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1 Introduction

Supersymmetry breaking can be generated with a diversity of methods in four-dimensional

supergravity [1], but to understand which of the resulting models might descend from

string theory is non-trivial: not all the supergravity constructions are expected to share a

connection with the physics in the high energy regime. One of the most studied mechanisms

for spontaneous supersymmetry breaking in four dimensions is D-term breaking. The

prototype example in global supersymmetry is due to Fayet and Iliopoulos [2], while the

non-trivial extension to supergravity has been constructed by Freedman [3]. The presence

of a Fayet-Iliopoulos D-term in N = 1 supergravity requires the existence of a local U(1)

R-symmetry, which restricts the allowed interactions [4, 5] and hinders a connection with

string theory [6, 7].

A new embedding of the Fayet-Iliopoulos D-term in supergravity has been constructed

in [8]. It does not require the gauging of the R-symmetry and thus avoids the aforemen-

tioned restrictions. For instance, the no-go theorem of [6] does not apply, leaving room
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for a string theory interpretation. The couplings arising from [8] share similarities with

those coming from non-linear realizations of local supersymmetry [9–16] and have been

employed in cosmological models in supergravity [17–22]. In particular, once chiral matter

superfields are introduced, the impact of the new Fayet-Iliopoulos D-term on the scalar

potential matches the uplift term induced by an anti D3-brane at strong warping [23, 24],

which is commonly described, within four-dimensional supergravity, by non-linear realiza-

tions and constrained superfields [12, 13, 16]. These considerations seem to suggest that

there might be a string theory origin of the new Fayet-Iliopoulos D-term. In this work

we wish to strengthen the interpretation of the new Fayet-Iliopoulos D-term of [8] as an

effective description of a space-filling anti D3-brane, within a four-dimensional N = 1

supergravity setup.

Our starting point is global N = 1 supersymmetry, where we first revisit the super-

symmetrization of the Born-Infeld action. Generic N = 1 supersymmetric Born-Infeld

actions have been constructed in [25] and they take the form

Ssuper BI ∼
∫

d4x
(

d2θW 2 + c.c.
)

+

∫

d4x d4θW 2W
2
Ψ(W,DW, . . .) , (1.1)

with Wα = −1
4
D

2
DαV , where V is an N = 1 vector superfield. The function Ψ in (1.1)

depends on Wα, W α̇ and on their superspace derivatives. Bagger and Galperin have shown

in [26] that, for a specific form of the function Ψ, which we will call ΨBG, the action (1.1) has

a second supersymmetry non-linearly realized and also enjoys an electric-magnetic duality

invariance [26]. These properties suggest a relation with the effective action of a space-

filling D3-brane [27–31]. The spectrum of a D3-brane [32–35] contains indeed a vector

multiplet, but also a triplet of chiral multiplets. The latter can however be truncated,

leaving only the former in the low energy effective description. In this perspective, the

Bagger-Galperin action can be interpreted as an effective action for a D3-brane.

The Bagger-Galperin action [26] is constructed on a flat four-dimensional background.

It can describe therefore both a (truncated) D3 or an anti D3-brane. Indeed, the D3 and

anti D3 actions match on a Minkowski background in the κ-symmetry gauge where the

Wess-Zumino term vanishes [35]. When four-dimensional N = 1 supergravity is switched-

on, however, the two actions should differ, as the supergravity background will respect

only one of the two supersymmetries of the (anti) D3-brane action. In particular, when

the Bagger-Galperin action is coupled to N = 1 supergravity, the linear supersymmetry is

preserved, while the second non-linear supersymmetry is explicitly broken.

In this work we show that the Bagger-Galperin action can be presented in an alternative

superspace form, which is still of the type (1.1), but with a function Ψ different from the

ΨBG of [26]. We will refer to it as ΨBG. In this alternative formulation, the action has

the spontaneously broken supersymmetry manifest and described by superspace, while the

unbroken supersymmetry is hidden and acquires a complicated form. In contrast to the

formulation with ΨBG, once we insert ΨBG in (1.1) and couple to N = 1 supergravity,

we find that the spontaneously broken supersymmetry is gauged, whereas the other one is

explicitly broken. This supports the interpretation of the alternative form of the Bagger-

Galperin action that we present in this work as the effective action of an anti D3-brane.
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Once we investigate the source of the supersymmetry breaking in the alternative form

of the action, we find that it corresponds to the new Fayet-Iliopoulos D-term of [8]. In

such an alternative description, therefore, the auxiliary field of the vector multiplet gets a

non-vanishing vacuum expectation value and breaks supersymmetry spontaneously. Inter-

preting the Bagger-Galperin action as the action for the truncated (anti) D3-brane on a

flat background, its bosonic sector is

Sbos ∼ −T

∫

d4x
√

− det (ηmn + 2πα′Fmn) , (1.2)

where T is the brane tension. As we will show in this article, the new Fayet-Iliopoulos

parameter is then given by

ξnew FI = 2πα′T . (1.3)

Our work is organized as follows. In the next section we review the Bagger-Galperin

model and we present the alternative form of its action, in which the non-linear supersym-

metry is manifest. In the third section we elaborate on the weak-field limit, which gives rise

to the new Fayet-Iliopoulos D-term, and we discuss the differences with the standard Fayet-

Iliopoulos term. In the fourth section we couple the alternative action to supergravity and

in the fifth section we draw our conclusions. Throughout the article there are a number

of technical passages which we have reserved for the appendix. These technical parts are

essential for our results, however we have presented them in appendix A to avoid cluttering

the main text with the intricate formalism of non-linear realizations. In appendix B we

discuss the deformation of the Bagger-Galperin action with the standard Fayet-Iliopoulos

term. Throughout this work we use superspace and the conventions of [36], but we reserve

the appendix C for a short presentation in the tensor calculus setup of [1].

2 The Bagger-Galperin action

The embedding of Born-Infeld actions in N = 1 supersymmetry was presented in [25]. A

subclass of these actions has a second supersymmetry non-linearly realized, as was derived

in [26] by Bagger and Galperin, who discussed also the possible relation with D3-branes.

In this section we revisit the Bagger-Galperin action. We start from the known formulation

in terms of a linear representation of supersymmetry, namely an N = 1 vector superfield,

and then we recast the model into an equivalent form, in which the spontaneously broken

supersymmetry is manifest and described by superspace. In this alternative formulation

the supersymmetry breaking is sourced by the new Fayet-Iliopoulos D-term of [8]. As

an intermediate step, we obtain a Born-Infeld Lagrangian in which the goldstino sector

is described by a Volkov-Akulov fermion [37–41] and supersymmetry is manifestly non-

linearly realized [42].
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2.1 The Bagger-Galperin action with manifest non-linear supersymmetry

The basic ingredient in order to formulate the Bagger-Galperin action in superspace is an

N = 1 abelian vector superfield V .1 It has the θ-expansion

V = . . .− θσmθvm + iθ2θχ− iθ
2
θχ+

1

2
θ2θ

2
D , (2.1)

with the lower dots standing for leading order terms in θ, which are not independent

component fields, but depend on the gauge choice. In the standard Wess-Zumino gauge,

for example, they are set to vanish [36]. The physical component fields are therefore the

abelian gauge vector vm and the gaugino χα, while D is a real scalar auxiliary field. The

field strength of the abelian gauge vector vm resides in the chiral superfield

Wα = −1

4
D

2
DαV , (2.2)

which has the standard mass dimension of a fermion in four dimensions, namely 3/2. The

Bagger-Galperin Lagrangian has the form

LBG = β

∫

d2θX + c.c. , (2.3)

where β is a constant with mass dimension 2 and X is a nilpotent N = 1 chiral superfield,

which is a function of Wα defined by

X =
W 2

4m+D
2X

. (2.4)

The constraint (2.4) is solved recursively and the explicit expression of X in terms of Wα is

X =
1

4m



W 2 − 1

2
D

2





W 2W
2

4m2 + 1
2
A+ +

√

16m4 + 4m2A+ + 1
2
A2

−







 . (2.5)

The constant m has mass dimension 2, while A+ and A− are defined as

A+ =
1

2

(

D2W 2 +D
2
W

2
)

, A− =
1

2

(

D2W 2 −D
2
W

2
)

. (2.6)

Notice that the Lagrangian (2.3) is indeed of the type (1.1) and therefore it has a manifest

linear supersymmetry, namely the one described by superspace, which is preserved. In

addition there is a second, non-manifest, supersymmetry which is non-linearly realized and

has the form

δ∗Wα = 2mηα +
1

2
D

2X ηα + 2i∂αα̇X ηα̇ , δ∗X = ηαWα , (2.7)

1The generalization to an arbitrary number of vector fields has been studied recently in [43], where the

relation with the underlying N = 2 special geometry is investigated. In [44] the Bagger-Galperin model is

formulated by means of three-forms multiplets. A superembedding formulation is presented in [45].
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where ηα denotes the global parameter associated to this second, non-linear, supersymme-

try. The component form of (2.3) reads

LBG = βm

(

1−
√

1 +
1

2m2
(F 2 − 2D2)− 1

16m4
(FF̃ )2

)

+ fermions , (2.8)

where F̃mn = 1
2
εmnklF

kl and, once the auxiliary field D is integrated out, the Lagrangian

reduces to

LBG = βm

(

1−
√

− det

(

nmn +
1

m
Fmn

)

)

+ fermions . (2.9)

First we would like to recast this action into an equivalent one, in which the sponta-

neously broken non-linear supersymmetry becomes manifest and is described by a Volkov-

Akulov fermion. This would allow us to take into account all the fermionic contributions

and to deal with them in a manifestly supersymmetric way, once the Lagrangian is lifted

to superspace. A result similar to this has been obtained in [42] with the use of the coset

construction for implementing the non-linear realization of supersymmetry.

Following [40], we define the fermionic superfield

ΓW
α =

Wα

2m+ 1
2
D

2X
(2.10)

which, in our conventions, has non-canonical mass dimension -1/2. From the non-linear

supersymmetry transformations (2.7), we can see that its lowest component ΓW
α | = γWα ,

transforms as

δ∗γWα = ηα − 2iγWσmη ∂mγWα , (2.11)

which is precisely the supersymmetry transformation of the alternative goldstino spinor γα
discussed in the appendix A.3. The fermion γWα is a function of the component fields of

the vector multiplet, namely of vm, χα and D. As a consequence, it is always possible to

interchange χα with γWα by means of a field redefinition. It is now important to observe

that the Lagrangian (2.3), up to an additive constant and boundary terms, has the form

LBG = B + B , B = −β

(

m+
1

4
D

2X|
)

(2.12)

and transforms under (2.7) in a specific way

δ∗LBG = −2i ∂a
(

γWσaη B
)

− 2i ∂a
(

γWσaη B
)

. (2.13)

As we prove in the appendix A.3, any Lagrangian of the form (2.12), which transforms under

supersymmetry as (2.13), is equivalent to a Lagrangian of the type (A.19) written in terms

of the standard non-linear realizations of supersymmetry, with the goldstino transforming

as the Volkov-Akulov fermion (A.3). The Bagger-Galperin action can therefore be recast

into the equivalent form

SBG =

∫

d4x det[A a
m ] L̂BG , (2.14)
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where the field L̂BG is uniquely fixed by the non-linear dressing with the Volkov-Akulov

goldstino λα, namely the operation eδ
∗

η (. . .)|η=−λ, which is presented in the appendix A.4:2

L̂BG =eδ
∗

η
(

B + B
)

|η=−λ

=eδ
∗

η

(

−βm

√

1 +
1

2m2
(F 2 − 2D2)− 1

16m4
(FF̃ )2

)

∣

∣

∣

η=−λ
.

(2.15)

In particular, in this new description the Volkov-Akulov goldstino λα is a function of the

gaugino χα, via its dependence on γWα , which is given by [46]

λα = γWα − ita∂aγ
W
α − 1

2
tatb∂a∂bγ

W
α − ta∂at

b∂bγ
W
α

+ ita∂at
b∂bt

c∂cγ
W
α + itatb∂a∂bt

c∂cγ
W
α ,

(2.16)

where ta = γWσaγ
W . As a consequence, the gaugino satisfies

λ2λ
2
χα = 0 , (2.17)

which in turn, due to the property (A.79) of the dressing operators, leads to

eδ
∗

η χ|η=−λ = eδ
∗

η λ(. . .)|η=−λ = 0 . (2.18)

The same property is used to derive the second line in (2.15) from the first line. Notice

that we have been able to pass from the standard Bagger-Galperin action (2.3) to (2.14),

while keeping explicitly track of all the fermionic contributions. This can be achieved

since, in the original Bagger-Galperin model, there is only one fermion, which has the role

of the goldstino associated to the partial breaking of supersymmetry and which is used to

implement the non-linear realization. The action of the dressing operators on a collection

of fields is the same as their action on all the fields individually, therefore the Lagrangian

in (2.14) can be equivalently written as

LBG = −βmdet[Aa
m]

√

1 +
1

2m2
[(eδ

∗

ηF 2)|η=−λ − 2(eδ
∗

ηD2)|η=−λ]−
1

16m4
eδ

∗

η (FF̃ )2|η=−λ .

(2.19)

The next step is to carry out explicitly the field redefinitions inside the square root,

namely the dressing with the goldstino λα, in order to produce all the necessary fermionic

terms which are implementing the non-linear realization of the spontaneously broken super-

symmetry. After this procedure, the redefined fields will transform as a standard non-linear

realization of supersymmetry. While the case of the scalar auxiliary field is straightforward,

that of the vector requires some care, due to the associated gauge invariance. From (2.7) we

can deduce the variation of the vector va under the second supersymmetry which, because

of gauge invariance, is defined only up to a gauge transformation. We have indeed

δ∗va = −Gσaη − ησaG− i ∂a(λσ
bvb)η + i η∂a(σ

bvbλ) , (2.20)

2As a consequence of the uniqueness of the non-linear dressing that we prove in appendix A.1, when

lifted to superspace this particular dressing is actually equivalent to the one introduced in appendix A.1

and performed at the superfield level.
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where Gα is a function of the components of the vector multiplet, defined as

Gα = DαX| (2.21)

= − 1

2m
W βDαWβ| −

1

8m
DαD

2





W 2W
2

4m2 + 1
2
A+ +

√

16m4 + 4m2A+ + 1
2
A2

−





∣

∣

∣

∣

∣

= − 1

2m

(

iχαD− σcd β
α χβFcd

)





−4D2 + 2FabF
ab − 2iFabF̃

ab

4m2 + 1
2
a+ +

√

16m4 + 4m2a+ + 1
2
a2
−



+O(χ2),

with a+ = A+| and a− = A−|. We recall that the Volkov-Akulov goldstino λα is also a

function of the vector superfield components, given by (2.16). The last two terms in (2.20)

are clearly just a gauge transformation and we are allowed to choose them in order that in

the field redefinition

um = Aa
m

(

eδ
∗

ηva

)

|η=−λ = vm +O(λ2) (2.22)

all terms of linear order in the goldstino vanish. One can check then that the redefined

vector in (2.22) transforms indeed in the standard non-linear way

δ∗ηum = −i
(

λσnη − ησnλ
)

∂num − i∂m
(

λσnη − ησnλ
)

un. (2.23)

Due to (2.22) the field strength of um differs from that of vm appearing in (2.19) by terms

with at least one bare goldstino, i.e. a goldstino which is not appearing inside a derivative.

The terms with bare λ arising from the redefinition (2.22) will vanish by the properties of

the dressing operators given in appendix A.4. We have

eδ
∗

ηFab|η=−λ = eδ
∗

η (∂avb − ∂bva)|η=−λ

= eδ
∗

η (δma δnb (∂mun − ∂num))|η=−λ

= eδ
∗

η ((A−1)ma (A−1)nb [∂mun − ∂num])|η=−λ , (2.24)

where the term that appears on the last line inside the brackets is the definition of a field

strength in the standard non-linear realization. Let us also present for completeness the

supersymmetry transformation of D, which reads

δ∗ηD = i ηα∂αα̇G
α̇
+ i ηα̇∂αα̇G

α . (2.25)

To sum up, the uniqueness theorem of the dressing operators together with their properties

proved in the appendix A.4, allow us to replace all field strengths in the action (2.19) with

their standard non-linear counterparts. We obtain

SBG = βm

∫

d4x det[Aa
m]

(

−
√

1 +
1

2m2
(F2 − 2D2)− 1

16m4
(FF̃)2

)

, (2.26)

where

Fab = (A−1)ma (A−1)nb [∂mun − ∂num] (2.27)
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and where we have redefined the scalar D as follows

D = eδ
∗

ηD|η=−λ . (2.28)

The new scalar D transforms as (A.7). It should be considered as a fundamental real

scalar field and not as composite anymore, because we are performing a field redefinition

to pass from D to D. This does not apply to Fab, which is not just the field strength of

the redefined vector um, but it contains goldstino interactions as well. Finally when we

integrate out the auxiliary field D, the action reduces to the Born-Infeld, up to the additive

constant we introduced in the start

SBG = −βm

∫

d4x det[Aa
m]

√

− det

(

ηab +
1

m
Fab

)

. (2.29)

This is a component form of the Bagger-Galperin action in which the non-linear realization

of supersymmetry is manifest [42]. In the next subsections we are going to lift this action

to superspace and discuss its relationship with the new D-term introduced in [8]. Let us

mention that if we embody the Born-Infled action into a string theory setup, the scales√
m and

√
β are related to the α′ and to the brane tension T as follows

βm = T ,
1

2πα′
= m, (2.30)

while the gauge coupling is given by 1/g2 = β/m, which leads to

g =
1

2πα′

√
T
. (2.31)

As a last remark, notice that if we truncate the gauge vector by setting Fab = 0, which gives

um = ∂mφ (we recall that φ transforms under supersymmetry as (A.7)), the action (2.29)

reduces to the Volkov-Akulov [37].

2.2 The alternative Bagger-Galperin action

In the previous subsection we have shown that the Bagger-Galperin action can assume the

component form (2.29), in which supersymmetry is manifestly non-linearly realized and the

goldstino is the Volkov-Akulov fermion λα. We stress however that, on top of the manifest

and spontaneously broken supersymmetry, a second, unbroken supersymmetry is present

in the model from the very beginning, as proved in [42], even if this might not be obvious

from the form of the action (2.29).

In this subsection we embed the action (2.29) into N = 1 superspace. We are going to

give two different superspace descriptions and then we show their equivalence. One of these

two descriptions gives rise to the new D-term proposed in [8]. Even though in global su-

persymmetry these alternative formulations are equivalent to the original Bagger-Galperin

model, their coupling to supergravity will differ from the latter. This is in accordance

with the interpretation of the original Bagger-Galperin action coupled to supergravity as

an effective description of a probe D3-brane in a curved background, while the alternative

formulations as that of a probe anti D3-brane.
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As discussed extensively in the appendix A, the superspace embedding of an action of

the type (2.29) is given by applying formula (A.28) and takes the form

SBG = −βm

∫

d4x d4θΛ2Λ
2

√

− det

(

ηab +
1

m
Fab

)

, (2.32)

where Λα is the goldstino superfield satisfying the properties (A.4) and which contains

λα in the lowest component, while Fab is the dressed field strength of the vector, defined

in (A.48). The quantity Λ2Λ
2
describes the goldstino sector, while the square root contains

the couplings to the vector field, which are written in an appropriate way in order to have

a Lagrangian invariant under non-linearly realized supersymmetry. We refer the reader to

the appendix for more details about these objects and their definitions.

The action (2.32) has the spontaneously broken and non-linearly realized supersym-

metry manifestly described by superspace, as desired. This is indeed one of the results of

the paper and we have denoted it as SBG because, when coupled to supergravity, it can

be interpreted as the effective action of an anti D3-brane in a curved background. In the

Volkov-Akulov description of the goldstino sector, however, it is not clear what mecha-

nism sources the breaking of supersymmetry. Moreover, since we would like to relate the

action (2.32) to the new D-term of [8], which is described by means of an N = 1 vec-

tor multiplet V , an alternative superspace formulation of (2.29) in terms of V is needed.

Following this logic, we propose the superspace action

SBG =
β

4m

∫

d4x
(

d2θW 2 + c.c.
)

+ 8
√
2β

∫

d4x d4θ
W 2W

2

D2W 2D
2
W

2
DαWα (2.33)

+ 16βm

∫

d4x d4θ
W 2W

2

D2W 2D
2
W

2

{

1 +
1

4m2
fabf

ab −
√

− det

(

ηab +
1

m
fab

)

}

,

where we have defined the superfield3

fab =
i

4
σab γ

αεγβ (DαWβ +DβWα) + c.c. . (2.34)

Notice that the first line of (2.33) has the same structure as the new D-term of [8]. The

rest of this subsection is devoted to show the equivalence between (2.33) and (2.32). The

reader who is not interested in the proof can skip the present subsection at first reading.

Since the action (2.29) does not contain auxiliary fields, as a first step in order to

prove the aforementioned equivalence we parametrize the vector V in order to separate its

auxiliary degrees of freedom from the propagating ones. To this purpose, we split it into

two pieces [54]

V = V̌ +
1

2
ΦΦA , (2.35)

where Φ is the constrained nilpotent superfield [47, 48] defined in (A.29), namely

Φ = −1

4
D

2
(

Λ2Λ
2
)

, (2.36)

3We would like to point out that fab can be also defined as fab = ∂aVb−∂bVa, where Va is given by (A.41),

since it is a superfield with lowest component the field strength of the gauge vector, namely fmn| = Fmn.
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while V̌ and A are respectively a constrained vector and chiral superfield, as explained

in a while. The mass dimension of Φ is -1, while that of A is 2, therefore both V and

V̌ have vanishing mass dimension. The fact that A has mass dimension 2 is confirming

that it represents auxiliary degrees of freedom. Indeed such a superfield contains only

one independent degree of freedom in its lowest component, which we identify with D and

which is real as a consequence of the constraint

ΦA = ΦA . (2.37)

Since the superfield Φ describes only the goldstino, in order to match the number of degrees

of freedom on both sides of (2.35), also the vector superfield V̌ has to be constrained. We

define therefore the field strength superfield W̌α = −1
4
D

2
DαV̌ and we constrain it as

ΦW̌α = 0 ,

ΦΦDαW̌α = 0 .
(2.38)

The first constraint is removing the fermion from V̌ , while the second eliminates the real

auxiliary fields, since they are already described by Φ and A respectively. From these

equations and the splitting (2.35) one can furthermore derive the following important

relation
Φ

D2Φ
=

W 2

D2W 2
. (2.39)

By using the splitting (2.35) together with the constraints (2.37), (2.38) and (2.39), the

form of (2.33) can be simplified. The result is an action in which there are no couplings

between the constrained superfields W̌α and A, which describe respectively the vector and

the real auxiliary field. This action takes the form

SBG =− β

16m

∫

d4x d4θΦΦ
[

D2W̌ 2 + c.c.
]

+
β

2m

∫

d4xd4θΦΦAA

− β√
2

∫

d4xd4θΦΦ
(

A+A
)

+
βm

8

∫

d4x d4θΦΦ

{

8 +
2

m2
f̌mnf̌

mn − 8

√

− det

(

ηmn +
1

m
f̌mn

)

}

.

(2.40)

Since the auxiliary field has completely been separated from the rest of the action, it can

now be integrated out straightforwardly. We first take into account the constraint in (2.37)

by adding a Lagrange multiplier U . The field equations of the relevant part of the action

SBG, aux =
1

2

∫

d4xd4θΦΦ

[

β

m
AA−

√
2β

(

A+A
)

]

+

(∫

d4xd4θ U
(

ΦA− ΦA
)

+ c.c.

)

,

(2.41)

are then for A and U respectively

δA : −1

8
D

2
[

ΦΦ

(

β

m
A−

√
2β

)]

− 1

4
D

2 (
UΦ− UΦ

)

= 0 , (2.42)

δU : ΦA− ΦA = 0 . (2.43)
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We can now multiply the equation (2.42) with Φ and divide by D
2
Φ to obtain

ΦU = −1

2
βΦΦ

(A
m

−
√
2

)

− 1

4
ΦD

2
(ΦU) . (2.44)

By iterating for ΦU

ΦU =
1

2
βΦΦ

(A
m

−
√
2

)

− 1

4
ΦD

2
(ΦU)

= βΦΦ

(A
m

−
√
2

)

− 1

4
ΦD2

(

ΦU
)

=
3

2
βΦΦ

(A
m

−
√
2

)

− 1

4
ΦD

2
(ΦU) (2.45)

and comparing the first line with the last, we finally get

ΦΦ(A−
√
2m) = 0 . (2.46)

Once this result, which is a consequence of the equations of motion, is implemented inside

the action (2.40), the terms containing A cancel with the first term in the third line. Then

by using that

ΦΦ(D2W̌ 2 + c.c.) = 4ΦΦf̌mnf̌
mn , (2.47)

the first part in (2.40) cancels the second term in the third line and all that is left is the

determinant term supported by the goldstino superfields ΦΦ, namely

SBG = −βm

∫

d4x d4θΦΦ

√

− det

(

ηmn +
1

m
f̌mn

)

. (2.48)

Notice that the Lagrangian (2.48) is written entirely in terms of constrained superfields,

i.e. the nilpotent goldstino superfield Φ and the constrained gauge vector superfield V̌ . We

have therefore provided a formulation of the effective theory of the anti D3-brane within

the constrained superfields approach of non-linear supersymmetry. By using (A.31), we

can recast (2.48) in the form

SBG = −βm

∫

d4x d4θΛ2Λ
2

√

− det

(

ηmn +
1

m
f̌mn

)

. (2.49)

We have shown that the original action (2.33) is on-shell equivalent to (2.49). It

remains now to relate (2.49) to (2.29), in order to conclude the proof and demonstrate

that (2.33) is indeed an alternative form of the Bagger-Galperin action. To this end we

dress the vector and its field strength with goldstino interactions, in such a way that the

resulting expressions transform as a standard non-linear realization of supersymmetry. The

necessary ingredients are discussed thoroughly in the appendix A. In particular, we embed

the vector vm into the superfield V̌a defined in (A.41) and we perform a field redefinition

of the form

Vm =
1

16
A
a
mΠ2Π

2
(

Λ2Λ
2
V̌a

)

, (2.50)
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where Λα is the goldstino superfield (A.4), Aa
m is the (superfield) vielbein (A.5), which

depends on the goldstino, and Πα is the superspace derivative (A.10). Out of the new

vector superfield Vm, which is a function of the original vector superfield V and of the

goldstino, we can then construct the field strength

Fab = (A−1)ma (A−1)nb (∂mVn − ∂nVm) . (2.51)

This field strength Fab is an object of the form (A.16), with T replaced by the superfield

f̌ab. As a consequence it holds that

Λ2Λ
2
Fab = Λ2Λ

2
f̌ab (2.52)

and the action (2.49) then reduces to (2.32). We have thus concluded the demonstration

proving that the Bagger-Galperin action (2.3) is equivalent to the alternative form (2.33).

In the following we will study some properties of (2.33) and we will couple the system to

supergravity.

3 Bagger-Galperin action and D-term breaking models

After having elaborated on the possible forms the Bagger-Galperin action can assume, we

would now like to concentrate on its relationship with the different D-term supersymmetry

breaking mechanisms which have been proposed in the literature [2, 8]. First of all, we will

show that it is possible to obtain the new D-term breaking of [8] by taking an appropriate

limit of the Bagger-Galperin model. In this sense, the new D-term is incorporated in the

Bagger-Galperin model without the need for additional modifications. On the contrary, as

we will show, the structure of the standard Fayet-Iliopoulos term differs significantly from

that of the Bagger-Galperin action. Finally it is known that it is possible to add to the

Bagger-Galperin Lagrangian a contribution of the type of the standard Fayet-Iliopoulos

D-term [49–51]. We will therefore discuss briefly the differences with these constructions

and leave details for the appendix B.

3.1 Weak-field expansion of alternative Bagger-Galperin

In this subsection we analyze the relationship between the Bagger-Galperin model and the

global limit of the new Fayet-Iliopoulos D-term of [8], namely

SNew FI =
1

4g2

∫

d4x
[

d2θW 2 + c.c.
]

+ 8
√
2ξ

∫

d4x d4θ
W 2W

2

D2W 2D
2
W

2
DαWα , (3.1)

whose vacuum energy is given by V = g2ξ2. For convenience we will compare the La-

grangian (3.1) to the form (2.33) of the Bagger-Galperin action, which we have shown to

be equivalent to (2.3).

The starting point is to notice that the first line of (2.33) matches with the full ex-

pression (3.1) of the new D-term in the global limit, once we relate the parameters in the

following way

ξ = β = 2πα′T , g =
√

m/β = (2πα′
√
T)−1. (3.2)
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We concentrate now on the second line of (2.33), in order to understand if there exists a

physical regime in which it can be consistently ignored, when compared to the first. The

terms of interest are

16βm

∫

d4x d4θ
W 2W

2

D2W 2D
2
W

2

{

1 +
1

4m2
fabf

ab −
√

− det

(

ηab +
1

m
fab

)

}

, (3.3)

where we recall that fab is the superfield defined in (2.34). By using the results presented

in the appendix A and following a reasoning similar to that of the previous section, we see

that (3.3) takes the form

βm

∫

d4x d4θΦΦ

{

1 +
1

4m2
f̌abf̌

ab −
√

− det

(

ηab +
1

m
f̌ab

)

}

= βm

∫

d4x d4θΛ2Λ
2

{

1 +
1

4m
FmnF

mn −
√

− det

(

ηmn +
1

m
Fmn

)

}

= βm

∫

d4x det[Aa
m]

{

1 +
1

4m
F2 −

√

− det

(

ηmn +
1

m
Fmn

)

}

,

(3.4)

where we have parametrized the vector superfield according to (2.35). In particular, to

pass from (3.3) to (3.4) we used that ΦΦfab = ΦΦf̌ab, while to pass from the second to the

third line in (3.4) we employed the identity (A.28). If we expand then the square root of

the determinant we have
√

− det

(

ηmn +
1

m
Fmn

)

= 1 +
1

4m2
F2 +O(F4) (3.5)

which, once inserted into (3.4), reveals that only O(F4) terms contribute to the second

line in (2.33). We have found therefore that the Bagger-Galperin Lagrangian and the new

D-term are related as

LBG = LNew FI +O(F4) , (3.6)

where the Lagrangian in (3.1) takes the form

LNew FI = −ξ2g2 det[Ae
p]−

1

4g2
det[Ae

p]FmnFmn . (3.7)

For effective theories in which the electro-magnetic field Fmn is weak, the terms O(F4) can

be ignored. We then conclude that the new Fayet-Iliopoulos D-term arises in the weak-field

limit of the Bagger-Galperin action.4

3.2 Standard Fayet-Iliopoulos term

We would like now to compare and contrast the weak-field limit of the Bagger-Galperin

action with the original D-term proposed by Fayet and Iliopoulos in [2], namely

Lstandard FI =
1

4

(∫

d2θW 2 + c.c.

)

− 2
√
2 ξ̃

∫

d4θ V . (3.8)

4Different constructions can be found in [52, 53] and it would be interesting to see if and how they relate

to D-branes.
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As we are going to argue, a mismatch is present between the two models, which points

to the fact that not all theories with a D-term breaking will match with the Bagger-

Galperin in the weak-field limit. Within the framework of non-linear supersymmetry, the

Lagrangian (3.8) has been recast in the languange of constrained superfields in [54]. Its

form is

Lstandard FI = −
∫

d4θΦΦ+
1

4

(∫

d2θ W̌ 2 + c.c.

)

− 2
√
2 ξ̃

∫

d4θ V̌ , (3.9)

where the first superspace integral contains the kinetic term of the goldstino, the second

that of the vector field, while the third one encodes additional non-linear interactions,

namely
∫

d4θ V̌ = −i ǫklnm ∂kλσl ∂nλ vm + . . . , (3.10)

with dots standing for terms of higher order in λα. We notice that, with respect to the

analogous result presented in [54], in the Lagrangian (3.9) the auxiliary field has been

eliminated by means of the constraints on Φ. We can now employ the formalism developed

in the appendix A to handle non-linear realizations of supersymmetry and we can recast

the model (3.9) into the form

Lstandard FI =− ξ̃2 det[Ae
p]−

1

4
det[Ae

p]FmnFmn

+ 2
√
2i ξ̃ det[Ae

p] ǫ
abcd [(A−1) n

a ∂nλ]σb [(A
−1) k

c ∂kλ] (A
−1) m

d um ,
(3.11)

which is a function of the goldstino λα and of the dressed vector field um=Aa
m

(

eδ
∗

ηva
)

|η=−λ.

If we compare then (3.9) with the weak-field limit of the Bagger-Galperin Lagrangian

studied previously, see e.g. (3.6), we can realize that a mismatch is present due to the

term5

∫

d4θ V̌ ←→ 2
√
2i ξ̃ det[Aa

m] ǫabcd [(A−1) n
a ∂nλ]σb [(A

−1) k
c ∂kλ] (A

−1) m
d um . (3.12)

This means that the standard Fayet-Iliopoulos D-term is not matching with the Bagger-

Galperin model, not even up to O(F2).

It is interesting to notice furthermore that the term which creates the mismatch be-

tween the Fayet-Iliopoulos and the weak-field limit of the Bagger-Galperin, i.e.
∫

d4θ V̌ ,

is also responsible for the gauging of the R-symmetry when the standard Fayet-Iliopoulos

term is coupled to supergravity. Indeed, when the term (3.12) is lifted to N = 1 supergrav-

ity, couplings containing derivatives on the goldstino will essentially become terms with the

gravitino

(A−1) m
a ∂mλα → D̂aλ

α = e m
a Dmλα − 1

2MP
ψα
a + . . . , (3.13)

5To derive (3.12) we notice that
∫
d4θ V̌ can take the form

∫
d4θ Γ2D2(Γ

2

D
2

V̌ )+ c.c. which, after acting

with the D derivatives inside the parentheses, gives
∫
d4θ (−8iΓ2DαΓ

2

∂αα̇D
α̇
V̌ +Γ2Γ

2

D2D
2

V̌ )+c.c.. Using

the properties of V̌ , we find that the latter expression becomes
∫
d4θΛ2Λ

2

((−∂nΛσ
kσnσm∂mΛV̌k + c.c.) +

2∂mΛσn∂mΛV̌n). From this form one can derive the right hand side of (3.12), by dressing the fields under

the non-linear realization, as we have described earlier.
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where D̂aλ
α is the supercovariant derivative of the goldstino [10]. In other words, when the

original Fayet-Iliopoulos D-term is coupled to supergravity, the term (3.12) is embedded

in a locally supersymmetric setup and it generates the coupling

i√
2
e

ξ̃

M2
P

ǫklmn ψk σl ψm vn , (3.14)

which signals the R-symmetry gauging.

Another class of models which have been constructed consists in the addition of the

standard Fayet-Iliopoulos D-term to the Bagger-Galperin Lagrangian [50, 51], namely to

consider

LBG + FI = LBG − 2
√
2 ξ̃

∫

d4θ V . (3.15)

The properties of this theory have been analyzed in [50, 51], where it is found that partial

supersymmetry breaking takes place, even thought the supersymmetry parameters are

rotated by the Fayet-Iliopoulos term. In any case, the theory (3.15) contains again the

terms which are going to implement the gauging of the R-symmetry when the model is

coupled to supergravity. More details on this model can be found in the appendix B.

4 Coupling to N = 1 supergravity

In this section we couple the alternative version of the Bagger-Galperin action (2.33) to

N = 1 supergravity. We do not discuss the coupling of (2.3) to supergravity, since it has

already been studied in previous works, see for example [25, 55, 56], but we remind the

reader that, when the original Bagger-Galperin action (2.3) is coupled to N = 1 supergrav-

ity, the system generically preserves only the linear supersymmetry, whereas the non-linear

supersymmetry is explicitly broken. On the contrary, when coupling the alternative ac-

tion (2.33) to supergravity, a system is obtained in which the non-linear and spontaneously

broken supersymmetry is gauged, while the other becomes explicitly broken.6

We treat N = 1 supergravity using the old-minimal superspace formulation, with

the conventions of [36] and in reduced Planck mass units that set 8πG = 1. We do not

completely review the formalism here, rather we only retrieve the parts that are relevant

for our discussion. We present also the analogous formulation in the tensor calculus setup

of [1] in appendix C.

Within our setup, the Lagrangian of four-dimensional N = 1 supergravity takes

the form

LSG =

∫

d2Θ2E (−3R+W0) + c.c. , (4.1)

where W0 is a complex constant, contributing to the gravitino mass and negatively to the

vacuum energy. The properties of the chiral superfield R and of the chiral density 2E can

be found in [36]. Let us recall that the old-minimal supergravity multiplet contains the

6If not gauged, global supersymmetry coupled to gravity is explicitly broken because generically

Dm(ω)ǫα 6= 0 for a global spinor ǫα. On the other hand, examples of curved backgrounds where the

supersymmetric DBI action shows to be invariant under a partially broken rigid second supersymmetry

have been studied in [57].
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following fields: the vierbein e a
m , the gravitino ψα

a , a complex scalar auxiliary field M and

a real vector auxiliary field ba. In a supergravity setup the derivatives ∂a, Dα, and Dα̇ are

promoted to Da, Dα, and Dα̇ respectively and satisfy the curved superspace algebra which

can be found in [36]. An abelian vector multiplet is described by the real superfield V and

we define

Wα = −1

4

(

D2 − 8R
)

DαV , (4.2)

which is invariant under the gauge transformation V → V + iS− iS. The component fields

of the superfield Wα are given by

Wα| =− iχα ,

(DαWβ +DβWα)| =− 4i(σbaǫ)αβD̂bva = 2i(σbaǫ)αβF̂ab ,

DαWα| =− 2D .

(4.3)

The supercovariant derivative of the vector is defined as

D̂bvαα̇ = emb

{

Dmvαα̇ + i(ψmαχα̇ + ψmα̇χα) +
i

2
ψmvψaσ

a
αα̇

}

, (4.4)

where Dm is the covariant derivative which includes the spin-connection ω b
ma (e, ψ). The

supersymmetry transformation of the gaugino is

δχα = −2iξαD− 2(σabξ)αF̂ab . (4.5)

Finally, the kinetic term for the N = 1 vector mutiplet within supergravity has the form
∫

d2Θ2E W 2 + c.c..

We now have all the ingredients at our disposal that are needed in order to couple

the alternative Bagger-Galperin Lagrangian to supergravity. We first generalize (2.33) to

curved superspace, which gives

LBG =
β

4m

[∫

d2θ 2E W 2 + c.c.

]

+ 8
√
2β

∫

d4θ E
W 2W

2

D2W 2D2
W

2
DW

+ 16βm

∫

d4θ E
W 2W

2

D2W 2D2
W

2

{

1 +
1

4m2
fabf

ab −
√

− det

(

ηab +
1

m
fab

)

}

,

(4.6)

where

fcd =
i

4
σcdγ

αεγβ (DαWβ +DβWα) + c.c. . (4.7)

The total Lagrangian that we consider is then obtained by adding the supergravity sector

to (4.6), namely

LTOT = LSG + LBG . (4.8)

In order to uncover the physical content of (4.8), we would like to rewrite it in component

form. However, such a task is non-trivial, as highly non-linear expressions are involved. A

simplification occurs if we make use of a posteriori information, i.e. of the fact that in (4.8)

supersymmetry is spontaneously broken with

〈D〉 6= 0 . (4.9)
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As a consequence we are allowed to perform the calculation in an appropriate gauge in which

most of the non-linear interactions are not present. Indeed we can write the Lagrangian in

the unitary gauge in which the goldstino is set to zero

Unitary Gauge : χα = 0 . (4.10)

In this gauge the component form of (4.8) simplifies considerably and in fact the equations

of motion of the auxiliary fields are

D =
√
2m, M = −3W0 , ba = 0 . (4.11)

The on-shell Lagrangian has then the form

e−1LTOT

∣

∣

∣

χ=0
=− 1

2
R(e, ω) + 3|W0|2 +

1

2
ǫklmn(ψkσlDmψn − ψkσlDmψn)

−W0 ψaσ
abψb −W 0 ψaσ

abψb − βm

√

− det

(

ηab +
1

m
ema enbFmn

)

.

(4.12)

In case one is interested in the goldstino interactions, the supergravity theory (4.8)

can be brought in a form that will allow us to systematically expand the fermionic sector

up to second order. This can be achieved by following the procedure we presented in

subsection 2.2 and by rephrasing it within a supergravity setup. Since the generalization to

supergravity does not present particular complications, we will not reproduce the complete

procedure here, rather we will only highlight the relevant steps. We first lift the goldstino

spinor superfield Γα, presented in (A.50), to local supersymmetry. In this case the superfield

satisfies
DαΓβ = ǫβα

(

1− 2Γ2R
)

,

Dβ̇
Γα = 2i (σa Γ)β̇ DaΓ

α +
1

2
Γ2Gβ̇α ,

(4.13)

where Ga is a superfield of the supergravity sector, which can be found in [36]. The second

step is to perform the splitting of the vector superfield, which has again the form

V = V̌ +
1

2
ΦΦA . (4.14)

The superfield Φ appearing in (4.14) is defined as

Φ = −1

4

(

D2 − 8R
)

Γ2Γ
2
. (4.15)

It satisfies [9]

Φ2 = 0 , Φ(D2 − 8R)Φ = −4Φ , ΦΦ = Γ2Γ
2
, (4.16)

which are the generalization of (A.30) and (A.31). In order for the degrees of freedom to

match on both sides of (4.14), the following additional constraints are imposed

ΦA = ΦA , Φ W̌α = 0 , ΦΦDαW̌α = 0 , (4.17)
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where we have defined W̌α = −1
4

(

D2 − 8R
)

DαV̌ . As we have explained in the second

section, by performing the splitting, namely formula (4.14), we want to describe each of

the component fields of the vector superfield V with an individual constrained superfield.

The third step is to introduce such a splitting inside the Lagrangian (4.8) and to integrate

out the superfield A by solving its own equations of motion. This procedure gives rise to

the additional constraint on A that is given by

ΦΦ(A−
√
2m) = 0 . (4.18)

Putting everything together, (4.8) takes the form

LTOT =

(∫

d2Θ2E (−3R+W0) + c.c.

)

− βm

∫

d4θ E Γ2Γ
2

√

− det

(

ηab +
1

m
f̌ab

)

,

(4.19)

where we have defined f̌cd = i
4
σcdγ

αεγβ
(

DαW̌β +DβW̌α

)

+ c.c..7 Since the lowest compo-

nent of Γα is the goldstino, namely Γα| = γα, from the constraints (4.17) we have

χα = γβ(σabǫ)αβ e
m
a enbFmn + 3-fermi terms , (4.20)

which allows us to express the gaugino χα as a function of the goldstino γα and of the vector

vm. Once we write the Lagrangian (4.19) in components and integrate out the auxiliary

fields we find, up to second order in the fermions, that it is given by

e−1LTOT =− 1

2
R(e, ω) + 3|W0|2 +

1

2
ǫklmn(ψkσlDmψn − ψkσlDmψn)

−W0 ψaσ
abψb −W 0 ψaσ

abψb − βm

√

− det

(

ηab +
1

m
ema enbFmn

)

+ βm
√

− det (η +m−1F )
(

−2W0γ
2 + iDaγσ

aγ + iγσaψa + c.c.
)

+
β

4

√

− det (η +m−1F )
[

(η +m−1F )−1
]ab

×
{

2W 0γ
2ema enbFmn +

[

iγσaσ
cdγDb(e

m
d encFmn) + 2iγσaσ

nmDbγ Fmn

+ iγσbσ
nmψaFmn + iψbσaσ

nmγFmn − (a ↔ b)
]

+ c.c.
}

+ four-fermi terms .

(4.21)

As a consequence of the fact that the system (2.33) has been coupled to N = 1

supergravity, in the resulting action (4.21) the non-linear and spontaneously broken super-

symmetry is gauged, while the other is explicitly broken. Otherwise, it is also possible to

couple the original model to an N = 2 background, where both supersymmetries are going

to be gauged. In that case, we do not expect physical differences between the supergravity

completions of the Bagger-Galperin action (2.3) and of its alternative formulation (2.33).

7Notice that, to truncate the gauge vector in (4.19) we only have to make it pure gauge by setting

V̌ = iS − iS, where S is given by (A.38). The Lagrangian (4.19) will then reduce to the so called de Sitter

supergravity [58–61].
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The reason why we did not follow this second possibility in the present work is because it

was aimed at interpreting (2.33) as an anti D3-brane, emphasising the distinction with the

D3-brane interpretation of the original Bagger-Galperin model. Such a distinction is ex-

pected to become manifest when the D-brane is embedded into a supergravity background

that preserves only half of the supersymmetry, as it happens here.

5 Conclusions

The main purpose of this work was to find evidence for a possible string theory origin of

the new Fayet-Iliopoulos D-term introduced in [8]. Indeed, a relation to anti D3-branes was

already pointed out in [8], but in the present work we have strengthened this interpretation.

The Bagger-Galperin action [26] can be interpreted as the effective theory for a D3-brane

with truncated spectrum. It has one preserved supersymmetry and one spontaneously

broken and the bosonic sector matches with the Born-Infeld. Once we reformulated the

Bagger-Galperin action, bringing it to a form where the broken supersymmetry is described

by a superspace setup, we found that the supersymmetry breaking is sourced by the new

Fayet-Iliopoulos D-term of [8]. Our findings therefore provide further evidence in favor of

the anti D3-brane interpretation of the new Fayet-Iliopoulos D-term.

Acknowledgments

We thank Stefanos Katmadas, Alex Kehagias, Antoine Van Proeyen and Timm Wrase for

discussions. The work of N.C. is supported by an FWF grant with the number P 30265.

The work of F.F. is supported from the KU Leuven C1 grant ZKD1118 C16/16/005. The

work of M.T. is supported by the FWO Odysseus Grant No. G.0.E52.14N.

A Non-linear realizations of supersymmetry

In this appendix we review general properties of non-linear realizations of supersymmetry

and we derive a series of formulas which we use throughout the paper. Various of the

results we present below are new but, as they are rather technical, we decided to collect

them together in order to avoid interruptions in the main part of the work. The appendix

is therefore quite long, but it is meant to be self-contained and it can be read independently

from the rest of the article. We recall that, in our conventions, the algebra satisfied by

N = 1 superspace derivatives is

{Dα, Dβ̇} = −2i σm
αβ̇

∂m , (A.1)

all the other anticommutators being vanishing, while the supersymmetry transformations

of a generic superfield U can be defined in superspace as

δ U = ǫβDβ U + ǫβ̇D
β̇
U . (A.2)
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A.1 Non-linear realizations in superspace

A minimal model with non-linearly realized supersymmetry is that of Volkov-Akulov [37],

in which the goldstino λα transforms as

δλα = ǫα − i
(

λσmǫ− ǫσmλ
)

∂mλα . (A.3)

Notice that, since we have set the supersymmetry breaking scale to unity, the fermion λα

has unconventional mass dimension, namely [λ] = −1/2. This supersymmetry transforma-

tion can be embedded into superspace by defining a spinor superfield Λα that satisfies the

constraints
DαΛβ = ǫβα + i σm

αα̇Λ
α̇
∂mΛβ ,

Dα̇Λβ = −iΛασm
αα̇∂mΛβ ,

(A.4)

and that has the goldstino λα as lowest component, namely Λα| = λα. Further properties of

this spinor goldstino superfield Λα can be found in [10, 38–40]. Using Λα we can construct

the composite real superfield

A
a
m = δam − i∂mΛσaΛ + iΛσa∂mΛ (A.5)

and we will indicate its lowest component as A
a
m| = Aa

m. The simplest supersymmetric

action for the goldstino is given by the Volkov-Akulov Lagrangian. It can be recast into

different forms, which can be shown to be equivalent up to field redefinitions. Following [62]

we choose therefore

SV A = −
∫

d4x det[Aa
m] = −

∫

d4x d4θΛ2Λ
2
, (A.6)

where the last identity holds up to boundary terms.

Beside for what concerns the goldstino, non-linear supersymmetry can be implemented

on matter fields as well. The standard non-linear realization of supersymmetry is acting

on matter scalars and fermions (only spin-1/2) as

δφ = −i
(

λσmǫ− ǫσmλ
)

∂mφ , δχα = −i
(

λσmǫ− ǫσmλ
)

∂mχα . (A.7)

In order to preserve invariance under non-linear supersymmetry, spacetime derivatives need

to be covariantized using Aa
m. For example (A−1)ma ∂mφ and (A−1)ma ∂mχα transform as the

standard non-linear realization of supersymmetry for the fields transforming as (A.7), i.e.

δ[(A−1)na∂nφ] = −i(λσmǫ− ǫσmλ)∂m[(A−1)na∂nφ]. The non-linear transformation of gauge

vectors has the form [40]

δum = −i
(

λσnǫ− ǫσnλ
)

∂num − i∂m
(

λσnǫ− ǫσnλ
)

un . (A.8)

Notice that this transformation differs from the standard non-linear realization (A.7) of

scalars and fermions.

In analogy to the case of the Volkov-Akulov goldstino λα, the transformation rules

for the scalar φ can be lifted to superspace. This is done by introducing a constrained

superfield C that satisfies the conditions

DαC = i σm
αρ̇Λ

ρ̇
∂mC , Dα̇C = −iΛρσm

ρα̇∂mC , (A.9)
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and has φ as the lowest component, namely φ = C|. Similarly one constructs the non-

linear realization for spin-1/2 matter fermions. The case of a gauge vector field, however,

is slightly more involved and it is presented in the next subsection, since we prefer to

introduce first other useful ingredients.

Since our interest is in describing non-linear realizations of supersymmetry by means of

superspace, we would like to develop a general procedure in order to construct a standard

non-linear realization out of any given superfield. This method, in particular, would apply

also to the case of a gauge vector superfield. To this end, we introduce the superspace

derivatives Πα constructed in [62]:

Πα = Dα − iσn
αα̇Λ

α̇
∂n ,

Πα̇ = Dα̇ + iΛασn
αα̇∂n ≡ (Πα)

∗ .
(A.10)

They satisfy the algebra

{Πα,Πβ} = 0 , {Πα,Πβ̇} = 0 , [Πα , (A
−1) m

a ∂m] = 0 (A.11)

and their action on the spinor goldstino superfield Λα is

ΠαΛβ = ǫβα , Πα̇Λβ = 0 . (A.12)

From the derivatives Πα we can then build the operator Π2Π
2
that turns a linear realization

into a standard non-linear one. In particular, for a generic superfield U we have

Dα

(

Π2Π
2
U
)

= iσn
αα̇Λ

α̇
∂n

(

Π2Π
2
U
)

,

Dα̇

(

Π2Π
2
U
)

= −iΛασn
αα̇∂n

(

Π2Π
2
U
)

.
(A.13)

This recipe is completely general. However, in most of the situations, we will need to

construct a superfield transforming as the standard non-linear realization, but satisfying

the additional requirement that it reduces to a given superfield T when setting the goldstino

to zero. This can be done if we first multiply T with goldstino superfields and then we

act on it with the operator Π2Π
2
. In other words, when we consider the particular case in

which U is given by Λ2Λ
2
T , the superfield

T =
1

16
Π2Π

2
(

Λ2Λ
2
T
)

(A.14)

is then transforming as the standard non-linear realization

DαT = i σm
αρ̇Λ

ρ̇
∂mT , Dα̇T = −iΛρσm

ρα̇∂mT (A.15)

and it satisfies the additional property

T = T +O
(

Λ,Λ
)

. (A.16)

The dressing of a superfield T with the spinor goldstino superfield Λα is unique. To prove

this, let us assume that, out of a given T , we construct two different superfields T1 and T2 of
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the type (A.16) and transforming as the standard non-linear realization of supersymmetry.

Since these superfields by construction differ only for terms O(Λ,Λ) in (A.16), they satisfy

Λ2Λ
2
T1 = Λ2Λ

2
T2 . (A.17)

By acting with Π2Π
2
we then find immediately

T1 = T2 , (A.18)

which proves the uniqueness of the dressing. In some situations the equation (A.17) might

appear in a component field form, namely λ2λ
2
(T1|) = λ2λ

2
(T2|). Such an equation,

however, can always be lifted back to the full superspace equation (A.17), because if the

lowest components of two superfields match then, by supersymmetry, all the components

have to match. Even in such a situation we would conclude therefore that (A.18) holds.

Within this setup, a generic supersymmetric Lagrangian is of the form

L = det [Aa
m] L| , (A.19)

where L is a real superfield transforming as the standard non-linear realization of super-

symmetry

ΠαL = 0 , Πα̇L = 0 , L = L . (A.20)

It can be given by the dressing of another superfield, but it can be more general as well.

The invariance of (A.19) under supersymmetry follows in particular from

Dα

(

det [Aa
m] L

)

= i∂n

(

σn
αρ̇Λ

ρ̇
det [Aa

m] L

)

,

Dα̇

(

det [Aa
m] L

)

= −i∂n

(

Λασn
αα̇ det [A

a
m] L

)

.
(A.21)

We can prove an identity that relates non-linear supersymmetric actions to their equal

form in which the integration over superspace has been carried out, namely

∫

d4x d4θ det [Aa
m] T =

1

16

∫

d4x det [Aa
m] Π2Π

2
T | , (A.22)

where the superfield T is real but otherwise generic. Before we start proving (A.22), we

need to generalize the equations in (A.21) for a generic superfield which is not satisfying

ΠαT = 0. This gives

Dα

(

det [Aa
m]T

)

= det [Aa
m] ΠαT + i∂n

(

σn
αα̇Λ

α̇
det [Aa

m] T
)

,

Dα̇

(

det [Aa
m]T

)

= det [Aa
m] Πα̇T − i∂n

(

Λασn
αα̇ det [A

a
m] T

)

.
(A.23)

With the actions of the superspace derivatives in (A.23) at our disposal, we can now

prove (A.22). We begin by carrying out the superspace integral

1

16

∫

d4xD2D
2
det [A] T | = − 1

16

∫

d4xD2D
α̇
det [A]

(

1

det [A]
Dα̇ det [A] T

)

∣

∣

∣ . (A.24)
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In the brackets we constructed an operator from the superspace derivative that, by the

equations in (A.23), can be readily replaced with Πα̇ plus a term containing a derivative

on the T superfield

− 1

16

∫

d4xD2D
α̇
det [A]

[

Πα̇ T − i
1

det [A]
∂m (Λασm

αα̇ det [A] T )
]∣

∣

∣
. (A.25)

The second term inside the brackets vanishes up to boundary terms, because the superspace

derivates commute with the spacetime derivative. All that is left is therefore

− 1

16

∫

d4xD2D
α̇
det [A] Πα̇T |. (A.26)

Observe that we are now back in a situation similar to the one in (A.24), where a superspace

derivative is acting upon a superfield times the determinant function. We can thus exactly

repeat the same procedure we did before. In the end, when all superspace derivatives are

gone, or more precisely converted into Πα derivatives, the action takes the simple form we

set out to prove, i.e.
1

16

∫

d4x det [A] Π2Π
2
T | . (A.27)

Notice finally that, in the particular case in which T = Λ2Λ
2
L, with L a real superfield,

the identity (A.22) becomes

∫

d4x d4θΛ2Λ
2
L =

∫

d4x det [Aa
m] L| (A.28)

and in the integrated part we get exactly the non-linear dressing of a superfield defined

in (A.14).

A.2 Constrained superfields

In the previous subsection we implemented the non-linear realization of supersymmetry

by using the spinor goldstino Λα. Another equivalent approach consists in imposing con-

straints on more familiar objects, as chiral or vector superfields. In this subsection therefore

we introduce some ingredients of the approach to non-linear realizations in terms of con-

strained superfields. We will not review the complete literature, but we will only focus on

some specific properties which are important for our discussions.

From the spinor goldstino superfield Λα we can construct a chiral superfield Φ, by

setting

Φ = −1

4
D

2
(

Λ2Λ
2
)

= Λ2
(

1− i∂mΛσmΛ− Λ
2
∂mΛσmn∂nΛ

)

,

(A.29)

which satisfies the properties of the constrained superfield introduced in [47], namely

Φ2 = 0 , ΦD
2
Φ = −4Φ . (A.30)
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The superfield Φ contains therefore as independent component fields only one fermion

(DαΦ|), which is the goldstino. Notice that

ΦΦ = Λ2Λ
2
, (A.31)

a property which we use interchangeably in this article.

Using the superfield Φ we can implement non linear-realizations also in the matter

sector and construct any type of constrained superfield by eliminating specific matter com-

ponent fields. The generic method to perform such a procedure has been presented in [63].

For the purposes of the present work, however, we are interested in constructing a specific

constrained superfield which contains only a gauge vector as independent component. In

the superspace description, a gauge vector is embedded into a real N = 1 superfield V̌ ,

which takes the form (2.1), while its gauge-invariant field strength resides into the chiral

superfield W̌α = Wα(V̌ ) given in (2.2). These are both linear representations of super-

symmetry. In the language of superfields, moreover, the abelian gauge transformation is

encoded into

V̌ → V̌ + iS − iS , (A.32)

where S is a chiral superfield. Besides the vector field, the superfield V̌ would contain also

a fermion (gaugino) and a real auxiliary field as independent components. One possible

strategy to obtain a superfield describing only the vector consists in imposing additional

constraints on V̌ in order to reduce the numbers of its independent components. These

constraints will turn the linear realization of supersymmetry into a non-linear one. The

gaugino is eliminated by the constraint [64]

Φ W̌α = 0 , (A.33)

while the auxiliary field D can be removed with [54]

ΦΦDαW̌α = 0 . (A.34)

Instead of the conventional Wess-Zumino gauge, which sets to zero the lower θ-terms in V̌ ,

we use the modified gauge choice [64]

ΦV̌ = 0 , (A.35)

which eliminates the component fields V̌ |, DαV̌ | and D2V̌ | and expresses them as functions

of the remaining ones. In particular for V̌ we find

V̌ =
1

2
ΛαΛ

α̇
[Dα, Dα̇]V̌ +O(“Λ3”) (A.36)

and for the fermionic Dα descendant we have

Dα̇V̌ =
1

2
Λα[Dα, Dα̇]V̌ +O(“Λ2”) . (A.37)

With the symbol “Λ2” we refer to terms which contain at least two bare Λ or Λ superfields,

namely terms of the form: Λ2(. . .), Λ
2
(. . .), ΛΛ(. . .); similarly for the terms “Λ3”. Notice
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that, because of the gauge choice (A.35), the chiral superfield S entering (A.32) has to be

constrained to satisfy

ΦS = ΦS . (A.38)

The constrained superfield S, moreover, satisfies the property

Π2Π
2
(

Λ2Λ
2
∂a(S + S)

)

= (A−1)na ∂n

[

Π2Π
2
(

Λ2Λ
2
(S + S)

)]

, (A.39)

which is going to be used in a while, in order to recast into a standard form the gauge trans-

formation of the dressed vector superfield we are going to construct. The proof of (A.39)

indeed is slightly involved, but it can be simplified if one multiplies both sides with Λ2Λ
2

and shows that they match. Taking then into account that

Πα

{

(A−1)na ∂n

[

Π2Π
2
(

Λ2Λ
2
(S + S)

)]}

= 0 , (A.40)

which follows from (A.11), and by using the uniqueness of the dressing, one can de-

rive (A.39).

We can now construct a non-linear representation of supersymmetry out of the vector

component field, along the lines of what has been done for scalars and fermions in the

previous section. In particular we now have all the ingredients at our disposal in order

to generalize the transformation (A.8) to superspace and to construct the covariant field

strength of the vector, appropriately dressed with goldstini and transforming as a standard

non-linear realization of supersymmetry. Instead of working directly with V̌ , which contains

the vector field in the θθ-component, we define a real vector superfield as a descendant of

V̌ , namely

V̌αα̇ = V̌a σ
a
αα̇ = −1

2
[Dα, Dα̇]V̌ , (A.41)

which has the lowest component field given precisely by V̌αα̇| = vαα̇. Under the gauge

transformation (A.32) the superfield V̌a transforms as

V̌a → V̌a + ∂a(S + S) . (A.42)

We now dress the V̌a superfield with the goldstino superfield defining

Vm =
1

16
A
a
mΠ2Π

2
(

Λ2Λ
2
V̌a

)

. (A.43)

Under (A.42) this superfield transforms as

Vm → Vm +
1

16
A
a
mΠ2Π

2
(

Λ2Λ
2
∂a(S + S)

)

, (A.44)

which, with the use of (A.39), can be recast into

Vm → Vm +
1

16
∂m

[

Π2Π
2
(

Λ2Λ
2
(S + S)

)]

, (A.45)

which is a standard gauge transformation. If we focus on the lowest component

Vm| = um , (A.46)
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we see indeed that its supersymmetry transformation matches the standard non-linear

transformation in (A.8). Notice also that if we expand Vm in the superfield Λα we have

Vm = V̌m +O(“Λ2”) , (A.47)

which can be proved with the use of (A.37). Finally we can construct the covariant field-

strength superfield for Va by setting

Fab =
1

16
Π2Π

2
{

Λ2Λ
2
(∂aVb − ∂bVa)

}

= (A−1)ma (A−1)nb (∂mVn − ∂nVm) . (A.48)

A.3 The alternative spinor goldstino superfield

In this subsection we discuss an alternative superfield description of the goldstino together

with its relationship with the previous ones. As shown in [10] it is possible to map, with

a field redefinition, the Volkov-Akulov goldstino λα to another goldstino field γα, whose

supersymmetry transformation is still non-linearly realized, but chiral

δγα = ǫα − 2iγσmǫ∂mγα. (A.49)

To embed this new goldstino field γα into superspace, we define a superfield Γα which

satisfies the conditions
DαΓβ = ǫβα ,

Dα̇Γβ = −2iΓρσm
ρα̇∂mΓβ ,

(A.50)

together with Γα| = γα. It is possible then to relate the goldstino superfields Λα and Γα

directly in superspace, by means of a superfield redefinition of the form

Γα = −2
DαD

2
Λ2Λ

2

D2D
2
Λ2Λ

2
. (A.51)

In the following we are going to study the relations among Lagrangians formulated in

terms of Λα and those given in terms of Γα. To this purpose, let us assume that we have

a nilpotent chiral superfield X which satisfies

X2 = 0 . (A.52)

This constrained superfield is similar to the Φ introduced in the previous subsection, with

the difference that it satisfies just the nilpotent constraint. The important point is that

such a superfield is related to Γα by

Γα = −2
DαX

D2X
, (A.53)

which means that we can always perform a field redefinition between DαX (and D2X) and

Γα. Taking advantage of the nilpotency of X we have also

X = −DαXDαX

D2X
= −DαX

D2X

DαX

D2X
D2X = −1

4
Γ2D2X , (A.54)
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which implies

Dα̇

(

Γ2D2X
)

= 0 . (A.55)

A supersymmetry Lagrangian can be constructed in terms of X as

L = FX + F
X
, FX = −1

4
D2X| , (A.56)

which is equivalent, up to total derivatives, to another one of the form
∫

d2θX. We prefer

however to consider (A.56) explicitly, because we want to keep control on how it changes

under supersymmetry. In particular, as a consequence of

Dα̇D
2X = −2i∂ρα̇

(

ΓρD2X
)

, (A.57)

the Lagrangian (A.56) will transform as

δL = δ(FX + F
X
) = −2i∂a

(

γσaǫ FX
)

− 2i∂a

(

γσaǫ F
X
)

. (A.58)

We would like to stress here that the superspace embedding of the supersymmetry trans-

formation of FX in (A.58) is uniquely fixed to be given by (A.57) and vice versa.

We are now in a position to postulate a relation between actions invariant under non-

linearly realized supersymmetry which are constructed with the superfield Γα and those

which are constructed with the Λα. We start by acting on the bosonic superfield D2X and

deriving

XXD2X = −4XX B , (A.59)

which essentially defines B as the part of D2X which does not contain bare goldstini. We

can also express (A.59) in a component form, namely

γ2γ2 FX = γ2γ2 b , (A.60)

where B| = b. We stress that (A.60) and (A.59) are exactly one and the same equation,

once written in superspace and once in component form. In particular, b is the part of FX

which does not contain any bare goldstino γα, namely

FX = b+O(γ, γ) . (A.61)

Notice that, as a consequence of the relation (A.51), we can also express (A.59) as

Λ2Λ
2
D2X = −4Λ2Λ

2
B , FX = b+O(λ, λ) (A.62)

and therefore we have

D2X = −1

4
D2

(

Γ2D2X
)

=
1

16
D2

(

Γ2D2XD
2
Γ
2
)

=
1

16
D2D

2
(

Γ2Γ
2
D2X

)

=
1

16
D2D

2
(

Λ2Λ
2
D2X

)

= −1

4
D2D

2
(

Λ2Λ
2
B
)

.

(A.63)
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To prove the above formula one has to take into account (A.55), which is used when going

from the first to the second line. From (A.63) we see that if we know the form of Λ2Λ
2
B,

just from the properties of X we can derive D2X which is the complete Lagrangian. We

can obtain then the following chain of equalities

− 1

4
D2X| =

∫

d4θΛ2Λ
2
B =

∫

d4θΛ2Λ
2
detAa

m B = detAa
m B | = detAa

m B , (A.64)

where

B =
1

16
Π2Π

2
(

Λ2Λ
2
B
)

, (A.65)

and

B = B| . (A.66)

We summarize here the results of this subsection and we recast them in a purely

component field formulation. From our considerations we can conclude that, if we have a

Lagrangian of the type

L = FX + F
X
, (A.67)

which transforms under supersymmetry as

δL = δ(FX + F
X
) = −2i∂a

(

γσaǫ FX
)

− 2i∂a

(

ǫσaγ F
X
)

(A.68)

then up to boundary terms it takes the form

L = detAa
m

(

B + B
)

, (A.69)

where B is defined as the dressing of FX under the nonlinear realization induced by the

Volkov-Akulov goldstino λα, namely

B ≡ eδǫFX |ǫ=−λ. (A.70)

Since all possible dressings of a field under non-linear realizations of supersymmetry are

equivalent, as we proved in (A.18), then B defined in (A.70) and in (A.66) are the same

object.

A.4 Composite component fields

We devote this subsection to the study of non-linear realizations of supersymmetry at the

level of component fields. We first define vmǫ such that the standard non-linear realization

of the Volkov-Akulov goldstino (A.3) takes the form

δλα = ǫα − vmǫ ∂mλα , vmǫ = iλσmǫ− iǫσmλ . (A.71)

The specific supersymmetry variation of the goldstino allows for the construction of a

composite object Ĥ, from an arbitrary field H, that transforms to only the derivative term

δǫĤ = −vmǫ ∂mĤ . (A.72)
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The composite field Ĥ is the projection of the superfield H, which is a generic superfield

with lowest component H, on the hypersurface θ = −λ. Explicitly Ĥ is obtained from H

by acting with the supersymmetry operator and projecting the parameter

Ĥ = H|θ=−λ = (eδǫH)|ǫ=−λ . (A.73)

To proof that (A.73) transforms as (A.72) we introduce the transformations

δ̃ǫ = δǫ + vmǫ ∂m ,
[

δ̃ǫ, δ̃η

]

= 0 (A.74)

and we notice that, since

vmǫ |ǫ=−λ = 0 , (δkǫ v
m
ǫ )|ǫ=−λ = 0 (A.75)

with k ∈ N, we can write equivalently

Ĥ = (eδǫH)|ǫ=−λ = (eδ̃ǫH)|ǫ=−λ . (A.76)

The variation of Ĥ under the newly defined operator is

δ̃ηĤ = δ̃η(e
δ̃ǫH)|ǫ=−λ

= δ̃η

(

∞
∑

k=0

δ̃kǫH

k!

)

∣

∣

∣

ǫ=−λ

=

(

∞
∑

k=0

δ̃η δ̃
k
ǫH

k!

)

∣

∣

∣

ǫ=−λ
+

(

∞
∑

k=1

δ̃−η δ̃
k−1
ǫ H

(k − 1)!

)

∣

∣

∣

ǫ=−λ

= 0 , (A.77)

where we used that δ̃−η = −δ̃η. We now list properties of the operator eδǫ |ǫ=−λ and give

the accompanied proofs.

• Property 1: (eδǫλ)|ǫ=−λ = 0 .

The proof is almost immediate. We provide the few steps needed

(eδǫλ)|ǫ=−λ = (eδ̃ǫλ)|ǫ=−λ

=

(

∞
∑

k=0

δ̃kǫ λ

k!

)

∣

∣

∣

ǫ=−λ

= λ+ ǫ|ǫ=−λ +

(

∞
∑

k=2

δ̃kǫ λ

k!

)

∣

∣

∣

ǫ=−λ

= 0 . (A.78)
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• Property 2: (eδǫλH)|ǫ=−λ = 0 .

The proof is similar to the previous one. We again give the few steps needed

(eδǫλH)|ǫ=−λ = (eδ̃ǫλH)|ǫ=−λ

=

(

∞
∑

k=0

1

k!
λδ̃kǫH

)

∣

∣

∣

ǫ=−λ
+

(

∞
∑

k=1

1

k!
kǫδ̃k−1

ǫ H

)

∣

∣

∣

ǫ=−λ

=

(

λ

∞
∑

k=0

1

k!
δ̃kǫH

)

∣

∣

∣

ǫ=−λ
+

(

ǫ

∞
∑

k=0

1

k!
δ̃kǫH

)

∣

∣

∣

ǫ=−λ

= 0 . (A.79)

• Property 3: eδǫĤ|ǫ=−λ = Ĥ.

This is a consequence of δǫĤ|ǫ=−λ = 0, which follows from (A.72) and (A.75).

• Property 4: eδǫ (GH) |ǫ=−λ = ĜĤ .

Since

δǫĜ|ǫ=−λ = δǫĤ|ǫ=−λ = 0 , (A.80)

we can be write the product of Ĝ and Ĥ as

ĜĤ = eδǫ
(

ĜĤ
)

|ǫ=−λ . (A.81)

The second property in (A.79) leads to the final result

eδǫ
(

ĜĤ
)

|ǫ=−λ = eδǫ (GH) |ǫ=−λ . (A.82)

As pointed out, the composite fields defined in this subsection are projections of superfields

on a hypersurface θ = −λ. The alignment of the field in the non-linear supersymmetry

direction makes it transform in a very specific way. Even though the transformation is now

devoid of a differential interpretation, we can restore the superfield description by lifting

the composite field into superspace

H = eδθĤ . (A.83)

Because the dressing is uniquely determined by the non-linear supersymmetry algebra, the

superfield in (A.83) is equal to the dressed analogue in (A.14), which is used throughout

the paper. The superspace operators (A.14) and (A.83) obey the properties 1 - 4 as listed

above, but lifted to superspace.

B Bagger-Galperin action with standard Fayet-Iliopoulos term

In this appendix we investigate the consequences of adding a standard Fayet-Iliopoulos

D-term to the Bagger-Galperin action, as in (3.15). Notice that, because of (2.25), the

standard Fayet-Iliopoulos term is invariant under both the linear and the non-linear su-

persymmetry. Using the tools we have developed in this work, we can recast the La-

grangian (3.15) into a form where the non-linear realization of supersymmetry is manifest.
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In particular, since the standard Fayet-Iliopoulos term will contribute to the supersym-

metry breaking, we can perform a splitting of the type (2.35) and we can then follow

the procedure outlined in the previous parts of the appendix for dressing the superfields.

Following this strategy, the Lagrangian (3.15) becomes

LBG + FI =− βmdet[Aa
m]

√

1 +
1

2m2
(F2 − 2D2)− 1

16m4
(FF̃)2

−
√
2 ξ̃ det[Ae

p]D
+ 2

√
2i ξ̃ det[Ae

p] ǫ
abcd [(A−1) n

a ∂nλ]σb [(A
−1) k

c ∂kλ] (A
−1) m

d um .

(B.1)

The equation of motion of the auxiliary field D is

D =

√
2mξ̃

√

β2 + 2ξ̃2

√

− det (η +m−1F) (B.2)

and the on-shell Lagrangian takes the form

LBG + FI = − det[Aa
m]m

√

β2 + 2ξ̃2

√

− det

(

ηab +
1

m
Fab

)

+ 2
√
2i ξ̃ det[Ae

p] ǫ
abcd [(A−1) n

a ∂nλ]σb [(A
−1) k

c ∂kλ] (A
−1) m

d um .

(B.3)

This Lagrangian has a series of properties, which are reported below.

• Supersymmetry is still partially broken, albeit rotated because of (B.2) [50, 51].

• The pure bosonic sector matches with that of the Bagger-Galperin model, up to a

normalization.

• The limit ξ̃ → 0 produces the Bagger-Galperin Lagrangian.

• It presents a crucial difference with respect to the Bagger-Galperin Lagrangian, which

is related to the presence of the term in the second line. As we have already explained,

this term is responsible for the gauging of the R-symmetry, once we couple the theory

to supergravity.

C The alternative Bagger-Galperin action in tensor calculus

For completeness we would like to present here the alternative form of the Bagger-Galperin

action in the formalism of [1]. The superconformal version of the Lagrangian (4.6) reads

LBG = − a

4b

[

λPLλ
]

F
−
√
2a

[

φ0φ0
w2w2

T (w2)T (w2)
(V )D

]

D

+ ab

[

(φ0φ0)2
w2w2

T (w2)T (w2)

(

1 +
1

4b2
fabf

ab −
√

− det

(

ηab +
1

b
fab

)

)]

D

,

(C.1)

with

w2 =
λPLλ

(φ0)2
, w2 =

λPRλ

(φ0)2
, fab =

φ0

8φ0
Cαγ (γab)γ

β

(

Qα
λβ

(φ0)2
+Qβ

λα

(φ0)2

)

. (C.2)
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The Q operator in (C.2) is defined from the supersymmetry transformations

δC = ǫαQαC , (C.3)

for a generic component field C. The spinors are all written in the Majorana representation.

The Weyl and chiral weights (w, c) of a gauge multiplet V = {vµ, λ,D} are (0, 0). It

follows that the weights of the gaugino PLλ and auxiliary field (V )D ≡ D are respectively

(3/2, 3/2) and (2, 0). The superconformal algebra imposes restrictions on the existence

of superconformal multiplets [15]. For example the weights of the fermionic bilinear w2,

which are (1, 1), allow the chiral projection T (w2), with weights (2, 2), to be well defined.

The superconformal field strength fab has weights (0, 0) and is constructed such that it can

serve as the lowest component of a superconformal primary multiplet.

After conformal gauge fixing (φ0 = φ0 = κ−1 = 1/
√
8πG ,PLΩ

0 = PRΩ
0 = 0), the

dimensionless parameters a and b are related to the dimensionful β and m in the follow-

ing way

a = κ2β , b = κ2m. (C.4)
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