φ , (1.1.6)

where g′ is the coupling constant of the U(1)Y gauge group and σa are the Pauli matrices, i.e.
the generators of the SU(2)L group.

SU(3)c SU(2)L U(1)Y

Φ 1 2 1/2

Table 1.1: Transformation properties of the Higgs doublet under the SM gauge group.

The field configuration of Φ that minimizes the potential in Eq. (1.1.5), the ground state for
the scalar field, is not invariant under the EW group SU(2)L×U(1) for µ2, λ > 0. This implies
that the minimum of the Higgs potential does not correspond to a vanishing Higgs field. In
other words, the Higgs doublet develops a non-zero vacuum expectation value (vev), v,

〈Φ†Φ〉 = v2/2 = µ2/λ , (1.1.7)

and Electroweak Symmetry Breaking (EWSB) is induced. It should be noted that this breaking
is “spontaneous” rather than explicit. Indeed, the interactions in the Lagrangian are exactly
invariant under the gauge group and it is only the ground state, the vacuum, that does not
explicitly exhibit the symmetry. As a consequence, after expanding around true vacuum, the
gauge bosons develop a mass in a gauge invariant way,

(DµΦ)†(DµΦ) =
1

2
∂µh∂

µh+
(v + h)2

4
g2W+

µ W
−µ +

(v + h)2

8
(g2 + g′2)ZµZ

µ , (1.1.8)

where h is the physical Higgs boson and the four EW gauge bosons get mixed into the massive
weak gauge bosons W+, W−, Z0 and the massless photon Aµ,

W±µ ≡
1√
2

(
W 1
µ ∓ iW 2

µ

)
,

Zµ ≡ cos θW W 3
µ − sin θWBµ , (1.1.9)

Aµ ≡ sin θW W 3
µ + cos θWBµ .

These combinations are controlled by the weak mixing angle θW , which is related to the coupling
constants,

tan θW =
g′

g
, (1.1.10)

and whose value is fixed from experiments. It follows from Eq. (1.1.8) that the masses of the
gauge bosons are given in terms of the EW scale and the gauge couplings,

mW =
gv

2
, mZ =

√
g2 + g′2

2
, v =

1

cos θW
mW , (1.1.11)
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while the photon Aµ remains massless. This is a consequence of the fact that the EW group is
not completely broken by the Higgs vev; an abelian subroup of it, U(1)em, remains unbroken
and corresponds to the electromagnetic interactions, whose coupling constant reads

e = g sin θW = g′ cos θW . (1.1.12)

As a byproduct, this mechanism predicts the existence of a new particle corresponding to the
excitations of the scalar field around the minimum of the Higgs potential: the Higgs boson h in
Eq. (1.1.8), that was recently discovered in 2012 at CERN [13,14].

1.2 Matter content

While the particles that mediate the interactions can be predicted given the gauge group, the
structure of the matter content is not derived from any fundamental principle within the SM.
The basic building blocks of matter are all spin 1/2 fermions, that can be classified into quarks,
that feel both the strong and electroweak interactions, and leptons that only interact with the
electroweak force.

According to their observed interactions under the electroweak force, each family of quarks is
described by three fields, a SU(2)L doublet QL and two singlets UR and DR, whereas for leptons
two fields suffice, a doublet `L and a singlet ER of SU(2)L.

`L =






 νeL

eL


 ,


 νµL

µL


 ,


 ντL

τL







, ER = {eR , µR, τR}

QL =






 uL

dL


 ,


 cL

sL


 ,


 tL

bL







, UR = {uR, cR, tR} (1.2.1)

DR = {dR, sR, bR}
The way in which those particles interact with each other determines the transformation
properties of the corresponding fields under the gauge group (see Table 1.2). Observations
indicate that fermions appear in chiral representations with respect to the EW interactions
(LH and RH fermions transform differently), while strong and electromagnetic interactions are
vectorial and thus parity invariant. The fermions of the SM come in three different flavors or
generations (see Section 1.3), that have exactly the same interactions with the gauge bosons and
only differ among each other in their different masses and mixings. These differences and the
existence of three replicas define the flavor puzzle.

Given the representation under which the field transforms, the interaction terms can be
obtained by substituting the usual derivative by the covariant derivative in the kinetic term,
ensuring gauge invariance,

LDirac = iQL /DQL + iUR /DUR + iDR /DDR + i` /D`+ iER /DER , (1.2.2)
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SU(3)c SU(2)L U(1)Y

QL 3 2 1/6

UR 3 1 2/3

DR 3 1 −1/3

`L 1 2 −1/2

ER 1 1 −1

Table 1.2: Transformation properties of the fermionic field under the gauge group SU(3)c × SU(2)L ×
U(1)Y .

where /D = Dµγ
µ and γµ are the gamma matrices (generators of the Clifford algebra) and the

sum over the three generations of each field is implicit. The covariant derivative for each field
reads:

DµQL =
(
∂µ + igs

λA

2
GAµ + ig

σa

2
W a
µ + ig′

1

6
Bµ

)
QL ,

DµUR =
(
∂µ + igs

λA

2
GAµ + ig′

2

3
Bµ

)
UR ,

DµDR =
(
∂µ + igs

λA

2
GAµ − ig′

1

3
Bµ

)
DR ,

Dµ`L =
(
∂µ + ig

σa

2
W a
µ + ig′

1

6
Bµ

)
`L ,

DµER =
(
∂µ − ig′Bµ

)
ER .

The power of the gauge principle is at play here: not only the number and self interactions
of the gauge bosons is predicted, but also the interactions of all the fermions with the gauge
mediators, whose universal strength is completely controlled by only three parameters: the gauge
couplings gs, g

′ and g.

1.2.1 Fermion masses and flavor

In the fermionic sector, explicit masses for the fermions are forbidden by gauge invariance,
similar to EW gauge boson masses. Dirac mass terms correspond to the coupling of a left-
handed fermion with a right-handed one and, since weak interactions only affect left-handed
fields, a doublet scalar field is needed in order to build the needed chirality-flipping interaction.
These Yukawa-type terms are included in the most general renormalizable Lagrangian containing
fermions and the Higgs,

LYukawa = −QLYuΦ̃UR −QLYdΦDR − `LYeΦER + h.c. , (1.2.3)

where Φ̃ = iσ2Φ∗, and Yu, Yd and Ye are 3×3 matrices in flavor space. When the Higgs doublet
develops a vev and EWSB is triggered (Eq. (1.1.5)), these Yukawa interactions generate mass
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terms for the quarks,

LYukawa = −ULMuUR −DLMdDR − ELMEER + h.c. (1.2.4)

In general, the mass matrices Mu, Md, ME are not diagonal. By performing an appropriate
change of basis,

UL → V u
L UL , DL → V d

L DL , EL → V e
L EL ,

UR → V u
R UR , DR → V d

R DR , ER → V e
RER , (1.2.5)

the mass matrices can be diagonalized,

Mdiag
u = V u †

L MuV
u
R = diag (mu, mc, mt) ,

Mdiag
d = V d †

L MdV
d
R = diag (md, ms, mb) ,

Mdiag
e = V e †

L MeV
e
R = diag

(
me, mµ, mτ

)
,

(1.2.6)

where mi denote the observed quark and charged lepton masses. The set of transformations in
Eq. (1.2.5) corresponds to a unitary rotation for each Weyl fermion f , satisfying V f †V f = 1.
As a consequence, interaction terms of fermions with the photon, the Z boson and gluons that
correspond to neutral currents remain invariant under this transformation. However, charged
currents in the weak interactions involve simultaneously up-type and down type quarks, and
therefore are sensitive to some combination of these mixing matrices,

LCC =
g√
2

[
W †µ

(
ULγ

µ VCKMDL + νLγ
µEL

)
+ h.c.

]
. (1.2.7)

In particular, the relevant mixing matrix VCKM corresponds to the Cabibbo-Kobayashi-Maskawa
(CKM) matrix, that involves the unitary rotation of left-handed up- and down-type quarks,

VCKM = U †uLUdL,

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



. (1.2.8)

The elements of this matrix are physical and measurable in the weak interactions, see Eq. (1.2.7).
One of the predictions of the SM is the unitarity of the CKM matrix. Indeed, by independently
measuring its elements this prediction has been tested and, so far, there has been an excellent
agreement with the SM. Consequently, stringent bounds on BSM physics that induce deviations
from unitarity have been set.

At this point, there is no mixing in the lepton sector since Eq. (1.2.4) lacks a mass term for
neutrinos and therefore any unitary rotation of the charged leptons can be compensated by a
neutrino rotation in Eq. (1.2.7). Nevertheless, mixing in the leptonic sector has been measured
in the last two decades and, consequently, neutrino mass terms need to be introduced.
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1.2.2 Neutrino masses

Neutrinos only interact via the weak force and experiments have established that charged
currents only produce left-handed neutrinos (and right-handed antineutrinos) [15, 16].
Consequently, neutrinos can be described by a single LH Weyl fermion νL (and its conjugate the
RH antineutrino (νL)c), unlike all the other fermions which present a right handed counterpart
to each left-handed field . Due to its singular chirality, it is impossible to write a renormalizable
mass term for them, so within the SM neutrinos are strictly massless. However, neutrino flavor
transitions and oscillations have been experimentally established [17–19], and this phenomenon
requires neutrinos to have non-zero masses1. According to the latest global fit on neutrino data
within the three-flavor oscillation paradigm by the collaboration NuFIT [20], the best fit values
for the squared mass differences read2

∆m2
21 = (7.39+0.21

−0.20)× 10−5 eV2 , ∆m2
32 =





+(2.525+0.033
−0.031)× 10−3 eV2 NH

−(2.512+0.034
−0.031)× 10−3 eV2 IH

, (1.2.9)

where ∆m2
νij = m2

νj −m2
νi .

Nevertheless, oscillation experiments only allow one to measure the difference of squared
neutrino masses. This means that the absolute scale neutrino masses remains undetermined.
Yet, limits on the sum of neutrino masses can be obtained from cosmological measurements
such as the Cosmic Microwave Background (CMB) and Baryon Acoustic Oscillations (BAO).
The latest results by the Planck Collaboration set limits which vary in the interval

∑
mν <

(0.17−0.72) eV, depending on the considered dataset [19,21]. This bound should be taken with
caution, since it has been derived assuming only three light massive neutrinos and the validity of
the ΛCDM model (Λ for the cosmological constant, and CDM for Cold Dark Matter). Deviations
from the standard cosmological model that are currently allowed by data could invalidate the
bound. For instance, if the neutrino masses are generated dynamically at a relatively late epoch
in the evolution of the Universe, this bound would not hold [19,22]. For this reason, experiments
trying to directly measure the neutrino absolute mass scale become very relevant, even if they
set less stringent bounds. One of the oldest ideas consists of the measurement of the endpoint of
the electron spectrum in tritium beta decay. Following this approach, the experiments Troitzk
and Mainz [23,24] set bounds of mνe < 2.05 eV at 95% CL, which are expected to be improved
by the upcoming KATRIN experiment, reaching sensitivities of mνe ∼ 0.2 eV [25]. Another type
of experiments that could shed light on the neutrino mass scale (if they happen to be Majorana
particles) are those looking for neutrinoless double beta decay 0νββ, that so far has not been
measured [26–28].

The observation of neutrino masses constitutes one of the clearest pieces of evidence of the
existence of BSM physics that needs to be looked for. So far, the nature of neutrino masses

1At least two neutrinos have to be massive since two distinct squared mass differences, ∆m2
12 and ∆m2

23 have
been measured.

2The quoted errors correspond to 1σ, i.e. 68% Confidence Level.
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remains unknown, and the scientific community has tried to explain not only their character
but also an explanation of their smallness. Indeed, neutrino masses are at least five orders of
magnitude smaller than that of the electron and the rest of charged leptons. This suggests
that a new mass generation mechanism may be responsible for them. In order to account
for these observations, one can either extend the matter content of the SM or abandon the
renormalizability of the theory.

Let us first consider one of the simplest realizations of the first avenue and introduce three
right-handed neutrinos N i

R, that are singlets under the full SM gauge group, also called sterile
neutrinos.3 These new fermions allow one to write a Yukawa interaction of the leptonic doublet
with the Higgs that after EWSB generates a Dirac mass term for the neutrinos, in a similar
manner to the rest of the fermions. Furthermore, the RH neutrinos being SM singlets, a
Majorana mass term is allowed by the gauge symmetries of the SM,

Lν = −`LYνΦ̃NR −
1

2
NR

cMNNR + h.c. , (1.2.10)

where Yν is a 3×3 matrix in flavor space containing the Yukawa couplings similar to Eq (1.2.3),

MN is the symmetric 3×3 Majorana matrix and NR
c ≡ C NR

T
with C = iγ2γ1 being the

charge conjugation matrix. In the absence of the Majorana term, the Lagrangian possesses
a global U(1)L symmetry called Lepton Number (LN) under which each lepton is charged
(see Section 1.3), while the Majorana mass breaks LN by two units. After EWSB, the Dirac
mass term is generated, and the mass matrix for the neutrinos reads

Lνmass = −νLmDNR−
1

2
NR

cMNNR+h.c. = −1

2

(
νL NR

c
)

 0 mD

mT
D MN




 νL

NR


+h.c. ,

(1.2.11)
where mD = Yνv/

√
2. Note that MN is a free parameter; it is not protected by gauge invariance

and, in consequence, it can be arbitrarily large. The limit MN � mD corresponds to the famous
type-I seesaw scenario [31–34], in which the smallness of neutrino masses is not generated by
tiny Yukawa couplings but by a hierarchy between the two scales. After block diagonalizing the
matrix, the neutrino masses yield

mν ' −mT
DM

−1
N mD , mN 'MN , (1.2.12)

and one obtains an inverse proportionality relation between the heavy and the active neutrinos.
Assuming that neutrino Yukawa couplings are close to that of the top quark, Yν ∼ O(1), then
Eq. (1.2.12) requires the Majorana scale to lie close to MN ∼ 1014 GeV in order to reproduce
the observed light neutrino masses.

An alternative avenue to that of adding new matter content to explain neutrino masses is the
Effective Field Theory (EFT) approach. By introducing higher dimensional non-renormalizable
operators made out of the SM fields and respecting the symmetries, one can describe in a model
independent way the low energy effects of a ultraviolet (UV) theory with a characteristic high

3For a comprehensive review see [29] and [30].
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scale Λ. These operators are suppressed by powers of this large UV scale Λ and can be seen as
corrections to the known renormalizable theory. The higher the dimensionality of the effective
operator, the larger the power of the scale that suppresses the operator, therefore this framework
allows for a consistent perturbative expansion. Strikingly, within the SM matter content and
symmetries, there is a single operator at first order in the expansion (dimension 5), often known
as Weinberg’s Operator [35]. It is precisely this operator that generates Majorana masses for
the neutrinos after EWSB,

Ld=5 =
1

2
`LαΦ̃

Cαβν
ΛLN

Φ̃T `cLβ + h.c. −→ v2

2 ΛLN
νcLαC

αβ
ν νLβ + h.c. (1.2.13)

This operator naturally accommodates the smallness of neutrino masses since one typically
expects the new physics scale ΛLN to lie well above the EW scale, and thus the Weinberg
operator is strongly suppressed. By taking the EFT approach, a Majorana mass term for
light neutrinos has been obtained, like in the type I seesaw considered above. Indeed, these
two avenues are not unrelated since it is precisely the Weinberg Operator the one generated
after integrating out the heavy RH neutrinos in Eq. (1.2.11). Matching the low energy Wilson

coefficient Cαβν in Eq. (1.2.13) with the parameters of the high energy theory in Eq. (1.2.11),
the following relation is obtained

Cαβν
ΛLN

=
(
YνM

−1
N Y T

ν

)αβ
, (1.2.14)

that, in the simplified case of the right-handed neutrinos being degenerate and identifying the
BSM scale with the Majorana mass scale ΛLN = MN , corresponds to

Cαβν = (YνY
T
ν )αβ . (1.2.15)

Furthermore, the EFT approach being model independent, it may well also describe other
possible scenarios that generate Majorana neutrino masses. In particular, it allows one to
investigate systematically what kind on models could generate the Weinberg operator at tree
level by adding a single extra representation to the SM matter content. Precisely, there are
two other mediators4 from a UV complete theory that generate the Weinberg operator when
integrated out: scalar SU(2)L triplet in the type II seesaw [36–40] and a fermionic SU(2)L
triplet in the type III seesaw [41–47], as it can be seen in Fig. 1.1.

Regarding the testability of these minimal scenarios, it is important to note that they
generically predict new particles with masses close to the Grand Unification Theory (GUT)
scales, ∼ 1014 GeV, and therefore are out of collider reach. Nonetheless, it is possible to
naturally lower this scale (e.g. down to the TeV or even GeV) appealing again to symmetries,
in particular, an approximate U(1)L symmetry. These scenarios require an extended matter
content like in the inverse seesaw [48, 49] and the linear seesaw models [50] or in scenarios in
which the Weinberg operator is generated at loop level [51]. These low scale seesaw scenarios

4A scalar singlet, which would also be allowed by gauge invariance, is unable to generate the Weinberg operator
since Cαβν needs to be symmetric.
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Figure 1.1: The three types of seesaw model for tree level single mediators: type I mediated by a
fermionic singlet NR, type II mediated by a scalar EW triplet ∆L and type III mediated by a fermionic
EW triplet Σ.

are of phenomenological interest since the mediators can be accessible at current experiments
and can also leave their imprints indirectly in lepton flavor violating observables. Furthermore,
they are theoretically appealing as a Majorana scale . TeV would avoid a strong contribution
to the EW hierarchy problem from the heavy neutrino sector [52–54], see Fig. 1.2.

Figure 1.2: Contribution to the hierarchy problem stemming from RH neutrinos.

One of the mysteries of neutrinos is their Majorana or Dirac nature. If the Weinberg operator
is responsible for their masses, neutrinos would be Majorana particles, i.e. neutrinos would be
their own antiparticle. This would be a ground-breaking discovery since neutrinos would be the
only fundamental particles with Majorana character, which would prove that a two-component
description of a massive fermion is realized in nature. Also, Majorana neutrinos are one of the
best candidates to explain the matter-antimatter asymmetry of the Universe via leptogenesis
[55]. But neutrinos may well be Dirac if Lepton Number is not violated. In order to elucidate
this issue there are experiments trying to measure LN violating processes such as neutrinoless
double beta decay (for a review on 0νββ see for example Refs. [56,57]). So far no experimental
evidence for this process has been found, and the character of neutrinos still remains unknown.

Lepton mixing

Once neutrino masses are accounted for by one of the possible mechanisms explained above, a
mixing matrix in the lepton sector arises. Analogously to the CKM matrix, the missalignment
between the lepton mass eigenstates and the flavor or interaction eigenstates generates the so-
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called Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [17,58],

LCC =
g√
2

[
W †µ

(
νL U

†
PMNSγ

µEL

)
+ h.c.

]
, (1.2.16)

that controls flavor-changing processes in the lepton sector and in particular the phenomenon
of neutrino oscillations.

1.3 Flavor symmetry

Let us come back for a while to the pure SM. In the limit in which all the Yukawa couplings are
set to zero, the only terms in the fermionic Lagrangian are those in Eq. (1.2.2) and the theory
presents a large global symmetry: the flavor symmetry [59],

GquarksF = U(3)Q × U(3)U × U(3)D ,

GleptonsF = U(3)` × U(3)E , (1.3.1)

that corresponds to unitary rotations among the different generations or families for each field,
see Table 1.3.

SU(3)Q SU(3)U SU(3)D SU(3)` SU(3)E

QL 3 1 1 1 1

UR 1 3 1 1 1

DR 1 1 3 1 1

`L 1 1 1 3 1

ER 1 1 1 1 3

Table 1.3: Representations of each fermionic field under the non-abelian part of the flavor group

1.3.1 Quark flavor

Once non-zero Yukawa couplings are taken into account, the flavor symmetry of the quark sector
is explicitly broken to baryon number,

U(3)Q × U(3)U × U(3)D
Mu,Md−−−−−−→ U(1)B . (1.3.2)

In order to compute the physical degrees of freedom of the flavor sector, it is pertinent to consider
the classical symmetries of the Lagrangian that are broken by the Yukawa couplings. Starting
with the quark sector, the Yukawa couplings Yu and Yd are n × n complex matrices, therefore
each one is determined by 2n2 real parameters. Some of those parameters are unphysical since
they can be reabsorbed by applying symmetries of the Lagrangian. In particular, to each
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symmetry that is solely broken by the Yukawa couplings, one parameter is removed. It follows
from Eq. (1.3.2) that there are three unitary symmetries (3n2 parameters) among which the
combination that corresponds to the unbroken baryon number cannot be employed to reabsorb
any parameter, since it leaves the Yukawa couplings unchanged. Therefore the number of
physical parameters of the Yukawa couplings in the quark sector is,

d.o.f.(Yu) + d.o.f.(Yd)− d.o.f.
(
U(n)3

)
+ d.o.f.(U(1)B) = 2n2 + 2n2 − 3n2 + 1 = n2 + 1 (1.3.3)

In the SM, there are three fermion families. It follows that the number of physical degrees of
freedom in the quark flavor sector is ten: the masses of the six different quarks5,

mu = 2.2 +0.4
−0.6 MeV , mc = 1.28± 0.03 GeV , mt = 173.1± 0.6 GeV , (1.3.4)

md = 4.7+0.5
−0.4 MeV , ms = 96+8

−4 MeV , mb = 4.18 +0.04
−0.03 GeV , (1.3.5)

the three mixing angles and the CP violating phase of the CKM matrix. Following the PDG
convention [19], these four parameters of the CKM mixing matrix can be parametrized as follows

VCKM =




1 0 0

0 c23 s23

0 −s23 c23







c13 0 s13e
−iδKM

0 1 0

−s13e
iδKM 0 c13







c12 s12 0

−s12 c12 0

0 0 1




=




c12c13 s12c13 s13e
−iδKM

−s12c23 − c12s23s13e
iδKM c12c23 − s12s23s13e

iδKM s23c13

s12s23 − c12c23s13e
iδKM −c12s23 − s12c23s13e

iδKM c23c13


 (1.3.6)

where sij = sin θij , cij = cos θij . The different elements of the CKM matrix have been measured
by a variety of experiments. The global fit obtained by the collaboration CKMfitter [60, 61]
gives the following result for the absolute value of the CKM elements:

VCKM =




0.97434− 0.00011 0.22506± 0.00050 0.00357± 0.00015

0.22492± 0.00050 0.97351± 0.00013 0.0411± 0.0013

0.00875+0.00032
−0.00033 0.0403± 0.0013 0.99915± 0.00005


 . (1.3.7)

The value of the CP violating phase according to the latest fit by Ufit is δKM = 69.2◦ ± 2◦

[62]. The CKM matrix is the only source of family changing transitions within the SM and has
several distinct properties. First, the fact that the CKM is close to the identity implies that
flavor changing processes will be suppressed by the small values of the off-diagonal elements.
Note that for these elements not to vanish, the masses for quarks of the same charge need
to be non-degenerate, and the mixing angles need to take non-trivial values. Second, Flavor
Changing Neutral Currents (FCNC) are absent at tree level. Indeed, the set of transformations
in Eq. (1.2.5) leaves neutral currents invariant due to unitarity (photons, Z-bosons and gluons

5We report MS quark masses from Ref. [19] at the scale µ = 2GeV for light quarks, and at µ = mq for
q = c, b, t.
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cannot mediate flavor violation). Therefore, in the SM, FCNC processes only appear at loop
level involving W-boson exchange. Furthermore, W-bosons only interact with left-handed
fields; chirality flips are thus needed to get a non-zero amplitude, and therefore FCNCs are
further suppressed by the Yukawa couplings (either quadratically or logarithmically). These
suppressions correspond to the so-called GIM mechanism [63] that was proposed by Glashow,
Iliopoulos and Maiani. It successfully explained the suppressed size of flavor transitions and
also allowed the prediction of the existence of the charm quark, whose mass was predicted by
Gaillard and Lee [64].

The CKM matrix induces CP violation as it contains one phase δKM, see Eq. (1.3.6). This
is just one possible choice of parametrization, hence it is interesting to build a quantity that
remains invariant under the flavor transformations and encodes the physical CP violation of the
electroweak quark sector. This quantity is the Jarlskog invariant [65,66],

J = Im
(
VudV

∗
cdVcbV

∗
ub

)
= c12c23c

2
13s12s23s13 sin δKM (1.3.8)

and all CP-violating effects in the electroweak sector of the SM depend on it. Indeed, it is the
only basis invariant quantity that can be built with the quark mass matrices and vanishes in
the CP-conserving limit,

Im

(
det
[
MuM

†
u,MdM

†
d

])
= J

(
m2
t −m2

c

)(
m2
t −m2

u

)(
m2
c−m2

u

)(
m2
b−m2

s

)(
m2
s−m2

d

)(
m2
b−m2

d

)
.

(1.3.9)
The only CP violating phase would become unphysical if any pair of same-charge quarks were
degenerate in mass, or any of the mixing angles had a trivial value. Accordingly, the measure
of CP violation in Eq. (1.3.9) vanishes in either of this two limits. This allows to understand
why CP-violating processes are so suppressed within the SM: even if the CP phase is not small,
the product of the mixing angles and the small Yukawa couplings suppresses the CP violating
parameter.

This description of the CP phases and number of degrees of freedom in the flavor sector is
not complete, though. There is another CP-violating invariant that can be built out of the mass
matrices,

Arg
(
det (MuMd)

)
. (1.3.10)

As it will be further developed in Chapter 2, this combination plays an important role in the
Strong CP problem. This extra invariant has remained unnoticed in the counting of physical
parameters of Eq. (1.3.3) because one of the symmetries contained in the group

[
U(3)

]3
of

Eq. (1.3.2) is anomalous: the axial symmetry, U(1)A. This symmetry is a valid classical
symmetry of the Lagrangian in the massless quark limit, however, it will be later shown that it is
anomalous, i.e. explicitly broken at the quantum level by QCD instantons. As a consequence, the
U(1)A cannot reabsorb the parameter in Eq. (1.3.10) since an anomalous term will be generated
by the rotation, and the combination

θ̄ = θQCD + Arg
(
det (MuMd)

)
(1.3.11)

remains physical. This parameter plays no role in the EW sector but would induce CP violation
in the strong interactions, see Chapter 2.
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1.3.2 Lepton flavor

In the lepton sector, the flavor symmetry is broken by the the charged lepton masses to the
product of the three lepton family numbers, i.e. electron Le, muon Lµ and tau Lτ numbers,

U(3)` × U(3)E
Me−−−→ U(1)e × U(1)µ × U(1)τ . (1.3.12)

The final fate of the lepton flavor symmetries depends on the neutrino mass mechanism. For
illustration, let us consider two cases within the three RH-neutrino paradigm,

Lν = −`LYeΦER − `LYνΦ̃NR −
1

2
NR

cMNNR + h.c. (1.3.13)

In the massless limit, this theory has a larger flavor symmetry,

U(3)` × U(3)E × U(3)N , (1.3.14)

which is broken differently depending on the nature of neutrino masses. It breaks to lepton
number if neutrinos are Dirac, while it breaks completely in the case of Majorana neutrinos.

U(3)` × U(3)E × U(3)N
me−−→ U(1)e × U(1)µ × U(1)τ

mν−−→




U(1)L Dirac ν masses

/O Majorana ν masses
.

(1.3.15)

Let us specify the counting of physical degrees of freedom for the two cases:

• Dirac neutrinos (MN = 0): The counting is analogous to that in the quark sector, since
there are two complex matrices Ye and Yν and three U(n) symmetries among which lepton
number U(1)L remains unbroken,

d.o.f.(Ye) + d.o.f.(Yν)− d.o.f.
(
U(n)3

)
+ d.o.f.(U(1)L) = n2 + 1 . (1.3.16)

For three lepton families in the SM, the number of degrees of freedom is again ten: 6
lepton masses, 3 mixing angles and the CP phase of the PMNS matrix.

• Majorana neutrinos (MN 6= 0): The initial parameters consist of two complex matrices Ye
and Yν and the complex symmetric matrix MN that contains n(n+1) parameters. Among
those, some parameters can be reabsorbed by the symmetries that are broken by the mass
terms: in this case they correspond to the full

[
U(3)

]3
since LN is also broken,

d.o.f.(Ye) + d.o.f.(Yν) + d.o.f.(MN )− d.o.f.
(
U(n)3

)
= 2n2 + n . (1.3.17)

These 21 parameters can be parametrized as the 10 parameters discussed in the Dirac case
plus two Majorana phases, and the six degrees of freedom of the complex orthogonal matrix
R of the Casas-Ibarra parametrization [67]. However not all these 21 parameters will be
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accessible with low energy observables. In order to identify them, the same procedure can
be applied to the SM extended with the Weinberg operator in Eq. (1.2.13),

d.o.f.(Ye) + d.o.f.(Cαβν )− d.o.f.
(
U(n)2

)
= n2 + n . (1.3.18)

Thus the number of low-energy parameters of the lepton sector with the d=5 operator is
12, corresponding to the usual ten parameters of the Dirac case plus two Majorana phases,
while the remaining six parameters of the Casas-Ibarra matrix R only affect the dynamics
of the UV completion and do not leave any low energy imprint.

Analogously to the CKM matrix, the PMNS mixing matrix [17,58] can be parametrized as,

UPMNS =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


 · P , (1.3.19)

where P = diag
(

1, eiφ1 , eiφ2

)
account for the two possible extra physical CP-phases that are

not present in the quark sector if neutrinos are Majorana particles.

Our current knowledge of the physical parameters in the flavor lepton sector can be
summarized as:6

me = 0.511 MeV , mµ = 0.106 GeV , mτ = 1.78 GeV , (1.3.20)

∆m2
21 = (7.39+0.21

−0.20)× 10−5 eV2 , ∆m2
32 =





+(2.525+0.033
−0.031)× 10−3 eV2 NH

−(2.512+0.034
−0.031)× 10−3 eV2 IH

,

(1.3.21)

θ12 =
(

33.82+0.78
−0.76

)◦
, θ23 =





(
49.7+0.9

−1.1

)◦
NH

(
49.7+0.9

−1.0

)◦
IH

, θ13 =





(
8.61+0.12

−0.13

)◦
NH

(
8.65+0.12

−0.13

)◦
IH

,

δCP =





(
215+40
−29

)◦
NH

(
284+27
−29

)◦
IH

.

(1.3.22)
Note that within these experimental measurements there are still some incognitos. On the
one hand, the absolute mass scale of neutrinos remains undetermined since oscillations are
only sensitive to squared mass differences. On the other, the sign of ∆m2

32 that determines
the neutrino mass ordering (whether the lightest neutrino or the second to lightest is mainly

6The charged lepton masses are taken from the Particle Data Group [19], and the mixings from global fit
performed by the NuFIT 4.0 (2018) collaboration [20] within the three-flavor oscillation paradigm. Note that
∆m2

31 > 0 for NO and ∆m2
32 < 0 for IO.
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composed by electron neutrino) is still unclear, although global fits to current data show some
preference to normal hierarchy (NH), over inverted hierarchy (IH). Finally current measurements
of the CP-violating phase still have large uncertainties, and the Majorana CP phases remain to
be determined.

1.3.3 The SM flavor puzzle

The description above illustrates the striking differences between the flavor and the gauge sector.
While gauge interactions are beautifully controlled by only three coupling constants7 of O(1),
and the gauge sector has been built from fundamental principles, the flavor sector presents a
complex structure that requires at least 20 parameters with intricate hierarchies and patterns
and whose values are simply imported from observation. Even though the flavor sector has
provided predictions that have been confirmed with high accuracy by experiments, this peculiar
structure calls for an underlying explanation.

Figure 1.3: Fermion masses in the SM. Figure adapted from Ref. [68].

As is shown in Fig. 1.3, the masses of the charged fermions of the SM span over 6 orders of
magnitude or even 12 if we include neutrinos. Not only do the corresponding Yukawa couplings
range from order one (for the top quark) to O(10−6) for the electron, or even O(10−12) if
neutrinos are Dirac particles, but they also show a strong hierarchy for quarks and charged
leptons, while for neutrinos clarification is still needed. Concerning the mixing matrices, while
the CKM matrix shows a modest deviation from the identity matrix which corresponds to small
mixing among quark families, mixing angles in the lepton sector are large and correspond to
matrix elements of the PMNS of the same order of magnitude (see Fig. 1.4).

Why are there three families? What is the rationale behind fermion mass hierarchies? Why
does the quark sector present small mixings whereas the neutrinos have large mixing angles?

7If we include the Higgs sector there are two extra parameters, the Higgs vev v and quartic coupling λ.
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VCKM ∼ UPMNS ∼

Figure 1.4: Representation of the size of the mixing matrix elements. Lighter colors represent smaller
absolute value with respect to darker ones.

These questions constitute the flavor puzzle and have fostered intensive research in trying to
understand the possible underlying flavor dynamics behind this complex structure.

New Physics Flavor Puzzle

In spite of the lack of a successful explanation of the origin of flavor, this framework allows one
to accommodate in a consistent theory basically all current experimental data. In particular,
the fact that FCNC are so suppressed within the SM and the great precision that experiments
are achieving in measurements of flavor observables represent a powerful tool for the search of
BSM theories. Indeed, generic extensions of the SM need to respect the SM gauge symmetries,
but not its global ones. They typically predict thus unacceptable rates for FCNC processes,
therefore these observables are able to set stringent bounds on the scale of new physics, well
beyond that directly accessible by current experiments. For instance, a striking example is
the K0 − K0 system. Measurements of the indirect CP violation parameter εK and the mass
difference ∆mK set bounds on the scale of new physics of the order of Λ ∼ 105 TeV [69] for
O(1) Wilson coefficients in the effective operators.

On the other hand, several BSM scenarios motivated by the EW hierarchy problem predict
new dynamics not far from the ∼ TeV scale. Consequently, in order for them to be compatible
with the absence of BSM flavor violation, either the parameters need to be fine-tuned or the
energy scale needs to be pushed up to energies several orders of magnitude larger than the TeV
scale. This is known as the new physics flavor puzzle and suggests that the BSM theories present
highly non-trivial flavor structure that resembles that of the SM. For this reason the interest
of flavor goes beyond the long-standing dream of explaining the pattern of fermion masses
and mixings, and also guides the efforts of constructing any new theory of nature through the
stringent constraints it poses.

Flavor beyond the SM

In order to explain the origin of fermion masses and mixings, different BSM constructions have
been proposed. Due to the complexity of the flavor pattern it is challenging to find a successful
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explanation while agreeing with the precise flavor experimental measurements. Some of these
attempts are:

• Froggat-Nielsen theories: By imposing the conservation of a global abelian symmetry
U(1)FN under which the fermions of different families have different charges, the mass
hierarchy can be accommodated [70]. In particular, a scalar “flavon” field S with non-
vanishing FN charge is introduced and develops a vev, breaking spontaneously the U(1)FN .
The flavon couples to the fermions with non-renormalizable operators allowed by the
abelian symmetry. Accordingly, the different FN-charges of the fermions imply different
number of flavon insertions. When the symmetry is spontaneously broken, mass terms for
the fermions are generated and the hierarchy is controlled by powers of the small parameter
ε = 〈S〉/Λ, where Λ is the scale of flavor dynamics that suppresses the effective operators.
This symmetry approach is rather simple but still does not explain the origin of the
different charges of each fermion and the full UV complete theory generating those effective
operators involves many new fields, complicating the search for an elegant explanation.

• Discrete symmetries have also been proposed to be at the origin of the flavor pattern
since they avoid the Goldstone bosons that would appear in the case of continuous
symmetries that are spontaneously broken. A4 being the most commonly used flavor
group [71,72], the main drawback of this approach is that the discrete symmetry by itself
is not sufficient to completely account for the fermion mass hierarchies and mixings in
most cases.

• Grand Unification: The unification of the strong, weak and electromagnetic
interactions [73–75] typically leads to relations among the fermion mass matrices, hence
it seems suggestive to try to address both problems simultaneously. Different symmetry
groups have been attempted and are still being constructed, the main problem of GUT-
based models is the proton stability.

Aside from these specific theoretical frameworks trying to assess the SM flavor pattern,
effective approaches have also been constructed in order to explain the New Physics flavor
puzzle. Of special relevance for the flavor puzzle is the proposal of Minimal Flavor Violation
(MFV) that aims at protecting flavor violation beyond the SM. The MFV hypothesis consists in
assuming that the only source of flavor symmetry breaking at low energies are the SM Yukawa
couplings themselves, not only in the SM but also in the BSM theories [59, 76–78]. In order to
implement MFV, the Yukawa couplings of the SM are promoted to non-dynamical fields, usually
called spurions, that transform non-trivially under the SM flavor group. Then, the effective field
theory is constructed in a way that all effective operators remain invariant under the flavor group
by inserting the appropriate spurions.

Minimal Flavor Violation is a way to encode that the low-energy effects of the BSM theory
such that they respect the same global symmetries as the SM. In this way, the absence of
flavor violation data beyond the SM is justified. However, it is not a theory of flavor since it
is unable to explain the complex structure of flavor: neither the hierarchy nor the smallness of
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Yukawa couplings are addressed in MFV. In the setup we propose in Chapter 4 that the MFV
hypothesis is taken one step ahead by promoting the Yukawa couplings to dynamical fields and
the flavor group to a local symmetry, leading to interesting theoretical and phenomenological
consequences.

Flavor anomalies

Although the SM beautifully agrees with a large variety of flavor observables, there are currently
some intriguing tensions in B-meson physics that may point to New Physics with large lepton-
flavor universality violation. In particular, the LHCb Collaboration has reported deviations from
the SM in B → K(∗)`+`− decays. In order to reduce the hadronic uncertainties in the theoretical
predictions, observables involving ratios of partial widths are particularly useful. Two of those
theoretically clean ratios are RK and RK∗ and experimental data from LHCb shows deviations
from the SM prediction, which is 1 at leading order, [79, 80]

RK ≡
BR [B → Kµ+µ−]

BR [B → Ke+e−]
= 0.846+0.060

−0.054(stat)+0.014
−0.016(sys) , (1.3.23)

RK∗ ≡
BR [B → K∗µ+µ−]

BR [B → K∗e+e−]
= 0.69+0.11

−0.07(stat)+0.05
−0.05(sys) , (1.3.24)

in the 1.1GeV < q2 < 6GeV bin. Each one of these observables presents a deviation from the
SM at the 2.5σ level. It is pertinent to note that Belle collaboration measurement [81], that
has larger uncertainties is compatible with both the SM prediction and the LHCb result. There
are also some discrepancies in other (less theoretically clean) observables, such as RD(∗) and
in the angular distributions of B → K∗µ+µ−. Together with these tensions, global fits prefer
various BSM scenarios over the SM at the 5σ level [82]. Although the statistical significance of
each deviation does not suffice to claim a BSM discovery, data seems to indicate a pattern that
deserves to be analyzed with detail. Several models have been proposed to be at the origin of
these tensions.

1.4 General considerations on symmetries

Symmetries play a fundamental role in our understanding of the SM and may be the key in the
solutions to several of the SM issues. For this reason, it is convenient to review some general
considerations of symmetries within QFT, that will be referred to throughout this thesis.

Within the path integral formalism, all the information of a Quantum Field Theory is encoded
in the generating functional,

Z[J ] =

∫
[dφ]e

i/~(S[φ]+
∫
d4xJ(x)φ) , (1.4.1)
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where S corresponds to the action,

S[φ] =

∫
d4xL

(
φ(x), ∂µφ(x)

)
, (1.4.2)

and φ is a real scalar field chosen as an example. The path integral in Eq. (1.4.1) sums over all
possible paths in field space weighted by the exponential of the action, eiS[φ]/~, and allows the
computation any time-ordered correlator as,

〈O1 . . . On〉 :=
〈
0
∣∣T
[
Ô1 . . . Ôn

]∣∣0
〉

=

∫
[dφ]O1[φ] . . . On[φ]ei/~S[φ]

∫
[dφ]ei/~S[φ]

. (1.4.3)

This formalism is particularly convenient when evaluating the classical limit. For ~ much
smaller than the relevant action ~� S, the path integral can be evaluated using the stationary
phase (or steepest descent) approximation. In this limit, the path integral is dominated by
the configurations that correspond to extrema of the action, recovering Hamilton’s principle of
stationary action that leads to the usual Euler-Lagrange equations of a classical field theory,

∂µ

(
δL

δ
(
∂µφ

)
)
− δL
δφ

= 0 , (1.4.4)

also known as equations of motion (EOM). A symmetry of the action consists in some
transformation of the fields that leaves the action invariant,

S[φ+ α δφ] = S[φ] , (1.4.5)

and therefore transforms the Lagrangian in the following way:

L+ δL ≡ L
(
φ+ β δφ, ∂µφ+ β δ∂µφ

)
= L

(
φ, ∂µφ

)
+ ∂µV

µ
(
φ, ∂µφ, β δφ

)
, (1.4.6)

where the boundary term vanishes when integrating over the spacetime,
∫
∂µV

µd4x = 0 . An
important feature of theories with continuous symmetries is that they present conserved currents
as a consequence of Noether’s Theorem. It states that to every generator of a continuous
symmetry of the theory, there corresponds a conserved current and a time-independent charge.
This theorem not only implies the existence of these currents but also allows one to construct
them explicitly,

Jµ ≡ − δL
δ∂µφ

δφ+ V µ ; ∂µJ
µ = 0 . (1.4.7)

In addition, as a consequence of the conservation of the current there exists an associated charge
that does not change in time,

Q(t) ≡
∫
d3xJ0(t, x) ; Q̇ =

∫
d3x∂0J0 = 0 . (1.4.8)

It is always possible to write the associated current for any given continuous transformation,
even if it does not represent an exact symmetry of the action. In some theories, a symmetry
arises when a parameter of the theory is set to zero. If this parameter is small as compared with
the relevant parameters of the theory, the transformation is said to be an approximate symmetry.
In these cases, Noether’s theorem is still useful and states that the associated current is no longer
exactly conserved but instead its divergence equals the variation of the Lagrangian,

δL = β ∂µJ
µ . (1.4.9)
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1.4.1 On exact symmetries: Wigner vs Goldstone

There are two possible fates of a continuous exact symmetry in QFT:

• Wigner-Weyl mode: The ground state of the theory, the vacuum, is invariant under the
symmetry. As a consequence, the corresponding charge (and current) operator annihilates
the vacuum, Q|0〉 = 0, jµ|0〉 = 0. This implies the existence of degenerate multiplets in the
spectrum. In other words, for any state, the symmetry transformation generates another
state with the same energy and scattering amplitudes.

• Nambu-Goldstone mode: As a consequence of the existence of a continuous family of
degenerate minima of the potential, the ground state is not invariant under the symmetry
Q|0〉 6= 0, jµ|0〉 6= 0. The action of the symmetry on a particular vacuum state leads
to another degenerate vacuum state. The symmetry is still exact at the Lagrangian
level, though. In this case, the symmetry is said to be spontaneously broken and
the spectrum of particles does not manifest the symmetry with degenerate multiplets.
Instead, the Goldstone Theorem implies that there exist as many massless bosonic states
as spontaneously broken generators [83–85]. These particles are called Nambu-Goldstone
bosons 8 and have a number of interesting properties. First, with respect to the unbroken
symmetry, they have the same quantum numbers (or they belong to the same multiplet)
as the corresponding broken generator. Second, they are massless particles and their
interactions vanish in the limit of the momentum of the Goldstone boson going to zero.
In other words, they only present derivative couplings that ensure that the scattering
amplitudes are proportional to the GB momentum. It is often the case that the symmetry
is not exact but rather approximate. Then, the GB develops a small mass controlled by
the parameter that breaks the symmetry, and thus it is called pseudo-Goldstone boson
(pGB).

1.4.2 On broken symmetries: Anomalies

So far we have been dealing with symmetries of the action, i.e. classical symmetries. However,
the relevant object in a QFT that will determine the values of all observables is the path integral.
Thus, for a classical symmetry to survive the process of quantization, the complete path integral
has to remain invariant under the transformation, including not only the action but also the
functional measure in the path integral (see Eq. (1.4.1)). This is not always the case. There
are classical symmetries that are not preserved after the regularization and renormalization
procedures. The latter would then provide an explicit breaking. In those cases the symmetry is
said to be anomalous.

Anomalies have played a central role in our understanding of the SM, from the neutral
pion decay to two photons, to the solution of the missing meson problem and the consistency

8In the rest of the thesis they will be referred to as Goldstone bosons (GB).
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conditions imposed by gauge anomaly cancellation. Indeed, for a QFT to be consistent at the
quantum level, its gauge symmetries must be exact both at the classical and at the quantum
level. They cannot be anomalous. On the contrary, global symmetries can be anomalous without
leading to inconsistencies.

They could also be crucial in some extensions of the SM that search for a solution to the
Strong CP problem, such as the Peccei-Quinn solution (see Section 2.3.2). Let us first review
the main results of the axial anomaly in a simple theory, and comment next on the general
anomaly formula and the main applications.

Axial anomaly

Let us consider a U(1) gauge theory with a charged massive fermion ψ (QED with a massive
electron),

L = −1

4
FµνF

µν + ψ(i /D −m)ψ

= −1

4
FµνF

µν + ψL(i/∂ − ie /A)ψL + ψR(i/∂ − ie /A)ψR −mψLψR −mψRψL .
(1.4.10)

In the massless limit m→ 0, the Lagrangian presents two classical symmetries,

ψ → eiβV ψ, ψ → eiβγ5ψ (1.4.11)

whose corresponding currents can be computed using Noether’s formula in Eq. (1.4.7),

jµV = ψγµψ = ψRγ
µψR + ψLγ

µψL, (1.4.12)

jµA = ψγµγ5ψ = ψRγ
µψR − ψLγµψL , (1.4.13)

where jµV and jµA denote the vector and the axial currents respectively. Using the EOM, the
divergence of the currents can be computed at the classical level, obtaining

∂µj
µ
A = 2imψγ5ψ , ∂µj

µ
V = 0 . (1.4.14)

Figure 1.5: Diagrams contributing to the two-photon matrix element of the divergence of the axial
vector current. Figure adapted from Ref. [86].
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Therefore the vector symmetry is exactly conserved and the axial current is recovered in the
massless limit. It is now pertinent to ask whether these symmetries persist once quantum effects
are taken into account. The answer was given first by Steinberger [87] and Schwinger [88] in
the context of the neutral pion decay π0 → γγ, and later on by Adler, Bell and Jackiw [89–91]
who found that the axial current is explicitly broken at the quantum level. This constitutes
the so-called Adler–Bell–Jackiw (ABJ) anomaly. It can be shown either by computing the
transformation of the integral measure, the so-called the Fujikawa method [92], or by computing
the triangle diagrams in Fig. 1.5. The result states that in a background of gauge potential
fields, the current is no longer conserved, and in the massless fermion limit its divergence reads,

∂µ
〈
JµA(x)

〉
Aµ

= − e2

16π2
εµναβFµνFαβ = − α

2π
FµνF̃αβ , (1.4.15)

where α = e2/4π is the electromagnetic fine structure constant, F̃αβ = 1
2ε
µναβFµν is the dual

field strength tensor and εµναβ is the fully antisymmetric Levi-Civita symbol with the convention
ε0123 = +1. A pertinent question is whether this formula receives quantum corrections from
higher order diagrams. However, as it was shown by the Adler-Bardeen theorem [93, 94], this
result is one-loop exact.

Finally, taking into account the quantum anomaly and fermion masses, the variation of the
Lagrangian after performing the axial rotation in Eq. (1.4.11) by an infinitesimal angle β can
be obtained using Eq. (1.4.9),

δL = β ∂µJ
µ = 2βimψγ5ψ − β

α

2π
FµνF̃ µν . (1.4.16)

The ABJ anomaly formula in Eq. (1.4.15) applies to the non-conservation of a global abelian
current, the axial current U(1)A, in the presence of a background electromagnetic field, i.e. gauge
potential fields of a gauged U(1)em group. Nonetheless the anomaly can also be computed for
any generic current,

jµgen =
∑

Ψ̄Lγ
µT aLΨL + Ψ̄Rγ

µT aRΨR , (1.4.17)

where T aL and T aR correspond to the generators of the corresponding fermionic representations
under the global symmetry. The anomaly master formula for the generic fermionic current
in the presence of any gauge group G reads,

∂µj
µ
gen =

αX
8π

CabcgroupXb µνX̃
µν
c , (1.4.18)

where X̃µν = 1
2ε
µνσρXσρ, αX is the fine structure constant of the corresponding gauge interaction

αX = g2
X/4π and the group theoretical factor Cgroup corresponds to

Cabcgroup =
∑

Tr
[
T aL{tbL, tcL}

]
−
∑

Tr
[
T aR{tbR, tcR}

]
, (1.4.19)

where tbR and tbL are the infinitesimal generators of the representation under the gauge group G
for the fermions ΨR and ΨL, respectively. The computation of the anomaly for different currents
will be relevant at different stages of this thesis. It will allow us to compute the axion anomalous
couplings in Chapters 5, 7 and 8, but also to verify the consistency of different theories via gauge
anomaly cancellation, or ‘t Hooft anomaly matching conditions, see Chapters 4 and 6.
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Gauge anomalies

When computing the anomaly we have been focusing on the non-conservation of a global current.
Interestingly the same analysis can be applied to a gauged or local current. If a gauge symmetry
is anomalous, in other words, explicitly broken at the quantum level, the theory becomes non-
unitary and therefore inconsistent. The fact that all gauge anomalies have to vanish after
summing over all fermion representations puts stringent constraints on the fermionic matter
content of chiral gauge theories. Indeed, this is the only theoretical constraint on the SM
structure of matter fermionic fields, as the gauge weak interactions are chiral. In particular for
the SM, the hypercharges of quarks and leptons are such that all gauge anomalies automatically
cancel within each generation.

This consistency condition will be specially relevant in the BSM models that will be developed
in Chapters 4 to 6.

’t Hooft anomaly matching conditions

In addition to gauge anomaly cancellation, anomalies also provide a consistency condition for
the spectrum of confining field theories. In order to state the conditions let us consider a SU(N)
confining theory with n flavors of massless quarks ψi. At energies above the confinement scale,
this theory presents an exact global flavor symmetry GF , whose associated current reads,

jµGF = ψ̄Lγ
µT aLψL + ψ̄Rγ

µT aRψR . (1.4.20)

We will consider only exact global symmetries. Thus, their anomalies in the gauge field
background of SU(N) need to vanish, GF × [SU(N)]2, and the current is exactly conserved,

∂µj
µ
GF

= 0 . (1.4.21)

After confinement, the spectrum of the theory does not consist of quarks and gauge potentials,
but rather singlets of the confining group: hadrons. Then, one can define the current associated
with the global symmetry in Eq. (1.4.20) in terms of the massless bound states χi,

jµGF = ψ̄Lγ
µBa

LψL + ψ̄Rγ
µBa

RψR . (1.4.22)

The ’t Hooft consistency condition states that, if the symmetry associated with jµGF is not

spontaneously broken upon confinement, then there exist massless spin 1/2 bound states χi,
which satisfy the condition,

Tr
[
T aL{T bL, T cL}

]
− Tr

[
T aR{T bR, T cR}

]
= Tr

[
Ba
L{Bb

L, B
c
L}
]
− Tr

[
Ba
R{Bb

R, B
c
R}
]
. (1.4.23)

In other words, the global anomalies [GF ]3 at high energies in terms of the fundamental
quarks, i.e. the left-hand side of Eq. (1.4.23), need to be matched in the low energy theory
by massless composite fermions generating the same anomaly. These are called the ’t Hooft
anomaly matching conditions since they were first proposed by him in Ref. [95], where he
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gave the following argument. The symmetry GF being exact, it can be gauged at the cost of
adding massless spectator fermions that only transform under the GF group and cancel the
anomaly [GF ]3. The GF coupling constant can be made arbitrarily small so that the fermions
are effectively unmeasurable. When the SU(N) confines, the spectator fermions are still in
the low energy spectrum, and therefore the bound states of SU(N) need to exactly cancel the
anomalies generated by the spectators, in order for the gauged GF to be a consistent theory.
Those anomalies are nothing but the original anomaly of the quarks in the high energy theory.
This consistency conditions have been also shown in Ref. [96] and by Coleman and Grossman
[97] from the basic principles of analyticity and unitarity of the S-matrix.
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2 The strong CP problem

Let us consider the QCD sector of the SM Lagrangian in Eq. (1.1.1) after EWSB,

LQCD = −1

4
GaµνG

aµν + θ
αs
8π
GaµνG̃

aµν +Q
(
i /D −M

)
Q (2.0.1)

where Q denotes a vector containing all SM quarks and M is the corresponding mass matrix.
This Lagrangian contains two parameters that violate CP invariance, namely the θ-parameter
and a global phase in the quark mass matrices. But these two phases are not unrelated.

As we anticipated in Eqs. (1.3.11) and (1.4.15), an axial rotation common to all quarks by a
phase β shifts both CP phases,1

L��CP = (θ − 12β)
αs
8π
GaµνG̃

aµν −QMe2iβγ5Q , (2.0.2)

leaving a single physical CP-violating phase in the strong sector that is invariant under field
redefinitions2,

θ ≡ θQCD + Arg (det M) . (2.0.3)

The so called θ̄-term,

Lθ = θ̄
αs
8π
GaµνG̃

aµν (2.0.4)

is odd under both parity and time reversal invariance, while it conserves charge conjugation and
thus violates CP. As a consequence, CP violating observables such as the electric dipole moment
of the neutron (nEDM) are sentitive to the θ̄-parameter and allow one to measure it. So far,
experiments designed to detect a nEDM have set stringent bounds, dn < 3×10−26 e·cm (90% c.l.)
[98,99]. Several nEDM projects are expected to improve this bound by 2-3 orders of magnitude
in the next 3-5 years [100, 101]. Moreover, the measurement of the EDM of charged particles,
such as protons and deuterons, can be performed using storage rings and there are experimental
proposals aiming at sensitivities of 10−29 e · cm for the proton EDM in the next decade [102].

1The shift on the anomalous term can be computed applying the ABJ anomaly formula with the group theory
factor corresponding to a rotation of the 6 SM quarks, see Eq. (1.4.19).

2In the physical CP phase there is no relative factor since Arg (det (Me2iβ)) = 12β.
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The nEDM is still the most constraining observable, though. There are several estimations of
the nEDM as a function of θ̄ [103–109] spanning the range dn = (0.1− 2)× 10−15θ̄ e · cm . The
bound on the θ̄-parameter which results is, at present,

|θ̄| < (3− 0.2)× 10−10 (90% c.l.). (2.0.5)

The extremely small size of this parameter as compared to an arbitrary O(π) phase constitutes
what is called the Strong CP problem. Or in other words, “why does QCD seem not to violate
CP?”

It could be tempting to explain the smallness of this parameter by noting that if θ̄ is set to zero,
a symmetry emerges, CP, and therefore the parameter is protected by CP invariance. However
this is not true since we know for a fact that CP is not a good symmetry of nature. Indeed
CP violation in the weak sector is experimentally established and all observations fit within
the CKM framework. Therefore the smallness of θ̄ still calls for an explanation. It should be
stressed, though, that there is no theoretical inconsistency or actual experimental discrepancy
with a vanishing value of θ̄. From this point of view, it is legitimate to argue that the strong
CP problem is not actually a real problem but rather a hint, a really interesting hint, that can
guide us in the search for a more complete theory of nature.

Although the strong CP problem can be understood in simple terms as we have just reviewed,
there are several subtleties and interesting physics behind it. Why does the θ-term have physical
implications if it corresponds to a total derivative?3 What is an instanton and how do we know
they exist? How does this relate to the missing meson problem? Why does the θ-parameter
describe the QCD vacuum? This chapter will be devoted to clarifying these issues and gain a
better understanding of the strong CP problem and the θ̄-parameter.

2.1 The missing meson problem

Let us consider QCD with only two flavors, the up and down quarks. The fermionic Lagrangian
reads,

L = qi /Dq − qMqq = qLi /DqL + qRi /DR −
(
qLMqqR + h.c.

)
, (2.1.1)

where qL,R =
(
uL,R, dL,R

)T
and Mq denotes the quark mass matrix for the first generation,

Mq =


mu 0

0 md


 . (2.1.2)

Since the up and down quark masses are much smaller than the QCD confinement scale
mu, md � ΛQCD, to a good approximation the second term in Eq. (2.1.1) can be neglected

3Bardeen’s identity GαµνG̃
µνα = ∂µK

µ.
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for the present discussion of the hadronic spectrum. In the massless limit and at the classical
level, the Lagrangian remains invariant under the following global transformation,

(
uL

dL

)
→ UL

(
uL

dL

)
,

(
uR

dR

)
→ UR

(
uR

dR

)
, (2.1.3)

where UL,R are general unitary matrices. Therefore it presents a global chiral symmetry U(2)L×
U(2)R = SU(2)L × SU(2)R × U(1)L × U(1)R. Their corresponding currents can be arranged
into the vectorial R+L (or isospin) and baryon number currents,

jµV = qγµq, jµaV = qγµ
σa

2
q , (2.1.4)

and the axial R-L currents,

jµA = qγµγ5q, jµaA = qγµγ5σ
a

2
q , (2.1.5)

where σa are the Pauli matrices.

As we already commented in Section 1.4.1, there are two possible fates for any symmetry of
the interactions: it can be are realized à la Wigner-Weyl or à la Goldstone. The hadronic
spectrum shows particles arranged in quasi-degenerate multiplets of the isospin symmetry
U(2)V = U(2)L+R, which indicates that the isospin symmetry is realized in the Wigner-Weyl
mode. On the other hand, the observed hadrons cannot be arranged in multiplets of the
axial transformations; light pseudoscalar particles are observed instead (the three pions), which
can be associated with the pseudo-Goldstone bosons of the axial currents jµaA in Eq. (2.1.5).
Consequently, the hadronic spectrum can be understood as stemming from the chiral symmetry
breaking pattern SU(2)L×SU(2)R×U(1)L×U(1)R −→ SU(2)V ×U(1)V , which is compatible
with the chiral condensate taking a non-zero vacuum expectation value 〈ūLuR + d̄LdR〉 6= 0.

However, the current jµA associated to the axial symmetry U(1)A does not seem to be realized
in any of the two possible modes. The Wigner realization would imply the existence of a parity
doubled spectrum, in disagreement with experimental observations, while the Goldstone mode
would imply the existence of yet another light pseudoscalar in addition to the three pions, a
state which is absent in nature.4 It was Weinberg who pointed out this issue and called it the
U(1)A problem [110], or the missing meson problem.

The solution to this problem was found by ’t Hooft [111–113] who realized that the
U(1)A symmetry was indeed badly and explicitly broken in QCD via the ABJ anomaly (see
Section 1.4.2),

∂µj
µ
A =

α

2π
GµνG̃

µν . (2.1.6)

4The lightest pseudoscalar particle with the same quantum numbers as the axial current is the η′-meson, and
it has a mass of the order of that of the proton and the rest of QCD bound states ∼ ΛQCD; it cannot thus be
associated with the missing pGB.
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This is not the end of the story since this anomalous term equals a total derivative due Bardeen’s
identity [114],

GαµνG̃
µνα = ∂µK

µ , (2.1.7)

where Kµ = 2εµνρσ tr
(
Aν∂ρAσ − gs 2i

3 AνAρAσ
)

is the Chern-Simons current. Usually, when the
divergence of a current is non-zero but equals a total derivative, it is possible to redefine the
current and construct a new axial current whose divergence vanishes,

j′µA = jµA −Kµ =⇒ ∂µj
′µ
A = 0 . (2.1.8)

However, even if the anomalous term corresponds to a total derivative, there are field
configurations in the QCD vacuum for which the surface integral at infinity does not vanish (see
Noether’s Theorem in Section 1.4). As a consequeance, the QCD anomaly explicitly breaks the
axial symmetry due to instantons, which are configurations generating the non-trivial vacuum
structure of QCD, as will be discussed next in more detail. In summary, it became clear that
the U(1)A group is not a good symmetry of QCD to begin with, and therefore, the spectrum
does not reflect it neither manifestly nor via Goldstone modes.

With the understanding of the axial anomaly and the role of instantons, the missing meson
problem was solved, but another problem emerged: the strong CP problem, since it became
clear that the anomalous term cannot be disregarded and deserves full consideration in light of
the non-trivial QCD vacuum.

2.2 QCD vacuum

The theory of Quamtum Chrommodynamics becomes strongly coupled at low energies.
Therefore the properties of the QCD vacuum cannot be tackled with the usual perturbative
expansions, and other methods are required. In the same way that tunneling processes in
Quantum Mechanics do not arise at any order in perturbation theory, QCD presents analogous
phenomena to barrier penetration that require semi-classical methods. In particular, one of the
best methods for computing these kind of properties of QFT is the Euclidean path integral. In
this section, we will partially follow the description in the book in Ref. [115] by S. Coleman,
supplemented by the lectures of Andrew Cohen in the Invisibles School 2019.

Let us start by refreshing Feynman’s path integral formalism in which quantum amplitudes
can be expressed as sum over all possible paths interpolating from the intial state |i

〉
to the final

state |f
〉
,

〈
i
∣∣e−iHt/~

∣∣f
〉

= N

∫
[dφ]eiS/~ . (2.2.1)

In this way, the probability of the initial state to time-evolve to the final state can be computed
by applying the steepest descent method to compute the path integral.

Let us now consider a completely different matrix element,

Zfi(τ) =
〈
i
∣∣e−Hτ/~

∣∣f
〉
. (2.2.2)
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Note that this amplitude does not correspond to the time evolution operator due to the absence
of the imaginary unit i, and τ is just a parameter and does not correspond to the usual time5.
This amplitude can be evaluated by inserting a basis of energy eigenstates |n〉 with corresponding
energy eigenvalues En,

Zfi(τ) =
∑

n

〈
i
∣∣n
〉〈
n
∣∣f
〉
e−Enτ/~ τ→∞−−−−−−−→

〈
i
∣∣Ω
〉〈

Ω
∣∣f
〉
e−E0τ/~ . (2.2.3)

In the limit τ → ∞, the matrix element in Eq. (2.2.3) is dominated by the lowest energy
eigenstate, i.e. the vacuum or ground state

∣∣Ω
〉

with energy E0. As a consequence, by computing
the matrix element for a given basis, the vacuum of the theory can be fully characterized [115].
The matrix element in Eq. (2.2.2) looks familiar, it seems analogous to that in Eq. (2.2.1).
Indeed, if we identify τ = it we can compute Zfi(τ) using the path integral corresponding to a
theory with no time but 4 spatial dimensions, i.e. the Euclidean path integral,6

lim
τ→∞

Zfi(τ) =
〈
i
∣∣Ω
〉〈

Ω
∣∣f
〉
e−E0τ/~ = N

∫
[dφ]e−SE/~ . (2.2.4)

To sum up, we have translated the problem of characterizing the non-perturbative vacuum of a
QFT in Minkowski spacetime (3 spatial and one temporal dimensions), to computing the path
integral for the corresponding theory with 4 spatial dimensions. If the steepest descent method
is now applied to the path integral, the result is that the path integral is dominated by the
stationary points of SE , that is the classical solutions of finite action of the Euclidean path
integral.

2.2.1 Euclidean Yang-Mills theory

Our goal now is to find all the finite action classical solutions of the Euclidean EOM of a Yang-
Mills theory. Let us first briefly review Yang-Mills gauge theories in order to establish notational
conventions that will differ from those used in the rest of the thesis.

Yang-Mills theories are based on compact Lie groups that have associated Lie algebras.
A representation of this algebra is a set of N hermitian matrices T a satisfying the following
relations, [

T a, T b
]

= ifabcT c , (T a)† = T a , tr
(
T aT b

)
= T (R)δab , (2.2.5)

where fabc are the fully anti-symmetric structure constants and T (R) is the Dynkin index of
the representation R. The common convention for the normalization of the generators of the
fundamental representation will be used, tr

(
T aT b

)∣∣
fund

= 1
2δ
ab.

5Although sometimes it can be misleading, the parameter τ is often dubbed imaginary time.
6Under the change of variables τ = it, the exponent transforms as iS = i

∫
dtL = i

∫
(−idτ)(−LE) =

−
∫
dτLE = −SE .
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Gauge fields. For each element of the algebra a real vector potential is introduced Aaµ(x),
i.e. the gauge fields, that can be arranged into the following matrix fields,7

Aµ(x) ≡ −igAaµT a , (2.2.6)

where g is the gauge coupling constant. Note that this convention differs to that used in
Section 1.1, where the coupling constant is not included in the gauge potential (e.g. see
Eq. (1.1.4)). The other difference is that throughout this section the metric that contracts
the Lorentz indices is the Euclidean metric, with signature (+,+,+,+) and xµ = (τ, ~x). The
corresponding field strength reads,

Fµν = ∂µAν − ∂νAµ − i
[
Aµ, Aν

]
, (2.2.7)

where it is implicit that Fµν = F aµνT
a.

Gauge transformations. In gauge theories, two field configurations are equivalent if they
are related by a gauge transformation, that is a map from space8 into elements of the Lie Group,

g(x) = eiω
aTa . (2.2.8)

Under a gauge transformation g(x), the gauge potential and the field strength transform as
follows,9

Aµ −→ A(g)
µ = g(x)Aµ g

−1(x) + ig(x)∂µg
−1(x) , Fµν −→ F (g)

µν = g(x)Fµν g
−1(x) . (2.2.9)

2.2.2 Instantons

Let us consider the Euclidean action for a pure Yang-Mills theory,

SE =
1

4g2

∫
d4xFµνF

µν , (2.2.10)

to which corresponds the usual EOM for gauge fields:

DµF
µν = 0 . (2.2.11)

The trivial solution to this equation is Fµν = 0, which corresponds to Aµ = ig(x)∂µg
−1(x). This

solution is called “pure gauge” since it corresponds to gauge transformations of Aµ = 0, and the
action density vanishes at every point of space. We are interested in finding non-trivial solutions,
that is non-zero finite action solutions to Eq. (2.2.11). Before constructing such solutions, let us
check if they actually exist and recall the generalization of Derrick’s theorem [116] to Yang-Mills
theories.

7From now on we will refer to the generators of the fundamental representation as T a whereas the generators
of a generic representation R will be T a(R).

8spacetime if we were using the Minkowski metric.
9The notation for the coupling constant is g, while the element of the gauge group is g(x).
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Theorem. In Euclidean Yang-Mills theories in D spatial dimensions, the only non-singular
finite-action classical solutions of the EOM are gauge transformations of Aµ = 0, for D 6= 4.,
that is, pure gauge configurations.

Proof. Let us assume that the field configuration Āi(x) is one of such finite action solutions.
From it, one can construct the one-parameter family of field configurations by rescaling lengths,

Aµλ(x) = λ Āµ(λx) . (2.2.12)

Due to Hamilton’s principle, any solution of the classical theory has to be a stationary point of
the action. As a consequence, it also has to be a stationary point among the family we have
just constructed. The action scales as,

SE(λ) = SE [Aµλ] = λ4−DSE [Āµ] . (2.2.13)

For the solution to be stationary we must require that,

dSE(λ)

dλ

∣∣∣∣
λ=1

= 0 =⇒ 0 = (4−D)SE [Āµ] . (2.2.14)

Consequently for D 6= 4, the action needs to vanish SE [Āµ] = 1
4g2

∫
d4xF 2 = 0. Since the action

is the integral of a non-negative function, for the whole integral to vanish the integrand needs
to be zero at every point. Therefore the only solution of the classical theory corresponds to the
pure gauge Fµν = 0.

Luckily, we live in 3+1 dimensions so we are interested in the 4-dimensional Euclidean Yang-
Mills theory for which non-trivial solutions can exist. Let us consider the sphere at infinite
radius in Euclidean space, S3

∞ ⊂ R4. For the action to be finite, it is necessary for the integrand
in Eq. (2.2.10) to fall for large radius r = |x| → ∞ faster than

FµνF
µν ∼ 1/r4+ε =⇒ Fµν ∼ 1/r2+ε , (2.2.15)

for ε > 0. One may be tempted to impose that the gauge potential needs to go as Aµ ∼ 1/r1+ε,
but this would be too restrictive. The general form that Aµ can take is an arbitrary gauge
transformation of the previous expression,

Aµ ∼ O
(

1

r1+ε

)
+ ig(x)∂µg(x)−1 r→∞−−−−→ ig(x)∂µg

−1(x) , (2.2.16)

where g(x) is a function of the angular variables only. We are then interested in solutions that
tend to a pure gauge configuration at infinity. Those are fully determined by specifying the
element of the gauge group g(x) at every point at infinity, that is a map of the sphere at infinity
to the gauge group G,

g(x) : S3
∞ −→ G . (2.2.17)

A pertinent question now is whether any of those configurations can be gauge transformed to
the trivial one. It turns out that these maps fall into disjoint classes that cannot be continuously
transformed into one another, i.e. different homotopy classes. The homotopically disconnected
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maps from a Sn sphere into some group G are classified by the group πn (G), which in our case
of interest is non-trivial,

π3

(
SU(n)

)
= Z , for n ≥ 2 , (2.2.18)

where Z denotes the set of integer numbers. This means that the connected components of the
space of finite-action solutions of Yang-Mills SU(n) theories are in one-to-one correspondence
with the homotopy classes of mappings from the 3-sphere to the gauge group, that correspond
to π3

(
SU(n)

)
= Z.

The integer that allowsthe classification of these topologically disconnected solutions is the
winding number ν, or Pontryagin number for the mathematically oriented. It can be computed
for any such map,

ν(g) =
1

24π2

∫

S3

dθ1dθ2dθ3ε
ijk tr

(
g−1∂igg

−1∂jgg
−1∂kg

)
, (2.2.19)

where θ1, θ2, θ3 are three angles parametrizing S3.10 The winding number is a topological
quantity that only depends on the boundary conditions of the field configuration, in this case on
the values of the gauge potential in the sphere S3 at infinity. It is easy to get an intuitive idea of
its meaning in the case of maps of a circle into a circle, π1(S1) = Z, where the winding number
counts the number of times the circle in field space is wrapped around the circle in ordinary
space. Gauge transformations transform a given map g(x) into another belonging to the same
homotopy class, i.e. same winding number. Thus, the gauge-invariant quantity associated with
finite-action solutions is not a map but its homotopy class, given by the winding number. By
making use of Eq. (2.2.16) in Eq. (2.2.19), the winding number can be expressed in terms of the
tangential components to the 3-sphere of the gauge potential,

ν = − i

24π2

∫

S3

dθ1dθ2dθ3ε
ijk tr

(
AiAjAk

)
= − i

24π2

∫

S3

d3Sµε
µνρσ tr

(
AνAρAσ

)
. (2.2.20)

This surface integral can be translated into an integral over the volume,

ν = − i

24π2

∫

V
dx4∂µε

µνρσ tr
(
AνAρAσ

)
=

1

16π2

∫

V
dx4∂µε

µνρσ tr

(−2i

3
AνAρAσ

)

=
1

32π2

∫

V
dx4∂µ2εµνρσ tr

(
Aν∂ρAσ −

2i

3
AνAρAσ

)
=

1

32π2

∫

V
dx4∂µK

µ , (2.2.21)

which can be recognized to be the integral of the divergence of the Chern-Simons current Kµ.
Therefore, applying Eq. (2.1.7), it follows that the winding number corresponds to the integral
over the volume of the anomalous term,11

ν =
1

32π2

∫
d4xFF̃ . (2.2.22)

Strikingly, by solving the classical EOM of Yang-Mills theory in Euclidean space, we found
that there are non-trivial finite-action solutions, called instantons or pseudoparticles, for which

10The choice of angles is irrelevant since the Jacobian of the change of variables cancels that of the ε-symbol.
11Note the factor of two in ∂µK

µ = 2 tr(FF̃ ) = FF̃ .
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the integral of the anomalous term is non-zero, but proportional to a topological charge: the
winding number. This indicates that there is no good reason to neglect the GG̃ term in the
QCD Lagrangian even though it corresponds to a total derivative. This will become clearer in
Section 2.2.4 were the θ-vacuum is discussed.

The instanton action

In order to construct instanton solutions, the fact that these kind of solutions are stationary
points of the action is most useful: they have lower action than any other solutions in the same
homotopy class (i.e. same winding number). As a consequence, instantons need to saturate the
Bogomol’nyi bound [117],

SE =
1

4g2

∫
d4xFµνF

µν =
1

4g2

∫
d4x

[
FF̃ +

1

2
(F − F̃ )2

]
=

8π2ν

g2
+

1

8g2

∫
d4x(F − F̃ )2 .

(2.2.23)
Since the last term in Eq. (2.2.23) is positive, the euclidean action of any field configuration with
winding number ν has to be larger than the instanton solution with the same winding number,

SE =

∣∣∣∣∣
1

4g2

∫
d4xFµνF

µν

∣∣∣∣∣ ≥
8π2ν

g2
. (2.2.24)

The inequality is saturated by the instanton solutions,

SE
∣∣
ν-inst

=
8π2ν

g2
, (2.2.25)

for which the the last term of the Eq. (2.2.23) needs to vanish if the winding number is positive
and needs to be maximal if ν is negative instead. These two options lead to the self-duality
equations,

F = ±F̃ . (2.2.26)

Thanks to the Bogomol’nyi argument, it is only necessary to solve the self-duality equations that
are first-order differential equations instead of the full EOM,12 that are of second order. The
anti self-dual solutions F = −F̃ are called anti-instantons and have negative winding number.
Once an instanton solution is constructed, it is easy to build the corresponding anti-instanton
by making a parity transformation ~x→ −~x =⇒ FF̃ → −FF̃ =⇒ ν → −ν.

The BPST instanton

We will now proceed to construct explicitly instanton solutions with ν = 1 for a SU(2) gauge
group. We are choosing SU(2) not only because it is the simplest group we can consider (for
U(1) every solution is trivial, π3(U(1)) = 0) but also because the SU(2) instantons will allow

12Any self-dual configuration solves the Yang-Mills EOM DµF
µν = DµF̃

µν = 0 due to the Bianchi identity.
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the construction instantons for any other gauge group containing a SU(2) subgroup. This is a
consequence of Bott’s theorem [118] that states that any mapping from S3 to a general simple
Lie group G can be continuously deformed into a mapping into a SU(2) subgroup of G.

Since the relevant information of an instanton, the winding number, is solely encoded in its
gauge configuration in the 3-sphere at infinity, let us start by specifying Aµ(|x| → ∞), that needs
to correspond to a pure gauge configuration. Thus this configuration at infinity is determined
by a map from the S3 to the gauge group SU(2). For ν = 1, we can define the identity map,

g(1) =
τ + i~x · ~σ

r
. (2.2.27)

As Eq. (2.2.8) shows, an element of the gauge group g is determined by the coefficients of
the linear combination of the generators in the exponential, ωa. In the identity map, each
point of space is mapped to the gauge group element whose coefficients determining that linear
combination coincides with the normalized position vector of that point, ωa = xa = (τ, x, y, z).
The gauge potential at infinity is obtained by plugging the gauge group element of Eq. (2.2.8)
in Eq. (2.2.16),

Aµ
r→∞−−−−→ i

(
τ + i~x · ~σ

r

)
∂µ

(
τ + i~x · ~σ

r

)−1

. (2.2.28)

In order to extend the field configuration to all points in space, one can multiply Eq. (2.2.28) by

a function f(r2) that fulfills two conditions, f(r2)
r→0−−−→ 0 to avoid a singularity in the origin, and

f(r2)
r→∞−−−→ 1 to recover the pure gauge configuration Eq. (2.2.28) at infinity. The self-duality

condition can be solved applying these conditions obtaining the Belavin, Polyakov, Schwarz and
Tyupkin (BPST) instanton solution [119],

Aµ(x) = if(r2)

(
τ + i~x · ~σ

r

)
∂µ

(
τ + i~x · ~σ

r

)−1

, f(r2) =
r2

r2 + ρ2
, (2.2.29)

that can be written in a more compact way by making use of the four dimensional Pauli matrices
σµ = (1, i~σ) as,

Aµ(x) = i
xνσµν
r2 + ρ2

, (2.2.30)

where σµν = 1
2 (σµσν − σνσµ) and σµ = (I,−i~σ).

This is not the only possible solution, though. New configurations can be obtained by applying
the symmetries of the theory. Via scale transformations, the size of the instanton ρ gets modified.
It possible to associate the parameter ρ with the size of the instanton, since for r � ρ the
gauge potential tends to a pure gauge configuration. Therefore at those points Fµν → 0. For
r . ρ instead, the configuration departs from pure gauge, Fµν 6= 0, and provides most of the
contribution to the action. That is why it can be said that the instanton is localized in a region
with size ρ. In addition, it is possible to perform a translation that would change the position
of the instanton to x0, yielding

f(r2) =
(r − x0)2

(r − x0)2 + ρ2
, (2.2.31)
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which adds four parameters to the family of solutions. Finally, the orientation of the instanton
in the group space gives 3 more parameters, that can be understood either as the three possible
spatial rotations or the three constant (global) gauge transformations [120]. Summing up, the
BPST instanton consists in a 8-parameter family of solutions of the Euclidean action, one for
the size ρ, four for the position x0 and three for the orientation in group space.

Finally, it is possible build instantons with larger winding number by following the same
procedure but substituting the standard map in Eq. (2.2.27) by the following map:

g(ν) =

(
τ + i~x · ~σ

r

)ν
, (2.2.32)

which has winding number ν, as it can easily proved noting that the winding number is additive
ν(g1 · g2) = ν(g1) + ν(g2).

Although we have only constructed the SU(2) instantons, Bott’s theorem allows one to obtain
instantons for any group G ⊃ SU(2), as already mentioned, by embedding SU(2) instantons
into G. Of particular interest is G = SU(N). In this case one possible embedding is given by13,

ASU(N)
µ =


 0 0

0 A
SU(2)
µ


 , (2.2.33)

It can be shown [121] that, via constant gauge transformations belonging to the coset space
SU(N)/(SU(N −2)×U(1)), new solutions can be constructed, resulting in a family of solutions
with 4N − 5 parameters. Together with the position and size already discussed, this gives a
total of 4N parameters or collective coordinates for a one instanton solution in SU(N).

2.2.3 Euclidean instantons as tunneling in Minkowski

Once the finite-action classical solutions of Yang-Mills theories have been classified and explicitly
constructed, we can go back to our original goal of understanding the QCD vacuum in Minkowski
spacetime. As it will be shown next, instanton configurations can be interpreted as paths in
Minkowski spacetime producing tunneling between classical vacua. Consequently, the single
physical quantum vacuum corresponds to a linear superposition of the classical vacua determined
by the tunneling probability [122,123].

Let us first consider the classical vacua of QCD in Minkowski spacetime. The Hamiltonian
density reads

H =
1

2

(
~Ea
)2

+
1

2

(
~Ba
)2
, (2.2.34)

where Eai = Ga0i , B
a
i = −1

2εijkG
a
jk denote the chromoelectric and chromomagnetic fields.

Classical vacua have vanishing energy density and therefore ~Ea = ~Ba = 0 =⇒ Fµν = 0

13Note that Eq. (2.2.33) corresponds to a block matrix. Thus the vanishing blocks, written as 0, actually have
dimensions (N − 2)× (N − 2), (N − 2)× 2 and 2× (N − 2), respectively.
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at every point of spacetime or, in other words, they correspond to pure gauge configurations.14

Quantum effects dramatically change this picture, though. As we have already anticipated,
instantons produce tunneling between classical vacua: they will evolve in time.

Let us consider the analytic continuation of the one-instanton solution in Eq. (2.2.29) to the
Minkowski spacetime, Aµ(~x, t) = AEµ (~x, τ = it), filling the volume delimited by the cylinder
depicted in Fig. 2.1. The winding number can still be defined and computed even though we
are in Minkowski spacetime, because it is a topological quantity that does not depend on the
metric,

ν =
1

32π2

∫
d4xFF̃ = − i

24π2

∫

I+II+III
d3Sµε

µνρσ tr
(
AνAρAσ

)
. (2.2.35)

where I, II and III denote the three surfaces delimiting the cylinder as depicted in Fig. 2.1.
Since the instanton has finite action, the field configuration is pure gauge in all the surfaces at
infinity. In particular, at initial time t1 → −∞ the configuration Aµ(~x, t1) describes a classical
vacuum,

Aµ(~x, t1) = ig(~x, t1)∂µg
−1(~x, t1) , (2.2.36)

and analogously, for t2 →∞ the configuration describes another classical vacuum,

Aµ(~x, t2) = ig(~x, t2)∂µg
−1(~x, t2) . (2.2.37)

Finally the remaining boundary is also pure gauge,

Aµ(~x, t)
|~x|→∞−−−−−→ ig(~x, t)∂µg

−1(~x, t) . (2.2.38)

In order to simplify the arguments, let us choose the gauge

A0(~x, t) = 0 , Aµ (~x, t1) = 0 , (2.2.39)

which corresponds to the temporal gauge (in every point of spacetime) and to setting the
gauge potential to zero in the initial vacuum using the residual space-dependent gauge freedom,
g(~x, t1) = 1.

With this gauge fixing, the field configuration in the boundary III vanishes. Combining
Eqs. (2.2.38) and (2.2.39), it follows that g(|~x| → ∞, t) is time-independent and because on the
surface I the gauge potential vanishes, Aµ (~x, t1) = 0, it must vanish for all t, therefore,

Aµ(~x, t)
|~x|→∞−−−−−→ 0 . (2.2.40)

This has an interesting consequence in terms of classifying classical vacua in Minkowski. For
every spatial slice t = cte, in the limit |−→x | → ∞ the gauge potential vanishes. Thus these
hypersurfaces can be compactified into 3-spheres in which the north pole is associated with all

14It can be shown that in three spatial dimensions there are no time-independent non-dissipative finite-energy
classical solutions of Yang-Mills, following a similar proof to that in Section 2.2.2. Thus the only time-independent
classical solution corresponds to Fµν = 0.
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Figure 2.1: Illustration of the chosen boundary of an instanton in Minkowski spacetime.

the points at |−→x | → ∞. Hence the initial t1 and final t2 slices that correspond to classical vacua
can be classified by the maps from a 3-sphere into the gauge group, i.e. the winding number,

n(t) = − i

24π2

∫

St

d3x3ε0ijk tr
(
AiAjAk

)
. (2.2.41)

This relates the winding number of the instanton with the winding number of the initial and
final classical vacua, from Eq. (2.2.35),

ν = − i

24π2

∫

I+II+III
d3Sµε

µνρσ tr
(
AνAρAσ

)
= n(t2)− n(t1) . (2.2.42)

since the integral on the boundary III vanishes.

Several comments are pertinent. The fact that the winding number defined in Eq. (2.2.41)
is computed by integrating over an open surface in Minkowski spacetime makes it qualitatively
different from the winding number of instantons in Euclidean space. On the one hand, time
evolution can smoothly deform a configuration with certain winding number to another one
with different winding number. Indeed, the winding number can be computed for any spatial
slice t = cte, St, by making use of Eq. (2.2.41): n(t) continuously interpolates between the initial
and final configurations, n(t1) ≡ n1 and n(t2) ≡ n2, taking non-integer values in between where
the field configurations are not pure gauge.

On the other hand, so-called large gauge transformations can change the winding number that
classifies the classical vacua in Minkowski spacetime.15 However, if one performs a large gauge
transformations and increases the winding number at time t1 by m units, n1 → n1 + m, then
the winding number at time t2 increases by exactly the same amount n2 → n2 + m, resulting

15This gauge transformations correspond to the space-dependent gauge fixing used to fix the potential in t = t1
in Eq. (2.2.39). They are called large because they do not approach the identity at infinity.
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in the same total winding number ν = n2 + m − (n1 + m) = n2 − n1. Consequently, the total
winding number is gauge invariant, and corresponds to that of the Euclidean instanton ν.

This can be easily understood by noticing that, while the anomalous term FF̃ is gauge
invariant, the Chern-Simons currentKµ is not. If the winding number is computed by integrating
the Chern-Simons current over a closed surface, it can be translated into an integral over the
volume of the anomalous term, and therefore the result will be gauge invariant, see Eq. (2.2.21).
If the surface over which we integrate is open instead, it cannot be written as a function of gauge
invariant operators, and the winding number will be shifted under large gauge transformations.

As we already commented, there are no classical paths that connect two vacua with different
winding numbers since the only classical solution corresponds to pure gauge in all points of
spacetime. Therefore, this path determined by the instanton solution necessarily involves
non-vanishing Fµν and therefore non-vanishing energy density at some intermediate times
(otherwise the total winding number vanishes). For this reason these transitions look like
tunneling processes between two classical vacua since they are classically forbidden but quantum
mechanically allowed via barrier penetration. Indeed it can be shown [124] that the instanton
solution gives rise to the maximal tunneling amplitude in Minkowski space. This probability is
related to the Euclidean action of the corresponding instanton, see Eq. (2.2.3),

P ∝ e−SE/~ = e
− 8π2

g2~ |ν| , (2.2.43)

where ν is the difference between the winding numbers of the two classical vacua that are
connected by this tunneling. The result in Eq. (2.2.43) exhibits the characteristic dependence
on the coupling constant of non-perturbative effects ∝ e−1/g2

, that does not arise at any level in
perturbation theory. In fact, instanton techniques can be used to compute barrier penetration
amplitudes generically in quantum mechanical problems, obtaining the same semiclassical result
that is usually computed using the WKB approximation.

We have showed that an instanton configuration with a given size, position, direction and
winding number ν produces tunneling between two classical vacua whose winding numbers
differ by the instanton winding number ν = n2 − n1. Nevertheless, if we wish to compute the
full probability for a transition from a classical vacua |m〉 to another one, |n〉, it is necessary to
integrate over all possible instanton configurations compatible with that difference in winding
number,

〈
n
∣∣e−Hτ/~

∣∣m
〉

=

∫
[dA](n−m)e

−SE/~ . (2.2.44)

In order to evaluate this integral, sometimes it is possible to use the dilute instanton gas
approximation (DIGA): assume that all the instanton configurations contributing to the integral
are widely separated compared to their size ρ. The matrix element in this approximation reads,

Z1,0(τ) = 〈1|e−Hτ/~|0〉 = CV τ

∫
dρ

ρ5

(
8π2

g2(1/ρ)~

)2N

e
− 8π2

g2(1/ρ)~ , (2.2.45)

where C is a constant that arises after performing the integration over all the possible the
directions in group space of the instantons and depends on the number of colors N for a given
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SU(N) theory. V τ is the Euclidean volume that is obtained after integrating over the instanton
positions. It must be noted that this approximation is not valid for small scales (large instanton
sizes). Indeed the integral in Eq. (2.2.45) diverges generating what ‘t Hooft called an infrared
embarrassment. After all, this divergence should not be a surprise, since the QCD coupling
constant becomes large at low energies, where we enter a strongly coupled regime in which the
semi-classical approximation that has been assumed does not apply. Although for confining
theories the DIGA cannot be applied, and it is not possible to compute the full integral in
Eq. (2.2.44), the rest of the discussion holds, and it suffices to characterize the vacuum of the
theory.

2.2.4 θ-vacuum

The classical vacua |n〉 labeled by the winding number n in Minkowski space all have vanishing
energy. However, similarly to quantum mechanics, the degeneracy between different classical
vacua is lifted if there exists tunneling between them. In order to construct the linear
combination of the different states |n〉 that correspond to the true quantum vacuum, let us
impose the condition that it has to be gauge invariant. Large gauge transformations such as,

T1(~x, t) =
i~x · ~σ

(
~x2 + a2

)1/2 , (2.2.46)

increase the winding number of a classical state by one unit, T1|n〉 = |n + 1〉. However, the
physical quantum vacuum needs to be invariant under such a transformation. In a Hilbert
space this amounts to obtaining the same state modulo a phase, T1|vac〉 = eiθ|vac〉. If the
quantum vacuum is expressed as a linear combination of the classical states |n〉, by imposing
gauge invariance it follows that,

|vac〉 =
∞∑

n=−∞
an|n〉 =⇒ T1|vac〉 =

∞∑

n=−∞
an|n+ 1〉 = eiθ|vac〉 (2.2.47)

=⇒ |vac〉 = e−iθ
∞∑

n=−∞
an|n+ 1〉 =

∞∑

n=−∞
e−iθan−1|n〉 =

∞∑

n=−∞
an|n〉 , (2.2.48)

where an are constant coefficients. That is, the coefficients need to follow the recursive relation
an+1 = e−iθan. By choosing a0 = 1, which is only a choice of normalization, the true vacuum is
unambiguosly found [125]. It can be labeled by the phase θ, |vac〉 ≡ |θ〉,

|θ〉 =

∞∑

n=−∞
e−inθ|n〉 . (2.2.49)

This shows that the vacuum of the Yang-Mills theory is characterized by a phase θ that
determines the linear superposition of classical vacua which defines the true quantum ground
state. A pertinent question is whether states with different values of θ correspond to different
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states of the same theory. Let us consider the following matrix element
〈
θ′
∣∣e−iHt/~

∣∣θ
〉

=
∑

m,n

eimθ
′
e−inθ

〈
m
∣∣e−iHt/~

∣∣n
〉

=
∑

m,n

eim(θ′−θ)ei(m−n)θ
〈
m
∣∣e−iHt/~

∣∣n
〉

=
∑

m,k

eim(θ′−θ)eikθ
〈
k
∣∣e−iHt/~

∣∣0
〉

= 2πδ
(
θ − θ′

)∑

k

eikθ
〈
k
∣∣e−iHt/~

∣∣0
〉
.

(2.2.50)

This implies that time evolution does not connect states with different θ’s. In fact, it can be
shown that the matrix element of any string of local observables O1 . . .Ok vanishes for θ′ 6= θ,〈
θ′
∣∣O1 . . .Ok

∣∣θ
〉
∝ δ(θ− θ′). This implies that different values of θ do not label states in a given

theory but correspond to different theories.
The next question is whether theories with different values of θ result in different physics. The

answer is yes. The energy density of the vacuum depends on θ, as can be shown by computing
the matrix element in Eq. (2.2.3) for the vacuum

∣∣θ
〉

and making use of Eq. (2.2.50),

lim
τ→∞

Zθθ(τ) =
〈
θ
∣∣θ
〉
e−E0τ/~ = e−E0τ/~ = N

∫

θ
[dA]e−SE/~ =

∑

n

N

∫
[dA]ne

inθe−SE/~ . (2.2.51)

Approximating again the integral in the DIGA, it follows that,

e−E0τ/~ = e2V τK cos θe−S0/~
=⇒ E(θ)

V
= cte− 2K cos θe−S0/~ . (2.2.52)

Therefore, theories with different values of θ have different vacuum energy. Although the DIGA
has been used to obtain this result, the fact that the energy density of the vacuum is θ-dependent
holds in any case. In fact, it can be shown in all generality that the minimum energy density
of the vacuum corresponds to θ = 0 and for any θ 6= 0 the energy density is larger [126]. As a
consequence, the value of θ of a given theory has physical impact. Indeed, for a pure Yang-Mills
theory several observables would show this physical difference. For example, in Ref. [127] the
gluonic two point correlation functions have been computed as a function of the θ-parameter.
Also, the mass of the lightest glueball and the full glueball spectrum depend on θ [128].

We are now ready to make the connection of the θ-vacuum with the θ-term appearing in the
QCD Lagrangian, see Eq. (2.0.1). The vacuum expectation value of any operator O can be
expressed as,

〈θ|O|θ〉 =
∑

m,n

eiθ(m−n)〈m|O|n〉 =
∑

k

eiθk〈k|O|0〉 =
∑

k

eiθ
∫
d4x 1

32π2GG̃〈k|O|0〉

=
1

Z
∑

k

∫
[dA]kO e

i
∫
d4x
(
L+ θ

32π2GG̃
)

=
1

Z

∫
[dA]O ei

∫
d4x
(
L+ θ

32π2GG̃
)
.

(2.2.53)

By using the definition of the winding number in terms of the volume integral of the anomalous
term, see Eq. (2.2.22), we have found that the result of any observable in a particular vacuum
|θ〉 amounts to adding to the Lagrangian of the theory the anomalous term

Lθ =
θ

32π2
GaµνG̃

aµν . (2.2.54)
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Summarizing, by studying the Euclidean Yang-Mills theory we found that the structure of the
QCD vacuum cannot be described perturbatively. There exist an infinite number of classically
degenerate vacuum states whose coherent superposition labeled by θ defines the true QCD
vacuum. The properties of this vacuum can be studied in the semiclassical approximation
by constructing the classical solutions of the Euclidean theory that describe tunneling paths
between the classical vacua in Minkowski space. Then, it has been shown that the impact
on physical observables of a given θ-vacuum can be encoded in the Lagrangian by introducing
the corresponding θ-term, see Eqs. (2.2.53) and (2.2.54). As a consequence, QCD interactions
are not described by a single dimensionless parameter, the coupling constant g, but by two
parameters g and θ.

Furthermore, instantons allow one to solve the missing meson problem which provides
experimental evidence for the explicit breaking of the U(1)A symmetry. Therefore, instantons
do have physical consequences, and it becomes clear that the fact that the QCD vacuum is
CP-invariant remains to be a puzzle calling for an explanation, a solution to the strong CP
problem.

Adding fermions

The instantons and the θ-vacuum for a pure Yang-Mills theory has been have constructed
above, but since we are interested in studying QCD, fermions need to be incorporated. One of
the immediate consequences of introducing fermions is that it becomes clear why the different
classical topological vacua are physically distinguishable: they posses different axial charge. As
introduced in Section 1.4.2, the quark axial current is anomalous, that is, in the limit of massless
fermions,

∂µj
µ
A =

αs
2π
GµνG̃

µν , (2.2.55)

see Eq. (2.1.6). After integrating over a volume, the difference in axial charge is obtained,

∆QA = QA(t = +∞)−QA(t = −∞) =

∫
d4x∂µj

A
µ = 2 ν . (2.2.56)

It follows that instantons with winding ν = 1 generate tunneling events in which the axial charge
of the vacuum changes by two units: they thus generate fermionic interactions containing one
quark and one anti-quark for each flavor. This can also be seen by integrating over the quark
fields in the path integral. In the semiclassical approximation the fermionic integration gives
rise to the determinant of the Dirac operator in an instanton classical background Aµ,

∫ [
dψ
][
dψ̄
]
e
∫
d4xψ̄(i/∂−m− /A)ψ = Det(i/∂ −m− /A) . (2.2.57)

In the limit m→ 0, it was shown by ‘t Hooft that the fermionic zero modes of the Dirac operator
make the vacuum to vacuum amplitude vanish [113, 129, 130]. Instead, as we have anticipated
studying the chiral charge, the tunneling amplitude is non-zero in the presence of external quarks.
In this case, the zero modes of the determinant cancel with the fermionic propagators, resulting
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in a non-vanishing amplitude for the fermionic interaction. This corresponds to the so-called ‘t
Hooft determinental interaction.

If the fermions are massive instead, the external legs of this determinental interaction can be
closed with the mass terms, generating a non-zero vacuum to vacuum amplitude. [113,130–132]
In the DIGA where the determinant factorizes to the product of the determinants for each
instanton background, this amounts to multiplying the pure Yang-Mills result by a factor of
(ρmf ) for each Weyl fermion16 with mass mf .

Z = Cinst(Nf , Nc)

∫
dρ

ρ5

∏

f

(mfρ)

(
8π2

g2(1/ρ)

)2Nc

e
− 8π2

g2(1/ρ) , (2.2.58)

where the coefficient Cinst for Nf Weyl fermions in a SU(Nc) Yang-Mills theory reads

Cinst
(
Nf , Nc

)
=

4 · 2−2Ncec1/2(−2Nc+2Nf)

π2 (Nc − 2)! (Nc − 1)!
e−c1+4c1/2 , (2.2.59)

where the function c(x) is defined in Ref. [113] and corresponds to c(1/2) = 0.145873 and c(1) =
0.443307.

2.2.5 Instantons in spontaneously broken theories: constrained instantons

Before reviewing possible solutions to the strong CP problem, let us first comment on instanton
solutions in spontaneously broken gauge theories. This will be of special relevance in Chapter 5,
where small-size instantons of this type will raise the axion mass.

At first sight, it could seem that the question leads to a dead end, since exact instanton
solutions do not exist in spontaneously broken theories.

Theorem. In spontaneously broken Euclidean Yang-Mills theories in 4 dimensions with the
Lagrangian

L = − 1

4g2
F aµνF

µν
a + (Dµφ)†Dµφ− U(φ) , (2.2.60)

where the minimum of the potential U(φ) corresponds to a non-vanishing value of the scalar
field, 〈φ〉 = v 6= 0, the only non-singular finite-action classical solutions of the EOM are gauge
transformations of Aµa = 0, φ = v.

Proof. The action of this theory reads

SE [φ,Aµ] = SG[Aµ] + SS [φ,Aµ] + SU [φ] (2.2.61)

16This factor (mfρ) holds for small instanton sizes ρ � 1/m. For large instantons ρ � 1/m the fermions
completely decouple and have no impact on the vacuum to vacuum amplitude.



2.2 QCD vacuum 55

where the three terms are non-negative and correspond to

SG[Aµ] =
1

4g2

∫
dDxF aµνF

µν
a , (2.2.62)

SS [φ,Aµ] =

∫
dDx (Dµφ)†Dµφ , (2.2.63)

SU [φ] =

∫
dDxU(φ) . (2.2.64)

Analogously to Eq. (2.2.14), let us consider the one-parameter family of field configurations
obtained by rescaling lengths in a given solution with finite action {Āµ(x), φ̄(x)},

Aµλ(x) = λ Āµ(λx) , φλ(x) = φ̄(λx) , (2.2.65)

whose action reads

SE(λ) = SG[Aµλ] + SS [φλ, A
µ
λ] + SU [φλ]

= λ4−DSG[Āµ] + λ2−DSS [φ̄, Āµ] + λ−DSU [φ̄] . (2.2.66)

For the solution Āi(x) to be a stationary point of the action,

dSE(λ)

dλ

∣∣∣∣
λ=1

= 0 =⇒ 0 = (4−D)SG[Āµ] + (2−D)SS [φ̄, Āµ]−DSU [φ̄] . (2.2.67)

Thus for D = 4 spatial dimensions the condition reads

0 = −2SS [φ̄, Āµ]− 4SU [φ̄] . (2.2.68)

Since both terms are positive both need to be zero independently,

SS [φ,Aµ] =

∫
dDx (Dµφ)†Dµφ , (2.2.69)

SU [φ] =

∫
dDxU(φ) . (2.2.70)

In both cases the integrand is positive, so it has to identically vanish in every point in order for
the full integral to vanish,

(Dµφ)†Dµφ = 0 ∀x , (2.2.71)

U(φ) = 0 ∀x . (2.2.72)

The action density of the scalar field therefore vanishes everywhere. However, Eq. (2.2.68)
allows for the gauge fields to have finite non-zero action. Nevertheless, we will now show that
Eq. (2.2.71) implies that the gauge potential configuration corresponds to a pure gauge in every
point of space, and therefore all the solutions of this kind are trivial,

|Dµφ|2 = 0 =⇒ Dµφ =
(
∂µ + iAµ

)
φ = 0 =⇒ Aµφ = i∂µφ . (2.2.73)
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For the potential U(φ) to be zero, the scalar field has to be at the minimum in every point of
space. Let us us consider one of such zeros of U(φ), φ = v. Since U is gauge invariant, any
gauge transformation of it, φ(g) = g v, will also be a zero of the potential. Let us assume that
all zeros of the potential are of the kind g v, excluding any accidental degeneracy or extra global
internal symmetry of the Lagrangian. Then the gauge potential reads

Aµ = iφ−1∂µφ = ig−1v−1∂µgv = ig−1∂µg , (2.2.74)

which corresponds to a pure gauge configuration in all points of space time and thus has vanishing
action, SG[Aµλ] = 0. In consequence, all three terms contributing to the action vanish, and
we can conclude that there are no exact classical solutions with non-zero but finite action in
spontaneously broken gauge theories in Euclidean space.

Crucially, in order to be able to infer something about the gauge potential configuration via
the condition on Eq. (2.2.73), it is necessary for the theory to be spontaneously broken, that is
the scalar needs to develop a non-zero vev. Otherwise if 〈φ〉 = 0, the condition in Eq. (2.2.73)
is automatically satisfied and the usual instantons of Yang-Mills theory are also solutions of the
theory with scalars that do not develop a vev.

Constrained instantons

Even if there are not exact instanton solutions in spontaneously broken theories, one can
construct approximate solutions for instanton sizes smaller than the inverse breaking scale
gρv � 1. This is what we call constrained instantons. There are two ways of constructing them.
The most rigorous approach was introduced by Affleck in Ref. [133]. It consists in introducing
a constraint as a Lagrange multiplier which fixes the instanton size ρ for its exact solution, and
then in the integration over this constraint. Alternatively, one can take the approach taken
by ‘t Hooft in Ref. [113] and solve the approximate EOM of the fields for ρ � 1/(gv). This
approximation consists in neglecting the current induced by the non-vanishing scalar field φ in
the EOM for the gauge fields, that is,

DµFµν = 0 ,

DµDµφ− U ′(φ) = 0 ,
(2.2.75)

which are solved with the necessary boundary conditions that ensure the finiteness of the action,

Aµ(x)→ ig(x)∂µg
−1(x) , for r →∞ , (2.2.76)

φ(x)→ g(x)v , for r →∞ . (2.2.77)

In other words, the approximation amounts to considering the instanton solution of pure Yang-
Mills theory for small sizes, and then solving the EOM for the scalar in this background. As a
result, the action contains the usual Yang-Mills instanton term plus an extra contribution from
the scalar field [121,133–135], yielding

SE =
8π2

g2
+ 2π2ρ2v2 . (2.2.78)
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Although constrained instantons are approximate solutions, they can have important effects
and, unlike usual instantons, they can be tackled quantitatively in a reliable way using the DIGA.
The breaking scale v provides a natural cut-off for the instanton size and solves the infrared
embarrassment of the DIGA for confining Yang-Mills theories. In this case of sponteneously
broken Yang-Mills theories, the one-instanton contribution to the vacuum functional in the
DIGA reads,

Z = Cinst(Nf , Nc)

∫
dρ

ρ5

(
8π2

g2(1/ρ)

)2Nc

e
− 8π2

g2(1/ρ)
−2π2ρ2v2

, (2.2.79)

where Cinst is defined in Eq. (2.2.59). The extra contribution of the scalar action to the path
integral e−2π2ρ2v2

exponentially suppresses large instanton sizes and makes the whole integral
convergent. This type of instantons has been considered in the context of B+L violation in
the Electroweak sector [112, 113, 129, 134, 136], where the presence of fermions has the same
consequences that were discussed in Section 2.2.4 for the confining Yang-Mills theory with
fermions.

2.3 Solutions to the strong CP problem

Running of θ̄-parameter

For certain solutions to the strong CP problem, it is important to take into account the running
of θ. Although the θ-parameter breaks CP invariance, it is not a technically natural parameter in
the ‘t Hooft sense [95], due to the fact that CP is already explicitly broken within the electroweak
sector of the SM. Thus θ is not protected by a symmetry and indeed receives radiative corrections
that depend on the complex phase of the CKM matrix, δKM. In terms of the viability of some
solutions to the strong CP problem that set θ̄ = 0 at some high scale Λ, it is important to
quantify these contributions. This issue was addressed by Ellis and Gaillard in Ref. [137]. They
found that the infinite renormalization of θ due to δKM vanishes up to 7-loops. As a consequence,
even if the “relaxation” scale Λ at which θ̄ is set to zero were to be the Planck scale, this EW
contribution is so suppressed, ∆θ ∼ 10−16, that it can be safely neglected when compared with
the current and foreseeable experimental precision for the neutron EDM. The rationale behind
the tiny value of θ remains open, though.

2.3.1 Nelson-Barr mechanism

One possible solution to the strong CP problem is that of models with spontaneously broken
CP symmetry via the Nelson-Barr mechanism [138–140]. If CP were to be an exact symmetry
of the interactions, the θ-term would be absent in the Lagrangian. CP violation in the weak
sector needs to be accounted for, and within these models it arises through a scalar singlet that
develops a complex vev, breaking spontaneously the CP symmetry. The Yukawa and mass terms
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are constructed in such a way that at tree level this complex vev only induces a non-zero CKM
phase while leaving a vanishing θ.

One of the simplest realizations of this mechanism [141] introduces down-type vector-like
quarks qL,R (singlets of SU(2)L) and several complex scalar singlets ηi with the following mass
and Yukawa couplings,

L ⊃ −µ qLqR − a ηqLDR − yΦQLDR , (2.3.1)

where the flavor indices have been omitted. Note that since CP is an exact symmetry at this
level the coulings µ, a and y are real. At some energy scale the scalars η develop complex vevs
and break spontaneously CP invariance. After EWSB, the Lagrangian in Eq. (2.3.1) gives rise
to the mass matrix

M =


 µ B

0 md


 , (2.3.2)

where md ≡ yv is the 3× 3 down-type quark mass matrix and B = a〈η〉. Notice that, since the
only complex phases in this mass matrix appear within the submatrix B (both md and µ are
real), Arg (det M) = 0 automatically. It follows that at tree level there are no contributions to
the θ-term. On the other hand, the exotic quark gets a large mass since µ, a〈η〉 � v. When it
is integrated out of the spectrum it introduces a complex phase in the mass matrix of the SM,
giving rise to a non-zero δKM in the CKM matrix.

Nevertheless, Nelson-Barr models present several problems. First of all, further symmetries
are needed in order to enforce the required mass matrix pattern (some allowed renormalizable
terms like ηqLqR or ΦQLqR need to be forbidden). Furthermore, the vevs of the different
complex scalars need to be adjusted to reproduce a large CKM phase, and this introduces a new
hierarchy problem. Finally and most importantly, even if no θ-term is present at tree level, loop
contributions to θ can be large, requiring sophisticated matter content in order to control them.

Analogous to the Nelson-Barr mechanism, models in which parity is spontaneously broken
have also been considered [142–146] . Indeed the θ-term violates both P and CP while conserving
C, so by constructing left-right symmetric models where P is spontaneously broken one can also
address the strong CP problem. Typically these type of models require new flavor structure
that, similar to Nelson-Barr models, induce important contributions to θ at loop level.

2.3.2 Peccei-Quinn mechanism

One of the most elegant and simple solutions to the strong CP problem was proposed by Peccei
and Quinn in Ref. [8, 9]. It consists in the introduction of a new global abelian symmetry, the
Peccei-Quinn (PQ) symmetry U(1)PQ, that is exactly conserved at the classical level but has a
mixed anomaly with QCD,

δL = β ∂µJ
µ = β

α

8π
GµνG̃

µν , (2.3.3)

which explicitly breaks the symmetry at the quantum level. As a consequence, a transformation
of the fields that carry PQ charge allows one to reabsorb completely the θ̄ parameter from the
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Lagrangian, rendering it unphysical and solving the strong CP problem. In addition, this PQ
symmetry is spontaneously broken at a scale fa giving rise to the existence of a Goldstone boson,
the axion a, as was pointed out by Weinberg [147] and Wilczek [148] after the PQ proposal.
Due to the explicit PQ breaking by the QCD anomaly, the axion acquires a non-zero mass
constituting a pseudo-Goldstone Boson.

One of the most model-independent properties of the axion is that it couples to the QCD
anomalous term as a consequence of Eq. (2.3.3),

L =
a

fa

α

8π
GµνG̃

µν , (2.3.4)

where fa is the axion scale. This interaction allows for another possible interpretation of the
PQ solution in terms of the axion effective Lagrangian. As was shown by Vafa and Witten [126]
by considering the Euclidean path integral,

e−V E(θ) =

∫ [
dAµ

]
det( /D +M)e−(1/4g2s

∫
d4xGµνGµν) e

iθ/32π2
∫
d4xGµνG̃µν , (2.3.5)

the QCD vacuum energy has a minimum for θ = 0. This can be easily shown by taking into
account that all the terms in the Euclidean action are real except for the θ-term,17

e−V E(θ) ≤
∫ [

dAµ
] ∣∣∣det( /D +M)e−Sreal e

iθ/32π2
∫
d4xGµνG̃µν

∣∣∣ (2.3.6)

=

∫ [
dAµ

]
det( /D +M)e−Sreal = e−V E(0) . (2.3.7)

Therefore E(θ 6= 0) > E(0). This is essential for the viability of axion solutions to the strong
CP problem. Effectively, the coupling in Eq. (2.3.4) amounts to promoting the θ-parameter
to a dynamical field, the axion, or to substitute θ → θ + a

fa
. Since E(θ + a

fa
) > E(0), the

non-perturbative effects of the QCD vacuum will generate a potential whose minimum lies at
θ+ a

fa
= 0 and therefore forces the vev of the axion to correspond to the CP conserving minimum,

θeff = θ +
〈 a
fa

〉
= 0 . (2.3.8)

As consequence, the strong CP problem is solved in any theory which generates the coupling in
Eq. (2.3.4) of the anomalous QCD term with a pseudoscalar which possesses a shift symmetry
a → a + βfa only broken by that anomalous term. Chapter 3 is devoted to the review of the
properties of the axion.

Massless up-quark solution

The simplest solution to the strong CP problem would be for the up-quark to be massless [112].
In that case, Arg (det M) would vanish and it would be impossible to have a physical CP

17The Euclidean action is real at θ = 0 only if there is no other source of CP violation. Although this is not
strictly true in the SM, we have already seen that the effects on θ of the phase of the CKM matrix can be safely
neglected.
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phase. Ultimately this solution is no different from the PQ mechanism. The axial rotation of
the massless up-quark U(1)A : u → eiβγ

5
u is a classical symmetry of the massless Lagrangian

but explicitly broken by the QCD anomaly, see Eq. (1.4.16) for m = 0. Thus this symmetry is a
perfectly valid PQ symmetry. Furthermore, this symmetry is also spontaneously broken by the
quark condensates upon confinement, giving rise to a pseudo-Goldstone boson. One could then
identify the corresponding axion with the η′-meson.18

One might wonder how a massless up-quark could be compatible with the observed meson
masses. First, Mc Arthur and Georgi [149] showed that instantons can give an effective
contribution to the up quark mass mu ∼ mdms/λQCD, although the estimate is not reliable
since the DIGA cannot be applied in the confining regime. Second, it was shown by Manohar
and Kaplan [150] that second order terms in the chiral Lagrangian can generate an effective up
quark mass that is also proportional mu ∝ msmd while being compatible with the pseudoscalar
meson masses. These two results made the massless up-quark solution very appealing, since
it does not require any extension of the SM. Nevertheless, this alternative is now ruled out by
lattice QCD results that show that the up quark has non-zero mass [151–155].

2.4 Why is there no Weak CP problem?

Before finishing this chapter about the strong CP problem, it is pertinent to comment on the
reason why there is only a strong CP problem but not an electroweak or electromagnetic one. One
can also write the topological terms for the electroweak gauge group of the SM SU(2)L×U(1)Y ,

L��CP = θQCD
αs
8π
GµνG

µν + θW
αW
8π

WµνW
µν + θY

αs
8π
BµνB

µν . (2.4.1)

All three terms correspond to total derivatives. We showed in the previous sections that in
the case of QCD the vacuum contains non-trivial configurations for which the integral in the
boundary does not vanish, giving rise to observable effects.

For the case of U(1)Y , the vacuum does not contain such non-trivial configurations since
the third homotopy group of the abelian group is trivial π3(U(1)) = 0. As a consequence the
corresponding θY -term has no physical impact.

For the case of SU(2)L, the situation is a bit more involved. Although non-trivial maps
from the sphere at infinity to the gauge group can be constructed as π3(SU(2)) = Z, there
are no exact instanton solutions since the theory is spontaneously broken. Still, as we showed
in Section 2.2.5 there are approximate solutions of the Euclidean theory called constrained
instantons, that could generate a non-trivial vacuum. However, once fermions are taken into
account the situation changes. As a consequence of SU(2)L gauge bosons interacting only with
left-handed currents, both the baryon and lepton number current are anomalous,

∂µJ
B
µ = ∂µJ

L
µ =

αW
4π

WµνW
µν . (2.4.2)

18Actually, since the anomalous term badly breaks the U(1)A symmetry, the η′ cannot be considered a true
pGB. Indeed it is not light and acquires similar mass to that of the rest of hadrons ∼ ΛQCD. However, one can
make this analogy by noting that the η′ is the lightest meson with the same quantum numbers as the axial current.
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Thus via a BN rotation the θW can be reabsorbed from the Lagrangian leaving no physical
consequence. In other words, baryon (or lepton) number symmetry is the PQ symmetry of the
EW topological term since it is classically conserved and explicitly broken solely by the EW
anomaly.
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3 Axions and axion-like
particles

The QCD axion is a hypothetical pseudoscalar particle (JP = 0−) that was proposed as the low-
energy imprint of the PQ solutions to the strong CP problem [147,156]. In this type of solutions,
there is a global U(1)PQ symmetry that is spontaneously broken, implying the existence of an
associated pseudo-Goldstone boson, the axion. Since the U(1)PQ is not an exact symmetry of
the quantum theory but is explicitly broken by the QCD anomaly instead, the axion is not
massless and develops a non-zero mass. Its main properties are reviewed in Section 3.1 and
stem from its pGB nature; namely, axions are naturally lighter than the characteristic scale of
the UV completion generating them, i.e. the PQ breaking scale fa, and they interact feebly with
the rest of the SM field content via derivative couplings and putatively anomalous couplings.1

All the axion couplings are inversely proportional to the axion scale.

Furthermore, although axions were proposed as a possible explanation for the absence of
significant CP violation in the strong sector, it was later realized that they are excellent Dark
Matter candidates. This will be discussed in Section 3.3.

The axion solution is particularly appealing due to its minimality and predictability since it
solves two of the problems of the SM with a theory that only involves a single parameter, the
axion scale fa. For QCD axions, this scale determines the strength of the axion couplings to the
SM fields and the axion mass,

m2
a '

f2
πm

2
π

f2
a

mumd

(mu +md)2
, (3.0.1)

where mπ, fπ,mu,md denote the pion mass and coupling constant, and the up and down quark
masses, respectively. Note that the axion would remain massless in the limit of vanishing quark

1Actually anomalous couplings to the SU(2)L × U(1) field strengths can also be seen as derivative couplings

since FF̃ = ∂µK
µ and the boundary term vanishes due to the trivial vacuum. Axions also couple to the QCD

anomalous term but this does not correspond to a derivative coupling due to the θ-vacuum that explicitly breaks
U(1)PQ.
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masses due to the axion mixing with the neutral mesons, as will be derived in Section 3.1.
Astrophysical constraints force the axion scale to be large, fa & 108 GeV (see Section 3.4 for a
brief review on experimental searches), and due to Eq. (3.0.1), QCD axions are necessarily light
particles ma . 10−2 eV.

However, the motivation to consider pGBs as possible BSM particles goes well beyond the
strong CP problem and axions. Indeed, there are a variety of frameworks in which this type of
particles arises, such as theories with extra dimensions, Majoron models providing dynamical
explanations to neutrino mass generation [157], string theories [158–161], supersymmetric
theories [162], DM models [163] and many dynamical flavor theories [156,164,165]. These pGB
are frequently called axion-like particles (ALPs) due to their shared properties with axions.
However, they present an expanded parameter space since the tight relation between the axion
scale and mass no longer holds for ALPs. The qualitative effective Lagrangian for ALPs reads

Leff
ALP '

1

2
∂µa∂

µa− 1

2
m2
aa

2 +
∂µa

fa
× SMµ +

a

fa
XµνX̃µν , (3.0.2)

where SMµ denotes a generic SM current and Xµν a generic SM field strength.
Furthermore, new developments in model building have shown that pseudoscalars lying in

regions of the parameter space classically associated with ALPs may also solve the strong
CP problem and thus deserve to be called axions. On the one hand, some models have been
proposed in which the axion coupling to photons is either suppressed [166,167] or enhanced [168]
with respect to the naive expectation of classical models with no cancellations and order one
parameters. This leads to photophobic or photophilic axions or even astrophobic axions [169],
in which the coupling to nucleons is suppressed avoiding some of the stellar constraints. On the
other hand, extensions of the SM involving new confining groups may generate new instanton
sources that raise the axion mass. Several of such “heavy axions” have been proposed [4,170–180]
and will be briefly reviewed in Section 3.2.5, and a new setup will be proposed in Chapter 5.
Thus the true axion parameter space is opening up and further motivates experimental efforts
looking for this type of axions and ALPs.

3.1 Main properties of the QCD axion

Axion low-energy Lagrangian

There are two possible ways of constructing the axion low-energy Lagrangian. In the EFT
approach, one writes all the non-renormalizable operators of a given dimension respecting the
symmetries of the theory. In this case, in addition to the SM gauge symmetries, the PQ
symmetry needs to be preserved by all terms, except the axion coupling to the QCD topological
term. A PQ transformation shifts the axion field a→ a+ αfa and thus all axion couplings will
be either derivative or anomalous. Below the EWSB scale and considering the first generation
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of fermions, the axion effective Lagrangian reads [181,182],

Leff
a =

1

4
g0
agg â GG̃+

1

4
g0
aγγ â F F̃ +

cu1
2

∂µâ

fa

(
ū γµ γ5 u

)
+
cd1
2

∂µâ

fa

(
d̄ γµ γ5 d

)
+
ce1
2

∂µâ

fa

(
ē γµ γ5 e

)
.

(3.1.1)

Alternatively to the EFT approach, one can obtain the low-energy interactions of the axion for
a given model via the PQ current, that in particular contains the axion,2

jµPQ =
∑

i

χiψiγ
µψi + fPQ∂

µa+ . . . , (3.1.2)

where χi denotes the PQ charge of the Weyl fermion ψi that may include the SM and/or other
exotic fermions, and fPQ is the PQ breking scale. The current of the full theory may also contain
other heavy degrees of freedom, such as radial components of scalars, that decouple and do not
play a role in the axion low-energy interactions. Due to the anomalous conservation of the PQ
current, its divergence reads

∂µj
µ
PQ = − N

fPQ

αs
8π
GµνG̃

µν − E

fPQ

αem
8π

FµνF̃
µν , (3.1.3)

where the coefficients E and N are the electromagnetic and color anomaly factors, which depend
on the charges and representations of the PQ-charged fermions that run in the loop generating
the anomaly. They can be computed using Eq. (1.4.19) for the abelian case, yielding3

E = 2
∑

f

(
χfL − χ

f
R

)
q2
em , N = 2

∑

f

(
χfL − χ

f
R

)
T (Rf ) , (3.1.4)

where qem is the electromagnetic charge, Rf is the representation of the fermion ψf under QCD
and T (Rf ) its corresponding Dynkin index defined as tr

(
T aT b

)
= T (R)δab. Inserting Eq. (3.1.2)

into Eq. (3.1.3), the axion EOM follows:

fPQ�â+
∑

i

χi ∂µ
(
ψiγ

µψi
)

= − N

fPQ

αs
8π
GµνG̃

µν − E

fPQ

αem
8π

FµνF̃
µν , (3.1.5)

which corresponds to the Euler-Lagrange equation for the axion stemming from the effective
Lagrangian,

Leff
a =

1

2
∂µâ∂

µâ− E αem
8π

â

fPQ
FµνF̃

µν −N αs
8π

â

fPQ
GµνG̃

µν +
∂µâ

fPQ

∑

i

χi
(
ψiγ

µγ5ψi
)
. (3.1.6)

It is customary to define the physical axion scale fa from the strength of the gluonic coupling,

fa ≡
fPQ

N
, (3.1.7)

2With this definition for the PQ current we are implicitly assigning a unit PQ charge to the scalar that contains
the axion.

3Note that this definition for E and N differs from that used in Ref. [167] by a factor of 2. In this thesis we
will follow the convention dictated by Eq. (3.1.4), that is also widely used in the literature, e.g. [183,184]
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leading to the effective Lagrangian

Leff
a =

1

2
∂µâ∂

µâ− αem
8π

E

N

â

fa
FµνF̃

µν − αs
8π

â

fa
GaµνG̃

µν
a + ∂µâ

∑

i

χi
(
ψiγ

µψi
)
, (3.1.8)

that can be now matched with the Lagrangian in Eq. (3.1.1),

g0
agg = − αs

2πfa
, g0

aγγ = − αem

2πfa

E

N
,

ci1
2

=
1

N

(
χiL − χiR

)
, (3.1.9)

where the index i runs over the first generation fermions, i.e. the up and down quarks and the
electron.

QCD axion mass

One of the most robust predictions of classical axion models is the relation between the axion
mass and the axion scale. The mass of a pGB is related to the explicit breaking of its
corresponding approximate symmetry [185], and for the PQ symmetry it corresponds to the
anomalous interactions of axions with gluons aGG̃, that induce a potential for the axion as a
consequence of non-perturvative QCD dynamics. Why then is not the QCD axion mass ∼ ΛQCD?
The point is that this very same source of breaking is the responsible for the solution to the
missing meson problem and therefore will generate a mixing between the PQ and axial currents.
That is, there are two pseudoscalars with anomalous couplings to QCD, a and η′, and only one
source of breaking due to QCD instantons. As a consequence, below the confinement scale the
axion will mix with the pseudoscalar meson. It is pertinent to construct the combined mass
matrix in order to obtain the axion mass and physical eigenstate.

Let us consider in the two quark approximation the mass Lagrangian for the neutral pion π0

and η0 at leading order in the chiral expansion,

Lchiral
a = B0f

2
π

[
mu cos

(
π3

fπ
+
η0

fπ

)
+md cos

(
π3

fπ
− η0

fπ

)]
− 1

2
K

(
2
η0

fπ
+

â

fa

)2

, (3.1.10)

where B0 can be expressed in terms of the QCD quark condensate 〈q̄q〉 as B0f
2
π = −2〈q̄q〉 ∼

Λ3
QCD and the last term encodes the explicit breaking of both U(1)PQ and U(1)A that creates a

potential for both the axion and the η0 below the confinement scale, K ∼ Λ4
QCD [186–189].

The resulting mass matrix for the three neutral pseudoscalars is given by

M2
{π3, η0,a} =




B0 (mu +md) B0 (mu −md) 0

B0 (mu −md) 4K/fπ +B0(mu +md) 2K/(fπfa)

0 2K/(fπfa) K/f2
a


 . (3.1.11)

The QCD axion scale is typically large, hence this matrix can be diagonalized in the limit
fa � K1/4, B0 � mu,d, which results in the axion mass being

m2
a '

f2
πm

2
π

f2
a

mumd

(mu +md)2
. (3.1.12)
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This relation between the axion mass and scale is a robust prediction of QCD axion models
in which the PQ symmetry is only broken by the QCD instantons, as commonly required to
successfully implement the PQ solution to the strong CP problem.

Strikingly, the physical axion mass is not proportional to the parameter encoding the PQ
breaking due to instantons K, but to the product of quark masses. The reason becomes clear in
the chiral limit mu,d → 0. The QCD anomaly is coupled to both the original axion â and the η0,
but actually it only generates a mass to a combination of them 2 η0

fπ
+ â

fa
that is identified with

the physical η′. The orthogonal combination corresponds to the physical axion and remains
massless in the chiral limit. Once quark masses are taken into account the axion develops a
mass proportional to them due to its mixing with the η0-meson and the pion. The axion mass
eigenstate corresponds to

a ' â+ θaπ π3 + θaη′ η0 , (3.1.13)

where the mixing angles read

θaπ ' −
fπ
2fa

md −mu

mu +md
, θaη′ ' −

fπ
2fa

. (3.1.14)

In other words, as was shown in Refs. [190–192], the physical axion is not actually the pGB of
the original PQ symmetry but of a modified version of it, the divergenceless PQ,

jµ
PQ′

= jµPQ −
1

2

1

mu +md

(
mduγ

µγ5u+mudγ
µγ5d

)
, (3.1.15)

which is not anomalous under QCD but only broken by the quark mass terms and gives the
same physical axion couplings as the diagonalization of Eq. (3.1.13).

Although the mass of the axion has been derived from the Lagrangian in Eq. (3.1.10) which
does not include direct couplings of the axion to the SM quarks, it can be shown that it holds
in all generality, see Chapter 7 for more details. The axion mass has recently been computed
at Next to Leading Order (NLO) in Ref. [183] together with the axion potential [183,187], that
reads

V (a) = −m2
πf

2
π

√
1− 4mumd

(mu +md)
2 sin2

(
a

2fa

)
. (3.1.16)

Physical axion couplings to photons

Since the physical low-energy axion eigenstate acquires π3 and η0 components, it inherits their
couplings to photons weighted down by their mixing with the axion. The couplings in Eq. (3.1.9)
get modified for the physical axion resulting in,

gaγγ = g0
aγγ + θaπ gπγγ + θaη′ gη′γγ , (3.1.17)

where the last two terms are the contributions induced by the model-independent axion-pion
and axion-η′ QCD mixings. It is important to note that this expression is valid below QCD
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confinement: at those energies gluons can be integrated out and the anomalous coupling of the
axion generates the mixing with the neutral mesons. Substituting the mixings in Eq. (3.1.14),
we obtain

gaγγ = g0
aγγ +

α

2πfa

(
6
q2
dmu + q2

umd

mu +md

)
, (3.1.18)

where qu = 2/3 and qd = −1/3 are the electric charges of the up and down quarks, resulting in
the well-known expression

gaγγ =
α

2πfa

(
E

N
− 2

3

mu + 4md

mu +md

)
, (3.1.19)

which is valid to first order in chiral perturbation theory. The corrections at NLO have been
computed in Ref. [183], obtaining

gaγγ =
1

2πfa
αem

(
E

N
− 1.92(4)

)
. (3.1.20)

To sum up, the axion coupling to photons presents two different contributions, the first one is
model dependent (it could even vanish for some models, see KSVZ model later on), whereas the
second component stems from the axion-meson mixing: this term is model independent and is
present for all axion models. The constraints on the axion coupling to photons are shown in
Fig. 3.1, where the region of the parameter space {ma, gaγγ} that corresponds to KSVZ axion
models are depicted as a grey band. More details on this computation and the experimental
bounds can be found in Chapter 7, where this known result has been extended for the first time
for the axion couplings to EW gauge bosons.

Figure 3.1: Bounds on the axion coupling to photons as a function of the axion mass. The black line
and grey band correspond to KSVZ-type QCD axion models for different values of E/N . The description
of the experimental limits can be found in Chapter 7.
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Physical axion couplings to nucleons

The axion couplings to protons and neutrons can be obtained by formulating the non-relativistic
theory for nucleons, whose Wilson coefficients are extracted from the neutron-proton mass
splitting and lattice simulations [183]. Similar to the coupling to photons, axion-nucleon
couplings present a model independent component stemming from the axion coupling to gluons
and another model-dependent component that depends on the PQ charges of the SM quarks.
Defining the nucleon coupling analogously to that to quarks,

Leff
a ⊃ cp

∂µa

2fa
pγµγ5p+ cn

∂µa

2fa
nγµγ5n , (3.1.21)

where cp and cn denote the coupling to protons and neutrons, respectively. The physical axion
couplings read

cp = −0.47(3) + 0.88(3)cu1 − 0.39(2)cd1 + δ

cn1 = −0.02(3) + 0.88(3)cd1 − 0.39(2)cu1 + δ ,
(3.1.22)

where δ = −0.038(5)cs1−0.012(5)cc1−0.009(2)cb1−0.0035(4)ct1 includes the small corrections due
to the rest of SM quarks.

3.2 QCD axion models

The paradigmatic axion models are reviewed in this section. First, the original PQWW model,
in which the axion first appeared, is discussed. Soon after its proposal, this “visible” axion was
ruled out by rare meson decay experiments, and the two most famous invisible axions models
were proposed: KSVZ and DFSZ. The different implementations of the PQ symmetry in these
models is reviewed, together with the case of the composite axion. Finally, we will comment on
recent attempts to build heavy axions models in which the axion mass is raised with respect to
that of the invisible axions, given in Eq. (3.1.12) due to the existence of new instanton sources.

3.2.1 Visible axion: original PQWW model

The SM does not present any classically exact abelian symmetry, which is only broken by the
QCD anomaly. Hence, in order to implement the PQ mechanism, the SM needs to be extended.
The first such extension was proposed by Peccei and Quinn [8, 9] and consisted on a two Higgs
doublet model (2HDM),

Hu =
(
1,2,

1

2

)
Hd =

(
1,2,

1

2

)
, (3.2.1)

where
(
1,2, 1

2

)
denotes the representation of each scalar under the SM gauge group, SU(3)c ×

SU(2)L × U(1)Y . The leptons can couple to either of the two doublets giving rise to particular
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realizations of the type II [193,194] and flipped 2HDM [195]. For concreteness, only the type II
2HDM will be now discussed, 4 whose Lagrangian reads

LYukawa −QLYuH̃uUR −QLYdHdDR − `LYeHdER + h.c. (3.2.2)

The presence of two scalar doublets with such couplings enlarges the global symmetry of the
theory, that now presents a global U(1)PQ within the abelian symmetries U(1)B × U(1)L ×
U(1)Y × U(1)PQ. The transformation of a generic combination of these abelian groups reads

U(1)PQ : QL → eiχqαQL, UR → eiχuαUR, DR → eiχdαDR,

`L → eiχ`α`L, ER → ei(χ`−χq+χd)αER ,

Hu → ei(χu−χq)αHu , Hd → ei(χq−χd)αHd ,

(3.2.3)

where the flavor indices have been omitted and χq, χu, χd and χ` are the PQ charges of QL,
UR, DR and `L, respectively. The definition of the PQ symmetry is not unique, though, and
will be extracted from the generic transformation in Eq. (3.2.3) by imposing and choosing some
conditions. The physical couplings of the axion depend on the axial charges of the fermions
so we can fix χq = χ` = 0 via appropriate vectorial transformations, i.e. lepton and baryon
number transformations. The symmetry has only two free parameters χu, χd and corresponds
to a combination of U(1)PQ and U(1)Y , whose current reads

jµPQ =χu URγ
µUR + χdDRγ

µDR + χdERγ
µER

− iχu
(
(∂µH†u)Hu −H†u(∂µHu)

)
+ iχd

(
(∂µH†d)Hd −H†d(∂µHd)

)
. (3.2.4)

Upon EWSB, the two Higgs doublets develop vacuum expectation values and both the PQ and
the EW symmetries are spontaneously broken,

Hu =
1√
2

(vu + ρu) eiau/vu ,

Hd =
1√
2

(vd + ρd) e
iad/vd ,

(3.2.5)

where vevs vu and vd relate to the EW scale as v ≡
√
v2
u + v2

d = 246 GeV. The CP-odd

components of the scalars, au and ad, lead to two different combinations: one corresponds to
the axion [147, 148] while the other becomes the longitudinal component of the Z-boson in the
unitary gauge. In order to fully specify the PQ charges, the orthogonality condition must be
imposed, i.e. the axion must not mix with the Z-boson. One way of obtaining this condition
is to perform a U(1)Y transformation and impose that the axion must remain invariant under
it. Let us first identify the linear combination corresponding to the axion by writing the PQ
current in Eq. (3.2.4) in terms of the pseudoscalar components of the Higgses, and compare with
the generic PQ current in Eq. (3.1.2),

jµPQ =
∑

i

χiψiγ
µψi − χuvu ∂µau + χdvd ∂

µad =⇒ fPQa = −χuvu au + χdvd ad (3.2.6)

4In the flipped 2HDM the charged leptons couple to the same Higgs doublet that couples to the up-type quarks
and leads to different PQ charge assignments.
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where the PQ scale fPQ ensures the proper normalization of the field and corresponds to

fPQ =
√
χ2
uv

2
u + χ2

dv
2
d . (3.2.7)

Under a U(1)Y transformation au and ad get a shift proportional to the hypercharge of the
corresponding doublet, and the axion transforms as

U(1)Y : a −→ 1

fPQ

(
−χuvu

(
au +

β

2
vu

)
+ χdvd

(
ad +

β

2
vd

))
(3.2.8)

= a+
1

fPQ

β

2

(
− χuv2

u + χdv
2
d

)
. (3.2.9)

For the axion to be invariant under U(1)Y , the fermionic PQ charges need to fulfill

χu
χd

=
v2
d

v2
u

. (3.2.10)

Defining the ratio of the vevs as x = vd/vu and choosing an overall normalization for the charges,
we finally get

χu = x , χd =
1

x
(3.2.11)

that fully determines the PQ current and allows one to compute the axion couplings, as explained
in Section 3.1. In particular we can check that this PQ symmetry is indeed anomalous and
therefore the axion couples to the QCD topological term, solving the strong CP problem:

LPQWW ⊃ Nf

(
1 +

1

x

)
αs
8π

a

fPQ
GµνG̃

µν , (3.2.12)

where Nf = 3 is the number of fermion families.

One of the most important features of the PQWW model is that the PQ breaking scale fPQ is
of the order of the EW scale and thus the axion has a sizable mass (of the order of ∼ 100 keV), as
dictated by Eq. (3.1.12), and sizable couplings to the SM fields, since they are only suppressed
by the weak scale. As a consequence and despite solving the Strong CP problem in a minimal
way, this visible axion model was soon ruled out by different experiments [191, 196–200], the
rare meson decays K+ → π+inv for long-lived axions being especially important.

3.2.2 Invisible axion models

Despite the fact that the first implementation of the PQ mechanism is ruled out, this solution of
the Strong CP problem can still be saved. Indeed. it was the identification of the PQ breaking
scale with the EW scale in this first attempt that imposed such strong bounds. Therefore by
decoupling these two a priori unrelated scales, the PQ mechanism can be safely implemented.

For instance, if there exist a new scalar singlet whose vev breaks the PQ symmetry at a
scale that is much larger than that of EW interactions, the axion becomes very light and the
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interactions get strongly suppressed ∼ 1/fa, evading the experimental bounds. This is the
strategy followed by the two paradigmatic invisible axion models, KSVZ and DFSZ axions.

It is also possible, nevertheless, to build invisible axion models without introducing any extra
fundamental scalar fields. Although it is sometimes overlooked, this is the case of the composite
or dynamical axion [201, 202] where the axion corresponds to a pseudoscalar meson of a new
confining force.

DFSZ

A simple extension of the PQWW model was propossed by Zhitnitsky [203] and later by Dine,
Fischler and Sredniki [204]. In addition to the two Higgs doublets, a new scalar singlet is
introduced, σ, which takes a vev at a high scale. This scalar carries PQ charge due to its
couplings to the Higgs doublets in the scalar potential,5

V
(
Hu, Hd, σ

)
=
λσ
2
|σ|4 + δ1

(
H†uHu

)
|σ|2 + δ2

(
H†dHd

)
|σ|2

+ δ3

(
H†uHd

)
σ2 + δ3

(
H†dHu

)
σ∗2

(3.2.13)

which forces the PQ charge of σ to be,6

U(1)PQ : σ → eiβχσσ , with χσ =
1

2
(χu + χd) . (3.2.14)

The potential in Eq. (3.2.13) generates a non-zero vacuum expectation value for the scalar that
breaks spontaneously the PQ symmetry,

σ =
1√
2

(vσ + ρσ) eiaσ/vσ , (3.2.15)

and the axion now results from a combination of the CP-odd components of the Higgs doublets
in Eq. (3.2.5) together with the new pseudoscalar aσ,

a =
1

fPQ
(−χuvu au + χdvd ad + χσvσ)

vσ�vd,vu−−−−−−→ aσ (3.2.16)

fPQ =
√
χ2
uv

2
u + χ2

dv
2
d + χ2

σv
2
σ

vσ�vd,vu−−−−−−→ χσvσ , (3.2.17)

where the case in which vσ is much larger than the EW scale is shown. Without loss of generality
the PQ charge of the scalar can be set χσ = 1/2(χu+χd) = 1. Due to the large hierarchy among
the vevs of the scalars, the axion scale corresponds to the vev of the singlet fPQ ' vσ, and the
PQ pseudo-Goldstone Boson is mostly given by the CP-odd component aσ.

5This potential and PQ charge assignment corresponds to that of the original DFSZ model. There is however
another possibility if one substitutes the last two terms of the potential by H†uHdS.

6Note that χu,d denote the PQ charges of the fermions as defined in Eq. (3.2.3). The charges of the doublets
read χ(Hu) = χu, χ(Hd) = −χd.
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Regarding the axion couplings of the DFSZ axion, they correspond to those of the PQWW
model after rescaling the axion scale by a factor ∼ v

vσ
. Since the new scale vσ is not connected

to the EW scale, it can be set to take arbitrarily high values, evading the bounds that ruled out
the PQWW model.

The couplings of the DFSZ axion to the SM can be computed using Eqs. (3.1.9), (3.1.20)
and (3.1.22). In particular the color and electromagnetic anomalies read,

N = 3 (χu + χd) = 6 , E = 16 =⇒ E

N
=

8

3
. (3.2.18)

KSVZ

Probably the simplest invisible axion model is that propossed by Kim [205] and Shifman,
Vainshtein and Zakharov [206] in which only two particles are added to the SM matter content:
a vectorial QCD-colored fermion, ψL,R, and a complex scalar singlet, S. The latter plays an
analogous role to that of σ in DFSZ, that is, it contains a component of the axion and allows
one to set very high axion scales.

The Lagrangian of the theory reads L = LSM + LKSVZ,

LKSVZ = iψL /DψL + iψR /DψR + ∂µS
∗∂µS

+ ySψLψR + h.c. (3.2.19)

+ µ2
S|S|2 − λS|S|4 − λΦS|Φ|2|S|2 ,

where y is the Yukawa coupling for the exotic fermions, and µS, λS and λΦS are the parameters
of the scalar potential. This Lagrangian presents two global abelian symmetries: a vectorial
U(1)B′ that corresponds to a baryon number for the exotic fermion ψ, and an axial symmetry
U(1)PQ under which both the exotic scalar and fermion transform. Note that for this model it is
only the exotic degrees of freedom that have non-zero PQ charges, leaving all the SM particles
unaffected by a PQ transformation,

U(1)PQ : ψL → ei
α
2 ψL, ψR → e−i

α
2
αψR, S → eiαS, (3.2.20)

where the choice χψL = 1/2, χψR = −1/2 and χS = 1 is used, without loss of generality. This
symmetry constitutes a valid PQ symmetry, since the QCD charged fermions ψL,R generate a
non-zero anomaly (N = 1 if ψ is a color triplet), while being classically exact. The minimum
of the scalar potential in Eq. (3.2.19) breaks spontaneously this PQ symmetry 〈S〉 = vS/

√
2

giving rise to the axion. In this case, it is straightforward to identify the axion field that simply
corresponds to the axial component of the complex scalar S,

S =
1√
2

(vS + ρS) ei
as
vs , (3.2.21)

and the axion scale corresponds to fPQ = vs, which is assumed to be much larger than the EW
scale. The exotic fermion is not observed in the spectrum, and thus it must be very heavy for
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the model to be phenomenologically viable. Indeed, it acquires a large mass proportional to
the PQ breaking scale, mψ = y fPQ. Similarly the radial component of S also gets decoupled,
leaving the axion as the only low energy degree of freedom. Its couplings can be obtained by
following the procedure described in Section 3.1. Unlike the DFSZ and PQWW, the KSVZ
axion does not have tree-level couplings to SM leptons and quarks, but it can be probed via the
model independent component of the coupling to photons or nucleons.

Although in the original KSVZ axion model only one exotic fermion was introduced, a
singlet under SU(2)L×U(1)Y , it is also possible to add several exotic fermions with non-trivial
transformations under the EW gauge group.

In fact, charging the exotic fermions electromagnetically can solve one of the problems
of the original model: that of heavy cosmologically stable relics. The problem is that the
fermion ψ is cosmologically stable due to the conserved baryon number. After the QCD
transition, it hadronizes giving rise to fractionally charged baryons, for which there are strong
constraints [207–211]. One possible solution is to assign to the exotic fermion the same
hypercharge as one of the SM quarks, allowing for mixing terms of the type L ⊃ µψLDR, that
break the exotic baryon number symmetry and open up decay modes for the exotic fermions. As
a byproduct, the PQ charged fermions have also electromagnetic charge and therefore contribute
to the electromagnetic anomaly. For the simple cases of one fermionic QCD triplet with the
same hypercharge as the up- or down-type quarks, the axion coupling to photons is given by
Eq. (3.1.20) with,

E

N
=

8

3
for up-type Yψ =

2

3
,

E

N
=

2

3
for down-type Yψ = −1

3
. (3.2.22)

These two particular cases fall in the grey band of Fig. 3.1. They are called hadronic models
and can be generalized introducing several fermions with different transformations under QCD
and the EW group. Recently, Refs. [166,167] have studied the possible realizations of the KSVZ
model that are compatible with the bounds on cosmological relics, and that do not generate
Landau poles below the Planck scale. Given these restrictions in the exotic fermionic matter
content, the preferred window for the axion coupling to photons has been refined. Interestingly,
the authors show that for certain choices of charges it is possible to build KSVZ models for
which the axion coupling to photons vanishes due to a cancellation between the model dependent
contribution E/N and the model independent one, see Eq. (3.1.20). Indeed a similar strategy
can be applied for the couplings to nucleons, and one can build astrophobic axion models [169]
that evade much of the astrophysical constraints due to their suppressed coupling to nucleons. In
this context of more sophisticated proposals that can evade certain bounds, it becomes relevant
to explore other interactions such as axion couplings to EW gauge bosons, as we will explore in
Chapter 7.

Composite axion

Although it has not received as much attention as the KSVZ and DFSZ models, in the same
years Kim [201] proposed another invisible axion model in which the axion does not belong to
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a fundamental scalar field, but is composite instead. This composite (dynamical) axion model
[201,202] contains a new confining group, the axicolor group SU(N)a, whose confinement scale
is much larger than that of QCD, Λa � ΛQCD. Considering that the massless up-quark solution
is no longer viable (see Section 2.3.2), the idea is to add exotic massless colored fermions. If these
massless quarks are also charged under axicolor they will form bound states whose mass is of the
order of the axicolor confinement scale ∼ Λa, that can be made arbitrarily large. Nevertheless,
if upon confinement chiral symmetries are spontaneously broken, light mesons corresponding to
the new Goldstone Bosons of this breaking will arise, one of these composite states being the
dynamical axion.

For concreteness, let us consider the massless quark content of the dynamical axion model in
Table 3.1.

SU(3)c SU(N)a

ψL,R 2 2̄

χL,R 1 2

Table 3.1: The massless fermion sector of the dynamical axion model. The fields ψ and χ are Dirac
fermions with vectorial transformation properties and 2 denotes the fundamental representation.

In this model, two massless quarks are needed because the new confining group, SU(N)a,
comes with its new θ-parameter. In order to fully reabsorb both θ paramters from the Lagrangian
two independent rotations are needed. In other words, in order to implement the PQ mechanism,
the symmetry needs to be explicitly broken by the QCD instantons alone: if we were to add a
single massless fermion its axial symmetry would be broken by the instantons of both groups.
The Lagrangian for the massless sector reads,

L = iψL /DψL + iψR /DψR + +iχL /DχL + iχR /DχR . (3.2.23)

Since these quarks are massless the theory presents at the classical level a
[
U(1)

]4
global

symmetry: the two vectorial symmetries corresponding to baryon number conservation of the
quarks ψ and χ, and the two axial symmetries. These two last symmetries are, however,
anomalous under QCD and axicolor. One combination corresponds to the PQ symmetry,

jµPQ = ψγµγ5ψ − 3χγµγ5χ . (3.2.24)

It can be easily checked that this symmetry is not anomalous under the axicolor group while
presenting a QCD anomaly and, as a consequence, it constitutes a valid PQ symmetry.
Upon chiral symmetry breaking the condensates 〈ψψ〉 = 〈χχ〉 6= 0 would form, breaking
spontaneously the chiral symmetries,

[U(1)]4 −→ U(1)V,ψ × U(1)V,χ , (3.2.25)
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and giving rise to two Goldstone bosons associated with the two abelian axial symmetries.
Nonetheless, analogously to the missing meson problem, one combination of the axial
transformations is anomalous under the axicolor group and therefore is not a good symmetry to
start with. Consequently the meson with the quantum numbers of that current, is analogous to
the η′ in the axicolor sector, is not light but has a mass of the order of the confinement scale,
as all the rest of the hadrons mη′a ∼ Λa. On the other hand, the current in Eq. (3.2.24) is only
broken by the QCD anomalies and therefore can be seen as an approximate symmetry whose
pGB is the composite axion.

In other words, this theory presents two instanton sources of explicit symmetry breaking: that
of the axicolor group and that of QCD. Also, there are two dynamical “axions”, one for each
classically conserved axial current associated with each massless quark. Taking into account the
SM quark sector and thus the SM η′, three flavor-singlet pseudoscalars with anomalous couplings
result for only two instanton sources of masses. As a consequence, one light axion results. The
other two pseudoscalars are the SM η′ and a very heavy axion with mass ∼ Λa.

Once the PQ mechanism has been implemented, the low energy phenomenology of the invisible
axion is recovered, so the composite axion also has the mass in Eq. (3.1.12) and the couplings
in Eq. (3.1.8), similar to the original KSVZ, that is with no tree-level couplings to quarks and
leptons. The axion scale is related to the confinement scale of the axicolor group fPQ ∼ Λa/4π.
Unfortunately, composite axion models typically have cosmological problems due to the existence
of colored stable relics that cannot decay due to the exotic baryon number symmetry, hence the
pre-inflationary PQ breaking scenario is usually the only viable possibility in composite axion
models, see Section 3.3.

Other invisible axion models

The KSVZ, DFSZ and composite axions constitute the three paradigmatic axion models that
are often used as benchmarks. The PQ mechanism, however, can be embedded in a variety of
frameworks aiming to solve other problems of the SM. Examples of these attempts of linking
several solutions of SM issues are the axion-majoron [212–218], the flaxion or axi-flavon [164,165],
the axion in grand unification theories (GUTs) [219–221], the axion in supersymmetric theories
[222] and also the model-independent axion arising in string theory [223, 224]. Furthermore,
composite axion models have also been constructed aiming to solve one of the issues of invisible
axion models: that of the PQ quality problem.

3.2.3 PQ quality problem

Quantum gravity (QG) has been argued to break all global symmetries. The usual argument
involves black holes incorporating particles with a global charge and subsequently evaporating via
Hawking radiation. Since no information of the global charge is accessible in the evaporation, this
process would violate global symmetries [225–233]. These effects can be potentially dangerous
for the PQ solution to the strong CP problem.
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Invisible axion models typically involve axion scales of the order fa ∼ 108 − 1012 GeV, which
do not lie so far from the Planck scale. One possible way to parametrize the suggested PQ-
violating QG effects is via non-renormalizable operators suppressed by powers of the Planck
scale. For the KSVZ model, possible effective operators have been considered [225–228] of the
following form

L��PQ =
∑

n=5

cn

Mn−4
Pl

Sn + h.c. , (3.2.26)

where S is the KSVZ complex scalar, although the same argument applies to KSVZ substituting
S → σ. The operator in Eq. (3.2.26) would generate a new contribution to the axion potential,
that in general will present a relative phase δ with respect to the QCD induced potential.7

Concentrating on the lowest dimensional (and most dangerous) term, i.e. n=5, the effective
potential for the axion reads,

V (a) = VQCD + VQG(a) =

−m2
πf

2
π

√
1− 4mumd

(mu +md)
2 sin2

(
a

2fa
+
θ̄

2

)
+
|c5| f5

aN
5

8
√

2MPl

cos

(
1

N

a

fa
+ θ̄ + δ

)
, (3.2.27)

which no longer has the minimum in the CP conserving point 〈 afa + θ̄〉 = 0, but gets shifted

instead. The displacement from the CP conserving minimum generates an effective θ̄eff,

|θ̄eff | =
〈 a
fa

+ θ̄
〉

= |c5 sin(δ)| f3
aN

4

8
√

2maMPl

. (3.2.28)

For O(1) values of the coefficient c5 and fa ∼ 108 − 1012 GeV, the displacement from the CP
conserving minimum spoils the solution to the strong CP problem since it leads to unacceptable
values for the nEDM. In other words, assuming that the d = 5 operator in Eq. (3.2.26) is present,
the nEDM constraint translates into a bound on the coefficient c5 . 10−O(55), representing a
fine tuning worse than the strong CP problem itself.

There are several ways out of this problem. While it is commonly accepted that QG violates
any global symmetry, it remains controversial whether its effects can be simply parametrized
with non-renormalizable operators solely suppressed by powers of MPl. Indeed, a recent study
[234] computed the axion potential generated by a minimal coupling of the axion to gravity in a
wormhole solution in the decoupling limit for the radial component of the singlet scalar. It was
found that the effective operators are further suppressed by the exponential of the gravitational
instanton action ∝ e−MPl/fa . These PQ-violating operators are safe from neutron EDM bounds
as long as fa . 1016 GeV.

Other proposals rely on the imposition of gauge discrete symmetries that forbid the operators
in Eq. (3.2.26) until a given dimension (from dimension 8 to dimension 11 depending on the
axion scale) [235–237], that could arguably stem from spontaneous breaking of gauge symmetries
in string theory frameworks [238].

7There is no reason for δ to vanish and the operator in Eq. (3.2.26) to be aligned with the θ-parameter of the
SM.
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Furthermore, these type of operators could be avoided in theories where the PQ symmetry is
not imposed on the Lagrangian but rather arises accidentally, due to the gauge symmetries and
matter content of the theory [2,227,239–245]. These kinds of solutions are particularly appealing
since they provide a rationale for the existence of the symmetry, and allow one to protect against
any new physics that could violate the PQ symmetry. In Chapter 6, a minimal composite axion
model is built in which the PQ symmetry arises automatically, and it is inherently protected
from possibly dangerous QG operators until dimension 9.

Finally, another way of making these operators unimportant is to lower the axion scale fa. In
usual invisible axion models, the axion scale cannot be smaller than fa . 108 GeV due to stellar
bounds. However, heavy axion models have been proposed in which the axion is too heavy to
be produced in the nuclear stellar medium, and thus its scale can be lowered without being in
conflict with those observations.

3.2.4 Domain wall problem

Another important issue is that of the cosmological impact of domain walls (DWs). The non-
perturbative axion potential generated by QCD instantons in Eq. (3.1.16) breaks explicitly the
PQ symmetry. But this breaking is not complete and there is a residual discrete symmetry due
to the periodicity of the potential,

S(m) : a −→ a+
2πm

N
fPQ, m ∈ Z . (3.2.29)

As a consequence, U(1)PQ → ZN and there exist N distinct degenerate CP conserving minima.
In the Early Universe, after the QCD transition this discrete symmetry is spontaneously broken.
This means that in different patches of the Universe the axion field falls in different minima. In
the boundary that separates two patches that fell in different vacua, the axion field interpolates
between the values of the two minima generating a region with non-zero energy density called
domain wall. The number of physically distinct minima is called the domain wall number,
NDW = 1. Although it typically coincides with the color anomaly factor N , for some models this
is not the case due to the fact that some of the N minima are connected by gauge transformations
and thus are physically equivalent, see for example the model in Chapter 6.

If the number of domain walls is larger that one, NDW > 1, the energy density stored in
domain walls can soon dominate over that of radiation and matter and lead to an overclosure
of the Universe [246, 246–248]. This constitutes the domain wall problem. There are several
ways to solve it. First, if the PQ transition occurs before inflation (and it is never restored)
our current observable Universe corresponds to a single patch of constant initial misalignment
angle, and therefore it will fall to a single minimum with no DW. Another option would be to
have models with NDW = 1 where there is only one physical vacuum. Finally, DWs could be
made unstable by introducing PQ breaking terms, such as those in Eq. (3.2.26) that break the
degeneracy and lift some of the minima. In this scenario, after some time the DW would decay
before dominating the energy density of the Universe, generating a new production mechanism
for axion DM.
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3.2.5 Heavy axions

Axions are typically light particles. Indeed, the invisible axion mass formula in Eq. (3.1.12) is
a robust prediction of QCD axion models in which QCD instantons are the only source of PQ
symmetry breaking, as it is typically required by the strong CP solution.

Nonetheless, the existence of new confining groups or new sources of PQ breaking instantons
in a given theory can generate new contributions to the axion mass. The challenge in this case
is for the new contributions to be aligned with QCD, in order not to spoil the solution to the
strong CP problem.

One possibility to achieve such alignment is to consider the existence of a mirror world that
is related with the SM via a Z2 symmetry [170, 171, 174, 176]. This discrete symmetry is softly
broken, so that the mirror Higgs gets a larger vev ∼ 1014 GeV. Consequently, the mirror quarks
get integrated out of the spectrum and thus the mirror QCD runs faster than QCD and confines
at a larger scale Λ′QCD � ΛQCD . The Z2 symmetry ensures that the two θ-parameters coincide
and therefore a single axion suffices to solve the strong CP problem. But this axion receives
mass contributions from the two sectors,

m2
af

2
a ' f2

πm
2
π

mumd

(mu +md)2
+ Λ′4QCD . (3.2.30)

Although this framework allows one to raise the axion mass, it requires a large tuning in the
scalar potential to achieve such hierarchy between the scales. An alternative to doubling the
full SM matter content with a Z2 symmetry is that of unification. Indeed, unification of the
confining sector can be used to naturally identify the θ’s of the two sectors and obtain a large
axion mass like in Eq. (3.2.30) and solve the strong CP problem [4,172,173,177,178].

In other recent proposals [4, 179, 180], the QCD gauge group actually corresponds to the
diagonal subgroup of the product of two (or more) SU(3) gauge groups, that are spontaneously
broken to QCD SU(3)× SU(3)→ SU(3)c. In these theories, the constrained instantons at the
scale of the spontaneous breaking, see Section 2.2.5, that are also called small-size instantons
(SSI) constitute a new source of PQ breaking that raises the axion mass [249,250]. In Chapter 5,
we develop the first heavy axion model in which the strong CP problem is solved with color
unification and massless quarks.

For heavy axion models ma & GeV, stellar constraints can be avoided (the axion is not
kinematically accessible) so the axion scale can be lowered down, and thus the PQ solution is
more protected from possibly dangerous QG operators, see Section 3.2.3. Due to the low axion
scale, the axion is no longer stable in cosmological timescales and therefore it cannot explain
the Dark Matter relic density of the Universe. Heavy axion models, however, typically predict
the existence of other stable states that can be good dark matter candidates, e.g. [251].

To sum up, there has been much recent activity in building heavy axion models that show
that the PQ mechanism can be implemented without necessarily implying the existence of a
light axion in low-energy spectrum. As a consequence, the axion parameter space opens up,
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and regions that were classically attributed to ALPs now get populated by axion models that
do solve the strong CP problem.

3.3 Axion dark matter

Even if the axion arises as a natural consequence of the PQ solution to the strong CP problem,
it constitutes an excellent candidate to solve another pressing problem of the SM: the Dark
Matter problem.

QCD axions are naturally stable, weakly interacting and light particles that could be non-
thermally produced in the Early Universe and account for the observed DM relic density. The
scale at which inflation occurs with respect to the PQ breaking scale strongly impacts the amount
of axionic DM that is produced.

In the pre-inflationary scenario, the only axion dark matter production mechanism is the so-
called misalignment mechanism. If the PQ transition happens before inflation and it is never
restored during reheating, the axion field is constant over the observable Universe, a(x) = θifa,
where θi is the initial misalignment angle. This is a consequence of inflation having stretched
a small patch of the Universe with constant axionic field to constitute our current observable
Universe. Around the QCD epoch, the axion potential is generated and drives the axion field
from its initial misalignment towards the CP-conserving minimum. While for low temperatures,
the axion potential can be reliably obtained by using chiral Lagrangians, see Eq. (3.1.16), for
temperatures close to ΛQCD the perturbative methods fail and the axion potential cannot be
accurately computed [183]. Let us assume a cosine-like potential as one would expect from a
dilute instanton gas approximation to capture the qualitative behavior,

V (a, T ) = m2
a(T )f2

a

(
1− cos

( a
fa

))
. (3.3.1)

The evolution for the axion field in an expanding Friedman-Robertson-Walker (FRW) Universe
can be expressed as8

ä+ 3Hȧ+m2
a(T )fa sin

(
a

fa

)
= 0 (3.3.2)

where H is the Hubble expansion rate. As the Universe cools down the axion potential becomes
more important and the Hubble rate decreases. When the two last terms in Eq. (3.3.2) become
comparable, the axion field starts oscillating around the minimum with frequancy ma. This so-
called misalignment mechanism [252–254] produces a coherent state of non-relativistic axions, a
Bose-Einstein condensate [255], that behaves as CDM at longer time scales than the period of
the oscillations.
The relic axion abundance Ωa that is generated due to the misalignment mechanism can be

8Here it is assumed the axion field is homogeneous, i.e. does not depend on the position, otherwise gradient
terms would appear in Eq. (3.3.2).
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expressed as a function of the axion decay constant fa, and the initial misalignment angle
θi = ai/fa. For |θi| � π it reads [256]

Ωa h
2 = 0.35

(
θi

0.001

)2( fa
3× 1017GeV

)1.17

, (3.3.3)

where h is the present Hubble parameter. If axions were to explain the total relic dark matter
density, ΩDM h2 ' 0.12 [21], the fa value required for an initial misalignment angle in the range
θi ∈ (0.1, 3) is

fa ' 2× 1010 − 5× 1012 GeV . (3.3.4)

In the post-inflationary scenario, along with the axion misalignment there exist new
production mechanisms such as the decay of topological defects, i.e. strings and domain walls,
see Section 3.2.4. On the one hand, if the PQ transition takes place after inflation, the observable
Universe is divided in patches with different values of the axion field. As a consequence the initial
misalignment angle is no longer a free variable since its statistical average can be computed,〈
θ2
i

〉
= π2/3, allowing one to estimate the axionic relic density generated by the misalignment

mechanism. The situation is much more difficult regarding the decay of topological defects
into axions. The string and domain wall network evolution presents highly complex dynamics
that need to be tackled with simulations. Although this network was known to approach a
scaling solution [257], which allows for extrapolations of the simulations, it has been recently
shown [258] that there exist logarithmic violations of the scaling properties of such solutions. As
a consequence, the amount of DM axions produced by the decay of strings still remains an open
issue. However, since the prediction of the axion relic density in the post-inflationary scenario
due to misalignment only depends on the axion scale, by imposing not to overproduce axion
DM an upper bound on the axion scale, fa . 4.5× 1011 GeV, follows.

3.4 Experimental searches of axions and ALPs

The main motivation for the search of light pseudoscalars with derivative and anomalous
couplings is the axion solution to the strong CP problem. That is why the experimental effort
for the search pGB has been mainly driven by the invisible axion models. These models are
characterized by the tight relation between the axion mass and scale, see Eq. (3.1.12), and not
only the mass but also all the axion couplings are inversely proportional to the axion scale. As a
consequence, modulo some O(1) model-dependent coefficients, all the couplings of the axion to
the SM are fixed by the axion scale for the paradigmatic invisible axion models, see Eqs. (3.2.18)
and (3.2.22). Since all the relevant observables depend on a single parameter, the constraints on
invisible axion models can be shown in a unidimensional exclusion plot that spans over several
orders of magnitude for fa, see Fig. 3.2. These constraints arise mostly from the axion couplings
to photons, nucleons and electrons and include astrophysical, cosmological and laboratory-based
probes. This section does not intend to be an exhaustive review on the experimental searches,
for this purpose see [19,184].
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Figure 3.2: Bounds on the axion decay constant and the axion mass. The limits on the axion couplings
are translated into limits on fa and ma assuming the KSVZ with E/N = 0 unless stated otherwise. For
DFSZ it has been assumed x = vd/vu = 1. Prospects of future experiments are indicated in the lower
part of the plot. Figure adapted from [19,259].

Regarding the axion-nucleon interaction, see Eq. (3.1.22), one of the most important bounds
comes from the duration of the neutrino burst of the supernova SN1987a [260,261]. The existence
of axions coupled to nucleons represents an efficient energy loss mechanism for supernovas, which
in the absence of axions, release most of their energy emitting neutrinos. Consequently axions
shorten the duration of the neutrino burst. In KSVZ models, the axion-nucleon interactions
stem from the aGG̃ coupling and thus the supernova bound automatically translates into a
constraint on fa, whereas in DFSZ models the coupling to nucleons also depends on the quark
charges, see Eq. (3.1.22). Despite its constraining power, the supernova bound contains many
uncertainties due to the computation of the energy loss [260]. Indeed, a recent work reassessing
it has relaxed the SN bound [262] and even some other works [263] are casting doubts on the
applicability of such bound.

The axion-photon coupling also has an impact on astrophysical phenomena due to energy
losses, and especially relevant is the lifetime of globular clusters in the Horizontal Branch (HB)
[264,265]. Moreover, the photon-axion interaction not only allows one to indirectly constrain the
axion due to energy losses but also allows one to construct experiments aiming at detecting the
axion directly. Those include haloscopes aiming at detecting DM axions via resonant cavities,
such as ADMX; helioscopes searching for solar axions, such as CAST [266, 267] or the future
experiment IAXO [268,269], or light shining through wall experiments (LSW) that aim at both
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producing and detecting the axion in the laboratory, such as ALPS I [270] and future ALPS
II [271]. All these experiments are based on the so-called Primakoff effect : in the presence of
an external magnetic field, the axion coupling to photons in Eq. (3.1.1) generates axion-photon
conversion [272,273].

The coupling to electrons can also be constrained with astrophysical sources, such as white
dwarfs (WD) and red giants (RG), see Fig. 3.2. They set stringent bounds since the axion
coupling to electrons leads to an efficient axion production in the stellar nuclear medium: the
ABC processes (Axiorecombination, Bremsstrahlung and Compton) [274].

While the energy loss of stars due to axion emission allows to constraint its couplings, it
should be noted that there are a number of stellar cooling hints that show some preference for
non-zero axion couplings (e.g. that coming from WD cooling prefers at the 3σ level a non-zero
electron coupling) [275].

Figure 3.3: Constraints on the axion coupling to photons as a function of the axion mass. In addition
to the bounds that are explained in the text, cosmological bounds are also included in green. Figure
adapted from [184].

While it is useful to show the invisible axion bounds in the unidimensional plot in Fig. 3.2,
it should be noted that it involves several assumptions with respect to the relation between the
axion couplings and scale. In particular, for KSVZ models it has been assumed E/N = 0 and
for DFSZ x = vd/vu = 1. In order to be model-independent it becomes pertinent to open up the
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parameter space and consider the previous constraints in the full {ma, fa} plane, see Fig. 3.3,
where the benchmark KSVZ and DFSZ invisible axion models correspond to the yellow band.
However, as we already commented in Section 3.2.2, there are invisible models in which the
axion couplings can significantly depart from those values due to cancellations [166, 167, 169].
Moreover in the context of ALPs and heavy axions it becomes pertinent to explore the full
parameter space and even consider other ALP couplings that have received less attention such
as couplings to the EW gauge bosons, as will be studied in Chapter 7.

In the context of ALPs, but also relevant for heavy axion models, flavor experiments provide
valuable constraints. Indeed, the astonishing precision in flavor observables allow one to set
stringent bounds on tree-level flavor-violating ALP couplings. Besides, even flavor-conserving
ALP couplings are strongly constrained due to ALP mixing with pseudoscalar mesons and loop-
induced ALP couplings, which inherit the SM flavor structure. These types of bounds will be
analyzed in detail in Chapter 8, where the full ALP electroweak bosonic basis is constructed
and the flavor bounds are studied.

The experimental effort in axion and ALP searches in a large range of masses is accelerating
with future projects such as Madmax, CASPEr, QUAX, HeXenia, FUNK and electric dipole
moment searches (PSI and Co) [276–280]. In the context of flavor, for instance, NA62 [281] is
taking data, and new fixed target facilities (e.g. SHIP [282]) are in preparation, with sensitivity
to MeV-GeVs ALPs. These experiments present strong complementary potential to tackle ALP
couplings to gauge bosons and fermions, as we will study in Chapter 8. Belle-II [283] will
also have some sensitivity to this mass range, as well as the LHC with Mathusla, Faser and
CodexB [284–286]. Indeed, ALPs may well show up first at colliders [287,288]. Intense work on
ALP signals at the LHC and future colliders is underway [289, 290], and the synergy between
collider and low-energy fixed target experiments is increasingly explored [291].
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CHAPTER

4 Gauged Lepton Flavor

In this Chapter, which is based on the publication in Ref. [5], we explore the posibility of the
leptonic flavor symmetry to be gauged and the leptonic Yukawa couplings to become dynamical
fields. The vevs of these dynamical Yukawa fields vevs generate the leptonic fermion masses and
mixings.

Minimal flavor violation [59, 292], introduced in Section 1.3.3, is a bottom-up approach that
describes a class of models that are not afflicted by the new physics flavor problem. Based on
the SM global flavor symmetry group, this framework assumes that at low-energies the Yukawa
couplings are the only source of flavor in the SM and in whatever the BSM theory of flavor
is. Yukawa couplings break the symmetry, and they are then treated as spurions of the flavor
group, weighting the possible BSM effective operators so as to make them invariant under the
flavor group. As a consequence, MFV predicts the relative rates of flavor changing transitions,
and furthermore new effects at or close to the TeV scale are allowed. The MFV ansatz is neither
the only flavor ansatz compatible with data nor a theory of flavor, though. There have been
attempts to go from the effective approach —where the Yukawas are treated as spurions— to a
more fundamental level where the Yukawas are dynamical “flavon” fields, acquiring a non-trivial
vacuum expectation value. The potentials for the corresponding scalar fields have been discussed
for several possible flavor representations, with interesting consequences [70,293–302]. Although
a dynamical justification for all fermion masses and mixings is still lacking, the potential minima
lead, for instance, to no mixing at leading order in the quark sector (in contrast to the lepton
sector discussed further below) when each Yukawa coupling is associated with a single flavon, a
very encouraging first step.

Nevertheless, unless the continuous symmetry in Eq. (1.3.1) is substituted by a convenient
discrete subgroup, a generic consequence of breaking spontaneoulsy the SM global flavor group
is unobserved goldstone bosons. Would instead the symmetry be gauged, the goldstone bosons
would become the longitudinal degrees of freedom of massive vector bosons. This exploratory
effort was launched for the quark sector in Ref. [7] and continued in Refs. [303–308]. In Ref. [7] it
was shown that the consistency of the gauge theory via anomaly cancellation conditions requires
the addition of fermions with drastic implications for phenomenology.
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The masses of the extra fermionic content of those gauged-flavor models are inversely
proportional to the masses of the light SM fermions (as it was introduced in Ref. [309]), with
the consequence that flavor-changing neutral currents (FCNC) are highly suppressed for light
generations and new exotic gauge bosons could be as light as the electroweak scale. This theory,
with gauge symmetry at its core, offers a different take on the number of generations; the fields
must belong to irreducible representations of the flavor group and thus the number of generations
is linked to it, precisely the same sense in which there are three colors in QCD. Although the
starting motivation was the phenomenologically successful MFV ansatz, the mechanism for
protection against the flavor problem in the gauged-flavor model does not conform to the MFV
hypothesis; yet it is still very effective.

Here, the gauging of the lepton flavor group is considered. In contrast to the quark case [7],
the unknown nature of neutrino masses opens several possibilities for constructing a consistent
model with the lepton flavor symmetry gauged, as evidenced by the various definitions of MFV
in the lepton sector [78, 310–313]. The guiding principle followed here will be to consider
phenomenologically viable setups with:

- Maximal flavor symmetry group of the Lagrangian for massless SM fermions

- Minimal extension of the spectrum

In a first case, the SM leptonic flavor group is gauged, that is

U(3)` × U(3)E , (4.0.1)

see Eq. (1.3.1). The cancellation of gauge anomalies of this pure SM case along the guidelines
above will be shown to lead to the introduction of SM fermion singlets and thus to Majorana
neutrinos as a very natural consequence.

Secondly, if instead one assumes from the beginning the existence of three right-handed
neutrino fields NR, two symmetry avenues are possible:

- Assuming Dirac neutrinos, the flavor group would be U(3)`×U(3)E×U(3)N , the subscript
N referring to the right-handed neutrinos [307].

- Assuming instead Majorana neutrinos, the maximal flavor group is U(3)`×U(3)E×O(3)N ,
leading naturally to a type I Seesaw [31–34] scenario with degenerate heavy neutrinos.

This last option has been shown [298, 299, 301, 302] to allow a minimum of its scalar potential
with one maximal PMNS angle and Majorana phase (and a second angle generically large), at
leading order and for minimal flavon content. In contrast, the U(3)3 case tends to disfavor large
mixings, consistent with observations in the quark sector but in disagreement with the observed
leptonic mixing. The guiding principles chosen above also favor the second option in that the
extra field content needed is smaller, and therefore leads to more predictive models: this scenario
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will be thus analyzed in detail. Interestingly, both cases –that is with and without right-handed
neutrinos– will lead to Majorana masses for the active neutrinos, so that at low energies the
Lagrangian responsible for masses and mixings will be, for definiteness:

LY = −¯̀
L ΦYE eR −

1

2
¯̀
L Φ̃

Cν
ΛLN

Φ̃T `cL + h.c. , (4.0.2)

which corresponds to the usual Yukawa term for charged leptons and the Weinberg operator
for light neutrino masses, as introduced in Eq. (1.2.13) and ommitting the flavor indices.
The generalized Seesaw pattern obtained below, together with the lightness of the electron
as compared to the τ and µ leptons, implies that the least broken subgroups of the flavor
symmetry are expected to reside in the µ−τ sector. The corresponding approximate symmetries,
the spectrum of new particles and the dominant experimental signals will be determined and
discussed in the following sections. Furthermore, the differences between the effective low-energy
couplings of the gauged-flavor theory and the leptonic MFV ansatz will also be discussed.

The analysis will be restricted to the non-abelian sector of the global flavor symmetry, as
the focus is set on flavor-changing effects; some phenomenological differences which result when
gauging in addition the two non-anomalous abelian symmetries will be pointed out, though.

4.1 Gauged Lepton Flavor Standard Model: SU(3)` × SU(3)E

It will be shown in this section how the gauging of the pure SM leptonic flavor group favours a
Seesaw pattern and Majorana neutrino masses, and that the leading phenomenological signals
are lepton universality violation (LUV), with deviations from the SM predictions which are
particularly prominent in the τ sector.

The leptonic global flavor symmetry to be gauged is that exhibited by the SM in the absence
of Yukawa couplings, which is that of the kinetic terms,

Lleptons = i¯̀L /D`L + iēR /DeR . (4.1.1)

Anomaly cancellation of the non-abelian SU(3)` × SU(3)E symmetry is accomplished by the
addition to the Lagrangian of three extra fermion species, denoted here by ER, EL, and NR.
Their quantum numbers are shown in Table 4.1, together with those for the SM fields.

In addition, for all fermion bi-linears invariant under the SM gauge symmetry but not under
the flavor symmetry, a scalar is introduced to restore flavor invariance. Only two such scalar
flavon fields are needed, denoted by YE and YN in Table 4.1, belonging respectively to the bi-
fundamental representation of SU(3)`×SU(3)E and to the conjugate-symmetric representation
of SU(3)`. The vevs of these fields are related to the Yukawa matrices but should not be
directly identified with them, as functions of the flavon fields may have the same transformation
properties under flavor than YE,N , and they also allow to build flavor invariant Lagrangian
terms;1 this is a property essential to the phenomenological success of the construction. Finally,

1 For instance (Y−1
E )† and YE belong to the same flavor representation.
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SU(2)L U(1)Y SU(3)` SU(3)E

`L ≡ (νL , eL) 2 −1/2 3 1

eR 1 −1 1 3

ER 1 −1 3 1

EL 1 −1 1 3

NR 1 0 3 1

YE 1 0 3̄ 3

YN 1 0 6̄ 1

Table 4.1: Transformation properties of SM fields, of (flavor) mirror fields and of flavons under the EW
group and SU(3)` × SU(3)E .

other scalars charged under the SM gauge group are not considered since they would not respect
the condition of minimality of the spectrum, in addition to potentially disrupting the electroweak
symmetry breaking (EWSB) mechanism.

Within this framework, the most general renormalizable Lagrangian with SU(3)` × SU(3)E
gauge symmetry therefore reads:

L =i
∑

ψ

ψ̄ /Dψ − 1

2

∑

I

Tr
(
F IµνF

µν
I

)
+
∑

B

Tr
(
DµYBDµY†B

)
+DµΦ†DµΦ+

+ LY − V (Φ,YE ,YN ) ,

(4.1.2)

where ψ runs over all lepton species in Table 4.1, I = `, E and B identifies flavon indices
B = E,N . The gauge bosons of SU(3)` and SU(3)E will be encoded in traceless hermitian
matrices in flavor space, A`µ with A`µ,αβ = (A`µ,βα)∗ ,ΣαA

`
µ,αα = 0, and AEµ with AEµ,αβ =

(AEµ,βα)∗ ,ΣαA
E
µ,αα = 0, which can be alternatively decomposed in terms of generators

A`µ ≡
8∑

a=1

A`,aµ T a , AEµ ≡
8∑

a=1

AE,aµ T a , (4.1.3)

where T a are the flavor group generators, with Tr(T aT b) = δab/2 and T a ≡ λaSU(3)/2, and λaSU(3)

denote the Gell-Mann matrices. The gauge couplings of A`µ and AEµ will be denoted by g` and
gE , respectively. In Eq. (4.1.2) the field strengths include those for the SM fields and flavor
gauge bosons, as do the covariant derivatives, e.g.

Dµ`L =

(
∂µ − i

g′

2
Bµ + i

g

2
σIW

I
µ + ig`A

`
µ

)
`L , (4.1.4)

while
DµYE = ∂µYE + igE A

E
µ YE − ig` YE A`µ ,

DµYN = ∂µYN − ig` (A`µ)T YN − ig` YN A`µ .
(4.1.5)
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The Yukawa and mass terms can be written as follows:

LY =λE `L Φ ER + µE EL eR + λE EL YE ER + h.c.

+ λν `L Φ̃NR +
λN
2
NRc YN NR + h.c. ,

(4.1.6)

where `L, eR, EL, ER and NR are vectors in flavor space. λE , λE , λν , λN and µE are each a single
complex parameter, since these couplings must be proportional to the identity to preserve flavor
invariance; moreover they can be made real and positive via chiral fermion transformations. In
contrast, YE and YN are matrices in flavor space and their nontrivial background values are
the only sources of flavor (including CP violation). Notice that µE is not the mass of any of
the particles in the spectrum, but simply a mass parameter of the Lagrangian. The vev of
YN is simultaneously the LN scale and the flavor scale; in the limit YN = 0 in which only
(diagonal) Dirac mass terms remain, the Lagrangian would acquire a U(1)e × U(1)µ × U(1)τ
symmetry which prevents the appearance of leptonic mixing angles, a setup phenomenologically
not viable. For this reason the introduction of YN is necessary and therefore Majorana neutrino
masses follow as a natural consequence of gauging flavor in the lepton sector, even when taking
as starting point only the SM gauge symmetry.

The above Lagrangian has two accidental U(1) symmetries which are anomaly free under the
flavor gauge group. The first is an extension of LN symmetry, under which all fermions transform
with the same charge while YN transforms with minus twice that charge. The second accidental
symmetry is the abelian U(1)E acting on right-handed charged leptons, that completes SU(3)E
to a unitary group, and under which eR, EL and YE transform non-trivially. Both U(1)’s would be
spontaneously broken by the scalar vevs. However, in all generality, the scalar potential contains
terms such as det(YE) and det(YN ) [299], that break explicitly these U(1)’s and prevent the
appearance of phenomenologically dangerous Goldstone bosons.

In order to yield masses for all fermions, LY in Eq. (4.1.6) must undergo both EWSB and
flavor symmetry breaking, so that in the unitary gauge

Φ ≡ (v + h)/
√

2 ,

YE ≡ 〈YE〉+ φE/
√

2 ,

YN ≡ 〈YN 〉+ φN/
√

2 ,

(4.1.7)

where h denotes the physical Higgs particle and φE and φN the physical scalar excitations over
the flavon vevs 〈YE〉 6= 0, 〈YN 〉 6= 0 (for simplicity, the Yukawa flavons and their vevs will be
denoted with the same symbols in the next sections). The ensuing spectrum contains 6 Dirac
electromagnetically charged fermions and 6 Majorana neutral fermions. There are no extra
scalars charged under the SM gauge group and EWSB proceeds thus as usual. The dynamics
of flavor breaking is encoded in the scalar potential, which has been studied in Refs. [299, 301,
302]. The study of the potential is involved due to the complex flavor structure that it aims
to explain, but some general results and approximately conserved symmetries where found in
Refs [299, 301, 302]. In particular, a connection between degenerate spectra with large angles
and maximal Majorana phases was found for the neutrino sector.
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4.1.1 Spectrum

Fermions

The Lagrangian in Eq. (4.1.6) results in leptonic mass matrices for charged and neutral leptons
of the form

 0 λEv/
√

2

µE λEYE


 + h.c. ,

1

2


 0 λνv/

√
2

λνv/
√

2 λNYN


 + h.c. , (4.1.8)

respectively, which suggest immediately a Seesaw-like pattern for both sectors. No additional
fermions beyond those in the SM have been detected at experiments and this fact sets strong
bounds on the mass of the mirror fermions E and N introduced for the sake of flavor anomaly
cancellation. This indicates that the mass term for the extra charged leptons, λEYE , should be
larger than the other scales of the theory: YE � µE , v, –assuming all dimensionless parameters
to be O(1). This is analogous to the condition for neutrinos YN � v in the canonical type I
Seesaw model on the right-hand side of Eq. (4.1.8), which leads to a mass scale of order ∼ 1012

GeV for the extra neutral fermions. With these approximations, the Lagrangian in Eq. (4.1.6)
yields a Dirac mass for the heavy charged leptons E and a Majorana mass for the right-handed
singlets,

ME = λEYE


1 +O

(
v2

Y2
E

,
µ2
E

Y2
E

)
 , MN = λNYN


1 +O

(
v2

Y2
N

)
 , (4.1.9)

whereME andMN denote the heavy lepton mass matrices while the mass matrices for the light
states obey (see Eq. (4.0.2))

YE =
m`

v/
√

2
=
λE
λE

(
µE
YE

)
1 +O

(
v2

Y2
E

,
µ2
E

Y2
E

)
 ,

Cν
ΛLN

=
mν

v2/2
= λν

(
1

λNYN

)
λν


1 +O

(
v2

Y2
N

)
 ,

(4.1.10)

illustrating that the mirror fermions are proportional to the flavon vevs while SM fermion masses
are inversely proportional to them. It follows that

m`ME ≈ λEµEv/
√

2 , mνMN ≈ λ2
νv

2/2 . (4.1.11)

The masses of the SM leptons are thus shown to be related to those of the heaviest extra leptons
by an inverse proportionality law: a Seesaw mechanism is present both for charged and neutral
leptons, similar to the case of quarks in Ref. [7].

All flavor structure being encoded in YE and YN , their eigenvalues determine the hierarchy
of lepton masses up to common factors:

ME ≡
(
Mê ,Mµ̂ ,Mτ̂

)
' λEµE

(
3.5 · 105, 1.7 · 103, 102

)
, (4.1.12)
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MN ≡ (M1 ,M2 ,M3 ) < |λν |2
v√
2

(
∞, 2 · 1013, 3.5 · 1012

)
, (4.1.13)

where ME (MN ) denotes the diagonal matrix of eigenvalues of the ME (MN ) matrix and the
hat refers to the individual charged mirror fermions masses.2

µE

`L

λE

Φ

E eR

∼ λEµE
λEYE

eR

`L

Φ

Figure 4.1: Diagrammatic representation of the generation of SM charged lepton Yukawa couplings
(right figure) induced by the exchange of heavy mirror charged leptons (left figure).

The expressions for the SM lepton masses can be also derived diagrammatically by integrating
out the heavy states as shown in Fig. 4.1 for charged leptons. It illustrates that all light flavor
structure stems from the mass matrix of mirror leptons given by YE , as the equivalent of the
usual Yukawa couplings, λE and λE , as well as µE , are overall constants. This resembles the
MFV scenario of Ref. [313] that, however, leads to different phenomenology, see Sec. 4.3.

From now on, we will work on a basis in which the charged lepton mass matrix YE is diagonal,
and thusME = ME . For later use, it is convenient to explicitly invert the relations in Eq. (4.1.10)
to extract the expressions for the flavon vevs,

YE =
λE µE√

2λE
diag

(
v

me
,
v

mµ
,
v

mτ

)
, YN =

λ2
ν v

2λN
U∗ diag

(
v

mν1

,
v

mν2

,
v

mν3

)
U † , (4.1.14)

where U is the PMNS leptonic mixing matrix. Notice that the choice of basis is allowed by the
flavor symmetry without loss of generality. The flavon vevs are thus determined by low energy
flavor data up to an overall constant.

The spectrum of mirror fermions is illustrated as horizontal lines on the left-hand side of
Fig. 4.2 for natural values of the parameters. As anticipated, due to the inverse dependence
of mirror lepton masses with respect to their light counterparts the lightest exotic fermion is
the τ mirror lepton. The µ mirror lepton appears next, a factor ∼ mτ/mµ higher. The mirror
e appears yet a factor mµ/me above. Much higher in mass by a factor ∼ me/mν , the mirror
neutrinos 3, 2 and 1 appear (in this illustration normal ordering was assumed for the light
neutrinos).

2The unknown absolute neutrino mass scale translates in an inequality in contrast with the case of charged
leptons, and a bound on M1 cannot be derived since one neutrino could be massless.
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Flavored gauge bosons

Flavor symmetry breaking produces masses for the sixteen flavor gauge bosons encoded in A`µ
and AEµ . The relevant part of the Lagrangian, including only terms at most quadratic in the
gauge fields, is given by

∑

I=`,E

Tr
(
AIµ∂

2AI,µ
)

+ Tr

{(
gEA

E
µYE − g`YEA`µ

)(
gEY†EAE,µ − g`A`,µY

†
E

)}
+

+ g2
`Tr

{(
A`∗µ YN + YNA`µ

)(
Y†N
(
A`,µ

)T
+A`,µY†N

)}
−
∑

I

gITr(AIµJ
µ
AI

) ,

(4.1.15)

where the currents are hermitian matrices in flavor space:
[
Jµ
A`

]
ij

= ¯̀j
Lγ

µ`iL + EjRγµE iR +N j
Rγ

µN i
R ,

[
Jµ
AE

]
ij

= ējRγ
µeiR + EjLγµE iL ,

(4.1.16)

where i, j are flavor indices. The linear equations of motion (EOMs) in matrix form stemming
from Eq. (4.1.15) reads

∂2A`µ − gEg`Y†EAEµYE +
g2
`

2

{
Y†EYE + Y†NYN + Y∗NYTN , A`µ

}
+

+ 2g2
`Y†NA`∗µ YN −

g`
2
JA

`

µ =
1

ng
Tr (L.H.S.)1 ,

(4.1.17)

∂2AEµ − gEg`YEA`µY†E +
g2
E

2

{
YEY†E , AEµ

}
− gE

2
JA

E

µ =
1

ng
Tr (L.H.S.)1 , (4.1.18)

where {. . . , . . .} denotes the anti-commutator, ng = 3 and L.H.S. stands for left hand side.3

These equations can be alternatively written as an inhomogeneous linear system for the sixteen
gauge fields when the latter are described as an array of sixteen χaµ fields,

χµ ≡ (A`,1µ , . . . , A`,8µ , AE,1µ , . . . , AE,8µ ) , (4.1.19)

which allows to rewrite the Lagrangian in Eq. (4.1.15) as

Lgauge = −1

2

∑

I=`,E

Tr
(
F IµνF

µν
I

)
+

1

2

16∑

a,b=1

χaµ

(
M2
A

)
ab
χb,µ −

∑

I=`,E

gITr
(
AIµJ

µ
AI

)
, (4.1.20)

where the mass matrix MA can be expressed as

M2
A =


 M2

`` M2
`E

M2
E` M2

EE


 , (4.1.21)

3 Eq. (4.1.18) displays explicitly the covariant properties of the gauge bosons and the trace removes the singlet
component of each term, leaving only the adjoint combination to which the gauge bosons belong.
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with

(
M2
``

)
ij

= g2
`

{
Tr
(
YE
{
Ti, Tj

}
Y†E
)

+ Tr
(
YN
{
Ti, Tj

}
Y†N
)

+

+Tr

(
Y†N
{
T Ti , T

T
j

}
YN
)

+ 2Tr
(
Y†NT Ti YNTj + Y†NT Tj YNTi

)}
,

(
M2
`E

)
ij

=
(
M2
E`

)
ji

= −2g`gETr
(
TiY†ETjYE

)
,

(
M2
EE

)
ij

= g2
ETr

(
Y†E
{
Ti, Tj

}
YE
)
,

(4.1.22)

where i, j = {1, . . . , 8}, and the linear EOM can be now written in the customary form,

(∂2 +M2
A)χµ = JµA , where JAµ ≡ (Jµ,1

A`
, . . . , Jµ,8

A`
, Jµ,1
AE
, . . . , Jµ,8

AE
) . (4.1.23)

Eq. (4.1.22) shows that gauge boson masses are proportional to the scalar fields YE and YN
whose structure is in turn given by, and inversely proportional to, light fermion masses and
mixings, see Eq. (4.1.14). The spectrum of sixteen mass states is thus determined up to two
overall constants, that can be identified with the products gE‖YE‖, g`‖YN‖.4 The hierarchy
YN � YE that followed from assuming order one dimensionless coefficients and µE around the
EW scale, implies that:

- The heaviest gauge bosons to good approximation are those of the SU(3)` group, A`µ,

while the lightest gauge bosons will be those corresponding to the SU(3)E group, AEµ .

- In this regime the mixing between AEµ and A`µ is small. We will refer to AEµ (A`µ) as the
lightest (heaviest) states.

The spectrum of flavor gauge bosons is shown in Fig. 4.2 next to that for mirror fermions, for
natural values of the parameters. Boxes represent flavor gauge bosons and the colored entries in a
given box indicate the lepton flavors to which that gauge boson couples. The blue-colored boxes
in the upper panel correspond to the A`µ gauge bosons, while the red-colored boxes correspond

to the AEµ gauge bosons; as expected the former are heavier by a factor ∼ me/mν due to the
inverse dependence of their masses with the light neutrino mass.

Lightest gauge bosons

The AEµ fields will thus dominate the phenomenology mediated by flavor gauge bosons. Because
their mass matrix is to a good approximation proportional to the charged lepton flavon vev YE ,
while the charged lepton mass matrix is instead inversely proportional to it, the hierarchies in

4The modulus of a matrix B is defined as‖B‖2 ≡ Tr
(
B†B

)
, implying that‖YE‖ and‖YN‖ are flavor invariant

constructions.
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Figure 4.2: Gauge and fermion heavy spectrum for the gauged SM lepton flavor. Boxes composed out
of 3× 3 squares depict the gauge boson mass eigenstates and rows of squares depict mirror fermions. For
the first, the squares are ordered according to the e, µ and τ flavor, from left to right and from top to
bottom. The boxes in the upper panel correspond dominantly to the SU(3)` symmetry, with the gauge
bosons shown in blue, while the lower panel shows in red the SU(3)E gauge bosons. In both cases the
intensity of the colored cells represents the strength of the coupling between the gauge boson and each
lepton bilinear. As for the fermions, the intensity of the cells represents, from left to right, the component
of e, µ, τ , ê, µ̂ and τ̂ for the lower panel, and of νe, νµ, ντ , νê, νµ̂, and ντ̂ in the upper panel. Normal
ordering was assumed for neutrinos and the parameter values used are θ23 = 45◦, θ12 = 33◦, θ13 = 8.8◦,
Dirac CP phase δ = 2π/3, Majorana phases α1 = α2 = 0, lightest neutrino mass mν1 = 10−11 GeV; all
flavor gauge coupling constants and all λ’s are set to 0.1, with µE = 15 GeV.

charged lepton masses translate into hierarchies in the gauge boson spectrum: the lightest AEµ
gauge bosons will be those mediating transitions which involve the heaviest right-handed charged
leptons and in particular the τR lepton. In fact, because of the zero trace of the generators, at
least two different leptons must participate in any coupling, and the overall conclusion is that
the lightest flavor gauge bosons will produce deviations in both µR and τR sectors.

Technically, the AEµ mass eigenstates are largely aligned with the SU(3) generators except for
the diagonal components given by

T̂3 ≡ (
√

3T8 − T3)/2 =
1

2




0 0 0

0 1 0

0 0 −1


 , T̂8 ≡ (

√
3T3 + T8)/2 =

1

2
√

3




2 0 0

0 −1 0

0 0 −1


 .

(4.1.24)
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It follows from Eq. (4.1.22) that their respective masses are given by

M2
AE,aµ

' 2g2
E

∥∥∥T̂am−1
`

∥∥∥
2

∥∥∥Y−1
E

∥∥∥
2

∑

α=e,µ,τ

m2
α, (4.1.25)

where T̂ a = T a for all a 6= 3, 8, m` is the mass matrix of the charged leptons and greek indices
stand from now on for charged lepton flavors. The fact that the size of YE (Y−1

E ) is dominated
by the electron (tau) mass,

‖YE‖2 =
λ2
Eµ

2
E

2λ2
E

v2

m2
e

(
1 +

m2
e

m2
µ

+
m2
e

m2
τ

)
,

∥∥∥Y−1
E

∥∥∥
2

=
2λ2
E

λ2
Eµ

2
E

m2
τ

v2

(
1 +

m2
µ

m2
τ

+
m2
e

m2
τ

)
, (4.1.26)

makes all gauge bosons with a right-handed electron entry a factor mµ/me heavier than the rest.
Indeed, because me � mµ,mτ , this can be seen as an approximate SU(2) symmetry in the µ−τ
sector when YE is taken to be diag(1/ye, 0, 0), which is the reason why the diagonal generators
T̂8, T̂3 are better suited to describe mass states than T8, T3. Moreover, under the U(1)e×U(1)µ×
U(1)τ approximate symmetry present for YN � YE , the off-diagonal gauge bosons transform
as AEαβ → eiθα−iθβAEαβ, which requires that both components of each off-diagonal entry have
the same mass (so as to combine into a complex gauge boson): this approximate symmetry will
suppress charged lepton flavor violation.

In summary, the three AEµ gauge bosons corresponding to the approximate SU(2) symmetry
in the µ−τ sector are found to be the lightest (first layer of the lower panel in Fig. 4.2); a factor
mµ/me higher the remaining five SU(3)E gauge bosons appear (second layer in that figure).
In turn, the leading phenomenological signals consists of flavor-conserving leptonic observables
and, furthermore, low energy processes mediated by AEµ for the lighter leptons are suppressed by
heavier mass scales, providing a flavor protection mechanism, as previously described for quarks
in Ref. [7].

As for the relative mass of mirror fermions versus flavor gauge bosons, the lightest particle
turns out to be the mirror tau lepton τ̂ , see Fig. (4.2). Indeed, the lightest gauge boson mass

∼
(
gE/

∥∥∥Y−1
E

∥∥∥
) (
mτ/mµ

)
is a factor ∼ mτ/mµ larger than the lightest mirror fermion mass

∼ λE/
∥∥∥Y−1

E

∥∥∥, due to the tracelessness of the generators implying a non-vanishing µµ or µτ

entry in the three lightest gauge boson interactions. In contrast, were the full U(3)E group
gauged an associated lighter (AEµ )ττ gauge boson would appear in the spectrum.

Scalars

Flavor symmetry breaking gives rise to 18 (YE) + 12 (YN ) − 16 (SU(3)2) = 14 physical scalar
bosons, corresponding to fluctuations around the 6 mixing parameters, 6 masses and U(1)` and
U(1)E phases. This part of the spectrum will in general contribute to the same observables than
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flavor gauge bosons, although without disrupting the flavor structure [7]. The detailed scalar
mass spectrum depends however on the scalar potential parameters, as opposed to the gauge
bosons and fermions, and it will not be discussed further in this work.

4.1.2 Interactions

The distinction between fermionic mass and interaction eigenstates will be relevant: therefore,
for the rest of this section flavor eigenstates will be denoted with a prime5 and described by


 e′L
E ′L


 =


 cΘ sΘ

−sΘ† cΘ†




 eL

EL


 ,


 e′R
E ′R


 =


 c

Θ†R
−s

Θ†R

−sΘR −cΘR




 eR

ER


 ,


 νc′L
N ′R


 =


 c

Θ†ν
i s

Θ†ν

−sΘν i cΘν




 νcL
NR


 ,

(4.1.27)

where unprimed fields are here mass eigenstates and the mixing angles are encoded in 3 × 3
matrices in flavor space Θ, cΘ = (−1)n/(2n)!(ΘΘ†)n , sΘ = (−1)nΘ/(2n+1)!(Θ†Θ)n [314]. These
unitary rotations diagonalize the mass terms stemming from Eq. (4.1.6) (see also Eqs. (4.1.9)
and Eqs. (4.1.10)):

−


 cΘ −sΘ

sΘ† cΘ†




 0 λEv/

√
2

µE λEYE




 c

Θ†R
−s

Θ†R

−sΘR −cΘR


 =


 m` 0

0 ME


 ,

−


 c

Θ†ν
−sΘν

i s
Θ†ν

i cΘν




 0 λνv/

√
2

λνv/
√

2 λNYN




 c

Θ†ν
i s

Θ†ν

−sΘν i cΘν


 =


 mν 0

0 MN


 ,

(4.1.28)

where ΘT
ν = Θν has been used. Although these equations can be solved exactly, as done in

Ref. [7] for the quark case, the absence of a large Yukawa like that of the top quark seems to
indicate that an expansion in v/Y is valid. In particular in the charged lepton sector, given
Eq. (4.1.14), the mixing terms are diagonal in flavor space (Θαβ = δαβ Θαα and analogously for
ΘR) :

Θ =
λEv√
2λEYE

+O
(
v3

Y3
E

)
' λEv√

2Mτ̂

m`

mτ
,

ΘR =
µE
λEYE

+O
(
µ3
E

Y3
E

)
' m2

`

mτMτ̂

1

Θ
=
µE
Mτ̂

m`

mτ
,

Θν =
λνv√

2λNYN
+O

(
v3

Y3
N

)
' λνv√

2MN

.

(4.1.29)

5 For instance, all fermions in Table 1 will be considered as primed fields for the sake of this section.
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In the case of O(1) dimensionless parameters considered here, the heavy NR neutrino scale
suppresses the mixing Θν which turns out to be O(10−10); all the effects associated to Θν will
thus be neglected in what follows.

After rotating to the mass basis, the fermion interaction Lagrangian is not diagonal, and in
particular heavy-light couplings arise. It can be written as a sum of three terms:

Lψ−int = Lψ̄ψASM + Lψ̄ψAFL + Lψ̄ψφ . (4.1.30)

The couplings to the SM gauge bosons can be casted in the conventional form,

Lψ̄ψASM = −eAµJµA −
g

2cW
ZµJ

µ
Z −

(
g√
2
W+
µ J
−µ
W + h.c.

)
, (4.1.31)

with modified currents defined as

Jµγ =− ēγµe− ĒγµE ,
J−µW = ν̄L U

†γµ (cΘeL + sΘEL) ,

JµZ = ēγµ
(
−(c2W − sΘsΘ†)PL + 2s2

WPR

)
e− Eγµ

(
sΘ†sΘPL − 2s2

W

)
E+

+ ν̄Lγ
µνL −

(
ELγµsΘ†cΘeL + h.c.

)
,

(4.1.32)

where cW (c2W ) and sW stand for the cosine and sine of (twice) the Weinberg angle, respectively,
and PL,R are the chirality projectors. Notice that the right-handed mixing ΘR does not appear
in the gauge interactions, because the SM quantum numbers of ER and eR are the same. Most
relevantly, as Θ is a diagonal matrix in flavor space as given in Eq. (4.1.29), the transitions
mediated by SM electroweak gauge bosons differ in the charged τ , µ and e sectors, with relative
amplitudes given by mτ/mµ/me.

The interactions with flavor gauge bosons can be written as

Lψ̄ψAFL = −g`Tr(A`µJ
µ
A`

)− gETr(AEµ J
µ
AE

) , (4.1.33)

where the currents are given in Eq. (4.1.16). Notice that the difference between flavor and
mass bases has been neglected in the previous expression, as that difference would only induce
subleading effects in the observables of interest.

Finally, the couplings to the radial components of the scalar fields –that is, to the physical
scalars– read, in the unitary gauge:

Lψ̄ψφ =
−1√

2


 ēL

EL




 (λEcΘ h− λEsΘ φE)sΘR (λEcΘ h− λEsΘ φE)cΘR

(λEcΘ† φE + λEsΘ† h)sΘR (λEcΘ† φE + λEsΘ† h)cΘR




 eR

ER


+

− λν√
2
h ν̄LNR −

1

2
√

2
NRc φNNR + h.c. . (4.1.34)

The purely bosonic interactions follow from the Lagrangian in Eq. (4.1.2) once the scalar
potential is specified. The variables in this potential will determine the scalar mass spectrum
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which we do not examine in this work. However the scalar couplings to fermions given above do
enjoy the flavor suppression characteristic of this model and will not disturb the flavor structure,
as previously stated. Scalar excitation effects will be neglected in the phenomenological analysis
that follows.

4.1.3 Phenomenology

The exchange of mirror charged leptons and SU(3)E gauge bosons provides the dominant signals,
as argued above, and it will be shown here that LUV signals are particularly prominent for
τ -related observables, while no charged lepton flavor violation (cLFV) is induced due to the
preserved U(1) lepton number symmetry for each flavor: all modifications to SM couplings
induced are flavor diagonal, as explained earlier. Flavor observables for the leading signals can
be written in terms of only three independent parameters, which here are chosen to be

- The mixing parameter Θ.6

- The lightest mirror fermion mass Mτ̂ .

- The norm
∥∥∥Y−1

E

∥∥∥, which is given approximately by its largest eigenvalue proportional to

mτ , see Eq. (4.1.26).

We determine next the bounds on these three parameters.

Bounds on the mixing parameters: The strongest bounds on Θ come from non-
universality and non-unitarity of the PMNS matrix that follow from the (flavor diagonal)
modifications of the couplings of leptons to Z and W bosons, Eq. (4.1.32). The decay rate
of the Z boson to a pair of charged leptons (denoted by l in the following equation) is now given
by:

Γ(Z → l−l+) =
g2MZ

96πc2
W

(
c2

2W + 4s4
W − 2c2W s

2
Θ

)
+O(Θ4)

= ΓSM

(
Z → l−l+

)(
1− 2c2W

c2
2W + 4s4

W

Θ2
ll

)
+O

(
Θ4
)
,

(4.1.35)

where the second line illustrates that the new contribution can only have a destructive
interference with the SM one. The ratio of the branching ratios for the decay of Z into τ+τ−

and e+e− allows to extract explicitly the dependence on Θττ ,

Br
(
Z → τ+τ−

)

Br (Z → e+e−)
− 1 ' −2.14Θ2

ττ . (4.1.36)

6Given one mixing angle, the other two are obtained from it by scaling.



4.1 Gauged Lepton Flavor Standard Model: SU(3)` × SU(3)E 101

The experimental bound [315] on the observable on the left hand side of this expression leads
to a strong limit on Θ:

Br
(
Z → τ+τ−

)

Br (Z → e+e−)
− 1 = 0.0019± 0.0032 =⇒ |Θττ | =

λEv√
2Mτ̂

≤ 4.5× 10−2 , (4.1.37)

where the bound has been rescaled to the 95% CL assuming a gaussian behaviour. In
consequence, using Eq. (4.1.29),

|Θµµ| ≤ 2.7× 10−3 , |Θee| ≤ 1.3× 10−5 . (4.1.38)

At this point it is pertinent to ask whether the persistent anomalies in the decay of B meson into
K and K∗ bosons [316, 317] could be induced by the modifications to Z-fermion couplings just
discussed, as it is precisely these couplings which tend to diminish the decay rate into µ and τ
leptons while the electronic channels are almost uncorrected; this could happen for instance via
a Z-penguin loop attached to the quark legs and/or through the equivalent mechanisms when
gauging flavor in the quark sector [7]. Nevertheless, the bounds just set on Θµµ are too strong
compared with the experimental anomaly which, if confirmed, would require O(1) corrections.

Similar bounds on Θ can be inferred from the analysis of non-unitary contributions to the
diagonal elements of the PMNS matrix U , to which other observables contribute. The leptonic
mixing matrix is now corrected by

Ũ ≡ cos ΘU , (Ũ Ũ †)αβ − δαβ ' −Θ2
αβ =− λ2

Ev
2

2M2
τ̂

δαβ
m2
α

m2
τ

, (4.1.39)

and in consequence the most stringent bound stems again from the ττ entry; bounds on the
diagonal entries can be derived from a global fit to lepton universality and precision electroweak
observables [318], yielding

|Θττ | ≤ 7.5× 10−2 (4.1.40)

at 95% CL. An alternative bayesian global fit can be found in Ref. [319] resulting in |Θττ | ≤
7.6× 10−2.

Bounds on Mτ̂ : The heavy-light fermion mixing is controlled by the Yukawa couplings, see
Eq. (4.1.6), and in consequence the lightest fermion of the heavy spectrum —the mirror tau—
will decay predominantly to channels involving longitudinal gauge bosons WL and ZL and the
Higgs particle, provided τ̂ is heavy enough,

Γ(τ̂ → ZLτ) =
λ2
EMτ̂

64π
, Γ(τ̂ →WLντ ) =

λ2
EMτ̂

32π
, Γ(τ̂ → hτ) =

λ2
EMτ̂

64π
. (4.1.41)

The τ̂ fermion is electrically charged and it would thus be copiously pair-produced in e+e−

colliders via photon exchange, if sufficiently light. The lack of evidence for new resonances and
for charged heavy leptons in LEP data [320] sets a constraint

Mτ̂ & 100.8 GeV at 95% CL, (4.1.42)
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a bound that does not depend on the mixing parameter Θ. The LHC can provide stronger
constraints on the mass of the mirror taus. The most sensitive channel would involve pair
production of τ̂ via neutral current or photon exchange and their subsequent decay to τ + Z
with ∼ 25% branching ratio. To the best of our knowledge such a search has not been performed
yet. Related searches for SUSY chargino pair production and their decay to W plus missing
energy (neutralino) currently constrain chargino masses to be above ∼ 620 GeV [321]. The
decay of the τ̂ to W + ν would lead to a similar final state, although with somewhat different
kinematics. Thus, similar constraints are expected to hold for the τ̂ , however a dedicated search
that directly applies to this scenario is still missing and needed.

Bounds on
∥∥∥Y−1

E

∥∥∥: Eq. (4.1.42) can be translated into a limit on the flavon vev, applying

Eq. (4.1.9),

∥∥∥Y−1
E

∥∥∥ =
λE
Mτ̂

(
1 +O(m2

µ/m
2
τ )
)
< 0.01λE GeV−1 , at 95% CL . (4.1.43)

Moreover, bounds on
∥∥∥Y−1

E

∥∥∥ independent from λE can be extracted from the limits on four-

lepton interactions induced by the exchange of SU(3)E gauge bosons among right-handed
charged SM leptons. Integrating out those AEµ gauge bosons results in effective low-energy
couplings of the form

− cαβκρE

2

∥∥∥Y−1
E

∥∥∥
2 (
eαRγµe

β
R

) (
eκRγ

µeρR
)
, (4.1.44)

which do not exhibit a dependence on the coupling constant gE . The coefficient cE encodes a
specific flavor-conserving suppression:

cαβκρE =
m2
αm

2
κ∑

γm
2
γ

[
δαρδβκ

1

m2
α +m2

κ

− δαβδκρ
1

2
∑

γm
2
γ

]
, (4.1.45)

where the last term would be absent if gauging the full U(3)E . This expression is (tree-level)
exact up to YE/YN corrections as opposed to the approximate mass formula in Eq. (4.1.25).
Considering specifically a process involving two electrons (denoted here by e1

R) and two other
generic charged leptons eαR, Eq. (4.1.44) becomes7

∥∥∥Y−1
E

∥∥∥
2 m2

e

m2
τ

(1 + δα1)

(
2m2

τm
2
α −m2

α(m2
e +m2

α)

2(m2
e +m2

α)m2
τ

)(
ē1
Rγ

µe1
R

)
(ēαRγ

µeαR) , (4.1.46)

where
∑
m2
β ' m2

τ has been used. These operators are suppressed by an extra ∼ m2
e/m

2
τ factor

with respect to the case where no flavor symmetry is implemented [322]. Equivalently, it can be
argued that the effective scale associated to the new physics responsible for these processes can
be mτ/me smaller than in the case without flavor symmetry protection, in a pattern reminiscent

7In Eqs. (4.1.45) and (4.1.46) m1 = me, m2 = mµ and m3 = mτ .
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of MFV as expected. The bounds stemming from LEP data [323] on four-fermion interactions

involving two electrons can thus be translated into 95% CL constraints on
∥∥∥Y−1

E

∥∥∥:

e+e− → e+e− =⇒
∥∥∥Y−1

E

∥∥∥ < 0.41(0.44) GeV−1 ,

e+e− → µ+µ− =⇒
∥∥∥Y−1

E

∥∥∥ < 0.37(0.30) GeV−1 ,

e+e− → τ+τ− =⇒
∥∥∥Y−1

E

∥∥∥ < 0.57(0.57) GeV−1 ,

(4.1.47)

where the first (second) value is for destructive (constructive) interference with the SM
contributions. These constraints are weak but complementary to that in Eq. (4.1.43) since they
are independent from λE .

Stronger bounds on
∥∥∥Y−1

E

∥∥∥ can be inferred from present data on other flavor conserving

processes such as magnetic moments, to which the flavor SU(3)E gauge bosons may contribute.
Defining as is customary the muon anomalous magnetic moment, aµ, as the coefficient of the
muon dipole operator in the effective Lagrangian [324]

L(g−2)µ ≡ −
aµe

4mµ
µ̄ σρδ µF

ρδ + h.c. , (4.1.48)

it is easy to see that penguin diagrams mediated by the SU(3)E flavor gauge bosons induce a
correction of the form

δaµ = −
m2
µ

12π2

∑ g2
E

M2
AEa

(T̂ a · T̂ a)µµ ' −
3

4

m4
µ

6π2m2
τ

∥∥∥Y−1
E

∥∥∥
2
, (4.1.49)

where the Casimir factor of 3/4 results from the SU(2)µ−τ quasi-degeneracy among the lightest
gauge bosons. Note that the sign of the contribution obtained is negative8, as the SM one, and
therefore it does not help to relax the tension between the SM prediction and the experimental
determination, ∆aµ ≡ aExpµ − aSMµ = 287(63)(49) × 10−11 [315]. However, requiring that the
flavor correction does not increase the present tension beyond 5σ , the following bound follows:

∥∥∥Y−1
E

∥∥∥ ≤ 0.047GeV−1 , or equivalently ‖YE‖ ≥ 7.4× 104GeV . (4.1.50)

Note that, unlike for the other constraints discussed in this section, a 95% CL has not been
adopted in this bound since the SM prediction itself already presents a stronger disagreement
with current data.

It is interesting to translate the bounds on ‖YE‖ into a limit on the flavor gauge boson mass
scale. Eq. (4.1.50) translates into a limit on the mass of the lightest gauge bosons AE,3, AE,6,
AE,7 given by

MAE,i & 2.5× 102 gE GeV , (4.1.51)

8The sign of the contribution is negative because the lightest gauge bosons couple only to the right-handed
leptons. For a detailed analysis of the role of the chirality of the couplings to leptons in the g − 2 contributions
see, e.g., Ref. [325]
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as a function of the gauge flavor coupling gE . In the case of the illustrative benchmark spectrum
considered in Fig. 4.2, the lightest flavor gauge bosons have masses of O(10) TeV, largely
satisfying the bounds obtained in this section assuming a perturbative weak regime for the
new gauge sectors.

4.2 Gauged Lepton Flavor Seesaw Model: SU(3)` × SU(3)E ×
SO(3)N

In the context of the type I Seesaw theory with three degenerate right-handed neutrinos NR,
the maximal flavor symmetry group of the Lagrangian in the limit of vanishing masses for the
three known fermion families is U(3)` × U(3)E × O(3)N . The latter is the symmetry exhibited
by the kinetic terms plus heavy degenerate right-handed neutrinos,

L = i¯̀L /D`L + iēR /DeR + iNR /∂NR +
1

2
{µLNNR

cNR + h.c.} . (4.2.1)

As earlier stated, we focus on flavor effects and restrain here to gauging the non-abelian factors
SU(3)` × SU(3)E × SO(3)N only. The field content that needs to be added then in order to
cancel gauge anomalies is identical to that in the previous model, since triangle diagrams cancel
for SO(3)N and the NR fermions are singlets under the SM gauge symmetry. The fermion
spectrum is summarized in Tab. 4.2; note that the quantum numbers for YN differ from those
in the previous section.

SU(2)L U(1)Y SU(3)` SU(3)E SO(3)N

`L ≡ (νL , eL) 2 −1/2 3 1 1

eR 1 −1 1 3 1

NR 1 0 1 1 3

ER 1 −1 3 1 1

EL 1 −1 1 3 1

NR 1 0 3 1 1

YE 1 0 3̄ 3 1

YN 1 0 3̄ 1 3

Table 4.2: Transformation properties of SM fields, of (flavor) mirror fields and of flavons under the EW
group and SU(3)` × SU(3)E × SO(3)N .

Using again and until further notice unprimed fields to denote flavor eigenstates, the
Lagrangian describing the model can be written as that in Eq. (4.1.2), where now LY encodes
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both Yukawa interactions and Majorana mass terms,

LY =λE `L Φ ER + µE EL eR + λE EL YE ER
+ λν `L Φ̃NR + λN N c

R YN NR +
µLN

2
NR

c
NR + h.c.,

(4.2.2)

where again all overall constants, i.e., λ’s and µ’s, can be made real via chiral rotations. The only
source of CP violation lies then in the non-trivial flavor structure of the vevs of the scalar fields
YE and YN . The charged lepton mass matrix inferred from this Lagrangian is identical to that in
Eq. (4.1.8), and in consequence the particle spectrum and phenomenology of the SU(3)E sector
(gauge bosons and mirror charged leptons) matches the description given in the previous section.
In contrast, the particle spectrum and phenomenology of the SU(3)` and SO(3)N sectors (gauge
bosons and heavy neutral fermions) will now depend on three fundamental scales: the vevs of
YE and YN and the lepton number parameter µLN . Note that now the LN and flavor scales
are distinct; for instance for µLN = 0, there will still be be physical leptonic mixing and flavor
effects associated to YN . The neutral fermions mass matrix in the Lagrangian Eq. (4.2.2) (in
the {`c,NR, NR} basis),

1

2




0 λνv/
√

2 0

λνv/
√

2 0 λNYTN
0 λNYN µLN


 + h.c., (4.2.3)

is typical of inverse Seesaw scenarios [326–328], in which generically that separation of the two
scales holds. Eq. (4.2.3) immediately suggests two interesting limiting regimes for the parameters
YN and µLN :

µLN � YN : In this limit the NR fields would decouple producing an effective mass term for
the NR of the form YNYTN/µLN . The basic type I Lagrangian of the previous model is
recovered, albeit with the (2, 2) entry of the neutral mass matrix in Eq. (4.1.8) replaced
by that effective mass.

YN � µLN : An approximate U(1)LN symmetry holds in this limit, as often explored within
low-scale inverse Seesaw scenarios [54, 329, 330]. NR

c and NR would form pseudo-Dirac
pairs and the light neutrino masses will be suppressed by a factor µLN/(λNYN ) with
respect to those for the basic type I Seesaw in Eq. (4.1.8).

The second limit leads to new phenomenology and will be the focus of the rest of the section.
The interplay between YE and YN will determine the spectrum and the phenomenology of the
flavor gauge bosons and will be discussed next.

4.2.1 Fermion Spectrum and Interactions: YN � µLN case

It is possible to expect in this model measurable signals of lepton-flavor violation, precisely
because the LN parameter (µLN ) and lepton flavor violation scale (‖YN‖) are independent and
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the latter is not strongly constrained by the tiny value of light neutrino masses. By the same
token, the mirror neutral fermions –determined by ‖YN‖– are now allowed to be much lighter
than in the gauged-flavor SM discussed in Section 4.1, see Eq. (4.1.13), and close to those of the
charged lepton mirror fermions. Indeed, in the µLN � YN limit the singlet fermions NR and
NR

c form Dirac pairs of mass

MN ' λNYN , (4.2.4)

where we neglected λνv contributions and the mass splitting in quasi-Dirac fields is given by
µLN , while the three light neutrinos acquire Majorana masses suppressed by the LN scale, which
does not carry flavor structure,9

mν =
v2

2

Cν
ΛLN

' v2

2

λν
2

λ2
N

1

YN
µLN

1

YTN
. (4.2.5)

The lightness of neutrino masses can be thus attributed to a small µLN instead of a very large
‖YN‖ (needed in the previous section): this is a technically natural solution as µLN is protected
by the approximate U(1)LN symmetry. In consequence, ‖YN‖ can now be of the order of the
electroweak scale or even smaller, resulting in putatively observable signals of lepton-flavor
violation mediated by flavor gauge bosons of the SU(3)` × SO(3)N sector (see further below)
independently of the value of light neutrino masses.

Note that, as in the gauged-flavor SM in Section 4.1, the mirror lepton mass matrices are
linearly proportional to the flavon vevs YE (Eq. (4.1.9)) and YN (Eq. (4.2.4)), and the mass
of the SM charged leptons is inversely proportional to YE (Eq. (4.1.10)); in contrast, the light
neutrino masses exhibit now a quadratic inverse dependence on YN , Eq. (4.2.5). From this
equation a parametrization equivalent to that of Casas-Ibarra [67] can be introduced:

YN =
v√
2

λν
λN

R

√
µLN

mdiag
ν

U † , (4.2.6)

where U is the PMNS matrix and mdiag
ν is the diagonal matrix of light neutrino masses mνi ,

mdiag
ν ≡ (mν1 ,mν2 ,mν3) , (4.2.7)

and R is an orthogonal complex matrix. The latter can be parametrized in general as the
exponential of the anti-symmetric Gell-Mann matrices with complex coefficients, although in
the case discussed an SO(3)N transformation allows to remove the imaginary part of these
coefficients,

R = eηiT
′i
, RRT = 1 , R = R† , (4.2.8)

where ηi are three real parameters and the matrices T ′i denote the set of three generators{
T 2, T 5, T 7

}
.

9The effective LN scale here is thus ΛLN ∼‖MN‖2 /µLN , as usual in inverse Seesaw constructions, while the
scale suppressing flavor effects is ‖MN‖.
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In the rest of this section, and in analogy with Eq. (4.1.27), we revert again to the notation
in which flavor eigenstates are denoted by primed fields while unprimed ones stand for the mass
eigenstates. In the limit of vanishing µLN , which will be assumed from now on, the mass term
for neutrinos coming from Eq. (4.2.2) after symmetry breaking reduces to

(
λν ν ′L v/

√
2 + λNN ′cR YN

)
N ′R + h.c. = −N c

RMNNR + h.c., (4.2.9)

and therefore a unitary rotation among only the νL and NR fields suffices to diagonalize the
mass matrix:


 ν ′L

N ′R
c


 =


 cΘν sΘν

−s
Θ†ν

c
Θ†ν




 νL

NR
c


 , (4.2.10)

where Θν is as given in Eq. (4.1.29) and we simultaneously define N ′R = −NR in order to recover
the usual sign for the Dirac mass term of the heavy states, and in accordance with the definitions
in the gauged-flavor SM, Eqs. (4.1.27) and (4.1.34).

Interactions with SM gauge bosons

YN introduces new flavor non-conserving transitions, associated to the extra fermionic states and
parameterized by Θν . The flavor changing and light-heavy mixing effects can then be written
in the mass basis as in Eq. (4.1.31), where now

Jµγ =− ēγµe− ĒγµE ,
J−µW =ν̄Lγ

µU †cΘν (cΘeL + sΘEL) +NR
cγµs†Θν (cΘeL + sΘEL) , (4.2.11)

JµZ =ēγµ
(
−(c2W − sΘsΘ†)PL + 2s2

WPR

)
e− Eγµ

(
sΘ†sΘPL − 2s2

W

)
E −

(
ELγµsΘ†cΘeL + h.c.

)
+

+ ν̄Lγ
µc2

ΘννL +NRγ
µs

Θ†ν
sΘνNR + (ν̄Lγ

µcΘνsΘνN
c
R + h.c.) .

Note that the PMNS matrix appearing in W couplings is given by the product U †cΘνcΘ, with
U being its unitary part and Θν and Θ encoding deviations from unitarity. The expressions for
the mixing angles equal those in the previous section, Eq. (4.1.29).

Scalar interactions

Using the definitions in Eq. (4.1.7) for the scalar excitations, the generalized Yukawa interactions
read for vanishing µLN :

Lψ̄ψφ =
−1√

2


 ēL

EL




 (λEcΘh− λEsΘφE)sΘR (λEcΘh− λ̃EsΘφE)cΘR

(λEcΘ†φE + λEsΘ†h)sΘR (λEcΘ†φE + λEsΘ†h)cΘR




 eR

ER


+
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− λν√
2
h
(
ν̄L cΘν +NR

c s
Θ†ν

)
NR −

λN√
2

(
NR

c c
Θ†ν
− ν̄L sΘν

)
φN NR + h.c. . (4.2.12)

In this model there are 18 + 18 − 19 = 17 scalars φE and φN ,10 which are fluctuations around
the 6 mixing parameters, 6 masses, 3 variables in the orthogonal self-hermitian matrix R and
two phases in U(1)` and U(1)E . Their effects are strongly suppressed [7] and will not be further
discussed.

Were the extra neutral states N lighter than the Higgs boson, the following decay channel
would open:

Γ(h→ Nν) =
λ2
ν

16π
Mh

(
1− M2

N

M2
h

)
, (4.2.13)

where N stands here for the generic mass eigenstates. The N fields will in turn be unstable
and decay to lighter charged fermions and neutrinos via the interaction in Eq. (4.2.11), with a
pattern that depends strongly on MN and Θν , potentially leading to new visible Higgs decays,
displaced vertices or contributions to the invisible decay. Additional bounds would then apply;
we will not further consider this case of heavy neutrinos lighter than the Higgs particle.

Flavor Gauge Boson Spectrum and Interactions

Additional flavor non-conserving effects can be induced by flavor gauge bosons, A`µ. Indeed, the
theory contains nineteen flavor gauge bosons whose Lagrangian reads

∑

I

Tr
(
AIµ∂

2AI,µ
)

+ Tr

{(
gEA

E
µYE − g`YEA`µ

)(
gEY†EAE,µ − g`A`,µY

†
E

)}
+

+ Tr

{(
gNA

N
µ YN − g`YNA`µ

)(
gNY†NAN,µ − g`A`,µY

†
N

)}
−
∑

I

gITr
(
AIµJ

µ
AI

)
,

(4.2.14)

where cubic and quartic gauge boson interactions are not shown as they will play no role in
the phenomenological analysis below. In Eq. (4.2.14) the ensemble of fields AIµ, I = `, E,N , is
treated as a traceless hermitian matrix and the currents are defined as matrices in flavor space,
with the currents Jµ

A`
and Jµ

AE
as defined in Eq. (4.1.16) and the SO(3)N current given by

[
Jµ
AN

]
ij

=
1

2

(
N̄ j
Rγ

µN i
R −N

i
Rγ

µN j
R

)
. (4.2.15)

The EOM resulting from Eq. (4.2.14) for AEµ is identical to that in Eq. 4.1.18, while for A`µ and

ANµ they are given by

∂2A`µ − gEg`Y†EAEµYE − gNg`Y†νANµ YN +
g2
`

2

{
Y†EYE + Y†NYN , A`µ

}
− g`

2
JA

`

µ =
1

ng
Tr (L.H.S.)1 ,

10Among the 36 real degrees of freedom of the two 3×3 complex matrices YE and YN , 19 become the longitudinal
components of the 19 flavor gauge bosons of the model.
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∂2ANµ +
g2
N

4

{
YNY†N + Y∗NYTN , ANµ

}
− g`gN

2

(
YNA`µY†N − Y∗N (A`µ)TYTN

)
− gN

2
JA

N

µ = 0 ,

(4.2.16)

where ng = 3. Eq. (4.2.14) can be alternatively written in a compact matrix notation arranging

the flavor gauge bosons in an array χaµ =
(
A`,1µ , . . . , A`,8µ , AE,1µ , . . . , AE,8µ , AN,1µ , . . . , AN,3µ

)
:

Lgauge = −1

2

∑

I=`,E,N

Tr
(
F IµνF

µν
I

)
+

1

2

19∑

a,b=1

χaµ

(
M2
A

)
ab
χb,µ −

∑

I=`,E,N

gITr
(
AIµJ

µ
AI

)
, (4.2.17)

where the mass matrix M2
A can be written in blocks as

M2
A =




M2
`` M2

`E M2
`N

M2
E` M2

EE 08×3

M2
N` 03×8 M2

NN


 , (4.2.18)

with
(
M2
EE

)
ij

and
(
M2
`E

)
ij

=
(
M2
E`

)
ji

identical to those in Eq. (4.1.22) for the gauged-flavor
SM case, while instead

(
M2
``

)
ij

= g2
`

{
Tr
(
YE
{
Ti, Tj

}
Y†E
)

+ Tr
(
YN
{
Ti, Tj

}
Y†N
)}

,

(
M2
`N

)
iĵ

=
(
M2
N`

)
ĵi

= −2g`gNTr
(
TiY†NT ′ĵYN

)
,

(
M2
NN

)
îĵ

= g2
NTr

(
Y†N
{
T ′
î
, T ′

ĵ

}
YN
)
,

(4.2.19)

where T ′ ≡ {T2, T5, T7}, i, j = {1, . . . , 8} and î, ĵ = {1, . . . , 3}.

Notice that, contrary to the processes mediated by the exchange of SU(3)E gauge bosons AEµ ,

those mediated by A`µ can indeed lead to observable flavor non-conserving processes given the
non-diagonal flavor structure of YN and the related low scales allowed in this gauged-flavor type
I Seesaw scenario.

Generally speaking, MA` will be determined by the largest value between ‖YE‖ and ‖YN‖.
There are in general too many parameters to make definite predictions, though. The most
relevant consequences are briefly discussed next and illustrated in Fig. 4.3 for three relevant
limits: YE > ‖YN‖, YE ∼ YN and ‖YE‖ < YN , with the latter two cases being of special
phenomenological interest as they lead to putatively observable cLFV in addition to LUV signals.

YE >‖YN‖ – Vectorial Flavor-Preserving Gauge Bosons

The heaviest gauge bosons would be those whose mass is dominated by the vev of YE . This
applies to all SU(3)` and SU(3)E gauge bosons but two (see below), as YE transforms under
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with
�
M2

EE

�
ij

and
�
M2
`E

�
ij

=
�
M2

E`

�
ji

identical to those in Eq. (2.22) for the gauged-flavour
SM case, while instead

⇣
M2
``

⌘
ij

= g2
`

⇢
Tr

⇣
YE

�
Ti, Tj

 
Y†

E

⌘
+ Tr

⇣
YN

�
Ti, Tj

 
Y†

N

⌘�
,

⇣
M2
`N

⌘
iĵ

=
⇣
M2

N`

⌘
ĵi

= �2g`gNTr
⇣
TiY†

NT 0
ĵ
YN

⌘
,

⇣
M2

NN

⌘
îĵ

= g2
NTr

✓
Y†

N

n
T 0

î
, T 0

ĵ

o
YN

◆
,

(3.24)

where T 0 ⌘ {T2, T5, T7}, i, j = {1, . . . , 8} and î, ĵ = {1, . . . , 3}.

Notice that, contrary to the processes mediated by the exchange of SU(3)E gauge bosons
AE

µ , those mediated by A`
µ can indeed lead to observable flavour non-conserving processes

given the non-diagonal flavour structure of YN and the related low scales allowed in this
gauged-flavour type I Seesaw scenario.

Generally speaking, MA` will be determined by the largest value betweenkYEk andkYNk.
There are in general too many parameters to make definite predictions, though. The most
relevant consequences are briefly discussed next and illustrated in Fig. ?? for three relevant
limits: YE > kYNk, YE ⇠ YN and kYEk < YN , with the latter two cases being of special
phenomenological interest as they lead to putatively observable cLFV in addition to LUV
signals. The following 90% CL experimental bounds on several flavour violating processes [22]

LUV and cLFV
µ! eee, ⌧ ! µee

Spectrum in Fig. 6

YE ⇠ YN

YE >kYNk

U(1)2`+E ⇥ SO(3)N

aµ, ⌫µN ! ⌫µµµN

Spectrum in Fig. 4

YN >kYEk
SU(3)E

LUV in µ� ⌧ and
sub-leading cLFV
Spectrum in Fig. 5

Figure 3: Schematic diagram for the relevant phenomenology scenarios. Each box reports the
symmetry associated to the relevant gauge bosons and the expected dominant phenomenology.

– 25 –

Figure 4.3: Schematic diagram for the relevant phenomenology scenarios. Each box reports the
symmetry associated to the relevant gauge bosons and the expected dominant phenomenology.

those two groups. The hierarchical structure of YE —with eigenvalues inversely proportional to
the SM charged lepton masses— results in a stratification of those heavier gauge bosons in two
layers, as illustrated by the two upper layers of the spectrum in Fig. 4.4: the upper level contains
the nine gauge bosons which couple to the electron, while the intermediate level corresponds
to those gauge bosons coupling only to muons and taus. The phenomenological impact of the
upper level will be neglected in what follows.

The lightest gauge bosons would be those which acquire instead a mass only through the vev
of YN . There are five such states. Three of them are the SO(3)N gauge bosons, depicted (in
green) in the illustrative case in Fig. 4.4: they carry flavor, mediating transitions only in the Ni

realm. Notice that they will only mix for complex YN , since the mass cross-term that connects
them to the other gauge bosons is Tr[T3,8Y†NT2,5,7YN ] = −Tr[T3,8YTNT2,5,7Y∗N ], see Eq. (4.2.19).

The presence of the other two light eigenstates —the lightest ones in Fig. 4.4— can be
understood from the fact that YE can be made diagonal via a rotation in flavor space. This
corresponds to the three distinct vectorial and diagonal U(1) symmetries which are preserved:
LN which has not been gauged, plus two others which correspond to very light gauge bosons,
which acquire a mass only through the vev of YN . These states are diagonal in flavor space and
traceless —see Fig. 4.4— and given by the linear combination AVµ = (gEA

`
µ+g`A

E
µ )/(g2

` +g2
E)1/2,

with mass matrix

M2
AV
≡ 2g2

`


 Tr(T3Y†NYNT3) Tr(T3Y†NYNT8)

Tr(T8Y†NYNT3) Tr(T8Y†NYNT8)


 . (4.2.20)

Those two gauge bosons generically couple to all flavors with similar strength, see Eq. (4.2.20),
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Figure 4.4: Gauge and fermion heavy spectrum for the gauged lepton flavor type I Seesaw model, with
YE � ‖YN‖. Boxes correspond to flavor gauge fields and lines to mirror fermions. Neutrino normal
ordering was assumed and the parameter values taken are θ23 = 45◦, θ12 = 33◦, θ13 = 8.8◦, Dirac CP
phase δ = 3π/2, Majorana phases α1 = α2 = 0, R = 1. All g′s and all λ′s are 0.1 except λN = 1 and
µE = 1 TeV, µLN = 1 KeV, while mν1 = 0.03 eV.

and thus the most stringent bound stems from LEP [331],

MAV1
≥ 2.1× 102 GeV , (4.2.21)

where AV1 denotes the lightest eigenstate of Eq. (4.2.20). Those two vector bosons also contribute
constructively11 to the muon anomalous magnetic moment:

δaµ =
m2
µ

12π2
× g2

Eg
2
`

g2
` + g2

E

∑

ij

Tµµi

(
M−2
AV

)
ij
Tµµj . (4.2.22)

Although they could potentially explain the existing anomaly, this is excluded by neutrino trident
production data, νµN → νµµµN with N denoting here a nucleus. Indeed, the contributions
from the flavor gauge bosons to this observable read [332]

σ(SM+A)

σ(SM)
=

1 +
(
1 + 4s2

W + 2δV
)2

1 +
(
1 + 4s2

W

)2 , δV = v2 g2
Eg

2
`

g2
` + g2

E

∑

ij

Tµµi

(
M−2
AV

)
ij
Tµµj , (4.2.23)

and are constrained by the CCFR [333] and CHARM-II [334] collaborations, implying the
indirect bound δaµ < 7.5 × 10−10 , which precludes an explanation of the muon magnetic
moment anomaly via these gauge bosons.

Fig. 4.4 also illustrates that the lightest exotic neutral fermions would be those mirroring
the light neutrino sector, as expected since the mirror fermion masses are linearly proportional
to the flavon vevs. Therefore, the unitarity deviation Θν induced in the PMNS matrix by the
mirror neutrinos dominates over Θ (stemming from the mirror charged leptons), see Eq. (4.2.11).
Analyses probing flavor non-conserving processes and electroweak precision data [37, 319, 335–

11As opposed to the contribution studied in Eq. (4.1.49), in this case the sign is positive since the coupling of
the lightest flavor gauge boson to leptons is vectorial.
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358] can then be translated into constrains on the combination ΘνΘ†ν [318] as follows:

(
ΘνΘ†ν

)
ee
< 2.5× 10−3,

(
ΘνΘ†ν

)
eµ
< 2.4× 10−5,

(
ΘνΘ†ν

)
µµ
< 4.0× 10−4,

(
ΘνΘ†ν

)
eτ
< 2.7× 10−3,

(
ΘνΘ†ν

)
ττ
< 5.6× 10−3,

(
ΘνΘ†ν

)
µτ
< 1.2× 10−3,

(4.2.24)

at 95% CL.

YN >‖YE‖ – LUV and subleading cLFV

In this limit, in which all entries of YN are larger than the largest one in YE , the lightest
gauge bosons correspond to the SU(3)E symmetry. Therefore, the leading phenomenology
described in Section 4.1 when gauging only the SM leptonic flavor group SU(3)` × SU(3)E
will apply. In particular, as ‖YE‖ dominates, an effective low-energy SU(2)E symmetry is at
play and mediated by the three lightest gauge bosons, while transitions involving the electron
flavor will be additionally suppressed by (me/mµ)2 with respect to those in the µ–τ sector. The
lepton universality violation effects associated to the µ − τ sector and dominated by fermionic
τ̂ exchanges found in Section 4.1 are also valid for this case.

As for the heavier states, since the leading contribution to the SU(3)` gauge boson masses
is given by YN no large hierarchies among the SU(3)` gauge boson masses are expected for a
generic R matrix and generic light neutrino mass spectrum. Therefore, the importance of the
lepton flavor violating processes mediated by these gauge bosons will not be strongly correlated
to the specific flavors involved. This is in contrast to the case for AEµ shown in Sec. 4.1.1.
However, there are specific limiting cases with approximate symmetries for which hierarchies are
introduced and the number of relevant parameters is reduced so that more definite predictions
can be made. We briefly consider an example next.

Generic R and degenerate neutrino masses

As expected, the lightest states of the spectrum will be similar to those discussed in Section 4.1,
as seen by comparing Fig. 4.2 and Fig. 4.5, while the heavier states can be now much lighter
and thus of phenomenological interest, as explained earlier on.

In the limit of degenerate neutrinos, Eqs. (4.2.6) and (4.2.8) lead to

YN =
v√
2

λν
√
µLN

λN
√
mν

RU † ≡ v√
2

λν
√
µLN

λN
√
mν

eηiT
′i
U † . (4.2.25)

This expression is invariant under a U(1) subgroup of SU(3)` × SO(3)N :

YN → eiα ηiT
′i

(YN )Ue−iα ηiT
′i
U † , (4.2.26)
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where α is the (real) parameter of the transformation. Therefore, the gauge boson associated
with this U(1) will only acquire mass through YE and will be lighter than the rest. The generator
of this residual U(1) symmetry in the SU(3)` sector is UηiT

′iU † and therefore the induced cLFV
four fermion operator mediated by that state is

g2
`

M2
AU(1)

(
¯̀
LγµUηiT

′iU †`L
)2

. (4.2.27)

That lighter state is illustrated by the first gauge boson on the second layer of Fig. 4.5, in

Legend

103

104

105

106

107

108

109

103

104

105

106

107

108

109

M
!GeV

"

e! Μ! Τ!e Μ Τ

Le LΜ LΤ

Le
LΜ

LΤ

eR ΜR ΤR

eR
ΜR

ΤR

N1 N2 N3

N1
N2
N3

Νe ΝΜ ΝΤ NLΝe NLΝΜNLΝΤ NRΝe NRΝΜNRΝΤ

Figure 4.5: Gauge and fermion heavy spectrum for the gauged lepton flavor type I Seesaw model, with
YN > ‖YE‖ and degenerate light neutrinos, CP-odd case. Boxes correspond to flavor gauge fields and
lines to mirror fermions. Neutrino normal ordering was assumed for neutrinos and the parameter values
taken are θ23 = 45◦, θ12 = 33◦, θ13 = 8.8◦, Dirac CP phase δ = 3π/2, Majorana phases α21 = −π/2,
α31 = −2π/3, R is a rotation in the 23 sector by angle −i times a 12 rotation by angle i. All g′s and all
λ′s are 1 except λN = 2, λν = 0.2, µE = 15 GeV, while µLN = 100 GeV and mν1 = 0.03 eV.

which generic values of the Dirac CP phase δ and a non-trivial R matrix have been used. In
this generic case, the most competitive bound on the operator in Eq. (4.2.27) stems from the
µ→ eee decay.

In the case of a CP conserving PMNS matrix, the antisymmetry of T ′i would imply that the
combination UηiT

′iU † in Eq. (4.2.27) would have vanishing flavor diagonal interactions. The
only expected decays would then be τ → µee and τ → µµe, determined by the specific values
of R. Nevertheless, the recent hints [359, 360] of a leptonic CP phase δ ∼ 270◦ would discard
this possibility, if confirmed. In this perspective, we refrain as well from detailing other specific
predictions that would follow for scenarios with δ = 0 or π.

YE ∼‖YN‖ – LUV and cLFV

This case is involved given the interplay of several scales, although it can be described
qualitatively. As YE is intrinsically hierarchical (and determined by the inverse of the charged
lepton masses), in the example considered next it is assumed that the norm‖YN‖ is heavier than
the eigenstates of the approximate SU(2)E symmetry of the muon-tau sector and lighter than
the rest of the YE entries. In consequence, the lightest exotic fermion and gauge boson masses
are as in the SM gauged case discussed in Section 4.1, as can be seen by comparing Fig. 4.2 with
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the illustrative case in Fig. 4.6. The lightest fields in the spectrum are again the mirror τ̂ lepton
and the SU(2)E gauge bosons, leading to the µ− τ phenomenology discussed in Section 4.1.
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Figure 4.6: Gauge and fermion heavy spectrum for the gauged lepton flavor type I Seesaw model, with
YE ∼ ‖YN‖. Boxes correspond to flavor gauge fields and lines to mirror fermions. Neutrino normal
ordering was assumed and the parameter values taken are θ23 = 45◦, θ12 = 33◦, θ13 = 8.8◦, Dirac CP
phase δ = 3π/2, Majorana phases α1 = α2 = 0, R = 1, all λ’s and g’s are taken to be 0.1 except λN = 1
and µE = 15 GeV, µLN = 20 KeV and mν1 = 0.003eV.

Additionally, the gauge bosons which take their masses dominantly from YN may now lead
to observable cLFV signals, as discussed next. Electron number violation will be suppressed by
the largest of the two scales ‖YE‖ and ‖YN‖, while muon and tau violation by the largest of
‖YE‖me/mµ and ‖YN‖. Therefore, the generic expectations for flavor violating processes are:

Brµ→eee(A`µ) , Brτ→µe−e−(A`µ) , Brτ→µµe(A`µ) ∼
(
‖YE‖2 +‖YN‖2

)−2
,

Brτ→µµµ(A`µ) , Brτ→µe+e−(A`µ) ∼
(
m2
e

m2
µ

‖YE‖2 +‖YN‖2
)−2

.

(4.2.28)

The experimental bounds in Table 4.3 can then be translated into limits on the combinations
√
‖YE‖2 +‖YN‖2 ≥ 3.5× 105GeV , from µ→ eee ,

√
m2
e

m2
µ

‖YE‖2 +‖YN‖2 ≥ 1.9× 104GeV , from τ → µe+e− .
(4.2.29)

Br(µ→ eγ) ≤ 5.7× 10−13 Br(τ → µγ) ≤ 4.4× 10−8

Br(τ → eγ) ≤ 3.3× 10−8 Br(µ→ eee) ≤ 1.0× 10−12

Br(τ → eee) ≤ 2.7× 10−8 Br(τ → µµµ) ≤ 2.1× 10−8

Br(τ → µ+µ−e) ≤ 2.7× 10−8 Br(τ → µµ−e+) ≤ 1.7× 10−8

Br(τ → µe+e−) ≤ 1.8× 10−8 Br(τ → µ+e−e) ≤ 1.5× 10−8

Table 4.3: 90% CL limits on flavor violating decays of a charged lepton into three other charged
leptons [315].
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When the two scales ‖YE‖ and ‖YN‖ are comparable, µ → eee sets a lower bound on each of
them of ∼ 2.5× 105GeV; when instead ‖YN‖ <‖YE‖, τ → µe+e− leads to a stronger bound on
‖YE‖ & 2.9 × 106GeV. In both cases, flavor observables turn out to be more sensitive to the
scale of the flavor gauge bosons than present collider data, as the bounds on ‖YE‖ are stronger
than that extracted from direct searches in Eq. (4.1.50), ‖YE‖ ≥ 7.4× 104GeV.

4.3 Comparison with Minimal Lepton Flavor Violation, for
YN � YE

We have gauged in the preceding sections the maximal non-abelian leptonic global flavor
symmetry of the SM and of the type I Seesaw Lagrangian. In doing so, we were inspired by the
phenomenological successes of the MFV ansatz in which the Yukawa couplings are treated as
scalar spurions. A pertinent question is then whether the resulting low-energy phenomenology
described above is compatible with that expected in the original formulation of Minimal Lepton
Flavor Violation (MLFV) [78] and subsequent works [310–313].

The low-energy effective Lagrangian of our gauged-flavor models will, by construction, be
formally invariant under the spurion analysis of MLFV; the question is whether the analytic
dependence on the scalar fields matches that in MLFV. It is shown below that this is not always
the case, due mainly to the presence of additional gauge bosons in the gauged-flavor Lagrangians.

For definiteness, we focus here on the specific limit YN � YE , which applies both to the
gauged-flavor SM described in Section 4.1 and to one scenario of the gauged-flavor type I Seesaw
model, see Section 4.2.1. Integrating out the flavor gauge bosons and the mirror fermion fields
in Eqs. (4.1.2)–(4.1.6), (4.2.1) and (4.2.2), and restricting the expansion to order Y−2 in flavon
fields vevs (YE and YN ), the low-energy Lagrangian reads 12

L eff =

(
−`LΦ

λEµE
λEYE

eR − `TLΦ̃
Cν

ΛLN
Φ̃T `L + h.c.

)
+

+ i eR
1

λ2
E

µ2
E

YEY†E
/DeR + i ¯̀

LΦ
λ2
E

λ2
E

1

Y†EYE
/D
(

Φ†`L
)

+ i ¯̀
LΦ̃

λ2
ν

λ2
N

1

Y†NYN
/D
(

Φ̃†`L
)

+ (4.3.1)

− cE
2

Tr

[
1

Y†EYE

]
(
eRγµeR

)2 − 1

2
Tr

[
1

Y†NYN

]
(
¯̀
Lγµ`L

) [
c`
(
¯̀
Lγµ`L

)
+ 2 c`E

(
eRγµeR

)]
,

where subleading contributions to the displayed operators have been neglected, e. g. 1/Y2
N vs

1/Y2
E , given that we assume YN � YE .

The first line in Eq. (4.3.1) is in fact the general effective Lagrangian in Eq. (4.0.2) which
describes the charged lepton and neutrino masses, with the charged lepton Yukawa coupling
given by YE = (λEµE)/(λEYE) in both gauged-flavor models considered, SM and type I Seesaw

12 Recall that we are working on the convention in which µE and all λi coefficients are real; otherwise all λ2
i

should be traded by |λi|2.
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scenario, as already found in Eq. (4.1.10) and Section 4.2. Cν is linear in Y−1
N for the former

scenario and quadratic for the latter, see respectively Eqs. (4.1.10) and (4.2.5).

The second line in Eq. (4.3.1) displays fermion-bilinear terms which are those resulting from
integrating out the mirror fermions, as illustrated in Fig. 4.7. Finally, the last line stems from
integrating out the heavy flavor gauge bosons resulting in effective four-fermion operators only; a
flavor non-conserving operator resulting from A`µ exchange is depicted in Fig. 4.8 as illustration.
The coefficient of the first four-fermion operator, cE , has been given in Eq. (4.1.45), whereas the
explicit formulas for c` and c`E depend on the model under consideration; they will be discussed
further below for phenomenologically accessible cases.

`αL

Φ

E
`βL

Φ

λ2
E

M2
E

¯̀α
LΦ /DΦ†`βL

Figure 4.7: Example of effective operator induced via heavy fermion exchange.

Mirror Lepton Exchange

The first term on the second line of Eq. (4.3.1) contributes to the kinetic energy of the right-
handed light charged leptons; the field redefinition

eR →
(

1− 1

2λ2
E

µ2
E

Y†EYE

)
eR , (4.3.2)

allows to recover canonically normalized kinetic energies and leaves the rest of the Lagrangian
unchanged, at the order considered. This confirms the result found in Section 4.1, as the mixing
ΘR among right-handed charged fermions does not affect the gauge interactions.

The second term in that line is a dimension six (d = 6) effective operator with a coefficient of
order Y−2

E and therefore quadratic in the charged lepton Yukawa couplings YE , see Eq. (4.1.10).
Were one to write the O(Y 2

E) coefficient for such operator with the prescription of MLFV, it
would read, in matrix notation,

MLFV:
i

Λ2
¯̀
LΦYEY

†
E
/D
(

Φ†`L
)
, (4.3.3)

which indeed corresponds to our result in Eq. (4.3.1) provided the associated scale is identified
as Λ = µE , see Eq. (4.1.10). Note that Λ is then not the mass scale of any of the heavy particles
in the model and can actually be lower.13

13If instead the coefficient is written in terms of mass scales, e.g. the mass of the lightest mirror charged lepton,

Mτ , it would read λ2
E/M

2
τ × YEY †E/

∥∥∥Y 2
E

∥∥∥ to order mµ/mτ .
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The rest of operators produced by fermion exchange can be cast as well in standard MLFV
form; in particular the third operator in the second line of Eq. (4.3.1) induces charged flavor
violation as was indeed already studied in the context of leptonic MFV in Ref. [312].

A relevant difference between MLFV constructions and the flavor-gauged scenario concerns
CP violation. While a priori no symmetry principle prevents from assuming a complex overall
phase in non-hermitian MLFV operators, in the lepton gauged-flavor models studied here such
extra overall phases are absent. Therefore, the gauging of the lepton flavor symmetries provides
a mechanism to protect against CP violation, not present in generic MLFV scenarios. In other
words, the only source of CP violation are the scalar vevs and thus the only physical CP-odd
phases are those of the PMNS matrix in both gauged-flavor scenarios, plus the usual extra
phases of the minimal type I Seesaw model in the gauged-flavor type I Seesaw case.

`αL

`βL

A`

`δL

`γL

g2
`

M2
A`

¯̀α
Lγ

µ`βL
¯̀γ
Lγ

µ`δL

Figure 4.8: Tree-level exchange of a flavor gauge boson resulting in a four-fermion effective operator.

Flavored Gauge Boson Exchange

The effective couplings resulting from the exchange of a heavy flavor gauge boson present a more
complicated structure than those mediated by heavy fermions. For instance, the first operator in
the third line of Eq. (4.3.1) involves four right-handed charged lepton fields and a coefficient of
order Y−2

E . Using Eq. (4.1.45) and Eq. (4.1.10), the dependence on the charged lepton Yukawa
coupling YE in the gauged-flavor case reads, in matrix notation,

−1

2

∑

k

(−1)k eR
γµ(

Y †EYE
)k eR eRγµ

(
Y †EYE

)k+1
eR +

1

4Tr
[
Y †EYE

]
(
eRγµY

†
EYEeR

)2
, (4.3.4)

where 1/(1 + x) =
∑

(−x)n has been used. In contrast, within the MLFV prescription the
Lagrangian term would be given by

MFV:
1

Λ2

(
eRγµY

†
EYEeR

) (
eRγµeR

)
, (4.3.5)

at leading order. In consequence, the spurion dependences do not match even if formally both
are of order Y 2

E . Furthermore, only two leptons are involved in a non-trivial flavor structure
in the MLFV case instead of four in the gauged-flavor scenario. In both cases, although this
operator induces LUV, it does not induce LFV which is the distinctive feature of MLFV to
which we now turn.
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The second term in the third line of the Lagrangian Eq. (4.3.1) exhibits a combination of two
operators which induce LFV transitions —weighted down by Y−2

N — which can be compared

to the operators O
(1)
4L , O

(2)
4L , O

(3)
4L of Ref. [310]. Those two operators are strongly suppressed

in the gauged-flavor SM case as the YN scale is necessarily very high, while they may lead to
visible effects in the context of the gauged-flavor type I Seesaw model in Section 4.2.1, as the
scale associated to YN can be low enough even if YN > ‖YE‖. In the following, to allow a
fair comparison with MLFV we will focus on flavor non-conserving transitions and consider a
CP-even limit of the gauged-flavor type I Seesaw model.

CP Invariance (R = 1, δ = 0, α21 = α31 = 0)

In the CP-even limit considered, the combination of two operators appearing in the last term
in Eq. (4.3.1),

− 1

2
Tr

[
1

Y†NYN

](
¯̀α
Lγµ`

β
L

) [
cαβκρ`

(
¯̀κ
Lγ

µ`ρL
)

+ 2 cαβκρ`E

(
eκRγ

µeρR
)]
, (4.3.6)

is determined by the coefficients given by

cαβκρ` = U †αiUjβU
†
κrUsρ c

ijrs
` , cαβκρ`E = Uαi†U jβ cijκρ` , (4.3.7)

with

cijrs` =
1∑
kmνk

(
δisδjrmνimνr(m

2
νi +m2

νr)(
m2
νi −m2

νr

)
(mνi −mνr) + δir(2mνi)

3
+

−
2δirδjsm

2
νim

2
νj

(m2
νi −m2

νj )(mνi −mνj )− δij(2mνi)
3
− δijδrsmνimνr

2
∑

kmνk

)
,

(4.3.8)

cijκρ`E =
mκmρ

m2
κ +m2

ρ

1∑
kmνk

(
2UκjU

†
iρmνimνj (m

2
νi +m2

νj )

(m2
νi −m2

νj )(mνi −mνj ) + δij(2mνi)
3
+

−
4UκiU

†
jρm

2
νim

2
νj

(m2
νi −m2

νj )(mνi −mνj )− δij(2mνi)
3
−
∑

k UκγmνkU
†
γρ δijmνi∑

kmνk

)
,

(4.3.9)

where the c` coefficients correspond to transitions between purely left-handed leptons, while
c`E correspond to left-right mixed terms.14 Alike to the comparison between the operators in
Eqs. (4.3.4) and (4.3.5), the Yukawa dependence of the gauged-flavor model cannot be matched in
this case to that in standard approaches to MLFV [78,310]; we will compare here for definiteness
with the “extended” model in Ref. [78] for which the MLFV ansatz would suggest a coupling
proportional to15

¯̀
LγµU m

diag
ν U †`L ¯̀

Lγ
µ`L . (4.3.10)

14The coefficients cijγδ`E appear suppressed with respect to cijkl` by a factor mγmδ/(m
2
γ +m2

δ). This implies that
left-right c`E contributions to transitions between leptons of neighboring flavors (e.g. µ→ eee and τ → µµµ) are
larger than between the third to the first generations (e.g., τ → eee or τ → µee).

15In the notation of our gauged-flavor type I Seesaw model in Section 4.2, the coefficient in front of this equation
would read (v2 µLN )−1, see Footnote 9.
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Figure 4.9: Comparison between the gauged-flavor type-I Seesaw scenario and MLFV in a CP-even
case: branching ratios for the different lepton rare decays over that for µ → eee, for neutrino normal
ordering (NO) and inverted ordering (IO).
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The differences in the operator coefficients in Eqs. (4.3.6)–(4.3.9) versus Eq. (4.3.10) translate
into distinctive phenomenological signals; as an illustration, the branching ratios for various
lα → lβl

+
ρ l
−
κ processes are compared in Fig. 4.9. A first clear difference is the absence of processes

that violate lepton flavor by two units in the MLFV case, e.g., τ → µe+e+ and τ → eµ+µ+ (the
dashed lines in the gauged-flavor case). These processes are suppressed in MLFV by higher-order
spurion insertions, while the more intricate dependence on Yukawa couplings of the gauged-flavor
case allows them at leading order.

A second prominent feature depicted in Fig. 4.9 is the strong hierarchy between two different
type of decays in the gauged-flavor scenario, for inverted neutrino hierarchy and also for normal
ordering with large mν1 : transitions involving only one flavor in the final state are much
suppressed, see Figs. 4.9a and 4.9c, unlike in MLFV, Figs. 4.9b and 4.9d. In consequence,
the dominant channels for the gauged-flavor scenario are τ → µee and τ → eµµ (in purple and
orange). This hierarchy can be understood in terms of symmetry. If the three light neutrinos
are almost degenerate, an approximate SO(3)`+N remains unbroken, as already pointed out
in Refs. [301, 302]. The three corresponding gauge bosons would therefore be lighter than the
rest with masses proportional to the neutrino mass splittings and thus suppressed by a factor
(mνi −mνj )/(mνi +mνj ). The lightest of these gauge bosons corresponds to the smallest mass
splitting (∆m2

sol ≈ 7.50 × 10−5 eV2) between mν2 and mν1 , and dominates the contribution
for inverted neutrino hierarchy as well as for normal ordering with large mν1 . Because the
couplings of this lightest flavor gauge boson are given by the generator of SO(2) rotations, which
is antisymmetric in flavor, a selection rule for the decays follows. This can be seen explicitly in
the limit ∆msol �

∑
mνi in which Eqs. (4.3.6)–(4.3.8) simplify to

'−

∥∥∥Y−1
N

∥∥∥
2

54

(
∑

kmνk)2

∆m2
sol

(
Uα1U

†
2β − Uα2U

†
1β

)(
Uγ1U

†
2δ − Uγ2U

†
1δ

)
¯̀α
Lγµ`

β
L

¯̀γ
Lγ

µ`δL ,

from which it follows that whenever two flavors coincide, given the assumption of CP invariance
the corresponding operator coefficient vanishes an hence l→ l′l′l′ cancels, whereas for more than
two flavors involved

Br (τ → µee)

Br (τ → µµe)
=

sin2(θ23)

sin2(θ13)
∼ 20 . (4.3.11)

In contrast, in MLFV the τ → µµµ and τ → eee branching ratios are a factor two –due
to combinatorics– times those for τ → µe+e− and τ → eµ+µ−, respectively, see Figs. 4.9b
and 4.9d.

4.4 Conclusions

We have considered the gauging of leptonic global flavor symmetries that the SM Lagrangian or
its fermionic Seesaw extension exhibit in the limit of negligible light lepton masses. A remarkable
consequence is that the gauge anomaly cancellation conditions point to a universal underlying
Seesaw pattern for both charged and neutral leptons:
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- The gauging of the flavor symmetry SU(3)` × SU(3)E of the SM Lagrangian (that is,
without assuming right-handed neutrinos) leads to the minimal type I Seesaw scenario as
the simplest realization in terms of extra fields needed. In other words, without assuming
Majorana neutrino masses, the gauging procedure suggests them directly.

- Starting instead from the maximal flavor symmetry of the type I Seesaw Lagrangian,
SU(3)`×SU(3)E ×SO(3)N , leads to a double Seesaw and in particular an inverse Seesaw
pattern.

This study extends previous work on gauging the flavor symmetries of the SM quark sector,
which had already shown the existence of a Seesaw-like pattern that protected the model from the
customary FCNC issues which tend to be the graveyard of attempts to understand dynamically
the flavor puzzle. Interesting signals and correlations have been identified here as a result
of gauging the maximal non-abelian flavor symmetries of the SM and of the type I Seesaw
Lagrangian. The main leptonic flavor signals expected tend to involve the heavier SM leptons,
whose interactions are less constrained by present data.

In the leptonic gauged-flavor SM case, the expected phenomenological signals are flavor-
conserving, and include charged-lepton universality violation and non-unitarity of the PMNS
matrix that follow from the (flavor diagonal) modifications of the couplings of leptons to Z
and W bosons, particularly prominent for τ -related observables. Furthermore, the first particles
awaiting discovery would be a tau mirror lepton and SU(3)E gauge bosons which mediate µR−τR
transitions.

Gauging instead the maximal lepton flavor symmetry of type I Seesaw may lead not only to
signals of lepton universality violation but also to putatively observable flavor non-conserving
transitions among charged leptons. The dominant signals expected depend mainly on the relative
hierarchy of the scalar vevs that generate the charged lepton masses ‖YE‖ versus those that
generate the neutrino ones ‖YN‖ and the LN scale. When all YE vevs are larger than ‖YN‖ ,
the leading transitions are again flavor-conserving, while the lightest states in the spectrum are
mirror neutrinos and gauge bosons whose mass is determined by ‖YN‖ . In the opposite case,
that is for ‖YN‖ > ‖YE‖ , the lowest states are again the mirror tau lepton and the three
SU(3)E gauge bosons which mediate transitions in the µR − τR sector. Of particular interest is
the fact that Majorana masses within an approximate U(1) lepton number symmetry setup are
allowed, associated to the inverse Seesaw structure that results naturally from the requirement
of gauge anomaly cancellation; it is precisely because the lepton scale is then distinct from the
lepton number scale, that the latter can be low enough to expect sizeable flavor-changing signals.
The precise phenomenology depends much on the CP pattern of the model. For the generic case
of CP violation and (almost degenerate) neutrinos, µ → eee is at present the most sensitive
flavor non-conserving channel.

The results have been also compared with the phenomenological predictions of leptonic
minimal flavor violation. We have shown that the presence of additional flavor gauge bosons
may provide distinct low-energy transitions among the SM fields. It is also remarkable that the
gauging of the lepton flavor symmetries provides a mechanism to protect against extra sources
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of CP violation beyond those in the SM (and Seesaw type I), which is absent in generic minimal
lepton flavor violation scenarios. In addition, flavor changing transitions among charged leptons
involving more than two distinct leptons tend to be stronger than those in which a tau or
muon decays into three equal leptons, in contrast again with generic minimal flavor violation.
The impact of scalar flavor excitations is model-dependent and remains to be studied in detail,
although it is expected to abide by the same flavor protection than the rest of the theory.

The necessary mediation of at least one BSM field is at the basis of the Seesaw mechanism for
the generation of light neutrino Majorana masses; it is very suggestive that the mass mechanism
for light fermions –quarks and leptons– which results from gauging the flavor symmetries
corresponds qualitatively to the same pattern. Interestingly, other theoretical constructions
such as “partial compositeness” lead as well to a universal Seesaw-like pattern behind fermion
masses; if new flavor signals are indeed observed, an extended and detailed study of many flavor
channels will be needed to disentangle a possible flavored-gauge origin. The main drawback of
our construction is our ignorance about the absolute value of the scales involved, that could
render the predictions of these models out of reach in the foreseeable future. Yet, the quest
to identify a dynamical origin to the flavor puzzle is a fundamental and fascinating endeavour
plausibly awaiting discovery.



CHAPTER

5 Color Unified Dynamical
Axion

In this Chapter, which is based on the publication in Ref. [4], we develop a new solution to
the strong CP problem via massless fermions, in which the issue of the different θ parameters
that arise in the presence of two or more confining groups is solved via color unification. Color
unification with massless quarks is attempted here for the first time. This path is an alternative
to the axicolor-type constructions and will lead to different phenomenology. QCD will be unified
with another confining sector singlet under the electroweak gauge symmetry. The color unified
theory (CUT) breaks spontaneously to QCD and another confining group. The small-size
instantons of the unified color group provide an extra source of high masses for the axions
of the theory, and it will be shown that typically no axion remains at low scales. The exotic
low-energy spectrum is instead fermionic. Furthermore, it will be shown that interesting new
phenomenological signals can be explored at colliders. The complete ultraviolet completion
of this idea will be developed, implementing two different scenarios: in one of them the two
resulting heavy axions are dynamical, while in the other one axion is elementary.

5.1 SU(6) Color Unification

We propose a scenario in which QCD is unified with another confining group into SU(6), and
a single, strictly massless SU(6) fermion rotates away simultaneously all θ parameters. The
unification path in the context of an extended strong sector to solve the strong CP problem
was first proposed by Rubakov long ago [170], in a Grand Unification construction that relied
on traditional models à la DFSZ [203,204] with massive exotic fields, and required a Z2 mirror
copy of the complete SM field content. Another recent attempt [177] using unification ideas also
relied on massive exotic fermions à la DFSZ. Here we instead consider color unification in the
presence of massless fermions. The massless SU(6) fermion belongs to the 20 representation of
the SU(6) CUT, having a definite chirality (e.g. left-handed) while being a singlet of the SM
SU(2)L × U(1)Y gauge symmetry:
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SU(6) SU(2)L U(1)

ΨL 20 1 0

Table 5.1: The massless fermion sector of the SU(6) construction above the unification scale.

At a color unification scale ΛCUT much higher than the EW one, the SU(6) group breaks into

SU(6)
ΛCUT−−−→ SU(3)c × SU(3̃)× U(1) . (5.1.1)

The parameters θc of SU(3)c and θ̃ of SU(3̃) are necessarily equal and unphysical down to
the unification scale, and will remain so even below the unification scale as long as Ψ remains
massless, protected by chiral symmetry. Under spontaneous symmetry breaking of the CUT
symmetry, Ψ decomposes as

ΨL(20) = (1, 1)(−3)L + (1, 1) (+3)L + (3, 3̄) (−1)L + (3̄, 3)(+1)L , (5.1.2)

where the charges under the U(1) group in Eq. (5.1.1) are shown in parenthesis for completeness.
If the components of the ΨL field are to remain massless under the CUT scale, SU(3̃) must
confine. The two confining scales ΛQCD and Λ̃ need to be separated with Λ̃� ΛQCD, as no bound
states are observed other than those compatible with QCD. The 20-dimensional representation
is thus advantageous because all its components charged under QCD are also charged under
SU(3̃), and so will form bound states at the higher scale Λ̃. This representation is also pseudo-
real, and so the theory is anomaly free. The non-trivial issue of how to separate Λ̃ and ΛQCD is
discussed further below.

SU(3)c SU(3̃)

ψL 2 2̄

ψcL 2̄ 2

2× ψν 1 1

Table 5.2: The massless fermion sector of the SU(6) construction below the unification scale. The
notation is such that ψcL ≡ (ψc)L = (ψR)c.

The colored-axicolored massless fermions in Eq. (5.1.2) will be denoted ψL,R, see Table 5.2,
while ψν will refer to the singlet massless fermions to convey that they act like sterile1 neutrinos.
The ψν fields only connect to the other fields through the unified strong forces, and thus their
couplings to the visible universe will be safely suppressed by ΛCUT, provided the U(1) gauge
group in (5.1.1) is also broken near that scale.2

1By “sterile fermion” is meant any fermion which is not charged under the SM gauge group.
2This breaking will become manifest in the next section.
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SU(6) color unification is thus a successful path to solve the strong CP problem, and this
fact will remain at the heart of the developments in this Chapter. The remaining problem is to
obtain a low-energy spectrum which is fully compatible with observations.

The SM fermions

Because of color unification, the SM quarks must belong to SU(6) multiplets. The simplest
option is to include them in six-dimensional fundamental representations. For each fermion
generation,

QL(6) ≡ (q , q̃)L , U(6) ≡ (u , ũ)R , D(6) ≡ (d , d̃)R , (5.1.3)

where qL, uR and dR denote the SM quarks, while their SU(6) partners are signaled by tildes.
The q̃L fields are necessarily electroweak doublets, and this character turns out to be the major
practical issue of this model:

• Leaving the tilde-quark sector massless but confined is unacceptable, as the condensate —
assuming chiral symmetry breaking of SU(3̃) — would typically break the SM EW
symmetry at the large Λ̃ scale.

• Alternatively, giving much larger masses ( ≥ Λ̃ ) to the tilde quarks is not viable either
in this SU(6) setup without spoiling SM quark masses, since they belong to the same
multiplet. If a scalar field gave high masses to the tilde quarks 3 by obtaining a high
vacuum expectation value (vev), that scalar field would have to be an SU(2)L doublet.
Then its large vev would spontaneously break SM EW symmetry, giving gigantic masses
to the W and Z boson.

The main problem of this model is then the unacceptably light tilde-fermion sector. We will
develop next an extension whose only purpose is precisely to achieve high masses for the tilde-
sector quarks, decoupling them from the low-energy spectrum. By the same token, the necessary
separation of ΛQCD and a larger confining scale will naturally follow.4 We will develop in detail
two realistic ultraviolet (UV) completions.

5.2 The realistic Color Unified Theory: SU(6)× SU(3′)

It is necessary to give large masses to the tilde-quark sector without giving masses to the SM
quarks, a challenging enterprise as explained above due to the SU(6) unification. An external
mechanism is ideal for this task. The color unified SU(6) group which contains QCD is enlarged
via an external non-abelian SU(3′) group with additional fermions charged only under the latter.

3Through tuned Yukawa couplings of the tilde-quark sector to an extended scalar sector.
4If SU(6) sufficed to obtain a realistic spectrum, the SU(3̃) group and Λ̃ scale of this section would correspond

to those of the axicolor group [202] as described in the introduction. The extension of the CUT group will break
this direct correspondence, although two confining groups will still be at play.
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SU(6) SU(3′) SU(3)c SU(3)diag SU(2)L U(1)Y

QL 2 1
qL 2 1 2 1

6

q̃L 1 2 2 1
6

U cL 2̄ 1
ucL 2̄ 1 1 −2

3

ũc
L 1 2̄ 1 −2

3

Dc
L 2̄ 1

dcL 2̄ 1 1 1
3

d̃c
L 1 2̄ 1 1

3

ΨL 20 1

ψL 2 2̄ 1 0

ψcL 2̄ 2 1 0

2× ψν 1 1 1 0

q′L 1 2̄ q′L 1 2̄ 2 −1
6

u′cL 1 2 u′cL 1 2 1 2
3

d′cL 1 2 d′cL 1 2 1 −1
3

∆ 2 2̄ − − − 1 0

Table 5.3: The matter content. The table on the left describes matter above the CUT scale, while
the one on the right gives the transformation properties under the gauge groups remaining after CUT
spontaneous breaking. The fermions in bold have masses comparable to ΛCUT and are integrated out
around the CUT scale. The quantum numbers under the EW gauge group correspond both to the
high-energy and low-energy fields.

In fact, all fermions in the theory will be charged under only one of the two groups, SU(6) or
SU(3′). ΨL will be thus taken to be a singlet of SU(3′) and the same applies to the multiplets
in Eq. (5.1.3) which contain the SM quarks. The two sectors are connected exclusively via a
new scalar ∆. QCD remains a subgroup of SU(6), whose θ-parameter is rotated away by the
massless ΨL fermion in Eq. (5.1.2). This type of auxiliary extension was suggested in Ref. [177]
to give high masses to exotic fermions in a different context. The field content of our model is
summarized in Table 5.3, in which all fermions except ΨL will become massive. It is easy to see
that the theory with this matter content is anomaly free. The scalar ∆ appearing in the table
belongs to the bifundamental of SU(6)× SU(3′), and its vev breaks color unification at a scale
ΛCUT, taken to be much larger than all SM scales,

SU(6)× SU(3′)
ΛCUT−−−→ SU(3)c × SU(3)diag . (5.2.1)

The fermion quantum numbers under the two resulting groups are also shown in Table 5.3.

A simple CUT-invariant Yukawa Lagrangian which connects the SU(6) and the auxiliary
SU(3′) extension reads

L 3 κq q′L∆∗QL + κu u
′c
L∆U cL + κd d

′c
L∆Dc

L + h.c. . (5.2.2)
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The CUT symmetry is spontaneously broken upon ∆ taking a vev of the order of the CUT
breaking scale ΛCUT

〈∆〉 = ΛCUT




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


 . (5.2.3)

This breaking generates a large mass for both the tilde- and prime-quark sectors, leaving massless
only the SM fermion components of the original fermionic fields:5

L 3 ΛCUT

{
κq q

′
Lq̃L + κu u

′c
Lũ

c
L + κd d

′c
Ld̃

c
L

}
+ h.c. . (5.2.4)

Unless otherwise stated, we will assume in what follows that all κi Yukawa couplings are O(1),
meaning all tilde and prime fermion masses are of order ΛCUT. Some tuning of the κi values
could be acceptable, though, as discussed further below.

The SM fermions get their masses through the usual SM Higgs doublet Φ, which in this model
is a singlet of SU(6)× SU(3′), 6

L 3 Y SM
u QLΦU cL + Y SM

d QLΦ̃Dc
L + h.c. , (5.2.5)

where Y SM
i denote the SM Yukawa couplings. Analogously, the most general Lagrangian

compatible with all symmetries discussed above allows us to write Yukawa couplings of the
Higgs field to the prime-sector fermions,

L 3 y′u q′LΦu′cL + y′d q
′
LΦ̃d′cL + h.c. . (5.2.6)

Eqs. (5.2.5) and (5.2.6) induce contributions to the tilde fermion masses which are quantitatively
irrelevant in comparison with those from Eq. (5.2.4). In addition, the couplings in Eq. (5.2.6)
will be absent for symmetry reasons in one of the models to be developed in this work (Model
II in Section 5.2.2).

Both SU(3)c and SU(3)diag can now remain unbroken and confine at two different scales, ΛQCD

and Λdiag, with Λdiag � ΛQCD. The task of achieving different values for the two confining scales
and getting rid of the tilde sector or any other dangerous exotic sector is thus accomplished.

Note that the Yukawa-type Lagrangian in Eq. (5.2.2) has an inherent global U(1) symmetry
under which only the prime fermions and the ∆ field would transform – a generalized Baryon
number symmetry in the prime sector, with charges

BN ′{∆, q′L, u′cL, d′cL} = {+1,+1,−1,−1} . (5.2.7)

5Note that we take 〈∆〉 to be real. The phases of the nonvanishing entries in Eq. (5.2.3) can all be made equal
by an SU(6)× SU(3′) transformation; the remaining phase can be removed by a transformation under the U(1)
defined in Eq. (5.2.7).

6In this notation taken from unified models the contraction of the spinor indices is implicit, more precisely the
first term would read QTLCΦUcL, where C = iγ2γ0 is the charge conjugation matrix.
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This symmetry is not chiral, thus not anomalous under SU(3′), and irrelevant to the strong
CP problem. An associated pGB 7 results after spontaneous breaking, albeit with its couplings
safely suppressed by the CUT scale and interacting only with the very heavy prime and tilde
sectors.8

Finally, the theory below ΛCUT contains phenomenologically interesting bound states formed
from the massless ψL,R fermions, to be studied below. The spectrum of free eigenstates below
the EW scale contains the usual SM spectrum, plus a harmless pGB and sterile neutrinos.

θ′ issue

The extension of the strong sector by the auxiliary external group SU(3′) brings a new θ′

parameter into the game:

L ⊃ θ6
α6

8π
G6G̃6 + θ′

α′

8π
G′G̃′ −→ (θ6 + θ′)

αdiag

8π
GdiagG̃diag + θ6

αc
8π
GcG̃c , (5.2.8)

where Gi denote gauge field strengths with tensorial indices omitted. Gc, G6, G′ and Gdiag

correspond respectively to the SM QCD gauge group, SU(6), SU(3′) and SU(3)diag. While the
rotation of the massless field Ψ was designed to reabsorb θ6 and ultimately θc, θ

′ may source
back a SM strong CP problem through the contamination to the visible sector via the ∆ scalar.

Indeed, at low energies the massless quark ψ transforms as a (3, 3̄), therefore the phase θ6

cannot be fully reabsorbed in the Lagrangian since the chiral rotation that removes the SU(3)c
θ-term generates a new contribution to the SU(3)diag topological term. Ref. [177] acknowledges
this issue (in the context of a different model which does not rely on massless fermions) and
leaves it unsolved hoping that some UV completion solves it. In what follows, we will determine
and exhaustively analyze two UV solutions, via the simple addition of either

• An extra massless fermion transforming only under SU(3′).

• A second bifundamental scalar field, which automatically endows PQ invariance to the
above extension procedure.

The first solution is more in line with the spirit of the present work, as all θ parameters inducing
a strong CP problem are made unphysical via massless fermions, and it is developed next.

7This symmetry is broken at loop level by SU(2)L sphalerons, in the same way that in the SM baryon number
current is anomalous. For our purposes this effect is negligible.

8As suggested in Ref. [179], this type of pGB could be entirely removed by gauging the U(1) group. There
is no real need to implement this procedure in our case, though, given the strongly suppressed couplings of this
pGB.
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SU(6) SU(3)′ SU(2)L U(1)Y SU(3)c SU(3)diag

χ 1 2 1 0 1 2

Table 5.4: The table shows on the left (right) the quantum numbers above (under) the CUT scale for
the massless χ quarks which absorbs θ′ in Model I.

5.2.1 Model I: Adding a massless fermion charged under SU(3′).

The θ′ parameter of the auxiliary SU(3′) gauge group can be made unphysical by the addition
of a massless fermion field χ that transforms as a fundamental of SU(3′) and is an EW and
SU(6) singlet. In other words, the field content for this solution is that previously shown in
Table 5.3 plus the massless fermion χ with quantum numbers shown in Table 5.4. Additional
composite bound states will result from χ, among them composite pseudoscalars with anomalous
couplings — dynamical axions — whose masses are discussed further below.

Running of the coupling constants.

The CUT breaking pattern in Eq. (5.2.1) imposes the following relations among the gauge
couplings

1

αdiag(µ)
=

1

α6(µ)
+

1

α′(µ)
, at µ = ΛCUT , (5.2.9)

with the constraint
αc(ΛCUT) = α6(ΛCUT), (5.2.10)

where αc, αdiag, α′ and α6 denote respectively the coupling strength of QCD, SU(3)diag, SU(3′)
and SU(6). As shown in Fig. 5.1, there is a discontinuity in the running of the coupling constants
at the CUT-breaking scale that allows α′ to have large values while reproducing the known QCD
running at low scales.9 Those α′ values will seed a source of large axion masses, as discussed in
Section 5.2.1 further below.

Although the relation in Eq. (5.2.9) imposes αdiag(ΛCUT) < αc(ΛCUT), the presence of the
SM qL, uR, and dR quarks at energies well below ΛCUT slows down the running of QCD with
respect to that of SU(3)diag. In this regime ψ and χ are the only fields left charged under
SU(3)diag (the q̃ sector generically decouples as their mass scale is set by ΛCUT, see Eq. (5.2.4)).
As a consequence, αdiag runs faster and thus the SU(3)diag group confines at a higher scale
than ΛQCD, see Fig. 5.1. This mechanism easily achieves the separation of the two confining
scales. We computed both the one- and two-loop running and the latter actually reinforces the

9 Fig. 5.1 assumes a zero χ mass. As will be shown in Sec 5.2.1, χ acquires an effective mass due to small-size
instanton effects. Threshold effects near mχ may alter the running. Even when these effects are large enough to
be noticeable, Fig. 5.1 still captures the qualitative behavior of the RG flow.
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Figure 5.1: Running of αQCD, αdiag, α6, and α′ in the model with the one extra SU(3′) fermion of
Table 5.4. The full matter content is given by both Tabs. 5.3 and 5.4. The inputs used are α′(ΛCUT) = 0.3
and ΛCUT = 3.3×1014 GeV for illustration, which results in Λdiag = 4 TeV (taken as a benchmark point).
The solid (dashed) lines correspond to the two (one) loop results.

pattern, as illustrated in the figure for the choice Λdiag = 4 TeV. Lower values of Λdiag are also
phenomenologically acceptable, see Section 5.3.1 below.

Confinement of SU(3)diag and pseudoscalar anomalous couplings to the confining
interactions

SU(3)c SU(3)diag

ψL 2 2̄

ψcL 2̄ 2

χL 1 2

χcL 1 2̄

Table 5.5: The massless quark sector charged under SU(3)diag remaining below the confining scale
Λdiag.

At the scale Λdiag, SU(3)diag confines and the remaining massless fermions will form massive
QCD-colored bound states.
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Assuming that both ψ and χ in Table 5.5 remain massless after SU(3)diag confinement, the
SU(3)diag Lagrangian exhibits, at the classical level and in the limit in which αc is switched off, a
global flavor symmetry U(4)L×U(4)R −→ U(4)V . 10 The chiral symmetry is then spontaneously
broken by the quark condensates 〈ψ̄LψR〉 and 〈χ̄LχR〉. This results in 16 (p)GBs,

16 = 8c + 3̄c + 3c + 1c + 1c , (5.2.11)

decomposed here in terms of their QCD charges. There is a QCD octet plus a singlet with
flavor content ψ̄ψ (3̄c × 3c = 8c + 1c). The two QCD triplets, 3c and 3̄c, correspond to the
combinations ψ̄χ and χ̄ψ. Finally, a color-singlet composite state is made out of χ̄χ. The
fourteen colored mesons in Eq. (5.2.11) acquire large masses induced by gluon loops that are
quadratically divergent and therefore sensitive to the cutoff scale Λdiag,11

m2(8c) ≈
9αc

4π
Λ2

diag , m2(3̄c) ≈ m2(3c) ≈
αc

π
Λ2

diag . (5.2.12)

The remaining two QCD singlets will be denoted here by η′ψ and η′χ and are shown next to be
dynamical axions. The associated currents are

jµψA = ψ̄γµγ5t9ψ ≡ fd ∂
µη′ψ , t9 =

1√
6
13×3 , (5.2.13)

jµχA = χ̄γµγ5χ ≡ fd ∂
µη′χ , (5.2.14)

where fd denotes the SU(3)diag pGB scale, with Λdiag ≤ 4πfd. These classically conserved
currents are broken at the quantum level by the SU(6) and SU(3′) instantons, and so the
currents are anomalous. The anomalous terms are

∂µj
µ
ψA

= −
√

6
α6

8π
G6G̃6 −→ −

√
6
αdiag

8π
GdiagG̃diag −

√
6
αc
8π
GcG̃c , (5.2.15)

∂µj
µ
χA

= −2
α′

8π
G′G̃′ −→ −2

αdiag

8π
GdiagG̃diag . (5.2.16)

These anomalous terms modify the classical equations of motion of the η′ψ and η′χ,

fd 2 η
′
ψ = −

√
6
α6

8π
G6G̃6 , (5.2.17)

fd 2 η
′
χ = −2

α′

8π
G′G̃′ , (5.2.18)

and give rise to an effective Lagrangian,

L ⊃ −α6

8π

√
6 η′ψ
fd

G6G̃6−
α′

8π

2 η′χ
fd

G′G̃′ −→ −αc
8π

√
6 η′ψ
fd

GcG̃c−
αdiag

8π

(
2
η′χ
fd

+
√

6
η′ψ
fd

)
GdiagG̃diag .

(5.2.19)

10 U(4)V remains unbroken and contains as a subgroup the SU(3)c QCD gauge group.
11 They contribute to the running of the QCD coupling constant, but given their high masses their impact is

unnoticeable.
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η′ψ and η′χ are thus two dynamical axions. It is to be stressed that the PQ scale in this model
is fd ∼ Λdiag for both axions and not the much larger ΛCUT scale. When the SM quarks are
taken into account, the η′QCD pseudoscalar meson is also present at energies below the QCD
confinement scale, and the effective Lagrangian of anomalous couplings reads

L ⊃ −αdiag

8π

(
2
η′χ
fd

+
√

6
η′ψ
fd

)
GdiagG̃diag −

αc
8π

(
2
η′QCD

fπ
+
√

6
η′ψ
fd

)
GcG̃c , (5.2.20)

where ΛQCD ≤ 4πfπ.

Veff =
E4

diag

2

(
2
η′χ
fd

+
√

6
η′ψ
fd

)2

+
E4

QCD

2

(
2
η′QCD

fπ
+
√

6
η′ψ
fd

)2

. (5.2.21)

The scale EQCD can be expressed in terms of QCD observables from the chiral effective
Lagrangian according to the results from Refs. [187, 361, 362] obtained in the large N limit.
In the two-quark approximation, EQCD reads

E4
QCD =

f2
ηm

2
η − f2

πm
2
π

4
' (202 MeV)4 ' Λ4

QCD , (5.2.22)

and Ediag is obtained by rescaling the previous value

E4
diag = E4

QCD

(
Λdiag

ΛQCD

)4

' Λ4
diag . (5.2.23)

As a consequence, the two instanton-induced scales ΛQCD and Λdiag provide a contribution to
the masses of the pseudoscalars which have anomalous couplings.

It follows that there are only two sources of mass (disregarding corrections from SM quark
masses) for three states coupling to anomalous currents: η′QCD, η′ψ and η′χ. In the absence of
supplementary mass sources, one axion would get a mass of order Λdiag while another one would
have remained almost massless, as often happens in models with dynamical axions. The model
would be simply an ultraviolet implementation of the invisible axion paradigm.

As we will see next, an additional and important instanton source of mass for the axions is
present, though, which lifts the light axion mass. In fact, depending on the model parameters,
the χ fermion mass itself may: i) still be lighter than Λdiag, in which case the above discussed
U(4) pattern of global symmetry holds; ii) alternatively, become more massive than Λdiag and
thus be decoupled from the spectrum above Λdiag. In the latter case, the approximate global
flavor symmetry of the SU(3)diag Lagrangian would instead be U(3)L × U(3)R −→ U(3)V ,
suggesting 9 (p)GBs,

9 = 8c + 1c . (5.2.24)

The mass of this QCD-colored octet pseudoscalar is as previously given in Eq. (5.2.12) above,
while the η′χ would then disappear from the spectrum at energies above Λdiag: the presence of
η′χ is to be then disregarded in Eqs. (5.2.14)-(5.2.21).
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The impact of small-size instantons on the dynamical axion mass

An additional and putatively large contribution to the axion mass(es) applies in the presence of a
spontaneously broken theory: the small-size instantons (SSI) of the theory at the breaking scale,
as pointed out long ago in Refs. [249,250,363] and very recently in Ref. [179]. SSI can induce a
large mass even for perturbative theories if the breaking scale is large enough to overcome the
exponential suppression of instanton effects. In our model, the instantons of the color-unified
theory in Eq. (5.2.1) near the ΛCUT scale provide automatically this third source of axion mass.
The SU(6) SSI can be neglected because of the smallness of α6 at ΛCUT (e.g. see Fig. 5.1) and
the analysis below will focus on the SU(3′) SSI contribution.

At the scales where we will compute the SSI effects, the SU(3′) gauge coupling is perturbative.
Therefore, for these instantons, the dilute gas approximation [130] gives a reliable estimate of
the effective potential for the pseudoscalars. This was not the case for the previous instanton
effects which, corresponding to the confinement scales, required the use of the effective chiral
Lagrangian to obtain the potential from QCD observables.

It is well known [113, 129, 130, 364] that, in the absence of fermions, the effective Lagrangian
that describes instanton configurations for a pure Yang-Mills theory SU(Nc) induces a scale
Λinst in the instanton potential given by

Λ4
inst =

∫
dρ

ρ5
D[α′(1/ρ)] , (5.2.25)

where ρ is the instanton size, D[α′] is the dimensionless instanton density,

D[α′(1/ρ)] = Cinst

(
2π

α′(1/ρ)

)2Nc

e−2π/α′(1/ρ) . (5.2.26)

The constant Cinst reads [365,366]

Cinst(Nc) =
4

π2

2−2Nce−c(1)−2(Nc−2)c(1/2)

(Nc − 2)! (Nc − 1)!
, (5.2.27)

and the function c(x) is defined in Ref. [113] such that c(1/2) = 0.145873 and c(1) = 0.443307.
For the SU(3′) instantons of our model Cinst = 0.0015.12 In order to compute the integral in
Eq. (5.2.25), the running of the coupling constant α′(µ) must be included. At one loop this
reads

2π

α′(µ)
= b ln

(
µ/ΛCUT

)
+

2π

α′CUT

, (5.2.28)

where α′CUT ≡ α′(ΛCUT) and b is the one-loop β-function coefficient. For the spontaneously
broken theory, only the SSI instantons with size ≤ 1/ΛCUT are relevant [367],

Λ4
SSI = Cinste

−2π/α′CUT

∫ 1/ΛCUT

0

dρ

ρ5
(ρΛCUT)b

(
−b ln (ρΛCUT) +

2π

α′(ΛCUT)

)6

. (5.2.29)

12This value differs from that used in Ref. [179] (Cinst = 0.1) that was taken directly from the original ’t Hooft’s
computation in Ref. [113], for which it was later shown [365] that the factor 2−2Nc was missing. See also Erratum
in Ref. [113].
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This has the form

Λ4
SSI = Cinst f(α′CUT, b) e

− 2π
α′

CUT Λ4
CUT , (5.2.30)

where f(α′, b) is given by

f(α′, b) =
16

α′6(b− 4)7

(
45α′6b6 + 90πα′5b5(b− 4) + 90π2α′4b4(b− 4)2

+60π3α′3b3(b− 4)3 + 30π4α′2b2(b− 4)4 + 12π5α′b(b− 4)5 + 4π6(b− 4)6
)
. (5.2.31)

For instance for the benchmark value α′CUT = 0.3, the value of SU(3′) SSI-induced scale in the
absence of fermions (for which b = 10) is

Λ4
SSI = 3.0× 10−5 Λ4

CUT . (5.2.32)

Nevertheless, the presence of fermions dramatically changes the value of this scale [129]. A
suppression factor appears, which results from the interplay of the instantons of the theory and
the fermionic spectrum. Moreover, an extra suppression stemming from the Euclidean action
of the scalar ∆ whose vev 〈∆〉 = ΛCUT breaks spontaneously the gauge group, e−2π2ρ2Λ2

CUT ,
needs to be included in the full computation (as it was explained in the context of constrained
instantons in Section 2.2.5). For the SU(3′) theory under consideration, the prime-fermion
Yukawa couplings are relevant.

Small-size instantons with small Yukawa couplings

The massless χ fermions may acquire an effective mass due to the instantons of SU(3)diag and
SU(3′) SSI, similar to the effective mass in QCD for a hypothetically massless SM up quark. In
this section, we assume the y′i couplings in Eq. (5.2.6) to be small, e.g O(0.2) for illustration.
This is a regime of moderate small-size instanton effects, in which the instanton-induced effective
χ mass is smaller than the confinement scale. As a consequence, a composite axion made out
of this fermion can be considered to be a pGB.13

The impact of the y′i Yukawa couplings is illustrated by the one-instanton “flower” contribution
in the left side of Fig. 5.2. The pure gauge results in Eq. (5.2.25) are now suppressed by three
factors: the χ chiral condensate, the scalar contribution to the Euclidean action and the y′i
dependence,

Λ4
SSI = −

∫
dρ

ρ5
D[α′(1/ρ)]

(
2

3
π2ρ3 〈χ̄χ〉

)
e−2π2ρ2Λ2

CUT
1

(4π)6

∏

i

y′ iu y
′ i
d . (5.2.33)

〈χ̄χ〉 is the order parameter controlling SU(3)diag chiral symmetry breaking and thus expected
to be 〈χ̄χ〉 ' −Λ3

diag. For ρ ≤ 1/ΛCUT, the product ρ3 〈χ̄χ〉 � 1 reduces the SSI-induced scale

13In Section 5.2.1, we will consider y′i couplings of O(1) which corresponds to the regime of large small-size
instanton effects, translating to a very heavy χ fermion which decouples from the spectrum well above the
confinement regime.
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Figure 5.2: Instanton contributions in Model I. The long dashed lines connecting the y′i q̄
′
LΦu′cL

interactions correspond to φ propagators, while the short dashed lines depict propagators of the ∆
scalar. For O(1) Yukawa couplings in the prime sector, the diagram to the left represents the leading
order contribution, whereas the one to the right is subdominant since it is further suppressed by the SM
Yukawa couplings.

by orders of magnitude, with

Λ4
SSI =

2π2

3
Cinst ΛbCUT Λ3

de
−2π/α′CUT

1

(4π)6

∏

i

y′ iu y
′ i
d ×

×
∫ 1/ΛCUT

0
dρ ρb−2

(
−b ln

(
ρΛCUT

)
+

2π

α′CUT

)6

e−2π2ρ2Λ2
CUT , (5.2.34)

where, in the presence of Nf Dirac fermions,

Cinst(Nf , Nc) =
4 · 2−2Ncec1/2(−2Nc+2Nf )

π2 (Nc − 2)!(Nc − 1)!
e−c1+4c1/2 . (5.2.35)

The integral in Eq. (5.2.34) can be computed exactly, although a good estimation follows from
the approximation

(
1 +
−b α′CUT

2π
ln (ρΛCUT)

)6

' 1 + 6
−b α′CUT

2π
ln (ρΛCUT) , (5.2.36)

which, dropping the scalar contribution, leads to the following parametric dependence on the
scales

Λ4
SSI '

π

96
Cinst Λ3

diag ΛCUT e
−2π/α′CUT

3b α′CUT + (b− 1)π

α′ 6CUT(b− 1)2

∏

i

y′uiy
′
di
. (5.2.37)
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For the benchmark α′CUT = 0.3, and substituting Nf = 7, b = 16/3, y′ui , y
′
di

= 0.2, this gives

Λ4
SSI ' 2.9× 10−14 Λ3

diag ΛCUT . (5.2.38)

The complete computation including fermions can be compared with the one in in Eq. (5.2.32):
a strong suppression by a factor of order (Λdiag/ΛCUT)3 is now present.

There is an additional contribution to the SSI scale independent of the the y′i couplings, but
suppressed by the χ chiral condensate, times the product of κi Yukawa coupling of the prime-
fermion sector in Eq. (5.2.2) and the product of SM Yukawa couplings. This contribution is
illustrated by the instanton “double flower” in the right side of Fig. 5.2, and given by

δΛ4
SSI = −

∫
dρ

ρ5
D[α′(1/ρ)]

(
2

3
π2ρ3 〈χ̄χ〉

)
1

(4π)18
e−2π2ρ2Λ2

CUT

∏

i

Y SM
ui Y SM

di
(κiq)

2κiuκ
i
d ,

(5.2.39)
where the power of the 4π factor results from the 6 SM Yukawa couplings and the 12 κ′i couplings
in the product. For ρ ≤ 1/ΛCUT, this contribution is well approximated by

δΛ4
SSI =

2

3

π2

(4π)18
CinstΛ

b
CUTe

− 2π
α′

CUT

∏

i

Y SM
ui Y SM

di
κi

2

q κ
i
uκ

i
d×

×
∫ 1/ΛCUT

0
dρ ρb−2

(
−b ln (ρΛCUT) +

2π

α′(ΛCUT)

)6

e−2π2ρ2Λ2
CUT . (5.2.40)

In summary, putting together the two instanton contributions discussed, the SSI scale is given
by

Λ4
SSI = −

∫
dρ

ρ5
D[α′(1/ρ)]

(
2

3
π2ρ3 〈χ̄χ〉

)
e−2π2ρ2Λ2

CUT ×

×





1

(4π)6

∏

i

y′ iu y
′ i
d +

1

(4π)18

∏

i

Y SM
ui Y SM

di
(κiq)

2κiuκ
i
d



 . (5.2.41)

Even with O(1) κi Yukawa couplings, the second term is strongly suppressed by the SM Yukawa
couplings. Overall, the size of the new scale ΛSSI is quite sensitive to the value of the SU(3′)
coupling constant at the CUT-breaking scale. Fig. 5.3 illustrates the η′χ axion mass induced by
the small size instantons. For the benchmark examples studied, ΛSSI significantly affects the
properties of the pseudoscalars. It provides an additional contribution to the effective potential
in Eq. (5.2.21) of the form

δVeff = −Λ4
SSI cos

(
2
η′χ
fd

)
. (5.2.42)

A mass is thus generated for the η′χ axion, given parametrically by

m2
η′χ
∼ 1.8× 10−11 Λdiag ΛCUT , (5.2.43)
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where the replacement Λdiag ' 4πfd has been used and the scalar contribution has been drooped.
The lighter axion may thus be as light as O(GeV). The other dynamical axion of the theory
has been shown to acquire a mass of order Λdiag, see Eq. (5.2.21). Both dynamical axions have
thus acquired masses far above the typical invisible axion regime, as a direct and unavoidable
consequence of the instanton potentials inherent to the theory.

How light can the axion that couples to SSI become?

The y′i values are very relevant for the size of SSI scale. Nevertheless, the mass spectrum and
thus the running of coupling constants is basically unaffected by them. Should the y′i couplings
be negligible, ΛSSI would be determined by the second term in Eq. (5.2.41). For vanishing y′i
values and generic κi couplings of O(1), the product of Y SM

i /4π factors in the second term
in Eq. (5.2.41) would suppress the η′χ axion mass to values of order keV. Such low masses are
excluded up to the GeV range [368] for axion scales not far from a TeV, as is the case here. The
allowed range is illustrated in Fig. 5.3.14

Solution to the strong CP problem

It is pertinent to briefly re-check the status of the strong CP problem after taking into account
the impact of the SSI of the spontaneously broken symmetry discussed above. Any new mass
term for the axions breaks the PQ symmetry and therefore perturbs the axion potential; it is then
important to verify that the vevs of the axions remain in the CP-conserving minimum, solving
the strong CP problem. Indeed, this is the case with our color-unified proposal as, according to
Eq. (5.2.8), the potential including θi dependencies explicitly reads at second order, for the case
discussed above in which both dynamical axions are present at the SU(3)diag confinement scale,

Veff =
Λ4

SSI

2

(
−2

η′χ
fd

+ θ̄′
)2

+
Λ4

diag

2

(
−2

η′χ
fd
−
√

6
η′ψ
fd

+ θ̄′ + θ̄6

)2

+
Λ4

QCD

2

(
−
√

6
η′ψ
fd

+ θ̄6

)2

.

(5.2.44)

For this potential, the minimum is CP-conserving:

〈
θ̄′ − 2

η′χ
fd

〉
= 0 ,

〈
θ̄6 −

√
6
η′ψ
fd

〉
= 0 , (5.2.45)

since all θi dependences cancel. A word of caution is pertinent as the exact dependence of the
potential on the phases of the different couplings in the Lagrangian which participate in fermion
mass generation (κi, Y

SM
i , y′i, . . . ) remains to be computed. Nevertheless, the two massless

fermions Ψ and χ guarantee that at energies above CUT the two parameters θ̄6 and θ̄′ are

14For higher axion masses there are also collider constraints [368]: dijet searches at the LHC provide bounds on
axions with ma > 1 TeV [369]. Thes searches can be extended to axion masses slightly below a TeV by searching
for dijet resonances accompanied by hard initial state radiation [370]. These bounds are weak, though, and only
apply in a small window of axion masses.
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unphysical. Below CUT, the spectrum of the theory is exclusively the SM one plus massless
fermions, and the EW SM contributions are known to be negligible [137], even if a mismatch
remained in spite of the low-energy presence of the massless quarks. An explicit computation of
the threshold effects is elaborate and it is left for future work. Note that without the presence
of the second PQ mechanism, that is, without the presence of the η′χ field and its vev, all θi in
Eq. (5.2.8) would not have been reabsorbed, while Eq. (5.2.45) demonstrates that its inclusion
does ensure a CP-conserving minimum.

It is very positive that in this model there is no contribution to the EW hierarchy problem
coming from axion physics. No potential connects the EW and axion scales: the PQ scale fa

15

is set by Λdiag and not ΛCUT, and all axions are dynamically generated. This is a feature that
our Model I shares with the original axicolor model, and in general with models of composite
dynamical axion(s). There remains instead the customary fine-tuning in spontaneously broken
unified theories, as ΛCUT and the EW scale are connected via the scalar potential, but the latter
does not communicate to our PQ mechanism.

The demonstrated possibility of lowering the PQ scale towards the electroweak one raises
the question of the compatibility of the setup presented here with attempts to solve the EW
hierarchy problem, e.g. via compositeness or supersymmetry. This is an interesting question
which deserves future work. One could probably build supersymmetric or techincolor version of
the models presented here. Nevertheless, the need to strongly separate the ΛCUT scale from the
EW scale is a non-trivial source of instability in the scalar potential.

Computation of the pseudoscalar mass matrix: η′χ, η′ψ, η′QCD and light spectrum

After the replacement of the pGBs with anomalous couplings by their physical excitations,
η′χ → 〈η′χ〉 + η′χ, η′ψ → 〈η′ψ〉 + η′ψ, the effective low-energy potential for the axions and the SM
η′QCD field is given at second order by (disregarding the effects of SM quark masses)

Veff =
Λ4

SSI

2

(
2
η′χ
fd

)2

+
Λ4

diag

2

(
2
η′χ
fd

+
√

6
η′ψ
fd

)2

+
Λ4

QCD

2

(
2
η′QCD

fπ
+
√

6
η′ψ
fd

)2

. (5.2.46)

Expanding to second order in the fields yields the following mass matrix:

M2
η′χ, η

′
ψ , η
′
QCD

=
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4
(Λ4
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d

2
√
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0

2
√

6
Λ4
d

f2
d

6

(
Λ4
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QCD
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f2
d

2
√
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Λ4

QCD
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0 2
√

6
Λ4

QCD

fπfd
4

Λ4
QCD

f2
π



. (5.2.47)

15 The PQ scale (usually denoted by fPQ) and fa differ by a model-dependent factor stemming from the relative
strength of the axion coupling to gluons. Here we disregard the distinction between fa and fPQ.
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Figure 5.3: Model I with small y′i Yukawa couplings. The η′χ axion mass induced by the SU(3′) small
size instantons at the scale ΛCUT is shown together with the smaller mass for the dynamical η′ψ axion
sourced by Λdiag instantons. The α′CUT values corresponding to solid lines are allowed, while those for
dashed lines correspond to excluded values, for which SU(3)diag would confine below 2.9 TeV, ruled out
by searches for scalar octets at LHC [371] (see Sec. 5.3.1).

Assuming the hierarchy of scales
Λ4
d

f2
d
� Λ4

SSI

f2
d
� Λ4

QCD

f2
π

(valid for certain regions of parameter

space, see Fig. 5.3), the three mass eigenvalues16 are

m2
η′ψ, phys

' 6
Λ4
d

f2
d

, m2
η′χ,phys

' 4
Λ4

SSI

f2
d

, m2
η′QCD phys

' 4
Λ4

QCD

f2
π

. (5.2.48)

As advertised, the usual QCD η′QCD phys remains as a light eigenstate, while one of the two
composite axions acquires a mass in the range GeV to tens of TeV. The other composite axion
will have a mass orders of magnitude larger and will be out of collider reach.

Low energy spectrum and observable effects

In addition to the dynamical axion with mass O (GeV) or larger, under a few TeV the spectrum
of the theory contains:

16The physical states correspond to the following combinations: η′ψ, phys ' 1/fd(2 η′χ +
√

6 η′ψ) and η′χ, phys '
1/fd(

√
6 η′χ − 2η′ψ).
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• The SM pseudoscalar meson η′QCD phys, plus the rest of the SM hadronic spectrum.

• The exotic QCD-colored “pions” — color octets and color triplets — whose masses are given
in Eq. (5.2.12) as m2 ∼ αcΛ

2
diag. With masses naturally lighter than the TeV scale, these

QCD-colored pions can be easily produced at the LHC.

• The two sterile fermions stemming from the 20- representation Ψ. They are basically
invisible as their interactions with the visible world are suppressed by ΛCUT, which is
much larger than Λdiag without any tuning.

• Possibly, a GB associated with generalized baryon number. This GB is harmless as its
interactions are suppressed by ΛCUT. It can also easily be made arbitrarily heavy by
gauging that global symmetry.

The very interesting phenomenological bounds and detection prospects for the exotic QCD-
colored mesons will be quite similar to those applying to the next model. The ensemble will
then be briefly developed in Section 5.3 further below. The same applies to the cosmological
consequences of the two color-unified UV completions developed in this work.

Small-size instantons with O(1) Yukawa couplings

If the Yukawa couplings in the prime sector y′ui , y
′
di

are O(1), the instanton-induced mass of
χ is larger than Λdiag. The mass of the bound state ηχ, phys will be then dominated by the χ
mass instead of the confinement scale. It is thus relevant to consider the instanton effects on
the constituent quarks (i.e. χ), as opposed to the discussion in the previous section in which the
instantons contributed directly to the mass of the bound state η′χ. As a consequence, the relevant
diagram (Fig. 5.4) generates an effective mass mχ for the χ quark induced by SSI instantons:

Leff = −mχχ̄χ , (5.2.49)

which can be computed using the dilute instanton gas approximation:

mχ =

∫
dρ

ρ5
D[α′(1/ρ)]

(2

3
π2ρ3

)
e−2π2ρ2Λ2

CUT
1

(4π)6

∏

i

y′ iu y
′ i
d ' 6.2× 10−12ΛCUT . (5.2.50)

For the benchmark values used for ΛCUT this indicates a mass of tens of TeV or above. As
expected, the mass of the χ thus lies well above the confinement scale Λd, and therefore the
mass of the η′χ will be dominated by the mass of its constituent fermion: mη′χ ∼ 2mχ The two
axion masses are represented in the Fig. 5.5, where the mass of the η′ψ is taken from Eq. (5.2.48)
and that of η′χ from Eq. (5.2.50). Both composite axions have masses typically above the TeV
regime and are out of present collider reach.
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Figure 5.4: Instanton contribution for the second scenario in Model I. It generates an effective mass for
the χ.

Figure 5.5: Axion masses for Model I, with Yukawa couplings y′i ∼ O(1). The slight kinks in the η′ψ
curves mark the χ threshold. The η′χ axion mass, dominated by the instanton effects on the constituent
quarks, is shown together with the mass for the dynamical η′ψ axion sourced by Λdiag instantons. The
α′CUT values corresponding to solid lines are allowed, while those for dashed lines correspond to excluded
values, for which SU(3)diag would confine below 2.9 TeV, ruled out by searches for scalar octets at
LHC [371] (see Sec. 5.3.1).



142 Chapter 5. Color Unified Dynamical Axion

Solution to the strong CP problem

Upon SU(3)diag confinement, only one massless fermion remains in the spectrum, ψ. Therefore,
the potential contains only one pseudoscalar meson that inherits a shift symmetry: η′ψ. This

does not invalidate the solution to the strong CP problem, since the other phase θ̄′ in Eq. (5.2.44)
is reabsorbed when the χ is integrated out of the spectrum. This is a consequence of the mass
of the χ being generated by instanton effects: the phase of this mass term will be exactly that
of the topological term, and it will be completely removed after integrating out the fermion.
After taking all instanton effects into account, the low energy potential for the dynamical axion
now reads:

Veff =
Λ4

diag

2

(
−
√

6
η′ψ
fd

+ θ̄6

)2

+
Λ4

QCD

2

(
−
√

6
η′ψ
fd

+ θ̄6

)2

, (5.2.51)

and the minimum is CP-conserving:

〈
θ̄6 −

√
6
η′ψ
fd

〉
= 0 , (5.2.52)

Low energy spectrum and observable effects

For most of the parameter space, the two dynamical axions η′ψ, phys and η′χ,phys are typically
heavier than the TeV scale and thus very difficult to observe at LHC. Otherwise, under a few
TeV the spectrum is the same as that itemized in Section 5.2.1, except that there are no color
triplet “axi-pions” because of the χ absence at the relevant energies, see Eq. (5.2.24). Therefore
only the color octet “axi-pion” can be searched for at the LHC.

5.2.2 Model II: Addition of a second ∆ scalar.

This solution to the θ′ problem is an alternative to extending the spectrum by a massless
fermion, discussed in the previous subsection. In this second model no extra fermion is added to
the SU(6)×SU(3′) Lagrangian, while a second ∆ field will be considered instead. The spectrum
is that in Table 5.3 albeit with the scalar line duplicated, ∆→ {∆1, ∆2}. This simple extension
allows the implementation of a PQ symmetry which reabsorbs the θ′ contribution to the strong
CP problem. The corresponding PQ symmetry is automatic if the terms in Eq. (5.2.6) are
omitted and Eq. (5.2.2) is replaced by

L 3 κq q′L∆∗1QL + κu u
′c
L∆2 U

c
L + κd d

′c
L∆2D

c
L + h.c. . (5.2.53)
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This Lagrangian is invariant under two independent abelian global symmetries; one of them is
anomalous with respect to SU(3′) and corresponds to the PQ charge assignment 17

PQ{∆1,∆2, q
′
L, u

′c
L, d

′c
L} = {+1,−1,+1,+1,+1} . (5.2.54)

The vevs of ∆1 and ∆2 generalize the CUT spontaneous breaking in Eq. (5.2.3) and at the
same time break spontaneously the PQ symmetry; therefore, this PQ scale coincides with the
CUT scale. This distinguishes model 2 from model I, as in the latter the PQ scale coincided
with Λdiag. A pGB —an elementary axion— is generated at this stage. The corresponding PQ
conserved current is given by

jµPQ =
[
q′Lγ

µq′L + u′cLγ
µu′cL + d′cLγ

µd′cL + i(∆1D
µ∆∗1 −∆2D

µ∆∗2 − h.c.)
]
. (5.2.55)

The ∆i fields are parameterized as

∆1 ≡
1√
2

(ρ1 + v∆1)eia1/v∆1 , ∆2 ≡
1√
2

(ρ2 + v∆2)eia2/v∆2 , (5.2.56)

where v∆1 and v∆2 denote respectively the ∆1 and ∆2 vevs, both of which we take to be real
for simplicity. Decoupling the heavy radial modes, the PQ current reads

jµPQ ⊃ v∆1∂
µa1 − v∆2∂

µa2 ≡ fa ∂µa , (5.2.57)

where the elementary axion field a(x) corresponds to the GB combination

a(x) =
1

fa
(v∆1a1(x)− v∆2a2(x)) , (5.2.58)

with
fa = ΛCUT =

√
v2

∆1
+ v2

∆2
. (5.2.59)

This classically exact PQ symmetry is broken at the quantum level by the SU(3′) anomaly,
which at lower energies translates into an anomalous current for the SU(3)diag gauge theory.

∂µj
µ
PQ =

α′

8π
N ′G′G̃′ −→ αdiag

8π
NdiagGdiagG̃diag , (5.2.60)

where N ′ and Ndiag are the group factors,

N ′ = Ndiag =
∑

LH−RH
Tr
[
T aPQ{tb, tc}

]
= 12 , (5.2.61)

and where T aPQ corresponds to the PQ generator and tb = λb

2 to the Gell-Mann matrices for the
SU(3) generators. The anomalous term modifies the classical equations of motion of the axion,

fa2a+ ∂µ(q′Lγ
µq′L) + ∂µ(u′cLγ

µu′cL) + ∂µ(d′cLγ
µd′cL) =

αdiag

8π
12GdiagG̃diag , (5.2.62)

17 The Lagrangian possesses another U(1) symmetry, namely the generalized baryon number symmetry defined
in Eq. (5.2.7), which is however non-anomalous under SU(3′). See footnotes 7 and 8 on the harmless consequences
of the non-anomalous global symmetry.
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SU(3)c SU(3)diag

ψL 2 2̄

ψL
c 2̄ 2

Table 5.6: The massless quark sector charged under SU(3)diag below ΛCUT in the model with an extra
scalar.
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Figure 5.6: Running of αQCD, αdiagonal, α6, and α′ in the model with one extra SU(6) scalar; the only
inputs assumed are α′CUT = 0.3 and ΛCUT = 4.1 × 1012 GeV for illustration, which results in Λdiag = 4
TeV (taken as a benchmark point). The solid (dashed) lines correspond to the two (one) loop results.

and gives rise to an effective Lagrangian,

L ⊃ 1

2
∂µa∂

µa+
1

fa
∂µa

(
q′Lγ

µq′L + u′cLγ
µu′cL + d′cLγ

µd′cL
)

+
αdiag

8π

12

fa
aGdiagG̃diag . (5.2.63)

The impact of the SSI of the spontaneously broken theory will again add further contributions,
inducing a putatively high mass for the elementary axion as discussed further below.

Running of the coupling constants

The matter content allows SU(3)diag to confine at higher scales than the QCD group SU(3)c as
in Model I. The separation of both scales is made even sharper in the Model II because αdiag runs
faster. In Model II, only one massless fermion charged under SU(3)diag is ever present under the
CUT scale (compare Tabs. 5.5 and 5.6). We have estimated both the one and two-loop running,
as illustrated in Fig. 5.6 for Λdiag = 4 TeV.
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Confinement of SU(3)diag and pseudoscalar anomalous couplings to the confining
interactions.

At the scale Λdiag the QCD coupling constant is small, and the SU(3)diag spectrum with only
one massless fermion in Table 5.6 has an approximate classical global symmetry U(3)L×U(3)R.
Upon chiral symmetry breaking U(3)L × U(3)R −→ U(3)V by the quark condensate 〈ψ̄LψR〉,
nine pGBs appear,

9 = 1c + 8c . (5.2.64)

The gauge QCD group SU(3)c is again a subgroup of U(3)V which remains unbroken. The octet
of pGBs colored under QCD will acquire large masses due to gluon loops, which at one-loop is
given by

m2(8c) ≈
9αc

4π
Λ2

diag . (5.2.65)

The QCD singlet 1c, denoted η′ψ, is a dynamical axion. Note that it has the same quark
composition as the η′ψ meson in Model I. The η′ψ couples to both the SU(3)diag and SU(3)c
anomalies,

jµψA = ψ̄γµγ5t9ψ ≡ fd ∂
µη′ψ , t9 =

1√
6
13×3, , (5.2.66)

resulting in a low-energy effective Lagrangian for this axion given by

Leff ⊂ −
√

6 η′ψ
fd

(
αs
8π

GcG̃c +
αdiag

8π
GdiagG̃diag

)
. (5.2.67)

In summary, this solution to the strong CP problem is a hybrid one with two axions: a heavy
dynamical axion η′ψ with mass of order Λdiag stemming from a PQ symmetry which reabsorbs the
original θSU(6) (and thus θQCD) parameter as in the previous section, and a second elementary
axion a resulting from solving the external SU(3′) sector à la PQWW [8,147,148]. Up to now,
only two sources of masses have been identified for the ensemble of three pseudoscalars with
anomalous couplings (η′QCD, η′ψ and a). We analyze next the SSI of this model which provide a
large source of axion mass for the elementary axion a.

Impact of small-size instantons on the dynamical axion mass

Small-size instantons of the spontaneously broken CUT

The analysis of SSI for Model II under discussion is simpler than that for Model I developed in
the previous subsection. No massless fermions charged under SU(3′) are present in Model II (in
contrast with Model I). Furthermore, PQ symmetry forbids here the y′i Yukawa couplings which
gave the dominant contribution in Model I. In consequence, the terms proportional to κi and
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Figure 5.7: Instanton contribution in Model II. The long dashed lines connecting the SM Yukawa
interactions correspond to φ propagators while the short dashed lines depict ∆1 or ∆2 propagators.

mediated by the ∆1 and ∆2 scalars and the Higgs field will dominate ΛSSI. This is illustrated
by the instanton “flower” in Fig. 5.7. It results in ΛSSI given by

Λ4
SSI = −

∫
dρ

ρ5
D[α′(1/ρ)] e−2π2ρ2Λ2

CUT
1

(4π)18

∏

i

Y SM
ui Y SM

di
(κiq)

2κiuκ
i
d , (5.2.68)

which can be written as

Λ4
SSI = CinstΛ

b
CUTe

− 2π
α′

CUT
1

(4π)18

∏
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ui Y SM
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κi

2
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uκ

i
d×

×
∫ 1/ΛCUT

0
dρ ρb−5

(
−b ln (ρΛCUT) +

2π

α′(ΛCUT)

)6

e−2π2ρ2Λ2
CUT , (5.2.69)

with b = 5 in this case. Here the approximation in Eq. (5.2.36) is no longer valid, and the result
corresponds to that of the pure Yang-Mills case (Eq. (5.2.30)) with the extra suppression factor
of the Yukawa couplings,

Λ4
SSI = Cinst f(α′CUT, b) e

− 2π
α′

CUT Λ4
CUT

1

(4π)18

∏

i

Y SM
ui Y SM

di
κi

2

q κ
i
uκ

i
d (5.2.70)
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where the function f(α′CUT, b) is defined in Eq. (5.2.31) and the scalar action factor can
be neglected since the major contribution stems from instanton with sizes smaller than
1/LambdaCUT.

This result translates into a new contribution to the instanton-induced effective potential of
the form

δVeff = −Λ4
SSI cos

(
12

a

fa

)
. (5.2.71)

Taking into account that in this model the elementary axion scale coincides with the CUT scale,
it follows that for α′CUT = 0.3 and with O(1) κi Yukawa couplings,

m2
a ∼ 3.7× 10−37Λ2

CUT . (5.2.72)

For the benchmark values used for ΛCUT, this implies an elementary axion mass in the range
10−5 eV - 10 GeV, see Fig. 5.8 for illustration. In summary, the dynamical axion has a mass
of order Λdiag and thus of a few TeV or above, while the elementary axion is light although
typically heavier than the usual invisible axion.

Solution to the strong CP problem

The minimum of the axion potential can be easily shown to remain CP-conserving after including
all contributions to the axion masses. Indeed, the θi dependence of the potential can be again
read off of Eq. (5.2.8),

Veff =
Λ′4SSI

2

(
12
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fa
+ θ̄′

)2

+
Λ4

d

2

(
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−
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6
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+ θ̄′ + θ̄6

)2

+
Λ4

QCD

2

(
−
√

6
η′ψ
fd

+ θ̄6

)2

,

(5.2.73)

for which the following bosonic vevs lead to a CP-conserving minimum,

〈
12

a

fa
+ θ̄′

〉
= 0 ,

〈
θ̄6 −

√
6
η′ψ
fd

〉
= 0 . (5.2.74)

After the replacement a→ 〈a〉+a, η′ψ → 〈η′ψ〉+η′ψ and introducing as well the QCD η′QCD field,
the effective low-energy potential for the physical mesons which couple to anomalous currents
is given at second order by

Veff =
Λ4

SSI

2
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d

2

(
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(
2
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√

6
η′ψ
fd

)2

. (5.2.75)

where all the CP violating phases have been relaxed to zero.
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Computation of the pseudoscalar mass matrix: a, η′ψ, η′QCD and light spectrum

Taking into account all contributions except the SM quark masses, the following mass matrix
results for the singlet pseudoscalars of the theory which couple to anomalous currents:

M2
a, η′ψ , η

′
QCD

=


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144
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2
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0 2
√

6
Λ4

QCD
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4
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Assuming the hierarchy of scales
Λ4
d

f2
d
� Λ4

QCD

f2
π
� Λ4

SSI
f2
a

, the resulting mass eigenvalues are

m2
aphys

' 144
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SSI

f2
a

, m2
η′ψ, phys

' 6
Λ4
d

f2
d

, m2
η′QCD phys

' 4
Λ4

QCD

f2
π

. (5.2.77)

In this model both the usual QCD η′ and the axion aphys remain as light eigenstates, while the
other eigenstate η′ψ, phys will have a mass generically above the TeV scale.

Apart from the axion, the lowest set of exotic states is an octet of exotic “pions” whose masses
are . TeV, see Eq. (5.2.65). A similar colored octet is present in Model I discussed in Sec. 5.2.1,
although Model I contains an additional set of color-triplet pseudoscalars in the case of small
y′i Yukawa couplings. In contrast, no color-triplet is ever expected here as the exotic classical
flavor symmetry is U(3)L × U(3)R, see Eq. (5.2.64), instead of the U(4)L × U(4)R symmetry of
Model I.

This Model II with an additional scalar may be less appealing than than Model I with an extra
massless fermions for two reasons: a) its axion sector contributes directly to the EW hierarchy
problem, as its elementary axion results from a scalar potential which a priori communicates
with the Higgs potential; b) it is a hybrid model with both one elementary and one dynamical
axion, while Model I is more aligned with the spirit of solving fully the strong CP problem via
massless fermions.

5.3 Phenomenological and cosmological limits on the lightest
exotic states

A common feature of the ultraviolet complete models constructed above is that the generic
spectrum under the EW scale includes, in addition to the SM spectrum, sterile fermions, in
contrast with usual axion models. An axion may also be present in this range depending on the
model parameters.
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Figure 5.8: Model with a second SU(6) scalar. The a axion mass induced by the SU(3′) small size
instantons at the scale ΛCUT is illustrated, together with the larger mass for the dynamical axion η′ψ
sourced by SU(3)diag instantons. Order one Yukawa couplings in the prime sector have been used in this
figure.The α′CUT values allowed correspond to the solid sectors of the lines, while dashed lines correspond
to excluded values, for which SU(3)diag would confine below 2.9 TeV, ruled out by searches for scalar
octets at LHC [371] (see Sec. 5.3.1).

5.3.1 Collider observable signals

A set of observable exotic states are expected to be the exotic SU(3)c-colored “pions” whose
masses may lie under the TeV scale. These resulted from the chiral symmetry breaking of the
confining group SU(3)diag. All models exhibit as a common characteristic QCD color-octet
meson bound states made out of their massless fermions, shown in Table 5.5 and Eq. (5.2.12)
for Model I and Table 5.6 and Eq. (5.2.65) for Model II. In addition, QCD color-triplet meson
bound states may be observable for Model I with small Yukawa couplings in the primed sector.

In this color-unified axion solution, the exotic fundamental fermions have no SM SU(2)×U(1)
charges. The heavy pions will be produced in colliders only via QCD interactions, e.g. gluon-
gluon couplings, through which they also presumably decay before they can hadronize to make
color neutral states. As they are colored, they do not mix with ordinary pions or other visible
matter.
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Color-octet pions from SU(3)diag confinement

The lightest scalar octets in Eqs. (5.2.12) and (5.2.65) are denoted by πd ≡ 8c. Their effective
coupling to QCD gluons can be written as

L ⊃ DµπdD
µπd +

3
√

3αs
8π

πad
fd
dabcG

b
µνG̃

cµν , (5.3.1)

where Dµ denotes the SU(3)c covariant derivative and dabc is the corresponding symmetric
group structure constant. The second term in Eq. (5.3.1) results at one-loop from the triangle
diagram with the fermions χ running in the loop. The color-octet exotic pions can thus be
either produced in pairs through the gluon-gluon-πd-πd coupling in the kinetic term, or singly
produced through their anomalous coupling to gluons. The kinetic term dominates the scalar
octet production channels, while the second term allows the πd decay, yielding a dijet final state.

Experimental limits on scalar octet pair production via the gluonic interactions in the kinetic
term can be inferred by recasting searches of sgluons. A recent search of sgluon pair production
by ATLAS using 36.7 fb−1 of

√
s = 13 TeV data [371], whose prediction was obtained from the

NLO computation in Ref. [372] for
√
s = 8 TeV (rescaled to 13 TeV according to Ref. [373]),

sets a bound on the octet scalar exotic pions given by

m(πd) & 770 GeV . (5.3.2)

From Eqs. (5.2.12) and (5.2.65), this translates into

Λdiag & 2.9 TeV . (5.3.3)

For Model I and in the particular case of small Yukawa couplings in the primed sector, an
alternative bound may be inferred from the limits on color-triplet scalars, which can be produced
via their color interactions. In the absence of couplings which mediate their decay (as the second
type of coupling in Eq. (5.3.1) is not possible for scalar triplets), they will bind with SM quarks
to form stable hadrons. This search is expected to result in a sensitivity similar to the one
above [374].

It is very interesting to pursue the experimental search for colored pseudoscalars and stable
exotic hadrons. Their detection would be a powerful indication of the dynamical solution to the
strong CP problem proposed here.

Dynamical axion and exotic fermions

The dynamical axion denoted above by η′ψ, phys with instanton-induced mass of order Λdiag,
Eqs. (5.2.48) and (5.2.77), can a priori be either pair-produced through the kinetic coupling or
singly produced through the dimension five anomalous operator. It would decay dominantly
to two back-to-back jets and can be searched for in dijet resonance searches. Its production,
however, may be suppressed by its high mass. For instance, for Λdiag ' 2.9 TeV, mη′ψ, phys

∼
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90 TeV, which is beyond the reach of present collider searches. The other mesons and baryons
resulting from the SU(3)diag confinement have masses in the TeV range and above; they would
lead to collider signatures similar to those for the exotic pseudo-goldstone bosons.

The axion coupled to SSI

In Model I, the second axion is also dynamical and it was denoted by η′χ, phys. Its mass can span
a large range, depending on the strength of the Yukawa couplings in the prime sector:

• For y′i couplings of O(1), this second axion becomes typically heavier than the TeV scale
and is thus out of LHC reach.

• For small y′i couplings (O(0.2) have been illustrated), an observable axion with mass in
the GeV-tens of TeV regime is realistic. Given the low PQ scale (fd, close to a TeV) lower
masses are excluded.

The second axion in Model II, denoted a and of elementary nature, is expected to be light
although heavier than the invisible axion, with a mass in the 10 eV - 10 GeV range for O(1)
Yukawa couplings in the prime-fermion sector. By lowering the values of the latter couplings,
it can even become as light as the usual invisible axion and with similar phenomenology, as its
associated axion scale is the color-unified scale, fa ∼ ΛCUT.

5.3.2 Cosmological and Gravitational aspects

We briefly discuss next the cosmological aspects of the models constructed above, as well as the
putative instability threat from gravitational non-perturbative effects.

Stable particles and cosmological structures

Stable particles with masses higher than about 105 GeV may lead to cosmological problems,
dominating the mass density and overclosing the universe [375]. This is often a problem in
previous models of composite axions because exotic stable baryons bound by the extra confining
force [202,376] are expected.

However, as pointed out in Refs. [240,376], if axicolor can be unified with a SM gauge group,
then the unified forces could mediate the decay of axihadrons into lighter states, and the model
would be cosmologically safe. The color unification of this work automatically employs this
mechanism. The heavy exotic hadrons decay to the sterile fermions ψν , which are part of the
CUT massless multiplet Ψ in Eq. (5.1.2) and Table 5.2. It remains to be determined whether
the lifetime for these CUT-induced decay channels is too large to avoid problems from stable
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exotic hadrons. If the decays are made to be fast enough, the resulting sterile fermions may
induce in turn other cosmological problems. This analysis is left to a future work.

A similar concern pertains to the domain walls which may arise due to the spontaneous
breaking of the discrete shift symmetry in the instanton potential, Eqs. (5.2.46) and (5.2.75).
The walls need to disappear before they dominate the matter density of the universe, or else
other mechanisms must be applied to solve the domain wall problem [201,227,377–379].

In any case, if the universe went through an inflation phase any relic previously present will
be wiped out. If the reheating temperature is lower than the PQ scales, meaning lower than
Λdiag here, neither the heavy stable particles nor any putative domain walls are produced again
after inflation, and the problems mentioned above are avoided altogether. We defer to a future
work the in-depth study of the cosmological aspects of Model I and Model II, with either high-
or low-scale inflation.

The question of gravitational quantum effects

Gravitational quantum corrections have been suggested to be relevant and dangerous for axion
models in which the PQ scale is not far from the Planck scale. In Model I, both PQ scales
correspond to Λdiag, which is much lower than the Planck scale, and no instability resulting
from gravitational quantum effects is at stake. In Model II instead, while the dynamical PQ
scale is analogously low, the second PQ symmetry is realized at the CUT scale and gravitational
quantum effects could be relevant.

It has often been argued that all global symmetries may be violated by non-perturbative
quantum gravitational effects, see for instance Refs. [225–229]. For instance, a black hole can eat
global charges and subsequently evaporate. Similar effects may exist with virtual black holes.
Another indication that gravity might not respect global symmetries comes from wormhole
physics [230–233]. The natural scale of violation in this case is the wormhole scale, usually
thought to be very near (within an order of magnitude or so) the Planck mass MPlanck.

For axion models with high PQ scales, such as the typical scale of invisible axion models
fa ∼ 109 − 1012 GeV, it has been argued that those non-perturbative quantum gravitational
effects could lead to extreme fine-tunings. The authors of Ref. [225–228] concentrated on the
simplest (and the most dangerous) hypothetical dimension five effective operator

g5
|Φ|4 (Φ + Φ∗)
MPlanck

, (5.3.4)

where g5 is a dimensionless coefficient and Φ would be a field whose vev breaks the PQ invariance.
This term threatens the standard invisible axion solutions to the strong CP problem, as it would
change the shape of the effective potential. The minimum moves unacceptably away from a CP-
conserving solution unless the coefficient is strongly fine-tuned, for instance g5 < 10−54 for fa ∼
1012 GeV. These potentially dangerous terms can be avoided if the global PQ symmetry arises
accidentally as a consequence of other gauge groups [239,241]. Nevertheless, the idea that gravity
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breaks all global symmetries is indeed an assumption — and sometimes an incorrect one — at
least at the Lagrangian level. 18 Furthermore, very recently the impact of non-perturbative
effects has been clarified and quantified in Ref. [234]. The effects may be extremely suppressed
by an exponential dependence on the gravitational instanton action, and be harmless even with
high axion scales. The demonstration relied on assuming that the spontaneous breaking of the
PQ symmetry is implemented through the vev of a scalar field, and thus it directly applies to
our Model II.19 In summary, Model I is safe from instabilities induced by gravitational quantum
corrections and plausibly this also applies to Model II.

5.4 Conclusions

Color unification with massless quarks has been proposed and developed here for the first time.
As a simple implementation of the idea, the SM color group has been embedded in SU(6), which
is spontaneously broken to QCD and a second confining and unbroken gauge group. An exactly
massless SU(6) fermion multiplet solves the strong CP problem. We have fully developed two
ultraviolet completions of the mechanism.

In order to implement this idea successfully, it is necessary to give satisfactorily high masses
to the SU(6) partners of the SM quarks to achieve a separation between the QCD scale and that
of the second confining group. For this purpose, an auxiliary SU(3′) gauge group is introduced
under which the aforementioned massless fermion is a singlet. SU(6) × SU(3′) → SU(3)c ×
SU(3)diag is a simple and realistic option. Both final groups remain unbroken and confine at
two different scales, ΛQCD and Λdiag, with Λdiag ∼ O(# TeV) � ΛQCD. The scale Λdiag then
gives the order of magnitude of the mass of the dynamical composite axion inherent to the color-
unified mechanism. Furthermore, massless (or almost massless) sterile fermions are a low-energy
trademark remnant of the massless multiplet that solves the SM strong CP problem.

In order to avoid the SU(3′) sector sourcing back an extra contribution to the strong CP
problem, a minimal extension of its matter sector suffices. Two examples of ultraviolet complete
models have been explored in this work: in Model I an extra SU(3′) massless fermion is added,
while Model II includes instead a second scalar with the same quantum numbers as the color-
unification breaking scalar. From the point of view of the strong CP problem, those two models
are very different. Model I features a second dynamical axion with a second PQ scale which is
also of order Λdiag and thus low. In Model II, this second PQ scale coincides instead with the
much larger color-unification scale, and the associated axion is elementary. We computed the
two-loop running of all coupling constants involved, showing that the desired separation of all
relevant scales is achieved naturally: a color-unification scale much larger than the two confining

18For example, orbifold compactifications of the heterotic string have discrete symmetries that prevent the
presence of some higher dimension operators, and this can strongly and safely suppress the dangerous effects
under discussion [238].

19 Although no explicit demonstration was given in that work for the case of dynamical breaking via condensates,
plausibly the result would also apply for models with dynamical axions and very high axion scales.
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ones, Λdiag and ΛQCD, and the subsequent separation of the last two. This separation of scales
is robust and stable over a wide range of parameter values.

We have found that regardless of the details of the ultraviolet implementation, generically
there are the three sources of anomalous currents: the instantons of the confining SU(3)c, the
instantons of the confining SU(3)diag, and finally the small-size instantons of the spontaneously
broken color-unified theory. There are thus three diverse sources of mass for the three
pseudoscalars in the theory which couple to anomalous currents: the QCD η′, the dynamical
axion inherent to color unification, and the second axion (either dynamical or elementary)
associated to the solution of the θ′ problem. These three bosons then acquire masses of order
ΛQCD, Λdiag and ΛSSI, respectively, and no standard invisible axion (coupling anomalously only
to QCD instantons) is left in the low-energy spectrum. This is generically a very interesting
mechanism from the point of view of solving the strong CP problem with heavy axions and
scales around a TeV. The mechanism allows a wide extension beyond the invisible axion range
of axion parameter space which solves the strong CP-problem. Typical axion masses are in the
TeV regime and above, although strictly speaking one of the axions can become as light as the
usual invisible axion.

With axion scales around the TeV, observable signals at colliders are expected, as well as other
rich phenomenology. Generically, the lightest exotic bound states are colored pseudoscalars
(QCD octets and in some cases also triplets in Model I, and only octets in Model II). We
have recast the results from present experimental searches for heavy colored mesons to infer
a 2.9 TeV bound on the confinement scale of the second confining group, SU(3)diag, which is
directly related in Model I to the axion scale.

Overall, Model I may be preferred as: i) it is exclusively based on solving the strong CP
problem dynamically via massless quarks; ii) from the point of view of naturalness it does not
require any fine-tuning to ensure the hierarchy between the PQ and the electroweak scales, as no
PQ field is involved in the scalar potential. In Model II instead, one PQ field participates in the
color-unification scalar potential, and furthermore this model is a hybrid dynamical-elementary
axion solution to the strong CP problem.

Model I is also unquestionably safe from the point of view of stability of the axion solution
with respect to non-perturbative effects of quantum gravity, as its PQ scales are Λdiag ∼ TeV.
Furthermore, recent advances suggest that the quantum gravity threat should not be considered
a risk even for Model II. The other issue of the cosmological impact of (quasi) stable heavy
exotic hadrons and of the (almost) massless sterile fermion remnants can be simply avoided by
introducing an inflation scale and reheating temperature lower than Λdiag. This last subject
deserves future detailed attention in particular in view of the dark matter puzzle.



CHAPTER

6 Automatic Peccei-Quinn
symmetry

In this Chapter, which is based on the publication in Ref. [2], the axicolor framework introduced
in Section 3.2 is approached in a novel way: to assume that the SU(Ñ) exotic confining gauge
sector is chiral. In a minimalistic approach, we require a fermion content such that:

• It confines and renders the theory free from gauge anomalies.

• The exotic fermion representations are chiral, so that fermionic mass terms are
automatically forbidden.

• Minimality in the specific matter content will be a guideline. Two (or more) different
axicolored fermions are present, with at least one of them being QCD colored as well.

In this class of set ups, at least two chiral U(1) symmetries emerge in the dynamical sector and
nullify the theta angles of the dynamical sector and the QCD sector. It can be checked that it is
not possible to obey the three requirements listed above for SU(3), SU(6) or SU(7), at least not
with just two exotic fermions in low-dimensional representations of the chiral confining group.
It is possible instead for SU(4); nevertheless, this theory would not render an improvement on
the gravitational issue, as argued in App. 6.A, and it will not be further developed.

We focus here on the case of chiral gauge SU(5), implemented via its lowest dimensional
fermion representations, 5̄ and 10, which together fulfill the conditions above. The SU(5)
confinement scale will be assumed to be much larger than that of QCD, Λ5 � ΛQCD. It will be
shown that a satisfactory U(1)PQ symmetry is an automatic consequence of the chiral realization
of the gauge group. Note that some models have been previously built for which PQ invariance
is accidental, that is, not imposed by hand [238–245]. Nevertheless, they all required extra
symmetries in addition to axicolor, either gauge or discrete ones. In contrast, axicolor SU(5)
will be shown to suffice because of its chiral character, rendering a particularly simple framework.



156 Chapter 6. Automatic Peccei-Quinn symmetry

Relevant aspects to be developed include on one side the identification of the exotic fermion
condensates, which in dynamical axion models are the only source of spontaneous symmetry
breaking, e.g. for exotic flavor and for the PQ symmetries. Another important question is the
impact of SU(5) gauge invariance on the possible non-perturbative gravitational couplings of
the theory.

The idea will be implemented in two alternative realizations, selected so as to achieve minimal
matter content. They will only differ in the QCD charges of the exotic 5̄ and 10 fermions present:
octets of QCD color in one model, while triplets in a second version.

6.1 The SU(5) chiral confining theory

We consider a chiral version of the axicolor model, with SU(5) as an extra confining group, and
one set of massless exotic fermions in its five and ten dimensional representations, ψ5̄ and ψ10

(the notation ψ5̄ ≡ 5̄, ψ10 ≡ 10 will be often used for convenience). Such a set cancels all SU(5)
gauge anomalies (as in SU(5) GUT models). The complete gauge group of nature would then
be

SU(5)× SU(3)c × SU(2)L × U(1) . (6.1.1)

An economic implementation is to assume the usual SM fields to be singlets under SU(5), while
the exotic chiral fermions in the ψ5̄ and ψ10 representations of SU(5) are singlets under the
electroweak SM gauge group.

SU(5) SU(3)c

ψ5̄ 5̄ R

ψ10 10 R

Table 6.1: Charges of exotic fermions under the confining gauge group SU(5)×SU(3)c. The left-handed
Weyl fermions ψ5̄ and ψ10 are massless and singlets of the SM electroweak gauge group. R denotes a
pseudoreal representation.

If the exotic fermions carry also QCD color, this theory solves the strong CP problem. Indeed,
the presence of (at least) two massless fermions ensures the existence of two distinct U(1)
chiral global symmetries, exact at the classical level but explicitly broken by quantum non-
perturbative effects. The θ-parameters corresponding to the two confining gauge groups become
thus unphysical via chiral rotations of those fermions. Furthermore, the chiral character of the
representations forbids fermionic mass terms and thus guarantees that those symmetries are
automatic, instead of imposed on a given Lagrangian as customary. Finally, the requirement
of a large confining scale Λ5 � ΛQCD leads to a realistic model, given the non-observation of a
spectrum of bound states composed of those massless exotic fermions.
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For simplicity, we will consider that the set {ψ5̄, ψ10} belongs to a (pseudo)real representation

R of color QCD, so as automatically cancel
[
SU(3)c

]3
anomalies, see Table 1. Later on we will

develop in detail two specific choices for R: the case of the fundamental of QCD with reducible
representation R = 3 + 3̄ in one case, and the adjoint R = 8 in the second case. In all cases,
all mixed gauge anomalies in the confining sector vanish by construction as well, because only
non-abelian SU(N) groups are present and the exotic fermions are electroweak singlets.

6.1.1 Global symmetries

At the scale Λ5, SU(5) confines and the massless fermions in Tab. 1 will form massive bound
states including QCD-colored ones. In the limit in which the QCD coupling constant αs is
neglected, the SU(5) gauge Lagrangian exhibits at the classical level a global flavor symmetry

U(n)5̄ × U(n)10 ↔ SU(n)5̄ × SU(n)10 × U(1)5̄ × U(1)10 , (6.1.2)

where n denotes the dimension of R, which plays the role of number of exotic flavors,

n = dim{R} . (6.1.3)

The two global U(1) symmetries correspond to independent rotations of the two massless fermion
representations. However, they are both broken at the quantum level by anomalous couplings
to the SU(5) and QCD field strengths. A generic combination of them will lead to the following
anomaly coefficients (see App. 6.B):

U(1)×
[
SU(5)

]2
: n×

(
Q5̄T (5̄) +Q10T (10)

)
=
n

2
(Q5̄ + 3Q10) , (6.1.4)

U(1)×
[
SU(3)c

]2
: T (R)×

(
5Q5̄ + 10Q10

)
. (6.1.5)

Here, Q5̄ and Q10 denote arbitrary U(1) charges for ψ5̄ and ψ10, respectively, and T ’s denote the
Dynkin indices of the corresponding representations. It follows from Eq. (6.1.4) that the charge
assignment

Q5̄ = −3 , Q10 = 1 , (6.1.6)

renders a combination of U(1)’s that is free from SU(5) anomaly. The SU(5) anomaly-free
combination is analogous to the B − L symmetry in usual SU(5) GUT’s. It will play the role
of the PQ symmetry in our model, since it is a classically exact symmetry that is only broken
by the QCD anomaly. A second combination will remain explicitly broken1 by quantum non-
perturbative effects of SU(5), so that the classical global symmetry in Eq. (6.1.2) reduces (for
αs = 0) to

SU(n)5̄ × SU(n)10 × U(1)PQ=B−L . (6.1.7)

The corresponding global charges of the exotic fermions are shown in Table 6.2.

1This can be for instance, the orthogonal combination corresponding to {Q5̄ = 1, Q10 = 3}, although any
combination different from that free from anomalous SU(5) couplings can play this role.
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SU(n)5̄ SU(n)10 U(1)B−L ≡ U(1)PQ

ψ5̄ 2 1 −3

ψ10 1 2 1

Table 6.2: Global chiral properties at the classical level, in the limit of vanishing αs.

Confinement versus chiral symmetry breaking

A first question is whether the confinement of the SU(5) gauge dynamics is accompanied by the
spontaneous breaking of the associated chiral global symmetries. Two alternative realizations
are possible:

• The global symmetries can be spontaneously broken via fermion condensates. As a result,
(almost) massless (pseudo)Goldstone bosons (pGBs) will be present in the low energy
theory.

• Conversely, they could remain unbroken and the spectrum of bound states would explicitly
reflect those global symmetries via multiplets of degenerate states. In particular, massless
baryons are then needed in order to fulfil the ‘t Hooft anomaly consistency conditions [95]
to match the anomalies of the high and low energy theories.

It can be shown that it is not possible to comply with the ’t Hooft consistency conditions for
the complete flavor group. That is, it is impossible to match the

[
SU(n)5̄

]3
and

[
SU(n)10

]3
anomalies before confinement –and thus in terms of quarks– with the anomalies after confinement
in terms of massless “baryons”. The demonstration can be found in App. 6.D. The confinement
of gauge SU(5) is thus necessarily accompanied by the spontaneous breaking of the chiral global
SU(n)5̄× SU(n)10 symmetry, and associated (pseudo)Goldstone bosons (pGBs) will be present
in the low-energy spectrum.

In contrast, for U(1)PQ it is possible to fulfil ’t Hooft anomaly conditions [380,381]. At high
energies and in terms of quarks, the spectrum in Tab. 6.2 contributes to the global anomalies as

[
U(1)PQ

]3
: n

(
5 (Q5̄)3 + 10 (Q10)3

)
= −125n , (6.1.8)

U(1)PQ ×
[
SU(3)c

]2
: N ≡ 2 (5Q5̄T (R) + 10Q10T (R)) = −10T (R) , (6.1.9)

U(1)PQ × [grav]2 : n (5Q5̄ + 10Q10) = −5n . (6.1.10)

where N denotes as customary the QCD anomaly factor. The low-energy spectrum admits in
turn a massless baryon composed by three fermions,

χ ≡ 10 5̄ 5̄ , (6.1.11)
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which has PQ charge Qχ = −5 and can belong to the R representation of SU(3)c. Its
contribution to the anomaly equations matches the anomalies at the quark level in Eqs. (6.1.8)
and (6.1.10):

[
U(1)PQ

]3
: nQ3

χ = −125n , (6.1.12)

U(1)PQ ×
[
SU(3)c

]2
: N ≡ 2Qχ T (R) = −10T (R) , (6.1.13)

U(1)PQ × [grav]2 : nQχ = −5n , (6.1.14)

In consequence, the chiral confining SU(5) theory would be a priori perfectly consistent
even if the U(1)PQ were to remain unbroken after confinement. Nevertheless, this is not
phenomenologically viable since (almost) massless QCD colored fermions are not observed in
nature (other than the light SM quarks).

To sum up, parts of the global symmetries in Eq. (6.1.7) with the field content in Table 6.2
need to be spontaneously broken by fermion condensates upon SU(5) confinement.

6.1.2 Fermion condensates: chiral-breaking versus PQ-breaking

It will be assumed that Λ5 settles the overall scale for all dynamical breaking mechanisms in the
SU(5) sector, which will take place through fermion condensates.

Chiral condensate

The lowest dimension fermionic condensate which is gauge invariant and breaks the non-abelian
chiral symmetries in Eq. (6.1.7) is a dimension six operator:

10 10 10 5̄ , (6.1.15)

with vacuum expectation value (VEV) and breaking pattern expected to obey

〈10 10 10 5̄〉 ∼ Λ6
5 =⇒ SU(n)5̄ × SU(n)10 −→ G ⊃ SU(3)c . (6.1.16)

On the right-hand side of this expression, it has been assumed that the QCD gauge group is
contained in the unbroken subgroup G of SU(n)5̄ × SU(n)10. This is possible as the product of
four R representations contains an SU(3) singlet since R is (pseudo)real. It should be noted that
the unbroken subgroup G which contains SU(3) is not necessarily aligned with the one which
contains SU(3)c for αs = 0. Once αs is turned on, on the other hand, the QCD interaction
forces the condensates to preserve color, which implies that only the QCD invariant condensates
will form (see also[240]).2

2In the thermal bath, for example, the QCD breaking vacua have higher energy density than the QCD
preserving one due to the thermal potential proportional proportional to m2

gluonT
2, where mgluon denotes the

gluon mass on the QCD breaking vacua.
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If R is an irreducible representation of SU(3)c, then the only part of the non-abelian chiral
symmetry in Eq. (6.1.16) that is expected to remain unbroken is SU(3)c. If R is reducible
instead, some U(1)’s can remain exact (see Sec. 6.2 where R = 3+ 3̄). Therefore, irrespective of
G, most generators of SU(n)5̄×SU(n)10 other than those of SU(3)c would be explicitly broken
by QCD interactions,

SU(n)5̄ × SU(n)10
〈10 10 10 5̄〉−−−−−−−→ G

αs 6=0−−−→ SU(3)c . (6.1.17)

In consequence, most of the pGBs associated to the broken generators of the non-abelian chiral
symmetry are necessarily colored under QCD. Their masses m are quadratically sensitive to
large scales via gluon loops and thus safely large,

m2(R) ∼ 3αs
4π

C(R) Λ2
5 , (6.1.18)

where C(R) is the quadratic Casimir of the QCD representation R to which a given pGB belongs,
T aRT

a
R = C(R)1.

The chiral condensate in Eq. (6.1.16) is U(1)PQ invariant, though, since its PQ charge is
vanishing. The spontaneous breaking of the PQ symmetry (which is phenomenologically the
only viable option as earlier explained) can only be achieved via higher dimensional fermionic
condensates.

PQ condensate

The lowest dimensional operator which is gauge invariant but has non-vanishing PQ-charge is

5̄ 5̄ 10 5̄ 5̄ 10 , (6.1.19)

which has mass dimension nine and PQ-charge -10. In order to achieve spontaneous U(1)PQ
symmetry breaking, we assume that this operator obtains a non-vanishing VEV,3

〈5̄ 5̄ 10 5̄ 5̄ 10〉 ∼ Λ9
5 , (6.1.20)

which is associated with the QCD axion as a composite field.

In summary, the combined action of the two condensates in Eqs. (6.1.16) and (6.1.20) induces
a breaking pattern of the global symmetries of the exotic SU(5) sector of the form

SU(n)5̄ × SU(n)10 × U(1)PQ
〈10 10 10 5̄〉−−−−−−−→ G× U(1)PQ

〈5̄ 5̄ 10 5̄ 5̄ 10〉−−−−−−−−→ G′
αs 6=0−−−→ SU(3)c .(6.1.21)

For later use, it is convenient to parametrize the field combination in Eq. (6.1.20) as

5̄ 5̄ 10 5̄ 5̄ 10 ∼ Λ9
5 e
−i 10 a/fPQ , (6.1.22)

3Its VEV also breaks the non-abelian chiral symmetry, but this effect should be subdominant with respect to
that of the lower dimension operator in Eq. (6.1.16).
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where the radial degrees of freedom are left implicit, a denotes the dynamical axion that
corresponds to the axial excitation of the operator, and the PQ charge of the condensate resulting
from Tab. 6.2 is explicitly shown. The PQ scale fPQ associated to the pGB nature of the axion
obeys

fPQ ∝ Λ5 . (6.1.23)

It should be noted that the PQ charges of the SU(5) invariant states are multiples of 5, and
hence, the PQ symmetry in the broken phase is realized by a shift of the axion given by

5a

fPQ
→ 5a

fPQ
+ α , α = [0, 2π) , (6.1.24)

see also App. 6.C.

6.1.3 The axion Lagrangian

In order to obtain the low-energy effective Lagrangian for the axion, the conservation of the
PQ current will be studied next. The current at high energies can be computed in terms of the
fundamental fermions by applying Noether’s formula:

jµPQ = Q5 ψ
†
5̄
σ̄µψ5̄ +Q10 ψ

†
10σ̄

µψ10 = −3ψ†
5̄
σ̄µψ5̄ + ψ†10σ̄

µψ10 = fPQ∂
µa . (6.1.25)

At energies below SU(5) confinement, the current can be expressed in terms of the composite
fermions (i.e. the composite baryons that will be generically denoted by χi) and the composite
scalar (the dynamical axion a),

jµPQ = fPQ∂
µa+

∑

i

Qχi (χ†i σ̄
µ χi) . (6.1.26)

This current is classically conserved but it has a QCD anomaly,

∂µj
µ
PQ = N

αs
8π

GG̃ . (6.1.27)

This ward identity is reproduced by the following effective Lagrangian:

Leff =
1

2
∂µa∂µa+

∂µa

fPQ

∑

i

Qχi (χ†i σ̄
µ χi) + N

αs
8π

a

fPQ
GG̃ , (6.1.28)

where the PQ symmetry is realized by the shift of the axion in Eq. (6.1.24) with χi’s kept
invariant.

Relation between fPQ and Λ5 in Näıve Dimensional Analysis

The effective Lagrangian obtained above can be rewritten in terms of a complex field satisfying
U U † = 1,

U = ei 5a/fPQ , (6.1.29)
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where the factor 5 is introduced to take into account that the physical domain of the axion field
is a/fPQ ∈ [0, 2π/5), as shown in App. 6.C. The result is

Leff =
1

2

(
fPQ

5

)2

∂µU∗∂µU − 5
∂µa

fPQ

(
χ† σ̄µ χ

)
+ . . . (6.1.30)

where the kinetic term is canonically normalized. In this equation, the sum over composite
baryons only shows explicitly the unique type of baryon made out of three fermions, which
happens to be the baryon χ with PQ charge Qχ = −5 defined in Eq. (6.1.11), albeit now being
massive.

Applying Näıve Dimensional Analysis (NDA) [382,382,383] to the Lagrangian in Eq. (6.1.30),
it follows that

Leff =

(
Λ5

4π

)2

∂µU∗∂µU +

(
4π

Λ5

)
∂µa

(
χ† σ̄µ χ

)
+ . . . (6.1.31)

leading to the identification

Λ5 '
4π fPQ

5
. (6.1.32)

Customarily, the axion scale fa is defined reabsorbing in it the QCD anomaly factor N ,

fa ≡
fPQ

N
. (6.1.33)

Coupling to gluons and Domain Walls

Because of the periodicity of the instanton potential, the anomalous coupling of the axion to
gluons breaks explicitily U(1)PQ to a discrete symmetry S(m),

S(m) : a −→ a+
2πm

N
fPQ, m ∈ Z . (6.1.34)

Nevertheless, not all S(m) transformations are nontrivial, as some of them are equivalent
via gauge transformations (see App. 6.C). The physical discrete symmetry corresponds to
the quotient Sphys = S/Z5, where Z5 is the center of the SU(5) group [220]. This implies
that the QCD potential has dim[Sphys] degenerate minima and therefore a number of domain
walls NDW = dim[Sphys] will be generated when the axion field takes a VEV, as this breaks
spontaneously the discrete symmetry,

NDW =
|N |
5
. (6.1.35)

Any theory with NDW > 1 has a domain wall problem: domain walls could dominate the energy
density of the universe and overclose it. It will be seen further below that in our theory indeed
NDW > 1, and in consequence a pre-inflationary PQ-transition will be assumed to avoid this issue
(see e.g. [384] and references therein). Besides, we also assume that the highest temperature
after inflation is lower than Λ5 to avoid the production of massive particles in the dynamical
sector, as some of them are stable due to the Z2 unbroken subgroup of the PQ symmetry, leading
to an unacceptably large relic density.
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6.1.4 Planck suppressed operators

It has been argued that quantum gravity may violate all global symmetries. In particular, Planck
suppressed operators which are not PQ invariant could be dangerous for axion solutions to the
strong CP problem, since they can unacceptably displace the minimum of the axion potential
from the CP conserving point.

Within our model, because of gauge invariance and chirality, the lowest dimensional operator
of this type has mass dimension nine, as previously argued: it is the operator in Eq. (6.1.20),
whose VEV breaks PQ spontaneously. This significantly strong Planck suppression suggest
that our model can be protected from those gravitational issues. This is to be contrasted
with the usual expectation in axion models which allow lower dimension effective operators of
gravitational origin, e.g. dimension five couplings as in Eq. (5.3.4).

The prefactors of the effective operator are relevant and they can be settled using NDA [382,
383], resulting in:

L��PQ = c
1

4π

1

M5
Pl

1

2! 4!
5̄ 5̄ 10 5̄ 5̄ 10 , (6.1.36)

at around the Planck scale. Here, c would be generically of order one and a combinatorial
factor due to the presence of identical fields has been explicitly included in the definition of the
operator.4 In order to quantify its impact on the location of the minimum of the axion potential,
it is necessary to express it in terms of the low-energy composite fields. NDA leads to

L��PQ = c
(4π)2

2! 4!

(
N

5

)9 f9
a

M5
Pl

e−i
10
N
a/fa + h.c. . (6.1.37)

The resulting axion potential, including as well the QCD contribution reads 5

V (a) = −m2
af

2
a cos

(
a

fa

)
− c (4π)2

4!

(
N

5

)9 f9
a

M5
Pl

cos

(
10

N

a

fa
+ δ

)
, (6.1.38)

where δ is the relative phase between the Planck-suppressed operator in Eq. (6.1.37) and the
QCD vacuum parameter. The displacement of the axion VEV with respect to the CP conserving
minimum is then given by

|∆θ̄eff | = |c sin(δ)| 2 (4π)2

4!

(
N

5

)8 f7
a

M5
Plm

2
a

, (6.1.39)

which is strongly constrained by the experimental limit on the neutron electric dipole moment
(EDM). For a given implementation of the SU(5) theory, this indicates an upper bound on
the fa value needed to avoid to fine-tune the coefficient of the gravitationally induced effective
operator.

4Consistently, this would correspond to a combinatorial factor of 1 in the corresponding Feynman rules.
5The QCD axion potential is approximated here by a cosine dependence, since we are only interested in the

displacement of the minimum where that approximation is perfectly valid. For the correct dependence using chiral
Lagrangians at NLO see Ref. [183].
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There is a certain degree of uncertainty when using power counting arguments in the present
context, though, which may change the prefactors significantly. As illustration, if fa is taken as
the PQ physics scale (instead of saturating it by Λ5 ∼ 4πfPQ/5 as in NDA), the operator in
Eq. (6.1.36) would translate into

L��PQ = c
1

2! 4!

f9
a

M5
Pl

e−i
10
N
a/fa + h.c. , (6.1.40)

instead of Eq. (6.1.37). The displacement induced on the effective QCD vacuum angle would then
be significantly smaller, depending on the value of the anomaly factor N in a given realization
of the chiral confining SU(5) theory.

We will apply next the analysis above to two examples of the confining chiral SU(5) theory,
which differ in the QCD charges of the exotic fermions {ψ5̄, ψ10}, corresponding respectively to
a reducible and irreducible QCD representation R. In the first model R = 3 + 3̄, while R = 8
will be assumed in the second model. While the former requires four exotic fermions (instead of
just two for the second option), its matter content is smaller in terms of number of degrees of
freedom.

Planck suppressed operators and neutrino masses

In addition to the dimension nine operator in Eq. (6.1.36), other operators with lower
dimensionality may be present, e.g.: 6

L��PQ = c
1

4π

1

M5
Pl

1

2!
5̄ 5̄ 10LΦ +

cν
MPl

(LΦ)2, (6.1.41)

where L and Φ denote the lepton and Higgs doublets, respectively. The combination of these
two operators breaks the PQ symmetry7, modifying the axion potential and thus displacing
θeff. However, for pseudo-Dirac neutrinos (where the size of the observed neutrino masses is
dominated by a Dirac Yukawa coupling), the impact of these operators is a negligible correction
to the coefficient of the dimension nine operator discussed above in Eq. (6.1.36). Nevertheless,
depending on the mechanism responsible for realistic neutrino masses, the presence of fields
beyond the SM ones may or may not allow for additional dangerous operators. For instance, for
the seesaw type I mechanism the following terms should be considered

L =
1

M3
Pl

(
5̄ 5̄ 10N

)
+MN cN + yνN LΦ , (6.1.42)

where N denotes a singlet fermion, M is the Majorana scale, and yν its Yukawa coupling.
The combination of the couplings present in Eq. (6.1.42) generates the dimension nine operator

6We thank the referee for pointing out this coupling.
7Because any global symmetry is expected to be broken by gravitational effects, B-L may not be an exact low

energy symmetry and a Planck suppressed Majorana contribution to neutrino masses may be present, although
numerically negligible.
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discussed above,

L ∝ 1

M2
Pl

1

M2
Pl

1

M

(
5̄ 5̄ 10 5̄ 5̄ 10

)
, (6.1.43)

albeit with a milder suppression by a factor MPl/M . In consequence, the gravity-induced

operator
(

5̄ 5̄ 10N
)

can be dangerous and result in a larger displacement of θ̄eff than that

considered in this work. A simple option to avoid this type of operators would be to gauge B-L
in the SM sector with three right-handed neutrinos. In this case, the gauged B-L symmetry
would be spontaneously broken the vev of a scalar field, leaving a residual gauge Z2 (under
which N and LΦ are odd) that forbids the two Planck-suppressed operators considered above,
see Eqs. (6.1.41-6.1.42).

6.2 Model I: color-triplet fermions

In the first model, the exotic {ψ5̄, ψ10} fermions appear in the fundamental representation of
QCD, alike to SM quarks, with

R = 3 + 3̄ , (6.2.1)

as shown in Table 6.3. The
[
SU(3)c

]3
anomalies are then automatically cancelled due to the

the four distinct SU(5) fermions present. The latter being massless, at the classical level this
spectrum has four independent U(1) global chiral symmetries. One combination is broken by
non-perturbative SU(5) effects, and three would remain unbroken for vanishing αs, one of them
being the PQ symmetry. The dimension of the (pseudo)real representation is then

n = 6 . (6.2.2)

As indicated in Eq. (6.1.7), the global chiral symmetries correspond to SU(6)5̄ × SU(6)10 ×
U(1)PQ for αs = 0, which is explicitly broken by QCD down to

SU(6)5̄ × SU(6)10 × U(1)PQ
αs 6=0−−−→ SU(3)c × U(1)V, 5̄ × U(1)V, 10 . (6.2.3)

That is, only QCD plus two global U(1) symmetries remain unbroken for αs 6= 0, while U(1)PQ
is broken by the non-perturbative QCD effects. The two surviving U(1) symmetries are the left-
over of the four classical U(1) symmetries associated to the four independent massless fermions
of this model (see Table 6.3), as two were explicitly broken by anomalous couplings at the
quantum level: respectively SU(5) and QCD interactions.

The question of whether the QCD group SU(3)c is indeed the surviving unbroken group
after chiral symmetry breaking, as indicated in Eqs. (6.1.16), (6.1.17) and (6.1.21), deserves
a specific discussion. To see this, let us note that an SO(6) subgroup of the global symmetry
SU(6)5̄×SU(6)10 satisfies the ’t Hooft anomaly consistency conditions. Besides, the condensates
〈10 10 10 5̄〉 and 〈5̄ 5̄ 10 5̄ 5̄ 10〉 can be SO(6) singlets. This means that the unbroken subgroup
G of the global symmetry SU(6)5̄ × SU(6)10 contains SO(6), i.e. G ⊃ SO(6).8 The SU(3)

8Our arguments do not depend on whether G = SO(6) or G ) SO(6), although we expect that G = SO(6).
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SU(5) SU(3)c U(1)PQ U(1)V, 5̄ U(1)V, 10

ψ(5̄,3) 5̄ 3 −3 1 0

ψ(5̄,3̄) 5̄ 3̄ −3 −1 0

ψ(10,3) 10 3 +1 0 1

ψ(10,3̄) 10 3̄ +1 0 −1

Table 6.3: Model I: charges of exotic fermions under the confining gauge group SU(5) × SU(3)c, the
PQ symmetry and the spontaneously broken global U(1) symmetries. The left-handed Weyl fermions ψ5̄

and ψ10 are massless and singlets of the SM electroweak gauge group; their QCD representation has been
indicated as an additional subscript.

subgroup of SO(6) is then obtained by identifying the vector representation of SO(6) to be 3+3̄.
Therefore, it is clear that an SU(3) global symmetry remains unbroken below the confinement
scale.

It should be noted that an SO(6) subgroup of SU(6)5̄ × SU(6)10 is not uniquely determined,
and hence, the unbroken SO(6) is not in general aligned to the one which contains SU(3)c
for αs = 0. However, it has been argued that, among the possible condensate channels, the
minimum of the potential corresponds to the one preserving QCD for αs 6= 0 [240]. Thus,
we find that it is most likely that the SU(5) dynamics with the non-vanishing chiral and PQ
condensates in Eqs. (6.1.16) and (6.1.20) preserves SU(3)c.

The U(1)V ,5̄ and U(1)V ,10 symmetries are generically broken by those condensates. In fact,
the chiral condensate in Eq. 6.1.16 breaks spontaneously U(1)5̄×U(1)10 down to a U(1), where
the number of positive and negative charges with respect to this U(1) is balanced at the QCD
preserving vacuum. The PQ condensate could also break this remaining U(1) if the quarks in the
condensates are all either in the 3 or in the 3̄ representation of QCD. Accordingly, the model
predicts one or two additional pGBs which obtain tiny masses from the higher dimensional
gravitational operators in Eq. (6.1.36). As those pGBs decouple from the thermal bath at a
temperature much higher than the weak scale, the contribution of each pGB to the effective
number of relativistic species is suppressed, i.e. ∆Neff ' 0.03, and hence the model is consistent
with the current constraint Neff = 2.99+0.34

−0.33 [21].

In this model, the PQ current in Eq. (6.1.25) takes the form

jµPQ =− 3ψ†
(5̄,3)

σ̄µψ(5̄,3) − 3ψ†
(5̄,3∗)

σ̄µψ(5̄,3∗) (6.2.4)

+ ψ†(10,3)σ̄
µψ(10,3) + ψ†(10,3∗)σ̄

µψ(10,3∗) = fPQ∂
µa . (6.2.5)

For fermions in the fundamental of QCD (T (3̄) = T (3) = 1/2), the QCD anomaly factor and
the domain wall number in Eqs. (6.1.10) and (6.1.35) are then, respectively,

N = −10 , NDW = 2 . (6.2.6)
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Figure 6.1: Displacement of the CP conserving minimum due to the presence of the Planck suppressed
operator, for |c sin(δ)| ∈ (0.001, 1)and assuming NDA. The regions excluded by the experimental limits
on the neutron EDM are depicted in blue, while future prospects are indicated by a dashed blue line. The
red band corresponds to the SN1987a bounds axion-nucleon couplings [262]. The fa values that suffice
to account for the full content of dark matter in the pre-inflationary scenario are depicted in green.

The resulting domain wall problem is avoided here by the assumption of pre-inflationary PQ
transition, as earlier explained.

Planck suppressed operators

For the value of N in Eq. (6.2.6), the displacement induced on the QCD θ̄ parameter by the
NDA estimation of the Planck suppressed operator in Eq. (6.1.37) is illustrated in Fig. 6.1 (left
panel). The figure also depicts the stringent constraint imposed by the experimental bound
on the neutron EDM [99], which for the most conservative estimates [385] translates into the
requirement

3 + 3̄ Model: fa . ( 4.5× 108 , 1× 109 ) GeV , for |c sin(δ)| ∈ (0.001, 1) . (6.2.7)

The softer constraint that follows if NDA is disregarded and substituted by the estimation
stemming from Eq. (6.1.40) is also depicted.9 The degree of tuning of the operator coefficient is
illustrated in Fig. 6.2 (left panel).

9The explicit breaking can be further suppressed if, for example, we assume supersymmetry with R-symmetry.
In such cases, fa in the preferred value for the DM relic density is also allowed, though we do not pursue such
possibilities further in this thesis.
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Figure 6.2: Allowed values for the Planck suppressed operator coefficient |c sin(δ)|, for axion dark matter
compatible with neutron EDM and SN1987a bounds.

Axion dark matter

In the misalignment mechanism, the relic axion abundance Ωa depends then on two variables:
the axion decay constant fa, and the initial misalignment angle θi = ai/fa. For |θi| � π it reads
[256]

Ωa h
2 = 0.35

(
θi

0.001

)2( fa
3× 1017GeV

)1.17

, (6.2.8)

where h is the present Hubble parameter. If axions were to explain the total relic dark matter
density ΩDM h2 ' 0.12 [21], the fa value required for an initial misalignment angle in the range
θi ∈ (0.1, 3) is

fa ' 2× 1010 − 5× 1012 GeV . (6.2.9)

However, for values of θi ∼ π, the anharmonicities of the QCD potential are important and fa
can be as low as [19,256,386]

fa ∼ 2× 109 GeV . (6.2.10)

These two estimations of the fa values that allow axions to constitute all the dark matter of
the universe have been depicted in Fig. 6.1 by green bands dubbed, respectively, “preferred”
and “correct” densities. The bounds on fa stemming from measurements of the neutrino burst
duration of SN1987a are depicted in red. 10

The lower fa value in Eq. (6.2.10) is about a factor of two too large to be compatible with
that required in Eq. (6.2.7) by the neutron EDM bounds. This option requires a fine-tuning of
the coefficient c of the Planck suppressed operator of O(10−7), to be compared with the typical
adjustment by 54 orders of magnitude in axion models with dimension five Planck-suppressed

10Assuming the fiducial density profile for the proto-neutron star in Ref. [262], the bound reads fa > 108 GeV.
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operators. Furthermore, for a misalignment angle close to π and low inflation scales, lower
values of fa are possible and the fine-tuning of c could be avoided altogether, even in this most
conservative case of the NDA estimate of the effect. Conversely, would the NDA prefactors be
disregarded, O(1) coefficients for the Planck suppressed operator are seen to be allowed in a
large fraction of the parameter space.

6.3 Model II: color-octet fermions

We consider here an alternative realization with only one {ψ5̄, ψ10} set of two fermions charged
under SU(5) and belonging to the adjoint representation of QCD, see Table 6.4. All gauge
anomalies cancel then automatically. This model is less economical than Model I, though, from
the point of view of the total number of exotic degrees of freedom.

SU(5) SU(3)c U(1)PQ

ψ5̄ 5̄ 8 −3

ψ10 10 8 +1

Table 6.4: Model II: charges of exotic fermions under the confining gauge group SU(5)×SU(3)c. Their
PQ charges are shown as well. The left-handed Weyl fermions ψ5̄ and ψ10 are massless and singlets of
the SM electroweak gauge group.

In the limit of vanishing αs the number of flavors of the SU(5) fermionic sector is

n = 8 , (6.3.1)

and thus the global chiral symmetries of the SU(5) Lagrangian correspond to

SU(8)5̄ × SU(8)10 × U(1)PQ
αs 6=0−−−→ SU(3)c . (6.3.2)

In consequence, in this model only QCD remains unbroken for αs 6= 0, and hence no light pNGs
appear associated with the spontaneous breaking of the non-abelian global symmetries.

To see whether the QCD gauge group remains ultimately unbroken, note that an SO(8)
subgroup of the global symmetry SU(8)5̄ × SU(8)10 satisfies the ’t Hooft anomaly consistency
conditions, while the condensates 〈10 10 10 5̄〉 and 〈5̄ 5̄ 10 5̄ 5̄ 10〉 can be SO(8) singlets. In
this case, we find that the unbroken subgroup G contains SO(8), i.e. G ⊃ SO(8). The SU(3)
subgroup of SO(8) is realized as the special maximal embedding where the vector representation
of SO(8) is identified with the octet of SU(3) (see e.g. [387]). Thus, it is again clear that an
SU(3) global symmetry remains unbroken below the confinement scale, with non-vanishing
〈10 10 10 5̄〉 and 〈5̄ 5̄ 10 5̄ 5̄ 10〉 condensates. Finally, the SO(8) symmetry is aligned with that
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containing SU(3)c once αs 6= 0 is taken into account. This shows that, also in this model, it is
most likely for the SU(5) dynamics to preserve SU(3)c.

For fermions in the adjoint of QCD (T (R) = 3), the QCD anomaly factor and the domain
wall number in Eqs. (6.1.10) and (6.1.35) are, respectively,

N = −30 , NDW = 6 . (6.3.3)

Planck suppressed operators

Fig. 6.1 (right panel) shows the displacement induced by the operator in Eq. (6.1.37) on the
QCD vacuum parameter, for the value of N expected from NDA, see Eq. (6.3.3), which implies
the requirement

8 Model: fa . ( 1.7× 108 , 3.7× 108 ) GeV , for |c sin(δ)| ∈ (0.001, 1) , (6.3.4)

to comply with the experimental bound on the neutron EDM. This constraint is stronger than
that for Model I for QCD-triplet exotic fermions, Eq. (6.2.7). A softer constraint if NDA was
disregarded in the estimation is also illustrated.

Axion dark matter

The comparison between Eq. (6.3.4) and the fa ranges in Eqs. (6.2.9) and (6.2.10) shows that
this model with exotic fermions in the adjoint of QCD is more in tension than model I, if axions
are to explain all the dark matter of the universe without recurring to fine tunings. Fig. 6.1
(right panel) illustrates this situation. For the NDA estimation of Planck suppressed couplings,
fa as required by dark matter is a factor of five too large with respect to the neutron EDM
constraint; this translates into the requirement of a O(10−10) fine-tuning of the coefficient c of
the Planck suppressed operator, as illustrated in Fig. 6.2 (right panel). Alternatively, the present
model could explain a subdominant fraction of the dark matter content.

A comparison without NDA power counting estimates is also illustrated: non-fine tuned
values of the coefficient c are then compatible with the axion accounting for the ensemble of
dark matter, while complying with EDM limits. Overall, the uncertainty on the estimations of
non-perturbative gravitational effects, and on the fa values required to account for dark matter,
is large enough to still consider this model as a candidate scenario for purely axionic dark matter.
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6.4 Conclusions

We have presented a novel composite axion theory that solves the strong CP problem and has
as singular features:

• A gauge confining symmetry which is chiral, unlike usual axicolor models which use
vectorial fermions. In consequence, the PQ symmetry is automatic, without any need
to invoke extra symmetries.

• Exotic SU(5) fermions in (pseudo)real representations of QCD.

• Inherent protection from dangerous quantum non-perturbative gravitational effects.

The gauge group selected and illustrated here is chiral SU(5) with two massless fermions in its
5̄ and 10 representations and a confining scale much higher than that of QCD. A new spectrum
of composite bound states is expected.

We showed that the ‘t Hooft anomaly conditions for the global symmetries of the exotic
fermionic sector imply that the non-abelian global symmetries must be spontaneously broken.
The global abelian symmetries, e.g. the PQ symmetry, must also be spontaneously broken for the
theory to be phenomenologically viable, resulting in a dynamical invisible axion. Furthermore,
the PQ invariance is the analogous of the B − L symmetry in SU(5) Grand Unified Theory
(GUT).

We have determined the fermionic operators with lowest dimension which may condense and
induce spontaneous breaking. Because of SU(5) gauge invariance, six is the minimal dimension
for the operator whose VEV may break the exotic flavor symmetries. An even higher dimensional
condensate is needed in order to break PQ invariance: the VEV of a dimension nine operator.
The latter is also the lowest dimensional effective operator which could result from gravitational
quantum contributions, breaking explicitly the PQ symmetry, as these effects must respect gauge
invariance. Its high dimensionality is at the heart of the inherent protection of this theory with
respect to the gravitational issue.

We have developed two complete ultraviolet completions of the chiral confining SU(5)
theory, which only differ in the (pseudo)real QCD representations chosen for the exotic
fermions: a reducible 3 + 3̄ representation for Model I, and the irreducible adjoint in model
II. The former is more economical in terms of the total number of degrees of freedom. Both
models are phenomenological viable and largely protected from quantum gravitational concerns.
Remarkably, in the case of exotic fermions in the fundamental of QCD, the fa range allowed if
axions are to explain the full dark matter content of the universe can be compatible with that
required to avoid a fine-tuned coefficient for the Planck suppressed operator. For octet-color
fermions the compatibility is marginal but still possible.

The basic novel idea of the construction is to use a chiral confining group, which provides
an automatic implementation of PQ invariance. The most economic avenue is to implement
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it via just two exotic fermions in (pseudo)real representations of QCD. In this perspective,
we have briefly explored other confining groups as well. For instance, a chiral and confining
gauge SU(4) symmetry would be a viable alternative, although it does not enjoy a sufficient
protection from gravitational issues, at least in the case of only two exotic fermions. Even the
smaller chiral confining SU(3) symmetry is possible, although the versions with only two exotic
fermions require very high-dimensional representations of the confining group and, again, they
are less protected from gravitational issues than the SU(5) case (see App. 6.A). Nevertheless,
as the estimation of gravitational effects is somehow uncertain, it may be pertinent to dedicate
specific studies to these alternative directions.
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Appendices

Appendix 6.A Alternative confining groups: SU(3) and SU(4)

SU(4) Model

It is also possible to construct a chiral axicolor model that fulfills the requirements explained in
the begining of the present Chapter with an SU(4) gauge group.

SU(4) SU(3)c U(1)PQ

ψ4̄ 4̄ 8 −3

ψ10 10 1 4

Table 6.A.1: Charges of exotic fermions under the confining gauge group SU(4) × SU(3)c. The left-
handed Weyl fermions ψ4̄ and ψ10 are massless and singlets of the SM electroweak gauge group.

It is easy to check that this theory is free from gauge anomalies 11 and that the global U(1)PQ
in Table 6.A.2 is exact at the classical level but explicitly broken by SU(3)c instantons, solving
therefore the strong CP problem à la Peccei-Quinn.

However we will not study this model further since it lacks special protection against PQ-
violating gravity operators. Indeed the lowest dimensional non-renormalizable operators that
break PQ and could be generated by quantum gravity effects are

LPlanck ∝
c

M2
Pl

1

4!
4̄ 4̄ 4̄ 4̄ +

c

M2
Pl

1

4!
10 10 10 10 , (6.A.1)

and would lead to unacceptable deviations from the CP-conserving minimum (barring a fine-
tuning of c by several tens of orders of magnitude) and thus spoil the solution of the strong CP
problem.

Alternative SU(4)

It is possible to implement the confining gauge SU(4) solution in a setup in which two exotic
fermions belong to the adjoint of QCD, by considering higher SU(4) representations, e.g. 3̄5
and 70 since A(3̄5) = −112 , A(70) = +112, see Table 6.A.2.

11
[
SU(4)

]3
anomaly: 8A(4̄) +A(10) = 0, since A(4̄) = −1, and A(10) = 8.
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SU(4) SU(3)c U(1)PQ

ψ3̄5 3̄5 8 −98

ψ70 70 8 56

Table 6.A.2: Charges of exotic fermions under the confining gauge group SU(4) × SU(3)c. The left-
handed Weyl fermions ψ3̄5 and ψ70 are massless and singlets of the SM electroweak gauge group.

SU(3) Model

The idea of using a chiral confining theory as solution to the strong CP problem can also be
implemented with a confining SU(3) gauge group, for instance via the fermionic content in
Table 6.A.3.

SU(3) SU(3)c U(1)PQ

ψ1̄5′ 1̄5′ R −119

ψ42 42 R 35

Table 6.A.3: Charges of exotic fermions under the confining gauge group SU(3) × SU(3)c. The left-
handed Weyl fermions ψ1̄5′ and ψ42 are massless and singlets of the SM electroweak gauge group.

This theory is anomaly free since A(1̄5′) = −A(42) = 77 and again the exotic fermions
transform as pseudoreal representations R of the QCD group. However, the theory is not as
protected against PQ breaking gravitational effect as the SU(5) case, since the corresponding
effective operators can appear at dimension six,

LPlanck ∝
c

M2
Pl

1

2!2!
1̄5′ 1̄5′ 42 42 , (6.A.2)

and in consequence we will not further elaborate on this model.
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Appendix 6.B Anomaly factors

In this appendix we review the group theoretical factors that are relevant when computing the
global or gauge anomalies in our theory. Let us consider a given conserved current jaµ that
corresponds to the symmetry associated to the generator T a. In the presence of the gauge field
Fb the divergence of the current reads,

∂µjaµ =
αi
8π
CabcgroupFb µνF̃

µν
c , (6.B.1)

where F̃µν = 1
2ε
µνσρFσρ, the fine structure constant of the corresponding gauge interaction is

denoted by αi =
g2
i

4π and the group theoretical factor Cgroup is given by

Cabcgroup =
∑

Tr
[
T a{tbR, tcR}

]
, (6.B.2)

where the sum runs over all fermionic representations R of the gauge group taR. Thoughout the
Chapter the fermionic degrees of freedom are expressed in terms of left-handed Weyl fermions.

This formula is used for three different cases, depending on whether the groups are abelian or
non-abelian and whether the anomaly is cubic or mixed.

• Non-abelian cubic anomalies:

[
SU(N)

]3
: Cabcgroup =

∑

R

Tr
[
taR{tbR, tcR}

]
≡ dabc

∑

R

A(R) , (6.B.3)

where A(R) denotes anomaly coefficient or triality of the representation R.

• Abelian cubic anomalies:

[
U(1)

]3
: Cgroup =

∑

R

Tr
[
QR{QR, QR}

]
= 2

∑

R

Q3
R , (6.B.4)

where QR denotes the U(1) charge of the corresponding fermion.

• Mixed anomalies:

[
SU(N)

]2 × U(1) : Cbcgroup =
∑

R

Tr
[
QR{tbR, tcR}

]
≡ δbc

∑

R

QR 2T (R) , (6.B.5)

where T (R) is the Dynkin index of the representation R.

These group theoretical factors are tabulated [388] and can also be computed with the
Mathematica package LieART [389].
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Appendix 6.C Axion field domain

Our definition of the PQ symmetry according to the charges in Tab. 1 corresponds to the
following transformations:

ψ10 −→ ei α ψ10 ,

ψ5̄ −→ e−3 i α ψ5̄ , (6.C.1)

where α is the rotation angle. However, the domain of α does not correspond to the full range
[0, 2π) since some of these rotations are equivalent due to gauge transformations. In particular,
the center of SU(5) is the discrete symmetry Z

[
SU(5)

]
= Z5, that corresponds to the following

gauge transformations:

ψ10 −→ e2π i k/5 ψ10 e
2π i k/5 = e4π i k/5ψ10 ,

ψ5̄ −→ e−2π i k/5 ψ5̄ , (6.C.2)

for k = {0, 1, 2, 3, 4}. It is easy to see now that a PQ transformation with angle α = 2π/5 is
gauge equivalent to α = 2π with k = 2. As a consequence, the axion transforms under PQ as

a

fPQ
−→ a

fPQ
+ α (6.C.3)

and its physical domain is
a

fPQ
∈ [0, 2π/5) . (6.C.4)
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Appendix 6.D ‘t Hooft anomaly matching: is SU(8)5̄ ×
SU(8)10 × U(1)PQ spontaneously broken?

aaa If the SU(5) group confines without breaking the chiral symmetries in Table 6.D.1, the
consistency of the theory implies the existence of massless baryons in the low energy that match
the global anomalies of the high-energy theory. However, for some theories these ‘t Hooft
anomaly matching conditions cannot be satisfied as a consequence of the properties of the
fermionic representations. It must be then concluded that these theories can only be realized
via spontaneous breaking of its chiral symmetries. This will be the case for the SU(8)5̄×SU(8)10

chiral symmetry of our SU(5) model.

SU(8)5̄ SU(8)10 U(1)PQ

ψ5̄ 2 1 −3

ψ10 1 2 1

Table 6.D.1: Global chiral properties at the classical level, in the limit of vanishing αs.

Let us first compute the global anomalies in the high energy theory (in terms of the
fundamental quarks ψ5̄ and ψ10):

[
SU(8)5̄

]3
: 5×A(2) = 5 , (6.D.1)

[
SU(8)10

]3
: 10×A(2) = 10 , (6.D.2)

U(1)PQ ×
[
SU(8)5̄

]2
: 5× 2T (2)Q5̄ = −15 , (6.D.3)

U(1)PQ ×
[
SU(8)10

]2
: 10× 2T (2)Q10 = 10 , (6.D.4)

[
U(1)PQ

]3
: 8

(
5 (Q5̄)3 + 10 (Q10)3

)
= −1000 . (6.D.5)

If chiral symmetries remain unbroken these anomalies will match those in the low energy
theory in terms of the bound states. The simplest SU(5) singlet that can be formed in this
theory consists of three fundamental quarks, χ ≡ 10 5̄ 5̄ . Can it match the previous anomalies?
The transformation properties of χ under the global symmetries are

SU(8)5̄ : 8× 8 = 28 + 36 , (6.D.6)

SU(8)10 : 8 , (6.D.7)

U(1)PQ : − 3− 3 + 1 = −5 . (6.D.8)

In consequence, there are two posible representations for the baryon χ under SU(8)5̄×SU(8)10×
U(1)PQ: (28,8,−5) and (36,8,−5). If the low energy contains a number n28 and n36 of baryons
transforming under each representation respectively, then the anomalies are given by

[
SU(8)5̄

]3
: 8

(
n28A(28) + n36A(36)

)
= 32(n28 + 3n36) , (6.D.9)
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[
SU(8)10

]3
: 28n28A(8) + 36n36A(8) = 4(7n28 + 9n36) , (6.D.10)

U(1)PQ ×
[
SU(8)5̄

]2
: 8Qχ

(
n28 2T (28) + n36 2T (36)

)
= −80(3n28 + 5n36) , (6.D.11)

U(1)PQ ×
[
SU(8)10

]2
: Qχ

(
28n28 2T (8) + 36n36 2T (8)

)
= −20(7n28 + 9n36) , (6.D.12)

[
U(1)PQ

]3
: 8 (28n28 + 36n36)

(
Qχ
)3

= −4000 (7n28 + 9n36) . (6.D.13)

It is easy to see that there is no way of matching these anomalies with n28, n36 ∈ N. If we would
alternatively consider 5-quark bound states, there are two options: 5̄ 5̄ 5̄ 5̄ 5̄ and 10 10 10 10 10.

For the first one, 5̄ 5̄ 5̄ 5̄ 5̄, the transformation properties are:

SU(8)5̄ : 8× 8× 8× 8× 8 = (56) + 4 (504) + (792) + 5 (1008) + 6 (1512
′
) (6.D.14)

+5 (1680) + 4 (1848) , (6.D.15)

SU(8)10 : 1 , (6.D.16)

U(1)PQ : 5 (−3) = −15 . (6.D.17)

For 10 10 10 10 10 the transformation properties are:

SU(8)5̄ : 1 , (6.D.18)

SU(8)10 : 8× 8× 8× 8× 8 = (56) + 4 (504) + (792) + 5 (1008) + 6 (1512
′
) (6.D.19)

+5 (1680) + 4 (1848) , (6.D.20)

U(1)PQ : 5 (+1) = +5 . (6.D.21)

Repeating the analogous exercise to that in Eqs. (6.D.9)-(6.D.13), and using the properties of
the representations of the 5-quark bound states in Table 6.D.2, it follows the same conclusion as
before: the chiral symmetry must necessarily be spontaneously broken due to the impossibility
of satisfying ‘t Hooft anomaly matching conditions.

R 2T (R) A(R)

56 13 −5

504 213 75

792 713 1287

1008 524 294

1680 1088 1066

1512
′

883 777

Table 6.D.2: Dynkin index T (R) and anomaly factor A(R) of the different representations of SU(8)5̄

that are contained in [8]
5
.

This does not mean, however, that the full SU(8)5̄ × SU(8)10 × U(1)PQ is completely
spontaneously broken. Some subgroup can remain unbroken. In particular, it is shown in
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the body of the Chapter that it is possible to leave unbroken the U(1)PQ with the baryon
in Eq. (6.1.11) satisfying the anomaly matching conditions. Nevertheless, this possibility is
phenomenologically excluded due to the absence of colored massless quarks in nature.



CHAPTER

7 Axion couplings to EW
gauge bosons

In this Chapter, which is based on the publication in Ref. [3], the axion couplings to EW gauge
bosons are studied in the simultaneous presence of the gluonic coupling.

The main phenomenological constraints for QCD axions are obtained from their couplings
to photons, gluons and fermions. Nevertheless, as has been commented in Section 3.2, in
specific QCD axion models the coupling to photons may be suppressed [166,167] and moreover
large uncertainties may hover over the purely hadronic constraints [390]. It is thus important
to analyze the axion couplings to other electroweak gauge bosons, as they may become the
phenomenologically dominant couplings in certain regions of the parameter space for those
models. Couplings of axions and also of ALPs to heavy gauge bosons are increasingly
explored [287–290, 368, 391, 392] in view of present and future collider data, and also in view of
rare meson decay data. For instance, in addition to LHC-related signals, recent works [291,393]
consider the one-loop impact of aWW couplings on rare meson decays.

Here we first determine the model-independent components of the coupling of QCD axions
with electroweak gauge bosons, which result from the mixing of the axion with the pseudoscalar
mesons of the SM. In other words, we determine the equivalent of the 1.92 factor in the photonic
coupling in Eq. (3.1.20) for the couplings of the axion to W and Z gauge bosons. A chiral
Lagrangian formulation will be used for this purpose, determining the leading-order effects. The
heavy electroweak gauge bosons will be introduced in that Lagrangian as external –classical–
sources. Our results should impact the analyses for light axions of theories which solve the
strong CP problem. They are novel and relevant in particular whenever the axion is lighter
than the QCD confining scale and is on-shell in either low-energy or high-energy experiments.
They also impact the comparison between the data taken at experiments at low and high-energy.
For instance, a null result in NA62 data for K → πa does not imply the absence of a signal at
high energy in an accelerator such as that from off-shell axions at LEP or at a collider. This
is because model-independent contributions are present at the low momenta dominant in rare
decays (and cancellations may then take place), while at high energies they are absent.
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As a second step, we will extend the analysis to heavy axions which solve the strong CP
problem. Axions much heavier than ΛQCD and with low axion scales are possible within
dynamical solutions to the strong CP problem, at the expense of enlarging the confining sector
of the Standard Model (SM) beyond QCD [4, 170–180]. These theories introduce a second and
large instanton-induced scale Λ′ � ΛQCD to which the axion also exhibits anomalous couplings,
resulting in the bulk of its large mass. Precisely because the axion mass typically lies well above
the MeV regime, these heavy axions avoid the stringent astrophysical and laboratory constraints
and present and future colliders may discover them. The transition between the light and heavy
axion regime will be explored for the coupling of the axion to the photon and to the electroweak
gauge bosons.

Finally, the phenomenological part of the analysis will be carried out on a “two-coupling-at-a-
time” basis: it will take into account the simultaneous presence of a given electroweak coupling
and the axion-gluon-gluon anomalous coupling (essential to solve the strong CP problem). For
the analysis of data, for the first time the experimentally excluded areas for the EW couplings
gaWW , gaZZ and gaγZ will be identified and depicted separately, besides the customary ones
for the gaγγ coupling. Furthermore, the relations among the exclusion regions stemming from
electroweak gauge invariance will be determined and exploited. Model predictions will be
illustrated over the experimental parameter space.

Aside from the main focus of the work on true axions, our analysis applies to and calls for a
timely extension of the ALP parameter space. Very interesting bounds on ALPs from LEP and
LHC [287–290, 368, 391, 392, 394, 395] assume often just one electroweak coupling for the axion,
and no gluonic coupling. The path to consider any two (or more) couplings at a time will change
the experimental perspective on ALPs.

What is the difference between a heavy axion and an ALP with both anomalous electroweak
and gluonic couplings? The key distinction is that the former stems from a solution to the
strong CP problem while a “gluonic ALP” may not. Both exhibit anomalous couplings to QCD
and in both cases there is an external source of mass besides that induced by QCD instantons
and mixing. However, for a true heavy axion that extra source of mass does not induce a
shift of the θ parameter outside the CP conserving minimum (and thus the solution to the
strong CP problem is preserved), while for a generic gluonic ALP such a shift may be induced.
Nevertheless, this important distinction is not directly relevant for this work, as the novel aspects
and phenomenological analysis developed below are valid for both true heavy axions which solve
the strong CP problem and for gluonic ALPs. To sum up, all results below for heavy axions
apply directly to gluonic ALPs as well. In addition, the conclusions based purely on EW gauge
invariance have an even larger reach: they hold for all type of axions and for generic ALPs (that
is, ALPs with or without gluonic couplings).
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7.1 The Lagrangian for the QCD axion

Without loss of generality, the axion couplings can be encoded in a model-independent way in
an effective Lagrangian. At leading order in inverse powers of the scale fPQ at which the global
PQ symmetry is broken, and at energies above the electroweak (EW) scale, it reads

Leff = LSM +
1

2
(∂µâ)(∂µâ) + δLa , (7.1.1)

where â denotes the axion eigenstate at energies well above the confinement scale and LSM is
the SM Lagrangian, see Eq. (1.1.1).

We will work in the basis in which the only PQ-breaking operators in the Lagrangian,
δL��PQa , are the anomalous couplings of axions to gauge bosons. This choice is allowed by the
reparametrization invariance of the effective axion Lagrangian (see Appendix 7.B). The CP-
conserving and PQ-violating next-to-leading order (NLO) corrections due to axion physics then
read 1

δL��PQa = N0 OG̃ + L0 OW̃ + P0 OB̃ , (7.1.2)

with OG̃, OW̃ and OB̃ denoting the anomalous axion couplings to gluons, SU(2)L and U(1)Y
gauge bosons, respectively,

OG̃ ≡ −αs
8π

GaµνG̃
aµν â

fPQ
, (7.1.3)

OW̃ ≡ −αW
8π

W a
µνW̃

aµν â

fPQ
, (7.1.4)

OB̃ ≡ −αB
8π

BµνB̃
µν â

fPQ
, (7.1.5)

where αs, αW and αB denote respectively the fine structure constants for the QCD, SU(2)L and
U(1) gauge interactions, and N0, P0 and L0 are dimensionless operator coefficients. Customarily,
the Lagrangian in Eq. (7.1.2) is rewritten as

δLa =
1

4
g0
agg â GG̃+

1

4
g0
aWW âWW̃ +

1

4
g0
aBB â BB̃ , (7.1.6)

where the Lorentz indices of the field strengths are implicit from now on and

g0
agg ≡ −

1

2πfPQ
αsN0 , g0

aWW ≡ −
1

2πfPQ
αW L0 , g0

aBB ≡ −
1

2πfPQ
αB P0 . (7.1.7)

The model-dependent group theoretical factors can be generically written in terms of the
fermionic PQ charges X i as

N0 =
∑

i=heavy

2X i T (R
SU(3)
i ) ,

1The derivative operators also present in the most general basis [186,289,396,397] are PQ invariant and thus
not shown.
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L0 =
∑

i=heavy

2XiT (R
SU(2)
i ) ,

P0 =
∑

i=heavy

2Xi Y 2
i , (7.1.8)

where Xi is the difference between the right-handed and left-handed PQ charges:2

Xi = XLi −XRi . (7.1.9)

In Eq. (7.1.8), T (R
SU(3)
i ) and T (R

SU(2)
i ) are respectively the Dynkin indices of the fermionic

representation Ri under QCD and SU(2)L, and Yi denotes the hypercharge. The sum over
“heavy” fermions and the subscript 0 indicate that the contribution to the anomalous couplings
from all exotic heavy quarks, and/or heavy SM quarks (s, c, b, and t quarks) if PQ charged, is
encoded in the N0, L0 and P0 operator coefficients. That is, the possible contribution of the
SM first generation up (u) and down (d) quarks is not included in those coefficients. Indeed,
for models in which they have PQ charges an additional PQ-invariant term must be considered,
replacing the u and d Yukawa couplings in Eq. (1.2.3) by:

δLPQa = −Q̄1L Yd Φ dR e
iXd â/fPQ − Q̄1L Yu Φ̃uR e

iXu â/fPQ + h.c. , (7.1.10)

which assumes as convention that the axion transforms under the PQ symmetry as a→ a+fPQ.
The Xu,d dependence in Eq. (7.1.10) will be shown below to generate extra contributions to the
physical anomalous couplings. In this equation Q1 denotes the first family doublet, and flavor-
mixing effects as well as leptonic couplings are omitted from now on for simplicity. In all
equations above, color and SU(2)L indices are implicit and the QCD θ angle has been removed
from the Lagrangian via the PQ symmetry.

Among the most general set of purely derivative operators, additional couplings could also be
considered, e.g.

δLPQa,deriv = −∂µâ
fPQ

(
Q̄L γµ c

Q
1 QL + ŪR γµ c

U
1 UR + D̄R γµ c

D
1 DR

)
, (7.1.11)

where cQ1 , cU1 and cD1 are matrices of arbitrary coefficients in flavor space. Nevertheless, the
reparametrization invariance of the Lagrangian [398] allows to work in a basis in which these
terms (which would seed pseudoscalar kinetic mixing) are absent and their impact is transferred
to other axionic couplings.3 From now on they will be disregarded all through the analysis
on pseudoscalar mixing. In summary, the Lagrangian to be analyzed below when considering
mixing effects reads

δLa = δL��PQa + δLPQa . (7.1.12)

2Obviously, only left-handed quarks may contribute to L0; in any case, it is always possible to work in a
convention in which only left-handed quarks are PQ charged.

3 In App. 7.B it will be explicitly shown that they do not have physical impact on mixing. Note that possible
flavor non-diagonal couplings are not considered.
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Below EW symmetry breaking and above confinement

After electroweak symmetry breaking but before QCD confinement, the effective Lagrangian in
Eq. (7.1.12) results in

δLa = − ūLmu uR e
iXu â/fPQ − d̄Lmd dR e

iXd â/fPQ + h.c.

+
1

4
g0
agg â GG̃+

1

4
g0
aγγ â F F̃ +

1

4
g0
aWW âWW̃ +

1

4
g0
aZZ â ZZ̃ +

1

4
g0
aγZ â F Z̃ , (7.1.13)

where

g0
agg = − 1

2πfPQ
αsN0 (7.1.14)

g0
aγγ = − 1

2πfPQ
αemE0 , (7.1.15)

g0
aWW = − 1

2πfPQ

αem

s2
w

L0 , (7.1.16)

g0
aZZ = − 1

2πfPQ

αem

s2
wc

2
w

Z0 , (7.1.17)

g0
aγZ = − 1

2πfPQ

αem

swcw
2R0 , (7.1.18)

In these equations sw and cw denote the sine and cosine of the Weinberg mixing angle and
αem = αW c

2
w = αBs

2
w.

For models in which the the first generation of SM quarks are not PQ charged, Xu,d = 0.
When those quarks are instead charged under PQ, their contribution to the anomalous gauge
couplings has to be included in the group theory factors, which are replaced by

N = N0 +Nu,d , E = E0 + Eu,d , L = L0 + Lu,d , (7.1.19)

Z = Z0 + Zu,d , R = R0 +Ru,d , (7.1.20)

as computed further below. In all cases, only two among the four parameters E, L, Z and R
are linearly independent, because of gauge invariance, see Eq. (7.1.2),

E ≡ L+ P , Z ≡ Lc4
w + Ps4

w , R ≡ Lc2
w − Ps2

w . (7.1.21)

A non-vanishing N is the trademark of axion models which solve the strong CP problem, while
the presence of the other couplings is model-dependent. It is customary to define the physical
axion scale fa from the strength of the gluonic coupling:

fa ≡
fPQ
N

. (7.1.22)
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7.1.1 The Lagrangian below the QCD confinement scale

Three pseudoscalars mix once quarks are confined: the axion, the SM singlet η0 and the neutral
pion π3. The π3-η0 mixing is due to the quark mass differences which break the global flavor
symmetry. At leading order in the chiral expansion and in the two quark approximation, the
mass Lagrangian for the pions and η0 reads

L ⊃ B0
f2
π

2
Tr
(
Σ M†q + Mq Σ†

)
, (7.1.23)

where B0 can be expressed in terms of the QCD quark condensate 〈q̄q〉 as B0f
2
π = −2〈q̄q〉, and

Mq denotes the quark mass matrix,

Mq =


mu 0

0 md


 . (7.1.24)

The matrix of pseudoscalar fields can be written as

Σ(x) = exp[i(2η0/(fπ
√

2) 1] exp[i Π/fπ] , (7.1.25)

where the η0 decay constant has been approximated by fπ and

Π ≡


 π3

√
2π+

√
2π− −π3


 . (7.1.26)

In the presence of the axion, the anomalous QCD current GG̃ couples to both the axion and
the η0 fields and mixes them. The two mixing sources combined result ultimately in an axion-
pion mixing. For simplicity, we will first consider the case with Xu,d = 0 in Eq. (7.1.10), and
afterwards the case Xu,d 6= 0.

SM light quarks not charged under PQ (Xu,d = 0)

A popular example of this class of models are KSVZ ones, in which only heavy exotic quarks
are charged under PQ. For any model in which the u and d SM quarks are singlets of the PQ
symmetry, their quark mass matrix in the basis here considered is that in Eq. (7.1.24). In this
case N = N0, as all contributions to the anomalous gluonic coupling are already included in
N0. The potential for the three pseudoscalars is, at first order in the pseudoscalar masses,

V = −B0f
2
π

[
mu cos

(
π3

fπ
+
η0

fπ

)
+md cos

(
π3

fπ
− η0

fπ

)]
+

1

2
K

(
2
η0

fπ
+

a

fa

)2

, (7.1.27)
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where the last term stems from the instanton potential with K ∼ Λ4
QCD [187–189]. The resulting

mass matrix for the three neutral pseudoscalars is given by

M2
{π3, η0,a} =




B0 (mu +md) B0 (mu −md) 0

B0 (mu −md) 4K/fπ +B0(mu +md) 2K/(fπfa)

0 2K/(fπfa) K/f2
a


 . (7.1.28)

The diagonalization leads to the well-known expressions for the pseudoscalar mass terms:

m2
π ' B0 (mu +md), m2

η′ '
4K

f2
π

+B0 (mu +md), m2
a '

f2
πm

2
π

f2
a

mumd

(mu +md)2
. (7.1.29)

It follows from these expressions that K can be expressed in terms of the low-energy physical
parameters as

K ' 1

4
(m2

η −m2
π) f2

π . (7.1.30)

The corresponding mixing matrix is given by



1 f(md−mu)
2fa(md+mu)

f
2fa

− f(md−mu)
2fa(md+mu) 1 − m2

π

m2
η′

(md−mu)
(md+mu)

− f
2fa

m2
π

m2
η′

(md−mu)
(md+mu) 1



, (7.1.31)

or, equivalently, the mass eigenstates are given by

a ' â+ θaπ π3 + θaη′ η0 , (7.1.32)

π0 ' π3 + θπ a a+ θπη′ η0 , (7.1.33)

η′ ' η0 + θη′ a a+ θη′ π π3 . (7.1.34)

Here, all the mixing angles are assumed small and

θaπ ' −
fπ
2fa

md −mu

mu +md
, θaη′ ' −

fπ
2fa

, θπη′ '
m2
π

m2
η′

(md −mu)

(md +mu)
, (7.1.35)

θπ a ' −θaπ , θη′ a ' −θaη′ , θη′ π ' −θπη′ . (7.1.36)

Only the leading terms for each mixing entry have been kept in Eqs. (7.1.31)-(7.1.36). The
impact of the extra terms in 1/fa and in quark masses, that is, O(m2

π/m
2
η), may be comparable

to that of next-to-leading operators in the chiral expansion and will thus not be retained here.

The results in Eqs. (7.1.32)-(7.1.36) illustrate that the physical low-energy axion eigenstate
acquires π3 and η0 components and thus inherits their couplings to all gauge bosons, weighted
down by their mixing with the axion. These results apply to any physical process in which the
axion is on-shell and the axion mass is lighter than the confinement scale.

We are interested in identifying the model-independent contributions in the coupling to the
electroweak gauge bosons for light axions and for the SM light pseudoscalars. We will first
recover in our basis the customary axion-photon couplings, to set the framework.
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Axion-photon coupling

The physical gaγγ is given by

gaγγ = g0
aγγ + θaπ gπγγ + θaη′ gη′γγ , (7.1.37)

where the last two terms are the contributions induced by the model-independent axion-pion
and axion-η′ QCD mixing. Denoting by qu and qd the electric charges of the up and down
quarks, respectively, the photonic couplings of the SM light pseudoscalars are given by

gπγγ ≡ −
3α

π fπ

(
q2
u − q2

d

)
, gη′γγ ≡ −

3α

π fπ

(
q2
u + q2

d

)
. (7.1.38)

For the present case with Xu,d = 0, that is E0 = E and N0 = N , it follows that

gaγγ = g0
aγγ +

α

2πfa

(
6
q2
dmu + q2

umd

mu +md

)
, (7.1.39)

resulting in the well-known expression

gaγγ = − α

2πfa

(
E

N
− 2

3

mu + 4md

mu +md

)
, (7.1.40)

which is valid to first order in chiral perturbation theory.

SM light quarks charged under PQ (Xu,d 6= 0)

The quark mass matrix in Eq. (7.1.23) is to be replaced by

Mq =


mu 0

0 md




e

iXu â/fPQ 0

0 eiXd â/fPQ


 . (7.1.41)

The potential in Eq. (7.1.27) is now generalized to

V = −B0f
2
π


mu cos

(
π3

fπ
+
η0

fπ
− Xu

â

fPQ

)
+md cos

(
π3

fπ
− η0

fπ
− Xd

â

fPQ

)


+
1

2
K

[
2
η0

fπ
+ N0

â

fPQ

]2

, (7.1.42)

resulting in a pseudoscalar squared mass matrix M2
{π3, η0,a} which takes the form

M2
{π3, η0,a}

=


B0 (mu+md) B0 (mu−md) −B0

fπ
fPQ

(
mu Xu−md Xd

)

B0 (mu−md) 4K
fπ

+B0(mu+md)
2N0K
fπfPQ

+B0
fπ
fPQ

(
mu Xu+md Xd

)

−B0
fπ
fPQ

(
mu Xu−md Xd

)
2N0K
fπfPQ

+B0
fπ
fPQ

(
mu Xu+md Xd

)
N2

0 K

f2
PQ

+B0
f2
π

f2
PQ

(
mu X 2

u +md X 2
d

)


.

(7.1.43)
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The mixing angles in Eqs. (7.1.35)-(7.1.36) still hold but for the pion-axion mixing which is now
given by 4

θaπ ' −
fπ

2fPQ

(
Xd −Xu +

(
N0 + Xd + Xu

)md −mu

mu +md

)
. (7.1.44)

The coefficient in front of the mass-dependent term in this equation coincides with the strength
of the physical gluonic couplings,5 given by

N =
(
N0 + Xd + Xu

)
, (7.1.45)

and in consequence

θaπ ' −
fπ

2Nfa

(
Xd −Xu +N

md −mu

mu +md

)
. (7.1.46)

The expressions for the mass of the physical pion, η′ and axion are the same than those in
Eq. (7.1.29).

Axion-photon coupling

For the case in which the up and down quarks are charged under PQ, Xu,d 6= 0, N is given by
Eq. (7.1.45) resulting in

gaγγ = g0
aγγ −

α

2πfa

(
Eu, d
N
− 2

3

mu + 4md

mu +md

)
, (7.1.47)

where
Eu, d = 6Xu q2

u + 6Xd q2
d . (7.1.48)

In consequence

gaγγ = − α

2πfa

(
E0

N
+
Eu, d
N
− 2

3

mu + 4md

mu +md

)
= − α

2πfa

(
E

N
− 2

3

mu + 4md

mu +md

)
. (7.1.49)

In summary, the most general mass matrix leads to the same expression than for the case
Xu,d = 0 in Eq. (7.1.54) if taking into account in E also the contribution of the up and down
quarks.

4This expression for the axion-pion mixing agrees with the result of Ref. [390] for the case where the only PQ
charged fermions are the up and down quarks, i.e. N0 = 0.

5As expected from the triangle diagram, all fermions (including the up and down quarks) run in the loop and
contribute to N = N0 +

∑
u, d 2X T (R) = N0 + Xd + Xu.
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7.1.2 Axion couplings to EW gauge bosons

The description in terms of the effective chiral Lagrangian is only appropriate for
energies/momenta not higher than the cutoff of the effective theory, 4πfπ, that is, the QCD
scale as set by the nucleon mass. In this context, the W and Z bosons can be considered
as external currents that couple to a QCD axion whose energy/momentum is not higher than
ΛQCD, for instance a light enough on-shell QCD axion. In other words, the W and Z bosons
enter the effective chiral Lagrangian as classical sources, alike to the treatment of baryons in the
effective chiral Lagrangian.

We extend here the results of the previous section to the interactions of axions with SM heavy
gauge bosons. Eq. (7.1.54) is thus generalized for any pair of electroweak gauge bosons X, Y ,

gaXY = g0
aXY + θaπ gπXY + θaη′ gη′XY . (7.1.50)

Indeed, all axion couplings to EW bosons receive a model-independent component due to the
pion-η′-axion mixings, in the regime in which the involved energy/momenta are smaller or
comparable to the confinement scale. A relevant point when computing the couplings of the
QCD axion to heavy EW bosons is the fact that, after confinement, a new type of SU(2)L-
breaking effective interaction of the form

âW 3
µνB̃

µν , (7.1.51)

is present in addition to those in Eqs. (7.1.3)-(7.1.5). It stems via axion-pion coupling from the
πaW

a
µνB̃

µν effective interaction. The details of the computation can be found in App. 7.A. In
terms of the physical photon, Z and W , the interaction Lagrangian for the QCD axion is then
given by

δLgaugea =
1

4
gagg aGG̃+

1

4
gaWW aWW̃ +

1

4
gaZZ aZZ̃ +

1

4
gaγγ aF F̃ +

1

4
gaγZ aFZ̃ , (7.1.52)

where

gagg = − 1

2πfa
αs , (7.1.53)

gaγγ = − 1

2πfa
αem

(
E

N
− 2

3

mu + 4md

mu +md

)
, (7.1.54)

gaWW = − 1

2πfa

αem

s2
w

(
L

N
− 3

4

)
, (7.1.55)

gaZZ = − 1

2πfa

αem

s2
wc

2
w

(
Z

N
− 11s4

w + 9c4
w

12
− s2

w(s2
w − c2

w)

2

md −mu

mu +md

)
, (7.1.56)

gaγZ = − 1

2πfa

αem

swcw

(
2R

N
− 9c2

w − 11s2
w

6
− 1

2
(c2
w − 3s2

w)
md −mu

mu +md

)
. (7.1.57)

Eq. (7.1.54) is the known leading-order result [182, 183] for the photonic couplings of the QCD
axion, which holds in all generality for on-shell axions lighter than the QCD confinement scale.
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The contributions in Eqs. (7.1.55)-(7.1.57) are new and extend that result to the couplings of
heavy gauge bosons in the appropriate energy range. Indeed, the last term in the parenthesis
for each of these couplings encodes the impact of the mixing of the axion with the pion and η′,
see Eqs. (7.1.14)-(7.1.18) for comparison with the unmixed case. These are model-independent
contributions, valid for any QCD axion, i.e., for any model in which the SM strong gauge group
is the only confining force and thus the only source of an instanton potential for the axion. In
other words, they are valid for any axion whose mass and scale are related by Eq. (7.1.29). Note
that those corrections hold precisely because the axion mass is smaller than the confining scale
of QCD, which is the regime in which the SM pseudoscalars lighter than the QCD scale are the
physical eigenstates of the spectrum and the mixing effects are meaningful.

Numerically, at leading order in the chiral expansion it follows that

gaγγ = − 1

2πfa
αem

(
E

N
− 2.03

)
, (7.1.58)

gaWW = − 1

2πfa

αem

s2
w

(
L

N
− 0.75

)
, (7.1.59)

gaZZ = − 1

2πfa

αem

s2
wc

2
w

(
Z

N
− 0.52

)
, (7.1.60)

gaγZ = − 1

2πfa

αem

swcw

(
2R

N
− 0.74

)
. (7.1.61)

The numerical value of the model-independent term in Eq. (7.1.58) differs from the usual
one [183] of 1.92 in Eq. (3.1.20), as the latter includes higher order chiral corrections, a refinement
out of the scope of this thesis and left for future work.

The model-independent results obtained here for the coupling of light QCD axions to the
SM electroweak bosons may impact axion signals in rare decays in which they participate. For
instance, in low-energy processes the axion could be be photophobic at low energies [166] (or
more generally, EW-phobic), in models in which the terms in parenthesis cancel approximately,
unlike at higher energies at which the model-independent component disappears and only the
model-dependence (encoded in E/N , M/N , Z/N and R/N) is at play.

Gauge invariance

As it was already enforced in Eq. (7.1.21), the couplings of the axion to the EW gauge bosons
are not independent as a consequence of gauge invariance. Indeed, all four couplings stem from
the two independent effective operators in Eqs. (7.1.4) and (7.1.5), plus that in Eq. (7.1.51) for
a light QCD axion (ma � ΛQCD). In consequence, three physical couplings can be independent
among the set {gaγγ , gaWW , gaZZ , gaγZ}, and the following relation must hold:

gaZZ = −
(
c2
w +

s4
w

c2
w

)
gaWW +

c3
w

sw
gaγγ +

(
1 + c2

w +
s4
w

c2
w

)
gaγZ . (7.1.62)
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Note that this result does not depend on the details of any particular axion model; it is
independent of the presence or absence of gluonic couplings and it thus applies in all generality
for a light pseudoscalar with only anomalous electroweak couplings. That is, it is also valid
for generic ALPs which only have EW interactions. Furthermore, it suggests that it may be
inconsistent to assume only one EW coupling: the minimum number of physical EW couplings
for an axion or ALP is two. The relation in Eq. (7.1.62) sets an avenue to oversconstrain the
parameter space which is promising. It allows to use the better constrained EW couplings to
bound the fourth one.

7.2 Beyond the QCD axion

We discuss in this section the case of a “heavy axion”: an axion whose mass is not given by the
QCD axion expression in Eq. (3.1.12)) but receives instead extra contributions. We have in mind
a true axion which solves the strong CP problem, for which the source of this extra mass does
not spoil the alignment of the CP conserving minimum. This is the case for instance of models
in which the confining sector of the SM is enlarged involving a new force with a confining scale
much larger than the QCD one [4, 170–180]. This avenue is of particular interest as it allows
to consider heavy axions and low axion scales (e.g. O(TeV)), and still solve the SM strong CP
problem. The axion mass can then expand a very large range of values. It can become much
larger than the EW scale or, conversely, be in the GeV range or lower. For the purpose of this
work, the latter range is to be kept in mind as a general guideline, so as to remain in the range
of validity of the effective Lagragian with confined hadrons. The procedure will also serve as a
template to show how the mixing effects disappear from the axion-gauge couplings as the axion
mass is raised.

In practice, the analysis below applies identically to a true heavy axion which solves the strong
CP problem and to a gluonic ALP, that is, any ALP which has both electroweak and gluonic
anomalous couplings, even if not related to a solution to the strong CP problem. For the sake
of generality, consider the addition of an extra mass term to the effective Lagrangian obtained
after EW symmetry breaking but above confinement in Eq. (7.1.13),

δLa =
1

2
M2â2. (7.2.1)

For simplicity, from now on we focus on the case in which the first generation of SM quarks
carry no PQ charge, as it is straightforward to enlarge the analysis beyond this hypothesis, as
shown in the previous section. After confinement, the pseudoscalar mass matrix in Eq. (7.1.28)
is then replaced by

M2
{π3, η0,a} =




B0 (mu +md) B0 (mu −md) 0

B0 (mu −md) 4K/fπ +B0(mu +md) 2K/(fπfa)

0 2K/(fπfa) K/f2
a +M2


 . (7.2.2)
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Figure 1: Mixing angles as a function of the (heavy) axion mass ma, for a value of fa = 10 TeV. The
grey area indicates the range where the validity of the chiral expansion breaks down. The figure also
applies to gluonic ALPs.

In the limit fa � K1/4 (i.e. fa � ΛQCD) the expressions for the π, η′ and a mass eigenvalues
become

m2
π ' B0 (mu +md), m2

η′ '
4K

f2
π

+B0 (mu +md), m2
a 'M2 +

f2
πm

2
π

f2
a

mumd

(mu +md)2
. (7.2.3)

The corresponding axion-pion and axion-η′ mixing angles take a very simple form in the limit
M � mπ,

θaπ ' −
fπ
2fa

md −mu

mu +md

1

1− M2

m2
π

1

1− M2

m2
η′

, θaη′ ' −
fπ
2fa

1

1− M2

m2
η′

, (7.2.4)

where again only the leading term on each entry of the mixing matrix has been retained. In
fact, it can be checked that these equations hold even for small values of M , as long as M is
non-degenerate with the pion or η′ mass. The comparison with Eq. (7.1.35) ilustrates that the
M-dependent corrections may be important for axion masses near the pion mass or the η′ mass.
The divergences in Eq. (7.2.4) for an axion degenerate in mass with the pion or the η′ are an
artifact of the approximations which in practice correspond to large mixing values, as expected
in those ranges. The numerical results do not rely on that approximation and are illustrated in
Fig. 1: the spikes correspond to an axion degenerate with either the pion or the η′.

7.2.1 Heavy axion couplings to EW gauge bosons

The couplings of the heavy axion to the electroweak gauge bosons reflect the dependence of the
mixing parameters on the extra source of mass M , as follows:
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gaWW = − 1

2πfa

αem

s2
w

(
L

N
− 3

4

1

1−
(
M
mη′

)2
)
, (7.2.5)

gaγγ = − 1

2πfa
αem

[
E

N
− 1

1−
(
M
mη′

)2
(

5

3
+
md −mu

mu +md

1

1−
(
M
mπ

)2
)]

, (7.2.6)

gaZZ = − 1

2πfa

αem

s2
wc

2
w

[
Z

N
− 1

1−
(
M
mη′

)2
(

11s4
w + 9c4

w

12
− s2

w(s2
w − c2

w)

2

md −mu

mu +md

1

1−
(
M
mπ

)2
)]

,

(7.2.7)

gaγZ = − 1

2πfa

αem

swcw

[
2K

N
− 1

1−
(
M
mη′

)2
(

9c2
w − 11s2

w

6
− 1

2
(c2
w − 3s2

w)
md −mu

mu +md

1

1−
(
M
mπ

)2
)]

.

(7.2.8)

The M -dependent corrections in these couplings can be relevant for heavy axions which solve
the strong CP problem as well as for gluonic ALPs, as long as their mass parametrized by
Eq. (7.2.3) is sensibly larger than that for the QCD (i.e. invisible) axion, M2 > m2

πf
2
π/f

2
a .

These expressions hold as long as chiral perturbation theory is valid, that is M . 1 GeV.

For values of M noticeably larger than the η′ mass the model prediction depicted is only
indicative, as the effective Lagrangian in terms of pions and η′ is not really adequate and the
description should the be done in terms of the couplings to quarks. At those energies (ma � mη′)
QCD is perturbative and it would be pertinent to compute the two-loop contribution of the
gluonic coupling to the EW gauge boson couplings. For the case of photons, a qualitative
estimation has been performed in Ref. [290] with the result:

δgaγγ = −3αem αs(m
2
a)

π2
gagg

∑

f

q2
fB1(τf ) log

(
f2

PQ

m2
f

)
, (7.2.9)

leading to a photonic axion coupling given by

gaγγ = − 1

2πfa
αem

(
E

N
− 3α2

s

2π2

∑

f

q2
fB1(τf ) log

(
f2

PQ

m2
f

))
. (7.2.10)

The loop function B1(τ) will be defined later in Eq. 7.3.6. The derivation of the equivalent
formula for the coupling of axions to heavy EW gauge boson couplings is left for future work.
Nevertheless, the analysis presented here conveys the qualitative behaviour expected for the
transition between the low and high axion mass regimes.

Gauge invariance

For high axion masses (i.e. M � ΛQCD in Eq. (7.2.3)), the mixing of the axion with the SM
pseudoscalars becomes negligible. For those scales, QCD enters the perturbative regime and



7.3 Phenomenological analysis 195

Eq. (7.2.9) illustrates how the model-independent contributions to the EW couplings diminish.
As the latter become negligible, the axion coupling to EW gauge bosons is parametrized by just
the two effective interactions in Eqs. (7.1.4) and (7.1.5). In other words, the heavy axion EW
couplings span a parameter space with two degrees of freedom (instead of three for light axions
with ma � ΛQCD, see Section 7.1.2). Two independent constraints follow for heavy axions:

gaWW = gaγγ +
cw

2 sw
gaγZ , (7.2.11)

gaZZ = gaγγ +
c2
w − s2

w

2 swcw
gaγZ , (7.2.12)

where we have chosen to express the couplings gaWW , gaZZ in terms of the overall better
constrained ones gaγγ and gaγZ .6 These powerful relations will be exploited in the next section
to further constrain uncharted regions of the experimental parameter space.

Alike to the discussion after Eq. (7.1.62), the relations in Eqs. (7.2.11) and (7.2.12) apply not
only to heavy axions and heavy gluonic ALPs, but also to generic ALPs which only exhibit EW
interactions and are much heavier than nucleons. The corollary that at least two EW couplings
–if any– must exist for any axion or ALP holds as well.

7.3 Phenomenological analysis

The impact of the results obtained above on present and future axion searches will be illustrated
in this section. Both tree-level and loop-level effects will be taken into account. Indeed the latter
are relevant when confronting data on photons, electrons and nucleons, as the experimental
constraints on these channels are so strong that they often dominate the bounds on EW axion
couplings.

7.3.1 Loop-induced couplings

The tree-level coupling of the axion to photons can be suppressed in some situations [166,
167] (photophobic ALPs are also possible [392]). Additionally, many models have no tree-level
couplings to leptons or suppressed couplings to nucleons [169]. However, all possible effective
couplings will mix at the loop level. This affects the renormalization group (RG) evolution, via
which all couplings allowed by symmetry will be generated even when assuming only a subset
of couplings at some scale.

Before proceeding with the phenomenological analysis, we discuss in this subsection the loop-
induced effective interactions arising from the direct coupling to electroweak gauge bosons.
Because the experimental and observational limits are usually strongest for photons, electrons,

6Obviously, the milder constrain in Eq. (7.1.62) also applies here.
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and nucleons, the loop-induced contributions to these channels can give stronger constraints
than those stemming from the tree-level impact on other channels.

Denoting the effective axion-fermion Lagrangian by

δLa eff ⊃
∑

f

cf1 eff

∂µâ

fPQ

(
f̄ γµ γ5 f

)
, (7.3.1)

it has been shown [290] that the coefficient cf1 eff receives one loop-induced corrections from
electroweak couplings,

cf1 eff
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αem
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3

4
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αem
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(7.3.2)
To obtain this result, the ultraviolet scale inside the loop diagrams has been identified with
the axion scale fPQ, which is the cutoff of the effective theory. Note that the one-loop induced
contributions to the fermion couplings are independent of the axion mass (other than a negligible
dependence through the axion-gauge couplings such as gaγγ , see below). They are generically of
order α/4π as expected, that is, over two orders of magnitude smaller than the original effective
gauge coupling. Nevertheless, the experimental constraints are so strong that they will often
provide the leading bounds on gauge-axion couplings.

The most relevant fermionic limits are those on the coupling to electrons and light quarks.
While Eq. (7.3.2) is directly applicable to leptons and heavy quarks, at low energies light quarks
form hadrons: the loop-induced coupling to nucleons have highest impact. Following Refs. [169,
183], the relation between nucleon and light quark couplings can be written as

cp + cn = 0.50(5)
(
cu1 + cd1 − 1

)
− 2δ ,

cp − cn = 1.273(2)

(
cu1 − cd1 −

1− z
1 + z

)
,

(7.3.3)

where z = mu/md = 0.48(3) and cu1 and cd1 are defined in terms of the coefficients in Eq. (7.1.11)
as

cu1 =
cU1 − cQ1

2
, cd1 =

cD1 − cQ1
2

. (7.3.4)

In Eq. (7.3.3), δ is a combination of the heavy SM quark coeficients analogous to those in
Eq. (7.3.4), δ = 0.038(5)cs1 + 0.012(5)cc1 + 0.009(2)cb1 + 0.0035(4)ct1.

The combination of Eqs. (7.3.2) and (7.3.3) allows to derive the coupling to nucleons induced
by the coupling to electroweak bosons.
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The axion-photon coupling also receives one-loop corrections in the presence of couplings of
the axion to fermions or gauge bosons. For energies or masses in the loops higher than ΛQCD,
quarks are the appropiate propagating degrees of freedom,7 and the one-loop contributions for
an on-shell axion can be expressed as [290]

geff
aγγ = g0

aγγ +
∑

f

Nf
CQ

2
f

αem
π

2cf1
fa
B1(τf ) + 2

αem
π
gaWWB2(τW ), (7.3.5)

where the subscript f runs over leptons and heavy quarks. Here, τi = 4m2
i /m

2
a and

B1(τ) = 1− τf2(τ)

B2(τ) = 1− (τ − 1)f2(τ)
, f(τ) =





arcsin 1√
τ

, τ ≥ 1

π
2 + i

2 log 1+
√

1−τ
1−√1−τ , τ < 1

. (7.3.6)

Asymptotically, B1 → 1 in the limit ma � mf and B1 → −m2
a/(12m2

f ) when ma � mf . This
means that the contribution of fermions heavier than the axion is strongly suppressed. Similarly,
B2 → 1 + π2/4 − log2ma/mW when ma � mW , whereas B2 → m2

a/(6m
2
W ) in the ma � mW

limit.

It is worth noting that chaining the two previous one-loop contributions gives an approximate
estimation of the two-loop contribution of a given heavy gauge boson coupling to the axion-
photon coupling. As an example, consider gaWW in Eq. (7.3.2): it results in an effective fermion

coupling cf1 eff which, when subsequently inserted in the second term in Eq. (7.3.5), results in
an effective axion-photon coupling. This can be compared with the third term which gives
directly a one-loop contribution of gaWW to gaγγ : for ma � mW , the second term in Eq. (7.3.5)
may actually be numerically larger than the third term, that is, the two-loop contribution
via fermionic couplings may dominate over the one-loop gauge one, as it was pointed out in
Refs. [290,392]. Indeed, this two-loop contribution may be phenomenologically the most relevant
one to constrain the axion couplings to heavy electroweak gauge bosons. A caveat is that only
a true two-loop computation may settle the dominant pattern, but the analysis discussed is
expected to provide an order of magnitude estimate.

7.3.2 Axion decay channels and lifetime

The plethora of couplings discussed, contributing either at tree or loop level, produces a rich
variety of production and decay channels of the axion, depending on its mass and on the relative
strength of the couplings. A quantitative evaluation of the lifetime and branching ratios is
essential for assessing what experiments or searches are more adequate to test different regions
of parameter space.

7For energies below the QCD scale, radiative corrections involving light quarks have to be evaluated using chiral
Lagrangian methods. This was achieved in Ref.[290], the conclusion being that the results remain qualitatively
right once the quarks masses are substituted by an appropriate hadronic scale, mπ for u and d and mη for
s. However, in the presence of gluonic couplings this contribution is subdominant to the one computed in the
previous sections and will thus not be considered here.
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Figure 2: Illustration of the axion (or ALP) decay widths, as a function of the axion mass for a
benchmark value of gaγγ = 10−7 GeV−1 and the rest of gauge boson couplings as in Eq. (7.3.8). The
grey hatched region signals the 1-3 GeV “no human’s land” for hadronic decays in between the chiral
and the perturbative regimes, where the dots indicate that no reliable prediction is possible.

In order to determine the detection capabilities of a given final state channel, an important
element is whether the axion can decay into it within the detector, or escapes and contributes to
an “invisible” channel. For purely illustrative purposes, Fig. 2 compares the axion decay widths
into different final states for a particular choice of the model-dependent parameters.8 This figure
serves to indicate the mass threshold for the different channels and is also a good indicator of the
relative width of each decay channel. The determination of the areas experimentally excluded
–to be developed in Sec. 7.3.3– will not depend on the value of the effective couplings assumed
in this figure, though.9

In the low mass region ma < 3mπ, only decays to pairs of electrons, muons or photons are
possible. The axion typically becomes long lived enough so as to be stable at collider and flavor
experiments. Note that this region is particularly sensitive to a possible cancellation/suppression
of the photonic coupling gaγγ (this happens for instance in models of axions in which the
model-dependent parameter E/N partially cancels the model-independent contribution, see
Eqs. (7.1.54) and (7.2.6)). This would suppress the decay width to photons and thus enhance
the branching fraction to fermions, especially close to the respective mass thresholds.

The hadronic channel plays a central role as soon as it opens. It then dominates the decay of
the axion due to the large gluonic coupling. The lightest possible hadronic final state is three
neutral pions. At around the GeV scale many other final states become viable, but in this region
chiral perturbation theory starts to break down and we refrain from making any quantitative

8 The value for gaγγ used in this figure corresponds approximately to fa = 10 TeV and E = 1 in axion models.
Rescaling for other values of the couplings can be achieved by taking into account that Γi ∝ g2

aXY .
9The widths used in determining the colored regions in Figs. 4 induced at tree-level derive directly from the

effective gaXY value for each point of the parameter space.
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Figure 3: Coupling to gluons. The excluded areas rely on considering exclusively the coupling gagg
by itself. The SN1987a limit was computed in Ref. [262], while the rare decays and LHC exclusions
are obtained using the results of Ref. [400] and Refs. [288, 369], respectively. Particular models are
represented by the overlaid lines, the black one corresponding to the QCD axion and the blue one to
heavy axion models (here for a benchmark choice of fa = 10 TeV). See Sec. 7.3.4 for more details. We
provide exclusion plots without superimposed lines as auxiliary files.

predictions.10 At high axion masses above 3 GeV the inclusive decay to hadrons can be safely
estimated within perturbative QCD.11

At much higher energies, tree-level decays to pairs of EW gauge bosons become possible
and, though subdominant with respect to the hadronic one, will play a relevant role in collider
searches.

7.3.3 Experimental constraints on the (heavy) axion parameter space

We have reinterpreted a number of axion searches into our framework. Far from an in-depth
review, this study primarily intends to point out the relative strength of the different observables
in probing different flavors and parameter regions of axion and ALP models. Interestingly and
contrary to common lore, we find that some regions of parameter space can be better tested
through the axion couplings to heavy gauge bosons rather than to photons.

The colored areas in Fig. 3 show the regions experimentally excluded if taking into account
exclusively the axion-gluon coupling gagg (which in axion models fixes the axion scale fa).
Although this work focuses on the case where also EW gauge boson couplings are present,
this parameter space is also shown for reference.

10After this work was completed, Ref. [399] appeared which discusses the hadronic decays of axions in this
region 1 GeV < ma < 3 GeV.

11Note that heavy-flavor tagging can allow to distinguish final states involving heavy quarks, but this separation
will not be taken into account here.
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The couplings of axions to EW gauge bosons (gaγγ gaWW , gaZZ and gaγZ) will be instead
explored within a two-operator framework: the axion-gluon coupling gagg and one electroweak
gauge coupling are to be simultaneously considered. In other words, for each EW axion coupling
gaXY , the regions experimentally excluded will be determined assuming the Lagrangian 12

δLa =
1

4
gagg aGG̃+

1

4
gaXY aXỸ +

1

2
M2a2 . (7.3.7)

This choice is mainly motivated by the focus on solving the strong CP problem, or alternatively
as an ALP analysis which goes beyond the traditional consideration of only one operator at
a time. The regions experimentally excluded for axion-EW gauge boson couplings are then
depicted in Fig. 4 as colored areas. Note that we don’t discuss any cosmological bounds. The
reason for this is that models of heavy axions, typically containing an extended confining sector,
are expected to significantly alter the standard cosmological picture that is usually assumed to
obtain such exclusions. The study of heavy axion cosmology thus requires a full self-consistent
study which is left for future work.

The resulting greenish regions in Fig. 4a match well-known exclusion regions for gaγγ , although
the overlap is not complete because the latter typically only take into account the effective axion-
photon coupling; the additional presence in our analysis of the axion-gluon coupling gagg has a
particularly relevant impact in the heavy axion region (see below).

Figs. 4b, 4c and 4d respectively for gWW , gZZ and gγZ are novel. The possibility of measuring
four distinct EW observables offers a multiple window approach and a superb cross-check if a
signal is detected, given the fact that for axion masses much smaller (larger) than ΛQCD only
three (two) couplings are independent among the set {gaγγ gaWW , gaZZ , gaγZ}, see Eq. (7.1.62)
(Eqs. (7.2.11) and (7.2.12)).

For the majority of the regions excluded in Fig. 4, the experiment directly constraints certain
regions of the parameter space {gaXY ,ma} and no further assumptions are required; those
constraints apply then also to ALPs which have no gluonic couplings. However, for some collider
searches the interplay between the particular EW coupling gaXY under analysis and the coupling
to gluons plays a relevant role, and it is necessary to assume their relative strength. This will
be taken as given by

gagg
gaXY

=
αs
αXY

. (7.3.8)

This is well motivated by pseudo Nambu-Goldstone bosons with anomalous couplings generated
by the triangle diagram with O(1) group theory factors. In any case, the results are largely
insensitive to this assumption, since in the best limits stemming from LHC searches the
production cross section times branching ratio scales as

σ(pp→ a)× BR(a→ XY ) ∝
g2
agg g

2
aXY

8g2
agg + g2

aXY

gagg�gaXY−−−−−−−→ g2
aXY

8
. (7.3.9)

12The axion mass ma is a combination of M and the instanton contribution related to the first term, as
previously explained (see Eq. 7.2.3).
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It is then enough to adopt the reasonable assumption that the coupling to gluons is larger than
that to EW gauge bosons gagg & gaXY . This assumption has been adopted exclusively for LHC
searches in the axion mass region where the hadronic decay channels are open, i.e. ma > 3mπ.

In addition, the bounds obtained via loop contributions have a logarithmic dependence on the
cut-off scale fa. A relation between fa and gaXY needs to be assumed in order to translate the
bounds on fermionic or photonic couplings into bounds on EW gauge boson couplings. In these
cases, Eq. (7.3.8) will be used again, which for axion models translates into

fa =
αXY

2π gaXY
, (7.3.10)

where Eq. (7.1.53) has been used. In any case, as the cutoff dependence in loops is logarithmic
this assumption has a minor impact on the exclusion plots.

To sum up, for each EW-axion coupling the experimentally excluded regions in Fig. 4 are
depicted on the parameter space {gaXY ,ma} without any assumption, except:

A For LHC searches and ma > 3mπ, Eqs. (7.3.8) and (7.3.9) were used, which for most cases
is equivalent to assume gagg � gaXY .

B For the regions labelled as “photons”, “electrons” and “nucleons” in Figs. 4b , 4c and 4d,
the loop-induced bounds have a very mild dependence on the assumption in Eq. (7.3.10).

After having presented the general strategy that we use for the reinterpretation of constraints
into our setup, we proceed to describe the origin of each of the exclusion regions colored in
Fig. 4.

Coupling to photons

The combination of astrophysical and terrestrial probes makes this search a particularly powerful
tool to test the axion paradigm, especially for low mass axions. Even in the case of relatively
large axion masses and/or situations where the coupling to photons can be suppressed, photons
still place strong constraints both at tree-level and through loop-induced effects.

The experimental limits on gaγγ are compiled in Fig. 4a. At the lowest axion masses considered
here, ma . 10 meV, the most competitive bounds come from the CAST helioscope [401], and
will improve in the future with the upgrade to the IAXO experiment [269] . At slightly larger
masses up to ma ∼ 1 keV, gaγγ is constrained by an energy-loss argument applied to Horizontal
Branch (HB) stars [260]. A similar argument applies to the supernova SN1987a and constrains
larger masses up to the 100 MeV range, both using extra cooling arguments [402] and by the
lack of observation of a photon burst coming from decaying emitted axions [403]. In the same
mass range, larger couplings can be constrained using beam dump experiments, with these
exclusions led at present by the NuCal [404] experiment together with the 137 [405] and 141 [406]
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(b) Coupling to W bosons.
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(c) Coupling to Z bosons.
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(d) Coupling to a photon and a Z boson.

Figure 4: Coupling to EW gauge bosons. A two-operator framework is used: each panel assumes the
existence of the corresponding electroweak coupling plus the axion-gluon coupling. The colored regions
are experimentally excluded. In panels b, c and d, the loop-induced constraints labelled as “photons”,
“electrons” and “nucleons” depend mildly on fa (see text). The label “g.i.” illustrates the exclusion
power of EW gauge invariance. The superimposed lines correspond to KSVZ-type QCD axion models
(black line and grey band) and to one benchmark heavy axion model with fa = 10 TeV (blue lines).
The parameter space for heavy axions corresponds to moving up and down that set of blue lines, see
Sec. 7.3.4. The results apply as well to gluonic ALPs (we provide exclusion plots without superimposed
lines as auxiliary files).

experiments at SLAC. We adapt here the constraints compiled in Ref. [407], noting that these
bounds rely solely on the photon coupling.

For yet higher axion masses, where colliders provide the best limits, the gluon coupling plays
a relevant role. As long as no hadronic decay channel is open, the LEP constraints based on
Z → γγ and Z → γγγ searches obtained in [287, 288] for ALPs without gluonic couplings are
also applicable to heavy axions. However, for masses above 3mπ, hadronic final states start
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to dominate and we refrain from claiming any exclusion, as a new dedicated analysis would
be required to use these channels. This explains the white gap just left of the grey hatched
“no human’s land” region, which should be at least partially covered when the forementioned
analysis is performed. It is nevertheless possible to exploit some collider searches, if a relation
between the gluonic and the EW couplings is assumed. Assumption A is adopted here. Our
reinterpretation of the analysis in Ref. [408], in which the L3 collaboration looked for hadronic
final states accompanied by a hard photon, yields the limit labelled “L3” in Fig. 4a, though it
is ultimately superseded by LHC exclusions. The region labelled “Flavor” is excluded by data
from Babar [409] and LHCb [410], as computed in Ref. [395]. For high axion masses near the
TeV scale, the limits from LHC are much stronger than those from LEP, because of the enhanced
axion production via gluon-gluon fusion. We have included the limits obtained in this context
in Refs. [411,412] using run 1 data. These limits are extremely strong and should improve with
the addition of run 2 data, especially at higher energies.

Finally, the bounds on gaγγ described above have been translated –using assumption B– into
competitive bounds for the other EW axion couplings, by means of their loop-mediated impact.

Coupling to fermions

Flavor blind observables involving fermions can be used to constrain gauge boson couplings
via the impact of the latter at loop level, see Eq. (7.3.2). In order to fix the mild logarithmic
dependence on the cutoff scale, assumption B will be adopted.

The most relevant constraints on flavor-blind axion-fermion interactions are of astrophysical
origin and come from either electrons or nucleons. Firstly, a coupling of the axion to electrons
allows for efficient extra cooling of some stars, which allows to place a bound on the axion-
electron coupling gaee via the observation of Red Giants (RG) [260]. Secondly, and in a manner
similar to the discussion above for photons, a too strong coupling of the axion to nucleons
would have shortened the duration of the neutrino burst of the supernova SN1987a. We use the
most recent evaluation of this bound calculated in Ref. [262]. These two observations (RG and
SN1987a) give the strongest limits on the coupling of axions to gauge bosons for axion masses
respectively below 10 keV and 10 MeV, as can be seen in Fig. 4.

In addition, the one-loop induced fermion couplings also play a role in many of the observables
considered here. In particular, they open potential axion decay channels into pairs of fermions.

Rare decays

For axion masses in the MeV-GeV range, gaWW is best tested by its one-loop impact on rare
meson decay experiments, where axions can be produced in flavor-changing neutral current
(FCNC) processes. This search was first proposed in Ref. [291] (where ALPs either stable
or decaying to photons were considered). Recently, these bounds have been recomputed in
Ref. [392] in the context of photophobic ALPs, considering as well the potential decays of the
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axion to a pair of fermions due to the one-loop induced coupling in Eq. (7.3.2). We reinterpret
these searches, taking into account in addition the effects of the gluonic axion coupling under
the assumptions A and B. The main consequence is that, for axion masses ma > 3mπ, the
sensitivity is drastically reduced because of the opening of hadronic axion decay channels.

At low axion masses below 2mµ, the axion is long-lived enough so that it can be considered
stable for experimental purposes. This means that in these regions the axion has to be looked for
in invisible searches. The most stringent limits were placed by the E787 and E949 experiments
testing the K+ → π+X channel, with X invisible [400]. Following Ref. [291], we reinterpret this
search in terms of axions coupled to W bosons, which yields the constraint shown in Fig. 4b.
These bounds will be improved in the near future by the NA62 experiment.

Axions can also be produced from rare meson decays in proton beam dump experiments,
where they can be looked for in searches for long-lived particles. The current best limits are
set by the CHARM experiment [413], where the axion can be produced in Kaon and B meson
decays and subsequently decays to a pair of electrons or muons. The framework developed in
Ref. [414] has been recast to obtain the limit on gaWW shown in Fig. 4b.13

Direct couplings to heavy gauge bosons

LEP provides the best environment to directly test the gaγZ coupling for axion masses below
mZ , as shown in Fig. 4d. The first constraint set assuming only the gaγZ coupling was placed
in Ref. [289] exploiting the limit on the uncertainty of the total Z width [416], Γ(Z → BSM) .
2 MeV at 95% C.L., which allows to set a conservative bound on the process Z → aγ. Stronger
limits can be placed by more specific searches, as studied in Ref. [392]. The best limit at axion
masses low enough for the axion to be long-lived stem from the Z → γ+ inv. search. For higher
axion masses, the large hadronic branching fraction makes the Z → γ + had. search the more
fruitful one to look for axions. Under assumption A for the relative strength of the gluonic
and EW couplings, we exploit the results of the search performed by the L3 collaboration as
presented in Ref. [408] to obtain strong limits for ma in the range from 10 GeV up to the Z
mass. Note that, even if the search is the same than that used to constrain the photonic axion
coupling, the exclusion for gaγZ has a larger reach due to the fact that the process is mediated
by an on-shell Z boson, instead of a very virtual photon.

LHC allows to look for a plethora of processes sensitive to axions. In particular, for heavy
axions it provides the best limits on the coupling to heavy EW gauge bosons. The drawback
of restricting the analysis to processes that separately involve only one of the EW gauge boson
couplings plus the gluon coupling is the reduced number of available searches. Nevertheless, the
advantage is that it provides robust and model-independent constraints.

13After this work was completed, Ref. [415] appeared which revisits the CHARM exclusion contour and provides
projections of the expected NA62 and SHiP sensitivities.
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The authors of Ref. [289] studied the LHC phenomenology of axions that are stable on collider
lengths and thus would manifest themselves as missing energy. In particular, mono-W and mono-
Z final states where an axion is radiated as missing energy/momentum can set constraints on
the three couplings gaWW , gaZZ and gaγZ , as shown in Fig. 4. For large axion masses ma > mZ ,
the authors of Ref. [392] suggested that triboson final states place the strongest bounds on
ALPs coupling to massive gauge bosons, though the sensitivity of this search is hindered for
axions because of the large hadronic branching ratio that we take into account. Adapting their
constraints –with assumption A– leads to the exclusion of regions in parameter space near the
TeV range, as shown in Figs. 4b and 4d for gaWW and gaγZ , respectively. Note that significant
exclusions can also be placed through the loop-induced coupling to photons. However, the most
promising LHC search is one that –to the best of our knowledge– has not been performed yet.
We advocate [417] the use of pp→ a→ V V ′ processes, which benefit from the large production
cross section through the gluonic coupling together with the clean final states that the decay to
EW gauge bosons produce. We foresee that this search will have a sensitivity to the couplings
of axions to heavy EW gauge bosons similar to the photonic case presented in Fig. 4a. Though
potentially very interesting, the detailed analysis that this study requires is beyond the scope of
this work and is left for the future [418].

7.3.4 Impact on (heavy) axion models and gluonic ALPs

The black oblique line in Fig. 3 corresponds to the linear relation between 1/fa and ma for
the QCD axion, Eq. (3.1.12). The horizontal blue branch is one example of how that relation
changes after Eq. (7.2.3) for an illustrative example of a true heavy axion.

The black, grey and blue lines in Fig. 4 illustrate possible {ma, fa} values for axions which
have a gluonic coupling gagg (and thus may solve the strong CP problem) in addition to at least
one coupling to heavy gauge bosons. Those model-dependent lines are superimposed14 on the
colored/white regions excluded/allowed by experiments for each one of the couplings in the set
{gaγγ , gaγZ , gaZZ , gaWW }, as determined above. The examples chosen corresponds to KSVZ-
type axions: either a standard QCD axion or a heavy axion as in theories with an enlarged
confining gauge sector.

In each panel, for a given value of the model-dependent coupling:

• The expectation for the pure QCD axion is depicted by grey and black lines. The bands in
Fig. 4 delimited by grey lines correspond to just one exotic KSVZ fermion representation.
The values of the model-dependent parameters delimiting these benchmark bands [166]
are summarized in Table 1. The black line is instead an illustrative case with two
fermion representations such that the coupling to photons gaγγ cancels up to theoretical
uncertainties [166]. The upward bending of the lines obeys the expected change of the

14For the reader interested in generic gluonic ALPs rather than heavy axions, we provide the exclusion plots
without any superimposed lines as auxiliary files.
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SU(3)c × SU(2)L × U(1)Y(
E/N

)
max

= 44/3 (3, 3,−4/3)(
E/N

)
min

= 5/3 (3, 2,+1/6)(
L/N

)
max

= 4 (3, 3, Y )(
L/N

)
min

= 2/3 (8, 2,−1/2)(
Z/N

)
max

= 2.9 (3, 3,−4/3)(
Z/N

)
min

= 0.4 (8, 2,−1/2)(
2R/N

)
max

= 5.9 (3, 3,−1/3)(
2R/N

)
min

= 0.7 (8, 2,−1/2)

Table 1: Maximum and minimum values of the model-dependent coefficients for the benchmark KSVZ
models with only one exotic fermion representation depicted in Fig. 4.

prediction for axion masses larger than the η′ mass, a regime in which the last term in the
parentheses in Eqs.(7.1.54)-(7.1.57) is absent.

• The expectations for heavy axions are illustrated with blue lines. The big dots which
fall on the QCD axion lines correspond to M = 0 in Eqs. (7.2.1)-(7.2.3). The heavy
axion trajectories start on those points and the prediction moves on each blue line towards
the right as M grows. As the value of the axion mass gets near the pion and the η′

masses, the prediction reflects the “resonances” found in the pseudoscalar mixing angles
and the physical couplings to gauge bosons. For larger values of M the mixing effects
progressively vanish, as physically expected and reflected in Eqs. (7.2.5)-(7.2.8), and the
predictions stabilize again. The asymptotic value of the couplings is then induced only by
the model-dependent parameters (E, L, Z, R), and it is often higher than for heavy axions
lighter than the pion, for which the partial cancellation between the model-dependent and
model-independent mixing effects may operate.

The figures illustrate that the M -dependent corrections may be relevant even for not very large
M values. For instance, two close values of the model-dependent photon couplings E/N may
give a very close gaγγ prediction for M values above the η′ mass, while that prediction can
widely differ for M values smaller than the QCD scale. This is clearly reflected by the lines
corresponding to the smaller values of E/N in Fig. 4a.

The parameter space for heavy axion models spans in fact most of the region to the right of
the oblique band for the QCD axion: parallel sets of horizontal lines above and below the blue
ones depicted are possible and expected for other values of the heavy axion parameters. For a
given fa, varying M (that is, varying ma) is tantamount to move right or left on a horizontal
blue line, while varying fa displaces up or down the set of horizontal blue lines. Finally, all these
considerations for heavy axion models apply as well to gluonic ALPs, as argued earlier.
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Gauge invariance

For heavy axions or any type of ALP with masses ma � ΛQCD, couplings to EW gauge bosons
are directly tested and gauge invariance imposes the two relations in Eqs. (7.2.11) and (7.2.12).
Therefore, the combination of the experimental constrains on two of the operators in the set
{gaγγ , gaWW , gaZZ , gaγZ} translates in model independent bounds on the other two couplings.
For light masses ma ≤ ΛQCD, only Eq. (7.1.62) applies instead. These bounds based solely on
EW gauge invariance have been depicted by black curves on the upper right corner of Figs. 4b,
4c and 4d. They susbtantially reduce the latter parameter space, especially in the cases of gaWW

and gaZZ , whose current direct constraints are less powerful. They are to be taken with caution,
though, since in each of the exclusion plots only one EW coupling was taken into account,
while the relations deduced from gauge invariance involve several non-vanishing EW couplings.
Furthermore, in a future multiparameter analysis where tree-level axion-fermion couplings are
included, those relations could be corrected via one-loop effects.

7.3.5 Implications for heavy axion models

In existing models that solve the strong CP problem with heavy axions, often either

M2 ∼ Λ′4/f2
a , or M2 ∼ m2

π′f
2
π′/f

2
a (7.3.11)

where Λ′ � ΛQCD is a new strong confining scale, and the primed fields denote exotic “pions”
corresponding to the exotic fermions charged under the extra confining force. Let us assume the
first option as an example. In this case,15

Λ′4 ∼ (m2
af

2
a −m2

πf
2
π) . (7.3.12)

Assume that an experiment detects an axion-photon signal and a certain value for the axion
mass which correspond to a point in the white region of Fig. 4a and located to the right of the
QCD band. For instance, let us consider a point located on one of the flat sections of the blue
lines depicted. The interpretation in terms of a heavy axion depends on whether the axion is
heavier or lighter than the pion and η′, respectively:

• ma � m′η. The model-independent effects due to the mixings with SM pseudoscalars have
become negligible, and gaγγ is a direct measure of the product (1/fa)E/N .

• ma � mπ. In this case the measured gaγγ value is undistinguishable from that for the
QCD axion, with the E/N and fa dependence given by Eq. (7.1.54). In other words, it
would indicate either a heavy axion or a QCD axion with some degree of photophobia,
as in that region they become undistinguishable. This is so at least for the lowest axion
masses and/or without the help of other measurements involving heavy EW gauge bosons.

15 The mumd/(mu +md)
2 factor in the QCD contribution is not shown for simplicity.



208 Chapter 7. Axion couplings to EW gauge bosons

In both cases, in the framework of a KSVZ model, an additional measurement of the axion
coupling to heavy gauge bosons would be enough to disentangle the values of fa and M , that is,
to determine the high scale Λ′. The model-independent corrections determined in Eqs. (7.2.5)-
(7.2.8) can be essential when exploiting low-energy processes (e.g. rare decays), specially when
they lead to the cancellation of a given coupling. Such cancellation in a channel in general will
not apply to the couplings of the axion to other gauge bosons. Overall, the fact that only two
or three axion-EW couplings are independent, while four channels can be explored, will allow
to overconstrain the system.

7.4 Conclusions

Among the novel results of this work, we have first determined at leading order in the chiral
expansion the model-independent components of the coupling of the QCD axion to heavy EW
gauge bosons: gaγZ , gaZZ and gaWW . They stem from the axion-η′-pion mixing induced by the
anomalous QCD couplings of the axion and η′. Our results extend to heavy EW gauge bosons the
well known result for the photonic coupling of the axion gaγγ . They must be taken into account
whenever an axion lighter than ΛQCD is on-shell and/or the energy and momenta involved in
a physical process are of the order of the QCD confining scale or lower. As a previous step,
we re-derived pedagogically the leading contributions to gaγγ for the case of the most general
axion couplings (App. 7.B), and then proceeded to the determination of the couplings to the
SM heavy gauge bosons.

This analysis of the EW couplings of the QCD axion may have rich consequences when
comparing the presence/absence of signals at two different energy regimes. For instance, the
axion could be photophobic at low energies [166] or even EW-phobic (e.g. in rare meson decays)
because of cancellations between the model-independent and model-dependent components,
while an axion signal may appear at accelerators or other experiments at higher energies at
which the model-independent component disappears.

We have next extended those results to the case of heavy axions which solve the strong CP
problem. This has allowed to explore how the mixing of the axion with the pion and η′ evolves
with rising axion mass, and in consequence how the model-independent contributions to all four
EW axion couplings vanish as the axion mass increases above the QCD confinement scale. We
have determined the modified expression for gaγγ relevant for heavy axions, which may have
rich consequences: an hypothetical measurement of that coupling outside the QCD axion band
could point to either a heavy axion or a photophobic QCD axion. The analogous expressions
for gaγZ , gaZZ and gaWW have been also worked out.

On the purely phenomenological analysis, we developed a “two simultaneous coupling”
approach in order to determine the regions experimentally excluded by present data for
gaγγ , gaγZ , gaZZ and gaWW versus the axion mass. Each EW coupling has been considered
simultaneously with the anomalous gluonic coupling essential to solve the strong CP problem.
The allowed/excluded experimental areas have been depicted for each of those couplings as a
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function of the axion mass. This is the first such reinterpretation for gaγZ , gaZZ and gaWW .
Even for gaγγ , the results of previous studies often did not apply and must be reanalysed: for
instance the present bounds extracted from LEP and LHC data tend to focus on ALPs which
would not have gluonic couplings, with very few exceptions [288,395,411,412]. Furthermore, we
have included an estimation of the one-loop induced bounds for each EW axion coupling, which
leads to supplementary constraints.

The expectations from KSVZ-type of theories have been then projected and illustrated over the
obtained experimental regions, both for the QCD axion and for heavy axions. The compatibility
of hypothetical a priori contradictory signals in high and low energy experiments in terms of a
given axion has been pointed out. Furthermore, we discussed how to interpret an eventual signal
(or null result) outside the QCD axion band in terms of the value of the new high confining
scale generically present in heavy axion theories.

A simple point with far reaching consequences results from EW gauge invariance. In all
generality, not all couplings of axions to EW gauge bosons are independent among the four
physical ones in the set {gaγγ gaγZ , gaZZ and gaWW }. In particular, the relations obtained
imply that at least two EW gauge couplings –if any– must be non-vanishing for any axion or
ALP. These facts have been used to project the exclusion limits for the presently best constrained
couplings onto the parameter space for the less constrained ones. In particular, for axions/ALPs
much heavier than ΛQCD, those relations have been projected on the parameter space for gaWW ,
gaZZ and gaγZ , reinforcing their constraints. A future multiparameter analysis may correct them
via loop corrections. Nevertheless, the results obtained here clear up the uncharted experimental
regions and may be of use in setting a search strategy. More in general, the existence of four
physical axion couplings to EW bosons at experimental reach constitutes a phenomenal tool to
over-constrain the axion parameter space and to check the origin of an eventual axion signal.

Finally, all results obtained for heavy axions apply as well to ALPs which have both EW
and gluonic anomalous couplings. The constraints stemming from EW gauge invariance extend
even to generic ALPs which do not couple to gluons. In consequence, this work also extends
automatically the usual parameter space for ALPs that do not intend to solve the strong CP
problem, adding to the incipient efforts to go towards a multi-parameter strategy.
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Appendices

Appendix 7.A Anomalous couplings of the pseudoscalar mesons
to the EW gauge bosons

In addition to the axion couplings in Eqs. (7.1.3)-(7.1.5), new couplings involving gauge bosons
are expected as soon as the extra pseudoscalar mesons appear in the spectrum below the
confinement scale. In particular, for the η0 and the pions, the following interactions with EW
gauge bosons (considered as external currents) are possible below the QCD confinement scale:

W a
µνW̃

aµν η0

fπ
, BµνB̃

µν η0

fπ
, BµνB̃

µν π3

fπ
, W a

µνB̃
µν πa
fπ
. (7.A.1)

The lightness of pseudoscalar mesons in QCD appears as a natural consequence of the
spontaneous breaking of the chiral symmetry U(2)L × U(2)R −→ U(2)V . The pions and
eta mesons can be identified as the pseudo Nambu-Goldstone bosons of the broken symmetry.
However, the chiral symmetry is only approximate. It is explicitly broken not only by the quark
masses, but also by the electroweak gauge interactions. This fact famously explains the difference
between charged and neutral pion masses but also allows the computation of the coupling of
pseudoscalar mesons to the EW bosons through the anomaly,

∂µjaµ =
αi
8π
CabcgroupFb µνF̃

µν
c , (7.A.2)

where F̃µν = 1
2ε
µνσρFσρ, the fine structure constant of the corresponding gauge interaction is

denoted by αi =
g2
i

4π and the group theoretical factor Cgroup is given by

Cabcgroup =
∑

LH−RH
Tr
[
T a{tb, tc}

]
. (7.A.3)

Here, T a is the generator associated to the conserved current (i.e. to the global symmetry)
and ta are the generators of the representation of the gauge group under which each fermion
transforms.

Applying these formulas, the anomalous couplings of the neutral pseudoscalar mesons π3 and
η′ to the EW gauge bosons can be computed. For the pion,

L ⊃ 1

4
gπBB π3BB̃ +

1

4
gπBW π3BW̃

3 −→ 1

4
gπZZ π3ZZ̃ +

1

4
gπγγ π3FF̃ +

1

4
gπγZ π3FZ̃, (7.A.4)

with

gπBB ≡ −
α

2π fπ

(
1

c2
w

)
, gπZZ ≡ −

α

2π fπ

(
s2
w

c2
w

− 1

)
,

gπBW ≡ −
α

2π fπ

(
1

cw sw

)
, gπγγ ≡ −

α

π

1

fπ
,
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gπγZ ≡ −
α

2π fπ

(
c2
w − 3s2

w

cw sw

)
.

Equivalently for the η meson,

L ⊃ 1

4
gη′WW η0WW̃ +

1

4
gη′BB η0BB̃ −→

1

4
gη′ZZ η0 ZZ̃ +

1

4
gη′γγ η0 FF̃ +

1

4
gη′γZ η0 FZ̃,

(7.A.5)

with

gη′WW ≡ −
α

2π fπ

(
3

2

1

s2
w

)
, gη′WW ≡ −

α

2π fπ

(
3

2

1

s2
w

)
,

gη′BB ≡ −
α

2π fπ

(
11

6

1

c2
w

)
, gη′ZZ ≡ −

α

2π fπ

(
11 s4

w + 9 c4
w

6 s2
wc

2
w

)
,

gη′γγ ≡ −
α

2π fπ

(
10

3

)
,

gη′γZ ≡ −
α

2π fπ

(
9 c4

w − 11 s4
w

3 s2
wc

2
w

)
.

(7.A.6)

The mixing of the axion with the η′ and the neutral pion will result in additional contributions
to the coefficients of the interactions in Eqs. (7.1.4) and (7.1.5), via the first three operators
in Eq. 7.A.1. The fourth one results in a neutral pion-W 3B coupling, which in turn induces
a SU(2)L-breaking coupling of the physical axion to W 3B . In other words, below ΛQCD the
operator space of axion electroweak couplings spans three degrees of freedom, instead of the two
above the QCD confinement scale, with

δLgaugea =
αs
8π

a

fa
GG̃+

1

4
gaWW aWW̃ +

1

4
gaBB aBB̃ +

1

4
gaBW aBW̃ , (7.A.7)

where

gaWW = − 1

2πfa

αem

s2
w

(
L

N
− 3

4

)
,

gaBB = − 1

2πfa

αem

c2
w

(
P

N
− 5mu + 17md

12(mu +md)

)
,

gaBW =
1

2πfa

αem

swcw

(
1

2

md −mu

mu +md

)
(7.A.8)

are obtained using the result for the mass mixing of the axion with the pseudoscalar mesons
given in Eq. (7.1.32).
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Similarly for the heavy axion case,

gaWW = − 1

2πfa

αem

s2
w

(
L

N
− 3

4

1

1−
(
M
mη′

)2
)
,

gaBB = − 1

2πfa

αem

c2
w

[
P

N
− 1

1−
(
M
mη′

)2
(

11

6
+

1

2

md −mu

mu +md

1

1−
(
M
mπ

)2
)]

,

gaBW =
1

2πfa

αem

swcw

(
1

2

md −mu

mu +md

1

1−
(
M
mπ

)2
1

1−
(
M
mη′

)2
)
.

(7.A.9)



7.B How general is the mass matrix in Eq. (7.1.28)? 213

Appendix 7.B How general is the mass matrix in Eq. (7.1.28)?

Let us start with the most general Lagrangian above the QCD confinement scale that is relevant
for the mass and mixings of the axion:

δLa =
1

2
∂µâ ∂µâ + cu1

∂µâ

fPQ

(
ū γµ γ5 u

)
+ cd1

∂µâ

fPQ

(
d̄ γµ γ5 d

)

− ūLmu uR e
i cu2 â/fPQ − d̄Lmd dR e

i cd2 â/fPQ + h.c.

+c3
αs
8π

â

fPQ
GG̃+

1

4
g0
aγγ â F F̃ . (7.B.1)

For simplicity, here we focus on the coupling to photons but the discussion is of course applicable
to the other EW gauge bosons. The relation of the cu,d1 couplings with the corresponding ones

cQ1 , cU1 and cD1 in the SU(2) × U(1) gauge invariant formulation in Eq. (7.1.11) are given by
Eq. (7.3.4), while c3 = N0 in that equation. Without loss of generality, PQ invariance can be
imposed on all operators in the Lagrangian but the anomalous couplings. As a consequence, the
couplings cu, d2 are related to the PQ charges of the up and down quarks in in Eq. (7.1.11) in the

following way, Xu,d = cu, d2 Xa (where the charge of the axion can be set to Xa = 1 ).

This Lagrangian has a reparametrization invariance [398],16 that corresponds to making the
usual axion dependent quark field rotations,

cu,d1 → cu,d1 + αu,d ,

cu,d2 → cu,d2 − 2αu,d ,

c3 → c3 + 2αu + 2αd ,

gaγγ → gaγγ −
α

2πfPQ

(
12αu q

2
u + 12αd q

2
d

)
. (7.B.2)

In the body of the Chapter we are considering cu,d1 = 0, when computing the axion mass and
mixings. This is general due to the reparametrization invariance.

When QCD confines and the chiral symmetry is broken by the quark condensate, the couplings
in Eq. (7.B.1) translate into effective operators involving mesons. Defining the π and η0-fields
in terms of the currents:

jµ3 =
1

2

(
ū γµ γ5 u − d̄ γµ γ5 d

)
≡ fπDµπ3 ,

jµ0 =
1

2

(
ū γµ γ5 u + d̄ γµ γ5 d

)
≡ fπDµη0 . (7.B.3)

The low energy chiral Lagrangian can be decomposed in three terms:

δLa = δLa, kin + δLa,mass + δLa, anom . (7.B.4)

16Note that this reparametrization invariance differs from that in Ref. [398].
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• The derivative couplings cu,d1 generate kinetic mixing between the axion and the mesons,

δLa, kin =
1

2
Dµâ D

µâ +
1

2
Dµπ3D

µπ3 +
1

2
Dµη0D

µη0

+
(
cu1 − cd1

) fπ
fPQ

Dµâ D
µπ3 +

(
cu1 + cd1

) fπ
fPQ

Dµâ D
µη0 . (7.B.5)

• The Yukawa couplings cu,d2 produce mass mixing. In the chiral formulation the effects of
these operators can be encoded in an axion-dependent mass matrix,

Ma =


mu 0

0 md




e

i cu2 â/fPQ 0

0 ei c
d
2 â/fPQ


 . (7.B.6)

So that the chiral Lagrangian induced at low energies contains the term

δLa,mass =B0
f2
π

2
Tr
(

ΣM†a + MaΣ†
)

=B0f
2
π


mu cos

(
π3

fπ
+
η0

fπ
− cu2

â

fPQ

)
+md cos

(
π3

fπ
− η0

fπ
− cd2

â

fPQ

)
 .

(7.B.7)

• The coupling to gluons generates an effective potential that is responsible for the bulk of
the mass of the η′ and can be parametrized at low energies as,

δLa, anom = − αs
8π

(
2
η0

fπ
+ c3

â

fa

)
GG̃ −→ −1

2
K

(
2
η0

fπ
+ c3

â

fa

)2

. (7.B.8)

Altogether, the relevant chiral Lagrangian reads,

δLa =
1

2
Dµâ D

µâ +
1

2
Dµπ3D

µπ3 +
1

2
Dµη0D

µη0 + απDµâ D
µπ3 + αηDµâ D

µη0

+ B0f
2
π


mu cos

(
π3

fπ
+
η0

fπ
− cu2

â

fPQ

)
+md cos

(
π3

fπ
− η0

fπ
− cd2

â

fPQ

)


− 1

2
K

(
2
η0

fπ
+ c3

â

fa

)2

. (7.B.9)

The coefficients απ, αη parametrizing the kinetic mixing are

απ =
(
cu1 − cd1

) fπ
fPQ

; αη =
(
cu1 + cd1

) fπ
fPQ

. (7.B.10)

In order to obtain the mass matrix and ultimately the mass eigenvalues and mixings, the kinetic
terms have to be diagonalized first. This can be done by the following transformations:

â → â√
1− α2

π − α2
η′

' â ,
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π3 → π3 −
απ â√

1− α2
π − α2

η′

' π3 −
(
cu1 − cd1

) fπ
fPQ

â ,

η0 → η0 −
αη â√

1− α2
π − α2

η′

' η0 −
(
cu1 + cd1

) fπ
fPQ

â . (7.B.11)

The Lagrangian Eq. (7.B.9) becomes17 ,

δLa =
1

2
Dµâ D

µâ +
1

2
Dµπ3D

µπ3 +
1

2
Dµη0D

µη0

+ B0f
2
π


mu cos

(
π3

fπ
+
η0

fπ
− c̄u2

â

fPQ

)
+md cos

(
π3

fπ
− η0

fπ
− c̄d2

â

fPQ

)


− 1

2
K

(
2
η0

fπ
+ c̄3

â

fPQ

)2

, (7.B.12)

where c̄u2 , c̄d2 and c̄3 are given by

c̄u2 = 2 cu1 + cu2 ,

c̄d2 = 2 cd1 + cd2 ,

c̄3 = c3 − 2 cu1 − 2 cd1 . (7.B.13)

As expected, these coefficients are invariant under the reparametrization invariance in
Eq.(7.B.2). Therefore, the squared mass matrix coming from Eq. (7.B.12) is completely general,

M2
{π3, η0,a}

=


B0 (mu+md) B0 (mu−md) −B0

fπ
fPQ

(
mu c̄u2−md c̄d2

)

B0 (mu−md) 4K
fπ

+B0(mu+md)
2 c̄3K
fπfPQ

+B0
fπ
fPQ

(
mu c̄u2 +md c̄

d
2

)

−B0
fπ
fPQ

(
mu c̄u2−md c̄d2

)
2 c̄3K
fπfPQ

+B0
fπ
fPQ

(
mu c̄u2 +md c̄

d
2

)
c̄ 2
3

K

f2
PQ

+B0
f2
π

f2
PQ

(
mu (c̄u2 )2+md (c̄d2)2

)


.

(7.B.14)
This matrix can be diagonalized analytically in the limit fPQ � B0, mu,d, fπ. We find that the
physical axion corresponds to the combination:

a ' â+ θaπ π3 + θaη′ η0 , (7.B.15)

where all mixing angles are assumed small and

θaπ ' −
fπ

2fPQ

(
c̄3 + 2c̄d2

)
md −

(
c̄3 + 2c̄u2

)
mu

mu +md
, θaη′ ' −

fπ
2fPQ

c̄3. (7.B.16)

17The same Lagrangian can be obtained by making use of the reparametrization invariance in Eq. (7.B.2) and
choosing αu = cu1 and αd = cd1.
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Note that this gives the physical axion in terms of the fields whose kinetic terms are already
diagonalized. In order to express it in terms of the flavor meson fields (as defined in Eq. (7.B.3)),
the transformation in Eq. (7.B.11) needs to be taken into account. The final mixings read,

θaπ ' −
fπ

2fPQ

(
cd2 − cu2 +

(
c3 + cu2 + cd2

)md −mu

mu +md

)
, θaη′ ' −

fπ
2fPQ

c3 , (7.B.17)

expressed in terms of the couplings of the starting Lagrangian in Eq. (7.B.1). It is worth noting

that the physical mixing parameters do not depend on the coefficient cu, d1 of the derivative
operator, since it is PQ invariant and therefore it has no impact on the masses and the mixings.

Now we are ready to study the effect of these two diagonalizations in the coupling of the axion
to photons,

gaγγ = g0
aγγ + θaπ gπγγ + θaη′ gη′γγ . (7.B.18)

Taking into account that the coupling of the mesons to photons are given by

gπγγ ≡ −
3α

π fπ

(
q2
u − q2

d

)
, gη′γγ ≡ −

3α

π fπ

(
q2
u + q2

d

)
, (7.B.19)

where qu and qd are the electromagnetic charges of the up and down quarks, we find,

gaγγ = g0
aγγ +

α

2πfPQ

(
−6 cu2 q

2
u − 6 cd2 q

2
d − 6

(
c3 + cu2 + cd2

) q2
dmu − q2

umd

mu +md

)
. (7.B.20)

Recalling that the coefficients cu, d2 correspond to the PQ charges, the combinations that appear
in the above equation can be identified as the electromagnetic and QCD anomaly coefficients
for the up and down quarks,

Eu, d =
∑

ψ=u, d

2Xψ q2
ψ = −6 cu2 q

2
u − 6 cd2 q

2
d , N = c3 + cu2 + cd2 . (7.B.21)

Redefining the axion decay constant as usual fa = fPQ/N , we can express

gaγγ = g0
aγγ +

α

2πfa

(
Eu, d
N
− 2

3

mu + 4md

mu +md

)
. (7.B.22)

To sum up, from the most general mass matrix we have obtained the same result of Eq. (7.1.54)
taking into account that in the E/N we have to sum over all fermions transforming under the
PQ symmetry, that means including the up and down quarks E = Eheavy + Eu, d,

gaγγ =
α

2πfa

(
Eheavy

N
+
Eu, d
N
− 2

3

mu + 4md

mu +md

)
. (7.B.23)
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8 Flavor constraints on
electroweak ALP couplings

In this Chapter, which is based on the publication in Ref. [1], we explore ALP contributions
to flavor changing neutral current (FCNC) processes, formulating them in a model-independent
approach via the linear realization of the ALP effective Lagrangian. The complete basis of
bosonic and CP-even ALP couplings to the electroweak sector is considered. That is, the set of
gauge invariant and independent leading-order couplings to the W , Z, photon and Higgs doublet
is discussed. Given that these operators are flavor blind, they may impact flavor-changing data
only at loop level. The couplings of ALPs to heavy SM bosons had been largely disregarded
until recently, even if a priori they are all expected to be on equal footing with the pure photonic
ones because of electroweak gauge invariance. In addition to novel collider signatures [289,290],
rare hadron decays provide a superb handle on the ALP couplings to massive vector bosons [3]
for ALP masses below 5 GeV. The one-loop impact on FCNC processes of the anomalous ALP-
W -W coupling was first considered in Ref. [291]: it was shown to induce flavor-changing rare
meson decays via W exchange, with the ALP radiated from the W boson [291, 393, 419]. The
axion can then either decay in some visible channel or escape the detector unnoticed, and novel
bounds were derived in both cases. Given the level of accuracy provided by present flavor
experiments, it is most pertinent to take into account the competing contribution of other
electroweak ALP couplings leading to the same final states. In other words, the ensemble of the
linearly independent ALP-electroweak couplings should be considered simultaneously in order
to delimitate the parameter space. Putative anomalous couplings of ALPs to gluons could also
contribute to flavor-blind decays into visible channels, but not to FCNC processes other than
via pseudoscalar (e.g. ALP-η′ and ALP-pion) mixing in SM flavor-changing decays, and they
are not considered in this Chapter.

The analysis of two (or more) couplings simultaneously has the potential to change the
experimental perspective on ALPs. Our theoretical analysis is confronted with the prospects for
ALP detection in present and upcoming fixed-target experiments and B-physics experiments.
After the theoretical analysis, the structure of this Chapter reflects successively the two
alternative scenarios mentioned above, in which the ALP produced in FCNC meson decays
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can then either decay into visible channels within the detector, or it can be invisible by escaping
the detector (or decaying to a hidden sector). For both cases, the comparison with data
considers first each coupling separately and then the ensemble in combination, and the resulting
interference patterns are worked out in detail.

8.1 Bosonic ALP lagrangian

The most general effective Lagrangian describing ALP couplings contains – at leading order in
the linear expansion – only three independent operators involving electroweak gauge bosons [186,
289,396,397],

δLeff =
1

2
∂µa ∂

µa− 1

2
m2
a a

2 + caΦOaΦ + cB OB + cW OW , (8.1.1)

with

OaΦ ≡ i
∂µa

fa
Φ†
←→
D µΦ ,

OB ≡ −
a

fa
BµνB̃

µν ,

OW ≡ −
a

fa
W a
µνW̃

µν
a ,

(8.1.2)

where ci are real operator coefficients and Φ
←→
D µΦ ≡ Φ†

(
DµΦ

)
−
(
DµΦ

)†
Φ. Note that the

notation here for the anomalous effective operators for the axion differs to that in Chapter 7,
the relation among them being OX̃ = αX

8π OX .

Upon electroweak symmetry breaking, OaΦ induces a mixing between a and the would-be
Goldstone boson eaten by the Z. Its physical impact is best illustrated via an ALP-dependent
rotation of the Higgs field, namely Φ → Φ eicaΦa/fa [396], which trades OaΦ for the following
fermionic couplings:

OaΦ → i
a

fa

[
QYuΦ̃uR −QYdΦ dR − LY`Φ `R

]
+ h.c. , (8.1.3)

where Yu,d,` denote the SM Yukawa matrices, flavor indices are omitted, and neutrino masses are
disregarded. The ALP-electroweak operators in Eq. (8.1.2) are flavor blind, but OaΦ and OW
can participate in FCNC processes at one loop via W± gauge boson exchange. At this order,
the parameter space of ALP-electroweak couplings in FCNC processes is thus reduced to two
dimensions spanned by the coefficients

{cW , caΦ} . (8.1.4)

They may contribute to rare decays as illustrated in the left (caΦ) and right (cW ) panels of
Fig. 2. While cW has been discussed separately in Ref. [3,291], and the effective ALP-fermionic
interactions have also been considered by themselves before [290,368,393,419–421], the interplay
between cW and caΦ will be shown below to lead to interesting new features.
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K+ π+
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u, c, t u, c, t
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u

s̄

u, c, t

d̄

W W

a
cW

Figure 1: Illustration of diagrams giving one-loop contributions to the process K+ → π+a via the
interactions defined in Eq. (8.1.3).

8.2 FCNC ALP interactions

The effective interaction between a pGB and left-handed fermions can be expressed in all
generality as

Ldi→djeff = −gaij
(
∂µa
)
d̄jγ

µPLdi + h.c. , (8.2.1)

where latin indices i, j denote flavor and gaij is an effective coupling.

The impact of OaΦ and OW on di → dja (with i 6= j) transitions via one-loop W± exchange
induces a left-handed current of the form in Eq. (8.2.1), and thus a contribution to rare meson
decays. The corresponding Feynman diagrams at the quark level are those contained in the
illustration in Fig. 1, as well as the corresponding self-energy diagrams with the ALP operator
inserted on the quark lines external to the W loop. At the quark level, those one-loop W
exchanges result in a contribution to gaij , for i 6= j, given by

gaij = g2
∑

q=u,c,t

VqiV
∗
qj

16π2

[
3cW
fa

g(xq)−
caΦ

4fa
xq log

(
f2
a

m2
q

)]
, (8.2.2)

where g is the electroweak gauge coupling, and Vqi are the CKM matrix elements. In
this equation, mq denotes the mass of a given up-type quark q that runs in the loop, the
approximation mdj , mdi � mW has been used, xq = m2

q/m
2
W , and the loop function is given by

g(x) =
x
[
1 + x(log x− 1)

]

(1− x)2
. (8.2.3)

It follows that the decay rate for the process K+ → π+a can be expressed as

Γ(K+ → π+a) =
m3
K |gasd|2
64π

f0(m2
a)

2λ1/2
πa

(
1− m2

π

m2
K

)2

,
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Figure 2: Invisible ALP: constraints on the absolute value of cW (left panel) and caΦ (right panel) as a
function of the ALP mass, considering each of these couplings separately. The exclusion contours have
been derived from the experimental limits on B(K+ → π+ +inv) [422] (green) and B(B → K+inv) [423]
(blue) by fixing fa = 1 TeV and by setting the other couplings to zero. Projections for NA62 [291] and
Belle-II [424] experiments are illustrated by dashed lines.

with λπa =

[
1− (ma+mπ)2

m2
K

] [
1− (ma−mπ)2

mK2

]
. In this expression, f0 denotes the K → π scalar

form factor, which has been computed in lattice QCD in Ref. [425]. An analogous expression can
be obtained mutatis mutandis for the decay B → Ka, in which case the relevant form factors
can be found in Refs. [426,427].

In Eq. (8.2.2), the contribution proportional to cW is finite due to the
Glashow–Iliopoulos–Maiani (GIM) mechanism, in agreement with the results of Ref. [291].
The caΦ term is instead logarithmically sensitive to the ultraviolet scale of the theory fa,
and its contribution is thus approximated by the leading log model-independent component.
Furthermore, because g(x) ∼ x + O(x2) for small x, the contributions from the up and charm
quarks are sub-leading in both terms with respect to that of the top quark. Also, note that
the logarithmic enhancement of the caΦ term (∝ log

(
fa/mt

)
) should be particularly relevant

for large values of fa. This logarithmic divergence is a consequence of the operator OaΦ being
non-renormalizable [393, 420, 421], in contrast with renormalizable scenarios such as two-Higgs
doublet models [199,393,428,429].

The interplay between caΦ and cW presents interesting features which depend on their relative
sign. Their contributions to ALP production in rare decays can interfere destructively if and
only if caΦ/cW > 0. Such a cancellation would leave a region in parameter space which cannot
be probed by relying only on FCNC decays such as K → πa and B → Ka. An alternative to
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Figure 3: Allowed {cW , caΦ} parameter space for the invisible ALP when those two couplings are
simultaneously present. The superposition of the constraints from K+ → π+ + inv (green) and B+ →
K+ + inv (blue) data is shown for an illustrative case with fa = 1 TeV and ma . 100 MeV. The
left (right) panel shows the destructive (constructive) interference of the two couplings for cW /caΦ > 0
(cW /caΦ < 0). The red solid (dashed) lines correspond to the current (projected) limits from mono-W
searches at the LHC with 3.2 fb−1 ( 3 ab−1) of data [289].

lift this degeneracy using LHC constraints will be discussed further below, after deriving the
constraints that follow from rare meson decays.

In order to determine the detection possibilities for a given final state channel, an important
element is whether the ALP can decay into visible particles within the detector, or whether it
escapes and contributes to an “invisible” channel. We discuss next both cases.

8.3 The invisible ALP

Let us consider first the scenario of an ALP that does not decay into visible particles in the
detector, which we shall refer to as the “invisible ALP”. This situation can arise if a is sufficiently
light, making a long-lived, or if there are large couplings of a to a dark sector, making B(a→ inv)
sufficiently large. The analysis performed below is general and applies to both cases.

The experimental constraints relevant for different ma ranges are listed next:

• ma ∈ (0,mK −mπ):

Searches for the decay K → πνν̄ have been performed at the E787 and E949 experiments. The
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bounds obtained can be directly reinterpreted to limit the parameter space of new undetected
particles. E787 and E949 experiments take measurements in two regions of pion momentum,
namely pπ ∈ (140, 199) MeV and pπ ∈ (211, 229) MeV, which can be translated into the
ALP mass ranges 150 MeV . ma . 260 MeV and ma . 115 MeV, respectively. The limits

reported in these searches are B(K+ → π+νν̄)exp =
(

1.73+1.15
−1.05

)
× 10−10 [422] and B(K+ →

π+νν̄)exp < 2.2×10−9 [423], which lie slightly above the SM prediction, B(K+ → π+νν̄)SM =
(9.11± 0.72) × 10−11 [430]. Similar searches have been performed at the NA62 experiment,
which aims at attaining the SM rates in the very near future [431]. In our analysis, we consider
the E787 and E949 constraints, as summarized in Ref. [422].

• ma ∈ (0,mB −mK):

The most constraining experimental limits on B(B → K(∗) + inv) were obtained by the Belle
collaboration. These are B(B → Kνν̄) < 1.6 × 10−5 and B(B → K∗νν̄) < 2.7 × 10−5 (90%
C.L.) [432], which lie respectively a factor of 3.9 and 2.7 above the SM predictions [433]. In
the near future, Belle-II aims at measuring the SM value with a O(10%) precision [424]. For
the new physics scenario considered here, the strongest constraint arises from the B → Kνν̄
result.

We have explicitly checked that ∆F = 2 constraints on the effective couplings gaij are less
stringent than the ones presented above for most of the ALP parameter space considered here.
Nevertheless, those constraints should provide the best bounds on caΦ and cW for masses larger
than ∼ 5 GeV, which are out of reach of rare decays, see Fig. 2. Those observables are not
included in our analysis, though, since the consistent assessment of the corresponding limits
would require a complete two-loop computation, as well as the additional consideration of higher
dimension ALP operators, which goes beyond the scope of this thesis.

The constraints set on ALP-electroweak coefficients by data will be analyzed in two steps:
first within a one coupling at a time approach, where either only cW or caΦ are switched on;
next, the {caΦ, cW } parameter space spanned by the simultaneous presence of both couplings
will be considered.

Fig. 2 depicts the allowed values of cW (left panel) and caΦ (right panel) as a function of the
ALP mass, when only one of these two couplings is added to the SM. The constraints obtained
on the {ma, cW } plane (left panel) coincide with those derived in Ref. [291]. The constraints
on the parameter space for {ma, caΦ} (right panel) are a novel contribution of this work. The
case illustrated corresponds to fa = 1 TeV. The quantitative similarity of the exclusion limits
on the two couplings depicted in Fig. 2 is fortuitous; it is easy to check that the constraints on
caΦ become stronger than those for cW for larger values of fa, as expected from the logarithmic
dependence of its contribution, see Eq. (8.2.2).

These plots also indicate that kaon constraints are typically one order of magnitude stronger
than those derived from B-meson decays, although limited to a more restricted ma range. Future
prospects from NA62 and Belle-II are also illustrated in Fig. 2 with dashed lines.
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When both caΦ and cW are simultaneously considered, an interesting pattern of destructive
interference can take place, as anticipated in Sec. 8.2. Fig. 3 depicts the result of combining the
different experimental constraints for fixed values of fa and ma . 0.1 GeV. This shows indeed
that when the relative sign of both couplings is positive, a blind direction in parameter space
appears. This unconstrained direction is exactly aligned for kaon and B-meson decays. For this
reason, additional experimental information is then needed to lift the degeneracy. One possibility
is to consider the decays D → π(a→ inv), which are sensitive to a different combination of caΦ

and cW , since the up- and down-type quark contributions to the term proportional to caΦ have
opposite signs, see Eq. 8.1.3. These decays, however, suffer from a heavy GIM suppression,
and no such experimental searches have been performed to our knowledge. A more promising
possibility is to consider LHC constraints that are sensitive to a specific ALP coupling. For
example, LHC searches for mono-W final states are only sensitive to cW

1. In Ref. [289] the
authors derived the current (projected) bounds

|cW |
fa
. 0.41 (0.16) TeV−1 , (8.3.1)

from 3.2 fb−1 (3 ab−1) of LHC data: these have been superimposed in Fig. 3. Similarly, a
reinterpretation of pp → tt̄ + MET at the LHC would constrain only caΦ, but such analysis
goes beyond the scope of this letter. Typically, LHC constraints are weaker than flavor bounds,
except in the region of parameter space where the flavor signal is suppressed due to a cancellation
between two contributions. In this case, the complementarity of low and high-energy constraints
becomes an important handle on new physics.

8.4 The visible ALP

We analyze next the case of ALPs produced at loop level via rare meson decays, but decaying
into visible states via the same set of bosonic interactions introduced in Eq. (8.1.2). For the
ma range considered in this work, the kinematically accessible decays are a→ γγ, a→ hadrons
and a → ``, with ` = e, µ, τ . Both tree-level and loop-level contributions to the decays are to
be taken into account. Indeed, experimental limits on ALP couplings to photons, electrons, and
nucleons are so stringent that (indirect) loop-induced observables can give stronger constraints
than (direct) tree-level ones [3, 290].

At tree level, cW and caΦ contribute respectively to ALP decays into photons and into fermions.
Nevertheless, the coupling cB may also enter the game for these decays: at tree level for the
photonic channel and at loop level for the fermionic channel. That is, while the parameter
space for the production of an ALP via rare meson decays is still the two-dimensional one in
Eq. (8.1.4), the whole set of ALP electroweak couplings {caΦ, cW , cB} is relevant for the analysis
of visible decay channels. For consistency, all one-loop contributions induced by these three
couplings are to be taken into account.

1Bounds stemming from mono-Z signals are slightly better, but this final state can also be generated by another
coupling (cB), which complicates slightly the reinterpretation in terms of cW and caΦ.
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For instance, the partial width for ALP decay into leptons, including one-loop corrections,
reads

Γ(a→ `+`−) = |c``|2
mam

2
`

8πf2
a

√
1− 4m2

`

m2
a

(8.4.1)

where αem is the fine structure constant and c`` is given at one-loop order by

c`` = caΦ +
3αem

4π

(
3 cW
s2
w

+
5 cB
c2
w

)
log

fa
mW

+
6αem

π

(
cB c

2
w + cW s2

w

)
log

mW

m`
,

(8.4.2)

where sw = sin θw, cw = cos θw and θW denotes the weak mixing angle. For the a → γγ decay,
the partial width reads

Γ(a→ γγ) = |caγγ |2
m3
a

4πf2
a

, (8.4.3)

where the caγγ coupling is defined at tree level, as

caγγ

∣∣∣
tree
≡ cB c2

w + cW s2
w . (8.4.4)

Furthermore, bosonic loops give corrections to caγγ proportional to cW . Fermionic loops may
also induce nonzero values of caγγ at the scale µ = fa, even if the ALP has no tree-level couplings
to gauge bosons, i.e. cW = cB = 0 [290]. To sum up, both cW and caΦ induce one-loop corrections
to the photonic width. Specifically, for ma � ΛQCD,

caγγ

∣∣∣
1−loop

=cW

[
s2
w +

2αem

π
B2(τW )

]
+ cB c

2
w

− caΦ
αem

4π

(
B0 +

m2
a

m2
π −m2

a

)
,

(8.4.5)

where B0 and B2(τf ) are loop functions, which are detailed in Appendix 8.A. For ma � ΛQCD,
the second term in the last line of the above equation is absent, since it stems from π-a mixing
which becomes negligible in this mass range.

For hadronic decays, it is pertinent to consider two separate ma regions: (i) between 3mπ

and 1 GeV, and (ii) above 3 GeV. In the former region, the dominant hadronic decay is a→ 3π
which can be computed by employing chiral pertubation theory [290]. In the region above
3 GeV, the dominant decays are a→ cc̄ and a→ bb̄, which are well described by a perturbative
expression analogous to Eq. (8.4.1) multiplied by the color factor Nc = 3.2 In this work we
remain agnostic about the intermediate region ma ∈ (1, 3) GeV, since several hadronic channels,
which are particularly difficult to estimate reliably, open up for these masses.3 In this region,

2Note that the decay a→ gg is not induced at one-loop level in our setup, since the up- and down-type quark
contributions cancel due to the different signs in Eq. (8.1.3).

3A first attempt to compute these rates by using a data-driven approach in this particular ma interval has
been proposed in Ref. [399] for the GG̃a couplings.
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Figure 4: ALP partial decay widths to various two-particle channels as a function of ma, in presence
of either cW (left panel) or caΦ (right panel), for cW /fa = 1 TeV−1 and caΦ/fa = 1 TeV−1, respectively.
The grey shaded areas correspond: i) to the pion mass region, which is experimentally excluded due to
the large π0-a mixing; ii) the interval (1, 3) GeV, in which the hadronic width cannot be fully assessed
either with chiral estimates or perturbatively.

the total hadronic width Γa will be replaced by its value at the range frontier at ma = 3 GeV.
Note that this is the most conservative choice, since the hadronic width is a continuous and
strictly increasing function of ma.

Fig. 4 illustrates the ALP partial widths as a function ofma, when either only cW (left panel) or
caΦ (right panel) are present, for the benchmark values cW /fa = 1 TeV−1 and caΦ/fa = 1 TeV−1.
The mass thresholds for each of the fermionic channels are clearly delineated.

In order to analyze the impact of an intermediate on-shell ALP on rare meson decays to visible
channels, ALP production via the couplings in Eq. (8.1.2) needs to be convoluted with ALP
decay into SM particles via that same set of couplings. When caΦ and cW are simultaneously
present, a very interesting pattern of constructive/destructive interference is expected. We will
assume for simplicity cB = cW to illustrate the effect. While a positive sign for cW /caΦ leads to
destructive interference in ALP production (see Eq. (8.2.2) and Fig. 3), the opposite can occur in
the subsequent ALP decay into visible channels. Indeed, the decay into leptons shows destructive
interference for negative caΦ/cW , see Eq. (8.4.1). The expectation for the photonic channel is
more involved and depends on the ALP mass: for ma < mπ the terms in the last parenthesis
in Eq. (8.4.5) are both real and positive and the interference pattern is thus analogous to that
for ALP production, while for larger masses it may differ. Table 1 summarizes the interference
pattern expected.
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cW /caφ Production a→ `+`− a→ γγ

> 0 Destructive Constructive Destructive

< 0 Constructive Destructive Constructive

Table 1: ALP-mediated rare meson decays: interference pattern between caΦ and cW in ALP production
and decay as a function of cW /caφ sign, by assuming cB = cW . The a→ γγ column assumes ma < mπ,
see text for details.

Three sets of experimental data that will be considered in order to constrain the {ma, caΦ, cW }
parameter space for a visible ALP: 1) displaced vertices; 2) semileptonic and photonic meson
decays; 3) leptonic meson decays.

1. Displaced vertices. Of particular interest are searches for long-lived scalars, which would
result in displaced vertices. Two ma ranges are pertinent:

(a) ma ∈ (2mµ,mB −mK)

The LHCb collaboration perfomed searches for long-lived (pseudo)scalar particles in the
decays B → K(∗)a, with a → µµ [435, 436]. Limits on B(B → K(∗)a) · B(a → µµ)
which vary between 10−10 and 10−7 are reported as a function of ma and the proper
lifetime, τa. For τa < 1 ps, the limit derived is independent of τa since the ALP would
decay promptly. The best constraints are those for values of τa between 1 ps and 100 ps,
for which the dimuon vertex would be displaced from the interaction vertex. See also
Ref. [415] for a recent reinterpretation of these limits.

(b) ma ∈ (2mµ,mK −mπ)

Similar searches have also been performed by the NA48/2 Collaboration for the decay
K+ → π+a, followed by a→ µµ [434]. The limits reported on B(K+ → π+a)·B(a→ µµ)
decrease with ALP lifetime until τa = 10 ps, becoming constant for smaller values of τa.
The best experimental limits are O(10−10) and obtained for τa ≤ 10 ps.

2. Semileptonic and photonic meson decays. Relevant constraints on ALPs can be inferred from
their indirect contributions to low-energy meson decays. In particular:

(a) Kaon decays. The measured kaon branching fractions B(K+ → π+ee)exp = (3.00 ±
0.09) × 10−7, B(K+ → π+µµ)exp = (9.4 ± 0.6) × 10−8 [19], and B(K+ → π+γγ)exp =
(1.01± 0.06)× 10−7 [439] will be taken into account. In order to avoid the uncertainty
related to the unknown SM long-distance contributions, it will be required that the ALP
contribution alone does not saturate the 2σ experimental bounds.

(b) B-meson decays. Recently, LHCb observed several deviations from the expected values
in ratios of B → K(∗)µµ and B → K(∗)ee decays in different bins of dilepton squared
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Figure 5: Visible ALP: constraints on the absolute value of cW (left panel) and caΦ (right panel) when
these couplings are considered separately, as a function of the ALP mass and for fa = 1 TeV. The exclusion
contours follow from the experimental limits on K+ → π+ a(→ µµ) (red) [434], B → K(∗) a(→ µµ)
(orange) [435, 436], B(KL → µµ) (green) [19], B(Bs → µµ) (blue) [437, 438], B(K → πee) (purple) [19]
and B(K → πγγ) (cyan) [439]. The grey dashed lines are projections for the SHiP experiment [282]. The
unconstrained regions in the range of the LHCb bounds correspond to the masses of several hadronic
resonances which are vetoed in their analysis.

mass [80, 317]. If these anomalies turn out to imply new physics, ALP couplings
would not explain them. More precisely, pseudoscalar effective operators induced by
a heavy mediator cannot reproduce current deviations due to the constraints derived
from B(Bs → µ+µ−)exp [437]. On the other hand, a light ALP with ma . mB −mK

would face stringent limits from LHCb searches for long-lived (pseudo)scalar particles in
B → K(∗)a(→ µµ), as mentioned above [435,436]. For these reasons, we leave out of our
analysis the constraints that would stem from the comparison of exclusive B → K(∗)µµ
measurements with the SM expectation until further clarification is provided by the
B-physics experiments.

3. Leptonic Bs and KL decays:

While the constraints in 1) and 2) above correspond to on-shell ALPs, off-shell contributions
are relevant in leptonic meson decays. LHCb measured B(Bs → µµ)exp = (3.0 ± 0.6+0.3

−0.2) ×
10−9 [437], which agrees with the SM prediction, B(Bs → µµ)SM = (3.65±0.23)×10−9 [438].
The ALP contribution to this observable can be computed by a straightforward modification
of the expressions provided in Ref. [429]. Similarly, we consider the kaon decay B(KL →
µµ)exp = (6.84± 0.11)× 10−9 [19]. In the latter case, we impose once again the conservative
requirement that the ALP (short-distance) contribution does not saturate the 2σ experimental
values. When the complete set of electroweak couplings in Eq. (8.1.2) will be simultaneously
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considered for an off-shell ALP, the interference pattern in the amplitudes can be understood
analogously to the separate discussion on production and decay for on-shell ALPs.
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Figure 6: Visible ALP: Allowed parameter space when the couplings {caW , caΦ} are simultaneously
present, for fa = 1 TeV and ma = 0.1 GeV (upper plots) or ma = 0.3 GeV (lower plots). The different
flat directions observed in the figures correspond to the destructive interferences of both couplings in
ALP production and/or the various ALP channel decays, which depend on the sign of cW /caΦ. See text
for details.
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In analogy with the case of the invisible ALP in the previous section, all of these data will
be analyzed first within a one coupling at a time approach, where either only cW or caΦ are
switched on (as cB by itself cannot mediate FCNC processes). In a second step, the simultaneous
presence of {caΦ, cW , cB} will be taken into account. We assume cB = cW in the figures because
cB has only a modulating role, and this choice does not preclude or fine-tune any particular
decay channel.

Fig. 5 illustrates the allowed values of |cW | (left panel) and |caΦ| (right panel) in the one-
coupling-at-a-time analysis, as a function of the ALP mass and for fa = 1 TeV. Constraints
from B(K → πµµ) [19] are not displayed, since they are superseded by NA48/2 constraints on
long-lived particles in K+ → π+ a(→ µµ) decays. The grey dashed lines are projections for
the SHiP experiment [282]. The figure reflects the stringent constraints from LHCb searches
for displaced vertices in the dimuon channel [415, 435, 436] for the large mass range ma ∈
(2µ,mB −mK), see point 1.(a) above. These limits are more constraining than the analogous
searches performed in the kaon sector [434]. Remarkably, this is in contrast to the invisible
scenario discussed in Sec. 8.3, for which kaon constraints are considerably stronger than those
derived from B-meson decays if K+ → π+a is kinematically allowed. These results, which
take into account only one coupling at a time, could be of special interest in specific new physics
scenarios. For instance, the case of a non-vanishing caΦ with cB and cW disregarded (right panel)
is motivated by perturbative models producing caΦ at tree level but {cB, cW } only at loop level
(e.g. cB ∼ cW ' g2/(16π2) caΦ). Nevertheless, in all generality and for a rigorous approach, the
simultaneous presence of all couplings in the electroweak bosonic basis in Eq. (8.1.2) must be
considered. This may essentially modify the bounds inferred, as discussed above and illustrated
next.

Fig. 6 depicts the bounds resulting when caΦ, cW and cB are simultaneously considered. Once
again, in the ALP mass region in which B-physics data on displaced vertices apply, they are
seen to be more constraining than the bounds inferred from the kaon sector, see Figs. 6c and 6d.
Furthermore, the four panels in the figure clearly illustrate – for two values of ma and cW = cB
– the remarkable pattern of constructive/destructive interference expected from the analysis in
Sec. 8.4 and Table 1. For instance, the two flat directions in the photonic channel in Fig. 6a result
from destructive interference in both production and decay for positive cW /caΦ and ma < mπ.
The rest of the figures can be analogously understood. Once again, the various flat directions in
different channels call for complementarity with collider data and other experimental projects.
In particular, the degeneracy in parameter space which induces the flat direction in Fig. 6a and
Fig. 6c, common to all rare decay channels discussed in this work, could be resolved by LHC
data. Some of the flat directions appearing in ALP decays (cf. e.g. Fig. 6d) could also be probed
by proposed beam-dump experiments such as SHiP, since they can measure ALP decays into
both photons and muons, and because B(a→ µµ) and B(a→ γγ) do not simultaneously vanish.
This is also true for various LHC searches, and so both experiments could be good handles on
removing flat directions, though a full analysis is beyond the scope of this work.
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8.5 Conclusions

The field of axions and ALPs is blooming, with an escalation of efforts both in theory and
experiment. Theoretically, the fact that no new physics has shown up yet at colliders or elsewhere
positions the SM fine-tuning issues as the most pressing ones and leads to further implications
for our perspective of dark matter. The silence of data is calling for a rerouting guided by
fundamental issues such as the strong CP problem and an open-minded approach to hunt for
the generic tell-tale of global hidden symmetries: derivative couplings as given by axions (light
or heavy) and ALPs. Experimentally, the worldwide program to hunt specifically for axions and
ALPs is growing fast. At the same time, other experimental programs are realizing their potential
to tackle the axion and ALP parameter space, e.g. the LHC and beam dump experiments.

In the absence of data supporting any concrete model of physics beyond the SM, effective
Lagrangians provide a model-independent tool based on the SM gauge symmetries. Very often
the effective analyses rely on considering one effective coupling at a time, though, instead of the
complete basis of independent couplings. The time is ripe for further steps in the direction of
a multi-parameter analysis of the ALP effective field theory, and this is the path taken by this
work.

We have considered the impact on FCNC processes of the complete basis of bosonic
electroweak ALP effective operators at leading order (dimension 5), taking into account the
simultaneous action of those couplings. As this basis is flavor-blind, its impact on flavor-changing
transitions (e.g. di → dja, with i 6= j) starts at loop level. Indeed, the experimental accuracy
achieved on rare-decay physics, as well as on limits of ALP couplings to photons, electrons, and
nucleons, is so stringent that loop-induced contributions may provide the best bounds in a large
fraction of the parameter space.

We first revisited previous results in the literature, which had been derived considering just
one operator at a time. We studied next the simultaneous action of the various electroweak
couplings. An interesting pattern of constructive/destructive interference has been uncovered,
which depends on the relative sign of the couplings and on the channel and mass range
considered. In this way, the previous very stringent bounds stemming from kaon and B-
decay data are alleviated. Furthermore, LHC searches for light pseudoscalar particles have
been highlighted as more important in regions where deconstructive interference weakens flavor
bounds. While they are generally considerably less sensitive than flavor observables, LHC
searches are shown to provide complementary information to low-energy probes, exploring
otherwise inaccessible directions in the ALP parameter space. We have also explicitly illustrated
how they can overcome some of the blind directions on rare meson decays identified here.

We have derived the most up-to-date constraints on the effective electroweak ALP parameter
space for two well-motivated scenarios: (i) an ALP decaying into channels invisible at the
detector; (ii) an ALP decaying into γγ, ee and/or µµ. The conclusion is that searches for K →
πνν̄ decays provide the most stringent constraints in the first case. In contrast, for the second
scenario, the strongest constraints arise from searches at LHCb for long-lived (pseudo)scalars
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(displaced vertices) in the decays B → K(∗)a(→ µµ). This illustrates beautifully the potential
of flavor-physics observables to constrain new physics scenarios. These searches will be improved
in the years to come thanks to the experimental effort at NA62, KOTO, LHCb and Belle-II,
providing tantalizing oportunites to discover new physics, complementary to the direct searches
performed at the LHC.

Much remains to be done to fully encompass the ALP parameter space. For instance, the
anomalous ALP gluonic coupling has not been considered in this work. Even if it cannot mediate
FCNC processes, it may impact our results for the visible ALP via the quantitative modification
of the branching ratios. In fact, recent ALP analyses of FCNC decays [3] take into account the
simultaneous presence of the gluonic coupling and just one electroweak ALP coupling, but no
work considers all ALP bosonic couplings together, let alone the complete basis of operators
including the most general fermionic ones. This effort is very involved and will be the object
of future work. In a different realm, note that the type of effective operators considered above
assumes a linear realization of electroweak symmetry breaking; the alternative of analyzing ALP
FCNC processes via the non-linear effective SM Lagrangian is pertinent and also left for future
consideration.

Appendices

Appendix 8.A Loop factors

The loop contributions to the ALP decay into photons and fermions have been computed in
Ref. [290]. The loop functions in Eq. (8.4.5) read

B0 =

( ∑

f =u,c,t

NcQ
2
f B1(τf )−

∑

f = d,c,b,`−α

NcQ
2
f B1(τf )

)
(8.A.1)

where
B1(τ) = 1− τ f2(τ) ,

B2(τ) = 1− (τ − 1) f2(τ) ,
(8.A.2)

with

f(τ) =





arcsin 1√
τ

; τ ≥ 1 ,

π
2 + i

2 ln 1+
√

1−τ
1−√1−τ ; τ < 1 .

(8.A.3)

where τf ≡ 4m2
f/m

2
a, Qf denotes the electric charge of the fermion f and Nf

c is the color
multiplicity (3 for quarks and 1 for leptons.
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Summary and conclusions

This thesis is devoted to explore new dynamical solutions to two central puzzles of the SM, the
strong CP problem and the flavor puzzle, and to study the phenomenological consequences of
such solutions. Complementarily, the model-independent techniques of effective field theories are
applied to the physics of axions and ALPs, in order to charter new territory on their parameter
space.

New dynamical theories

In the first part of the thesis, we have explored new theoretical setups which invoke additional
symmetries and promote couplings to dynamical fields. In the first work, the leptonic Yukawa
couplings are promoted to dynamical fields, looking for an explanation to the fermionic mass
and mixing pattern. In a different realm, two composite (dynamical) axion solutions to the
strong CP problem are proposed to tackle the PQ quality problem with two completely different
strategies: raising the axion mass in the color unified dynamical axion model and, alternatively,
making the Peccei-Quinn symmetry accidental in the automatic PQ symmetry model.

In the flavor territory, the gauging of the leptonic flavor symmetries has been considered here
for the first time. As a remarkable consequence of gauge anomaly cancellation, a universal
underlying Seesaw mechanism for both charged and neutral leptons arises. A characteristic
inverse proportionality relation between each lepton mass and that of its mirror partner results,
and thus the leading flavor signals tend to involve the heavier SM leptons, whose interactions
are less constrained by present data. Two main cases were studied: that of the SM Lagrangian,
and that of its Seesaw type I extension.

− The gauging the SM flavor symmetry SU(3)`×SU(3)E leads to the minimal type I Seesaw
scenario. That is, starting from the pure SM, the anomaly cancellation suggests a Majorana
character for neutrinos as the most economic option. The expected phenomenological
signals are flavor-conserving, and include charged-lepton universality violation (in Z decays
for instance) and non-unitarity of the PMNS matrix. The first particles accessible in the
energy frontier would be a tau mirror lepton and SU(3)E gauge bosons which mediate
µR − τR transitions.

− Gauging instead the flavor symmetries of the type I Seesaw mechanism, assuming the
maximal flavor symmetry for the latter in the massless limit for SM leptons, SU(3)` ×
SU(3)E × SO(3)N , leads to an inverse Seesaw pattern. Besides the discussed new signals
of the previous case, this scenario may also lead to charged lepton flavor non-conserving
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transitions. Although the leading signal depends on the hierarchy among the scalar vevs
and the lepton number violating scale, one of the leading flavor non-conserving signals is
µ→ eee, for almost degenerate light neutrinos.

The phenomenological consequences obtained in the gauged lepton flavor framework have been
compared with those of the effective approach of lepton minimal flavor violation (MFV). We have
found that, while the effective operators generated by integrating out the exotic mirror leptons
resemble those of MFV, the flavor gauge bosons generate distinctive signals at low-energies,
lepton flavor violating decays such as τ → µe+e+ being particularly important to disentangle
both approaches.

Promoting couplings to dynamical fields may provide not only an explanation for the origin
of the flavor pattern but also an elegant solution to a very different issue, that of the strong
CP problem via the axion solution. One possible UV completion of the invisible axion model is
that of composite axions, an approach based on postulating the existence of QCD-colored exotic
massless quarks. These massless fermions are confined into bound states due to an additional
strong sector: one of such bound states is the composite or dynamical axion.

We have implemented here for the first time color unification within a composite axion model.
The confining sector is embedded in a larger group which is spontaneously broken to QCD and an
additional strong group. The studied breaking pattern is SU(6)×SU(3′)→ SU(3)c×SU(3)diag.
Both unbroken groups confine at two different scales, ΛQCD and Λdiag, respectively, with Λdiag ∼
O( TeV) � ΛQCD. The existence of two independent θ-parameters (one for each high energy
group) requires the presence of two anomalous symmetries to solve the strong CP problem. One
of them is implemented via a massless fermion in the 20 representation of SU(6). Regarding
the implementation of the second anomalous symmetry, two alternative ultraviolet complete
models have been explored: in Model I an extra SU(3′) massless fermion is added, while Model
II includes instead a second scalar with the same quantum numbers as the color-unification
breaking scalar. Model I features a composite axion with a PQ scale which is of order Λdiag

and thus low. In Model II, the PQ scale coincides instead with the much larger color-unification
scale, and the associated axion is elementary. We computed the two-loop running of all gauge
couplings involved, showing that the desired separation of all relevant scales is achieved naturally:
a color-unification scale much larger than the two confining ones, Λdiag and ΛQCD, and a robust
separation of the last two due to the SM fields that slow the running of QCD with respect to
that of the extra confining sector.

Strikingly, no standard invisible axion is left in the low-energy spectrum, since the constrained
small-size instantons around the spontaneous breaking scale raise the axion mass, typically at
about the TeV range. This mechanism successfully solves the strong CP problem à la PQ
without a light axion. The novel ultraviolet complete models developed here are proofs of
concept of the feasibility of this type of scenario. This extends the parameter space for an axion
which solves the strong CP problem well beyond the traditional QCD axion band, and drastically
changes the associated phenomenology. With axion scales around the TeV, observable signals
at colliders are expected, in particular pair production of the lightest exotic bound states that
correspond to colored pseudoscalars (QCD octets). Furthermore, massless (or almost massless)
sterile fermions are a low-energy trademark remnant of the massless multiplet that solves the
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SM strong CP problem. Model I may be preferred as it is exclusively based on solving the
strong CP problem dynamically via massless quarks and thus no additional scalars worsen the
EW hierarchy problem. Moreover, Model I is safe regarding the stability of the axion solution
with respect to non-perturbative effects of quantum gravity, as its PQ scales are Λdiag ∼ TeV.

An alternative way to that of lowering the axion scale in order to solve the PQ quality problem
is to build models in which the PQ symmetry arises accidentally, rather than being imposed
in the Lagrangian. In this direction, we have proposed a novel composite axion theory where
the extra confining symmetry is chiral, unlike usual composite axion models which use vectorial
fermions. In consequence, the PQ symmetry is automatic, without any need to invoke extra
symmetries. This setup has been illustrated with a minimal SU(5) confining group with two
massless fermions in its 5̄ and 10 representations, in which the automatic PQ invariance is the
analogous of the B − L symmetry in SU(5) Grand Unified Theory (GUT).

In order to explore whether the global chiral symmetries are spontaneously broken upon
SU(5) confinement, the ‘t Hooft anomaly conditions have been studied for this theory. We
have shown that, while the non-abelian global symmetries must be spontaneously broken for
the theory to be consistent, for the U(1)PQ both alternatives lead to well-defined theories. The
only phenomenologically viable option, though, is that of spontaneously broken PQ symmetry
that results in a composite axion.

Within this framework, due to gauge invariance and chirality, the PQ solution is largely
protected by construction from quantum gravitational corrections stemming from operators with
mass dimension lower than nine. Remarkably, even assuming O(1) coefficient for the putative
leading operator of dimension nine, there are viable values of fa compatible with neutron EDM
bounds, which allow one to explain the full dark matter content of the universe in terms of
axions.

Effective field theories and phenomenology

In the second part of the thesis, the effective field theory framework is applied in order to study
the phenomenological consequences of axions and ALPs. Effective field theories constitute an
exceptional tool to study the low-energy effects of axions. Due to its Goldstone boson nature,
there is a natural separation between the characteristic axion scale and the axion mass. A
consistent description in terms of non-renormalizable effective operators can be thus performed.
Furthermore, the EFT approach is model-independent: it allows one to study not only axions
but more generically ALPs, which arise in a plethora of BSM theories.

In this context, we have studied the axion and ALP couplings to EW gauge bosons in the
presence of gluonic couplings. We have first determined, at leading order in the chiral expansion,
the model-independent components of the coupling of the QCD axion to heavy EW gauge bosons:
gaγZ , gaZZ and gaWW . This contribution stems from the mixing of the axion with the neutral
mesons, π0, η′, induced by the anomalous QCD couplings of the axion. It is relevant whenever
the axion mass and/or the characteristic energy of the physical process at work is smaller than
the QCD scale. We have then extended these results to the case in which there is an extra source
for the axion mass, i.e. heavy axions and ALPs. In this case the axion mixing with the neutral
mesons diminishes with rising axion mass, and thus the model-independent contribution to all
four EW axion couplings vanishes as the axion mass increases above the QCD scale.
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We have also performed a phenomenological analysis, with a two-coupling-at-a-time approach
in order to determine the regions experimentally excluded by present data for gaγγ , gaγZ , gaZZ
and gaWW versus the axion mass. Each EW coupling has been considered simultaneously
with the anomalous gluonic coupling needed to solve the strong CP problem. We found that
certain bounds from previous studies often do not apply in the presence of the gluonic coupling.
Furthermore, we have included an estimation of the one-loop induced bounds for each EW
axion coupling, which leads to supplementary constraints. Finally, it has been shown how gauge
invariance relates the different elements in the set of EW gauge boson couplings to axions/ALPs.
This leads to very interesting consequences in terms of over-constraining the axion parameter
space.

In another work, the case of ALPs with no gluonic couplings has been considered. Following
the path of going beyond the one-coupling-at-a-time analysis we have considered the complete
basis of bosonic electroweak ALP effective operators at leading order. The phenomenological
impact on flavor observables, taking into account the simultaneous action of those couplings,
has been studied. Although its impact on flavor-changing transitions appears first at loop level,
rare-decay experiments are achieving such precise measurements that loop-induced contributions
provide the best bounds in large regions of the parameter space. An interesting pattern of
constructive/destructive interference has been identified. Consequently, previous very stringent
bounds stemming from kaon and B-meson decays are alleviated in some regions of parameter
space. As a result, although LHC searches for light pseudoscalar particles are considerably less
sensitive than flavor observables, they can give complementary information in regions where
destructive interference weakens flavor bounds.

We have then derived the most up-to-date constraints on the effective electroweak ALP
parameter space for two well-motivated scenarios: (i) a long-lived ALP or an ALP decaying
into invisible channels; (ii) an ALP decaying into γγ, ee and/or µµ. Searches for K → π + inv
decays provide the most stringent constraints in the first case; whereas, for the second scenario,
the strongest constraints arise from searches at LHCb for long-lived pseudoscalars that generate
displaced vertices in the decays B → K(∗)a(→ µµ). These searches are expected to be improved
by the upcoming experimental results by NA62, KOTO, LHCb and Belle-II, providing tantalizing
opportunities to discover new physics, complementary to the direct searches performed at the
LHC.

The fact that no new physics has shown up yet at colliders or elsewhere positions the SM
fine-tuning issues as the most pressing. The situation calls for an open-minded approach to
alternative solutions to them. Within this thesis we have proposed some dynamical scenarios
addressing the flavor and the strong CP puzzles. Theoretical developments, though, need to
come along with phenomenological studies and, in the absence of BSM signals, the EFT provides
an exceptional tool to explore a more complete theory of nature. Indeed, much remains to be
done to fully encompass the axion and ALP parameter space. A multiparameter analysis taking
into account simultaneously the effects of the operators in the full basis is pertinent. This must
include one-loop effects, since they have been shown to have a strong impact on the constraints.
The quest to identify a dynamical origin to the flavor and strong CP puzzles remains open. This
is a fundamental and fascinating endeavor plausibly awaiting major discoveries.



Resumen y conclusiones

Esta tesis está dedicada a explorar nuevas soluciones dinámicas a dos enigmas centrales del
Modelo Estándar (ME): el problema CP fuerte y el puzzle del sabor, aśı como a estudiar las
consecuencias fenomenológicas de tales soluciones. Complementariamente, se han aplicado las
técnicas de teoŕıas efectivas de campos (TEC), que no dependen del modelo concreto, a la f́ısica
de axiones y de part́ıculas de tipo axión (PPTA), con el fin de explorar nuevos territorios en su
espacio de parámetros.

Nuevas teoŕıas dinámicas

En la primera parte de la tesis, hemos explorado nuevas propuestas teóricas que hacen uso
de simetŕıas adicionales y en las que ciertos acoplos son considerados como campos dinámicos.
En el primer trabajo, los acoplos de Yukawa leptónicos son ascendidos a campos dinámicos,
buscando una explicación a la estructura de masas y de parámetros de mezcla de los fermiones.
En un ámbito diferente, se han propuesto dos soluciones de axión compuesto (dinámico) al
problema CP fuerte que abordan el problema de la calidad de la simetŕıa Peccei-Quinn (PQ)
con dos estrategias completamente diferentes: elevando la masa del axión en el modelo de axión
dinámico con unificación del color y, alternativamente, obteniendo la simetŕıa de PQ de forma
accidental en el modelo de simetŕıa de PQ automática.

En el territorio del sabor, se ha considerado por primera vez que las simetŕıas de sabor
leptónicas sean simetŕıas gauge. Como consecuencia de la cancelación de las anomaĺıas gauge,
surge un mecanismo de seesaw universal para los todos los leptones, tanto cargados como neutros.
Como parte de este mecanismo surge de forma caracteŕıstica una relación de proporcionalidad
inversa entre la masa de cada leptón y la de su pareja y, por lo tanto, las principales señales
de sabor tienden a involucrar a los leptones ME más pesados, cuyas interacciones están menos
restringidas por los datos actuales. Se han estudiado dos casos principales: el del Lagrangiano
del ME y el de su extensión con el seesaw de tipo I.

− Convertir la simetŕıa de sabor ME, SU(3)` × SU(3)E , en una simetŕıa gauge conduce
al escenario mı́nimo de seesaw tipo I. Es decir, partiendo del ME puro, la cancelación
de las anomaĺıas sugiere un carácter Majorana para los neutrinos como opción más
económica. Las señales fenomenológicas esperadas conservan el sabor e incluyen violación
de la universalidad de los leptones cargados (en desintegraciones del bosón Z , por ejemplo)
y la no unitariedad de la matriz PMNS. Las primeras part́ıculas accesibles seŕıan la pareja
del leptón tau y bosones gauge del grupo SU(3)E , que median transiciones µR − τR.
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− En cambio, convertir las simetŕıas de sabor del escenario seesaw tipo I en simetŕıas gauge
conduce a un modelo seesaw inverso, asumiendo la máxima simetŕıa de sabor en el ĺımite
en el que los leptones del ME no tienen masa, es decir, SU(3)`×SU(3)E×SO(3)N . Además
de las nuevas señales discutidas en el caso anterior, este escenario también puede conducir
a transiciones que no conservan el sabor en leptones cargados. Aunque la señal dominante
de este escenario depende de la jerarqúıa entre los valores esperados en el vaćıo de los
escalares y la escala de violación del número leptónico, una de las señales caracteŕısticas
que violan el sabor en este modelo es µ→ eee, para neutrinos ligeros casi degenerados.

Las consecuencias fenomenológicas obtenidas para las teoŕıas en las que las simetŕıas leptónicas
de sabor son de tipo gauge se han comparado con las del enfoque efectivo de violación mı́nima del
sabor (VMS). Hemos descubierto que, si bien los operadores efectivos generados al desacoplar
los leptones exóticos coinciden con los de VMS, los bosones gauge de sabor generan señales
distintivas a bajas enerǵıas, siendo particularmente relevantes a la hora de distinguir ambos
enfoques las desintegraciones leptónicas que violan el sabor, como τ → µe+e+.

La promoción de los acoplos a campos dinámicos puede proporcionar no sólo una explicación
al origen de sabor, sino también una solución elegante a un problema muy diferente, el problema
CP fuerte, gracias a la solución de tipo axion. Un posible modelo que completa en el ultravioleta
el modelo de axión invisible es el axión compuesto, un enfoque basado en postular la existencia
de quarks exóticos sin masa con carga de color bajo QCD. Estos fermiones sin masa están
confinados en estados ligados debido a un sector fuerte adicional: uno de estos estados ligados
es el axión dinámico o compuesto.

Hemos implementado por primera vez la unificación del color en un modelo de axión
compuesto. El sector confinante está incluido dentro de un grupo más grande que se rompe
espontáneamente en QCD y un grupo fuerte adicional. El patrón de ruptura considerado es
SU(6)×SU(3′)→ SU(3)c×SU(3)diag. Los dos grupos exactos confinan en dos escalas diferentes,
ΛQCD y Λdiag, respectivamente, con Λdiag ∼ O( TeV )� ΛQCD. La existencia de dos parámetros
independientes θ (uno para cada grupo a altas enerǵıas) requiere de la presencia de dos simetŕıas
anómalas para resolver el problema CP fuerte. Una de ellas se implementa a través de un fermión
sin masa en la representación de 20 de SU(6). Con respecto a la implementación de la segunda
simetŕıa anómala, se han explorado dos modelos completos alternativos: en el Modelo I se
introduce otro fermión sin masa transformando bajo SU(3′), mientras que el Modelo II incluye
un segundo escalar con los mismos números cuánticos que el escalar que rompe el grupo unificado
de color. El modelo I presenta un axión compuesto con una escala PQ del orden de Λdiag y, por lo
tanto, baja. En el Modelo II, la escala PQ coincide la escala de unificación de color que es mucho
más grande, y el axión asociado es elemental. Hemos calculado la dependencia con la enerǵıa
de las constantes de acoplo involucradas hasta dos loops, mostrando que la separación deseada
de todas las escalas relevantes se logra forma natural: la escala de unificación de color es mucho
más grande que las dos escalas de confinamiento, Λdiag y ΛQCD, y además estas dos últimas
también aparecen naturalmente separadas debido a que los campos ME suavizan la dependencia
con la enerǵıa del acoplo de QCD con respecto al del sector de confinamiento adicional.

Sorprendentemente, no queda ningún axión invisible al uso en el espectro de baja enerǵıa,
ya que los instantones de pequeño tamaño alrededor de la escala de ruptura espontánea
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aumentan la masa del axión, t́ıpicamente hasta escalas del orden del TeV. Este mecanismo
permite resolver con éxito el problema CP fuerte à la PQ sin un axión ligero. Estos nuevos
modelos completos son pruebas de concepto de la viabilidad de este tipo de escenario. Esto
extiende el espacio de parámetros para un axión que resuelve el problema CP fuerte mucho más
allá de la banda de axiones de QCD tradicionales, y cambia drásticamente la fenomenoloǵıa
asociada. Con escalas del axión alrededor del TeV, se esperan señales observables en los
colisionadores, en particular la producción por pares de los estados ligados exóticos más ligeros,
que corresponden a pseudoescalares de color (octetes de QCD). Además, fermiones estériles sin
masa (o prácticamente sin masa) son un remanente caracteŕıstico a bajas enerǵıas del multiplete
sin masa que resuelve el problema CP fuerte. El Modelo I resulta más atractivo ya que se basa
exclusivamente en quarks sin masa para resolver el problema CP fuerte dinámicamente y, por lo
tanto, ningún escalar adicional empeora el problema de la jerarqúıa electrodébil (ED). Además,
el Modelo I es seguro en relación a la estabilidad de la solución de tipo axión con respecto a
posibles efectos no perturbativos provenientes de correcciones de gravedad cuántica, ya que sus
escalas de PQ son Λdiag ∼ TeV.

Una forma alternativa a reducir la escala del axión para resolver el problema de la calidad de
la simetŕıa PQ consiste en construir modelos en los que la simetŕıa PQ surge accidentalmente,
en lugar de imponerse en el Lagrangiano. En esta dirección, hemos propuesto una nueva teoŕıa
de axiones compuestos donde la simetŕıa de confinamiento adicional es quiral, a diferencia de
los modelos de axiones compuestos habituales que usan fermiones vectoriales. En consecuencia,
la simetŕıa PQ es automática, sin necesidad de recurrir a simetŕıas adicionales. Esta idea se
ha ilustrado con un grupo de confinamiento mı́nimo SU(5) con dos fermiones sin masa en
representaciones 5̄ y 10. Con este contenido de materia, la invariancia PQ surge de forma
automática y es análoga a la simetŕıa B − L en Teoŕıas de Gran Unificación SU(5).

Para explorar si las simetŕıas quirales globales están espontáneamente rotas tras el
confinamiento del grupo SU(5), se han estudiado las condiciones de matching de las anomaĺıas
de ‘t Hooft. Hemos demostrado que, si bien las simetŕıas globales no abelianas deben romperse
espontáneamente para que la teoŕıa sea consistente, para la simetŕıa U(1)PQ ambas alternativas
conducen a teoŕıas bien definidas. Sin embargo, la única opción fenomenológicamente viable es
que la simetŕıa de PQ se rompa espontáneamente, dando como resultado un axión compuesto.

Dentro de este marco, debido a la invariancia gauge y la quiralidad, la solución PQ está
ampliamente protegida por construcción de correcciones gravitacionales cuánticas derivadas de
operadores con dimensión menor que nueve. Sorprendentemente, incluso suponiendo que el
coeficiente del posible operador dominante de dimensión nueve es O(1), existen valores viables
de fa compatibles con los ĺımites del momento dipolar eléctrico del neutrón que permiten explicar
el total del contenido de materia oscura del universo en términos de axiones.

Teoŕıas y fenomenoloǵıa de un campo efectivo

En la segunda parte de la tesis, se ha aplicado el marco de las teoŕıas efectivas de campos para
estudiar las consecuencias fenomenológicas de axiones y part́ıculas tipo axión. Las teoŕıas de
campo efectivas constituyen una herramienta excelente para estudiar los efectos a bajas enerǵıas
de los axiones. Debido a su naturaleza de bosón de Goldstone, existe una separación natural
entre la escala caracteŕıstica del axión y su masa. Por tanto, se puede realizar una descripción
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consistente en términos de operadores efectivos no renormalizables. Además, el enfoque de
TEC es independiente del modelo: permite estudiar no solo axiones, sino más genéricamente
PPTA, que surgen en una gran cantidad de teoŕıas más allá del ME. En este contexto, hemos
estudiado los acoplos de axiones y PPTA con los bosones gauge electrodébiles en presencia de
acoplos gluónicos. En primer lugar, hemos determinado, a primer orden en la expansión quiral,
la contribución al acoplo del axión a los bosones gauge ED pesados (gaγZ , gaZZ y gaWW ) que no
depende del modelo concreto. Esta contribución proviene de la mezcla del axión con los mesones
neutros, π0, y η′, inducida por el acoplo del axión a la anomaĺıa de QCD. Dicha contribución es
relevante siempre que la masa del axión y/o la enerǵıa caracteŕıstica del proceso f́ısico sea menor
que la escala de QCD. Posteriormente hemos extendido estos resultados al caso en el que hay
una fuente adicional para la masa del axión, es decir, axiones pesados y PPTA. En este caso,
la mezcla del axión con los mesones neutros disminuye al aumentar la masa del axión y, por lo
tanto, la contribución que no depende del modelo a los cuatro acoplos ED del axión desaparece
a medida que la masa del axión aumenta por encima de la escala de confinamiento QCD.

También hemos realizado un análisis fenomenológico, teniendo en cuenta los efectos de dos
acoplos del axión de forma simultánea para determinar las regiones excluidas experimentalmente
por los datos actuales para gaγγ , gaγZ , gaZZ y gaWW , frente a la masa del axión. Cada acoplo
ED se ha considerado simultáneamente con el acoplo gluónico anómalo necesario para resolver
el problema CP fuerte. Hemos descubierto que ciertos ĺımites de estudios previos a menudo
no se aplican en presencia del acoplo gluónico. Además, hemos incluido una estimación de los
ĺımites inducidos a un loop para cada acoplo ED del axión, lo que conduce a cotas adicionales.
Finalmente, se ha demostrado cómo la invariancia gauge relaciona los diferentes acoplos de
bosones gauge ED con axiones/PPTA. Esto lleva a consecuencias muy interesantes en términos
de acotar espacio de parámetros del axión con múltiples estrategias complementarias.

En otro trabajo, se ha considerado la fenomenoloǵıa de las PPTA sin acoplos gluónicos.
Siguiendo el camino de ir más allá del análisis en el que sólo un acoplo es considerado a la vez,
hemos construido la base completa de operadores efectivos de bosones electrodébiles acoplados a
PPTA a primer orden. Hemos estudiado el impacto fenomenológico en los observables de sabor,
teniendo en cuenta la acción simultánea de esos acoplos. Aunque su impacto en las transiciones
de tipo FCNC aparece a nivel de loop, los experimentos de desintegraciones de mesones con
cambio de sabor están logrando medidas tan precisas que las contribuciones inducidas a un loop
proporcionan los ĺımites más restrictivos en grandes regiones del espacio de parámetros. Hemos
identificado un patrón interesante de interferencia constructiva/destructiva. Como consecuencia,
ĺımites previos muy estrictos derivados de las desintegraciones de kaones y mesones B se ven
aliviados en algunas regiones del espacio de parámetros. Por ello, aunque las búsquedas de
pseudoescalares ligeros en el LHC sean considerablemente menos sensibles que los observables de
sabor, estas pueden proporcionar información complementaria en regiones donde la interferencia
destructiva debilita los ĺımites de sabor.

Hemos derivado las cotas más actualizadas sobre el espacio de parámetros de la PPTA con
acoplos electrodébiles para dos escenarios bien motivados: (i) una PTA de larga vida media,
o que se desintegra en canales invisibles; (ii) una PTA que se desintegra en γγ, ee y/o µµ.
Las búsquedas de desintegraciones K → π + inv proporcionan las cotas más restrictivas en
el primer caso; mientras que, para el segundo escenario, las cotas más fuertes surgen de las
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búsquedas de pseudoescalares con larga vida media en LHCb que generan vértices desplazados
en las desintegraciones B → K(∗)a(→ µµ). Se espera que los resultados de estas búsquedas
mejoren gracias a los próximos resultados experimentales de NA62, KOTO, LHCb y Belle-II,
que brindarán oportunidades únicas para descubrir nueva f́ısica, de forma complementaria a las
búsquedas directas realizadas en el LHC.

El hecho de que todav́ıa no se haya descubierto nueva f́ısica en colisionadores ni en otros
experimentos nos hace volver la vista hacia los enigmas teóricos o problemas de ajuste fino
del ME. Esta situación requiere que exploremos con la mente abierta soluciones alternativas.
En esta tesis, hemos propuesto escenarios dinámicos que solucionan el problema del sabor y el
problema CP fuerte. No obstante, los desarrollos teóricos deben venir acompañados de estudios
fenomenológicos y, en ausencia de señales más allá del ME, la TEC proporciona una herramienta
excepcional para explorar una teoŕıa de la naturaleza más completa. De hecho, queda mucho
por hacer para abarcar completamente el espacio de parámetros del axión y de la PTA. Es
pertinente un análisis multiparamétrico que tenga en cuenta simultáneamente los efectos de
todos los operadores. Además, este futuro análisis debe incluir efectos de un loop, ya que
se ha demostrado que tienen un fuerte impacto en las cotas experimentales. La búsqueda para
identificar un origen dinámico para el sabor y el problema CP fuerte permanece abierta. Se trata
de un proyecto fundamental y fascinante, que posiblemente llevará a grandes descubrimientos.
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matter with the FUNK experiment,” PoS ICRC2017 (2018) 880, arXiv:1711.02958
[hep-ex]. 84

[280] nEDM Collaboration, J. Zenner, “The nEDM experiment at the Paul Scherrer
Institute, Switzerland,” AIP Conf. Proc. 1560 no. 1, (2013) 254–256. 84

[281] NA62 Collaboration, E. Cortina Gil et al., “The Beam and detector of the NA62
experiment at CERN,” JINST 12 no. 05, (2017) P05025, arXiv:1703.08501
[physics.ins-det]. 84

[282] S. Alekhin et al., “A facility to Search for Hidden Particles at the CERN SPS: the SHiP
physics case,” Rept. Prog. Phys. 79 no. 12, (2016) 124201, arXiv:1504.04855
[hep-ph]. 84, 227, 229

[283] Belle-II Collaboration, G. De Pietro, “First data at Belle II and Dark Sector physics,”
PoS BEAUTY2018 (2018) 034, arXiv:1808.00776 [hep-ex]. 84

[284] MATHUSLA Collaboration, C. Alpigiani et al., “A Letter of Intent for MATHUSLA:
A Dedicated Displaced Vertex Detector above ATLAS or CMS.,” arXiv:1811.00927

[physics.ins-det]. 84

[285] J. L. Feng, I. Galon, F. Kling, and S. Trojanowski, “Axionlike particles at FASER: The
LHC as a photon beam dump,” Phys. Rev. D98 no. 5, (2018) 055021,
arXiv:1806.02348 [hep-ph]. 84

[286] V. V. Gligorov, S. Knapen, M. Papucci, and D. J. Robinson, “Searching for Long-lived
Particles: A Compact Detector for Exotics at LHCb,” Phys. Rev. D97 no. 1, (2018)
015023, arXiv:1708.09395 [hep-ph]. 84

[287] J. Jaeckel and M. Spannowsky, “Probing MeV to 90 GeV axion-like particles with LEP
and LHC,” Phys. Lett. B753 (2016) 482–487, arXiv:1509.00476 [hep-ph]. 84, 181,
182, 202

[288] K. Mimasu and V. Sanz, “ALPs at Colliders,” JHEP 06 (2015) 173, arXiv:1409.4792
[hep-ph]. 84, 181, 182, 199, 202, 209

[289] I. Brivio, M. B. Gavela, L. Merlo, K. Mimasu, J. M. No, R. del Rey, and V. Sanz, “ALPs
Effective Field Theory and Collider Signatures,” Eur. Phys. J. C77 no. 8, (2017) 572,
arXiv:1701.05379 [hep-ph]. 84, 181, 182, 183, 204, 205, 217, 218, 221, 223

http://dx.doi.org/10.1103/PhysRevX.4.021030
http://dx.doi.org/10.1103/PhysRevX.4.021030
http://arxiv.org/abs/1306.6089
http://dx.doi.org/10.1088/1742-6596/718/4/042051
http://arxiv.org/abs/1511.09461
http://dx.doi.org/10.22323/1.301.0880
http://arxiv.org/abs/1711.02958
http://arxiv.org/abs/1711.02958
http://dx.doi.org/10.1063/1.4826767
http://dx.doi.org/10.1088/1748-0221/12/05/P05025
http://arxiv.org/abs/1703.08501
http://arxiv.org/abs/1703.08501
http://dx.doi.org/10.1088/0034-4885/79/12/124201
http://arxiv.org/abs/1504.04855
http://arxiv.org/abs/1504.04855
http://dx.doi.org/10.22323/1.326.0034
http://arxiv.org/abs/1808.00776
http://arxiv.org/abs/1811.00927
http://arxiv.org/abs/1811.00927
http://dx.doi.org/10.1103/PhysRevD.98.055021
http://arxiv.org/abs/1806.02348
http://dx.doi.org/10.1103/PhysRevD.97.015023
http://dx.doi.org/10.1103/PhysRevD.97.015023
http://arxiv.org/abs/1708.09395
http://dx.doi.org/10.1016/j.physletb.2015.12.037
http://arxiv.org/abs/1509.00476
http://dx.doi.org/10.1007/JHEP06(2015)173
http://arxiv.org/abs/1409.4792
http://arxiv.org/abs/1409.4792
http://dx.doi.org/10.1140/epjc/s10052-017-5111-3
http://arxiv.org/abs/1701.05379


264 Bibliography

[290] M. Bauer, M. Neubert, and A. Thamm, “Collider Probes of Axion-Like Particles,” JHEP
12 (2017) 044, arXiv:1708.00443 [hep-ph]. 84, 181, 182, 194, 196, 197, 217, 218, 223,
224, 231

[291] E. Izaguirre, T. Lin, and B. Shuve, “Searching for Axionlike Particles in Flavor-Changing
Neutral Current Processes,” Phys. Rev. Lett. 118 no. 11, (2017) 111802,
arXiv:1611.09355 [hep-ph]. 84, 181, 203, 204, 217, 218, 220, 222

[292] G. D’Ambrosio, G. Giudice, G. Isidori, and A. Strumia, “Minimal flavor violation: An
Effective field theory approach,” Nucl.Phys. B645 (2002) 155–187,
arXiv:hep-ph/0207036 [hep-ph]. 87

[293] A. Anselm and Z. Berezhiani, “Weak mixing angles as dynamical degrees of freedom,”
Nucl. Phys. B484 (1997) 97–123, arXiv:hep-ph/9605400 [hep-ph]. 87

[294] R. Barbieri, L. J. Hall, G. L. Kane, and G. G. Ross, “Nearly degenerate neutrinos and
broken flavor symmetry,” arXiv:hep-ph/9901228 [hep-ph]. 87

[295] Z. Berezhiani and A. Rossi, “Flavor structure, flavor symmetry and supersymmetry,”
Nucl. Phys. Proc. Suppl. 101 (2001) 410–420, arXiv:hep-ph/0107054 [hep-ph].
[,410(2001)]. 87

[296] P. F. Harrison and W. G. Scott, “Covariant extremisation of flavor-symmetric Jarlskog
invariants and the neutrino mixing matrix,” Phys. Lett. B628 (2005) 93,
arXiv:hep-ph/0508012 [hep-ph]. 87

[297] T. Feldmann, M. Jung, and T. Mannel, “Sequential Flavour Symmetry Breaking,”
Phys.Rev. D80 (2009) 033003, arXiv:0906.1523 [hep-ph]. 87

[298] R. Alonso, M. Gavela, L. Merlo, and S. Rigolin, “On the scalar potential of minimal
flavour violation,” JHEP 1107 (2011) 012, arXiv:1103.2915 [hep-ph]. 87, 88

[299] R. Alonso, M. Gavela, D. Hernandez, and L. Merlo, “On the Potential of Leptonic
Minimal Flavour Violation,” Phys.Lett. B715 (2012) 194–198, arXiv:1206.3167
[hep-ph]. 87, 88, 91

[300] J. R. Espinosa, C. S. Fong, and E. Nardi, “Yukawa hierarchies from spontaneous
breaking of the SU(3)L × SU(3)R flavour symmetry?,” JHEP 02 (2013) 137,
arXiv:1211.6428 [hep-ph]. 87

[301] R. Alonso, M. B. Gavela, D. Hernández, L. Merlo, and S. Rigolin, “Leptonic Dynamical
Yukawa Couplings,” JHEP 08 (2013) 069, arXiv:1306.5922 [hep-ph]. 87, 88, 91, 120

[302] R. Alonso, M. Gavela, G. Isidori, and L. Maiani, “Neutrino Mixing and Masses from a
Minimum Principle,” JHEP 1311 (2013) 187, arXiv:1306.5927 [hep-ph]. 87, 88, 91,
120

[303] T. Feldmann, “See-Saw Masses for Quarks and Leptons in SU(5),” JHEP 1104 (2011)
043, arXiv:1010.2116 [hep-ph]. 87

http://dx.doi.org/10.1007/JHEP12(2017)044
http://dx.doi.org/10.1007/JHEP12(2017)044
http://arxiv.org/abs/1708.00443
http://dx.doi.org/10.1103/PhysRevLett.118.111802
http://arxiv.org/abs/1611.09355
http://dx.doi.org/10.1016/S0550-3213(02)00836-2
http://arxiv.org/abs/hep-ph/0207036
http://dx.doi.org/10.1016/S0550-3213(96)00597-4
http://arxiv.org/abs/hep-ph/9605400
http://arxiv.org/abs/hep-ph/9901228
http://dx.doi.org/10.1016/S0920-5632(01)01527-4
http://arxiv.org/abs/hep-ph/0107054
http://dx.doi.org/10.1016/j.physletb.2005.09.009
http://arxiv.org/abs/hep-ph/0508012
http://dx.doi.org/10.1103/PhysRevD.80.033003
http://arxiv.org/abs/0906.1523
http://dx.doi.org/10.1007/JHEP07(2011)012
http://arxiv.org/abs/1103.2915
http://dx.doi.org/10.1016/j.physletb.2012.07.056
http://arxiv.org/abs/1206.3167
http://arxiv.org/abs/1206.3167
http://dx.doi.org/10.1007/JHEP02(2013)137
http://arxiv.org/abs/1211.6428
http://dx.doi.org/10.1007/JHEP08(2013)069
http://arxiv.org/abs/1306.5922
http://dx.doi.org/10.1007/JHEP11(2013)187
http://arxiv.org/abs/1306.5927
http://dx.doi.org/10.1007/JHEP04(2011)043
http://dx.doi.org/10.1007/JHEP04(2011)043
http://arxiv.org/abs/1010.2116


Bibliography 265

[304] D. Guadagnoli, R. N. Mohapatra, and I. Sung, “Gauged Flavor Group with Left-Right
Symmetry,” JHEP 04 (2011) 093, arXiv:1103.4170 [hep-ph]. 87

[305] A. J. Buras, L. Merlo, and E. Stamou, “The Impact of Flavour Changing Neutral Gauge
Bosons on B̄ → XSγ,” JHEP 08 (2011) 124, arXiv:1105.5146 [hep-ph]. 87

[306] A. J. Buras, M. V. Carlucci, L. Merlo, and E. Stamou, “Phenomenology of a Gauged
SU(3)3 Flavour Model,” JHEP 1203 (2012) 088, arXiv:1112.4477 [hep-ph]. 87

[307] B. Fornal, Baryon number violation beyond the standard model. PhD thesis, Caltech,
2014. http://resolver.caltech.edu/CaltechTHESIS:04082014-225653991. 87, 88

[308] T. Feldmann, C. Luhn, and P. Moch, “Lepton-Flavour Violation in a Pati-Salam Model
with Gauged Flavour Symmetry,” arXiv:1608.04124 [hep-ph]. 87

[309] Z. G. Berezhiani and M. Yu. Khlopov, “The Theory of broken gauge symmetry of
families. (In Russian),” Sov. J. Nucl. Phys. 51 (1990) 739–746. [Yad. Fiz.51,1157(1990)].
88

[310] V. Cirigliano and B. Grinstein, “Phenomenology of Minimal Lepton Flavor Violation,”
Nucl. Phys. B752 (2006) 18–39, arXiv:hep-ph/0601111 [hep-ph]. 88, 115, 118

[311] S. Davidson and F. Palorini, “Various definitions of Minimal Flavour Violation for
Leptons,” Phys.Lett. B642 (2006) 72–80, arXiv:hep-ph/0607329 [hep-ph]. 88, 115

[312] M. Gavela, T. Hambye, D. Hernandez, and P. Hernandez, “Minimal Flavour Seesaw
Models,” JHEP 0909 (2009) 038, arXiv:0906.1461 [hep-ph]. 88, 115, 117

[313] R. Alonso, G. Isidori, L. Merlo, L. A. Munoz, and E. Nardi, “Minimal flavour violation
extensions of the seesaw,” JHEP 1106 (2011) 037, arXiv:1103.5461 [hep-ph]. 88, 93,
115

[314] M. Blennow and E. Fernandez-Martinez, “Parametrization of Seesaw Models and Light
Sterile Neutrinos,” Phys. Lett. B704 (2014) 223–229, arXiv:1107.3992 [hep-ph]. 98

[315] Particle Data Group Collaboration, K. A. Olive et al., “Review of Particle Physics,”
Chin. Phys. C38 (2014) 090001. 101, 103, 114

[316] LHCb Collaboration, R. Aaij et al., “Measurement of Form-Factor-Independent
Observables in the Decay B0 → K∗0µ+µ−,” Phys. Rev. Lett. 111 (2013) 191801,
arXiv:1308.1707 [hep-ex]. 101

[317] LHCb Collaboration, R. Aaij et al., “Test of lepton universality using B+ → K+`+`−

decays,” Phys. Rev. Lett. 113 (2014) 151601, arXiv:1406.6482 [hep-ex]. 101, 227

[318] E. Fernandez-Martinez, J. Hernandez-Garcia, and J. Lopez-Pavon, “Global constraints
on heavy neutrino mixing,” JHEP 08 (2016) 033, arXiv:1605.08774 [hep-ph]. 101,
112

http://dx.doi.org/10.1007/JHEP04(2011)093
http://arxiv.org/abs/1103.4170
http://dx.doi.org/10.1007/JHEP08(2011)124
http://arxiv.org/abs/1105.5146
http://dx.doi.org/10.1007/JHEP03(2012)088
http://arxiv.org/abs/1112.4477
http://resolver.caltech.edu/CaltechTHESIS:04082014-225653991
http://arxiv.org/abs/1608.04124
http://dx.doi.org/10.1016/j.nuclphysb.2006.06.021
http://arxiv.org/abs/hep-ph/0601111
http://dx.doi.org/10.1016/j.physletb.2006.09.016
http://arxiv.org/abs/hep-ph/0607329
http://dx.doi.org/10.1088/1126-6708/2009/09/038
http://arxiv.org/abs/0906.1461
http://dx.doi.org/10.1007/JHEP06(2011)037
http://arxiv.org/abs/1103.5461
http://dx.doi.org/10.1016/j.physletb.2011.09.028
http://arxiv.org/abs/1107.3992
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1103/PhysRevLett.111.191801
http://arxiv.org/abs/1308.1707
http://dx.doi.org/10.1103/PhysRevLett.113.151601
http://arxiv.org/abs/1406.6482
http://dx.doi.org/10.1007/JHEP08(2016)033
http://arxiv.org/abs/1605.08774


266 Bibliography

[319] S. Antusch and O. Fischer, “Non-unitarity of the leptonic mixing matrix: Present bounds
and future sensitivities,” JHEP 10 (2014) 094, arXiv:1407.6607 [hep-ph]. 101, 111

[320] L3 Collaboration, P. Achard et al., “Search for heavy neutral and charged leptons in
e+e− annihilation at LEP,” Phys. Lett. B517 (2001) 75–85, arXiv:hep-ex/0107015
[hep-ex]. 101

[321] ATLAS Collaboration, T. A. collaboration, “Search for supersymmetry with two and
three leptons and missing transverse momentum in the final state at

√
s = 13 TeV with

the ATLAS detector,”. 102

[322] E. Eichten, K. D. Lane, and M. E. Peskin, “New Tests for Quark and Lepton
Substructure,” Phys. Rev. Lett. 50 (1983) 811–814. [,369(1983)]. 102

[323] DELPHI, OPAL, LEP Electroweak, ALEPH, L3 Collaboration, S. Schael et al.,
“Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at
LEP,” Phys. Rept. 532 (2013) 119–244, arXiv:1302.3415 [hep-ex]. 103

[324] R. Jackiw and S. Weinberg, “Weak interaction corrections to the muon magnetic
moment and to muonic atom energy levels,” Phys. Rev. D5 (1972) 2396–2398. 103

[325] F. S. Queiroz and W. Shepherd, “New Physics Contributions to the Muon Anomalous
Magnetic Moment: A Numerical Code,” Phys. Rev. D89 no. 9, (2014) 095024,
arXiv:1403.2309 [hep-ph]. 103

[326] R. N. Mohapatra, “Mechanism for understanding small neutrino mass in superstring
theories,” Phys. Rev. Lett. 56 (Feb, 1986) 561–563.
http://link.aps.org/doi/10.1103/PhysRevLett.56.561. 105

[327] R. N. Mohapatra and J. W. F. Valle, “Neutrino mass and baryon-number
nonconservation in superstring models,” Phys. Rev. D 34 (Sep, 1986) 1642–1645.
http://link.aps.org/doi/10.1103/PhysRevD.34.1642. 105
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