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ABSTRACT

The use of non-compact groups is considered in
cons tructing Poincare invariant S-metrix elements, This is
done in the manner of Matthews and Fel dman. Later, the
invariance of the S-matrix is extended to broken inhomogeneous
U(6,6), thus including SU(3) as well, and the corresponding
fields are constructed using U(6,56) as the auxiliary group.
The connection of this group with SU(é»)W is shown. Finally,
proton-antiproton annihilation at rest into mesons is

considered in detail and the predictions are found to be in

di sagreement with experiment.



INTRODUCTION

Theoretical physicists} for the last few years have
been striving to perceive some order in the morass of clementary
particles which are continually being found by the experimenta-
lists. BSU(2) was successfully used to classify the proton amnd
neutron states way back in the 1930's. OGSince then strong
interactions have been assumed to be invariant under this
isospin group and most of the hadrons (strongly interacting
particles) have been classified as multiplets of this group.
In 1959, Ikeda, Ogawa and Ohnuki?l suggested U(3) as a possible
symmetry group for the strong interactions, combining both SU(2)
and the hypercharge gauge group which was well established.
Ne'eman and Gell—-l\fiann2 then propos ed the eight-fold way of SU(3)

in which the 3%

baryons and 0 mesons are classified as octets.
Subs equently the 1 mesons were fitted in an octet and the most
remarkable achievement of SU(3) was the prediction of the ﬂfs,
strangeness -3, %+ particle which was needed for the completion
of the %+ decouplet, This particle was found early in 19644.
Even though all the SU(3) predictions were not successfu15,
it was at least successful in bringing some order, In 1964 an
old idea of Wigner6 was apvlied to eclement ary particles. Wigner
had postulatcd the independence of nuc lear interactions under
isospin and spin separately. These two groups could then be
combined to form SU(4). Similarly SU(3) and the spin group

were included in SU(6)7. This then states that strong interactioc:s

are spin and unitary spin independent, This group is clearly



non-relativistic and can only be used to classify static states,
It can only be applied to !static' problemss Its chief
achievement was in classifying all the baryons anmd baryon
resonances in one multiplet, the 56, and the pseudoscalar and
vector me sons in the 35 multiplect.

There was an obvious neced to make this group relativistic.
Notwithstanding the genc ral theorams of O'Raifeartaigh8 et, al
about the difficulties of combining SU(3) and the Poincare
group, several attempts were made towards this end., The most
notable of these were the U(6,6) thecory developed by Salam,
Delbourgo and Strathdee9 and the SL(6,C) theory of Fulton and
Wess, and Rﬁhllo. In this thesis we shall be concerned with a
particular application of U(6,6) to proton—antiproton
annihilations at rost, This work was done in collaboration with

P, Rotelli and the results have already bcen published.11



CHAPTER 1 l.

USE OF NON-COMPACT GROUPS

This chapter is a review of fairly well-known material
and is based to a great extent on the work of Weinberg12 and
Matthews and Feldman13. We shall try to illustrate the use
of finite, non-unitary representations of a non-compact group,
in the construction of local fieldes associated with particles
that belong to finite unitary representations of the Poincare
group.

We start by considering the procedure for cons tructing
local fields which are associated with the single particle
multiplets of the Poincare group., With thcse fields it is a
simple matter to writec down Poincare invariant S-matrix elements.

The homogencous, proper, orthochronous Lorentz grcup, L&,

is the group of trausformations

for which det A = +1
and A > 1 (1.2)

(¢}

and which leave invariant the quadratic form

X, %, gV (1.3)
(e,v = 0,1,2,3, with metric (1,-1,-1,~1)). The conditions (1i.2)
exclude discrete space or time reflections, so that the group
elements are continuously connected with the identity. The
infinitesimal transformations can be expressed in terms of six

real parameters %uv , so that



2,

v
&xu = eﬂv x
where €up = ~Cyy (1.3)

The corresponding six infinitesimal gener ators %uv,where

Juv = T

satisfy the commutation relation

[JMV,J,[TP] =i ( g pJW - gWva+ s p-gvaW)

(1.4)

The thrcee operators Jij(i,j = 1,2,3) are interpreted physically
as the angular morcntuam,
The basic representation of the generators J v is given

U
by the six 4x4 intrcices

i

. . B8
where the four mtrices Yﬁ’ whose elements we write as (fu)a
with o8 = 1¢+4, arc the Dirac matrices satisfying

fr, 7,3 =28, (1.6)

Since Yo is hermitian and Yi(i = 1,2,3) are gn@i—hermitian,
mij are hermitian and 061 anti-hermitian. This illustrates the
non—-compact character of the homogeneous Lorentz group.

We now generalise to the inhomogeéneous Lorentz - or

Poincare group, by allowing displacements in space — time
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N H H
These form a four-parameter Abelian group, with infinitesimal

generators Fﬁ which satisfy

[Pﬂ,Pv] = 0 (1.7)

These are interpreted physically as the total energy and
momentum operators.

The Poincare group is the semi-direct product of this
Abelian group with the proper homogeneous Lorentz group. It

is defined by one additional commutation relation
[P?\’J,LLV] =1 (gMPv - g'}\vp.u) (1-8)

The Poincare group is non—-compact so that its unitary
representations are all infinite. The physical states must be
normal izable and hence fom unitary representations of the

group. These are specified by the eigenvalues of a complete

set of commuting operators constructed from the group generators,
An irreducible representation can partially be specified by

giving the eigenvalues of the Casimir operator

and for a state in this representation we can further specify

<Pﬂ> = Py (1.10)

For physical states we require
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= 0. (1.11)

We restrict our discussion tom > 0, Physically it is clear
that we have selected those states corresponding to a given mass.
The manifold of states satisfying condition (1.9) and (1.11) is
infinite; it is called an orbit. A particular component of
this infinite—~component multiplet - or point on the orbit -
is given by the rest state,

Py = (m,0)
Any other point on the orbit may be reached by a Lorentz
trans formation,

To remove the degencracy from the state so far specified
only by the orbit p2 = mz, P, > 0 aond the value of p (equivalent
to Ru) we must consider the '"little group'., DEy definition, the
"little group'" of the Poincare group is the sub—group of the
homogeneous Lorentz group which leaves Py invariant. It may be
shown that the little group is the same for all points on an
orbitlé, and it is conwvenient to consider the special point
Py = (m,0). It is easy to show, that in this frame, the "little
group" is the rotation group with infinitesimal generators Jij'

Thus, for the Poincare group, having specified the orbit
< p%> = mz, p, > 0, an irreducible representation is defined
by specifying <32> and a particular state in this representation

by specifying J For one particle states these reduce to the

12°

spin s, and spin componcnt sg. At this point, we may al so
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specify the parity <BR> where the parity opcrator R satisfies

M
v ]
-

I

L
[

i

o , [R,Po]=o

(1.12)

iR, T .} = 0o , [R, .Tij]=0.

This completely determines the representations of the one

particle states, as far as their space-~time properties are

conccrned. We denote these states by
2 =
|m 38iRs85> = lp,s >, (1413)

where obviously m2 and s determine a representation and p
and s5 a state in this representation.
The general Poincare transformation on the physical set

of states in Hilbert space can be written as

U(a,A) = exp [—-i(Pua/'L + 4 Jwﬂ“” ] (1.14)

@

i.es it is parameterised by 2 displacement & and a Lorentsz
trans formation Auv. This is a unitary operator on physical
states. To obtain the explicit represcntations of these
transformations on physical states it is comnvenient to comnsider
the boost operation which takes a rest frame state [m,s> to

a moving state [p,s>. This corresponds to a pure Lorentz

trans formation. Thus

|p,s> = N exp[-i 8(p).K] |m,s > (1.15)

where X, = J .
i oi
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and gulp,é> = RMIP’S > (1.,16)

Using the general commutation relations (1.4), (1.7) and (1.8)
it is easy to show that (1.16) is satisfied if

P
cosh !8, = -% ' sinhla! = %%l {1.17)

and E(P) is in the direction of P N is a normalising factor,

Under a pure Lorentz trans formation A, a general one

particle statc transforms as

-1 p.K

U(A)IP,S> IP:S >

i
0]

"ig'ag < ig'oﬁ "iﬂ'.l.i "'i_?_vz_ )
e e [S]

1
o

Im,d>

(1.18)
where g!' = g(p') and g =g (p).

Ats, (1.19)

1l

and p!

From the definition of g, 7 and g' it is obvious that the

effect of the threec exponent ial factors in brackets is to induce
the transform tions m -+ p - p' - m, Thercfore, they take a
rest frame state to ar est frame state and induce only a little
group spin rotation of a rest frame state. We define this as

the Wigner rotation

ig'.k =-ig.KX -1 g8.X
D(p) = e e e (1.20)



Te
Then equation (1.,18) can be written as

—ig!.§
U(A)[p,s >= e ]m,s‘> 4n,s'!D(p)]m,s>

[pt,s'> <m,s!'|D(p) |m,s> (1.21)

Under a translation a

YA
7 '’

iPLa 1gua
lp,s> = Ula) [p,s> = e Blp,s> = e [pys> (1.22)

These transformation propertics can also be expressed in terms
of Fock space creation and annihilation operators acting on a

non degenerate vacuum state [d> , such that

at(p,s) lo> = |p,s >

These states are covariantly normal ised

<t,st|p,s> 2 6 (p)6(p ") = (2m)* 6% (p-p1) 6,

Then by (1.21),

vtM)at(p,s)UH(A) = aT(n',s') <m,s'|D(p)|m,s > . .

and since D is unitary
U(A)a(p,s) U-i(A) = '<m,s]D—1(p)lm,s'>> a(pt,s?') (1.23)

and by (1.22)

i
- ip,a
Ula)at(p,s) U l(a) = e ¥ a'(p,s) (1.24)
a
an . _ip au
Ul{a)a(p,s) U “(a) = e H a(p,s) (1.25)



o
Oe

We have now explicitly exhibited the transformation
properties of one particle states under Poincarc trans formations.
We could use these creation and annihilation operators to
cons truct Poincare invariant scattering elements, However,
their transformation propertics are complicated because the
Wigner rotation D(p) does not only depend on ﬂuv s the parameter
of the Lorentz transformations A, but alsc on the momentum of
the state being transformed, Because of this we try to
construct auxiliary operators which have simpler transformation
properties under Lorentz transformations, To achieve this, we
require explicit representations for the three factors appearing
in the Wigner rotation D(p). Since these involve the generators,
K;s of pure Loventz transformations we need to consider an auxiliary
group which contains these generators. . The simplest choice
is the homogeneous Lorentz group and we may use any representatio:.
which contains the spin s in its decomposition. It is simpl st
to use the finite representations ]a> which are non-unitary.

It is in this manner that the non-unitary finite representations
cf the lLorentz group arise in field theory, Later, we shall

show how this auxiliary group can be enlarged to U(6,6). Thus

<m,s [D“l(p) [m, s3>

"'iS'o}

i5.K in.K 8.k
= <n,s|o> <xle T T[> <Ble T Tv> <rle |6>

< 8lmyst > . (1.26)

Ve now define the auxiliary operator.
—18.1’&

Aa(P) =<h[e a ﬁlﬁ>.<ﬁ]m:s> a(pss) -

= ua(p)sa(p,s) (1,27)



Thon by (1023) and (1.26)

U(A)A(p) UTT(A)

= uy(p)® UL alp,s) U 1(a)

—-ig X . s
(as <hfe =*<Im,s > 1is just a number)

"‘i_e_oclg _1
<afe > <Blmys> <m,s|D {(p) [mys'> a(p',s*)

~ig K

- e

|8> <807 (p) [v> <|m,s™> alp',s') (1.28)

<otle

This is possible since D is an element of the rotation group,
which is a subgroup of the auxiliary group, and the representatic:.
]d> includes the spin s.
Then

U(A)A(p) U (A)

~iguE g 2K -iBt.E

= <o| e e e e [v> <y |m,st> al(pt,st)
in.x —ig'.xX

= <Q]e ] B ><B, e ]f> <ylm,st> al(p',s?)

(1.29)

Therefore, finally

U(A) Ay (p) UTH(A)

in.K

= <OC]€ lﬁ> Aﬁ (Pl)
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= saﬁ Aﬂ(p') (1.30)

This is just the simple transformation property we were looking
for, The transformation of Aa(p) is now a pure index transforma-
tion parametrised by 7 alone and with the additional requirement
that p is replaced by p'. The label @ thus defines a finite
non~unitary representation of the non-compact homogeneous
Lorentz group. The factor Ua(p)S is a generalised spinor and
the relation (1.27) is the crucial linX between the group
theoretic analysis and operator fields. The non-unitary states
!d> have no physical significance and have been introduced to
simplify the problem of constructing Poincare invariants., Their
connection with the physical states |m,s> is the comnstant

spinor <ﬂ|m,é>. To construct A |c> must contain the spin |s>.

a,

In these non-~unitary representations, <a{ is the dual, not

the conjugate of |o>. It is defined such that < o> = 1.

Thus
oy # <l
and Blx| o> = Kﬁa

is no longer a hemitian matrix. The relationship between the
dual and the hermitian conjugate of A (p) has to be evaluated
for each particular representation. The dual operator A% is

defined as

| ig.K
a+(p,s) <b,m]ﬁ> <ﬁle !d>

il

2%(p)

n

a*(p,s) u (p)® (1.31)



. R 11
so that it transforms contravariantly, thus *

un) A%p) v ) = APt T o>

il

= AP(pn) (s"l)ﬁOC (1.32)

so that Aa(p) Aa(p) is a scalar density.

It ig easy to show that under translations

—-ipuau

Aylp) = e A,(p) (1.33)
o
ip &

A%(p)» e H A%p) (1.34)

With these auxiliary operators it is a2 simple matter to
cons truct Poincare invariants., All one has to do is to saturate
indices in the product of the appropriate auxiliary operators,
The factor Py transforms like a four vector when it appears as
a product Py Aa(p) so it can be used in constructing these
scalar densities. If we take )d> to be the Dirac ((3,0)+(0,%))

representation for spin % particles we have

< aﬁi ) B
2
o

and four vectors and pseudo—scalars can be constructed from

. B
(xii)OC

1) () wgta) 1M i) ugta)

respectively. ¢a,¢ﬁ are now the Dirac fields. The most pgeneral
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Poincare invariant involving such operators is then the form
T o= [ %) ...t P s,
17 00 /'LP’ 5 o AP ﬁ PZ
4 4 4
6‘ (pl‘f‘oﬁo""pz.cp) d plo--d Pz
o
Also for the Dirac field A%(p) = ¢%(p) = Wrevy),

Notice that we hive been able to construct Foincare
invariant S—opcrators without introducing the comcepts of
ant iparticles or any of the general properties associated with
them such as crossing symmetry and CIP invariance. Weinberglz,

13

Matthews and Fel dman have shown how thecse arise from the

important notion of local fields, They also ﬁhmm how any

equation of motion, apart from the Klein~Gord;n equation, is a

consequence of using a representation la>'which Tuns over

more values than the number of spin components, 2s+l.

The ecquations of motion are obtained by restricting & to the

5 values,; for example, by requiring a definite parity. We

illustrate this in the next chapter where we enlarge the

auxiliary group to U(2,2) and then later to U(6,6). Here, the

restrictions lead naturally to the Bargmann—’x’figner15 equations,
The baryon number is introduced by taking a direct product

of the gauge group U(1) with the auxiliary group. For the basic

4x4 Dirac algebra the infinitesimal gencrator of U(1) is the

. . ol
unit matrix, WVith this thoice, since A, and A" transform



i3.
covariantly and contravariantly respectively under these
simple phase transformations, they will have opposite baryon
number. They represent quark and anti-quark states

respectively.
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CHAPTER 2

U(2,2) AS THE AUXILIARY GROUP

In chapter 1 we discussed the rise of finite representations
of an auxiliary group in constructing Poincare invariants. This
group has to contain the Lorentz group and the representations
used must contain the spin s in their decomposition. Ve now
consider the use of larger auxiliary groups, in particular
ul2,2).

As before; we define the auxiliary operator

~ig.K
Afp) = <d!e -'~lﬂ> <B]m,s> al{p,s) (2.1)
but now the !d> are representations of the group U(2,2)
[a> will also transform like some reducible representation
of the Lorentz group. U(2,2) is the groun of transformations
whose infinitesimal generators are Fi(r = 0,1,244+415) where

in the basic representation (4x4)

Fr = —;1,: I'r
r .
T = YM ’ Y5 21 Y5Y/.£ O—/.L'I) 21 (2.2)
. s q
Define [Fr,Fs] =1 f_ Fq.

This group is closely related to U(4) but the essential
difference is that only eight (1’Yo’iY5Yi’U}j) of the sixteen
matrices (2.2) arc hermitian, the other eight being antihermitian.

Here

Ts = Yo¥; Yo¥3 (2.3)
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and these matrices satisfy the relation

Yo(Pr)+ Yo = Pr (+ denot es hemmitian
conjugate).

(2.4)
which ensures that the relationship between hermitian conjugate
uperators and daai for U(2,2) is the same as for the homogeneo us
Lorentz group i.¢. for the basic 4x4 representation (which
cont ains the Dirac representation of the homogeneous Lorentz

gD (Aa(p)}+ transfoms 1ike Aﬂ(p) (Yo)ﬂa'

A%p) = (aT(p)y) © (245)

Thus under pure Lorentz transformations

in.XK
U A, (p) UTT(A) 1=

i

<ale | 3> Aglp')

o B
Da A.'B(P') (2.6)

which is exactly the same as equation (1.30), However we
Y q

now have the further possibility of perfomming U(2,2) transforma—

tions oa the auxiliary operators.
e _F¥

hyp) = <ale T |B> aglp)

= B

= T, Aglp). (2.7)

Again the dual operator A%(p) is

-

o + 18X
AY(p) = a¥(p,s)<m,s|B> <Ble [o> (2.8)
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and under U(2,2) trans formations

A%p) - AP(p) (™t ;% (2.9)

We now proceed to the construction of local fields from

the auxiliary operators. For the case of spin 3 particles,

the lowest U(2,2) representation which contains spin % is the
4-dimensional basic representations In the reduction to t he
Lorentz group this representation reduces to the (3,0) + (0,%)
reprecsentation, This has been discussed in detail by Matthews
and Feldman and they have also studied auxiliary operators of
the form Aaﬁ (p) (,8 = 0, eeee3). We shall here construct
fields made out of auxiliary operators AaﬁY(P) without
particular symmetrization of the indices so that it transforms
like a reducible representation of U(2,2). Such operators will

contain particles of spin % and

NlWw

ii) Auxiliary operator of rank 3

Let us define the 64-comvonent object

bapy(P) = WEIT) 5, alp.s) (2.10)

whe re
"'ia .I{.

= ems

latBry> <o'Btyt |m,s>
(2.11)

(U(p)%) g, = <oBY|e
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. ot . Jop! . ¥
1 {(e'lai"“oi/z> (e‘wi"'oi/z> <e“1ai°'oi/z)
(¢4 ‘B Y

=8
+ permutationd#
of oc'ﬁ"(‘} <atBryt jm,> (2,12)
since in the basic representation
<ofe B> = (e °r ), (2.13)
We can now define a field
-ip.x ipex
lﬁaﬁY(x) = f (AaﬁY(p) e + B‘a,BY(P) e )2w6(p )
4
X §(pz—m2) —g~24 (2.14)
(2m)

where, to allow for later developments we have introduced a

second particle of mass m and s»in s with auxiliary {field

B a,BY(P)’
"i.e.’.'?‘: —, + -
gaﬁY(P) = <ofy|e [ar Bty 1> <atBryt |3 |m, s> b (p,s)
= GaﬁY(p)s b¥(o,3) (2415)

The operator b* creates the antiparticle of the particle

destroyed by a., This combination of annihilation and creation

operators for the definition of ¢aﬁY(x) is possible because
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Weinberg has demonstrated that the auxiliary operator
associated with a creation operator can be made to have the
same transformation propertices as that associated with an
annihilation operator, For any pure rotation D there exists

a mtrix B, such that
< m,s|D|m,s' > = <h,s'lB—1D-lem,S>

or in other words there is a matrix B which reclates a representa—

tion D of the rotation group with its dual representation

through the relation

D = BD' L ‘

i.ec. these two representations D and D' are equivalent. Therefore,

we can re-write (1.22) as
UA)at (p,s)UT (A) = <, [ETIDTME|m, st Satipt,s)  (2.16)
and hence we can introduce an alternative auxiliary operator

~ _i.&.:.‘:i.g +
K,(p) = <vle B> <B|B|m,s> a” (p,s) (2.17)

where since B is a matrix in spin space <ﬁ]BIm,s> is to be

interpreted as

<Blm,s1> <m,et|Blm,s> .
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Under a purce Lorentz transformafi on

in.%

u(a) Ky (p) UH(a) =<ale T T |ARgpt)  (2.18)

which is the same as (1,30). But, under translations
o iﬁuduN
Aylp) - e A, (p)

which is opposite to (1.33). Ve now see that our definition
(2.14) is valid. We combine a and b', so that ¢(x) behaves
simply under gauge transformations.

The variable s in (2.15) runs over the same range of
values as s, but the matrix <hﬁY]B]m,§> may be different from
<aﬁY]m,s>w We should now like to demonstrate how the causality
requirement is linked to equations of motion for the field and
to the parities of the anti~particles. By causality we mean

that the fields satisfy local commutation relations

(4G 4], = 0, (x=y)?<o0 (2419)

where the commutator (anti~commutator) refers to Bose (Fermi)

fields,

Assuming that the particle operators a(p,s), b(p,s) etc

() (¥ 3

are Fermi operators we have {{

aBy

"]'.P‘ (X—Y)
= ./[“ocﬁy(p)s(“vrpo-(f’)s)* e
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- < . = . ip.(x=y)
+ vaﬁY(P)s ('V',”_po_(p)sf:~ e :] Zwe(po)€(p2_m2)

4

Sap
(2#)4 (2+20)

This is obtained by using the relations
fa(p,s),a+(q,s‘)} Zﬁﬁ(po)§(p2—m2)

= (27)464(p-q)5ss: (2.21)

and
{a,b} = 0 ctc.
which are consistent with the nommal isation of the states.
To show that the causality condit ion is safisfied we need
to evaluate the spin sums
)*

Uy (P ° (U (2)®

00

"iSoI{
= <opyle T T |arBryt> <atftyt|m,s> <m,s|wtptot>

-i8,K
<mtptet le T 7| mpo> (2.22)
and
Voay(P)® (V0 (p) )
"'i_a_og -
= <aBrle largry> <atfry'|Blm,s>  x
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———1 -ig.K
<a,s BT |mrptet> <riptot e | wpo> (2.23)

These spin sums depend on what we choose for the operators

Oa'ﬁ'YfW|p'T| =< a|ﬁ|Y|!m's>.<h’slgtplgw>. (2.24)

and

- 'n‘lplo-I _ -1
Oa'B'Yi =< a'f'y'|B|m,s >‘<h,slB |miptot>

(2.25)

Wle must now decide how many particlcs are present in the
represent ations fm,é> and [m,s >, If & runs over the same

number of values as o then we would have

< OC[m,s> = &as .

We can then gencralise from this basic quark representation
to find that

T pto Trptot
OalﬁlYt = 0 At Byt

1 o Tte plo ot .
z (§a, Jﬁe §Y' + all other combinations)

li

(2,426)
if s and s run over as many values as 0By (64)., Ve are assauming
no symmetrization of the indices 0g¥,

Thus, (2.20) reduces to

Wape ) 5 ¥poe ()]

asy
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_ 70" -
= f By (0) A(x-y) (2.27)

—ip(x-y) +ip. (x-vy) 4
where Alx-y) = /‘[; ; A e : Y :‘Zﬂﬁ(po)ﬁ(pz—mz)(_g7%
2T

(2.28)

where f(0) is some function of the derivative operator O =0
0x
This is realised by observing that in the basic representa- #

tion
-ig K -ig, o ./
<ale B> = (e 1oi2, P (2.29)
and then from (1.23) we find that
-ig.0n;
iYor g é Jé}
(e )a = (m Yo) o (2.30)

Generalising this to the representation ]aﬁf> we find that
(2.27) is true. The expression (2.27) then is known to vamish
for (x—y)2 < 0 and hence the causality condition (2,19) is
satisfied, We see that we have been able to find causal fields
without having the necessity of any equation of motion apart
from the Klein-Gordan equation., We get equations of motion by
putting restrictions on the spinor <hﬂylm,s> which a@pears in

(2.22),
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In the basic representation we scc that v fulfills the
role of the parity operator as it satisfies the relations (1,12).

In the representation laﬁf> the parity operator is

; 1 T a . .
<hﬂY]Rlﬂpa> =z ((Yo) o (Yo)ﬁp(Yo)Y + all combinations)
(2.31)

e start by specifying the parity of the state ]m,s> by

requiring that

z {wo)'gwc)gwc)i + } <rpo|m, s> = + <ofy|m, s>
(2.32)

and, thercfore,

<apy|m,>= o5 {(&a”a*ﬁpayﬂ (Yoo (1) g7 v ) T) }

<rpo|m,s > (2.33)

Thus, the operators 0 become

7r|plo-l . .
Ogigryt = 313 (B RE T )T lr ) Y e ) T

+ permutations of gl,pgfx}

(2.32)

This leads to

S 8%
Uppy (P)° (U, 0 (2)°)

= { ((g):: (g) g@ : + (1) (r) Blr) )

+ permutations (2.35)
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by using (2.30) and the fact that Y, anti-commutes with o ..
To proceed further we must restrict parity of the state

fm,E>. If we take this to be the same as ]m,§> i.e,

z {(v 1o (1) L, )5 +...} <rpor|Blm,3 > =<oBy|B|m,5> (2.36)

o' ‘o

and proceeding as before we find

~

Yoy (P G pp) )

T% { <g>a <£>ﬁ \£>Y + (Yo)g (Yo)g (YO)$ + permutations }

(2.37)

and the condition (2.27) is not satisfied. However, if we

take
-(15 [(‘YO)Z (Yo)"g (v,) f;+ ...} <rpor|B|m,s> = <ofy|B|m, s>
(2.38)
then
T 0 o
L 1 T P (o
vvoo= 13 { <£>a <£>ﬁ <£> y - (Yo)a(Yo)ﬁ(Yo,Y
+ permutations} (2.39)

and then the causality condition is satisfied., 1In this
representation we have then found that, to satisfy the causality
condition, the antiparticles have onposite parity to particles.

This is the conventional theory for fcrmions.
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We can now boost the rest condition (2,32) by multiplying

(2.12) on the left by

-ig.0 . ~ig.0" . —-ie.o .
{(e i 01Y ) o (e i ok)p,@ (e i 01%) Y

o a
+ P oee e }

and then use (2.32) and (2.30) to obtain the equation

1
[4

70" 3

(Blapy Uppe(P)® = m° Uy (p)° (2.40)
wherec
TP
Similarly,
e, s 3~ <]
(ﬁ)aﬁy vﬂpf(p) = -m vaBY(p) (2.41)
and hence
) Tpo 3
(lYﬂaﬂ)(xBY l/lqrpo_(x) =m ¢aﬁy(x) (2.42)

that is, the field operator in configuration space satisfies

an equation of motion., e have found that to satisfy causality
we have had to introduce antiparticles and to assume anti-
comnutation relations for the field gllaﬁY(x)o We have therefore
obtained Fermi statis tics for this field which we shall show

is an hal f-integer spin field. We have also found that if we

specify the parity of the particles we are forced to choose
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the opposite parity for the anti~particles to be able to
satisfy the causality condition. Also, the equation of motion
(2.43) is only a boost of the parity condition (2.32).

We can put further restrictions on the spinors <hﬁylm,é>
and we show below how these restrictions lead to the Bargmann-
Wigner equationsl5. We specify the ‘quark! parity (i.e.
parity of the basic representation). Consistent with (2.32)

the state ]m,s> has a positive quark parity

(Yb) aa'<d‘ﬁylm,§> = <hﬁY!m,s> (2.43)
Therefore
<aﬁylm,s>'= L1+ YO) aa'<h'ﬁylm,s> (2.44)
and
1
0 W'pigl -k {(1+Y )W'(1+Y ) P (1+y )¢|+ covse }
atBlyt 43 o’ , o, o) |
o B Y
(2.45)
giving
. PO 1 { - o - }
(uu )aB‘Y: :}:5;:3’ (lé'f'm)Yo) o ((¢+m)YO) ﬁ ((¢+m)YO) ¥ + see
(2.46)
Consistent with (2.38) we have to now choose
(Yo)a“'m'ﬁy]B]m,E > = =<opy|B|m,s > (2.47)

that is, the parity of the antiquark has to be opposite to the

parity of the quark., This leads to
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G = — {((ﬁ—m)Y Yo ((B=m)Y,) g ((B-m)y )T
oBy 48m3 o’d o’'B o’y

+ 'cl'} . (2.48)

Substituting (2.46) and (2.48) in (2.20) we are led to the

equation

{%w¢xu%gww»}

= z;i§ {((i¢+m)Y°)ﬁw((i¢+m)Yo)ﬁp((i¢+m)Yo)Y¢; ".}

O{x~y) (2.49)

which is in the causal fomm (2.27).
We can now boost the condition (2.43), as before, but
this time we are led to the equation
ot

($-m)y Upgy (P)° = 0O (2.50)

and on boosting (2.47) we get

(Bom)y ¥ F gy (2)° = 0 (2.51)
and hence
al
(i a—m)a ¢aﬂy (x) =0 (2.52)

. 15, . .
which is the well~Xknown Bargmann-~Wigner equat1o% in configuratior
space., We sce here that the Bargmann-Wigner equations are
essent ially the specifications of the quark and antiquark

parities.
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The representation [a5Y> is reducible., It contains

the irreducible representations which are specified by the

Young tableaux,! ! !i, | and Eéi i.,e, fully

el

symmetric, mixed symmetry and fully anfisymzetric.

The restriction of the quark parity positive and anti-
quark parity negative leads to AaﬁY describing + ve parity
particles and A.ﬁ,oc describing negative parity particles.

The quark parity boost for Aﬁa(p) gives the Bargmann -

i 13 .
Vfigner equations

(g-m) > 2 X (p) =5l (p) (¢+m)ﬁ,ﬁ = 0. (2.53)

and in momen tum space

al 31

B E
(18-m), G (x) = g, (x) (idsm)g, = 0. (2.54)

(o4
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CHAPTER 3

REDUCTION OF U(2,2) to £,.

If we are to use the group U(2,2) as the auxiliary group
we need to know the Lorentz group content of any U(2,2)
representation. In the fundamental (quark) representation of
U(2,2) an infinitesimal transformation of the 4~component

spinor Aa(a= 1,2,3,4) is given by

i, opy P
=1 (e+e, v +ie o +eg +1s Y Ye.) ﬁ (3.1)
T2 Wy py usTuYsla Spe *

with real parameters I With
B _ (st 8
2=t (v, (3.2)

this definition of the U(2,2) group has the property of leaving

(04 . . .
ATA o invariant since

e
§ %= -1 I A‘B(Pr)ﬁa (3.3)

because of (2.4)
All finite-~dimensional, non-unitary representations can
be obtained by constructing multi-spinors which transform as

dircct products of quarks and antiquarks, namely

Yd\oooo-c a" ,B.-oo- -1 Y d\ Y'd\'o-.oo
A - S S (s %)

(075 J o B Yyt ' a'Bleee..
(3.4)
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where

S = exp (iSrFr) (3.5)

The irreducible representations of SU(2,2) correspond to
tracecless tensors of well-defined symmetry charactefs. We give
below a list of some low dimensional representationg where we
have introduced brackets [ ] and { 1 to denote antisymmetry

and symmetry in the cnclosed indices.

L D T D . T

Dimensionality Young Tableaux
Yo 4
&
(o8]
¢ 10
{af}
B
s 15

o QMJHVDU

a1y 20"

Yl apy] &

aiuﬁ} 84 i
{yd'}

gled]l 4 |
{yél -
(aB]

bryé] 20"
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We find the spin content of these representations by
going down to the little group of the homogeneous Lorentz
group. We first descend from U(2,2) to the Lorentz group by
noting that the irreducible representations defined above are
now in gene ral reducible representations of the Lorentz group.
We can now think of the indices o,8 ... as Lorentz indices and
the Young tableaux arce still maintained. 1In terms of the

transformations (3,1}, we reduce from U(2,2) to £, by putting

g = E;” =8,u5 = 0 (3.6)
We can now introduce a lovering (charge—conjugation) matrix
Caﬁlé within the Dirac algebra, such that

2y = Cop AP(py (3.7)

transforms like Aa(P) under the Poincare groups, This requires

that
ﬁ A.Y (S-l ) :8

g b 7 Cog ¥

where S is a2 Lorentz transformation. Thus

. o CBY (3.9)

-1
Caﬁ (s

In terms of the infinitesimal generators, this becomes

-1 o
(¥ (0, )y Yo o= (o, g (3.10)
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The matrix C has the properties

oS
(ch Coy = 6Ya (3.11)
caﬁ = - Cﬁa (3.12)
and
(€%, Yo e = - () & (3.13)

from which it can be shown that Aéc)(p) has the same parity

transformation properties as Aa(P)’ that is
B,(c) _ (c)
(p—m) A g (P) = Ay 7 (p) (3.14)
We relate the representation Aa(p) with Ka(p) by noting that

the anti-quark parity condition

<m,E|8> (r))g" = -<m5la> (3.15)

can bec boosted to the equation

a%p) (gm) P = 0 (3.16)

and the Dirac equation
($-m) Ay (p) = 0 (3.17)

by Hermitian conjugation gives

(3.18)

li
o

A%(p) (ﬁ—m)aﬁ

and therefore

B¥-p) = (agpN* v =%(p) (3.19)
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We then see that the bahaviour under translation of Aéc)(p)
is thc same as Aa(p) , since A(p) and A*(—p) behave similarly
under translation., Of course, Aéc)(p) does not have the same
transformation properties under the baryon gauge group.
We now get back to the problem of finding the spin content
of any representation of U(2,2) which we have reduced to £4.

All the upper indices can now be lowered by means of Ca@

aoooaﬁ O seeasn ﬁe

YCO.. 6‘8 80 ‘f 0...06‘

The resultant n-component spinor can then be reduced according
to the standard theory of Lie groups by specifying the symmetry
propertiecs of the n indices by means of an n-ranlk Young tablcaux.
Such tableaux refer to four—-component spinor labels, and thus
may have up to four boxes in any column. The rest condition

o

(Yo) <ﬁ'ﬁ¥...!m,s >= <0BYess
A

m’s> (3.22)

for each index, reduce the spinor labels effectively to two
valued labels, The same Young tableaux, now interpreted as
referring to thesc two-component spinors determine the
representations of the little group SU(2) = 03, physically
interpreted as the particle spin.

The spinor A{aﬁY} then becomes a 4~component object
describing a spin % particle. A[aﬁ]Y reduces from 20-component

1

to a 2-component object and hence spin 3. A[aﬁY] vanishe s

identically when reduced to SU(2). These states all have quark
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number three, For describing mesons we form the quark number

zero representations A a’ Ag = 0, from which one constructs
A= C. Ayt (3.23)
af ay 8

Out of these we form the ten and five component objects A{aﬁ}
and A[aﬁ] « After reduction we find that these contain the
spin 1 and spin 0 reprcsentations of the little group,
respectively.

Since we shall be using these representations when we
enlarge the auxiliary group to U(6,6), to include SU(3), we

now explicitly exhibit their Lorentz structureg.
(ii) Auxiliary operator of rank 2.
Write
Aaﬁ-: [¢ +Ygls + iYMY5¢u5+YM¢# + %U‘Mv(?’uv] aﬁ
(3.24)

We have the two Bargmann~Wigner equations (boosts of the quark-

antiquark parities),

(8 - =) 2 l) = 8 f) (Bam)gl= 0.

Using this on (3.24) we find
g = 0
Py B = Am G5, Bys = inds } (3.25)
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Thus (¢5,qu5) together form a 5-component object describing a
pseudo~scalar particle 17 .na (¢M’¢MV
describing a vector particle as was expected. We can use

) 2 10~-component object

(3.25) then to write (3.24) as

Aaﬁ = é H¢+m)Y5¢5 + (¢+m)fuqu} (3.26)

using Pﬂ'¢ﬂ' = 0 which can be derived from (3.25).

(iii) Fully symmetric auxiliary operator of rank 3.

To write out explicitly the £4 symmetry of any operator
we use the fact that the 16 Dirac matrices (TrC) o8 fall into
two distinct classes; the matrices (fuchﬁ and (qﬁvc)aﬁ are
symaetric, and C g4, (YSC)aﬁ' (iqu5C)aﬁ are antisymmetric.

Consider symmetry in o,8 in the fully symmetric operator

AaﬁY’ to write

- 1
Awpy = 0,Clog ¥ + 7 (0,000 ¥y, o (3427)

To find full symmetry, we see that Aaﬂy mus t be annihilated

by the anti-symmetric tensors (C_l)ﬁY, (C_1Y5) PY ana (iquﬁuYs)ﬁ?

This gives three conditions

2

Y 2 Y -

1

Y : Y =
Ysdg Wy, v 2 (0850 Wy o= O (3.28)
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. Y L (3 Y =
(G MYslg Wy 7 U0 MY5)g Yy, =0
(3.28)
The first two equations give
Y —
Wula Wy =0
] (3.29)
Y -
and (0"/_“))Oc %uv,y 0
The last equation of (3.28) gives, using (3.29),
() Py i = 0 (3.30)
plo TUN, B Ny ’ )

As a result of (3.29) the 40-component object of (3,27) is now
reduced to the expected 20-independent component s,

Ve now us e the Bargmann-Wigner equation

($-m),, o hgrgy = 0 (3.31)

and substitute (3.27) for AdﬁY and then contract with (C_lﬁu)BY,

(C_lY )aﬁ and (C-IU' )aﬂ to find
7 7y

3
(B-m)y ¥y 5 = O (3.32)
Py, ati® Uy o= 00 Pu¥y 0 " Py Yy = 1P Yy a

(3,33)
These equations along with (3,29) are equivalent to the Rarita-

Schwinger18 formalism for a particle of spin % *,
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Finally, using (3.33) we can write (3.27) as

1
Mogy(P) = = [(gemly,Clog ¥, . (P) (3.34)

with conditions (3.29) and (3.30).

- are ., o w ® " al .
(iv). Mixed auxiliary operator of rank 3 A[aﬁ]Y

A[aﬁ]Y has 24 components. Ve get the 20-independent components

by stating that the fully antisymmetric part vanishes, by

Mapglytiisyla * Myals = © (3.35)
This can then be written as

Aoply = (5 op PutityTsC) g ¥y o +Co0K,  (3.36)
Now, we use the equations

()" Apiply = O (3.37)

(¢-m)a7'A[aﬁ]Y, = 0 (3.38)

(3.38) gives

!
($=m), Y4 = (Bom), V0= (Bem) K= 0
(3.39)

and (3.37) gives
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-
i

_ (3.40)
Pﬂ‘lla = lm(ﬁ#,a ? P!J, “[I/J, 20 = ~1m¢a

This system clearly describes a particle of spin 4 as was

expected, (3,40) now allows us to write

Mogly = & [(BmITgClys ¢0(m) . (3.41)

(v) We have uptil now considered in detail the use of U(2,2)
as the auxiliary groun, The problem of including the internal
symmetry group is fairly easy. The rest states are now defined
as [m,s,,/JL,IZ;zs:,','Y',I3 > where [ defines the SU(3)
representation, I is the total isospin, Y and 13 are the hyper-
charge and the third component of isospin respectively.,

If we want to have Poincarc and SU(3) invariance for our
theory, it follows that the smallest auxiliary group we need
is £, ® SU(3) and the auxiliary operator in the fundamental
representation would be

B, o =1,2,3,4, p=1,2,3.

The next step is to extend :64 to U(2,2) to give the auxiliary
group U(2,2) @ SU(3) where again the fundamental auxiliary

operator is

o,D
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but naw the transformation on «a are of the full U(2,2)
group rather than its subgroup £4. The theory of Salam et. al.
is obtained by embedding U(2,2) @ SU(3) into the group U(6,6)

which has the generators

Fa = ‘\férr Ti T O, 00001015 (3l42)
i = O, te 08 8

a =1 000000144

where T are as defined by (2.2) and T, are the SU(3) generators
(See appendix). The basic (quark) auxiliary operator is now

(12=dimensional)

AA = A (A- = 1.00 000000912) which has the general
U(6,6)e - -

transformation
A - SA
with

5 = exp [§ i3 F,e%] (3.43)

and real parameters e”.

We now proceed exactly as we did for U(2,2) and construct
the dual (anti—-quark) representation and we can then go on to
show the causality condition is satisfied as before. Here,

the parity operator in the basic representation is

< A[RIB> = <a,p[Rlﬁ,q> = (Yo)aé §pq .
(3.44)
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Ve arrive at the well known Bargmann Wigner equations when we
specify the parity of the quark as positive and the anti-quark
as negative. The higher representations are constructed as
before. The equations of motion for an arbitrary representation

are

( ) a' é‘rles ..._.'Q 6“:,85,00..
ﬁnm a jxa'p,[qu.""' = Aal),.@QOn..u

()0 = 0
(3,45)
Salam9 ete al. found that some of the well known meson and
meson resonances and baryons and baryon resonances are combined

very neatly in only two low-~dimensionsal represcntations of

u(6,6).

(o) 2nd rank Auxiliary operator @ﬁ (traceless).
ed

This is the 143 dimensional regular representation., Its
U(2,2) @ SU(3) structure can be determined by considering it
to be made of a product of a quark and an anti-quarik representa-
tion. Thus

2012 = 14301 .

va——— - ——]

[y

The 12 decomposces to (4,3) where the first number refers to
U(2,2) and the second to SU(3), We then find that the structure

of 143 s

43 = (15,8) + (15,1) + (1,8).

We have seen that 15 reduces to 10+5, on stevping down

to £4, which then describe 1~ and 0 particles, 143 then
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describes a nonet of voctor and pseudoscalar particles.
The U(2,2) singlet vanishes identically on reduction to £,.

Thus, @g {(p) can be written as

. . o .
Qg (p) = é {(¢+m) 5¢;(p)+(¢+m)7p¢;(p) }ﬁ (Tl)g

(3.46)

(B) The baryones are constructed from three quark states as
i

we assign the quark the baryon number B = 3 . The structure

of the fully symmetric third ranl renresentation is

364 = (20,10) + (20%,8) + (4,1)

where 20 and 20' are the fully symmetric and mixed symmetry
third rank tensors of U(2,2). We have shown that these
describe %+ and %+ particle respectively. The fully anti-
symmetric (4) third rank reprcsentation of U(2,2) vanishes
identically on reduction to £4. Thus the 364 describes an
octet of %+ particles and a2 decuplet of % + particles., We
can assign the eight baryons and the well-known ten baryon
resonances of % * to this representation with remarkable
neatness,

Finally, Bi can be written as

ARC}

B: (pﬁ'-‘ = B (p)
{ ABC oy ,par



- 1 :
= = [(¢+m)fuc]aﬁ9u’Y’pq§p) +

’ ] s s
1 .
+ —— (g N -(p), +e_ N (p) + ¢ N (D)
246 P [oplyir s pyla,p TP° [yal ,q
(3.47)
wvhere N (p)s = 1 [(p+m) v C] N s (p)
[aBly, = ™ e
o! s
and ($-m) " Na',r(p) = 0. ‘ (3.48)
ot ol
end (Fem} D ar,pqr(P) = 00 Wyla Dy ar, por(p) = 0
o (3,49)
and QU,Y,pqr(P) is fully symmetric in pqr.

We have now constructed all the U(6,6) tensors which

we need for our calculations,.
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CHAPTER 4

INHOMOGENEOUS U(2,2), INHOMOGENEOUS
U(6,6) and SU(6) .

We have now constructed causal field operators which
transform like finite, irreducible non~unitary representations
of a2 non-compact auxiliary group. This allows us, in a very
natural manner, to combine different spin and SU(3) multiplets
in one field., We now consider the use of these ficlds.

Since SU(3) only introduces non~essential complications, we
shall restrict the discussion to the enlargement of the space-
time symmetry., The most natural requirement for thcories
constructed from fields like w{aﬁY} and ¢&F is that the
effective interaction Lagrangian, or S-matrix elements, are to
be invariant under the imdex transformation of U(2,2), namely

(2,7) ana (2,9).
A_(p) -~ T ﬁA (p)
o o “BE

and  © a%p) o AP(py(rTh”

Such invariants are very easily formed by taking trace products
like ~

a%(p)  Agla) .

This restriction to index U(2,2) invariances, leads to a
restricted subclass of Poincare invariants. This leads to terms

like



;/'
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2%(py) Cr,) Py (py)a,

which is Poincare invariant, being excluded, Also, terms
like

Aa(Yﬂ)aﬁAﬁ 13‘9(7‘”)(98338

which arc £4 invariant are excluded by index U(2,2) invariance

which requires the complete combination

Aa(I‘r)a‘BAJB s’ (T)s"B, o

This procedure therefore excludes the well-=known derivative
couplings which arise naturally in a Poincare invariant theory.
However, ceven if the interaction Lagrangian is restricted
in this way, as a prescription it is not possible to construct
a consistent theory which leads in gencral to S-matrix clements
which show this iml ex U(2,2) invariance. By a theory we mean the
specification of an interaction Lagrangian and free-particle
propagators from which S-matrix elements can be calculated to
all orders in the coupling strength. Even if the calculation
is not possible, it should be possible at least to determine
the invariance properties of the S-matrix clements, from the
given information, Any theory based on the U(2,2) local
fields leads to S—-matrix clements which involve not only the
interaction Lagrangian but also propagators and summ ti on over
spins such as (2.35) and (2.46). These introduce factors

of the form QuYu or Yﬂ ...Yu which destroy the generalised
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invariance, which has been built into the interaction, and
give rise to an S-matrix element which is invariant only
under the Poincare group. If the auxiliary group is extended
to include SU(3), as in SL(6,C) or U(6,6), the remaining
gsymmetry is just SU(3) @ P. We can also sec this in a

di fferent light by considering the unitarity condition

ImT = T, T

Jo

The factor p also involves sums over spins and even if T and

T-I-

are assumed to be U(2,2) invariant, this factor introduces
expressions into ImT which contradict this a ssumption.

We have seen that index invariance leads to a subclass
of Poincare invariants. Any interaction which is index U(2,2)
invariant is automatical ly Poincare invariant but not vice-
versa., This is because we have specified invariance under
index trans formations rather than true transformati ons. We
can have true transfomations by specifying a larger space-
time than the nommal four dimensions. In fact, we require

invariance of our theory under the inhomogeneous U(2,2),

1U(2,2), rather than the Poincare group.

(ii) Inhomogencous U(2,2).

We extend the Poincare group to inhomogeneo us U(Z,Z)19

by forming the semi-direct product of U(2,2) with the 16—

parameter Abelian group, the infinitesimal gemerators P_ of
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which satisfy the commutation relations

: q
s 1frs Pq

g
[
I

where f q
Trs

arc the structure constants of the U(2,2)

algebra (2.2). This last relation states that P_ transforms

as a 16~ vector under U(2,2). The operations gcnerated by

the P, relate to 'translations! in a generalized 16-dimensional
space, and include the space—-time displacements of the Poincare
group as a sub-group. In other words, the Pr are generalised
ene rgy—-momentum operators and include the physical energy-

momentum opcecrators gu. We can combine these with Pr to form

a U(2,2) spinor operator

$=T1'P
The particle operators a(p,s) now depend on 16p!s and
the 's!' labels the representations of the little group of

U(2,2) which we now show to be U(2) @ U(2)19,20.

s before
the little group is defined to leave Pr invariant. We make
contact with the phys ical world by restricting the Pr to Py
iece to the physical four momenta, As mentioned in Chapter 1
the little group is the same for all points on an orbit,

and it is convenient to consider the special point p = (m,0).

Thus the little group can be determined by considering those
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trans formations which leave invariant the fomxm

m a*(b,s) alo,d = m(Aa(o))+<a[m,s> <m,s]ﬂ>ﬂﬁ(o)

m(Aa(o))+0aﬁAﬁ(o)

which is just the rest frame projection of the free particle
energy-momentun operator. The auxiliary group which we use
is U(2,2).,

So we necd those elements T of thé generators of

U(2,2) which commute with Oaﬁ

B 5]
(rt or) = o0,

and, since we arc assuming antiparticles We must also have

The matrix Oap always contains the unit matrix, which implies
that

T =1t

If the restrictions on <ﬁ|m,s> are always of the parity
type considered in Chapter 2, Oﬁa only involves ¥ and then

the littlc group generators are

1 ,YO 'Ti s Y5Yi~YOo_i
which generate U(2) @ U(2)., We get this result also when we

use the auxiliary fieclds AaﬁY and Aﬁa as the 0 operators only
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involve ¥, as long as the only restrictions on <hﬁylm,s>
and <ﬂalm,s> are of the parity tyne.

Our auxiliary operators are now of the form

ie GT

Ay (p) = <ﬁ!e_ T [8> <B|m, s> alp,s)

where G* are the eight generadors % (Yi’abi’Y5’ iYOYS)lgg

to be contrasted with (2.1) where only the X part of G*
are included. Here, the p runs over the sixteen values
of the regular rcpresent ation.
Proceeding as be fore we find under IU(2,2) transformations
r

ian
hylp) = <ale | 8> Lglpt)

where Jpr = % er[Fr,ps] . This transformation is now a 'true!
transformation under U(2,2). We can construct higher ficlds,
as before, by considering the product of quark and antiquark
fields, The spin content of these ficlds is the same as when
U(2,2) was considered the auxiliary group for Poincare
invariance. 3But we have acquired an additional freedom in

constructing invariants in as much that we can write down

quantities like
3 (o4
A7 p) (Pr)ﬁ Aa(pt) qyp

and Aﬁ(pl) (Pr)ﬁaAa(pZ) BJ(p3) (Tr)gsBe(pé)

apart from index invariant quantities like
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As before, we have physics when we restrict the 16-dimensional

space-time to the physical four dimensional world,

We have seen that if our theory is IU(2,2) invariant then
for one particle states the rest symmetry is U(2) @ U(2) i.e.
the little group. We now show the hierarchy of symmetries
as we proceed from one particle state to many particle state]§9:2j

(iii) For collinear processes like vertex functions and

annihilation at rest, specialising to the z-direction we find
that there are only two independent moment poYo and P3Y3e
Therefore, to see what invariance is left we look for those

generators of U(2,2) which commute with Yo and Yye The se are

the 3 hermitian generators

% in'Ys s %’ iY2Y5 and %’ 0—12 .

It is easy to show that these are the generators for an SU(2)

group and this subgroup of U(2,2) is usually written as SU(Z)W.

These generators can alternatively be written as
1 3 1
EYOO_], : EYOO—Z 1 '50—3

where o = (023,w31,012).

We have here introduced a modified conserved spin which
can be used to classify not only the states of the particles
at rest, but also states of finite momentum in the z-direction.

These operators commute with Lorentz transformations in the



50.
z—direction., Thus the w-spin classification for a particle
state with a finite momentum in the z~direction is the s ame
as that for the corresponding state at rest. We can now
classify all particles in SU(Z)w or SU(6)W when we include the
int ernal symmetry group SU(3), So whenever we are considering
processes for which all momenta are in a single direction in
some Lorentz frame, we can equivalently do either SU(6)w
Clebsch-Gordan tricks or inhomogencous U(6,6).

Proceeding a stage'further if we consider co-planar
processes, c.g., general two particle scattering amplitudes, we
find that the residual symmetry is then just U(1) @ U(1)
which generalises to U(3) & U(3) on inclusion of internal
symmetry. For any more complicatcd situation only U(3)

survives,

(iv) Extension to Inhomogencous U(6,6)

As in the case of IU(2,2) we take the sami~direct product
of U(6,6) with a 143-dimensional abelian group T, , 3. We have
thus introduced 143 encrgy-momentum operators Pa which transform

like the regular representation of SU(6,6). i.e.

[Pa,Pb] 0 a,b,c = 1--..:..143

i

. c
[Ja'Pb] = 1fab Pc

where the structure constants fabc of U(6,6) are defined by

(appendix)

(]

[Ja,Jb] = if T .
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As a reminder, in the fundamental representation the J's are

given by

_ iA A= leveso12
Fa - kfé (PrT )B B= 100-..12

We can write the Pa's in an equivalent, alternative representa-

tion as

~ A L
Fg = (PR )y
and similarly
A A
JB = (J'aFa)B -

We also have the relation

""A. .A.
P, = 0, I 7= 0

We use U(6,6) as the auxiliary group in constructing
local fields for IU(6,6) and we find also in this case that
the little group is U(6) & U(6) if the restrictions on the
constant spinors <A]m,s> are of the usual Yo~parity variety.
So we can set up the theory as outlined earlier but in this
case we have a wider range of invariants including the so-
called irregular couplings. We make contact with physics by
festricting the Pa to the physical four ene rgy-momentum
operators P“. We thercfore have essentially the same theory
as U(6,6) but the dif ference lies in the fact that IU(6,6),

pltis restrictions to real space~time, leads to the possibility
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of the irregular or derivative couplings in the interaction
Lagrangian which is less restrictive than pure U(6,6) index
invariance, As we have shown in the previous section this
leads to SU(6)W invariance for collinear processes.

The practical procedure for applying inhomogeneous U(6,6)
is to construct all possible invariants from the particle
fields AA(p) and the different momentum operators appearing
in the process and then specialise by taking the physical

four-momenta.
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CIAPTER 5

SOME CALCULATIONS IN IU(6,6)

(i) Before we go on to evaluate certain scattering processes
wa look at charge conjugation more explicitly. We assume that
strong interactions are invariant under charge conjugation

or particle-antiparticle int erchange, VWhen we are working with
the Lorentz group and the Dirac representation we denote the
auxiliary field by ¢,(p) instead of Ay(p)s In Chapter Swe
showed that it was possible to introduce a lowering (charge-

conjugation) matrix Caﬁ within the Dirac algebra, such that

0o N (p) = c P o)z cug Pion)

transforms like ¢a(p) under the Poincare group. However, it
is well known that within the group U(2,2) it is not possible

to introduce a lowering matrix C, g such that

(e) < -
AO(. = CaﬁA

transforms like Aa under this grouplg. This is a consequence

of the fact that the transformation properties of the C matrix

are not indicated by the itwo lower indices, i.e.

~1 T _
C I‘rC¢~I‘r r—0.......;15

However since we are finally only concerned with the Lorentz

group we define the charge conjugate field in U(2,2) by

2 o) = caﬁAﬁ(p) = c_AP(-p) (5.1)
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)P

and Ka(p)"" KG(P)C = —fa.ﬁ("ll))(c-l . (502)

Consistent with the Dirac (Bargmann~Wigner) equations, the

baryons and mesons can be considered in momentum space to be

the following combination of quark fields

AcxﬁY(p) = Aa(p) Aﬁ(p) Ay(p)

and Aﬁa(p) = A%(-p) Aglp)

with the appropriate symmetrization implied. Then the charge

conjugation properties follow immediately

=8eN
AaﬁY(P) - Ca§ Cﬁe CYA A (~-»)

and Aﬁa(q) - (chHw As°(q) Cop (5.3)

This choice of meson transformation is necessary to give the
conventional C-parity of the 7° and po mesons.,
This definition of charge conjugation would secm to

indicate that a quantity like

(a%)° (AB)C (Aap)c (c = charge-conjugate)

is not a U(2,2) invariant, But if we substitute

"
(Aa)c = CaﬁA
(EH° = (s,

(A ﬁ)c = Ca§ A § (Cnl)ﬁa

04 e
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—a ﬁ . . > .
we get A AﬁAa which is a U(2,2) invariant., However, a

gquantity lilke

A“cquﬂ is not U(2,2) invariant, but is Lorentz

invariant.,

We construct a charge-conjugation operator in U(6,6)

by gencralising C such that under charge conjugation

p) » (F*eN°©

i

(€)™ g5(-p)

¥, (p) = (¥, (pN)°

Cpn 7 (-p) (5.4)

(For a fuller discussion see P, Rotelli's thesis).
where our generalised C's are antisymmetric in their U(6,6)

indices A,B,

The properties of these Cts are

(C"l)BD - d\ D

< A

AB

(™ (% AT

cD = = (YU' i D (505)
for ll = 0,...3 a.nd i = Ooo--8.
(Under charge conjugation the SU(3) representation is changed

into its adjoint representation). The charge conjugation

properties of the baryon and meson fields are now



56,

L
LypclP) = CupCpglop ¥ (-p)
and @BA(q) ~ (C_l)AD ﬁbE(q) Cep * (5.6)

We are now ready to test any IU(2,2) invariant to see
whe ther it is charge-conjugation invariant. We have to be
careful to symmetrize and antisymmetrize any Bose and Feimi

fields in the amplitudes before applying charge conjugation,

(ii) Three meson vertex MM,

The reduction of 143 @ 143 1is

143 x 143 = 1 @ 1435 © 143 © 4212 ® 5005 © 5005
® 5940

So in general we would expect to get two 'regular! couplings

gl2,%(0,) o5(p,) = 65(py)85(p,)] 8¢ (pjy) (5.7)
with . :
Py *+ Py + Py =0 (5.8)
and all the mesons being on the mass shell., We now apply the
charge conjugation operator developed in the first section of

this chapter. Consider the first term

B C £y
o, (Pl) o (Pz) ®C(p3).

Under charge conjugation this transforms to
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~-1,BE; F -1,CG. H —-1,AI_. J
(€ (p) ¢ (CTH ™ (p) (T M e (50

i}

5ﬁ 6; 6? <bEF(P1) ®GH(P2’@1J(P3)

E F G
8 (p,) 05 (p, ) 8p(py) -

So we see that under charge—conjugation the first term is
transformed into the second term and vice-versa. Therefore,
the positive sign gives a C conserving amplitude while the
negative sign gives a C violating amplitude, Thus, since we
assume that strong interactions are C~invariant, we get a

unique amplitude
B C B C A
g[@A (py)0y"(py) +,7(p,) 2y (pl)]®C (pg). (5.9)

What about 'irregular' amplitudes? For this we are entitled

to usc the momentum operators (ﬁl)g, (ﬁz)g,(¢3)§ defined as

A 0o T

Remembering the condition (5.8) and the fact that all the

mesons are on the mass shell i,e.

C

(ﬁl)g 2,%(p,) = m @Bc(pl) etc.,

we find that the only irreducible invariants are of the form

A B D E
g' %y (p1)®A (p,) (¢1—¢2)E o, (pg) and 1,2,3 (5.10)
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permutations, However, these all violate C-parity as is
easily seen by applying the C operator (4.10) then transforms

to

-1, 4LF. G -1,BH. I
t
g'(C ) 2p (py) CoplC )™y (py) Gy

D, -1.E7, X
(3-8, (C 7)) 81 (pg) Gy

= —g' 3 (0 )2, (p,) (B,-B,)5 0" (p5)

using (5.5). VWe sce also explicitly that this amplitude is
C-violating by observing that it gives rise to a ¢°n°n®
coupling which is obviously C-viclating., (¢° is the vector

singlet).

We now evaluate the unique coupling (5.10). Dropping

indices this can be written as

g Tr {@Kpl)é(pz) + @(pz)é(pl))@(p3) |

Now we substitute for the &'s from (3.46) to give

-4 Trﬂ:{(¢1+uw5¢5‘(p1)+(¢1+uw“¢; (p,)}

{(ﬁzﬁ“)Y5¢g(P2)+(¢2ﬁu)Yv¢g (p,)} i)

+L (B 83 ()¢ (B )y, 83 (0,0 1 (B 4d v B (B, )
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+ (by ), ¢ o, 01 TITE I (Baet) v B ()
1 [P TRS | 3 575 3

+ (753+u) (p3 'I‘k }

This was first cvaluated by Delbourgo et.al and Sakita and

Walig. This gives rise to the F-type coupling of VVV, VPP

and the D-type coupling of VVP as expected from charge
L - 22
conjugation . There arc very few new predictions. One is

9,23

the absence of the ¢-o7 mode becaus e Eppm = 0 if we make

the ident ification of the physical ¢ and w,

_ N2 Lo 1 8
“b o= %t T Yy
0, = 759,° —,/% 9, (5.11)

finother prediction is the = 2/u first stated

ratio gpww/pww
by Sakita and Wali. With g4 = 700 MeV this compares favourably

with the ratio % 2.4/i4 obtained by Gell-Mann,

gpwwébww
Sharp and Wagner24 for w decay.

(iii) Proton—-antiproton annihilation at rest into two mesons.

We shall as before take equal mass for the two mesons
irrespective of whether they are both the same spin. Ve
denote the mass of the proton and antiproton by m and the

mass of the mesons by (4. The various momenta are
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» = (myo) = momentum of proton

= momentum of antiproton
qQ = (8,31) = momen twn of meson
q, = (8,—gl)= momentum of other meson.

(5.12)
We are in the laboratory frame vhere the baryons are really

at rest, We have the relation

i-e- E= M. (5.13)

We define the indepcendent momenta q (p being the other)

as
Q@ = q, - a, = (0,2g9,) = (0,9) (5.14)

First the rcgular amplitudes, Using the reductions

anmomerm | st

143 @ 143 =1 @ 143 © 143D @ 5940 @ 4212 @ 5005

© 5005
and 364 @ 364 = 1 @ 143 © 5940 ® 126412

we see that there are four U(6,6) invariant amplitudes denoted

by 1, 143,, 143. and 5940. Using the U(6,6) baryon and meson
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tensors constructed previously, these couplings can be writ ten,
respectively, as :

=ABC E D D E
¥ (-p) QKBD(P){QC (q,) &77(q,) = &.7(q.) & (qz)}

PBEC(p) 1, 0 (p) 2.°(q,) 8. (a,) (5.15)

where the + signs indicate the 143 D and F couplings respectivel,
We use ¥(-p) as this indicates an incoming anti-particle with
momentum Do

£i11 these four-particle vertices are found to vanish
because

g ABC (p) QADE(P) =0 when p = (m,0).

i.c. whencever there is at least one direct summation the
vertices vanish for the nucleon part. Picking up just the

spin 3 octet part of the 364 tensor, we have

=ABC
¥ (-p) ?hDE (»)

oqs _[oBly “,r « ars _[Brla Sp rps_[yalB,q }
e N (~p) , +& N (-p) ;+e N (—P)s

-—-—l‘-

24

v v v
b4 {Sntv N :(P) + 8tuv N (P) + aupv N (P) }
[af]e,u [fe]a,p [ea]d, t
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Thie function vanishes only because of the £4 parts.

There are essent ially only three different :64 traces.

_LaBly _ [aBly _[By]a
N (=p) N (p), N (p) N (p), and N () N(g)
[ad e [de]a ela
By )
N ) N[aéﬁ; = R ) (C” Lygt- ¢+m)] [(ﬁ+m)Ysc] & e(P)

Y -1 - Pa
= = =5 N (-p) [CTirg(=prm)] [(B+m)7sClys N ()

Y - P

= 0
as p =m ,

[aB]y af
N (-p) N (p) = N (-p) [C” Y,( ~$+m) ]

deJa m®

x [($+m)¥:C] N_(p)
P4m 5 d‘sap

1 =Y po
= :n-i N (—‘3)[(}15+m)'YSC] [c” Ys(;b-m)] Na(P)
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o

as (ﬁ—m)ﬁa Na(p)

_[By]la
N (-p) N (p)
fela

This term is zero

We have shown, therefore,

vanish.

i

it

because ul(-p) u(p) = 0.

& - By
1§ (=p) [Chyg(=pem) ] [ (Bem)v C

63,

}a N, (p)

that all the regular amplitudes

It has been argued that this is a reasonably good

result as the two meson annihilation modes are considerably

damped as is evidenced by the rates, apart from the mode

P> = P which accounts for about 4°/o of all meson annihilation

Rates for two—body annihilations of antiprotons

at rest.

C. Baltay et.al, Phys.Rev.Lett. 15,532(1966)

(1.4 = 0.2) x 10

Channel Rate

+ - -3
T (3.2) £ 0.3) % 10
Kx™ (1.1 = 0.1) X 1073
KYx" jata 0.33 + 0.023

0.,0 0,,0 + 1.1 -5
KJK] & KoKO (0.88 1 ;) x 10
K X5 (0.61 £ 0.09) x 10™°>
at pT (2.9 % 0.4) x 10~2

o 0 2
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~continued -

Channel Rate

p°n° (242 # 1.7) x 107>
p°w® (7.0 £ 3.0) x 1072
p°p° (3.8 + 3,0) x 107>
x°x°* (1.2 & 0,2) x 107>
K™ (0.92 # 0.16) x 107>
kg™ (1.3 £ 0,5) x 1072
x*go* (2.9 % 0.5) x 10™3

What about irregular couplings? In general, the number
of irregular couplings is very large for scattering as there are
a great number of ways of inserting momenta. But in the
special case of annihilation at rest the number of non-vanishing
irreducible four-point functions is greatly reduced, Thisn is
because there are oanly twe indej.endent momentz : and ¢ to be
inserted and also the further '"rést condition'" that no direct
suwazativn over Laryon indices is alloweds 7o insert p and ¢
in all possible ways. VWhenever we have p acting on either ¥
or ¥, the vertex is reducible because of the, Bargmann-~Tirner
equations, Similarly, we see that we cannct insert either o

oT q between the @ts or between a @ and ¥ or ¥,



Finally, we are left with the following vertices

£, ¥ (@), P T (e 2.5e)) 8 (gy)

G

. {2 a8, (a,)£8," (0,18 (a,) }

fpp Yoo=p) (4), 20T one)

£ Y20 () ,” Tpplp) 95%(ay) o (ay)

BC D E ¥ G - H
£3 P00 (), 2" v e 2 (a)) (40,8 0 (g,

£, Y9000 ()P @)F 2o (p) 85 (a,) (4),7 8. (ay) . (5.16)

where the f's are invariant functions of p and q,.

Before we cvaluate any of these expressions we have to
test which of these are charge conjugation invariant as we
assume the invariance of strong interactions under C, For this
we use the generalised C-matrix constructed in the first section
of this chapter. We have to symmetrize and anti-symmetrize the
Bose and Fermi operators, respectively, Consider the general

func tion

= ABC D D zhB

" [:Qés(ql) @CF(qz) :}. F(s,u)

where 8 and u are the usual Mandelstam invariants. The

symmetrization of the Bose operators M is implied.
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Under charge conjugation the first term transforms to

~1,4AY, —~1.,3B!', _.-1,CC!t D tEEY

(g (q,) ¢ (T8 (q,) Cp
=+ Tamigtpy) (D" P EFop,) @EI?'(QJ.)@?IC'(Qz)

= + Ypal-p;) “’“DA ‘TPEF"PZ‘) ‘I’EB(%) ch(qz)

using (5.5). Doing this to the other temm as well we find

that the amplitude
C D E B
Y05, ) (d),Pyppe(p,) 85(a)) 8.7 (ay) Fls,u)

transforms to

- ¥C(ap,) () Hp(-p,) 857 (a,) 87 (ay) Fis,u)

where now proper statistical symmetrization is implied. To
get back to the original amplitude we have to perform the

replacement

Pl - ) ) qi - 9

(These must be chosen in such a manner that the equation
represent ing conservation of momentum, P{"Py = 9~y is left

invariant), This replacement gives us
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- ¥2C00) (d),° Hopp(,) 8.5(a)) 8T (a))F(u,s).

Therefore the amplitude could be made C-invariant if we could

find a form factor such that

Fls,u) = = F(u,s).
This is possible in general scattering cases but for the
special case of pp annihilation at rest into mesons no such
form factor can be found.25 Therefore, the corresponding
amplitude for pp annihilations at rest is C-violating.

We find that the only C~conserving amplitude is
3/BC D E G F
g (=2) (d) " (d) 5 e (2) (87 (q, )2, (ay)

+ @GF(ql) @CG(qZ) } (5.17)

The &% part is the igéD in the reduction of 143 x 143 .
Winternitsz, Makarov26 et. 21. have considered the same process
but have used a2 generalized Pauli principle i.e. the total
amplitude must be symmetrical with respect to the interchange of
the t wo meson functions (including the unitary parts). It follows
that all amplitudes, antisymmetrical with respect to the meson
interchange, must be multiplied by antisymmetrical functions of
the kinematical invariants, s, t and u. They consider these

coefficients as functions of s and ¥=t -u. Under meson inter-

change, they have for the antisymmetric coefficients
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I

f(s,w) -f (s,-v)

f(s,0) 0.

However, at rest wV=t-u = 2p.q = 0 and all antisymmetric
amplitudes vanish, This however gives them the additional

invariant
\BC D E ¥ G. H
£(s,v) ¥(=0) (), (d)p T (P) (25" (9, ) () 0, (ay)
P G H
- @C (qz) (d)H @G (ql))
which we exclude because of C invariance.

We now proceed to evaluate the remaining amplitude. Ve

censider the baryon part first.

YEC () ()2 (A" e (P)
PaT, By & £ e u
= ¥ (-p) S 5d) 2 62w (p)
P Do p 4 B "a tu§,68%
FIT 0. W v ()
- ? « P pqi,&éh

+ & N + &

pqt _[oBly,r = aqrt _[Byla,p =~ =pt _[Ya]ﬁ,q>
PO . . & .

|
Rl

u u u
("“pqu“‘welx,s * Sqsu N[en16,p * ®spu N[Nle,q )

x () (d)°
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(7e drop the momentum arguments of N and N for convenience).

-

]

< _[aﬂ173r t _[aﬁ]Yvr u
2N

2 t N[d‘s]')\,s - N uN[s')\]ﬁ,s

w

_[oBly,r u _[Ar]a,r u
- N u N[NSle, s - Ny N[d‘s]?\,s

r _[Byla,p u _[By]a,p r
4 N N N N
s u [eN]d,p s [en]d,p

qrt _[Byle,p u rpt _[valB,q u

+ £ Sspu N t N[%&]S,q + & quu N

[yal8,r u _[valB,q
i

_[Ya]ﬁlq r > 6‘ >3
-~ N s N[%&]S,q X (d)a (d) ﬁ

Using the following products of &'s

Spqts =
pqu u

pqt _ qa ot q ot
€ Sprs - &r—(ys - d‘s §r *

and the fact that Ng = 0 since SU(3) octet.

consicder the two terms

t N[ék]&,P

u

- r
w Ngen,s * 9 N v Y[nfle,q

(5.18)

Next



qrt _Byla,p  [Brla,p u 70,
(s 85pu N & N ¢ N[%§]s,q

£ ~[vals, u ) §, e
+_arP e N ZIN[S'?\](S‘,P (d)OC (‘i)ﬁ

gsu
[Byla,p
_ _qrt = ’ 4 e u
= € €spu § t (d)a (d)ﬁ J[%€]8’0
_Ivals.» a )
o F (g 5" Nane, g

since p,q are dummy indices and can be relabelled.

_[’A@Y]a:P
R (d

289t ¢
spu

) €
= o (Dg" Nngl,q

because the position of a, 8 and &, & can be changed

simultaneously.

§ e | _[Brla,r u _LBy]la,p

= Z(d)a (d)ﬁ N u N{%J]S,s - N u
© _[Byla,p T }

u or - i
N[%&]a,p 63 + N s N[%&]a,p (5.19)
using

g9t =& YT st - 5T g5t
spu 8 P u u P

g er ot oT t
- JP (&S Ju §u 65)

T ot Tr ot
+ &uq(é‘s cs‘p - é‘p cs‘s) .



Substituting (5.19) in (5.18) we get

;I-'qu’aﬁ'{(d)a&(qj)ﬁs \I'pqs’d‘e')\

{ _LaBly,r t _loBly,r u
2N t N[d‘e]?x,s - N u N[e?x]d‘,s

[eB]y,r u _[By]a,r u
u ¥[Nle,s ~ N e N[6eIN, s

r _[Bylo,p u _[By]a,p T
N uNend,p =~ ¥ s N[ enld,p

_[By]a, T u _[Byla,p r
2N aw ¥[nfle,s + 2N s N[N8le,p

71,
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[Bylap " [By]a,p " }
+ 05 o Menjg,o % ¥ u N[néle,p
x (d)° (4)5° (5.20)

using symmetry propertics of N[aﬂ] Y'etc.
Now we calculate the ¢ part.
G F F G
8c (ql) 3. (q;) + B (ql) 3 (q,)
K

. . : .
= {(dlﬁ“)Y5¢;(q1) +<qlﬁu>ﬁuq;<q1)}Y (h) _

t

. : . N
% {(¢2+u)v5¢g(q2) + (q12+u)7.1,¢1’,(q2)},C (TJ)tS

. A c .
+ ;—12- {(012+/J)‘Y5 ¢g(q2) + (dy+)y, ¢_3 (q,) } (TJ)rt
Y

A
K

8

i
(1),

X

() 75 8ta) + (s, itay) |

S

To simplify, for the PI contribution,

(d,#)vg (domtdyg = + (d;+w) (dy )

(A+ % + Uu) (fp - % - 1) using (4.13) and (4.14)

i

2 ]
2
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2 2 .
. N 2 2
= 2(m2~ﬂ2} - ud + 4 as ~gz =4+ 41 =mp

d($-1) effectively as 2(m21u2) gives no
contribution.

il

Similarly

(q,+4) Y5 (eil+u)Y5 = (d,+4) (dl —)

= d (& -3) effectively.

So for PP contribution we get

Lod (p-)gi(a) ¢ (g [Tird - pipt)
;? 5" 5 2

ijk

"

L ()" ohta,) 0f (a,) i

k. s
p (T )r (5.21)

For VP, we make life easier by picking the Pseudoscalar
particle to have momentum 9y and the vector particle momentum

d,+ For this case we get

~3 {(d1ﬁ“)Y§(4zﬁ“) Yy } o (q,) #3(a)at Ei gt i) &
U

v =5 {(dzﬁu)Yv(élﬁU)Y5 } 03(ay) diCa) 3 (@M 5eIT)r
U

= L‘£i3 {(dth)Ys(dz )y, b (), (dy )y } gttt
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7
+ zii {(d1+M)Y5(d2ﬁM) Yy = (dywt)y, (d, i)y } ifijkfk:]

X ¢§(q1) Gg(qz)

Nrs
- ;ﬁ§ [z R,S} at¥pt . [p,s] 1gdiirR :lY’r d5"(a,) 65(a,)

(5.22)

where R

S = (dy) ¥,

For VV we get
N, s
1 [ip,s} aiipk , [p,g] 1ebilgk ! 6% (a) d(an)
'2"‘2 ’ + : i (TARST AR )
L o T
(5.23)
where P = (41+U) Yp

8

Now we need to combine (5.20) with (5.21) for PP, with (5.22)

for VP and with (5.23) for VV.

(2a) Annihilation into two pseudoscalars,

Since we have found an F~combination of the mesons the
k-index in (5.21) cannot be zero and hence the §Sr terms

in (5.,20) vanish., %We need to evaluate the products
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i N 5 _[By]a A
N[aﬁ]Y [d(¢ﬁu)]Y N[&e]% (d)a (d)ﬂe s N [ﬁ(ﬁ"ﬂﬂ? N[)&]E

() (d)°

ﬁ[ﬁY]a [q(ﬁﬂu)]%x N[ék]g-(d)ﬁe(d)gi

and

_[5‘Y’]o¢ N
We evaluate N o [d(ﬁﬂu)]Y N[h&} g 28 an example.

By]a >
B (-p) (A1 ) B (e) () (d)g

= =3 F(-p) 4 (Bm)ysC (F)" & Clyg(-pem) d N(p)
m

dropping indices

= - —% N d(p+m) ($-t)d (~p+m)dN

m
using CruTC = - Yp
o= =2 qz(mr#) Ndll. Here and subsequently we evaluate

these products by commuting so that p is made to act on N

and N and noting that p.q = 0.

= [aBly
N (p) (401 N (e) (4 ()0

= sqz(mﬁu) N
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KGR ), () ) g

= 8q2(m—u) N1

So finally putting in SU(3) parts as well the PP contribution

reduces to

2
a (mpt) PR S X 1 S | j
- (NgN) ™ 1£7°7¢ .7 (q) d57(q,) (5.24)
U
where
= h o s u = u T, .k, s
(fn) .~ = BT °w - ® %N T,

There are two states of the proton~-antiproton system at

rest, 381 and 150 » The parity and charge parity of these

states are

P Cc

s <~ +
o

3Sl - -

Thus the triplet and singlet states are definite charge
parity states., Accoxrding to Gell—Mann27 every octet that

goes into itself under charge conjugation has a characteristic
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number ¢ = % 1, which is the charge~conjugation quantum
number C of its 1,3,4, 6 and 8 components; The charge -
conjugation quantum number C of the 2,5 and 7 components is
—c+ The pseudoscalar and vector octcts are just such self
conjugate objects. The above rule states that the charge-
conjugation properties of any seli-conjugate octet are

determined by the charge—conjugation quantum number of the

I3=O, Y=0 member of the octet. The normal convention is
CI'ITO > = % I'ZTO >
and cle®> = - [p°>.

This means, then, that

cl x*> = + K>
CI 77% > = 4 "IT(:;):>
clg® > = + |[E° (5.25)

and

clg’*> = - K™

cled > = - |p &>

clx™® > = - |F> . (5.26)
These phases of charge~conjugation are consistent with the
definition (5.6) of the charge-conjugation »f the 143

reprcsentation of U(6,6),
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Now gince the initial state in the process under

consideration is an eigenstate of C, the final state will
also be an eigenstate. For the initial 1SO state the total
angul ar momentum is zero. Hence the two pseudoscalars in
the final state have to be in an S state. Hence the parity
is + of this state and therefore parity conservation does
not allow 1SO decays into two pseudoscalars. For the 381
state the total angular momentum is 1 and the final state is
then in a P state and the parity is - « Consider the Tl

system in the final state.
Clwta™ > = Tt >
and to get back to original state interchange ar giving

(-1t > = - |rtrT > (st = 1)

The (-—1)6 factor arises from space reflection. Hence the
C-parity of the final state is negative and this matches up
with the C~parity of 381 initial state. ©So this process can
proceed.

Considering just the SU(3) parts of the final state we
can construct eigenstates of C easily. For two pseudoscalars
Sefe

cletr 2w at>= 2 ot a0 > (5.27)

where the = correspond to D and F octet couplings respectively.
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(Since the meson-meson coupling is 143, the only SU(3)
couplings are octet and singlet). Thus, we sce that for
conservation of C-parity we need an F coupling of the two
mesons. This is exactly what we have for this process by
using inhomogencous U(6,6) (5.24). e also note incidentally
that the C-parity of Edp is -, where » represents the spinor
for the proton. The numerical result s from this amplitude
are presented later along with the results for VF and VV
modes.,

For VP the eigenstates of C are as follows, using K,K%

as examples,
K - - - 3%
™« x K> = % |K'K T KK > cte.  (5.28)

using (5.25) and (5.26), Since there are only octet and
singlet couplings we just pick out the different C-parity
statcs by looking for D and F couplings.

For VV the eigenstates of C are given by

™ 2 KRS = 2T L TS (5.29)

using (5.26).

b) Evaluation of amplitude for annihilation into a vector and
a pseudoscalar meson.

The amplitude for this is given by (5.22). Using (5.28)
we see that the lek ijk

1

term is for 3S and the £ term is for

1

N modes respectively. We have to combine the expressions
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(5.22) and (5.20) to cvaluate the trace. The Lorentz traces
here arc nastier than those arising in the PP case. We give
the results of these calculations only, as their evaluation

is only a matter of some lengthy algcbra,

_[aB]

= 8q%(u-m) (F dvgy, N - Ny vg 4 1)

_[Byla
i (¢)a&(q)ﬂ8 N[%J}S{R,s};”

= sq®(uem) { Ndvgy,M - Tiv,vg d N

Y er)
~LPY 1a
R (D) (" N ongs (RiS1

= 0
of ]y
(4o (d) 5% Mgy [RsS1)

= 8 qz(m—ﬂ) (qu+2.pu) ﬁYsN

_LBy]a
B () ()% Mgl [Re81,

2 -
= + 4q () (q“+2,pu) Ny N
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_IByla
N (Qi)ad‘(é)ﬁa N[S?\]é‘ {R,S]Y?\ - O.

Collecting all this together and including the SU(3) parts

we find that the full VP amplitude is

1 2 - k Tk
== -m) (N N - Ny, ¥ .dN) - (TcT")
we (pmm [{ 57y K 5% 3psor

T (N ¢ Y5Y, N - N YMYSqiN)}dijk

k

(q#+2pu) (I\'IYSN)

N LTI I
if (q (g
3D+ 2F 5 07T T2

(5.30)

(C) Evaluation of matrix element for annihilation into
two vector particles

We get the following

_[aB]
N g[ge]x(ﬁ)aa(d)ﬁe {P,S}%h

= ~81q2(u—m) ﬁic[w, 4} N

_[By]a

R Nypgp (4, (4)5° (P81
= -4i qz(#~m) ﬁi?ﬁv'd; N

_[Br]a

R Ngge (g (d),° (P81

= 0



and [of]
_LaB)y
B Ngep(dg (457,510

= q2{-16i(p-m)>

Ty N+ 16 (-m) %uvﬁﬁN
- 4i N (¢ apqu}
_[Brla
R Npgle (g C(d), °(p,s1)

. e o2 -
=~ §{ 2ig N qavN + 8¢g (M—m)gﬂv NeN

£ 8 (pem)? T o4 NI

_[By]a
R N (g (d)° (P8l

= 16 (m) [ % (pyay, = Pyuqyl + Q9,1 NN

Finally the full VV amplitude is

1 k

2 —
= - 4iq” (4-m) <(N§0‘ » 4 §N)
24u° { HY

3D+ 2F

(TrT)Tr (B {o, ,q}N)> alik

+ ( 321 (m=pt) (m+u) m(NTlN) - M(NUpVN)k

3D+2F

D4+2F

}
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+

2 2 ‘ . = k
32 (m"-u”) Cu—m)guv(ﬂdN)g+2F - 81(m—u){@(N¢Upqu)3D+2F

= 3 }
+H(N 4 0, d Ny Hn

16 (m—) I_f_f, Py, =~ Py 9y) + a,9,] (TgnT™)

(TeT™) {16(m=i)f & ITr (R
+ (Tr 16(m=tt){ = (p,q, = pya,) + q,q, ITr(N¢GN)

v (321 (m2u®)2(F o pN) + 32 (mz—ﬂz)(ﬂ—m)guv(ﬁviN)

. 8i(u—m)2(ﬁeio'w<4N) }:D g1 3% } ¢;(°~1) #)(a,) (5.32)

This last expression is very complicated so subsequently
we never evaluate it explicitly, We only derive sum rules
3

for the Sl VV modes.,

(a)

Having now calculated all the relevant amplitudes we
give the numerical resgults 28 achieved from (5.24), (5.,30) and
(5.32)., We denote by A(ab) the amplitude for annihilation tc
particles a and b.

For 331 annihilation into two pseudoscalar mesons we

cbhbtain

A7) ¢ AEYETY : (AKPRC) = 1:2:1 .

The cross-scction relation, if we neglect K7 mass dif ference
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is

(77 ) 1o (KK 10 (KORC) = 1:4:1

If these irreguler amplitudes are computed with K7 mass
differences introduced in external mass factors, o(7wW) is
tremendously enhanced over 0(KK)., Experimentally (sce

Table 1)
oot ) i (KT ) 10 (K°R°) = 3:1: .55

So, even where there is no mass difficulty i.e. the ratios
for KX~ anda X°E° are in disagrcement with experiment,

1

Na SO mode exists for two pseudoscalars and hence in

particular
AMX°x%) = ar®a®) = o,

For 381 mode into a vector and a pscudoscalar we
obtain :

A(¢Wp) = Alpn) = A(wxo) = 0
where ¢ is the physical particle
and .
% (q): 5K ons *0 =0
A{p ) sA(wr) :A(wn) :Alpn) :A(pX) :A(wx) tA(K KWA(K )
= 3 : 5 ¢ N3 : 5/V3:10/46: NG 2 4 : -1 .

For the 180 mode

AMETT Y iAME KT ¢ AMKTORC) = Bi4:-t
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3
For the S1 two voctor meson mode

Alow) = Alpp) = Alee) = Alww) = 0
and

ApToT) = A(KTTET) - A(KFOR*O)

(Actually, a ratio of cross-—sections could be calculated

apart from this sum rule but the calculation is too tedious).

For the 1So mode

APTETY s AT A (K ORF ) s A (aw) 4 (wp)

= 3 4 : -1 : 6 : 5

We have already compared the two pseudoscalar predictions
with experiment and have found them to be bad. The most
striking feature of the rest of the predictions is the non
appearance of any ¢!'s in the annihilation process., This
prediction is of course contingent on the particular identifi-
cation of the physical ¢ as defined by equation (4.11). The
comparison of the rest of the nredictions with experimental
data is very difficult to deal with, This is because of the
problem of handling the rather disparate masses of the
different mesons. The calculation upto now has been performed
with all the mesons having equal mass and this is consistent
with the group theoretical basis which we have used. We are
forced to give them the same mass if we arc to use the

Birgmann-"Tigner equations, that is if we specify the baryons
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and mesone to be s~state bound states of quarks and anti-
quarks. This construction as mentioned before uniquely
gives us the parity of the particles if we assume that the
parity of the quark is positive. We could as a working rule
use equal mean masses for the amplitude calculated group
theoretically, but use physical messes in the other, kinematical,
factors which arise when calculating the cross—~sections.,

However, there are two particular cases where these mass
difficulties would be by-passed and this happens when comparing

the ratios KT ~/K°R*C and K ¥ ~/x °F*°

ratio we get for both 381 and 1S0 a ratio of 16 for the

cross—-sections which is in great disagrcement with the

« For the first

experimental figures, as given in table 1, where in fact the
neutral mode is larger than the charged mode. Similarly,

we seem to indicate a larger cross-—section for KT as
compared to K%O§*O while table 1 shows to the contrary. We
could compare the other rates by squaring the matrix elements
and talking account of phase sPace26. This is, however,
unnecessary because we have found that in the easily comparable
cases the theory gives very bad predictions. This is therefore
a blow to SU(6)W and we could get out of this by saying

that this group is too restrictive, Instead of SU(6)W we

could try the collinear SU(3) @ SU(3) which bears the same
relation to SL(6,C) as does SU(6), to U(6,6). However, even

in this case, Buccella and Ga.tto29 have shovm that the really



87.

351 K * K /K" O%° still exists. This group

does give the relation

bad ratio for theo

A(3s1 7t 7 )+ A(351K°K°) = A(381K+K-)
instead of the ratio of these rates., This sum rule is
satisfied to within 20°/o. They then consider what they call
the 'minimum group! (SU(2) @ SU(2) g W(Géy) collinear. The
generators of the small collinear group obey the algebra
of the matrices %Ti(liaé) and %%802. (7 and v are the Pauli
matrices in the isospin and sgpin spaces). This group is a

subgroup of [SU(é)T ® SU(2) restriction of SU(6)_ due

X]w s B
to SU(3) breaking terms, Looked at in another way, this group
is obtained from SU(3) ® SU(3)c011 by restricting the internal
symmetry to that of isoteopic spin and hypercharge conservation,
They find that even in this case the bad vector-pseudoscalar

triplet mode is still present. So, even the smallest collinear

group is in contradiction with experiment.

{iv) Conclusibn

We have seen how a covariant theory of strong interactions
can be set up, incorporating internal symmetries. We went
beyond the Poincare group and insisted on the invariance of the
S-matrix under inhomogencous U(6,6), This meant the
introduction of 143 momenta which we then restricted to the
four physical momenta. Using these prescriptions we booked

for amplitudes where the number of irrcgular couplings would
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not be forbidding and found that the proton—~antiproton
annihilation at rest were suitable cases for treatment.
Eowever, the experimental results are in clear contradiction
with our predictions. The three point results, on the other
hand, are quite encouraging. The first and simple Johnson-
Treiman30 relations are fairly well satisfied while the
extended John50n~Treiman31 relations have been shown by
Jackson32 to be in violent disagreement with experiment.

All this suggests that maybe one should only use higher
symmetries to classify particles and apply them only to threce
point vertices, The scattering problems should be done
dynamically using the symmetric vertices and the propagators
for the intermediate particles.

The trouble with proton-antiproton annihilation at rest
is that we have completely neglected the effects of unitarity.
Apart from all the competing open two meson channelg, therec
are other open channels like 3 meson modes and also the effect
of the closed baryon-antibaryon channel cannot be ignored
as pointed out by Fraser33. He has shown that these do have
a large effect on the two meson channels, but numerical results

are hard to obtain because of lack of data in other channels,
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APPENDIX A

Good things to know in SU(3).

We use T = ¥ N', with the A' defined by Gell—Mannz.

Ao 0 1 01}, %2 = [0 ~-i 0
1 0 © i 0 0
\0 0 ¢ 0 0 0
A =/1 0 o \
0 -1 O
0O 0 O
?\4 = c 0 1 ?\5 = 4] 0 -1

0 0 0

0 0 -i

/ 0 i 0

/ i
=L J1 o0 o

N3

0 1 0
0 0 -2

7\0

it
Wl
—t



-4 . - » - 3 --1
(rh,r3] = 1 gbiRp, gpi oy o glIpR
s s - . . / -
Tr (Tt TJ) - % siid , fOJL = o0, giix _ % gk
ijk X . .
£ are real and totally antisymmetric
dijk " " " " symme tric.
f123 = 1
4
f3 5 _ f367 - 1
4 :
(458 _ 678 _ 5{-2-
4 5 4
(4T 156 _ o246 _ (257 _ 4
d118 - d228 _ d338 - 1
N3
44
344 _ d355 _ —d366 - d377 = 1
d448 _ d558 - d668 - d778 - 1
23
,888 1
a = - ==
N3
The meson and baryon matrices are
3 . .48 ) 4 .. 5
& - v ¢ gr - i¢ ¢: -id
LA R (%, % L s 5
N2 b N2 N6 N2 N2
o
o e | (gl @ o]
V2 e - Thtie T
) ; ~an N2 2 6 2
X X o
4 . x5 6, .47 8
[6 g5 + 107 Ogr i0, 20,
N2 W2 N6

90.
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=2 Tt Ug (where the subscript 5 denotcs

pseudoscalar field)

x° is the SU(3) pscudoscalar singlet.

The matrix for vector mesons is similaxe. Replace
i
T—>p 3, K=2X ,7 > qs X - Gg and instead of pseudoscalar

fields have vector ficlds,.

The %+ baryon mtrix is
o}
., A st P
N2 N6
o
= =2 + A n
N2 N6
20
w A R
N6

Commutation relations for U(6,6) generatorsg. From the

fundamental representation F; E I‘rT1 we get the following

comnutators.

[p,pd] = sgiikgh
[Fl,Fg] _ ifiJszk
. . . . ‘!-
[F},r)] = ~i gt IkEE
i sl Xk
[e',5),] = ix Tiv
i j - 1 . ijk k
[FS’F/.Lv] = 3 1778 0 Fia

ijk

i j s _ d
[FineTupd = 13777 (g ey Fey B T



L] L] hd - 1 "’ ﬂ"
[Fy.F)] = 1695 F* - 10’
(ri,rd ] = iaiify ¥4 ggti%e pH
r*y5 Buv s T 2 UVKN 1IN !
s 31 - 1 1o
[FhgiFs] = -igt g 7 - 1alF E
[Fi Fj] = lflJ‘ka
' Ep P
i _ ijkk
[F Fﬂs] = if r‘;w
.. R
[F5.F] = ia™%F,,
i ik Xk
[Fs,EM] = id Fﬂ
i L . Lijk I _ ijk &k
[F%'pr] = id (BMFIU g?\vr/.l,) T8 ks
i j ,1ijk S . -1jk -k
[F?\S'r,uv] = 1d (gmﬁﬁs g?\VF/ﬁs) + 1T Sk k
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