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ABSTRACT 

The use of non-compact groups is considered in 

constructing Poincare invariant S-ma trix element s. This is 

done in the manner of Matthews and Feldman. Later, the 

invariance of the S-matrix is extended to broken inhomogeneous 

U(6,6), thus including SU(3) as well, and the corresponding 

fields are constructed using U(6,6) as the auxiliary group. 

The connection of this group with SU(6)w  is shown. Finally, 

proton-antiproton annihilation at rest into mesons is 

considered in detail and the predictions are found to be in 

disagreement with experiment . 



INTRODUCTION 

Theoretical physicists, for the last few years have 

been striving to perceive some order in the morass of elementary 

particles which are continually being found by the experimenta- 

lists. SU(2) was successfully used to classify the proton and 

neutron states way back in the 1930's. Since then strong 

interactions have been assumed to be invariant under this 

isospin group and most of the hadrons (strongly interacting 

particles) have been classified as multiplets of this group. 

In 1959, Ilmeta, Ogawa and Ohnuki l  suggested U(3) as a possible 

symmetry group for the strong interactions, combining both SU(2) 

and the hypercharge gauge group which was well established. 

Ne ' eman and Gel 1-Mann2 then propos ed the eight-fold way of SU( 3) 

in which the 1+  baryons and 0-  mesons are classified as octets. 

Subsequently the 1-  mesons were fitted in an octet and the mos t 

remarkable achievement of SU(3) was the prediction of the 12 3, 
3 strangeness -3, -2+  particle which was needed for the completi on 

+ 3 of the -2: decouplet. This particle was found early in 19644. 

Even though all the SU(3) predictions were not successful5, 

it was at least successful in bringing some order. In 1964 an 

old idea of Wign er6 was applied to el em nt ary particles. aligner 

had postulated the independence of nuc lear int eracti ons under 

isospin and spin separately. These two groups could then be 

combined to form SU(4). Similarly SU(3) and the spin group 

were incl uded in SU( 6 ). This then states that strong interact io:16 

are spin and unitary spin independent. This group is clearly 



non-relativistic and can only be used to classify static states. 

It can only be applied to tstatic' problems. Its chief 

achievement was in classifying all the baryons and baryon 

resonances in one multiplet, the 56, and the pseudoscalar and 

vector mesons in the 35 multiplet. 

There was an obvious need to make this group relativistic. 
3 Notwithstanding the general theorems of O'Raifeartaigh et. al 

about the difficulties of combining SU(3) and the Poincare 

group, several attempts were made towards this end. The most 

notable of these were the U(6,6) theory developed by Salam, 

Delbourgo and Strathdee9  and the SL(6,C) theory of Fulton and 

1Jess, and Ri.ih110. In this thesis we shall be concerned with a 

particular application of U( 6,6) to proton-antiproton 

annihilations at rest. This work was done in collaboration with 

P. Rotelli and the results have already been published.11 



CHAPTER 1 	 1. 

USE OF NON-COMPACT GROUPS  

This chapter is a review of fairly well-known material 

and is based to a great extent on the work of Weinberg12 and 

Matthews and Feldman13. We shall try to illustrate the use 

of finite, non-unitary representations of a non-compact group, 

in the construction of l ocal fields associated with particles 

that belong to finite unitary representations of the Poincare 

group. 

Vie start by considering the procedure for cons tructing 

local fields which are associated with the single particle 

multiplets of the Poincare group. With these fields it is a 

simple matter to write down Poincare invariant S-matrix elements. 

The homogeneous, proper, orthochronous Lorentz group, Li., 

is the group of tr..usformatiens 

x
A 	

A
A 

x
v 

for which det A = +1 

and 	A°  1 	 (1.2) 
and which leave invariant the quadratic form 

Xia XV 
	 (1.3) 

(2,v = 0,1 2 3 • $ • with metric (11-12-1,-1)). The conditions (1.2) 

exclude discrete space or time reflections, so that the group 

elements are continuously connected with the identity. The 

infinitesimal transformations can be expressed in terms of six 

real parameters cAv  , so that 



where 

S 	8 X X = gy 
V 

8 
 UV 
= -8

VA 

2. 

(1.3) 

The corresponding six infinitesimal generators J
Av

,where 

vg 

satisfy the commutation relation 

[J ,J 1 = irp gi2  Vir ggri-Tvp+ gvifigpgvp.Igv )  

(1.4) 

The three operators Jii (is j = 1,2,3) are interpreted physically 

as the angular momonturio 

The basic representation of the generators J
Av 

 is given 

by the six 4x4 ilaty-ices 

[Y Y ] 
v 	2 A v. 

(1 .5 ) 

where the four matrices y , whose elements we write as (y ) 
A 	 A a 

with a13 = 1/.4, are the Dirac matrices satisfying 

IY A YV i  = 2g1.cv 
	 (1.6) 

Since yo is hermitian and yi (i = 1,2,3) are anti-hermitian, 

T.. are hermitian and Cr . anti-hermitian. This illustrates the 
13 	01 

non-compact character of the homogeneous Lorentz group. 

We now generalise to the inhomogeneous Lorentz - or 

Poincare group, by allowing displacements in space - time 



3. 

52  -4 xi2  + a4  

These form a four-parameter Abelian group, with infinitesimal 

generators P which satisfy 

[PA' P ] = 0 	 (1.7) 

These are interpreted physically as the total energy and 

momentum operators. 

The Poincare group is the semi-direct product of this 

Abelian group with the proper homogeneous Lorentz group. It 

is defined by one additional commutation relation 

[PV J4v  ] = i (g4.11:).1) 	gxvP4) 
	

(1.8) 

The Poincare group is non-compact so that its unitary 

representations are all infinite. The physical states must be 

normalizable and hence form unitary representations of the 

group. These are specified by the eigenvalues of a complete 

set of commuting operators constructed from the group generators, 

An irreducible representation can partially be specified by 

giving the eigenvalues of the Casimir operator 

< P2> = 1112 
	

(1.9) 

and for a state in this representation we can further specify 

P > = p 4 	A 

For physical states we require 

(1.10) 



4, 

m2 	r  po 	0. 

2 
YTe restrict our discussion to m > 0. Physically it is clear 

that WG have c*lected those states corresponding to a given mass, 

The manifold of states satisfying condition (1.9) and (1.11) is 

infinite; it is called an orbit. A particular component of 

this infinite—component multiplet — or point on the orbit — 

is given by the rest state, 

Ply  = (m,0) 

Any other point on the orbit may be reached by a Lorentz 

trans forma ti on. 

To remove the degeneracy from the state so far specified 

only by the orbit p2 = m2, po > o and the value of 2.  (equivalent. 

to p ) we must consider the "little group". By definition, the 

"little group" of the Poincare group is the sub—group of the 

homogeneous Lorentz group which leaves 	invariant. It may be 

shown that the little group is the same for all points on an 

orbit14, and it is convenient to consider the special point 

p 	= (m,0). It is easy to show, that in this frame, the "lit tie 

group" is the rotation group with infinitesimal generators Jib. 

Thus , for the Poincare group, having spe cif ied the orbit 

< p2> = m2, pc)  > 0, an irreducible representation is defined 

by specifying <11> and a particular state in this representation 

by specifying 312. For one particle states these reduce to the 

spin s$  and spin component s3. At this point *  we may also 
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specify the parity <R> where the parity operator R satisfies 

= 0 , 	[R, Po] = 0 

= 0 $ 	[R, J. 	= 0. 
(1.12) 

This completely determines the representations of the one 

particle states, as far as their space—time properties are 

concerned. `.'re denote these states by 

I m2  s ;2,s 	= 	P s > 
	

(1.13) 

where obviously m2 and s determine a representation and 2 
and s3 a state in this representation. 

The general Poincare transformation on the physical set 

of states in Hilbert space can be written as 

U(a vA) = exp 	+ 	] 
	

(1.14) 

i.e. it is paramcterised by a displacement all  and a Lorentz 

trans formation Acv.This is a unitary operator on physical 

states. To obtain the explicit representations of these 

transformations on physical states it is convenient to consider 

the boost operation which takes a rest frame state Im,s> to 

a moving state !p a s>. This corresponds to a pure Lorentz 

transformation. Thus 

IP2s> = N exp[—i s(p)4.] 'rays > 

where K. = J . 
1 	01 

(1.15) 



6. 

and 	Pis  1p,s> = 	s > 
	

(1.16) 

Using the general commutation relations (1.4), (1.7) and (1.8) 

it is easy to show that (1.16) is satisfied if 

cosh Is I 
	Po 	

sinhlel =  
	

(1.17) 

and a(p) is in the direction of g. N is a normalising factor. 

Under a pure Lorentz transformation A, a general one 

particle state transforms as 

zi.K 
U(A)Ipl s> = e 	IP's > 

	

-is'.K 	( eiel.K 	-ie,X ) 
FAO 	4•M• 

i m,s> 

(1.18) 

where 	et = e(pt) and e = c (p). 

and 	= A-pt 	 1 p. 	 (1.19) 

From the definition of e, .2 and el it is obvious that the 

effect of the three exponent ial factors in brackets is to induce 

the transformations m 	p 	pt ---> m. Therefore, they take a 

rest frame state to a r est frame state and induce only a little 

group spin rotation of a rest frame state. We define this as 

the aligner rotation 

is' .K 	 e.K 
D(p) = 	 (1.20) 



7. 

Then equation (1.18) can be writ ten as 

-is' .K 
4m. 	Alaar 

U(A)1p,s>= e 	Im,s1> <71, s ID(p)Ims s> 

Ipt,s1> <rnt s ID(p) 	(1.21) 

Under a trans lati on 

iPc- 
A 	

l 1p,s> 	U(a) I p,s> = e A  Ipt s> = e v-  jp,s> (1.22) 

These transformation properties can also be expressed in terms 

of Foes. space creation and annihilation operators acting on a 

non degenerate vacuum state Ion , such that 

a+(p,$) lo> E jp ,s > 

These states are covariantly normalised 

<io l ts l ipts> 271' 0 ( 1,0)6(p2-m2 ) 	(27)4 64(p-p ) ssl 

Then by (1.21), 

U(A)a+(p,s )U-4  (A) = a+(pt , s ) <rrs , s t D(p) m,s > , 

and since D is unitary 

U(A)a(p,$) U 1(A) = <m,s1D-1(p)Imo s 1 > a(p',s') 	(1.23) 

and by (1.22) 
ip a 

U(a)a+(p,$) U-1(a) = e A  a+(p,$) 	 (1.24) 

and 
-ip 

U(a)a(p,$) U-1(a) = e 	a(p,$) (1.25) 



n u • 

Vie have now explicitly exhibited the transformation 

properties of one particle states under Poincare trans formations t 

Vie could use these creation and annihilation operators to 

construct Poincare invariant scattering elements. However, 

their transformation properties are complicated because the 

VTigner rotation D(p) does not only depend on 	, the parameter 

of the Lorentz transformations Al but also on the momentum of 

the state being transformed. Because of this we try to 

construct auxiliary operators which have simpler transformation 

properties under Lorentz transformations. To achieve this, we 

require explicit representations for the three factors appearing 

in the Tsigner rotation D(p). Since these involve the generators, 

K1, of pure Lorentz transformations we need to consider an auxilicr  

group which contains these generators. 	The simplest choice 

is the homogeneous Lorentz group and we may use any represent atio,. 

which contains the spin s in its decomposition. It is simple st 

to use the finite representations lcC> which are non-unitary. 

It is in this manner that the non-unitary finite representations 

of the Lorentz group arise in field theory. Later, we sha ll 

show how this auxiliary group can be enlarged to U(6,6). Thus 

s ID-1(01111,st> 

is.K 	iL.K 
= <m:s la> <ale —1i5> <8le 	IY> <yle 1 6> 

< Sim, s' 	 (1.26) 

cre  now define the auxiliary operator. 
-18.K 

Aa(p) =<ale 	IP> <Plint s> a(p,$) 

ua(p) a(p,$) 
	

(1.27) 



U(A) Aa(p) U-4 (A) 

<ale 
in.K 

lfl> Ap  (P I ) 

9. 

Thou by (1.23) and (1.26) 

U(A)Acc(p) U-1  (A) 

ua(p)8  U(A) a(p,$) U 1(A) 

-ie.K (as <ale 	> is just a number) 

-18.K 
= <ale - 	-<elm s 	<13,0 	(p) 	s 1> a(p',s ) 

-ie.K 
= <ale 	IP> <81D-1  (p) iy> 41.m,s t> a(pt,s ) (1.28) 

This is possible since D is an element of the rotation group, 

which is a subgroup of the auxiliary group, and the representatiel_ 

l a> includes the spin s. 

Then 

U(A)Act(p) U'(A) 

= <al e e 	e 	e 
is.l 	iz2.fS 	-1E'.iS 

ly> <ylm,s'> a( pi s ) 

-let .K 
= Gale 	l /3 ><PI e 	l y> <yjm,s f> a(pl s ) 

(1.29) 
Therefore, finally 
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= Sap A

0 
 (p+) 
	

( 30 ) 

This is just the simple transformation property we were looking 

for. The transformation of Aa(p) is now a pure index transforma-

tion parametrised by 7 alone and with the additional requirement 

that p is replaced by pl. The label a thus defines a finite 

non-unitary representation of the non-compact homogeneous 

Lorentz group. The factor Ua(p)s  is a generalised spinor and 

the relation (1,127) is the crucial lin7.7. between the group 

theoretic analysis and operator fields' The non-unitary states 

la> have no physical significance and have been introduced to 

simplify the problem of constructing Poincare invariants. Their 

connection with the physical states jm,s> is the constant 

spinor <almas>. To construct Aa, loo> must contain the spin Is>. 

In these non-unitary representations, <al is the dual, not 

the conjugate of Id>. It is defined such that < aka> = 1. 

Thus 

<IP <Vila>*  

and 	<ie I Ki a> = Kt3c4  

is no longer a hennitian matrix. The relationship between the 

dual and the hermitian conjugate of Aa(p) has to be evaluated 

for each particular representation. The dual operator A
a  is 

defined as 

ie.K —r 
Aa(p) = a+(pas) <s,mIg.> <Ole 	lok> 

al- (p,$) us(p)a 
	

(1.31) 



so that it transforms contravariantly, thus 
	 11. 

-ia•K  
U(A) Aa(P)  U-1(A) = A3(pt)<T3 	 la> 

= A/3(p1) (S-1)pa  (1.32) 

so that Aa(p) Aa(p) is a scalar density. 

It is easy to show that under translations 

. -1D au  
Aa(P) -i e 

_11 
Aa(p) 	 (1.33) 

ip ail  
Aa(p)-4  e A Aa(P) 	 (1.34) 

With these auxiliary operators it is a simple matter to 

construct Poincare invariants. All one has to do is to saturate 

indices in the product of the appropriate auxiliary operators. 

The factor pill  transforms like a four vector when it appears as 

a product p1  Aa(p) so it can be used in constructing these 

scalar densities. If we take k> to be the Dirac ((j,0)-1-(0,1)) 

representation for spin u particles we have 

(K. ) 	= 	croi 	 p l
a  1 a 	2 

and four vectors and pseudo-scalars can be constructed from 

Oa(P) (Y)0/3  p(q) 	Pa(p)(Y5) ale  Op(q) 

a respectively. IP 4,3  are now the Dirac fields. The most general 
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Poincare invariant involving such operators is then the form 

T oa(
g 	• • ) (yl2p,y5)afi  0[3 (22) 

(5'4(p1  +...—p2° ..) d4pl• ..d413 2  

Also for the Dirac field Aa(p) 	Vi CC  (p) = ( V/1- (p)yo ).  

Notice that we have been able to construct Poincare 

invariant S-01_, cr at or s wi thout introducing the concepts of 

antiparticles or any of the general properties associa ted with 

them such as crossing symmetry and CI? invariance. Weinberg12, 

Matthews and Feldman13 have shown how these arise from the 

important notion of local fields. They also show how any 

equation of motion, apart from the Klein—Gordan equation, is a 

consequence of using a representation la> which runs over 

more values than the number of spin components, 2s+1. 

The equations of motion are obtained by restricting a to the 

s values, for example, by requiring a definite parity. We 

illustrate this in the next chapter where we enlarge the 

auxiliary group to 13(2,2) and then later to U(6,6). Here, the 

restrictions lead naturally to the 13argmann—Wigner15 equations. 

The baryon number is introduced by taking a direct product 

of the gauge group 13(1) with the auxiliary group. For the basic 

4x4 Dirac algebra the infinitesimal generator of U(1) is the 

unit matrix. With this choice, since 	and Aa  transform 
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covariantly and contravariantly respectively under these 

simple phase transformations, they will have opposite baryon 

number. They represent quark and anti—quark states 

respectively. 
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CHAPTER 2  

U(2,2) AS THE AUXILIARY GROUP  

In chapter 1 we discussed the rise of finite representation: 

of an auxiliary group in constructing Poincare invariants. This 

group has to contain the Lorentz group and the representations 

used must contain the spin s in their decomposition. We now 

consider the use of larger auxiliary groups, in particular 

U(2,2). 

As before, wc. define the auxiliary operator 

-is.K 
Aa(p) = Code ---1g> <PIrass> a(pts) 	(2.1) 

but now the N> are representations of the group U(2,2) 

f a> will also transform like some reducible representation 

of the Lorentz group. U(2,2) is the group of transformations 

whose infinitesimal generators are Fr(r = 0,1,2.15) where 

in the basic representation (4x4) 

1  „ir F= -2- .1. 

rr  = 	, y5 	ysyli  a4v  ,1 
	(2.2) 

Define [Fr ,rs] = i frscIFq 

This group is closely related to U(4) but the essential 

difference is that only eight (1,y0,iy5y1,o 1i) of the sixteen 

matrices (2.2) are hermitian„ the other eight being antihermitian, 

Here 

Y5 = YoYi Y2Y3 
	 (2.3) 



15. 

and these matrices satis fy the relati on 

Yo(rr )4-  Yo = rr (+ denot es he rani ti an 
conjugate). 

(2.4) 

which ensures that the relationship between hermitian conjugate 

operators and duz.A. for U(2,2) is the same as for the homogeneous 

Lorentz group i,,eo for the basic 4x4 representation (which 

contains the Diz.ac apre s eitt at ion o f the homogeneous Lorentz 

(1 (p) r tLansforrns like A'3(p) (yo) . 

A"(p) 	(11.+(p);) a 
	

( 2 . 5) 

Thus under pure Lorentz transformations 

-1 U(A)Aa(p) u -(A) = <ale 	Ig> Ao(p') 

sa  PAe  (pt) 	(2.6) 

which is exactly the same as equation (1.30). However we 

now have the further possibility of performing U(2,2) transforma— 

tions on the auxiliary operators. 
ie, Fr  

Aa(p) -4 <al e r  IP> A8( p) 

Ta  A (-o). 

Again the dual operator Aa(p) is 

is.K 
Aa(p) 	 am. •••• 

a+(pt s)<Hm,s1/5> <Ple 

(2 . 7 ) 

( 2 . 8 ) 
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and under U(2,2) trangformations 

Aa(p) 	AP(p)(T I) a. 	(2.9) 

We now proceed to the construction of local fields from 

the auxiliary operators. For the case of spin 1 particles, 

the lowest U(2,2) representation which contains spin 1 is the 

4-dimensional basic representation, In the reduction to the 

	

Lorentz group this representation reduces to the (1,0) 	(0,1) 

representation. This has been discussed in detail by Matthews 

and Feldman and they have also studied auxiliary operators of 

the form Aa  (p) (asie = 0, ..,.3). We shall here construct 

fields made out of auxiliary operators Aaoy(p) without  

particular symmetrization of the indices so that it transforms 

like a reducible representation of U(2,2). Such operators will 
3 contain particles of spin 1 and 2  . 

i i) Auxilinuy_2perator of rank 3 

Let us define the 64-component object 

AarBY (p) = (.6(p)s)apy 	a(p.$) 
	

(2.10) 

where 
-ie.K 

(U(p)s )ccpy  = <00Yle 	—laiPly> GalPlyt Ims s> 

(2.11) 
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/ 	 a' 	P' 
(e 	

Y' 

; 
-ieic-011 2) 

	
(e-isiToi/2) 	

-i e.cr ./ ) 01 2 
a 

+ permutation* 

of 	atOlyt 	<a‘fi'y' Im,a> 
	

(2.12) 

since in the basic representation 

-ie.K 	 cr.12 
<ale 	— Ig> = ( e 	1 01 	p (2.13) 

We can now define a field 

tfrooy(x) = 

	

-ip.x N 	ip.x 
I (A

aPY
(p) e 	D 	(ID) e 	)270(po ) apy 

2 2, dlo x utp -m ) 
(27) 

(2.14) 

where, to allow for later developments we have introduced a 

second particle of mass m and slain s with auxiliary field 

is aOy(p), 

aPY
(p) 

-ie.K 
= <ageYle 	la'11 Yr.> <atPlY t hlin,s> 114-(13,;) 

E ;aPY  (n)s  b+(p,) 	 (2.15) 

The operator b+  creates the antiparticle of the particle 

destroyed by a. This combination of annihilation and creation 

operators for the definition of potOY (x) is possible because 
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Weinberg has demonstrated that the auxiliary operator 

associated with a creation operator can be made to have the 

same transformation properties as that associated with an 

annihilation operator. For any pure rotation D there exists 

a matrix B, such that 

< m,s im, s > = <m, si IB 1D-1Blm,s> 

or in other words there is a matrix E which relates a representa-

tion D of the rotation group with its dual representation 

DI = -DT  

through the relation 

D 	= 	BD '13 1  

i.e. these two representations D and LP are equivalent. Therefore;  

we can re-write (1.22) as 

U(A)a+(p,$)U 1(A) = <p,s !B-1D-1B1m,st >al-(pl,st) 	(2.16) 

and hence we can introduce an alternative auxiliary operator 

Xa(p) = Gale 
-ie.K 

-10> <61131mys> a (p,$) (2.17) 

where since B is a matrix in spin space <01B s> is to be 

interpreted as 

<13 	s I> ‹n, s' ID 	s> 
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Under a pure Lorentz transformation 

If  
U(A) xo c(p) 11-41 (11.) =<al e 	-1)(3>X (P t  ) 	(2.18) 

which is the same as (1.30) . But, under translations 

ip d4 
7,.a  (p) 	e A Aa(p) 

which is opposite to (1.33). Vie now see that our definition 

(2.14) is valid. Tie combine a and b+1  so that 11/(x) behaves 

simply under gauge transformations. 

The variable s in (2.15) runs over the same range of 

values as s, but the matrix <aPy Irn,s> may be different from 

<aPYIm,s>. We should now like to demonstrate how the causality 

requirement is linked to equations of motion for the field and 

to the pai•ities of the anti-particles. By causality we mean 

that the fields satisfy local commutation relations 

[LP(x):e(y) j±  r--• 0, (x-y)2< 0 	(2.19) 

where the commutator (anti-commutator) refers to Bose (Fermi) 

fields. 

Assuming that the particle operators a(p,$), b(p,$) etc 

are Fermi operators we have Paley  ( x)scbv+prrt y I 

-ip.(x-y) 
= i[u 	( )s  ( 	( )s )*  e aoy  p urpo_ p 
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; (P); 	
* 

aPY 	v7rpg12)  ) 	
277.0(pomp2._.m2) 

d4p 

(27)4  

This is obtained by using the relations 

la(p,$),a+(q,s1 )} 270(p0 )6 (p2....m2) 

= (27)44( p-q)e ss 	(2.21) 

and 

ia,bi = 0 etc. 

which are consistent with the normalisation of the states. 

To show that the causality condit ion is satisfied we need 

to evaluate the spin sums 

u (p)s(uirpo- (0) s )*  
afiY 

-is .K 
= 	<ccPY 1 e 	IcoP t yl> <octP!yi Im,s> 41,s lirpto-t> 

-ie.K 
< Tr t p t crt le 	TrPcr> 

and 

;aPy (2); (;ripT  (p)
s  ) 

-is.K 
= 	WY le 	la t iety‘› <a'Ply1 	x 

(2.22) 

( 2 . 2 ) 
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-is.K 

<-:11.irB-11friptcr,› <77 p cr e 	irgr> (2.23) 

These spin sums depend on what we choose for the operators 

< 	Im, s> <rat s firipiTT> (2.24) 

and 

= < 	> <m,3 atply, 	 113-117ropio-t> 

(2.25) 

'7e must now decide how many particles are present in the 

representations im,S> and lm,; >. If s runs over the same 

number of values as a then we would have 

< almo> = (Fas  

1Ve can then generalise from this basic quark representation 

to find that 

ylp IT! 
oalptyt 	= 

a'O'Y' 
TrIptcrt 

	

1 	
7r t  te
at  01  p'SY' + all other combinations ) 
•  

(2.26) 

if s and s run over as many values as afr (64). We are assuming 

no symmetrization of the indices ajy. 

Thus, (2.20) reduces to 

	

[C6  Cley (X) 	 p+  (Y)i 
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- f aoey 
7/00-  (a) A(x-y) 	 (2.27) 

-ip(x-y) 	-Fip.(x-01 	2 2,  d4P where A(x-y) = f 	e 	217-0(po)S(1) -m 	4 
(27) 

(2.28) 

where f(a) is some function of the derivative operator a =a 
Mr, 

This is realised by observing that in the basic representa- 

tion 

-is.K 
<ale jo> (e

-is.T / oi 2 
) a =  (2.29) 

and then from (1.23) we find that 

-ie.Toi p  
(e 	)a  - (m Yo ) P  a (2.30) 

Generalising this to the representation laPy> we find that 

(2.27) is true. The expression (2.27) then is known to vanish 

for (x-y)2  < 0 and hence the causality condition (2.19) is 

satisfied. We see that we have been able to find causal fields 

without having the necessity of any equation of motion apart 

from the Klein-Gordan equation. We get equations of motion by 

putting restrictions on the spinor <aPyrm,s> which appears in 

(2.22). 



UaPY (p)8(UypT(p)s)* 

—112 [ (C4)cc 4) pP \ a.yr0 a o 	o 

7r 

+ (Y ) 17.(Y ) 	 (Y )cr y ) 

+ permutations ] 	(2.35) 

23. 

In the basic representation we see that yo fulfills the 

role of the parity operator as it satisfies the relations (1.12). 

In the representation laPst> the parity operator is 

<00Y1Rl7rpo-> = b((yo) a (Y0)/(yo)j+ all combinations) 

(2.31) 

We start by specifying the parity of the state im,s> by 

requiring that 

[(Yo)a(Yo)~(Yo)or + ...] <71-polm,s> = + <al6y , s> 

(2.32) 

and, therefore, 

<40y1m,s>. yi saysopsy'+ (yo )jhr.)0Pc Yo ) 	...] 

<ITiocrim,s > 	(2.33) 

Thus, the operators 0 become 

TrIptort 
o00/3 1 [1 (6 q

fi VF(y.)any0),X(rdyn = 	a'  

]+ permutations of fil lpjo- t 

(2,34) 

This leads to 
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by using (2.30) and the fact that yo  anti—commutes with cr ol 

To proceed further we must restrict parity of the state 

im,—s>. If we take this to be the same as im,i> i.e. 

[ yo  yo  ) P0( yo )y 	<vpo-  B 	> = <apy tn,;> (2.36) 

and proceeding as before we find 

/ ‘ 
V 	Di 

S 

aPY
‘ Trpo-  (p))*  

	

1  [ WIT 	(4): 	( Y.  )7r  

	

a 	, 	y 	o a ( Y.)13 (Y0 )(f.; 

 

perm. ut ati ons 

(2.37) 

and the condition (2.27) is not satisfied. However, if we 

take 

1 
[(Y0)7(1; (Y0) (Y0) 

	...] <gpo-IBlm,s> =-KaPyll3kri,;› 

(2.38) 

then 

a 13, y 	oao,o. [ 	4)P 4,) Cr  - ( Y )1rer )B( Y cir 

+ Permutations] (2.39) 

and then the causality condition is satisfied. In this 

representation we have then found that, to satisfy the causality 

condition, the antiparticles have opposite parity to particles. 

This is the conventional theory for fermions. 



(16)00y  Uirp0-(p)8  = m3 1.100y(p)8  (2.40) 
irpo- 

25. 

Tie can now boost the rest condition (2.32) by multiplying 

(2.12) on the left by 

. 	 -iS (e 	01, ) a (e 	1 
of p 	1 

.T
oi y 

'o 

+ IP • • • 

and then use (2.32) and (2.30) to obtain the equation 

where 
gpT 

Wapy 	= b [(Pa (i) 	(It) cr,"(  

Similarly, 

wpo-  
t .s = -m  3  (Papy  v (-0) vpu- 

and hence 

;alay(p)5 	(2.41) 

Trpu- 
(iy 	) m3 	(x) 	(2.42) Aa 

A aPY 	4per(x)  = 	-aPy 

that is, the field operator in configuration space satisfies 

an equation of motion. 7e have found that to satisfy causality 

we have had to introduce antiparticles and to assume anti-

commutation relations for the field giapy(x). We have therefore 

obtained Fermi statistics for this field vihich we shall show 

is an half-integer spin field. We have also found that if we 

specify the parity of the particles we are forced to choose 



and 

p' 	cr' 
(1+y,,) (1+y ) 	(141 ) + 0 	0 

0 

ITT Tri p10-1 
1 oa'P'y 	=f 	43 a • • • 0 

26 

the opposite parity for the anti-particles to be able to 

satisfy the causality condition. Also, the equation of motion 

(2.43) is only a boost of the parity condition (2.32). 

We can put further restrictions on the spinors ‹aPylm,i.> 

and we show below how these restrictions lead to the Bargmann-

Wigner equations15. tie specify the 'quark' parity (i.e. 

parity of the basic representation). Consistent with (2.32) 

the state Im,S> has a positive quark parity 

(Y0) aal  <POPYlm,i> = GaPylm,s> 
	

(2.43) 

Therefore 

<aPY m, s> = 2 ( 1 + Yo) as <a 1,61y I m, s> 
	

(2.44) 

giving 

* irpo- 	1 
(uu ) 	= 

cc,8y 48m3 

(2.45) 

P((i+M)Y0 )  

(2.46) 

(2.47) 

[(1-111)Y0) 	"16+M)Y0) 

Consistent with (2.38) we have to now choose 

(Yo )aal<W0y1B1m,7 > = -<AeylBlm,; > 

that is, the parity of the antiquark has to be opposite to the 

parity of the quark. This leads to 
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Trper 	1 cr (vv*) aley 	LUIS -m)Y0)a ((i-m)Y0)W3((16-m)Y0)y  

43m 

+ • • • • 
	 (2.48) 

Substituting (2.46) and (2.48) in (2.20) we are led to the 

equation 

Papy  x pirp+cr  y 

cr - 	[((i0+m)Y0 ):((i0+m)Y0 )1((i0+m)yo )y  ...] 
- 48m- 

LS(x-y) 	(2.49) 

which is in the causal form (2.27). 

We can now boost the condition (2.43), as before, but 

this time we are led to the equation 

a' 
(0—m)a  U Y  (D)s  = 0 	 (2.50) 

ai3  

and on boosting (2.47) we get 

a (p)s  = (16+m)a
'  

atiey 	0 	 (2.51) 

and hence 
a' 

(i O-m)a 	Papy  (x) = 0 
	(2.52) 

1 which is the well—known Bargmann—Wigner equat ion5in configuratior 

space. We see here that the Bargmann—Wigner equations are 

essentially the specifications of the quark and antiquark 

parities. 
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The representation laPy> is reducible. It contains 

the irreducible representations which are specified by the 

Young tableaux,17-7-1, 	and 	i.e. fully 

symetric, mixed symmetry and fully anfrhym:2etric. 

The restriction of the quark parity positive and anti- 

quark parity negative leads to A 	describing + ve parity 
aPY 

particles and Asa  describing negative parity particles. 

The quark parity boost for tip (p) gives the Bergmann - 

Vigner13 equations 

(7s_m)aa' Aa (p) = A 131(p) (Ii6+m)p,13  = 0. (2.53) a 

and in momentum space 

at p 	P' 	0 
(i0-m)a 	0a  ,(x) . Oa  (x) (i0+m)p, = 0. (2.54) 
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CHAPTER 3  

RELUCTIctr OF U(2,2) to  

If we are to use the group U(2,2) as the auxiliary group 

we need to know the Lorentz group content of any U(2,2) 

representation. In the fundamental (quark) representation of 

U(2,2) an infinitesimal transformation of the 4-component 

spinor Aa(c= 1,2,3,4) is given by 

6Aa  = 	er(rr)c(13  Ap 

= 7 	(s+sA  yA+e 0-  2  AV AV4-85Y54-i8A5YAYOZAP.  

with real parameters sr. With 

A 	= (A )
+ 
(Y ) oc 	a 

(3.1) 

(3.2) 

this definition of the U(2,2) group has the property of leaving 

AaA a invariant since 

Aa  = - i 2  --I A (rr)pa 
	

(3.3) 

because of (2.4) 

All finite-dimensional, non-unitary representations can 

be obtained by constructing multi-spinors which transform as 

direct products of quarks and antiquarks„ namely 

Y6 	col ,/RI.... -1  y 	y'61..... 
A 	S S 	(S ) (S ) A 
a0 	 a 	Y' 6" cop 	 

(3.4) 



:••-•46.—mraso— armasumr. 

Dimensionality 
• .....—,•••••••• 

••••••••••••••...•••m••••••• 

Young Tableaux 
	sa•I•e••••.+•••• 

4 

6 

10 

15 

20 

20' 

4-°  

30. 

where 

exp (18rFr) 
	

(3.5) 

The irreducible representations of SU(2,2) correspond to 

traceless tensors of well-defined symmetry characters. We give 
16 

below a list of some low dimensional representations where we 

have introduced brackets [ 	and 
	

to denote antisymmetry 

and symmetry in the enclosed indices. 
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We find the spin content of these representations by 

going down to the little group of the homogeneous Lorentz 

group. We first descend from U(2,2) to the Lorentz group by 

noting that the irreducible representations defined above are 

now in general reducible representations of the Lorentz group. 

We can now think of the indices asP ... as Lorentz indices and 

the Young tableaux are still maintained. In terms of the 

transformations (3.1), we reduce from U(2,2) to ki  by putting 

e5 = eg =8//5 = 0 	 (3.6) 

Vie can now introduce a lowering (charge—conjugation) matrix 

cce
16  within the Dirac algebra, such that 

A(C)(p) E  Cad 
AO(p) 	 (3.7) 

transforms like Aa(p) under the Poincare group. This requires 

that 
fir  C 	A 	AY CaP 	(S-1  ) 

Sa  P CPy  jC  

where S is a Lorentz transformation. Thus 

1 p 	0 ts-  ) 	= s 	c Cap 	 a C13,1. 

(3.8) 

(3.9) 

In terms of the infinitesimal generators, this becomes 

(C-1  aP 
Orthv 

) 	YCy  = -(74v  )Na 
	

(3.10) 
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The matrix C has the properties 

and 

	

(C 4 ) C 	= a  
Y 

	

Ca,3  = 	
c Pa 

(3.11) 

(3.12) 

(3.13) 

from which it can be shown that A(c)(p) has the same parity a 
transformation properties as Aa(p), that is 

(F-m)a  (c)(p) 	a = A(c)(p) PA   (3.14) 

We relate the representation Aa(p) with 71a(p) by noting that 

the anti-quark parity condition 

< im,31P > (Ydoa 	< 	> 
	(3.15) 

can be boosted to the equation 

Aa(p) (1di-m)af, 3  = 0 	 (3.16) 

and the Dirac equation 

(15-m) Aa(p) = 0 	 (3.17) 

by Hermitian conjugation gives 

-a 	0 A (P) (-m)a 	= 0 	(3.18) 

and therefore 

a 	 a A (-p) = (Aa  (p))+  yo  EA (p) 	 (3.19) 
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( We then see that the bahaviour under translation of Aa
c)  (p) 

is the same as Aa(p) , since A(p) and A*(-p) behave similarly 

( under translation. Of course, Aac)  (p) does not have the same 

transformation properties under the baryon gauge group. 

We now get back to the problem of finding the spin content 

of any representation of U(2,2) which we have reduced to £4. 

All the upper indices can now be lowered by means of C aP 

a •..• P 	a 	 j30 
0 	=c  

e0 
0 

Y  "•• 68  

(3.21) 

The resultant n-component spinor can then be reduced according 

to the standard theory of Lie groups by specifying the symmetry 

properties of the n indices by means of an n-rank Young tableaux,' 

Such tableaux refer to four-component spinor labels, and thus 

may have up to four boxes in any column. The rest condition 

a 
(Yo) 	<cOPy... Imo >= Galey...1m,s> 

a 
(3.22) 

for each index, reduce the spinor labels effectively to two 

valued labels. The same Young tableaux, now interpreted as 

referring to these two-component spinors determine the 

representations of the little group SU(2) 	03' physically 

interpreted as the particle spin. 

The spinor Al oory i then becomes a 4-component object 
3 7  describing a spin  particle. Aboolly  reduces from 20-component 

to a 2-component object and hence spin 1. A[apy] vanishes 

identically when reduced to SU(2). These states all have quark 
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number three. For describing mesons we form the quark number 

a 
zero representations Ap

a 
 Aa  = 0, from which one constructs 

A = C A 
aP 	ay (3.23) 

Out of these we form the ten and five component objects Afapi 

and A[ap] . After reduction we find that these contain the 

spin 1 and spin 0 roprosentations of the little group, 

respectively. 

Since we shall be using these representations when we 

enlarge the auxiliary group to U(6,6), to include SU(3), we 

now explicitly exhibit their Lorentz structure9.  

(ii) Auxiliary operator of rank 2. 

lirr it e 

A P= [0 1-1,505 	iY Y 0 -4-y 0 a 	 + 	0 ] 
A 5 A5 12 g 	2  gV OV a 

(3.24) 

We have the two Bargmann-Wigner equations (boosts of the quark-

antiquark parities), 

(i - m)yaAcci3(p) = Aa(p) (i+m)p
Y. 0. 

Using this on (3.24) we find 

0 

PA  05 = i -.i  ¢P5  ' 	PA0A5 = -im°5 	(3.25) 

PA°.1) - 27)C4A = im°AV'Pv, 	gjvA = - im(/
A 
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Thus (05'0 5 ) together form a 5-component object describing a 

pseudo-scalar particle 17  and (0 'v ) a 10-component object 

describing a vector particle as was expected. We can us e  

(3.25) then to write (3.24) as 

Ad 3 = 	R164.,m)y505  (14m),(//0/2i 
	

(3.26) 

using p4012  = 0 which can be derived from (3.25). 

(iii) Fully smill2Sric auxiliary orator of rank 3.  

To write out explicitly the Z4  symmetry of any operator 

we use the fact that the 16 Dirac matrices (rrC) 	fall into 

two distinct classes; the matrices (y
A 
 a, 	g ow 	

and (cry C)aP  are 

symmetric, and Cap, (Y5C)ap, (iYAY5C)ap are anti symmetric. 

Consider symmetry in a,P in the fully symmetric operator 

to write AaPy' 

AafiY = (
yg  C) 	0A,Y 1 

2 (0Av aP C) 	0AvsY 	
(3.27) 

To find full symmetry, we see that AaPY  must be annihilated 

by the anti-symmetric tensors (c 1)13Y, (c-ly5 ) '6Y and (iC-1YihY5 ) 

This gives three conditions 

( Y/2)a Y  °A#1. 4' 1 (T,4V)a 1.°41.11),Y = 
0 

(Y
A 5 )a YOApY +a (0" r5  )a  YO v'? = 0 	(3.28) 

Av 	/I 
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th 
(1 	YgYNY5)  a Y  rA,Y 	1  (1.52v 17 5)aY  fr/11),Y = 

(3.28) 

The first two equations give 

(.144 )a Y°12,y 	' 
(3.29) 

and 
	

(a.,4.0 )aYgIgv,y 
	0 

 

The last equation of (3.28) gives, using (3.29), 

(ria )a °/YX,p 
	

107,a = 0 . 	(3.30) 

As a result of (3.29) the /10-component object of (3.27) is now 

reduced to the expected 20-independent components. 

Vie now use the Bargmann-liTigner equation 

(3.31) (P-.-m) a' AalPy 	= 0 a  

and substitute (3.27) for AaPy  and then contract with (C 11e/2) Y' 
p 

(c ly )a  and (C 1
Cr
Av  ) a

p to find 

	

°1-2,0 = 
0 	 (3.32) 

P0144,a+Ia  °//,a7. 0, v,a 	P7.)g,a = im ti/pv,a 

(3.33) 

These equations along with (3.29) are equivalent to the Rarita-

Schwinger18 formalism for a particle of spin3 +  I 
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Finally, using (3.33) we can write (3.27) as 

AaPy (p) = 	[(16+m)YAC]ap q/Asy(P) 

with conditions (3.29) and (3.30). 

(iv). Mixed auxiliar o erator of rank 3.11[a a  ---_-]y 

(3.34) 

Apip]y  has 24 components. Vie get the 20-independent components 

by stating that the fully antisymmetric part vanishes, by 

A[ agh.+A[fivla  A( yalg = 0 	(3.35) 

This can then be written as 

A[affly  = (Y5C)ap 0y4464Y5C)ap 	-1-Caty  (3.36) 

Now, we use the equations 

al 	 (3.37) 
(7S-m)a A[atie]Y 	

0 

(1¢-m)aYIA[apiyt  = 0 	(3.38) 

(3.38) gives 

i  
(16-Y 	Y 	P,X 1  m) YICO = (-m) YI VJ 	= 	

Y 
(16-m) Y K  t = 0 

(3.39) 

and (3.37) gives 



X = 0 ,  PAgiv,a 	= 0  

Pgoa = imo a 	iA 
-3 0 

Ara = -im0 
(3.40) 

38. 

This system clearly describes a particle of spin 1 as was 

expected. (3.40) now allows us to write 

A[amy =rn [(15+m)y5c]ap s&Y(p) 
	

(3.41) 

(v) We have uptil now considered in detail the use of U(2,2) 

as the auxiliary group. The problem of including the internal 

symmetry group is fairly easy. The rest states are now defined 

as im,s,A,I2;s3,Y,I3  > where 14 defines the SU(3) 

representation, I is the total isospin, Y and 13  are the hyper-

charge and the third component of isospin respectively. 

If we want to have Poincare and SU(3) invariance for our 

theory, it follows that the smallest auxiliary group we need 

is £4  0 SU(3) and the auxiliary operator in the fundamental 

representation would be 

alp 
	a = 1,2,3,4, p = 1,2,3. 

The next step is to extend £4  to U(2,2) to give the auxiliary 

group U(2,2) 0 SU(3) where again the fundamental auxiliary 

operator is 

A 
at"? 

a = 1,2,3,4, P = 1,2,3 
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but now tho transformation on a are of the full U(2,2) 

group rather than its subgroup ;e4. The theory of Salam et. al. 

is obtained by embedding U(2,2) 0 SU(3) into the group U(6,6) 

which has the generators 

F
a 

= 4r6r Ti 	r = 0, 	15 r (3.42) 

i = 0, 	 8 

a = 1 	144 

where I'r  are as defined by { 2.2) and Ti  are the SU(3) generators 

(See appendix). The basic (quark) auxiliary operator is now 

(12-dimensional) 

AA 	= A alp ( A = 1, 	1Z) which has the general 

u(6,6,)i - • • 

transformation 

A -1. SA 

with 

S 	= 	exp (1 i a  F asal 
	

(3.43) 

and real parameters e
a  . 

Vie now proceed exactly as we did for U(2,2) and construct 

the dual (anti-quark) representation and we can then go on to 

show the causality condition is satisfied as before. Here, 

the parity operator in the basic representation is 

< Alit D> = <ce,p!Rio,q> 	(yo )aP spq . 
(3.44) 
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Vie arrive at the well known Bargrnann Vligner equations when we 

specify the parity of the quark as positive and the anti-quark 

as negative. The higher representations arc constructed as 

before. The equations of motion for an arbitrary representation 

are 

Sroes.... 
(A-m) afA 	 

a PW.J4,46 	
 = Accp,pq 	(i+m)s, = 0 

(3.45) 

Salam9 et. al. found that some of the well known meson and 

meson resonances and baryons and baryon resonances are combined 

very neatly in only two low-dimensionsal representations of 

U(6,6). 

(a) 2nd rank Ausallux22erator 0A  (traceless). 

This is the 143 dimensional regular representation. Its 

U(2,2) IR SU(3) structure can be determined by considering it 

to be made of a product of a quark and an anti-quark representa- 

tion. Thus 

12 e 12* = 143 0 1 . 

The 12 decomposes to (4,3) where the first number refers to 

U(2,2) and the second to SU(3). We then find that the structure 

of 143 is 

143 = (15,8) + (15,1) + (1,8). 

Vie have seen that 15 reduces to 10+5, on stepping down 

to 4' which then describe 1 and 0 particles. 143 then 
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describes a nonet of vector and pseudoscalar particles. 

The U(2,2) singlet vanishes identically on reduction to 44. 

Thus, (DB
A  
(p) can be written as 

'113
A  
(p)  = 1  [(16+m) 501(p)+(i+m)Y4Oil(p) la(Ti)13  

(3.46) 

(p) The baryons are constructed from three quark states as 

we assign the quark the baryon number B = 1 . The structure 

of the fully symmetric third rank re?resentation is 

364 = (20,10) + (201 ,8) + (4,1) 

where 20 and 201  are the fully symmetric and mixed symmetry 

third rank tensors of U(2,2). We have shown that these 

+ 3 
describe -2 and 11-1-  particle respectively. The fully anti- 

symmetric (4) third rank representation of U(2,2) vanishes 

identically on reduction to 44. Thus the 364 describes an 

+ 	 2 1 	 3 + octet of 7 particles and a decuplet of 	particles. We 

can assign the eight baryons and the well-known ten baryon 

3 + 
resonances of .2 	to this representation with remarkable 

neatness. 

Finally, BiABC1  can be written as 

B l(pi 	= B 	(p) 
aggyspqr 



	

= 	[(164-m)YiuC]applAsy,pq12) 

s 
rps

rs  [PY]a$P 
+ 	(s 	N . 	CP), + e 	N 	(p) + c 	N (-D) 

	

24.6 	pqs  [ocie]y:r 	q 	[yaj f q 

(3.47) 

where N 	(p)s  = rn [(161-m)Y5C]ap N
Y: r 

(p) 
[aO]Y, r 

al and(16-m)a , Na t ,r  s (p) = 0. 	 (3.48) 

a, 	 a' 
and (i-mIc 	 = 0, (gib )oc  Diz,a, ,pqr(p) = 0 

(3.49) 

and DA,y,pqr  (p) is fully symmetric in pqr. 

We have now constructed all the u(6,6) tensors which 

we need for our calculations. 

42. 



GRAPIER 4  

INHOMOGENEOUS U(2,2), INHOMOG 

U(6,6) and SU(6)w. 

We have now constructed causal field operators which 

transform like finite, irreducible non-unitary representations 

of a non-compact auxiliary group. This allows us, in a very 

natural manner ;  to combine different spin and SU(3) multiplets 

in one field. We now consider the use of these fields. 

Since SU(3) only introduces non-essential complications, we 

shall restrict the discussion to the enlargement of the space-

time 'symmetry. The most natural requirement for theories 

constructed from fields like qiiapyi and Oa-0  is that the 

effective interaction Lagrangian, or S-matrix elements, are to 

be invariant under the index transformation of U(2,2), namely 

(2.7) and (2.9). 

and 

Aa(p) 	T P  A (-3) a 	i 

A
a(p) 	-4 AP(p)(T-1)pcx  

Such invariants are very easily formed by taking trace products 

like 

Aa(p) Ap(q) • 

This restriction to index U(2,2) invariances, leads to a 

restricted subclass of Poincare invariants. This leads to terms 

like 

 

US 

43. 

3* 
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Aa(p1) (Iri4 )!Ap. (p2)(41  

which is Poincare invariant, being excluded. Also, terms 

like 

Aahrid oci3Ap 13(5'('Y/4)(5,eBe  

which are £4 invariant are excluded by index U(2,2) invariance 

which requires the complete combination 

Aa(rr ) A8 Be  (rr)(5,8B8 

This procedure therefore excludes the well—known derivative 

couplings which arise naturally in a Poincare invariant theory. 

However, even if the interaction Lagrangian its restricted 

in this way, as a prescription it is not possible to construct 

a consistent theory which leads in general to S—matrix elements 

which show this iniex U(2,2) invariance. By a theory we mean the 

specification of an interaction Lagrangian and free—particle 

propagators from which S—matrix elements can be calculated to 

all orders in the coupling strength. Even if the calculation 

is not possible, it should be possible at least to determine 

the invariance properties of the S—matrix elements, from the 

given information; Any theory based on the U(2,2) local 

fields leads to S—matrix elements which involve not only the 

interaction Lagrangian but also propagators and summItion over 

spins such as (2.35) and (2.46). These introduce factors 

of the form pilY1.2  or y 4 	/12  which destroy the generalised 
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invariance, which has been built into the interaction, and 

give rise to an S-matrix element which is invariant only 

under the Poincare group. If the auxiliary group is extended 

to include SU(3), as in SL(6,C) or U(6,6), the remaining 

symmetry is just SU(3) Q P. We can also see this in a 

different light by considering the unitarity condition 

Im T = T T+ 

The factor p also involves sums over spins and even if T and 

T+ are assumed to be U(2,2) invariant, this factor introduces 

expressions into ImT which contradict this assumption, 

We have seen that index invariance leads to a subclass 

of Poincare invariants. Any interaction which is index U(2,2) 

invariant is automatically Poincare invariant but not vice-

versa. This is because we have specified invariance under 

index transformations rather than true transformations. We 

can have true transfommations by specifying a larger space-

time than the normal four dimensions. In fact, we require 

invariance of our theory under the inhomogeneous U(2,2), 

IU(2,2), rather than the Poincare group. 

(ii) 11112222aam2aLaLlaLl. 
We extend the Poincare group to inhomogeneous U(2,2) 19  

by forming the semi-direct product of U(2,2) with the 16-

parameter Abelian groups  the infinitesimal generators Pr  of 



46. 

which satisfy the commutation relations 

[1°  ,P ] 	0 s 

[Fr'Ps] if CIP 
TS q 

where f rsq   are the structure constants of the U(2,2) 

algebra (2.2). This last relation states that Pr transforms 

as a 16- vector under U(2,2). The operations generated by 

the Pr relate to 'translations' in a generalized 16-dimensional 

space, and include the space-time displacements of the Poincare 

group as a sub-group. In other words, the Pr  are generalised 

ene rgy-moment um operators and include the physical ene rgy- 

momentum operators P. We can combine these with rr  to form 

a U(2,2) spinor operator 

rr 111 	r Pr  

The particle operators a(p,$) now depend on 16p1 s and 

the 's' labels the representations of the little group of 

U(2,2) which we now show to be U(2) ta U(2) 19'20. As before 

the little group is defined to leave Pr  invariant. We make 

contact with the physical world by restricting the Pr  to pi/  

i.e. to the physical four momenta. As mentioned in Chapter 1 

the little group is the same for all points on an orbit, 

and it is convenient to consider the special point p = (41,o). 

Thus the little group can be determined by considering those 
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transformations which leave invariant the form 

m a+(b,$) a(c),4 = m(Aoc(o))+<alm,s> <1.1, s ig>A( 0) 

= m(Aa(o))+0aPAp(o) 

which is just the rest frame projection of the free particle 

energy—momentum operator. The auxiliary group which we use 

is U(2,2). 

So we need those elements r of the generators of 

U(2,2) which commute with 0 13  a 

(r+ or)aP 	oaP 

and, since we arc assuming antiparticles we must also have 

r+ 6 r 

The matrix 0! always contains the unit matrix, which implies 

that 

r r+ 

If the restrictions on <almts> are always of the parity 

type considered in Chapter 2, O p
a  only involves yo  and then 

the little group generators are 

"Yo'a"..P Y5Yi—Yoc-i 

which generate U(2) 	U(2). We get this result also when we 
a use the auxiliary fields lady  and ti p 	as the 0 operators only 
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involve yo  as long as the only restrictions on <ally lm,s> 

and <Occ lm,s> are of the parity type. 

Our auxiliary operators are now of the form 

-is Gr  
Aa 1 (-o) = 	<ale 	r  IP> <431m,s> a(p,$) 

where Gr are the eight generators 1 (YisToitY5, i 0Y5)
19 

 I 

to be contrasted with (2.1) where only the K part of Gr  

are included. Here, the p runs over the sixteen values 

of the regular representation. 

Proceeding as before we find under IU(2,2) transformations 

in  Fr  
Aa(p) -› <ale r  IP> A p( pt) 

where 6Pr = 	cr[FrsPs]  • This transformation is now a 'true' 

transformation under U(2,2). Vie can construct higher fields, 

as before, by considering the product of quark and antiquark 

fields. The spin content of these fields is the same as when 

U(2,2) was considered the auxiliary group for Poincare 

invariance. But we have acquired an additional freedom in 

constructing invariants in as much that we can write down 

quantities like 

1"'-1(p) (rr)a A (pf) qr le a 

and 	Ap1  ) (rr ) p  (IAa  (p2  ) 	Bfip3  ) tr r  LesB6  (p,) ± 

apart from index invariant quantities like 
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A
a
(pi) Ap(p2) • 

As before, we have physics when we restrict the 16-dimensional 

space-time to the physical four dimensional world. 

We have seen that if our theory is IU(2,2) invariant then 

for one particle states the rest symmetry is U(2) Q U(2) i.e. 

the little group. Vie now show the hierarchy of symmetries 
19,21 

as we proceed from one particle state to many particle states . 

(iii) For collinear processes like vertex functions and 

annihilation at rest, specialising to the z-direction we find 

that there are only two independent moment polo  and p3y3. 

Therefore, to see what invariance is left we look for those 

generators of U(2,2) which commute with yo  and y3. These are 

the 3 hermitian generators 

• 1Y1Y5 I 2  ly2y5  and i  a- - 12 • 

It is easy to show that these are the generators for an SU(2) 

group and this subgroup of U(2,2) is usually written as SU(2)w. 

These generators can alternatively be written as 

2Y0 1  —y Cr 10-  
0 1, 2  0 2$ 2  3 

where cr = (0-23,0-31 :16-12). 

We have here introduced a modified conserved spin which 

can be used to classify not only the states of the particles 

at rest, but also states of finite momentum in the z-direction. 

These operators commute with Lorentz transformations in the 



50. 

z-direction. Thus the w-spin classification for a particle 

state with a finite momentum in the z-direction is the same 

as that for the corresponding state at rest. We can now 

classify all particles in SU(2)w  or SU(6) when we include the 
cr 

internal symmetry group SU(3). So whenever we are considering 

processes for which all momenta are in a single direction in 

some Lorentz frame, we can equivalently do either SU(6)w  

Clebsch-Gordan tricks or inhomogeneous U(6,6). 

Proceeding a stage further if we consider co-planar 

processes, e.g., general two particle scattering amplitudes, we 

find that the residual symmetry is then just U(1) 0 U(1) 

which generalises to U(3) 0 U(3) on inclusion of internal 

symmetry. For any more complicated situation only U(3) 

survives. 

(iv) Extension to Inhomogeneous U(6 6) 

As in the case of IU(2,2) we take the seal--direct product 

of U(6,6) with a 143-dimensional abelian group T143.  We have 

thus introduced 143 energy-momentum operators Pa  which transform 

like the regular representation of SU(6,6). i.e. 

{Pa ,Pb 3 
	

0 	a,b,c = 1 	143 

DatPb] 
	

ifab 
c
Pc 

where the structure constants f ab
c of U(6,6) are defined by 

(appendix) 
cJ . ja'jb ]  = if ab c 
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As a reminder, in the fundamental representation the J's are 

given by 

Fa 	= 4.6 (111.Ti)  11 	A= 1 	12 
B- 1 	12 

We can write the Pais in an equivalent, alternative representa-

tion as 

A' IL = 1-B 	(PaFa)BA  

and similarly 

A 	A 
jB = (ja.Fa)B 

We also have the relation 

r3AA = 0 
	

JA = 0 

We use U(6,6) as the auxiliary group in constructing 

local fields for IU(6,6) and we find also in this case that 

the little group is U(6) ED U(6) if the restrictions on the 

constant spinors <Alm,s> are of the usual yo-parity variety. 

So we can set up the theory as outlined earlier but in this 

case we have a wider range of invariants including the so-

called irregular couplings. We make contact with physics by 

restricting the Pa  to the physical four energy-momentum 

operators 	We therefore have essentially the same theory 

as U(6,6) but the difference lies in the fact that IU(6,6), 

plus restrictions to real space-time, leads to the possibility 
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of the irregular or derivative couplings in the interaction 

Lagrangian which is less restrictive than pure U(6,6) index 

invariance. As we have shown in the previous section this 

leads to SU(6)w invariance for collinear processes. 

The practical procedure for applying inhomogeneous U(6,6) 

is to construct all possible invariants from the particle 

fields AA
(p) and the different momentum operators appearing 

in the process and then specialise by talking the physical 

four—momenta. 



53. 

CHAPTER 5  

SOME CALCULATIONS IN IU(6,6)  

(i) Before we go on to evaluate certain scattering processes 

we look at charge conjugation more explicitly. We assume that 

strong interactions are invariant under charge conjugation 

or particle-antiparticle interchange. When we are working with 

the Lorentz group and the Dirac representation we denote the 

auxiliary field by Pa(p) instead of ra(p). In Chapter 3we 

showed that it was possible to introduce a lowering (charge-

conjugation) matrix Cap  within the Dirac algebra, such that 

(c) 	_ 	,p 	_ 	re („) Oa 	= (p) 	Cape (p)= Coo  V 

transforms like Oa(p) under the Poincare group. However, it 

is well known that within the group U(2,2) it is not possible 

to introduce a lowering matrix CaB  such that 

	

(c) 	- A 	E C Al3  
oc0 

	

transforms like 	under this group19. This is a consequence 

of the fact that the transformation properties of the C matrix 

are not indicated by the two lower indices, i.e. 

-1 c rr C 	rr
T 

	

r - 0 	.15 

However since we are finally only concerned with the Lorentz 

group we define the charge conjugate field in U(2,2) by 

(c) 	0 	_ 	—0 Aa 	(p) E CagA (p) = OapA (-p) (5.1) 



54. 

and 
	la(p)s = -Lp(-p)(c 1)13a  . (5.2) 

Consistent with the Dirac (Bargrnann-Wigner) equations, the 

baryons and mesons can be considered in momentum space to be 

the following combination of quark fields 

A aOy(p) 	= Aa(p) AR(p) Ale(P) 

and 	A cc(p) = A°  (-p)A
0 
 (p) 

with the appropriate symmetrization implied. Then the charge 

conjugation properties follow immediately 

and 

A
aPY (p) 	Cad' cOs cyx  A 

SO\ 
( -p) 

A 
a
(q) 	

-1 a' 	6 
0 	(c -) 	As (q) Cep (5.3) 

This choice of meson transformation is necessary to give the 

conventional C-parity of the 77
o and p° mesons. 

This definition of charge conjugation would seem to 

indicate that a quantity like 

(xa)c (Ai)c (Aari)c 	(c = charge-conjugate) 

is not a U(2,2) invariant. But if we substitute 

= coc 0i3A 

= (C 1)aOA 
13  

= Ca8 As 	 138 (C-1) 
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we get Aa  A
0  Aa 

 which is a U(2,2) invariant. Hauever, a 

quantity like 

a 
A C 

0.) 
is not U(2,2) invariant, but is Lorentz 

invariant. 

We construct a charge-conjugation operator in U(6,6) 

by generalising C such that under charge conjugation 

,pA(p) 	W.(2) )c = (c-1 )AB 013(...p)  

0A(P) -4  (0A(P))c  = CAB  73(-p) 	(5.4) 

(For a fuller discussion see P. Rotelli's thesis). 

where our generalised Cis are antiaymmetric in their U(6,6) 

indices A,B. 

The properties of these Cs are 

C (C 1)BD  SA AB 

j3 (C-1  )1  (y) 
c(c) 	= 	(y X.T) 

A 
A B CD 	A D (5.5) 

for A = 0,...3 and i = 0....8. 

(Under charge conjugation the SU(3) representation is changed 

into its ad joint representation). The charge conjugation 

properties of the baryon and meson fields are now 
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CADCBECCF DEF (-P)  NY C(p) AB 

- 1 AD ip  and SBA
(q) 	(C ) 	E(q) CEB  (5.6) 

We are now ready to test any IU(2,2) invariant to see 

whether it is charge-conjugation invariant. We have to be 

careful to symmetrize and antisymmetrize any Bose and Fermi 

fields in the amplitudes before applying charge conjugation. 

(ii) Three meson vertex WM.  

The reduction of 143 61) 143 is 

143 x 143 = 1 0 143 0 14317, 0 4212 0 5005 Q 5005*  

5940 

So in general we would expect to get two 'regular' couplings 

8kA 	 (p2))
c 
	A '•  *

B
(n23  )0

c
(p1 	C )] 	(p3) 

A 
 

with 

P1 	P2 P3 = 

(5.7) 

(5.8) 

and all the mesons being on the mass shell. We now apply the 

charge conjugation operator developed in the first section of 

this chapter. Consider the first term 

'11BA  (pi) B  (p2)  e(Cp3 ). 

Under charge conjugation this transforms to 
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(c71)BEgiEF(131 ) c,A(c7 1)CG,I,GH(p2)9.1B(C1)AIiIiiiI(p3)csc 

. SE  SI  (5G 	F(ID ) 	H(p )0 (p ) HFJE 1 G 2 I 3 

= G(p2 )0E(p1 )0F(p3) • 

So we see that under charge-conjugation the first term is 

transformed into the second term and vice-versa. Therefore, 

the positive sign gives a C conserving amplitude while the 

negative sign gives a C violating amplitude. Thus, since we 

assume that strong interactions are C-invariant, we get a 

unique amplitude 

g['1':(10 ) 
C 	

44A (132)%C (21 )311*C
A (

p3" 
	(5 .9 ) 

What about 'irregular' amplitudes? For this we are entitled 

to use the momentum operators (i1 B )A 
' (12 B )A U3 B )A defined as 

(161)B
A 

= PIA (Y12
)Pa6s

r 

Remembering the condition (5.8) and the fact that all the 

mesons are on the mass shell i.e. 

( 1)B 'IA
C 
 (P1) 	m fl)

B
(p1 ) etc., 

we find that the only irreducible invariants are of the form 

gl%A(131) B  (132) 	E, 
A  .. -. (i1-F2 /IED  ' D  tp3) and 1,2,3 (5.10) 



58. 

permutations, However, these all violate C-parity as is 

easily seen by applying the C operator (4.10) then transforms 

to 

g e (C-1)11F0 G(P F -1  
1)BH0 I(p ) C H 2  CIA 

D -1 EJ K 
(i1-162)E (C  ) 11',7 (P3) CICD 

= -gt  '13A(P1) A (P2) (/61-42 )E
DE (

P3)  

using (5.5). We see also explicitly that this amplitude is 

C-violating by observing that it gives rise to a (pee 

coupling which is obviously C-violating. (0°  is the vector 

singlet). 

We now evaluate the unique coupling (5.10). Dropping 

indices this can be written as 

g Tr iMpl)0(p2) 	Cp2 )Q(pi )Mp3 ) 

Now we substitute for the (D's from (3.46) to give 

Trr [(i1  +A)Y5 5  0 i(pi)+( 36l 4 )4*(161  41 )Y 01 (p1 )1  

i(252+4)Y5°(P2)+(752+11)1(vC4.71, (132)1  TiTj  

• • 

-0(1,2+A)Y50g(P2)4-(2412)YA(P2m(ii+A)Y50;(P1) 
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(ii+A)Yg011(iyi TiTi ]1 1(153+1fly505k(p3 ) 

( 341-I)yx0/1.(p3 )1Tk ] 

This was first evaluated by Del bourgo et.al and Sakita and 

Wall9. This gives rise to the F-type coupling of VVV, VPP 

and the D-type coupling of VVP as expected from charge 

conjugation2 2  . There are very few new predictions. One is 

the absence of the p-yxr mode9,23 because g copir  = 0 if we make 

the ident ification of the phys ic al p and W. 

4-2 0 1 = -7;  ot, 	oti8  

1d 0 1; 8 
9 	75 'A - 	'PA • (5.11) 

Another prediction is the ratio g 	/ 	= 2/A first stated 

by Sakita and Wall. With /2 sl 700 MeV this compares favourably 

with the ratio g 
Pow 	 -

N 2.4//2 obtained by Gell-Mann, 

Sharp and Wagner24 for w decay. 

(iii) Proton-anti-proton annihilation at rest into two mesons. 

We shall as before take equal mass for the two mesons 

irrespective of whether they are both the same spin. Vie 

denote the mass of the proton and antiproton by m and the 

mass of the mesons by A.G. The various momenta are 
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= (m,o) = momentum of proton 

momentum of antiproton 

qi  = (8,21) = momentum of meson 

q2 = ( e,—s,4)= momentum of other meson. 

(5.12) 

We are in the laboratory frame Where the baryons are really 

at rest. We have the relation 

q2  = 21 
i.e. e= m. 	 (5.13) 

We define the independent momenta q (p being the other) 

as 

q = q1 
q2 = (0,22.1 )  = (06.) 	(5.14) 

First the regular amplitudes. Using the reductions 

143 Q 143 = 1 e 143F  e 143D  e 5940 e 4212 e 5005 

e 5005 

and 364 0 36e = 1 0 143 0 5940 0 126412 

we see that there are four U(6,6) invariant amplitudes denoted 

by 1, 143 	143F  and 5940. Using the U(6,6) baryon and meson 
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tensors constructed previously, these couplings can be written, 

respectively, as : 

1  ABC( -P )  tioc(P) ED(cli )  DE( c12 )  

ABC I 	 E ( —p) 	1.A3D(PVCE (c11)D(c12)D(c11 ) 	(q2 ) j 

l'ABC( 	i„ADE(p) ,1,11

D(

11 ) (DcE(q2) 
	

(5.15) 

where the ± signs indicate the 143 D and F couplings respectivel, 

We use T(-p) as this indicates an incoming anti-particle with 

momentum p. 

All these four-particle vertices are found to vanish 

because 

ABC (P) 
lrADE( P )  = 0 	when p = 

i.e. whenever there is at least one direct summation the 

vertices vanish for the nucleon part. Picking up just the 

spin -1 octet part of the 364 tensor, we have 

-ABC (-p) ‘I'ADE (P )  

-fr 	qrs [Ay]a' ;p 	rps_[ya]P s q 
24 - 
1 	8  2cis N 	(-p) + 6 	N 	(—p) s+ e 	N 	(-1))8  

V  e 	N jp) 	 + etuv N (p) 	8 	N (p) [ ptv 	 upv 
[c4]6,u 	[Se]a,P 	[6a]S,t 



This function vanishes only because of the X4  parts. 

There are essentially only three different Xi, traces. 

JaPY 	_ [001Y 
N (

l
-p) N 	(p), N (-2) N 	(p) 

(adle 	[d'e]a 

_[PY]a 
, and N 	Ilk]a  
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jaPht 
N (-2) NEJiloc  =  1 "Y 	-1 	aP 

2 N(-1))[G y5(-16tm)] [(15+111 )Y5C]
aS

Ne(P) 
m  

_Y 	Pa 

27 N (-) [C-1Y5(-1/54-m)] [(1644:1)Y5C]as Ne(p) 
m 

1 _ 
= —2- 

NY 
(-p)[ C 1y5  (-p2-1-m2)y5C P N (p) 

0 

as p2 = m2  

[00]Y 	
2 	 .41-400 R 	(-p) N 	(p) = 1 R(..p) [C-1Y5(m)] 

[6s]a 

x [(i+m)Y5C]esNa(p) 

ga 

	

1 	RY(-p)[(16-1-m)y] [C-1y5  (k.m)] Na  (p)  (-D) 

	

m2 	 ;" (Ss 
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0 

as (fi-m)p
a 
Na(p) 	0 

[,QY]a 	 PY a 	
[ -1 

N (- 	
1 p) N 	(p) = 	N (-2) C y5(-4+m)] [(16+m)y5C1 Na(p) . 

[A]a 	 6.8 

This term is zero because ii(-2) u(p) = 0. 

Vie have shown, therefore, that all the regular amplitudes 

vanish. It has been argued that this is a reasonably good 

result as the two meson annihilation modes are considerably 

damped as is evidenced by the rates, apart from the mode 

p2 	pir which accounts for about 4°/o of all meson annihilation 

Rates for two-body annihilations of anti-protons 
at rest.  

C. Baltay et.al . Phys.Rev.Lett. 15,532(1966) 

Channel Rate 

-1- 	- Tr 7 

K
-1-
K
- 

K
+
K
-Pa

.-1-
g
7 

a., o 	o o 
K
1
IC
1 
* X2K2 

0 K0 
1 
K
2 

7TH  p 
o 	o 

IT 	p 

(3.2) 

(1.1 

0.33 

(0.88 

(0.61 

(2.9 

(1.4 

± 0.3) 

± 0.1) 

± 0.023 

+ 	1'1.9) - o 

* 0.09) 

± 0.4) 

± 0.2) 

x 10-3  

x 10
-3 

x 10-5  

x 10
-3 

x 10
-2 

x 10
-2 
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-continued - 

Channel 
- 

Rate 
-__ 

o o 
P n 
polo 

o o 
P P 
Kole* 

1,T* 
K L 

K± K  

Kore* 

(2.2 

(7.0 

(3.8 

(1.2 

(0.92 

(1.3 

(2.9 

± 1.7) 	x 

± 3.0) 	x 

* 3.0) 	x 

* 0.2) x 

± 0.16) 

± 0.5) 	x 

± 0.5) 	x 

10-3 

10-3 

10-3 

10-3  

x 10
-3 

10-3 

10-3  

What about irregular couplings? In general, the number 

of irregular couplings is very large for scattering as there are 

a great number of ways of inserting momenta. But in the 

special case of annihilation at rest the number of non-vanishing 

irreducible four-point functions is greatly reduced. This is 

because there aro only two indeliendent momenta 1: and q to be 

inserted and also the further "rest conditim" that no direct 

surmati,= over Laryon indices is allowed. 77C insert 2 and cl 

in all possible wat. Whenever be have j actinc on either 

or 	the vertex is reducible because of the,Barcmann-7icner 

equations. Similarly, we see that we cannot insert either 

or q between the 0ts or between a 0 and 1-  or T. 
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Finally, we are left with the following vertices 

f
1 	0 (—. (4)A

D
B  (4)
E 

 (4)CF 
	

G
H 

*DEF 	H 

	

On) 	(q ) 	(c12)  

Np_ABC 	D 	E 	 . 	. 3 fD,F Y 	(—p) (4) (4) 	* 	(p) C
G(q1 )0

G
F(q2)±cDG

F(q1CG  tq2) A B DEF 

f 2 Y-- 
Anc 

p)(¢f)AD tDEF( p) 	(c11) C
F(q 2) 

3 	(—p) (4)AD(4) E 
tbEF(p) CF(q1) (4)HGH(q2 ) 

nwABC 14 	(—p) (41D
(4)1.,

E 
 t ;, (p) 2 

F
(ci) (4)H G 2 

G 
2.H(q). 	(5.16) Dt.F 

where the fts are invariant functions of p and q. 

Before we evaluate any of these expressions we have to 

test which of these are charge conjugation invariant as we 

assume the invariance of strong interactions under C. For this 

we use the generalised C—matrix constructed in the first section 

of this chapter. We have to symmetrize and anti—symmetrize the 

Bose and Fermi operators, respectively. Consider the general 

function 

DABC(p 
1 
 ) (4) 

A 
 D t

DEF - 
(p 

 2  ) 
	t

DEF - 
(13 

 2 
 ) (4)  D 	) 1 

	

A 	1 j 

x E °713- E0 1̀1)  acF(`12) j 
• F(s,u) 

where s and u are the usual Mandelstam invariants. The 

symmetrization of the Bose operators Al is implied. 
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Under charge conjugation the first term transforms to 

-1 AA1  -1 BB' -1 CC' T 	(A l D 	
mptErFt 

(C 	) 	(C ) 	(C ) 	YATB'C'(-P1)"9.1 A ""DD'-
r 
 EEI-

r 
 FF'z 	(-P2)  

(C-1)2414b:H(q1) CR3  (C-1 )
FI  (DIJ  (q2) CJC 

= + t 	(_p  ) (4)  A' iD'E'Fi_n  ) L I(01 	Cl  
AlB 1 C1  1 DI 	12 It,' -1 IF' (q2)  

,wDEF = 	+ 	*ABC(-p1) (4)
DA 

11-  (-p2..) 0 E
B 
 (q.1) 1?.42,c(q2) 

using (5.5). Doing this tc) the other term as well we find 

that the amplitude 

T-ABCf  
P1-  -- 

	

) 	(d)A
D
T 	(7)2  ) 	(q1  ) % F(q ) E (stu) 

1 	DEF 1 	7.=   

transforms to 

v-- (-P2) (4)A
D -
'2DEF(-P1)  '112i (q1) 	(q2)  2(5 /u)  

where now proper statistical symmetrization is implied. To 

get back to the original amplitude we have to perform the 

replacement 

ID 	-4 1  p2 	qi -+ qi 

(These must be chosen in such a manner that the equation 

representing conservation of momentum, pi-p2  = q1-q2
, is left 

invariant). This replacement gives us 
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TA3C(pi) co,' NIDEF(22) 0BE( q1 ) 
 
C 
F(q2 	' )F(u s). 

Therefore the amplitude could be made C-invariant if we could 

find a form factor such that 

F(s,u) = F(u,$). 

This is possible in general scattering cases but for the 

special case of pi; annihilation at rest into mesons no such 

form factor can be found.25 
Therefore, the corresponding 

amplitude for pp annihilations at rest is C-violating. 

We find that the only C-conserving amplitude is 

mABc g 	(-2)(4)1,
1.D
(4)7/3

E 	
2)[°cG(c11)'GF(c12) 

+ G
F(oi1)

G
(q.2) 
	

(5.17) 

The M part is the 143 	in the reduction of 143 x 143 . 

Vlinternitz, Makarov
26 et. al. have considered the same process 

but have used a generalized Pauli principle i.e. the total 

amplitude must be symmetrical with respect to the interchange of 

thetwo meson functions (including the unitary parts). It follows 

that all amplitudes, antisymmetrical with respect to the meson 

interchange, must be multiplied by antiGymmetrical functions of 

the kinematical invariants, s, t and u. They consider these 

coefficients as functions of s and v=t 	Under meson inter-

change, they have for the antisymmetric coefficients 
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f(s,V) = -f 

f(s lo) = 0. 

However, at rest v=t-u = 2p.q = 0 and all anti symmetric 

amplitudes vanish. This however gives them the additional 

invariant 

f(s,v) 
'1°C(-2)(4)A13(4)BEIrDEF(p) ( CF(C11 )(4)HG GH(q2 )  

,IC (q2} ()HG 	11, 
G "11" 

which we exclude because of C invariance. 

We now proceed to evaluate the remaining amplitude. We 

consider the baryon part first. 

TIABC
(-0( 4)L

:) 
 (4)B 

amr(
P) 

,pq=7,043y 
Y' (-p) (4)a  

t, , e e  U 	(p)  
p  tgl,p 	q  

tus,v6X 

pqr1
-p) 
 

(4)a
a'
(00

8 1. (p)n  

pcis, 08X 

	

(epqt FpAily,r 	qrt 	 rpt lya]Psq ) 

24 = 	+ 8 	N 	+ e 	N 

1c; ) 

	

(8pquN[(5,s]xos 	 + e 8qsu N[eX]Sr p 	spu 1%11)418,  

x (C c! (4)8 
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(We drop the momentum arguments of N and N for convenience). 

1( 	
N 

jaie]Y:r 	 jaPIY:r 
= -- 2N 	 — N 24 	t [68TNs 	u 14[6X]S,s 

jaile]Yfr 
N 	u N[NS]s,s 

JPY]msr 
N ' N[SeTN2 s 

r [OY]apP 
+ 	N N 

[67\]6:13 

JOY]a,P 
— N 

s N[eX]6',P 

qrt 
+ e spu 

_[eY]a$P 	u 	rpt 	...[ya][3:q 
N 	t 14[7\61e,q 	e 	eqsu N 	NE6xi6n,2 

_[ra]P,r 
N N[sep. ,s 

6  r N  
jyale,q 

u N[7\61e,q 

N
—[Ya]g,c1 r 

N[7\61s,q / x (4)' (4) p
e (5.18) 

Using the following products of e's 

spqt spqu 
	2 cct 

pqt 
prs 

= sci_Nt 
r s s r 

and the fact that NP = 0 since SU(3) octet. Next 

consider the two terms 



—[PY]asi° 	[Pi]asp (scirt 
8 	N spu 	t N 	t N[NOle,q 

rpt 
6qsu 

n[YalfiP cIN[6x]so  l  p/  ) (4):(4); 

= 8qrt spu t in
[PY]alip 

(Ca 
„,1)

P  

8  N 
[7\618,c1  

...[Yale.P6, 	6 	) N 	(4), (4)p r'[0.]S, q t 

since p,q are dummy indices and can be relabelled. 

..[Pda,P e 8 art 
t(4)a (i)p N[W]esq = 2e e spu 

because the position of a, p and S, 8 can be changed 

simultaneously. 

s [ _{i3y]a,r 	_LOY]asP 
= 2(4)a  (4)0  	N 	NP\618,s — N 

u r ..,[07 ]asP _ N[7\618,p  O ps 	s N[Nfleo p 

 

(5.19) 

 

using 

eqrte spu 
= ssq(s; 

u p 
st ) 

	

s  q(er st 	sr st )  

	

p s u 	u s 

s
u 	s  
q(sr st 	sr st)  

p ps 

70, 
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Substituting (5.19) in (5.18) we get 

1-PC11.8°461(4)a
S
(4)08 2,4s,6'ex 

1 	[a.,*(pr 	t 	jocielle,r 
24 [2R N[ 00 n 

	

t 	6'e ]A, 	N s 	14[6X]Sss 

_[ate]Yir 	u 	..[RY]a,r 

	

u 14[XS 	N ]e,s 	u N[Se]A,s 

r ..[PdasP 	u 	...[PY]a2P 
• Ss N 	u 	s Nr

i 
 _.xi cysp  •-• N 	s N[EX]S,2 

_[PY]asr 	u 	_.[PY]a#P 
+ 2N 7\ 	+ 2 N 

	

N[- —46. j8 "FS 	 N[X(5187P 

...[PY]atP 
— 2N 	u N[NS]s, S." 

P s N[Ss]?\,5 

	

[ya]Oici 	u 	LyalP,q 	r 	e 
• Sr  N NDy6']a,41.

.. 
s N[7\615,q. ] (4)a (4)P 

— —1  [ 2 R — 1.2 
[ aie]y,r 

NveNs  
..[Py]ajr 

+ N 	N[7\615,5 

_[16Y]arip 	r 	...[Oy]a,p 
+ N 	s N[NS]5,p 	N 	s NE6X1S0 



[PY]a,P 	 [PYiasP 
s-  : s N 	 s N 	u NUXS]s,p 

X (i)a
(Ss 
(9,8

8 	(5.20) 

using symmetry properties of NEap] y' etc. 

Now we calculate the C.4) part. 

'5C (91) 6G (g2) 	'5G (11) 	(12)  

1  [(4140y505-5(q1 ) +(41 
 +A)y

A 
 0(ci

1 
 )] K  (Ti) 	rt  2 

A 
N 

x [(42+4)Y50(c12) (42-1-A)Y24)(q2).JK (T3)ts  

K  2 [(4244)Y5 °(c12) 	(91241)Y1, C6?, (c12) 	(Ti)rt  

[(41+A) Y5  g5(q1) 	(41-12)Y12011(q1) 	? (T)t
s 

To simplify, for the PP contribution, 

(41+A)Y5  (42-4-Aly5  = 	(414A) (42  -A) 

(it+ 	+ /2) (vi 	2 - A) using (4.13) and ( 4.1 4) 

72. 

(m
2  
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2 	2 

as -9-- = 	= 4 m20. 2 
= 2(m

2
4
2
)' 44 + 4i.  

= 4(-A)
2 2 

effectively as 2(m -g ) gives no 
contribution. 

Similarly 

(c12+ A) Y5 (41.142)Y5 = (42+A) (41 -A)  

= ol (b1 -is) 	effectively. 

So for PP contribution we get 

	

4 (i-g)0 1-5(q1  ) 5 - (q2  ) [TiTi 	TiTi] 

2 [4(na)]Y7 5 01(q15  ) 0i  (q2) ifijk(Tk)rs 
	

(5.21) 

For VP, we make life easier by picking the Pseudoscalar 

particle to have momentum q1  and the vector particle momentum 

q2. For this case we get 

[(41+A)ri(42+A) Yv  

 

0,i(q2)1(di3k+if i3k ) Tk  
(q1) 

  

[(42q2 )1(v(41414)Y5 	(4(c12 )  o5(q1) i  (djik+ if
jik)Tk 

= 	—17 [(41+12)Y5(42 41')Yv+ (42-fg );(41+4)T5 
4-1 
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( + 

	

1 	 . ijk_k 

71:
- L 91 1.1)Y 4 +A) Y 	(42442)Y1,(41+A)y5  ] 2 ( 1 	5 2 	v 

x at(q1 ) 0!(q2) 

N s 

= -17 1[ RoS] dijkTk 	[RoS] ifiikTk 	8  0 i(q ) 03(q ) 

	

2g 	 y,r 5 1 V 2 

(5.22) 

	

where 	R 	= 	(911142) Y5  

S 	= 	(42+1" Yv 

For VV we get 

No s 

DP,si diikTk 	[p,s] ifiikTk 0
i
(q1V  

) 05(ci 
2 
) 

—yer 

(5.23) 

	

where 	P = (41442) y1  

6  = (42+11)  

Now we need to combine (5.20) with (5.21) for Pr, with (5.22) 

for VP and with (5.23) for VV. 

(a) Annihilation  into two pseudoscalars. 

Since we have found an F-combination of the mesons the 

k-index in (5.21) cannot be zero and hence the (5'sr  terms 

in (5.20) vanish. Vie need to evaluate the products 
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r L4(16-A)]y  Nvelx (4)a (4) ps 
N  [4(16-4y: ND` ] e  

(4)a  (4)p8 

and N 
...[OY]a [4(16-A)]

#( 
N

[8x)N .(4)P8(4)Li: 

_Loyla 
We evaluate N • 	[ 4( 16-/1) ],Y N [7\6]  8  as an example. 

JPYia 
N 	(-p) [4j( /2)] 	NI-7\61e(p) (Cot

e 
()p 

= 	217,1(-p) 4 (1{+m)y5C (16-A)T  e c 1Y5(-i+m) 4 N(p) 

dropping indices 

R cif(yS+m) (2-A)4 (-p5+m)4N 

using 	cy Tc = - y 

• • • = -4 q2(m-4) R4N. Here and subsequently we evaluate 

these products by commuting so that p is made to act on N 

and N and noting that p.q = 0. 

[ccie]Y 
N (-p) [4(16-1/)]Y  Nvelx(p) (4)aS

(4)p
8 

2„ m = tsci (m-/.G) 
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')\ 

N (-p) [i(i-g)]
Y  N 
	( p) (4)a

(f)ad'
(4))9

s 

[87\Y 

= 	3q2  (m-/2)RQIN 

So finally putting in SU(3) parts as well the PP contribution 

reduces to 

2, 
q trrI4) 

(5.24) 
2 

where 

(NN)F- 	r (T )r
s 
 Ns

u 	
s
u 
Nu 

There are two states of the proton-antiproton system at 

rest, 3S1  and 1So  . The parity and charge parity of these 

states are 

P C 

1
So 

3
31 

4. 

- 

+ 

- 

Thus the triplet and singlet states are definite charge 

parity states. According to Cell-Mann
27 every octet that 

goes into itself under charge conjugation has a characteristic 

411/10...11MM.•.••••.••••••.10 MIN) 	ifij1z05i(ci1)  05j((12)  
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number c = 1, which is the charge-conjugation quantum 

number C of its 1,3,4, 6 and 8 components; The charge - 

conjugation quantum number C of the 2,5 and 7 components is 

-c. The nseudoscalar and vector octets are just such self 

conjugate objects. The above rule states that the charge-

conjugation properties of any self-conjugate octet are 

determined by the charge-conjugation quantum number of the 

13=0, Y=0 member of the octet. The normal convention is 

CIn > = 	le > 

and 	Clp°  > 	1p°  > • 

This means, then, that 

CI e > = + 1K> 

CI ITO > = + IITZ> 

C le >= + jizo> 	(5.25) 

and 

Cle ±  > = - 11C."> 

Cipri > = 	1p 
re  o>  cle°  > = - 	• (5.26) 

These phases of charge-conjugation are consistent with the 

definition (5.6) of the charge-conjugation of the 143 

representation of U(6,6). 
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Now since the initial state in the process under 

consideration is an eigenstate of C, the final state will 

also be an eigenstate. For the initial 1So state the total 

angular momentum is zero. Hence the two pseudoscalars in 

the final state have to be in an S state. Hence the parity 

is + of this state and therefore parity conservation does 

not allow 1So decays into two pseudoscalars. For the 
3S

1 

state the total angular momentum is 1 and the final state is 

then in a P state and the parity is - 	Consider the W*V  

system in the final state. 

C 	> = I 	> 

and to get back to original state interchange 77'
+  IT giving 

(-1).6 11T-1-v-  > = 	> 	( as& = 1) 

The (-1)
4 

factor arises from space reflection. Hence the 

C-parity of the final state is negative and this matches up 

with the C-parity of 3S
1 
 initial state. So this process can 

proceed. 

Considering just the SU(3) parts of the final state we 

can construct eigenstates of C easily. For two pseudoscalars 

e•g• 

C I 1r+ 	± TT 1T+  > = 	± Tr ir+  > 	( 5.27) 

where the ± correspond to D and F octet couplings respectively, 
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(Since the meson-meson coupling is 143 the only SU(3) 

couplings are octet and singlet). Thus, we see that for 

conservation of C-parity we need an F coupling of the two 

mesons. This is exactly what we have for this process by 

using inhomogeneous U(6,6) (5.24). Je also note incidentally 

that the C-parity of pcip is 	where p represents the spinor 

for the proton. The numerical results from this amplitude 

are presented later along with the results for VP and VV 

modes. 

For VP the eigenstates of C are as follows, using XI 

as examples, 

Clele- t 1C-e-1> = T leK*-± IC K* 	etc. (5.28) 

using (5.25) and (5.26). Since there are only octet and 

singlet couplings we just pick out the different C-parity 

states by looking for D and F couplings. 

For VV the eigenstates of C are given by 

K*  K' 	= ±11e+K*- 	(5.29) 

using (5.26). 

b) Evaluation of am litude for annihilation into a vector and 
2222a.4245.1.1.11 • 

The amplitude for this is given by (5.22). Using (5.28) 

we see that the dijk  term is for 3S1 
and the fijk  term is for 

1So modes respectively. Vie have to combine the expressions 
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(5.22) and (5.20) to evaluate the trace. The Lorentz traces 

here are nastier than those arising in the PP case. We give 

the results of these calculations only, as their evaluation 

is only a matter of some lengthy algebra. 

JaO)Y 8  
N 	(4)a  (4)p N[es]x  iR,Sly  

8q2  (/2-m)(11 4y5yiu  N - NY, Y5  4 N) 

[OY]a 	6 	e N 	(i)a  ()p N[xs]e[11,Sly  

4q2  (/2-m)[ Riy5y1N - ilygy5  4 Ni 

and 
.
N  ..[PY]a (4)a6'(4)0 11[0,]6 [11 ,831; 

0 
_Y 	cs' 
N
[00] (4)

a  (4)p N[6.11]x  [R,s]y  

= 8  q
2

(m7-11) (c11-1-213A) RY5N 

EPIla 
(4)a  (4)10 N[74]8  [11,s]1rx  

= +
2(m--12) 4 ' +27, A  ) 

	5
N 



..[PY]a 	E 	 7\ N 	(4)a  (4)p  14[6x 6  [11,S]y. 

Collecting all this together and including the SU(3) parts 

we find that the full VP amplitude is 

1 	2 --T 	q (A-m) [f(Nty5ygN Dy y5 
 4N)k 3D+2F (TrTk) 

A  

TAR 4 y5yA  N 	N YA 5 Y dNddijk  

(qA+2pg) (Ry5N) 
3D+2F 

ik 1  
if 	0511q.1 	A - ) 0.1(q2  ) 

(5.30) 

(C) Evaluation of matrix element for annihilation  into 
two  YCSj91=11.:_Ole2  

We get the following 

[°40]Y 
N 	Nve]N(4)aS(4); ilD,S],(?\  

-8iq2(g-m) 	4] N 

_[PY]a 
N 	N[N838  (4)a  (C)Os tP:Siy  

= 	-4i q2(A-m) Ni ,v,41  N 

...[PY]a 
N 	 8 

N[8 ]a (4)a  (4)0  1P,S iy  

= 0 

81. 
0. 



and 
EaPhr 
N 	Nveix(4)a  (4)ps[P,s]y  

= q2[-16i((4-m)2  FT crAv  N + 16 (A-111) g RON 

- 4i R 4 orgv4N1 

N 	Nrx618  (4)a  d'(4)p 6[P,S.11?\  

- = 	[ 	2iq4  N Cr v  N + Oci
2(g-m)gAV  RON A  

+ 8 i (g-m)2  R4 a.g7/4 

[- Pr] a 
N 	NE0,36  (4)as (4); [1,,s] 7\ 

= 16 (111-14) [ 1141  (pgqv 	poll ] + qgqv ] NciN 

Finally the full VV amplitude is 

1 
—2-- 4iq2(A-m) ((R/T4v,41N) 
24u 	 3D+2F 

- (TrTk)Tr(11 [CrAv, 4IN)) dijk  

(-32i(171-4)2(m-h4)[m(kirk 	- A(RTa”N)k  
3D+2F 	'" D+2F 

82. 
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Ak 

	

8i(m-A ) {m(Fie,401-!.L) 	2r + • ÷ 32 (m
2 -42 

 ) C4-m)gAvt"91"'D 2r 

• A(O 4 TAv 4 N)D1-i-2F 

- 16(m-in [ 1;.,1 ( 	- pv 	+ (Iqv  ] (17TriNirk  

k c 	t 	 , 
• (TrT ) t16(m-A) f  t 4 tPc1 - Pc1) .1.qqaT(Na) mpv vtz v 

+ 	1321 (m
2
A
2  

- )
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 (N o-

Av 
N) + 32 (m2-A

2)(A—m)g (R4N) 

+ 	8i (A-m)2(141.0-A v4N)11') fijk ] 95(c11)  fq)(q2) 
	

(5.32) 

This last expression is very complicated so subsequently 

we never evaluate it explicitly. We only derive sum rules 

for the 3S1 VV modes. 

Having now calculated all the relevant amplitudes we 

give the numerical results 28  achieved from (5.24), (5.30) and 

(5.32). We denote by A(ab) the amplitude for annihilation to 

particles a and b. 

For 31S1 annihilation into two pseudoscalar mesons we 

obtain 

A(g+g-) : A(le-N-) : (A(K°V) = 1:2:1 . 

The cross-section relation, if we neglect Kw mass difference 
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i s 

cr(7r+77.-- ) 	 = 1:4:1 

If these irregular amplitudes are computed with KV mass 

differences introduced in external mass factors, 0'1=1 is 

tremendously enhanced over T1KR). Experimentally (see 

Table 1) 

alewhor(e1C):Tlein = 3:1: .55 

So, even where there is no mass difficulty i.e. the ratios 

for leK-  and K°i°  are in disagreement with experiment. 

No 1So mode exists for two pseudoscalars and hence in 

particular 

A( x0x0) = Mee) = 0. 

For 3S1 mode into a vector and a pseudoscalar we 

obtain : 

A(9e) = A(con) = A(c9x° ) = 0 

where 9 is the physical particle 

and 

A( p°71.° ) :A(wir) :A(0)77) :A( P77) :A( PX) :A(c0X) :A(X***Kir):Atieb I ) 

= 3 	: 5 : 4.3 : 5/4-3:10/46: 4.6 : 	4 	: -1 . 

For the 1S0 mode 

A(P+71"-):A(K*4-1c) 	A(K*°R°) = 5:4:-1 



and 

A(P+p-) = Atel-K 
*044o 

A(K K ) 
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For the 
3
S
1 

two vector mes on mode 

A(9c0) = A(90 = A(99) = A(ww) = 0 

(Actually, a ratio of cross-sections could be calculated 

apart from this sum rule but the calculation is too tedious). 

For the 
1 mode 

Mp+p-) : Ae+K*-- ):Meoreo, :Mut)) :A( cop) 

3 
	

4 	-1 	6 : 5 

We have already compared the two pseudoscalar predictions 

with experiment and have found them to be bad. The most 

striking feature of the rest of the predictions is the non 

appearance of any 91 s in the annihilation process. This 

i)rediction is of course contingent on the particular identifi-

cation of the physical co as defined by equation (4.11). The 

comparison of the rest of the predictions with experimental 

data is very difficult to deal with. This is because of the 

problem of handling the rather disparate masses of the 

different mesons. The calculation unto now has been performed 

with all the mesons having equal mass and this is consistent 

with the group theoretical basis which we have used. Vie are 

forced to give them the same mass if we are to use the 

Bargmann=.7igner equations, that is if we specify the baryons 
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and mesons to be 5P-state bound states of quarks and anti- 

quarks. This construction as mentioned before uniquely 

gives us the parity of the particles if we assume that the 

parity of the quark is positive. We could as a working rule 

use equal mean masses for the amplitude calculated group 

theoretically, but use physical masses in the other, kinematical, 

factors which arise when calculating the cross-sections, 

However, there are two particular cases where these mass 

difficulties would be by-passed and this happens when comparing 

the ratios ele-  /K°R*°  and le+K*-/K"R". For the first 

ratio we get for both 3S
1 

and ISo a ratio of 16 for the 

cross-sections which is in great disagreement with the 

experimental figures, as given in table 1, where in fact the 

neutral mode is larger than the charged mode. Similarly, 

we seem to indicate a larger cross-section for K 	as 

compared to K*cr- (5 while table 1 shows to the contrary. We 

could compare the other rates by squaring the matrix elements 

and taking account of phase space
26 This is, however, 

unnecessary because we have found that in the easily comparable 

cases the theory gives very bad predictions. This is therefore 

a blow to SU(6)W and we could get out of this by saying 

that this group is too restrictive. Instead of SU(6)w we 

could try the collinear SU(3) 0 SU(3) which bears the same 

relation to SL(6,C) as does SU(6)w  to U(6,6). However, even 

in this case, 3uccella and Gatto
29 have shown that the really 
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bad ratio for the 331 1e4K-/E*°R°  still exists. This group 

does give the relation 

A(3S
1 
74' W)+ A(3S

1  K
°11°) = A(3S

1
leK-) 

instead of the ratio of these rates. This sum rule is 

satisfied to within 200/o. They then consider what they call 

the 'minimum group' (SU(2) ® SU(2) a  W(0-zy) collinear. The 

generators of the small collinear group obey the algebra 

of the matrices ITi(1.01 2) and 17\80-z. (T and Tr are the Pauli 

matrices in the isospin and spin spaces). This group is a 

subgroup of [SU(4)T  ® SU(2)x]w  , a restriction of SU(6)w  due 

to SU(3) breaking terms. Looked at in another way, this group 

is obtained from SU(3) ® SU(3)coil by restricting the internal 

symmetry to that of isotopic spin and hypercharge conservation. 

They find that even in this case the bad vector-pseudoscalar 

triplet mode is still present. So, even the smallest collinear 

group is in contradiction with experiment. 

(iv) Conclusion 

We have seen how a covariant theory of strong interactions 

can be set up, incorporating internal symmetries. We went 

beyond the Poincare group and insisted on the invariance of the 

S-matrix under inhomogeneous U(6,6). This meant the 

introduction of 143 momenta which we then restricted to the 

four physical momenta. Using these prescriptions we looked 

for amplitudes where the number of irregular couplings would 
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not be forbidding and found that the proton-antiproton 

annihilation at rest were suitable cases for treatment. 

Hawever, the experimental results are in clear contradiction 

with our predictions. The three point results, on the other 

hand, are quite encouraging. The first and simple Johnson-

Treiman
30 

relations are fairly well satisfied while the 

extended Johnson-Treiman31 relations have been shown by 

Jackson
32 

to be in violent disagreement with experiment. 

All this suggests that maybe one should only use higher 

symmetries to classify particles and apply them only to three 

point vertices. The scattering problems should be done 

dynamically using the symmetric vertices and the propagators 

for the intermediate particles. 

The trouble with proton-antiproton annihilation at rest 

is that we have completely neglected the effects of unitarity. 

Apart from all the competing open two meson channels, there 

are other open channels like 3 meson modes and also the effect 

of the closed baryon-antibaryon channel cannot be ignored 

as pointed out by Fraser33. He has shown that these do have 

a large effect on the two meson channels, but numerical results 

are hard to obtain because of lack of data in other channels. 
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APPENDIX A 

Good things to know in SU(3). 

We use Ti  = Ni t  with the 	7\1  defined by Gell-Mann2. 
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Tr (Ti  Ti ) = sii o jk = 0 d i jk 4/T rjk = 	v 

f ijk are  real and totally antisymmetric 

symmetric. 
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= 
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. 4'2 Ti  01 (where the subscript 5 denotes 

pseudoscalar field) 

X is the SU(3) pseudoscalar singlet. 

The matrix for vector mesons is similar. Replace 

p K K 	08 -+ 

fields have vector fields. 

The 4+  bary-n matrix is  

and instead of pseudoscalar 

Co.4autation relations for U(6,6) generators9. From the 

_ fundamental representation Fr
i  = rrT

i  we get the following 

commutators. 

[Fi,Fj] = ifijkFk  

kF k  [Fisq] = ifij  5 

' [Fi5  Fj5] 	-ifijkFk  

[Fi  Fj= ifijkFk  

[Fi  Fj4  ] = 	ifijk 	
It sgvkx F 5' 2, 

	

idijk  ( 	"lc 	-Ea= 
gICN 44 12 1CV 	g1C4 "'NV 



. ijkc 
—AvEicv 	11 	t (gicuXv—aN/gxv)F' —810WVF5 3  

	

ijk — 	k f 	k — id IF L'"vJ = • 
	

acv 

[ 	ijk 	ijk i j  ] = 
FI.  ' F 	,ct v5 	id 	g vF + 1 if 	EduvicN /0\/0\ 

[Fi  -ifijkg  Fk 	idijk Fa Fj ] = 
/251  v5 	Av 	Av 

[Fi4] =ijk if -Fii 

kFk  [Fi45] = ifii  A5 

[F Fj] 5 	= idijkik  A 1   A5 

[F Fj  ] = idijkFk  5' g5 	A 

[F , Fj  ] 	idijk(ry 	g — 	.mk) — ifija 	
KFk gv 	—7Ng v 	7\vg• 	v K5 

[ 	= 	 ijk tFi FjAv 	‘ 
] 7\5' 	g7\1145 

g —Nv 5)0F 	
ifijk Ve IC 

92. 
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