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Abstract. I present a brief overview of the Dyson-Schwinger approach and its application to
hadron properties. Recent results for baryon and tetraquark masses as well as nucleon and ∆
elastic and transition form factors are discussed.

1. Introduction
Probing hadrons with external currents reveals their basic structure properties and provides
a connection with the underlying quark and gluon dynamics in Quantum Chromodynamics
(QCD). Precision electron scattering and electroproduction measurements at JLab and other
facilities have provided groundbreaking insight in the nucleon’s structure via elastic and
transition form factors, polarizabilities and generalized parton distributions [1, 2]. They have
stimulated the development of tools to address questions related to quark orbital angular-
momentum correlations, the transition between perturbative and non-perturbative regions, or
pion-cloud rescattering effects in the chiral and low-momentum region. Future measurements
at PANDA/FAIR via pp̄ collisions will be instrumental in extending these studies towards a
comprehensive understanding of hadron spectroscopy and hadron structure.

A promising tool for studying hadron phenomenology is the Dyson-Schwinger approach. The
properties of QCD and hadrons are encoded in QCD’s Green functions which can be determined
from QCD’s quantum integral equations of motion, the Dyson-Schwinger equations (DSEs) [3–5].
In combination with covariant bound-state equations (Bethe-Salpeter and Faddeev equations),
they constitute an ab-initio framework for computing hadron properties. The approach is
Poincaré-covariant throughout every step and provides access to all momentum scales and all
quark masses without the need for extrapolations. Since one operates directly with QCD’s
degrees of freedom, observable phenomena at the hadron level can be systematically traced back
to their microscopic origin in terms of convolutions of Green functions.

Of course, the approach comes with its own limitations: Green functions depend on the gauge,
and the existence of infinitely many of them makes a truncation of the system unavoidable. This
has consequences for the calculated observables: for example, at the present level of feasibility
in the baryon sector, pseudoscalar-meson cloud effects and dynamical decay widths in the low
quark-mass region are not yet implemented. That shortcoming can also serve as an advantage
as it allows insight into the ’quark core’ of a baryon. It will be imperative for future studies to
introduce such effects, either from a phenomenological perspective or directly at the quark-gluon
level.
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Figure 1. Covariant three-body equation for a baryon’s bound-state amplitude, Eq. (1).

2. Covariant bound-state equations
The nonperturbative substructure of hadrons can be resolved through the combination of DSEs
and bound-state equations. For baryons, the essential relations are derived from the properties
of the quark six-point function G. Baryons correspond to poles in G, and a baryon’s bound-state
amplitude Ψ satisfies a self-consistent integral equation which is illustrated in Fig. 1:

Ψ = KG0Ψ , with G0 = S ⊗ S ⊗ S and K = K(3) +
[
S−1 ⊗K(2)

]
perm

. (1)

The subscript ’perm’ here and in the equations below indicates three permutations with respect
to the quark lines. The equation can be solved once the dressed quark propagator S and the
two- and three-quark irreducible kernels K(2) and K(3), which encode the interactions at the
quark-gluon level, are determined. This is also the point where a truncation becomes necessary.
Omitting the term K(3) yields the covariant Faddeev equation that traces the binding of three
quarks in a baryon to its quark-quark correlations. The simplest ansatz for K(2) is the rainbow-
ladder kernel; it connects two quarks through a dressed gluon propagator and tree-level quark-
gluon vertices. The dressed quark propagator S is then obtained as solution of the quark DSE
in the same truncation, and its implementation in the Faddeev equation yields, by iteration, all
dressed-gluon ladder exchanges between quark pairs.

The coupling of the baryon to external qq̄ currents is encoded in the current matrix element
Jµ and the scattering amplitude Jµν . They are given by [6]

Jµ = Ψf G0Λ
µG0Ψi , Jµν = Ψf G0

[
Λ{µGΛν} −Λµν

]
G0Ψi , (2)

where Ψi and Ψf correspond to the incoming and outgoing baryons and

Λµ =
[
Γµ ⊗ S−1 ⊗ S−1 − Γµ ⊗K(2)

]
perm

,

Λµν =
[
Γµν ⊗ S−1 ⊗ S−1 + Γ{µ ⊗ Γν} ⊗ S−1 − Γµν ⊗K(2)

]
perm

.
(3)

In addition to S and K(2), these equations contain the quark-antiquark vertices Γµ and Γµν

with one or two external current legs. Their self-consistent calculation from inhomogeneous
Bethe-Salpeter equations generates meson poles in the respective JPC channels which dictate
the timelike structure of form factors and reproduce features that are familiar from vector-meson
dominance models. We have already assumed a rainbow-ladder truncation in Eq. (3); in the
general case additional terms would appear in Λµ and Λµν . The rainbow-ladder truncation
ensures that all ingredients, if calculated consistently, satisfy vector and axialvector Ward-
Takahashi identities. Electromagnetic gauge invariance is therefore respected at the hadron
level, and the Gell-Mann-Oakes-Renner relation for the pion mass and the Goldberger-Treiman
relation between the axial and pion-nucleon coupling follow automatically.

Solving Eq. (1) yields a baryon’s mass, and from Eq. (2) one can extract baryon elastic
and transition form factors as well as, in principle, the nucleon’s Compton scattering or pion
electroproduction amplitude. The relations for mesons are simpler but obtained along the same
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lines. Even in rainbow-ladder, solving these equations is complicated by their nature as multi-
loop integrals and the fact that their ingredients exhibit a rich momentum, Dirac-Lorentz and
color-flavor structure. Nevertheless, once the kernel K(2) is specified, it permits a self-consistent
calculation of a wide range of hadron observables without further approximations. Virtually all
pseudoscalar-meson, vector-meson, nucleon and ∆-baryon properties calculated so far exhibit
only a small sensitivity to the momentum dependence of the quark-gluon coupling in K(2). In
that way, these results effectively depend only on a single input scale.

3. Hadron spectroscopy
Considerable progress has been recently made with the covariant Faddeev equation for ground-
state baryons. With a rainbow-ladder interaction K(2) that is fixed only to the experimental
pion decay constant, the Faddeev equation yields nucleon and ∆ masses of MN = 0.94 GeV and
M∆ = 1.26 GeV at the u/d-quark mass, and their current-mass evolution agrees well with lattice
data [7–9]. These results complement a range of meson observables that are also well described
within a rainbow-ladder truncation, see [10] for a review. Attempts to go beyond rainbow-ladder
are underway but so far they have been limited to the meson sector. It is interesting that both N
and ∆ have a pronounced quark-diquark structure: under the assumption of diquark dominance,
the Faddeev equation can be simplified to a quark-diquark two-body equation that implements
scalar and axialvector diquarks [11]. The corresponding results in the rainbow-ladder setup
agree within 5− 10% with those from the three-body equation [7].

So far there have been only few studies of meson and baryon excitations in the Dyson-
Schwinger approach [12–14]. The open questions in this respect concern the internal structure
of baryon resonances, the origin of the observed level ordering, and the connection between the
dynamical generation of resonances at the hadron level, where a single ’core’ state can generate
multiple resonances via meson-baryon interactions [15], versus the generation of these resonances
within QCD itself. Results from a simple quark-diquark model suggest that the observed mass
ordering of positive- and negative-parity nucleon excitations and the nature of the N(1440)
Roper resonance might be caused by diquark clustering in baryons [14]. This has long been
suspected as the origin of missing nucleon resonances; nevertheless, such features have not been
seen in recent lattice calculations [16].

The idea of diquark clustering has also been the guiding assumption for a recent tetraquark
study in the rainbow-ladder truncation [17]. The calculation yields a light scalar four-quark state
with a mass of ∼ 400 MeV that is predominantly a pion-pion molecule with diquark-antidiquark
admixture. It suggests an identification with the elusive σ/f0(500) and thereby provides further
support for the identification of the light scalar-meson nonet in terms of tetraquarks.

4. Form factors
Extending these studies to baryon form factors, the rainbow-ladder setup of Eqs. (1–3) has
been applied to a number of processes over the past years: nucleon electromagnetic [8], axial
and pseudoscalar form factors [18] and ∆ electromagnetic form factors [19] in the three-body
approach, and N and ∆ electromagnetic [20, 21], N → ∆γ [22] and N → ∆π [23] transition
form factors in the quark-diquark simplification. These works build upon earlier quark-diquark
studies with modeled ingredients [11,24]. The calculations were performed in the low– to mid–Q2

region up to a few GeV2 and in a current-mass range roughly up to the strange-quark mass.
Without going into details, I will exemplify a few common observations that pertain to all

these studies. The overall agreement with experimental data, and also with lattice results at
larger quark masses, is generally quite good. Deviations are visible in the low-momentum and
small quark-mass region; they are attributable to missing pion-cloud corrections which are not
implemented at the present stage. A typical example is the N → ∆γ magnetic dipole transition
form factor G∗

M (Q2) in Fig. 2 which is comparable to quark model results and to the EBAC
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Figure 2. Left panel: Q2−dependence of the N → ∆γ magnetic dipole transition form factor
G⋆

M (Q2) compared to experiment [22]. Right panel: Quark-mass dependence of the nucleon’s
axial charge gA, compared to lattice results and a chiral expansion [18].

analysis if meson-baryon rescattering effects are switched off [25]. The nucleon ’quark core’ is also
visible for various charge radii, which underestimate the experimental values, or in the nucleon
axial coupling gA in Fig. 2. An intriguing example is the nucleon’s isoscalar anomalous magnetic
moment where leading-order chiral corrections cancel: there, the calculated value agrees quite
precisely with the experimental number κs = −0.12 [8].

Via Eq. (3), the form factors inherit the properties of the quark-antiquark vertices Γµ. The
bulk structure of electromagnetic form factors is determined by the Ball-Chiu vertex, which is
the minimal construction that satisfies electromagnetic gauge invariance and depends only on
the dressed quark propagator [26]. The second essential ingredient are timelike (π, ρ, a1) meson
poles in the t channel: they are selfconsistently generated in the vertices and important for the
timelike and low-momentum structure of the (pseudoscalar, vector, axialvector) form factors.
The properties of the quark core are mostly current-mass independent: expressed in terms of
dimensionless quantities, no significant change happens for any of the calculated form factors.
This means for example that, in the absence of chiral non-analyticities, the quark core of the
Ω(1672) baryon is essentially identical to that of the ∆(1232) [21].

Finally, the results underline the importance of quark orbital angular momentum in the
Q2−evolution of the form factors. Poincaré covariance entails the appearance of p waves in
the (s−wave dominated) N and ∆ bound-state amplitudes which are absent in non-relativistic
quark models. They are, for example, responsible for the small negative value of the N → ∆γ
quadrupole transition ratio REM (Q2) and the falloff of the electric proton form factor Gp

E(Q
2)

which points toward a possible zero crossing, cf. Fig. 3.

5. Conclusions and outlook
It is imperative to develop versatile theoretical tools to accompany the experimental efforts
that are currently made. Existing calculations of nucleon and ∆ elastic and transition form
factors in the Dyson-Schwinger approach have already offered interesting insights. These
studies must be complemented by technical improvements in the future, most importantly the
implementation of pion-cloud corrections and hadronic decay channels via truncations beyond
rainbow-ladder. Future investigations will also aim at more sophisticated systems and processes
such as baryon excitations, nucleon-to-resonance transition form factors, Compton scattering,
pion electroproduction, or timelike pp̄ annihilation processes.
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Figure 3. Left panel: Quark orbital angular-momentum decomposition of the N → ∆γ electric
quadrupole transition ratio REM (Q2) [22]. Right panel: Electric proton form factor Gp

E(Q
2),

normalized by the dipole and compared to experimental data [8].
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