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Zusammenfassung

Die Streuung von massiven, elektroschwachen Eichbosonen ist ein Schlüsselprozess bei
der Untersuchung der Elektroschwachen Symmetriebrechung. Vor allem die Streu-
ung von longitudinal polarisierten Bosonen ist sensitiv darauf wie die Elektroschwache
Symmetrie gebrochen ist, aber auch auf Erweiterungen des Standardmodells, da diese
Streuung die Unitarität verletzen würde, ohne dass zum Beispiel ein standardmodell-
ähnliches Higgsboson die Divergenzen aufhebt. Am Large Hadron Collider ist dieser
Prozess im Endzustand mit den Zerfallsprodukten von zwei massiven Eichbosonen und
zwei zusätzlichen Jets V V jj messbar.

Um die longitudinalen Polarisationszustände aus den leptonischen Endzuständen aus
einem W±Z Bosonenpaar zu extrahieren, werden verschiedene Methoden der Simula-
tion von Ereignissen mit bekannter Bosonenpolarisation in verschiedenen Phasenräumen
untersucht und validiert. Die Methode, den Prozess in die Produktion von Bosonen mit
bekannter Polarisation und deren Zerfall mittels der „Narrow-Width“-Näherung (sinn-
gemäß: Näherung der schmalen Breite) zu faktorisieren, wird gegenüber der verbrei-
teten Umgewichtungsmethode bevorzugt, da die Umgewichtungsmethode nach dem
Einführen von Auswahlkriterien zusätzliche methodische Probleme aufweist. In der
erstgenannten Methode wird die Produktion der Bosonen mit Whizard und Mad-
Graph5_aMC@NLO simuliert. Das Programm WZdecay wird entwickelt um den
Zerfall der Bosonen entsprechend deren Polarisation zu simulieren. Außerdem wird die
Anwendbarkeit der vorausgesetzten Näherungen getestet.

Die Sensitivität verschiedener Observablen auf die Polarisation der Bosonen wird im
W+Zjj Endzustand bei einer Schwerpunktsenergie von 13 TeV untersucht. Die höch-
sten Sensitivitäten auf den Polarisation des W+-Bosons wurden dabei bei der Pseu-
dorapidiät und dem transversalen Impuls des geladenen Leptons, das dem W+-Boson
zugeordnet wurde sowie der skalaren Summe dieses transversalen Impulses und dem
fehlenden transversalen Impuls beobachtet. Im Fall der Polarisation des Z-Bosons er-
wiesen sich der Cosinus des Zerfallswinkels und die skalare Summe der transversalen
Impulse der beiden zum Z zugeordneten Leptonen als am meisten sensitiv.
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Abstract

The scattering of massive electroweak gauge bosons is an essential process for the study
of the mechanism of electroweak symmetry breaking. Especially the scattering of lon-
gitudinally polarized bosons is sensitive to the way in which electroweak symmetry is
broken and extensions of the Standard Model, since it would violate unitarity without
e. g. a Standard Model Higgs boson canceling the divergences. At the Large Hadron
Collider this process is measureable in the final states with decay products of two mas-
sive gauge bosons and two additional jets V V jj.

To extract longitudinal polarization modes in leptonic final states originating from
aW±Z boson pair, different methods to obtain simulated events of known boson polar-
ization are studied and validated in different phase spaces. The approach of factorizing
the decay of the bosons and the production with defined helicity utilizing the narrow-
width approximation is favored over the commonly used reweighting procedure due to
methodical deficiencies after applying selection criteria. For the former the production
process of bosons is simulated using Whizard and MadGraph5_aMC@NLO. The
tool WZdecay is developed to simulate the leptonic decay according to the helicity of
the boson and the validity of the applied approximation is tested.

The sensitivity of different observables to the polarization of the bosons are studied
in the W+Zjj final state at a center-of-mass energy of 13 TeV. The highest sensitivity
of different to the polarization of the W+ boson is found in the pseudorapidity as well
as the transverse momentum of the charged lepton assigned to the W+ boson and the
scalar sum of this transverse momentum and the missing transverse momentum. For
the Z boson the cosine of its decay angle and the scalar sum of the transverse momenta
of the lepton pair assigned to the Z boson are most sensitive.
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Chapter 1

Introduction

Particle physics is the study of fundamental particles and their interactions. Some of its
most driving questions go back to ancient Greek philosophers. What are the building
blocks of matter? Are there fundamental particles?

However, it was only 120 years ago when mankind started finding answers to these
questions. In 1897 the electron was the first particle to be discovered [1] which is still
assumed to be fundamental. Since then many other particles have been discovered.
Most of them were found to be composite, for instance the proton, discovered in 1917
by Ernest Rutherford [2], or the neutron, discovered in 1932 [3]. However, some particles
are still assumed to be fundamental.

The theory describing all known particles is called the Standard Model of parti-
cle physics. The predictions of this theory are extremely accurate in describing the
behavior of the known particles, thus making it one of the greatest intellectual achieve-
ments of mankind. Nevertheless, this theory is known to be incomplete. Some of the
remaining problems the Standard Model cannot explain are dark matter, dark energy,
or the matter-antimatter asymmetry. Over the years theorists have developed different
theories that extend the Standard Model in an attempt to explain these deficiency.
However, despite extensive searches no experimental evidence for these predictions has
been found yet.

Historically many theories were confirmed by finding newly predicted particles. Most
of these particles were found in the outcome of scattering processes. In order to achieve
the necessary energies for the production of new particles, over the years many accel-
erators and detectors have been built. The most recent and most impressive being the
Large Hadron Collider at CERN. With its circumference of about 27 km it is the largest
machine ever built.

The observation of a boson compatible with the Standard Model Higgs boson in
collisions produced at the Large Hadron Collider in 2012 [4, 5] was the latest and one
of the most sought-after building blocks of the Standard Model. However, none of
the additional particles predicted for instance by Supersymmetry [6], a widely favored
theory beyond the Standard Model, was found.

Another way to find physics beyond the Standard Model is to precisely measure
the properties of known particles and their interactions. Deviations from the Standard
Model predictions indicate the effect of new physics. The data collected during the
second run of the Large Hadron Collider will also offer a great opportunity to observe
such deviations due to the previously unachieved center-of-mass energy of

√
s = 13 TeV.

In addition, the expected amount of data will reduce the statistical uncertainty for
these measurements and thus opens up the possibility to study previously unmeasured
processes.

The scattering of longitudinally polarized states of massive gauge bosons is one of
these processes of special interest. From a measurement of this process conclusions
about the gauge structure of the Standard Model and the mechanism through which
electroweak symmetry breaking proceeds can be deduced. For the first time the scat-
tering of massive gauge bosons was measured in 2014 by the ATLAS collaboration in

1



1 Introduction

the final state of two like-signW bosons accompanied by two jetsW±W±jj [7]. Due to
the two neutrinos in the leptonic final state a measurement of the polarization fractions
is, however, very challenging in this final state. The W±Zjj final state is much easier
to reconstruct and, consequently, the polarization fractions are better measurable.

This work aims to study and evaluate different tools necessary for a later study of
polarization in the W±Zjj final state. In Chapter 2, the Standard Model of particle
physics is introduced focusing on electroweak physics. In addition, polarization and
predictions for the different polarization states are introduced. Chapter 3 motivates
the importance of the scattering of massive gauge bosons and outlines the effects of the
different polarization states in this process. In Chapter 4, the Large Hadron Collider
and the ATLAS detector are reviewed. Different approaches to obtain simulated events
with known polarization of the bosons are described in Chapter 5. These methods
are then validated and compared in Chapter 6. In Chapter 7, a set of observables is
introduced and its sensitivity to the boson polarization are analyzed. In addition, an
outlook on the second run of the LHC is given in this chapter. Chapter 8 summarizes
the results obtained in this thesis.

2



Chapter 2

Theoretical Foundation

One aim of physics is to find a theory able to make predictions about the outcome of
processes. But this theory should not only explain which processes are realized. By
including plausible explanations it should outclass purely phenomenological theories.

In particle physics such a theory should therefore be able to predict which particles
exist and how they interact. The following chapter outlines this theory, examining some
parts of special interest for this thesis in more detail. A more detailed description can
be found in [8, 9].

2.1 Standard Model of particle physics

The Standard Model of particle physics (SM) is the most fundamental theory of particle
physics. It describes elementary particles and their interactions. It was developed over
the last few decades and expanded to incorporate previously unexpected measurements.
This resulted in a theory not only in good agreement with measurements. The SM was
also able to make predictions, many of which were confirmed. The presumably greatest
success was the discovery of a Higgs boson in 2012 [4, 5]. In the 1960’s theorists have
developed a model to solve one of the main problems of the SM at the time. A side
effect of this was the prediction of a new particle. This particle was found more than 40
years later. While maybe the most impressive, this prediction is only one out of many.
Due to these successes the SM is widely accepted.

The SM is a non-Abelian relativistic quantum field theory based on local gauge
symmetries. Three out of four of the fundamental forces can be described by the SM,
the electromagnetic, the weak, and the strong force. This means their equations of
motion can be derived from the full Lagrangian of the SM.

Local gauge symmetries imply invariance under certain transformations. For the
SM, the set of these transformations can be denoted by

U(1)Y ⊗ SU(2)L ⊗ SU(3)C . (2.1)

The invariance causes the conservation of the weak hypercharge YW , the electric charge
Q, the third component of the weak isospin T3, and the color charge according to
Noether’s theorem [10]. To ensure local gauge invariance of the Lagrangian additional
fields are introduced. These fields are interpreted as particles, the so called gauge bosons.

The remaining force is the gravitational force. It can be described by general rela-
tivity. Despite intensive studies for a long time currently no experimental evidence for
models which unify the gravitational force with the SM, has been found. The gravita-
tional force is very weak compared to the other three. Consequently, its influence at
the scales of particle physics is very small. Therefore it is possible to neglect it at the
energy scale studied in this thesis.

The SM distinguishes between two groups of elementary particles, fermions and

3



2 Theoretical Foundation

Generation Fermion Electric charge Mass
m in MeV

1st e− electron −1 0.511
νe electron-neutrino 0 < 2 · 10−6

u up 2/3 2.3+0.7
−0.5

d down −1/3 4.8+0.7
−0.3

2nd µ− muon −1 105.7
νµ muon-neutrino 0 < 2 · 10−6

c charm 2/3 1275± 25
s strange −1/3 95± 5

3rd τ− tau −1 1177
ντ tau-neutrino 0 < 2 · 10−6

t top 2/3 (1.735± 0.014) · 105

b bottom −1/3 (4.18± 0.03) · 103

Table 2.1: List of fermions in the Standard Model sorted by generations. Each
fermion has a corresponding anti-particle with opposite charges. Data from [11].

bosons.1 Fermions are particles with half-integer spin2 and follow the Fermi-Dirac
statistics. Fermions can be divided according to their color charge. Color neutral
Fermions are called leptons, quarks on the other hand have color charge. Also the
(electric) charges3 of leptons and quarks differ. While leptons carry integer electric
charges, charges of quarks are always multiples of 1/3. However, only groups of quarks
with integer charges are observable.

Six leptons and their corresponding anti-particles are currently known, divided into
three generations. Each generation contains one charged, one neutral lepton, called
neutrino, and the corresponding anti-particles. Particles of different generation differ
only in their masses. The charged leptons are called electron e−, muon µ−, and tau
τ− with their anti-particles, anti-electron, or positron, e+, anti-muon µ+, and anti-tau
τ+. The SM contains also six pairs of quarks and their anti-quarks, divided into three
generations. The different quark types, also referred to as flavors, are: up u, down d,
charm c, strange s, top t, and bottom b. Each of these has three representatives each
with a defined color charge (red, blue, green). Anti-quarks carry the corresponding
anti-colors. By construction, states carrying only a color and its anti-color and those
carrying a combination of all colors are color neutral. A list of all known fermions can
be found in Table 2.1.

Bosons have integer spin and obey Bose-Einstein statistics. In the SM they are the
mediators of the forces. The only exception of this is the Higgs boson, which is not
connected to a force but is introduced via the Higgs mechanism as the excitation of the
Higgs field. The SM-Higgs is the only fundamental particle with spin zero. The other
bosons are called gauge bosons due to their introduction to conserve gauge symmetry.
An alternative name is vector bosons, referring to their spin of one. In this thesis the
electroweak bosons W±, Z, and γ∗ are denoted with V . A list of all known bosons is
given in Table 2.2.

Charges describe how particles couple via an interaction. Neutral charges (0 or
color neutral) imply an inability to participate in the corresponding interactions. The
color charge corresponds to the strong interaction, mediated by gluons g. Gluons and
quarks are the only particles with a color, i. e. able to interact via the strong force. A
special property of this interaction called “confinement” leads to the fact, that single
quarks are not observable, but only color neutral groups of them. The theory describing

1While this classification is also valid for composite particles, if not noted otherwise only elementary
particles are considered in this thesis.

2In particle physics “natural units” are often used, demanding c = ~ = e = 1 with unit charge e.
This is also used throughout this thesis.

3The electric charge is often only referred to as charge.

4



2.1 Standard Model of particle physics

Boson Electric charge Spin Interaction Mass m
in GeV

γ photon 0 1 electromagnetic < 1 · 10−27

W± W bosons ±1 1 weak 80.385± 0.015
Z0 Z boson 0 1 weak 91.188± 0.002
g gluons 0 1 strong 0

H Higgs 0 0 125.09± 0.24

Table 2.2: List of bosons in the Standard Model. Data taken from [11] and [12].

confinement and the strong force in general is quantum chromodynamics (QCD) [13–16].
The electric charge is connected to the electromagnetic force with the photon γ as

gauge boson. This is described by quantum electrodynamics (QED). Additionally, there
is an extension of QED describing also the weak force. As electroweak gauge bosons
are described by this theory, it will be looked at in more detail in the following section.

2.1.1 Electroweak theory

The electroweak theory was introduced by Glashow, Salam, and Weinberg [17–19] in
the 1960s. It is a unified theory to describe the electromagnetic and weak force. A
key aspect of this theory is the violation of parity conservation whereas pure QED or
QCD processes obey parity conservation. In order to account for the violation, different
chiralities have to be treated separately. Therefor, projection operators are applied on
the fermion fields to obtain left- (L) or right-handed (R) fields, respectively

ψL/R =
1

2

(
1∓ γ5

2

)
ψ (2.2)

where ψ denotes the four-component Dirac fermion field and γ5 the Dirac matrix (see
Appendix A). These projections are chosen such that

ψL + ψR = ψ . (2.3)

To achieve parity violation the weak isospin Ta is introduced. Ta can be represented as
Ta := 1

2σa with the Pauli matrices σa (see Appendix A). |Ta| is 1
2 for left-handed fermion

fields. They can be represented as SU(2)L doublets in terms of the third component
of the weak isospin T3. However, right-handed fields have |Ta| = 0. Thus, they are
represented as singlets with T3 = 0. For instance the first generation of leptons can be
written as

LjL =

(
νe,L
eL

)
, lR = eR. (2.4)

Right-handed neutrinos have never been observed and are therefore not considered here.
However, for quarks one has two singlets with right-handed fields in each generation, one
for the up-type quark uR and one for the down-type quark dR. The doublet containing
left-handed quark fields is denoted by QjL. In addition, the weak hypercharge YW is
introduced. The left-handed lepton fields LjL have YW = − 1

2 , the quark fields QjL have
YW = + 1

6 . It can be shown, that

Q = YW + T3 (2.5)

with the electric charge Q. For right-handed fermion fields follows YW = Q. This also
shows the validity of the chosen representation in Equation (2.4). The first component
of the SU(2)L doublet has T3 = + 1

2 , hence Q = 0 and the second has T3 = − 1
2 , hence

Q = −1.

5



2 Theoretical Foundation

Using these left- and right-handed fields, the full electroweak theory can be formu-
lated using the electroweak Lagrangian

Lew =

3∑
j=1

iL̄jLγ
µDµL

j
L + il̄jRγ

µDµl
j
R

+ iQ̄jLγ
µDµQ

j
L + iūjRγ

µDµu
j
R + id̄jRγ

µDµd
j
R

− 1

4
Wa,µνW

µν
a −

1

4
BµνB

µν . (2.6)

Here the Einstein summation convention is used, γµ denotes the Dirac matrices (see
Appendix A) and the adjoint spinor is ψ̄ := ψ†γ0. The index of summation j is used
for the different fermion generations. Dµ denotes the covariant derivative

Dµ = ∂µ + igWTaW
a
µ + igY Y Bµ . (2.7)

The terms W a
µν and Bµν are the field strength tensors of the gauge fields, defined as

Bµν = ∂µBν − ∂νBµ (2.8)

W a
µν = ∂µW

a
ν − ∂νW a

µ + gW ε
abcW b

µW
c
ν , (2.9)

with the Levi-Civita symbol εabc and the gauge fields Bµ and W a
µ .

The individual terms in Equation (2.6) can be interpreted as kinematic terms and
interactions of particles. The first line represents kinematic terms of the leptons and
the second line these of quark fields. Additionally, terms proportional to the adjoint
fermion field, the fermion field, and the gauge field are introduced by the covariant
derivative to ensure gauge symmetry. These terms can be interpreted as interactions of
fermions with gauge bosons. The terms in the third line contain the kinematic terms of
the gauge bosons. Since the SM is a non-Abelian theory, the field strength tensors of
the W a

µ (see Eq. (2.9)) gauge field is allowed to contain additional terms proportional
to the coupling gW . These terms are mixtures of the three W a

µ fields and introduce
self-interactions of the bosons. They will be discussed in more detail in Chapter 3.
Lew is invariant under local gauge transformations of the group U(1)Y ⊗ SU(2)L.

These transformations can be interpreted as electroweak interactions and written as

ψ → exp (i(α(x)YW + βa(x)Ta))ψ . (2.10)

Here Ta can be interpreted as the generators of the SU(2)L group. Then YW is the
generator of the U(1)Y group.

The invariance is ensured by introducing new gauge fields W a
µ and Bµ with the

corresponding gauge couplings gW and gY . The gauge fields have to be transformed
such that all α- or βa-dependent terms cancel in the Lagrangian. These transformations
are given by

W a
µ →W a

µ −
1

gW
∂µβa − εabsβbβc , (2.11)

Bµ → Bµ −
1

gY
∂µα . (2.12)

They are introduced in the covariant derivative and are contained in the terms of the
third line in Equation (2.6). However, the gauge fields cannot be identified with the
observed gauge bosons. This can easily be seen for the photon. The photon does not
couple to neutrinos. All of the introduced gauge fields on the other hand do. Hence the
physical fields must be combinations of the gauge fields. The Z boson’s field (Zµ) and
the photon field (Aµ) are a linear combination of W 3

µ and Bµ according to(
Aµ
Zµ

)
=

(
cos θW sin θW
− sin θW cos θW

)(
Bµ
W 3
µ

)
. (2.13)

6



2.1 Standard Model of particle physics

The weak mixing angle θW is chosen such that Aµ decouples from the neutrinos and
couples in the same way to left- and right-handed electrons. The Z boson is identified as
a mixture of the gauge fields W 3

µ and Bµ. Bµ couples equally to left- and right-handed
fields, while W 3

µ only couples to left-handed fermion fields. Thus, the Z boson does
couple to left- and right-handed fermions, but not equally. The remaining gauge fields
can be identified with the W± bosons, whose fields then can be represented as

W±µ =
1√
2

(W 1
µ ∓ iW 2

µ) . (2.14)

The W± bosons originate purely from the gauge fields of the SU(2)L group. Conse-
quently, the W± bosons do not couple to right-handed fermions.

2.1.2 Electroweak symmetry breaking
The electroweak Lagrangian given in Equation (2.6) contains kinematic terms of the
SM particles and their electroweak interactions. However, no mass terms are included.
Mass terms contain only a particle’s field in quadrature and a scalar function of the
mass. These functions are known and differ for fermions and bosons. The resulting
terms are

Lfermion mass = mψ̄ψ Lboson mass = −1

2
M2
V VµV

µ . (2.15)

Thus, a particle’s mass can be “read of” the Lagrangian if terms proportional to its
field in quadrature are present. These terms are not gauge invariant. Since observed
particles, however, do have masses gauge symmetry must be broken.

In the 1960’s Brout, Englert, and Higgs proposed [20–24] a mechanism to introduce
mass terms while preserving global gauge invariance, the BEH or Higgs mechanism.
Gauge symmetry is then spontaneously broken, called electroweak symmetry breaking
(EWSB).

To achieve this a complex scalar SU(2)L doublet field Φ, called BEH or Higgs field,
with a weak hypercharge of YW = 1

2 is introduced as

Φ =

(
Φ+

Φ0

)
. (2.16)

This field transforms under the symmetry group U(1)Y ⊗ SU(2)L according to Equa-
tion (2.10) as

Φ→ exp (iα(x)YW + iβa(x)Ta) Φ . (2.17)

In addition, a potential is introduced as

V (Φ) = −µ2Φ†Φ + λ
(
Φ†Φ

)2
, (2.18)

with the free scalar parameters µ, λ > 0. These terms are gauge invariant. Thus, it is
allowed to add them to the Lagrangian in addition to the kinematic term as

LHiggs = |DµΦ|2 + µ2Φ†Φ− λ
(
Φ†Φ

)2
. (2.19)

The parameters µ and λ are chosen such that the potential is minimal for

|Φ0|2 =
µ2

2λ
=:

v2

2
, (2.20)

using the vacuum expectation value v. An infinite number of points fulfill this condition.
They can be transformed into each other using gauge transformations. It is therefore
possible to choose the vacuum state to be

〈0|Φ|0〉 =
1√
2

(
0
v

)
. (2.21)
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2 Theoretical Foundation

Picking one single state breaks the gauge symmetry. Thus, the vacuum state is not
gauge invariant under U(1)Y⊗SU(2)L transformations. This state is, however, invariant
under the transformation given by

Φ→ exp (iθa(YW + Ta)) Φ . (2.22)

Using Equation (2.5) this can be identified as the U(1)QED symmetry of QED. Thus,
the symmetry breaking can be described as

U(1)Y ⊗ SU(2)→ U(1)QED . (2.23)

The full first order expansion of the field Φ around the vacuum state can be parametrized
as

Φ =

(
G1(x) + iG2(x)

1√
2
(v +H(x)) + iG3(x)

)
, (2.24)

with real scalar fields H and Gi. The Gi are massless Goldstone fields as dictated by
the Nambu-Goldstone theorem [25, 26]. The field H is the field of an additional scalar
particle, called the Higgs boson H. This expansion can be transformed to the special
case with vanishing Gi

Φ =
1√
2

(
0

v +H(x)

)
. (2.25)

This expansion can be identified with the general first order expansion around the vac-
uum state. Using this expansion in LHiggs from Equation (2.19) adds several additional
terms. The terms of the potential V (Φ) introduce a kinematic term, a mass term, and
terms for three- and four-particle Higgs self-interactions. The mass of the Higgs boson
is given by

mH =
√

2λv =
√

2µ . (2.26)

The term |DµΦ|2 leads to mass terms for the gauge bosons given by

MW± =
vgW

2
, (2.27)

MZ =
v

2

√
g2W + g2Y , (2.28)

MA = 0 , (2.29)

and interaction terms between the gauge bosons and the Higgs boson. Massless particles
do not have a state of longitudinal polarization (see Section 2.2). The introduction of
masses for the W± and Z boson gives each of them an additional degree of freedom.
These additional degrees of freedom are identified with the Goldstone bosons gi, which
were removed by the gauge transformation. Thus, the longitudinally polarized states of
the massive gauge bosons are deeply linked to the mechanism of electroweak symmetry
breaking. This will be discussed further in Chapter 3.

Equation (2.27) can also be used to calculate v. Using the Fermi constant

GF =
g2W

4
√

2M2
W

≈ 1.16 · 10−5 GeV−2 , (2.30)

precisely measured in muon decays, leads to

v = 2
MW±

gW
=

1√√
2GF

≈ 246 GeV. (2.31)

This constrains one out of the two new free parameters µ and λ. The mass of the
Higgs boson is not predicted by theory and can therefore be used to constrain the
second parameter. Provided the Higgs boson, found in 2012, is a SM Higgs boson as
introduced here, this mass is now also known to be [12]

mH ≈ 125.09 GeV . (2.32)
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2.2 Polarization

At this point the theory only gives masses to bosons. However, it is now possible to
introduce interaction terms of fermion fields with the BEH fields “by-hand”

LY =

3∑
j=1

yjl L
j

LΦljR + yjuQ
j

Liσ2ΦujR + yjdQ
j

LΦdjR + h. c. . (2.33)

The Yukawa couplings yf are free parameters constrained by measurements of the
fermion masses. Using the extension in Equation (2.25) this leads to mass terms for
the fermions and interactions between fermions and the Higgs boson. The couplings for
interactions with the Higgs boson are always proportional to the masses of the involved
particles.

The electroweak part of the Lagrangian Lew (see Eq. (2.6)) combined with Higgs and
Yukawa terms (LHiggs, LY) can now explain electroweak physics and particle masses.
Adding the Lagrangian for QCD LQCD (see i. e. [27]) one obtains the Lagrangian of the
full Standard Model

LSM = Lew + LHiggs + LY + LQCD . (2.34)

2.1.3 From Lagrangian to event rate
So called Feynman rules can be obtained from the SM Lagrangian LSM. These rules
describe the conversion of Feynman graphs into the matrix elements M of the corre-
sponding processes. The full matrix element is given by the sum of all possible Feynman
graphs with given initial and final states. For the full calculation also processes of higher
order, i. e. including loops or additional radiations, have to be taken into account. Since
this is an infinite series with in general decreasing influence, calculations are often per-
formed at “leading order” (LO). This means only processes with the minimal number
of vertices are considered.

This full matrix element is needed to calculate the rate for a final state in a specific
phase space region. The calculation of this rate Ṅ is factorized in the following way

Ṅ = σ ·L . (2.35)

One of factors is the cross section σ, which contains all process and phase space de-
pendent variables. The luminosity L on the other hand incorporates all detector and
experiment specific values.

The differential cross section dσ is independent of the experimental setup. It can be
calculated from the matrix elementM as

dσ ∝
∣∣M2

∣∣dΦ . (2.36)

Here dΦ denotes a differential volume of the phase space.
The luminosity at the LHC (see Chap. 4) can be calculated as [28]

L =
N2
Bnbfrevγr
4πεnβ∗

F . (2.37)

HereNB is the number of particles in each of the nb bunches per beam. Furthermore, the
revolution frequency frev, the relativistic gamma factor γr, the normalized transverse
beam emittance εn, and the beta function at the collision point β∗ are used. In order to
correct for the crossing angle at the interaction point an additional factor F is introduced
reducing the geometric luminosity.

2.2 Polarization
If the spin of a particle has a preferred direction the particle is polarized. In order to
quantify this direction the helicity h is used. The helicity is defined as the projection
of the particle’s spin S onto the direction of its momentum ~p

h = S · ~p|p| . (2.38)
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W+

νe

e+

(a) Feynman diagram

W+

e+

νe

(b) Directions of momenta and spins
in boson rest frame

Figure 2.1: Leptonic decay of W+ boson. In (a) the Feynman diagram is depicted.
In (b) a sketch of the directions of the particles’ momenta and spins is depicted. νe
is left-handed, e+ is right-handed.

Considering boosts along the particles momentum it can easily be seen that the helicity
is not Lorentz invariant. Traveling at the speed of light, massless particles have an
invariant helicity. In this case it can be identified with the particles chirality (see
Eq. (2.2)). If not noted otherwise the helicity in the laboratory frame will be considered
throughout this thesis.

Depending on the particle’s spin different eigenvalues are possible. Since the focus
of this work is laid on the polarization of particles with spin one, namely the W± and
Z bosons, only this case is considered from here on. The possible helicity values for
these particles are −1, 0, and 1. For massless bosons only −1 and 1 are allowed. This
means the spin can either be parallel or anti-parallel to the momentum. A state with
h = 1 has right-handed helicity and is called transversally polarized. Also states with
h = −1 are transversally polarized, but with left-handed helicity. The polarization of
states with h = 0 is referred to as longitudinal.

Throughout this thesis transversally polarized particles will be denoted with index
T and longitudinal polarization with L. Note the second meaning of the index T as
projection into the transverse plane. If this index is used for a particle (variable), it
denotes the polarization (projection). Variables related to the helicity will be marked
with the helicity eigenvalue as index.

2.2.1 Angular distributions

Conservation of the spin dictates relations of the helicity of a particle and the angular
distributions of the decay products. These can be easily understood for the W boson
since it does only couple to left-handed particles and right-handed anti-particles. Thus,
in the rest frame of the boson the charged lepton is expected to escape in the direction
of the spin for W+ and in opposing direction for W− (see Fig. 2.1).

This can be quantified using the decay angle θ∗W . It is defined as the angle between
the z-axis and the charged lepton’s momentum in the W± rest frame. The z-axis is
chosen as the direction of the momentum of the boson transfered to its rest frame. The
exact frame in which the momentum of the boson is considered, is not unique. Usually
the frame the helicity is defined in, is used. For the definition of an equivalent angle for
the Z boson decay θ∗Z the particle, i. e. not the anti-particle, of the decay products is
used. This is illustrated in Figure 2.2.

For W+ with right-handed helicity the boson’s spin then points along the z-axis,
resulting in a small decay angle θ∗W . For opposite helicity large angles are expected.
For longitudinally polarized W+ bosons θ∗W is expected to be approximately π

2 . It can
be shown, that the expected differential cross section for mixtures of the helicity states
is [29]

1

σ

dσ

d cos θ∗W
=

3

8
(1∓ cos θ∗W )

2
f−1 +

3

8
(1± cos θ∗W )

2
f+1 +

3

4
sin2 θ∗W f0 for W±,

(2.39)
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W±

Z

e±

(−)
νe

θ∗W

e−
e+

θ∗Z

Figure 2.2: Definition of decay angle θ∗V . Black lines (center) are depicted in frame
used for definition of helicity, i. e. laboratory frame. Blue lines (upper right side)
are boosted along W± boson’s momentum to W± rest frame. Green lines (lower left
side) are defined similarly for Z boson.
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W*θ
d 

co
s σ

d 
 σ1

0

0.2

0.4

0.6

0.8

1

 
-1

transversal, f

 
+1

transversal, f

 
0

longitudinal, f

Z*θcos 
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Figure 2.3: Normalized differential distributions of the cross section over the cosine
of the decay angle of aW+ boson (left) or Z boson (right) for bosons of given helicity.
Helicity state −1 is shown in blue, 0 in black, and +1 in green.

with the fractions f−1, f0, and f+1 for the helicity denoted by the index. For the Z
boson some differences arise from the additional coupling to right-handed fermions [29]

1

σ

dσ

d cos θ∗Z
=

3

8

(
1 + cos2 θ∗Z −

2(c2L − c2R)

(c2L + c2R)
cos θ∗Z

)
f−1

+
3

8

(
1 + cos2 θ∗Z +

2(c2L − c2R)

(c2L + c2R)
cos θ∗Z

)
f+1 +

3

4
sin2 θ∗Zf0 . (2.40)

2.2.2 Spin density matrix
In order to fully describe a general spin system the helicity fractions are not sufficient.
In addition to the quantum-mechanical effects, quantum-statistical effects also have to
be taken into account.

The full spin density matrix ρ has to be used in order to consider these effects. A
system of two vector bosons which occurs for instance in vector boson scattering, the
density matrix ρV V can be represented by a complex 9×9 matrix. The diagonal elements
of the density matrix ρii can be interpreted as statistical probabilities to be in a certain
state. For ρV V these states are the nine possible combinations of pure helicity. This
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dictates Tr ρV V to be one and ρV Vii to be positive and real. The complex off-diagonal
elements account for the interference effects between the helicity amplitudes.

Summing over the helicity states of one of the particles one gets the one-particle
spin density matrix ρV represented by a complex 3× 3 matrix with the aforementioned
properties. This summation is not sensitive to interference effects between the bosons
anymore. However, all interferences between the single helicity states are fully included.
The diagonal elements ρVii are then identical to the helicity fractions f−1, f0, and f+1

introduced in Equation (2.39).
Using ρW the full angular dependence of the cross section for the W decay can be

calculated at NLO QCD from [30]

dσ

d (pT(W ))
2

dy(W ) d cos θ∗W dφ∗W
=
∑
a

ga(θ∗W , φ
∗
W )

3

16π

dσa

d (pT(W ))
2

dy(W )
. (2.41)

Here pT(W ) is the transverse momentum of the W boson4. σa are the helicity cross
sections corresponding to the nine elements of the spin density matrix ρW . φ∗W denotes
the azimuthal angle of the charged lepton in the W rest frame and the sum is applied
over all nine helicity cross sections σa. Introducing the angular coefficients Ai (i =
0, . . . , 7) as shown in [30] leads to

dσ

d (pT(W ))
2

dy(W ) d cos θ∗W dφ∗W
=

3

16π

dσ

d (pT(W ))
2

dy(W )
·
(

(1 + cos2 θ∗W )

+
1

2
A0(1− 3 cos2 θ∗W ) +A1 sin 2θ∗W cosφ∗W

+
1

2
A2 sin2 θ∗W cos 2φ∗W +A3 sin θ∗W cosφ∗W

+A4 cos θ∗W +A5 sin2 θ∗W sin 2φ∗W

+A6 sin 2θ∗W sinφ∗W +A7 sin θ∗W sinφ∗W

)
,

(2.42)

with the unpolarized cross section σ. The angular coefficients Ai depend on the boson’s
pT and y and are associated to the elements of the spin density matrix. Similar to the
helicities they also depend on the chosen reference frame. At LO A5, A6, and A7 vanish
due to conservation of parity.

As it can be seen in Equation (2.42) the interference effects introduce a φ∗W depen-
dency. For efficiencies and acceptances uniformly distributed in φ∗W , the cross section
can be integrated over φ∗W though. Integrating Equation (2.42) over pT(W ) and y(W )
leads to [31]

1

σ

dσ

d cos θ∗W
=

3

8

(
(1 + cos2 θ∗W ) +A0

1

2
(1− 3 cos2 θ∗W ) +A4 cos θ∗W

)
. (2.43)

Comparing Equation (2.43) with (2.39) yields

f−1(y(W ), pT(W )) =
1

4
(2−A0(y(W ), pT(W ))∓A4(y(W ), pT(W ))) , (2.44)

f+1(y(W ), pT(W )) =
1

4
(2−A0(y(W ), pT(W ))±A4(y(W ), pT(W ))) , (2.45)

f0(y(W ), pT(W )) =
1

2
A0(y(W ), pT(W )) , (2.46)

where the upper sign applies for W+ and the lower for W−.
For a real detector the assumption of uniform distribution does not hold. Selec-

tion criteria and constraints arising from the detector composition Thus, have a large
influence on measured angular coefficients and reconstructed θ∗W [29].

For the Z boson the above Equations (2.41) to (2.46) are more complicated due to
the additional coupling to right-handed fermions. For the studies shown in this thesis
Equation (2.40) contains all necessary information.

4This notation will be used for all variables associated to specific particles throughout this thesis.
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Chapter 3

Vector Boson Scattering

As introduced in Subsection 2.1.1 the SM Lagrangian LSM contains terms for gauge
boson self-interactions. They are predicted by the gauge structure of the SM. These self-
interactions contain three-particle and four-particle vertices. This chapter introduces a
process containing these self-interactions.

3.1 Process definition

The scattering of massive gauge bosons, also called vector boson scattering (VBS), is
a process extremely sensitive to several predictions of the SM and models beyond the
SM. Its small cross section makes it challenging to measure. Nevertheless, its clean
signature allows a good suppression of backgrounds in some channels.

The pure scattering process contains several Feynman diagrams connecting two ini-
tial and two final state massive gauge bosons. All possible channels are depicted in Fig-
ure 3.1. Besides the four-particle vertex and s, u, and t channel1 vector boson exchange,
the Higgs boson can also be exchanged via s, u, or t channel diagrams. Depending on
the studied boson combinations, some channels are forbidden due to violation of charge
conservation. In addition to this constraint, all of the self-interactions contain at least
two W± bosons. In this thesis, the focus is set on the scattering of WZ → WZ. For
this channel an exchange of vector bosons is only possible via aW± in an s or u channel
diagram. The Higgs boson contributes only via a t channel diagram.

At the LHC (see Chapter 4), being a p-p collider, the vector bosons are radiated off
by quarks. The outgoing quarks are only weakly deflected, resulting in a large rapidity
difference and a large invariant mass of the resulting jets. Combined with small hadronic
activity between these jets this is an important signature of vector boson fusion and
vector boson scattering processes. This is exploited to tag events and for suppression
of background processes. These jets are also called tagging jets.

After the scattering process the bosons decay into two fermions each. This results

1Throughout this thesis the following convention for the numbering of the incoming and outgoing
particles is used. If a particle contributes as incoming and outgoing particle, the momenta of these
particles are denoted with 1 and 3. If a second pair of momenta exists they are denoted by 2 and 4.
Following this convention, it is possible to distinguish between an u and t channel diagram.

V

VV

V V

V

V

V V

V
V

V V

V
H

V

V V

V

H

VV

V V

Figure 3.1: All possible Feynman diagrams connecting two initial and two final
state massive gauge bosons.
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`

¯̀

`

¯̀

qq

q q

V

V

V

V

Figure 3.2: Schematic diagram of the vector boson scattering process at the LHC.
The dashed circle stands for the possible interactions between the vector bosons
shown in Figure 3.1.

in a final state containing the two tagging jets along with four fermions. A schematic
diagram for this is depicted in Figure 3.2. Despite lower branching ratios, only the fully
leptonic decays of the bosons are considered in this thesis. Decays containing τ leptons
are also neglected. The advantages of restricted final state are a better suppression of
backgrounds and a better momentum resolution for the decay products. The momentum
resolution is especially vital in polarization measurements for the reconstruction of
variables such as the decay angle θ∗V (see Sec. 2.2). Thus, the final state is given by
`±ν``′

−
`′+jj, where ` denotes either e or µ. Note that either the neutrino ν` or the

lepton of same flavor ` have to be an anti-particle. For the sake of readability, this is
not denoted for the neutrino, as it can be easily deduced from the charged lepton. This
notation will be used throughout this thesis.

As quantum mechanics dictates, all diagrams leading to this final state contribute
to the measurement. Some of these diagrams can be separated from the VBS process.
The couplings of the VBS process are of the order O(α6

EW ) at LO, i. e. it is a purely
electroweak process. All purely electroweak processes with the same final state are
not gauge invariantly separable from each other. This means all of these processes
should be contained in the definition of the signal process. Some possible Feynman
diagrams of other electroweak processes are depicted in Figure 3.3. These processes of
order O(α6

EW) are defined as signal and denoted by WZjj-EW. These diagrams can be
divided into resonant and non-resonant diagrams. A diagram is called resonant if the
final state fermions accompanying the tagging jets originate from two s channel vector
bosons. In this case the diagram can be separated in the production of two vector
bosons along with two jets and the decay of the vector bosons. This is not possible for
non-resonant channels.

The definition of the signal process is restricted further in order to enhance the
contribution of the VBS diagrams. An initial state bottom quark radiating of a W±
boson causes a top quark resonance. This can only contribute to the VBS topology in
higher orders due to the additional W radiated off during the decay of the top quark.
However, other O(α6

EW) diagrams, which also result in the `±ν``′
−
`′+jj final state,

contain a top quark resonance. Thus, the contribution of non-VBS diagrams is strongly
enhanced if a bottom quark is present in the initial state. Since the initial state is not
accessible experimentally it cannot be used for the process definition. However, the
top quark resonance leads to final states containing a bottom quark. This is accessible,
since bottom quarks can be distinguished from other quarks in the ATLAS detector
(see Sec. 4.2) using b-tagging. Hence, diagrams with a bottom quark in the final state
are not included in the signal process definition. These diagrams contribute to the
background and are denoted by tZj.

There are other processes with the same final state of the order O(α4
EWα

2
s ). Some

example processes are shown in Figure 3.4. These are separable and therefore defined

14



3.2 Polarization in vector boson scattering
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`
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Figure 3.3: Feynman diagrams for some examples of non-VBS O(α6
EW ) processes.

These diagrams are not gauge invariantly separable from the VBS diagrams and
are contained in the signal definition. Final states containing a bottom quark are
defined as background. For processes with at least one bottom quark in the final
state, the contribution of VBS diagrams is reduced due to a top quark resonance in
the non-VBS diagrams. The diagram on the right-hand is an example for a so-called
tri-boson diagram. One of the three produced bosons decays hadronically. Since
each of the bosons can decay like this, decay products are not specified further.

q
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q

q̄

`
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`
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g
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q̄

`
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`

¯̀

q̄
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q̄

`

¯̀
`

¯̀

Figure 3.4: Feynman diagrams for some examples of O(α4
EWα2

s) background pro-
cesses. These are gauge invariantly separable from the VBS diagrams and therefore
contribute to the background.

as part of the background. This contribution to the background is called WZjj-QCD.
Other backgrounds can arise from detector effects such as leptons that were not

reconstructed or other objects reconstructed as leptons. As a study of the background
exceeds the scope of this work, this is not discussed further. A more detailed study of
the background processes can be found in [32]. å

3.2 Polarization in vector boson scattering

As explained in Subsection 2.1.2 the massive gauge bosons acquire their masses via
EWSB as described by the BEH mechanism. Without this symmetry breaking, the
observed longitudinally polarized states, denoted by W±L and ZL cannot be explained
in the SM. Thus, these longitudinal states are deeply linked to the mechanism of EWSB
and incorporate an important test of the SM. In the BEH mechanism they can be
identified with the introduced Goldstone bosons. Although of interest in general, the
difference between left- and right-handed helicities of the bosons is not connected to
EWSB. Considering also the low cross section of the total VBS process, it is reasonable
to omit distinguishing between the two transverse polarizations. Instead they will from
here on be combined and denoted with VT.

In the SM without EWSB the scattering of longitudinal bosons VLVL → VLVL
violates unitarity. The cross section of the VBS process increases with the center-of-mass
energy Ecm. Consequently, the cross sections exceed the unitarity limit for sufficiently
large center-of-mass energy. According to scattering theory this can be interpreted as
a probability for the process larger than one. This increase is solely caused by the
scattering of the longitudinal states. In the BEH mechanism additional channels are
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 in GeVcmE

310 410 510

 in
 p

b
σ

1−10

10

310

510

710
 with HLZL W→LZLW
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 with HXZX W→XZXW

 without HXZX W→XZXW

Figure 3.5: Dependency of the cross section of all polarization combinations of
the scattering WZ → WZ on the center-of-mass energy Ecm. Full lines show the
dependency including a SM-like Higgs boson and dashed lines for the case without a
Higgs boson. Blue lines show the scattering of purely longitudinal boson polarization
while all other polarization combinations are shown in gray. Cross sections are
calculated using the MadGraph5_aMC@NLO Monte Carlo event simulator (see
Chapter 5).

introduced via the Higgs boson. These cancel the increase leading to a constant cross
section. This can be seen in Figure 3.5 for all different helicity combinations for the
scattering WZ → WZ. The violation of unitarity can be seen in the increase of the
cross section over the center-of-mass energy. As shown only the scattering of purely
longitudinal bosons in the Higgs-less case show this behavior.

In Figure 3.6 the scattering of longitudinal bosons is depicted for different boson
combinations. It can be seen that the violation of unitarity occurs for all boson com-
binations. However, none of the processes including the SM Higgs boson shows this
increase in σ.

This behavior motivates a more intensive study of the polarizations in VBS, in
particular the scattering of longitudinal bosons.

3.2.1 Change of the polarization state in vector boson scattering

For the scattering process itself it is worthwhile to notice that the bosons are allowed
to change their helicity while interacting with each other. The cross sections for this
are depicted in Figure 3.7 for different boson combinations at a center-of-mass energy
of the di-boson system of Ecm = 250 GeV. The mass of the SM Higgs boson is set to
mH = 126 GeV. In order to avoid divergences at least one of the final state bosons
is required to have pT > 1 GeV. It can be seen that the probability for a change
in helicity is negligible if only W± bosons are involved. For W±W± → W±W± and
W±W∓ →W±W∓ the spin properties can be assumed to be conserved while scattering.

In W±W± →W±W± the rows in Figure 3.7a which correspond to the W±T W
±
L

and W±L W
±
T initial states, are identical. This behavior is expected since the bosons are

identical and the order is arbitrary. The argument also applies to the columns with the
corresponding final states. In this boson combination the difference between dominant
and suppressed boson helicity combinations is the largest, spanning over ten orders of
magnitude in cross section.
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Figure 3.6: Dependency of the cross section of all boson combinations of the scat-
tering of longitudinally polarized bosons VLVL → VLVL on the center-of-mass en-
ergy Ecm. Full lines show the dependency including a SM-like Higgs boson and
dashed lines for the case without a Higgs boson. The scattering ZLZL → ZLZL

is only allowed with a Higgs boson. Cross sections are calculated using the Mad-
Graph5_aMC@NLO Monte Carlo event simulator (see Chapter 5).

The helicity conserving diagrams dominate also for the W±W∓ →W±W∓ scatter-
ing diagrams. The suppression of the other diagrams is much smaller, though. Again
some identical diagrams are included, leading to identical results.

The W±Z →W±Z diagrams show a different behavior. In this case the diagrams
where the polarizations of bosons swap dominate. The non-dominant boson helicity
combinations are suppressed only in the order of 10−2.

A possible explanation for the different dominant diagrams is illustrated in Fig-
ure 3.8. Here the spin does not change along the upper and lower boson line. In
W±W± →W±W± scattering this corresponds to a conservation of the helicity states,
as both bosons are identical. However, for the W±Z →W±Z scattering the bosons
swap the lines. In this diagram the bosons exchange their polarization properties. In
W±W∓ →W±W∓ scattering this diagram is not allowed, since no fundamental parti-
cle with electric charge two is known in the SM.

Applying the argument of constant spin along the boson line, on the t channel
exchange diagrams explains the observed large cross sections for the dominant diagrams
in pure W scattering. For both charge combinations a t channel exchange is possible
for H, Z, and γ∗. However, for the W±Z →W±Z channel only a H exchange is
allowed in a t channel diagram. The reduced number of allowed particles leads to a
smaller contribution of this diagram. This argument requires the contribution of u
and t channel diagrams to be dominant compared to s channel exchanges. As the
center-of-mass energy was set to Ecm = 250 GeV, a suppression of the s channel is
reasonable since the propagating particle has to be off-shell with a large deviation from
its resonance mass.

To quantify and compare the dominance, the relative contribution of the non-
dominant diagrams to the sum over all diagrams which contribute to a given final state,
are listed in Table 3.1. The strong suppression in the W±W± → W±W± scattering
could be caused by the unavailable s channel exchange. Transfers of the polarizations
seem to be more probable in this diagram.

It can be seen that the helicity combination of the initial state cannot be deduced
from the helicity combination of the final state in W±Z →W±Z.

17



3 Vector Boson Scattering

cr
os

s 
se

ct
io

n 
in

 p
b

4−10

1−10

210

510

610

final state

±
LW±

LW ±
LW±

TW ±
TW±

LW ±
TW±

TW

in
iti

al
 s

ta
te

±
LW±

LW

±
LW±

TW

±
TW±

LW

±
TW±

TW

3.5e+05 5.3e-06 5.3e-06 3.2e-05

2.6e-06 2.8e+05 2.8e+05 4.8e-05

2.6e-06 2.8e+05 2.8e+05 4.8e-05

8.1e-06 2.4e-05 2.4e-05 5.6e+05

(a) W±W± →W±W±

cr
os

s 
se

ct
io

n 
in

 p
b

10

210

310

410

510

final state

±

LW±
LW

±

LW±
TW

±

TW±
LW

±

TW±
TW

in
iti

al
 s

ta
te

±

LW±
LW

±

LW±
TW

±

TW±
LW

±

TW±
TW

3.0e+05 8.3e+01 8.3e+01 4.0e+01

4.1e+01 3.0e+05 7.7e+00 1.0e+02

4.1e+01 7.7e+00 3.0e+05 1.0e+02

9.9e+00 5.1e+01 5.1e+01 3.0e+05

(b) W±W∓ →W±W∓

cr
os

s 
se

ct
io

n 
in

 p
b

10

210

310

final state
LZLW LZTW TZLW TZTW

in
iti

al
 s

ta
te

LZLW

LZTW

TZLW

TZTW

9.4e+01 2.6e+01 3.0e+01 2.7e+01

1.3e+01 4.0e+00 2.1e+02 4.5e+01

1.5e+01 2.1e+02 1.0e+01 4.9e+01

6.6e+00 2.2e+01 2.5e+01 5.8e+02

(c) W±Z →W±Z

Figure 3.7: The cross section for all helicity combinations in the scattering of differ-
ent boson combinations at a center-of-mass energy of the di-boson system of 250 GeV.
One of the final state bosons is required to have a transverse momentum larger than
1 GeV in order to avoid divergences. On the x- (y)-axis all combinations for the final
(initial) state bosons are plotted. Color represents the cross section in pb, which is
also indicated in each bin. Uncertainties are not shown for the sake of readability.
More precise values and uncertainties are shown in equivalent plots in Section D.1 in
the Appendix. Cross sections are calculated using the MadGraph5_aMC@NLO
Monte Carlo event simulator (see Chapter 5).

W± {W±, Z}

{W±, Z} W±

Figure 3.8: Feynman diagram for different boson combinations for the u channel
exchange in the scattering process. Braces denote particles in the allowed chan-
nels. For W±W± →W±W± scattering Z and H exchanges are allowed. For the
W±Z →W±Z scattering only an exchange of the W± is allowed. The u channel
for W±W∓ →W±W∓ is not allowed. The double arrows denote a special helicity
combination.
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3.2 Polarization in vector boson scattering

Table 3.1: Ratio of the sum of cross sections of non-dominant diagrams over the sum
of all cross sections contributing to a given final state. Note that for W±Z →W±Z
this does not coincide with the off-diagonal diagrams in Figure 3.7c. Columns (rows)
contain different helicity (boson) combinations. Identical diagrams contribute only
once. Interferences between these diagrams are not considered. None of the cells or
rows are expected to add up to one since each cell denotes a final state independent
from the other cells.

VLVL VTVL VLVT VTVT

W±W± 3.08 · 10−11 1.05 · 10−10 1.05 · 10−10 1.42 · 10−10

W±W∓ 1.71 · 10−4 4.72 · 10−4 4.72 · 10−4 4.72 · 10−4

W±Z 2.66 · 10−1 1.95 · 10−1 2.3 · 10−1 1.72 · 10−1

u

W+

d

(a) Feynman diagram

u d

W+

W+

W+

(b) Directions of momenta and spins

Figure 3.9: Kinematics of radiation process of a W+ boson for an u in the initial
state. (a) shows the Feynman diagram. In (b) the directions of spins and momenta
are shown in the laboratory frame. The different colors correspond to different
kinematics of the W+ boson, only one of which is realized. Double arrows depict the
direction of the spins.

3.2.2 Expected influence on kinematics
Another possibility to study the polarization of the initial bosons uses the kinematics of
the tagging jets. The motivation for this is similar to the one used for the distribution
of the decay angles. Some features of the kinematics of the radiated W± boson can be
deduced since the W± only couples to left-handed quarks. In Figure 3.9 a schematic
view of the radiation is shown. As the deflection of the quark is small the spin vectors
of the initial and final state are similar. Therefore the projection of the bosons spin
vector onto the direction of the initial quark’s momentum is small. For high rapidities
these directions of the boson spin correspond to longitudinal polarization. In the central
region, though, this spin projection corresponds to transverse boson polarization. This
should be reflected in the bosons transverse momentum and rapidity distributions. As
the tagging jet balances the kinematics of the emitted boson in the transverse plane,
their kinematics are also expected to discriminate between the bosons polarization.

The Z boson couples also to right-handed fermions, it does not mix between the
chiralities, though. The kinematics should, therefore, be similar as for the W± boson.

Further expectations can be deduced from the equivalence theorem [33,34]. It states
that the longitudinally polarized gauge boson states VL can be replaced by the corre-
sponding Goldstone boson at energies larger than the boson mass. The couplings of VL
then change and become proportional to the mass of the other particle participating
in the interaction. Consequently, VL decouple from light quarks. For instance it is
therefore expected that the longitudinal states are suppressed in light quark initiated
diagrams for high transverse momenta of the boson.
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Chapter 4

Experimental Setup

This thesis is entirely based on simulated data without simulation of detector effects.
However, selection criteria are chosen as in a specific analysis at the ATLAS detec-
tor [35]. Thus, a short overview of the ATLAS detector at the Large Hadron Collider
is given below. Nevertheless, all results are expected to be valid regardless of specific
detector design, as long as it covers the studied phase space.

4.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [28] is the largest circular particle accelerator and
collider ever built. It was constructed from 2000 to 2008 by the European Organi-
zation for Nuclear Research (CERN original French name “Conseil Européen pour la
Recherche Nucléaire”) near Geneva. The tunnel of the previous Large Electron-Positron
Collider (LEP) was reused. Although some technical restrictions arose from this, finan-
cial benefits made the realization possible in the first place. The 26.7 km tunnel crosses
the CERN facility on the Swiss side of the border, while the largest part of it is under
French territory. The tunnel lies between 45 and 170 m beneath the surface with a slope
of 1.4 %. The arcs are intersected by eight straight sections of a length of more than
500 m each hosting a possible interaction point.

The LHC is designed to collide counter-rotating beams of proton or heavy ion
bunches. In order to accelerate and bend the beams two separate rings are required.
The former LEP tunnel did not allow for completely separated beam lines without
widening. This trade-off is a so called “two-in-one” solution. Both rings are contained
within the same mechanical structure, sharing for instance the cryostat, but each ring
has its own bore and set of coils. This limits flexibility but allows the beam-line to be
much more compact. An overview of the LHC is depicted in Figure 4.1

Superconducting radio-frequency cavities are used to generate the magnetic fields
needed to achieve the desired center-of-mass energies. In total 1232 dipoles and several
thousand multi-pols are used to suppress dispersion and to accelerate and control the
particle beams. The beams themselves consist of 2808 bunches each containing about
2 · 1011 particles. About 20 to 40 single proton-proton collisions per bunch crossing
occur simultaneously (pile-up). Distinguishing between these single events is crucial for
good performance of the detectors.

The nominal maximum beam energy is limited by the peak dipole field. More
advanced cooling techniques compared to previous accelerators allow a decrease in the
run temperature from about 4 K to 1.9 K. This translates into an increase in field
strengths from about 1.5 T to about 8 T. The resulting design center-of-mass energy
for proton-proton collisions is 14 TeV. Several pre-accelerators are needed to inject
particle bunches. For this, previous CERN colliders are used, namely the LINAC, the
Proton Synchrotron BOOSTER, the Proton Synchrotron (PS), and the Super Proton
Synchrotron (SPS). To provide enough statistics for the experiments the LHC was
also designed to maximize luminosity (see Eq. (2.37)). The design luminosity is L =
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4 Experimental Setup

(a) Schematic representation of the injec-
tion complex. Graphic from [36].

(b) Main experiments and their interac-
tion points. Graphic from [37].

Figure 4.1: Schematic overviews of the LHC acceleration complex.

1034 cm2s−1, resulting in an expected integrated luminosity of Lint = 80− 120 fb−1 per
year.

The beams are not crossed at four of the eight possible interaction points in or-
der to avoid their disruption. Instead they are used for acceleration and cleaning to
ensure good beam quality. The other interaction points are used by the main experi-
ments ATLAS [38], CMS [39], ALICE [40], and LHCb [41]. ATLAS (A Toroidal LHC
ApparatuS) and CMS (Compact Muon Solenoid) are high luminosity detectors. Both
are general purpose detectors, studying a wide range of predictions of the Standard
Model and its extensions. The designs of LHCb (Large Hadron Collider beauty) and
ALICE (A Large Ion Collider Experiment) on the other hand are optimized to study
more specific research goals. LHCb is specialized on b-physics to study CP -violation
in interactions of bottom quarks and thereby matter-antimatter asymmetry in the uni-
verse. ALICE focuses on heavy ion collisions to search for quark gluon plasma and test
QCD. In addition to these experiments, TOTEM (TOTal Elastic and diffractive cross
section Measurement) [42], LHCf (Large Hadron Collider forward) [43], and MoEDAL
(Monopole and Exotics Detector At the LHC) [44] are hosted at the LHC.

Just nine days after the first complete beam line in September 2008 an accident
occurred. A badly soldered contact caused excessive resistances. Heating up, the cav-
ities in that area lost its superconducting properties. The rapid heating up lead to
evaporation of helium. The expansion damaged a large part of the accelerator ring
nearby. After a maintenance period for reparations, further testing, and enhancements
to the magnets, the first proton-proton collisions were realized in March 2010 at a re-
duced proton beam energy of Ebeam = 3.5 TeV. After an increase to Ebeam = 4 TeV
in 2012, the LHC ran until February 2013. The highly sophisticated operations during
this time provided the necessary data for the discovery of a Higgs boson in 2012, and,
thus, achieving one of the main goals of the LHC project. In order to fulfill further
expectations LHC was shut down and updated from 2013 on to prepare for another
increase of Ebeam to 6.5 TeV and later to its design beam energy of 7 TeV. The second
run period starts in summer of 2015 at a center-of-mass energy of 13 TeV. The inte-
grated luminosity for this run ending in 2018 is expected to be about Lint = 100 fb−1.
After a short delay caused by a short circuit [45] in April 2015 p-p collisions at injection
energy were performed [46] as well as the first successful acceleration of a single beam
to Ebeam = 6.5 TeV [47].

22



4.2 The ATLAS detector

2008 JINST 3 S08003

Figure 1.1: Cut-away view of the ATLAS detector. The dimensions of the detector are 25 m in
height and 44 m in length. The overall weight of the detector is approximately 7000 tonnes.

The ATLAS detector is nominally forward-backward symmetric with respect to the interac-
tion point. The magnet configuration comprises a thin superconducting solenoid surrounding the
inner-detector cavity, and three large superconducting toroids (one barrel and two end-caps) ar-
ranged with an eight-fold azimuthal symmetry around the calorimeters. This fundamental choice
has driven the design of the rest of the detector.

The inner detector is immersed in a 2 T solenoidal field. Pattern recognition, momentum
and vertex measurements, and electron identification are achieved with a combination of discrete,
high-resolution semiconductor pixel and strip detectors in the inner part of the tracking volume,
and straw-tube tracking detectors with the capability to generate and detect transition radiation in
its outer part.

High granularity liquid-argon (LAr) electromagnetic sampling calorimeters, with excellent
performance in terms of energy and position resolution, cover the pseudorapidity range |h | < 3.2.
The hadronic calorimetry in the range |h | < 1.7 is provided by a scintillator-tile calorimeter, which
is separated into a large barrel and two smaller extended barrel cylinders, one on either side of
the central barrel. In the end-caps (|h | > 1.5), LAr technology is also used for the hadronic
calorimeters, matching the outer |h | limits of end-cap electromagnetic calorimeters. The LAr
forward calorimeters provide both electromagnetic and hadronic energy measurements, and extend
the pseudorapidity coverage to |h | = 4.9.

The calorimeter is surrounded by the muon spectrometer. The air-core toroid system, with a
long barrel and two inserted end-cap magnets, generates strong bending power in a large volume
within a light and open structure. Multiple-scattering effects are thereby minimised, and excellent
muon momentum resolution is achieved with three layers of high precision tracking chambers.

– 4 –

Figure 4.2: Cut-away view of the ATLAS detector [38].

4.2 The ATLAS detector
The ATLAS detector is one of the two general purpose detectors installed at the LHC.
Its cylindrical geometry surrounds the beam pipe. It is forward-backward symmetric
and has a length of 44 m and a height of 23 m. A schematic view of the ATLAS detector
is shown in Figure 4.2.

ATLAS is designed to study a wide range of physics scenarios. Besides intensively
testing of the SM, ATLAS searches for some new physics scenarios like supersymmetry
and will study the characteristics of the Higgs boson. This dictates several requirements
of the measuring capabilities of ATLAS. High spatial and momentum resolutions are
essential for the reconstruction of particles and the measurement of their properties.
Accurate charge identification allows for suppression of backgrounds. Excellent track
reconstruction is important to suppress pile-up and for b-tagging. Large angular cover-
age combined with precise calorimetry are important to accurately reconstruct missing
transverse momentum. Efficient triggering is required to find most interesting events
while keeping data storage feasible.

The combination of these requirements lead to the design described below. Infor-
mation is taken from reference [38] where not stated otherwise.

4.2.1 ATLAS coordinate system

For a consistent description of processes and analyses ATLAS uses a well-defined coor-
dinate system. It is a right-handed cartesian coordinate system, with the center at the
nominal interaction point. The z-axis points along the beam axis and the x- and y-axes
lie in the transverse plane. The positive x direction is chosen to be towards the center
of the LHC and the positive y-axis points upwards. Thus, also the positive z-axis is
uniquely defined. The angles φ and θ and the distance R are defined as usual in a cylin-
drical coordinate system. The azimuth angle φ is defined as the angle from the positive
x-axis to the projection of a given point into the transverse plane. The polar angle θ is
the angle, which is spanned from the positive z-axis to the point itself. R is the distance
from the origin of the coordinate system to the projection in the transverse plane. At
a proton-proton collider the z component of the total initial momentum is not known,
since the momentum fraction of quarks and gluons constituting the proton cannot be
predicted. Therefore the center-of-mass frame of the hard interaction process is boosted
along the z-axis with respect to the laboratory frame. Observables which are invariant
under boosts along this axis are necessary to compare events. The azimuth angle and
projections onto the transverse plane, for instance the transverse momentum pT fulfill
this condition. These projections are denoted with the index “T” from here on. The
polar angle on the other hand is not invariant. In order to evaluate the corresponding
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information of a particle the rapidity y is introduced. It is defined as

y :=
1

2
ln

(
E + pz
E − pz

)
, (4.1)

where pz denotes the z component of the particle’s momentum. The rapidity itself is
also not invariant under boosts along the z-axis, but rapidity differences ∆y are. In
order to simplify calculations the pseudorapidity η is introduced as

η := − ln tan

(
θ

2

)
. (4.2)

For massless particles, η is equal to the rapidity, hence their differences are also invariant.
This does not apply for non-negligible masses. The rapidity should be used instead in
particular for massive bosons and jets at the usual energy scales. Another commonly
used variable is the angular distance ∆R defined as

∆R :=

√
(∆φ)

2
+ (∆η)

2
, (4.3)

where ∆φ (∆η) denotes difference in the azimuthal angles (pseudorapidity).
The initial momentum of the hard process is not fully known. However, the trans-

verse momenta of the initial state particles are negligible. Thus, momentum conserva-
tion dictates the transverse momenta of all particles of each single collision to balance
each other. A possible imbalance, also called missing transverse momentum pmiss

T , can
be caused by momentum mismeasurement or undetected particles. Candidates for un-
detected particles are neutrinos, which are not measurable by the ATLAS detector, or
any particle leaving the detector outside its acceptance region.

4.2.2 Inner Detector

A precise track reconstruction is the foundation of a good measurement. It allows
amongst others for pile-up rejection, momentum measurement, vertex reconstruction,
charge identification, and b-tagging. At the ATLAS detector the track reconstruction
is realized by the Inner Detector (ID). The ID is closest to the interaction point and
only a few centimeters away from the beam line. The number of particles detected in
each bunch crossing at design luminosity in the pseudorapidity region of |η| < 2.5 is in
the order of 1000.

The ID (see Figure 4.3a) is axially symmetrical around the beam axis and inter-
spersed with a 2 T magnetic field parallel to the beam axis. This bends the tracks of
particles according to their charge. The curvature is used to calculate the charge and
transverse momentum of the particle.

The innermost parts of the ID are the Pixel Detector and the SemiConductor Tracker
(SCT). They cover a region of |η| < 2.5 and are devoted to precision tracking. In the
barrel region, they are built-up in cylindrical layers around the beam axis, and, in the
end-cap of discs parallel to the transverse plane. The pixel tracker consists of silicon
pixel layers segmented in the R-φ plane and z (R) in the barrel (end-cap) region. It
reaches accuracies of 10µm in the R-φ plane and 115µm in the z direction. Each
charged particle causes up to three hits in the pixel detector. In the SCT there are up
to eight hits. The strips of the SCT are parallel to the beam direction and have an
accuracy of 17µm in the R-φ plane and 580µm in the z direction.

The SCT is encased by the Transition Radiation Tracker (TRT), which covers the
region, where |η| < 2.0. The TRT provides only R-φ information with an accuracy
of 130µm. This inferior accuracy is compensated by a larger number of hits of up
to 36 and longer track lengths. The TRT also contributes significantly to the track
reconstruction.
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4.2 The ATLAS detector

4.2.3 Calorimeter System

The missing transverse momentum pmiss
T as described in Section 4.2.1 is often interpreted

as the signature of an escaping neutrino. This is not valid in all cases, since there
are several other possible causes, for instance, imprecise momentum measurement or
particles escaping outside the acceptance region of the detector. The calorimeter system
of ATLAS was designed to minimize these influences, covering the whole azimuthal angle
around the beam axis. Precise energy measurement is provided in a pseudorapidity
region of |η| < 4.9 using different techniques. The calorimeter system also provides
significant information for the identification of particles. A cut-away view can be seen
in Figure 4.3b.

The innermost part of the calorimeter system is the liquid argon (LAr) based Elec-
tromagnetic Calorimeter. It covers a pseudorapidity region of |η| < 1.475 in the barrel
region. The accordion geometry was used for its full φ coverage and high rotational
symmetry in acceptance. Two coaxial wheels extend the acceptance to the end-cap
region of 1.375 < |η| < 3.2. The region with the highest accuracy dedicated to preci-
sion physics is |η| < 2.5. All electromagnetically interacting particles deposit all their
energy in this calorimeter in the ideal case. This is not the case for heavy particles due
to suppression of bremsstrahlung.

In the barrel region the Electromagnetic Calorimeter is surrounded by the Hadronic
Tile Calorimeter which uses scintillating tiles as active material. The Hadronic Tile
Calorimeter covers a region of |η| < 1.7 which is expanded by the LAr based Hadronic
End-cap Calorimeter. This calorimeter is situated behind the end-cap Electromagnetic
Calorimeter and provides energy measurements in a region of 1.5 < |η| < 3.2.

To extend the acceptance region to even higher pseudorapidities the LAr-based
Forward Calorimeter (FCal) was built. It consists of three additional segments per
beam direction. The innermost segment is an electromagnetic calorimeter using copper
as active medium, while the other two measure hadronic interactions using tungsten as
active medium. The FCal covers pseudorapidities of 3.1 < |η| < 4.9.

4.2.4 Muon System

Muons have a mass of 105.6 MeV, resulting in a strong suppression of bremsstrahlung
compared to electrons. Combined with a long lifetime of 2.2µs1, these properties pre-
vent effective measurement in the calorimeter system. The Muon System was designed
especially for the measurement of muons. Since typically no other particle2 escapes the
calorimeter system the Muon System provides a clean signature leading to excellent re-
construction and identification rates close to 100 %. For the momentum measurement a
region of |η| < 2.7 is covered, while information for triggering are available for |η| < 2.4.
The Muon System is the outermost part of the ATLAS detector, filling in most of the
total volume. A cut-away view can be seen in Figure 4.3c.

In the barrel region the Monitored Drift Tubes measure the tracks of muons and
Resistive Plate Chambers provide trigger information. In high-η regions the Cathode
Strip Chambers are used for tracking and Thin Gap Chambers for triggering. In order to
bend the tracks of muons there is a toroidal magnetic field of 0.5 T in the barrel region
and 1 T in the high-η region. For an accurate measurement the current field must
be precisely known. Hundreds of sensors to monitor the fields enable a momentum
accuracy of 10 % for transverse momenta of the muon up to pT ≈ 1 TeV.

4.2.5 Trigger System

Saving information of every event (≈ O(1 MB)) at the collision rate at design luminosity
of L = 40 MHz would result in an infeasible output-rate of several TB per second.
Output and storage of this amount of data cannot be implemented due to technical

1In this case long means sufficient to allow muons with typical energies to escape the detector
without decaying.

2The exception of this being the neutrino which escapes also the Muon System.
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Figure 1.2: Cut-away view of the ATLAS inner detector.

The layout of the Inner Detector (ID) is illustrated in figure 1.2 and detailed in chapter 4. Its
basic parameters are summarised in table 1.2 (also see intrinsic accuracies in table 4.1). The ID is
immersed in a 2 T magnetic field generated by the central solenoid, which extends over a length of
5.3 m with a diameter of 2.5 m. The precision tracking detectors (pixels and SCT) cover the region
|h | < 2.5. In the barrel region, they are arranged on concentric cylinders around the beam axis
while in the end-cap regions they are located on disks perpendicular to the beam axis. The highest
granularity is achieved around the vertex region using silicon pixel detectors. The pixel layers are
segmented in R�f and z with typically three pixel layers crossed by each track. All pixel sensors
are identical and have a minimum pixel size in R�f ⇥ z of 50⇥400 µm2. The intrinsic accuracies
in the barrel are 10 µm (R�f ) and 115 µm (z) and in the disks are 10 µm (R�f ) and 115 µm (R).
The pixel detector has approximately 80.4 million readout channels. For the SCT, eight strip layers
(four space points) are crossed by each track. In the barrel region, this detector uses small-angle
(40 mrad) stereo strips to measure both coordinates, with one set of strips in each layer parallel to
the beam direction, measuring R�f . They consist of two 6.4 cm long daisy-chained sensors with
a strip pitch of 80 µm. In the end-cap region, the detectors have a set of strips running radially and
a set of stereo strips at an angle of 40 mrad. The mean pitch of the strips is also approximately
80 µm. The intrinsic accuracies per module in the barrel are 17 µm (R�f ) and 580 µm (z) and in
the disks are 17 µm (R�f ) and 580 µm (R). The total number of readout channels in the SCT is
approximately 6.3 million.

A large number of hits (typically 36 per track) is provided by the 4 mm diameter straw tubes
of the TRT, which enables track-following up to |h | = 2.0. The TRT only provides R�f informa-
tion, for which it has an intrinsic accuracy of 130 µm per straw. In the barrel region, the straws are
parallel to the beam axis and are 144 cm long, with their wires divided into two halves, approxi-
mately at h = 0. In the end-cap region, the 37 cm long straws are arranged radially in wheels. The
total number of TRT readout channels is approximately 351,000.

– 6 –

(a) Inner Detector
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Figure 1.3: Cut-away view of the ATLAS calorimeter system.

Calorimeters must provide good containment for electromagnetic and hadronic showers, and
must also limit punch-through into the muon system. Hence, calorimeter depth is an important
design consideration. The total thickness of the EM calorimeter is > 22 radiation lengths (X0)
in the barrel and > 24 X0 in the end-caps. The approximate 9.7 interaction lengths (l ) of active
calorimeter in the barrel (10 l in the end-caps) are adequate to provide good resolution for high-
energy jets (see table 1.1). The total thickness, including 1.3 l from the outer support, is 11 l
at h = 0 and has been shown both by measurements and simulations to be sufficient to reduce
punch-through well below the irreducible level of prompt or decay muons. Together with the large
h-coverage, this thickness will also ensure a good Emiss

T measurement, which is important for many
physics signatures and in particular for SUSY particle searches.

1.3.1 LAr electromagnetic calorimeter

The EM calorimeter is divided into a barrel part (|h | < 1.475) and two end-cap components
(1.375 < |h | < 3.2), each housed in their own cryostat. The position of the central solenoid in
front of the EM calorimeter demands optimisation of the material in order to achieve the de-
sired calorimeter performance. As a consequence, the central solenoid and the LAr calorimeter
share a common vacuum vessel, thereby eliminating two vacuum walls. The barrel calorimeter
consists of two identical half-barrels, separated by a small gap (4 mm) at z = 0. Each end-cap
calorimeter is mechanically divided into two coaxial wheels: an outer wheel covering the region
1.375 < |h | < 2.5, and an inner wheel covering the region 2.5 < |h | < 3.2. The EM calorimeter is
a lead-LAr detector with accordion-shaped kapton electrodes and lead absorber plates over its full
coverage. The accordion geometry provides complete f symmetry without azimuthal cracks. The
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(b) Calorimeters
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Figure 1.4: Cut-away view of the ATLAS muon system.

1.4 Muon system

The conceptual layout of the muon spectrometer is shown in figure 1.4 and the main parameters
of the muon chambers are listed in table 1.4 (see also chapter 6). It is based on the magnetic
deflection of muon tracks in the large superconducting air-core toroid magnets, instrumented with
separate trigger and high-precision tracking chambers. Over the range |h | < 1.4, magnetic bending
is provided by the large barrel toroid. For 1.6 < |h | < 2.7, muon tracks are bent by two smaller
end-cap magnets inserted into both ends of the barrel toroid. Over 1.4 < |h | < 1.6, usually referred
to as the transition region, magnetic deflection is provided by a combination of barrel and end-cap
fields. This magnet configuration provides a field which is mostly orthogonal to the muon trajec-
tories, while minimising the degradation of resolution due to multiple scattering. The anticipated
high level of particle flux has had a major impact on the choice and design of the spectrome-
ter instrumentation, affecting performance parameters such as rate capability, granularity, ageing
properties, and radiation hardness.

In the barrel region, tracks are measured in chambers arranged in three cylindrical layers
around the beam axis; in the transition and end-cap regions, the chambers are installed in planes
perpendicular to the beam, also in three layers.
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(c) Muon System

Figure 4.3: Cut-away views of different parts of the ATLAS detector [38].
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4.2 The ATLAS detector

and financial constraints. These constraints limit the recording rate to approximately
200 Hz. It is therefore necessary to reduce the output stream by an order of 105.

The Trigger and Data Acquisition System (TDAS) was designed to store only the
most interesting events while meeting these financial constraints. It is a highly config-
urable system with multiple levels. Each of these levels imposes additional constrains
on each event passing previous levels by utilizing increasingly complex event data. In-
between the levels a buffering system is used to reduce the effective dead-time. Only
the events passing all levels are stored and available for offline analyses.

The hardware-based level-one trigger (L1) evaluates the output over the full detector
area. Trigger decisions are made using only information of the calorimeter and the MS
at a reduced granularity. Regions of interest (RoI) are defined containing η and φ
information of objects to be evaluated. L1 limits the maximum output rate of 75 kHz.

The second level trigger (L2) and Event Filter (EF) are software based and can be
adjusted easily. L2 considers the full granularity in the RoI and more advanced algo-
rithms to refine the decision of L1. The maximum output rate of L2 is 3.5 kHz. The EF
uses full offline analysis algorithms and object reconstructions for its decisions. Current
calibrations and magnetic field strengths are also available. Its decision completes the
trigger chain and every event passing the EF is stored and distributed for later offline
analyses. The final output is reduced to an event rate of 200 Hz which corresponds to
an output of data of 300 MB per second.
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Chapter 5

Data Processing

To test theories it is necessary to compare their predictions to experimental measure-
ments. Theories whose predictions contradict measurements are ruled out. Since there
may be other theories able to explain measurements a theory can never be proven to be
true though. In order to test the SM and other theories in particle physics, events have
to be simulated. Total cross sections and kinematic distributions of these simulated
events are then assumed to be compatible with measurements, assuming the theory is
valid. The following chapter summarizes the process of obtaining simulated events from
theory.

5.1 Simulation of events

At first the events of the hard scattering are simulated. These correspond to a set
of Feynman diagrams connecting an initial state with a given final state at matrix
element level. Event generators calculate all allowed Feynman diagrams of a given order
of pertubation theory, evaluate the phase space integral numerically and afterwards
simulate events. The kinematics of the final state particles are chosen according to the
probability functions obtained in the integration process. This level of simulation is
often called parton level as all partons are allowed to be included regardless of their
observability.

As the total phase space can easily have more than ten, for instance for the events
simulated for this thesis up to 161 , dimensions Monte Carlo methods have to be used
to evaluate the phase space integral. Thus, these programs are called Monte Carlo
generators. In order to reduce calculation time it is possible to restrict the phase space,
reducing the range of the phase space integral.

For hadronic beams, parton density functions (PDFs) are introduced to parametrize
the probability for a given constituent to have a given fraction of the total momentum
of the momentum. The PDFs cannot be calculated using available computing facilities
and are obtained from fits to measurements.

To obtain physical final states, the next step of event simulation, called parton
shower, is applied. Outgoing particles of the previous step are read in and several
effects are simulated. Unstable particles decay and in addition to initial and final
state radiation, also pertubative effects are taken into account. Subsequently, resulting
partons are grouped to stable hadrons during hadronization. The level of simulation of
events which have passed this step, is called on particle level since only stable particles
are included.

In this step, no simulation of detector effects has taken place. Detector effects have
to be considered, though, for a comparison with measured data. Several effects such

1Calculated for a process with 2 incoming and 6 outgoing particles. Each particle is assumed to be
on-shell, the transverse momenta of the incoming particles are neglected, and energy and momentum
conservation is applied. This leads to one dimension per incoming, three dimensions per outgoing
particle, minus 4 for the conservation laws.
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5 Data Processing

as multi-parton interactions, underlying event, or pile-up have to be simulated for a
good modeling of the full collision. Subsequently, the response of the detector including
digitization is modeled considering detector geometry and material properties. From
this point on the same algorithms are used for measured and simulated data. These
algorithms aim to reconstruct particles using their signatures in the detector and to
distinguish between simultaneous interactions.

5.2 Narrow-width approximation
To reduce computing time it is possible to apply approximations. In the narrow-width
approximation an intermediate resonance is required to be produced at its pole [48].
Thus, for the calculation of the matrix element the propagator can be replaced using

1

q2 −M2 + iMΓ
= δ(q2 −M2)

π

MΓ
. (5.1)

This approximation is only valid for Γ < M hence the nomenclature. Equation (5.1)
implies that the matrix element can be factorized into the single matrix elements for the
production and the decay of the intermediate resonance. This simplifies the necessary
calculations, therewith reducing the computing time for the calculation of the matrix
element. This approximation also effects the treatment of helicities of the intermediate
particle during the calculation of the matrix element. In the full propagator one has
to sum over all helicity combinations. Consequently, a separation of different helicity
states of the intermediate resonance is not possible. However, in the narrow-width
approximation in each matrix element the intermediate resonance has a defined helicity
state. Thus, if the interferences between the helicity states are small a separation is a
valid approximation.

Full spin correlations can be considered using the Collins-Richardson algorithm [49].
In summary the matrix element of the full process using the narrow-width approxima-
tionMNWA is given by the sum of the products of the productionMP and decayMD
subprocesses for all helicity states. |MNWA|2 can be written as follows

|MNWA|2 =Mκ
P (Mκ

P)
∗
ρλλ

′Mλ
D

(
Mλ′

D

)∗
, (5.2)

using the spin density matrix of the intermediate states ρλλ
′
. This matrix incorporates

the full spin correlations according to the description in Subsection 2.2.2. By passing
only the spin matrix from the production process to the decay the full spin correlations
are considered while splitting the matrix element into subprocesses.

5.3 Monte Carlo generators
Several Monte Carlo generators are available to simulate V V jj processes at leading
order (LO). For this study, Whizard and MadGraph5_aMC@NLO have been used
as they are able to write out helicity information for final state particles. This will be
discussed in Section 5.4. Beforehand both programs are introduced briefly.

5.3.1 Whizard

Whizard [50,51] is a universal Monte Carlo event generator covering the whole process
from calculation of matrix elements of LO Feynman diagrams to simulating and writing
out parton or particle level events. Matrix elements are calculated dynamically using
O’Mega allowing for usage in a broad range of physics processes. Several models
are implemented, but only the SM was used in this thesis. While not written out by
default, helicity event output to hepmc [52] can be switched on by hand for each final
state particle. The angle between the spin and momentum of a particle is then explicitly
written out.
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5.3 Monte Carlo generators

Whizard is steered using a special-purpose language called SINDARIN. Its syntax
was designed to meet the needs in event analyses. In contrast to other approaches this
enables Whizard to use very sophisticated phase space definitions while steering scripts
can remain short and clean in basic processes. Fundamental analyses and studies can be
performed using SINDARIN on the output events. The final events can be processed
using a parton shower in Whizard or via interfaces to external tools.

In addition to the calculation of the full set of allowed matrix elements, user-defined
chains of decays can be applied. Using these decay chains, complex processes can
be split into subprocesses allowing for faster integration and generation. Only the
Feynman diagrams containing the chosen intermediate particles as s channel resonances
are considered. In this case the full matrix element is calculated but only for a subset of
all possible diagrams. This approximation is only valid for Γ < M of the intermediate
resonances.

In addition the narrow-width approximation is implemented in Whizard using the
Collins-Richardson algorithm (see [53] for details of the implementation). Whizard
also includes the possibility to use approximations of the introduced spin density ma-
trix. This enables Whizard to use only a diagonal spin density matrix, neglecting
interference effects or to neglect all spin correlations. However, a bug was found in
the implementation of this approximation of the spin density matrix in version 2.2.3
used throughout this thesis. In version 2.2.4 this was corrected, but samples were not
available in the time-frame of this thesis. Since this approximation of the spin density
matrix was not used for any dataset simulated for this thesis, the used datasets are not
effected by this bug.

5.3.2 MadGraph5_aMC@NLO

MadGraph5_aMC@NLO [54] (MG5_aMC) is a Monte Carlo event generator able
to perform next-to-leading (NLO) order calculations. It is a universal generator like
Whizard calculating the matrix element on-the-run and was developed as a com-
bination of MadGraph5 and MC@NLO. Interfaces to several external programs are
available to perform parton showering and the simulation of detector effects. In contrast
to Whizard MadGraph5_aMC@NLO is steered using runcards. Also a pre-defined
set of cuts is allowed and read-in from these runcards. Thus, abilities for sophisticated
phase space cuts or direct analyses are rather limited.

Throughout this thesis, version 5.2.2.2 was used. In order to reduce computing time
samples generated for this thesis are simulated at LO. This was necessary as the time
for the calculation of matrix elements increased from several seconds or minutes at LO
to several hours at NLO for the full VBS process.

By default the output file in the lhef [55] format also contains the helicity informa-
tion of initial and final state particles. This is possible as different helicity combinations
are treated as different diagrams and are thus calculated independently. All diagrams
are written out after the calculation of all possible diagrams before the event generation
is started. These files can be modified such that only a given helicity combination is
generated (see [56]). The final sample contains then only the specified helicity combi-
nation.

Similar to Whizard, MadGraph5_aMC@NLO is able to separate the produc-
tion and decay of particles while spin correlations are taken into account. In Mad-
Graph5_aMC@NLO this is done via the program MadSpin [57]. It simulates spec-
ified decays of final state particles contained in the output files written by Mad-
Graph5_aMC@NLO. The used algorithm [58] ensures implementation of the full
spin correlations and recovers off-shell effects. In the first step the undecayed matrix
elementMundecayed is calculated using the information given in the header of the lhef
file written by MadGraph5_aMC@NLO. Mundecayed multiplied by a known func-
tion is an upper bound for the full matrix elementMfull including decay. This is used
to reweight Mundecayed to Mfull on an event-by-event basis. For each particle to be
decayed a set of momenta for the decay products is chosen randomly and both matrix
elementsMundecayed andMfull are evaluated at this phase space point. If a uniformly
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distributed random number r ∈ [0, 1] fulfills

r <
Mfull

Mundecayed
(5.3)

the momenta of the decay products are accepted. If it is larger than this fraction the set
of random momenta for the decay products are rejected. New momenta are randomly
chosen until an accepted pair of momenta is found. Thus, the matrix element of the
subprocess is reweighted to the matrix element of the full process and the decay spin
correlations are taken into account. Additionally, the δ peak for the on-shell resonance
mass is reweighted to the full Breit-Wigner-Peak again.

5.4 Methodology for simulation of events with known
boson polarization

For a study of boson polarization in VBS simulated events of known helicity of the
bosons are necessary. Although the helicity of an intermediate particle is of interest
this is not defined considering the full process2. In this section different approaches
to obtain events with known polarization of the intermediate bosons using different
approximations are presented.

5.4.1 Reweighting method
In former analyses [31, 59] such datasets are simulated using a reweighting approach.
In order to obtain a sample of pure polarization the distribution of θ∗V of a sample
containing all helicity combinations is reweighted to the known analytical functions of
pure polarization. As these analytical functions are distorted by phase space cuts it is
necessary to apply the reweighting procedure in a phase space as inclusive as possible.
The fitted helicity fractions are predicted by theory to depend on the rapidity and the
transverse momentum of the boson V (see Eq. (2.41)). In order to take this into account
the reweighting is usually done in bins of y(V ) and pT(V ). This introduces unphysical
steps at the boundaries of the bins in the corresponding differential distributions. These
steps can only be smoothed by increasing the number of bins. This is limited by the
available statistics of the input dataset. It is also intrinsically not possible to find other
dependencies of the helicity fractions using this method.

For this thesis, the reweighting method was implemented using Rivet [60]. In the
first step an analysis reads in the sample storing y(V ), pT(V ) and θ∗V information, which
are calculated using the true momenta of the charged leptons and neutrinos, for W+,
W− and Z in a three-dimensional histogram. Having read-in the whole sample the
helicity fractions fi(V ) with i ∈ {−1, 0, 1} are fitted in each pT(V ) and y(V ) bin ac-
cording to the theoretical predictions from Equations (2.39) and (2.40). The transverse
momentum of the boson was binned in [0, 30 GeV), [30 GeV, 60 GeV), [60 GeV, 90 GeV)
and [90 GeV,∞) for all bosons and the absolute value of the rapidity in [0, 1), [1, 2),
[2, 3) and [3,∞). cos θ∗V was binned in 20 equidistant bins from minus one to one. In
this way, all bins contained a sufficient number of events for the fit with reasonable
uncertainties. The resulting helicity fractions for each bin are stored for later usage.

In the second step another Rivet analysis reads in the same sample again. This
time the weight of each event is multiplied with the reweighting factor

1
σ

dσ
d cos θ∗W

∣∣∣
−1,0,+1

3
8 (1∓ cos θ∗W )

2
f−1 + 3

8 (1± cos θ∗W )
2
f+1 + 3

4 sin2 θ∗W f0
(5.4)

where

1

σ

dσ

d cos θ∗W

∣∣∣∣
−1,0,+1

=


3
8 (1∓ cos θ∗W )

2
f−1 for h = −1

3
4 sin2 θ∗W f0 for h = 0
3
8 (1± cos θ∗W )

2
f+1 for h = +1 .

(5.5)

2Since one has to sum over the separate helicity states in the propagator.
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In both equations the upper sign corresponds to W+ and the lower to W−. The corre-
sponding equation for the Z boson can be deduced from Equation (2.40). Depending on
the choice of h in Equation (5.5) the helicity of the corresponding boson can be changed.
The helicity fractions are used from the previous fit results in the bin corresponding to
the kinematics of the reconstructed boson. All helicity combinations are obtained from
one sample using different choices for h to calculate the reweighting factor. The choice
for the reweighting factor also ensures that the sum of the combinations follows again
the original distribution.

As this procedure can be applied to both reconstructed bosons simultaneously arbi-
trary helicity combinations can be obtained in each run. In principle this is applicable
on events simulated using also non-resonant diagrams. For these diagrams the recon-
structed bosons from the lepton pair have not been present in the original sample. The
used input samples were simulated including only resonant diagrams in order to avoid
difficulties in the interpretation of the results. The intermediate bosons are also required
to be on-shell. This restrictions correspond to the narrow-width approximation. The
different helicity states are separable of each other in the narrow-width approximation
if interferences are neglected. The input sample includes this interference effects. In
this approach the effects caused by interferences are distributed to the output samples
according to the corresponding weights. If the effects of these interferences are large,
the fits to the cos θ∗V distributions are not expected to reproduce the distributions.
However, if the fit is in good agreement with the observed distribution, these effects are
small.

5.4.2 MadGraph5_aMC@NLO and MadSpin

The shortcoming of the reweighting procedure is its inability to describe dependencies of
the helicity fraction on other variables. This is of special interest if selection criteria are
applied. Consequently, other variables cannot be guaranteed to be modeled correctly.

To overcome this deficit another approach for the generation of samples of pure
helicity can be used. As mentioned above MC generators write out the helicity only for
final state particles. Thus, samples can be generated such that the bosons are in the
final state to have defined helicities. In order to obtain samples with the final state of
interest the bosons have to be decayed afterwards. This approach effectively employs
the narrow-width approximation.

As explained in Subsection 5.3.2 MadGraph5_aMC@NLO can be modified to
generate samples containing only user-defined helicity combinations. Combined with
programs able to parse these helicity information and simulate the boson decay ac-
cording to it, it would be possible to simulate events without the shortcomings of the
reweighting method.

The decay of particles can for instance be simulated using Pythia [61]. Only
isotropic decays of bosons are implemented in Pythia though. In [62] a private version
of Pythia 6 was used containing the known angular distributions for the W± boson.
This will bot be studied any further in this thesis due to technical issues.

However, as the used approach is more sophisticated compared to the reweighting
method other programs for the simulation of the decay are studied. In Subsection 5.3.2
the tool MadSpin was introduced for this aim. MadSpin simulates for instance boson
decays while taking the spin effects and its correlations into account. Samples were
generated using this method for this thesis for all different helicity combinations of the
bosons. The differential distributions for these are shown in Figure 5.1. As it can
be seen the distributions are not consistent with the expectations from theory. This
can be understood considering the behavior of the used tools. The modification of
the intermediate output of MadGraph5_aMC@NLO allows only to delete certain
diagrams from the matrix elements.

This modification is not directly reflected in the output sample. When MadSpin
parses the sample it reconstructs the process definition using the header file. MadSpin
is not influenced by the modifications described above and all samples with different
helicity combinations are reweighted to the same full matrix element. The distinc-
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Figure 5.1: Comparison of helicity templates generated using MadSpin. Normal-
ized distribution of the cosine of the decay angle of W cos θ∗W (left) and Z cos θ∗Z
(right) in the total phase space. In addition to the templates with given helicity
(blue and green), the distribution of a mixed sample (orange) and the theoretical
predictions (black) are shown. The theoretical prediction for transverse polarization
is a mixture of left- and right-handed helicity. The fractions of this mixture are
obtained by fitting to the WTZT template.

tions between the samples are expected to arise mainly from the different phase space
regions favored by each helicity. For instance the jet kinematics are not changed by
MadSpin, while they are correlated with the helicity fractions. The authors of Mad-
Graph5_aMC@NLO also advised against usage of these combinations as this has not
been tested yet [63].

5.4.3 WZdecay
Since neither the official version of Pythia nor MadSpin are suited for a full analysis
of the helicity fractions the tool WZdecay [64, 65] was developed in the course of this
thesis. This tool was required to read samples with bosons of known helicity in the final
state and simulate the decay according to the angular distributions. A visualization of
the workflow of WZdecay is shown in Figure 5.2. As MadGraph5_aMC@NLO and
Whizard are able to generate samples of known helicity in different file formats the
tool is able to read both file formats to gain independence from a specific MC generator.
The input samples are parsed and the decay of every final state boson is simulated. For
these decays random angles are generated according to their predicted distributions
using a hit-and-miss procedure. Momenta of the leptons originating in the decay are
constructed using the generated mass of the boson and the aforementioned angles in
the rest frame of the boson. The z-axis is chosen to correspond to the direction of the
boson momentum in the laboratory frame as this is the frame in which the helicities
of the bosons are defined. Having boosted these momenta into the laboratory frame,
the leptons are added to the event and the bosons are marked as decayed. The decay
channels of the bosons can be chosen and the cross section is adjusted according to the
branching ratios. The values for the branching ratios are set to the values calculated
by Whizard, given by

BR(W± → `± + ν`) = 0.0344 , BR(Z → `+ + `−) = 0.111 . (5.6)

Subsequently, the final events are divided in different samples according to the boson’s
helicity. Thereby, separate samples for each combination of boson helicities are available.
The final cross section of the output samples is determined using the sample’s fraction
of the total event weights. Samples can be written in the hepmc or the lhef format.
This allows for subsequent showering using Pythia or direct analyses on parton level
using Rivet.

Using this procedure it is not necessary to apply any cuts on the leptons. It also
allows to produce samples with different generators for validation. However, some
approximations are necessary for this procedure. As the input file has to contain the
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WZdecay

.lhef .hepmc

WZdecay

WLZL WLZT WTZL WTZT

Figure 5.2: Visualization of the workflow of WZdecay. It is able to read in and
parse lhef or hepmc files, simulates the decay of every W and Z bosons in the final
state and writes samples according to the found helicity combination.

bosons as final state particles only the resonant channels are considered as explained
above. Furthermore, the bosons have to be on-shell. This corresponds to the narrow-
width approximation. This approximation is a precondition for a valid interpretation
of helicity fractions of intermediate particles. Consequently, its validity has to be tested
for a study of the helicity fractions in a given phase space.

To take the full spin correlations into account the full spin density matrix can be
used (see Subsection 5.3.1). However, no file format available supports storing the
full density matrix but only the helicity eigenvalue for each particle. The rates for
each helicity correspond to the different diagonal elements of the spin density matrix.
Consequently, an additional approximation of a diagonal spin density matrix is dictated
by these format limitations. Correlations between the helicity states are therefore not
modeled.

5.5 Settings and simulated samples
For comparison and validation purposes several samples were generated using different
combinations of generators and methods to obtain purely polarized samples. In order
to avoid ambiguities reconstructing the W and Z bosons from the final state leptons
the parton level final state was restricted to e+νeµ+µ−jj. In this way a unambiguous
assignment of the leptons to the bosons is possible.

Note that the final state is also restricted to theW+Zjj process to save computation
time. For a full study and a measurement also samples of the W−Zjj process have to
be generated as the polarization fractions are expected to differ for the different charges
of the W boson. Differences arise from the substructure of the proton. However, the
main focus of this study is the validation of different methods to obtain purely polarized
samples. This can safely be assumed to be independent of the W boson’s charge.

To reduce the contribution of tZj diagrams to the signal process bottom quarks
are not allowed in the final state as it was done in previous studies of vector boson
scattering in the WZ channel [32]. A list of all used samples can be found in Table 5.1.
The necessary parameters for the generation of the samples can be found in Table 5.2.

The resulting samples were analyzed using Rivet. An analysis was implemented
able to obtain distributions of several observables in different phase spaces. The full list
of selection criteria are listed for all used phase spaces can be found in Tables 5.3 and
5.4.
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5.5 Settings and simulated samples

Table 5.2: List of parameters necessary for the event simulation and its val-
ues which are used in the simulation of events using the Whizard and Mad-
Graph5_aMC@NLO Monte Carlo generators accordingly, including masses and
widths of particles.

Parameter Value
Whizard samples MG5_aMC samples

center-of-mass energy
√
s 13 TeV 13 TeV

renormalization scale µr 200 GeV 200 GeV
factorization scale µf 200 GeV 200 GeV
parton distribution function CT10 CT10
Fermi constant GF 1.1663787 · 10−5 GeV−2 1.16639 · 10−5 GeV−2

electroweak coupling αEW 132.3479−1 132.5070−1

strong coupling αs 0 0

MW 80.399 GeV 80.419 GeV
ΓW 2.085 GeV 2.0476 GeV
MZ 91.1876 GeV 91.188 GeV
ΓZ 2.4952 GeV 2.441404 GeV
mH 126 GeV 125 GeV
ΓH 0.00418 GeV 0.006382339 GeV
mtop 172.5 GeV 173 GeV
mb 0 GeV 4.7 GeV
ms 0 GeV 0 GeV
mc 0 GeV 0 GeV
mτ 1.77705 GeV 1.77700 GeV
mµ 0 GeV 0 GeV
me 0 GeV 0 GeV

Table 5.3: Selection criteria for all studied phase space regions implemented in
Rivet and the phase space used for the integration in the Monte Carlo simulator
for an object to be accepted as Z-lepton `Z , W -lepton `W , or jet j. Only objects
fulfilling this criteria are accepted. The criteria which are marked with ∗ are only
applied on two of the leptons, i. e. only two of the three charged leptons are required
to have a transverse momentum larger than 5 GeV for the integration in Whizard.

Object Variable Generator cuts Rivet selection
Whizard MG5_aMC total detector WZ VBS

`Z pTmin in GeV 5∗ 10 0 7.0 15.0 15.0
|η|max 5 5 ∞ 2.5 2.5 2.5

`W pTmin in GeV 5∗ 10 0 7.0 20.0 20.0
|η|max 5 5 ∞ 2.5 2.5 2.5

jets pTmin in GeV 15 15 0 5.0 5.0 30.0
|η|max 5 5 ∞ 2.5 2.5 2.5
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5 Data Processing

Table 5.4: Selection criteria for all studied phase space regions implemented in
Rivet and the phase space used for the integration in the Monte Carlo simulator.
If the objects, that pass the criteria listed in Table 5.3 of an event or phase space
point fulfill these additional criteria, it is accepted.

Variable Generator cuts Rivet selection
name unit Whizard MG5_aMC total detector WZ VBS

Nleptonsmin 3 3 3 3 3 3
Njetsmin 2 2 0 0 0 2
mT(W )min GeV 0 0 0 7.0 30.0 30.0

|M`Z`Z −MZ |max GeV ∞ ∞ ∞ ∞ 10 10
M``min GeV 0 0 0 0 0.1 0.1
Mjjmin GeV 0 150 0 0 0 500
∆Yjjmin 0 0 0 0.4 0.4 1.5
∆Rjjmin 0.4 0.3 0 0.4 0.4 0.4
∆Rj`min 0.0 0.0 0 0.1 0.1 0.1
∆R``min 0.3 0.2 0 0.3 0.3 0.3
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Chapter 6

Study of Templates

Three different approaches to obtain samples with intermediate bosons in a well-defined
polarization state are introduced in Section 5.4. All of these methods were implemented
for this thesis and events were simulated. The methods are compared to each other using
the samples of simulated events in the following chapter.

6.1 Closure tests

6.1.1 Fits in reweighting method
For the reweighting method, the cos θ∗V distribution is fitted in bins of the transverse
momentum and the rapidity of each boson using a χ2-fit. In Figure 6.1 the observed
number of events for each of these bins can be seen. The fit was executed using the
RooFit package of the ROOT software framework [66]. The fit function was stated in
Equation (2.39) and (2.40). The integral over cos θ∗W of these equations is one if the
helicity fractions sum up to one. The fit parameters are used for the calculation of the
new event weight. There are several constraints on these fit parameters which result
from the interpretation of the fit parameters as helicity fractions fi. Each of them has
to be in the interval [0, 1]. Additionally, the sum of all helicity fractions has to be one:

fi ∈ [0, 1] ,
∑

i=−1,0,+1

fi = 1 . (6.1)

It is not possible to apply all four of these constraints on the fit parameters for technical
reasons. Thus, two different fits were performed resulting in two sets of samples with
pure polarization.
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Figure 6.1: Distribution of total number of events in the different pT(V ) and y(V )
bins used for the fits for the reweighting method is shown in (a) for the W+ boson
and in (b) for the Z boson. The total number of events is 500000.

39



6 Study of Templates
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Figure 6.2: Sum of the helicity fractions in each bin after the unconstrained fit to
the predicted distribution of the cos θ∗V distribution of mixed sample generated with
MadGraph5_aMC@NLO is shown in (a) for the W+ boson and in (b) for the Z
boson.

In the first approach, only the allowed intervals are set for each parameter, i. e.
fi ∈ [0, 1] for i ∈ {−1, 0, 1}. This approach will be called unconstrained fit1 in the
following. The three helicity fractions are treated equally in this approach. The sum of
the helicity fractions can deviate from one, though. However, if the number of entries in
a bin in the transverse momentum and rapidity plane is large enough, these deviations
from one are expected to be small provided the observed distribution is compatible with
the prediction. Before applying the fit, the functions of the fits are scaled to the integral
of the mixed sample such that the integrals of the fit function and the distribution are
equal in each bin of the transverse momentum and rapidity of the boson.

The sum of the fitted helicity fractions is plotted in Figure 6.2 in the bins of the
transverse momentum and rapidity of both bosons. It can be seen that the deviations
of the sum from one are small in all bins. The largest deviations of about 2% occur for
large boson rapidities. These deviations are assumed to be caused by low statistics in
these bins. The deviations may be minimized by optimizing the binning in the plane
of the transverse momentum and rapidity of the bosons. Nevertheless, these deviations
effect only a small number of events. The influence on the reweighted distributions is
expected to be negligible. The general level of agreement is sufficient for the production
of samples using this reweighting approach.

In order to quantify this influence, another fitting approach was applied in addition
to the aforementioned one. In this additional approach the fraction of left-handed
helicity f−1 is replaced by

f−1 = 1− f0 − f+1 . (6.2)

Thereby the sum of the helicity fractions is fixed to one. As a trade-off the parameter
f−1 cannot be constrained to the interval [0, 1] anymore for technical reasons. This is
called constrained fit from here on. The distributions of the left-handed helicity fraction
for this fitting approach can be seen in Figure 6.3. The left-handed helicity fraction
is in a physical range for all of the bins for the W+ boson. For the Z boson, there
are two bins with negative helicity fractions. This effect could again be suppressed by
optimizing the binning in the plane of the transverse momentum and rapidity of the
bosons.

An advantage of the constrained approach is a reduction of the number of free
parameters. Consequently, the uncertainties on the fit parameters are smaller compared
to the unconstrained approach. This uncertainties can be seen in Figure 6.4, in which
the distribution of the right-handed helicity fraction f+1 for both fit approaches are
compared. The differences in the uncertainties are rather small since the fit parameters
are highly correlated.

1This name refers to the unconstrained sum of the helicity fractions.
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6.1 Closure tests
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Figure 6.3: The Left-handed helicity fraction f−1 after the constrained fit to the
predicted distribution of the cos θ∗V distribution of a mixed sample generated with
MadGraph5_aMC@NLO is shown in (a) for the W+ boson and in (b) for the Z
boson. In this fitting approach the parameter f−1 is not constrained to the interval
[0, 1].
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Figure 6.4: Right-handed helicity fraction f+1 after the fit to the predicted dis-
tribution of the cos θ∗W+ distribution of a mixed sample generated with Mad-
Graph5_aMC@NLO is shown in (a) using a constrained and in (b) an uncon-
strained fit.
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Figure 6.5: Ratio χ2/n.d.f. to quantify the goodness of the fits in bins of pT(V )
and y(V ) for the unconstrained fit applied on the mixed sample generated with
MadGraph5_aMC@NLO. For each shown bin n.d.f. is 37. The distribution is
shown in (a) for the fits of distributions of the W+ boson and in (b) for the Z boson.
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generated using MadGraph5_aMC@NLO. The p-value corresponds to the proba-
bility of obtaining a larger χ2 value for a given number of degrees of freedom assuming
a χ2-distribution.

Comparing these methods the unconstrained fit is favored to avoid negative helicity
fractions since these would result in negative event weights. Nevertheless, the resulting
reweighted samples are hardly distinguishable between the two fitting approaches since
problems in both approaches influence only a small number of events.

As a validation of the fits the ratio of χ2 over the number of degrees of freedom
(n.d.f.) for all fit results are shown in Figure 6.5. The number of degrees of freedom
equals the number of bins in the fitted distribution reduced by the number of fit param-
eters. A ratio close to one indicates a good agreement of the fit. The observed values
fluctuate around this value.

The relatively large number of fits of 32 in total allows for an additional test. The
χ2 and the number of degrees of freedom can be used to calculate the p-value. This
p-value represents the probability to obtain a larger χ2 value for the given number of
degrees of freedom assuming a χ2-distribution. This value can also be interpreted as
the probability of obtaining a fit result with inferior agreement. The resulting p-values
should be uniformly distributed over the interval [0, 1]. A histogram of these p-values
for the unconstrained fits is shown in Figure 6.6. The resulting p-values are compatible
with a uniform distribution.

The full set of distributions and the fitted functions in the plane of the transverse
momentum and rapidity of the bosons are shown in Section D.2 in the Appendix.

The full set of helicity fractions using the unconstrained fit can be seen in Figure 6.7.
The longitudinal fractions show very similar behavior for both bosons. However, the
distribution of the left-handed fraction of the Z boson, f−1(Z), is more similar to the
right-handed fraction of the W+ boson f+1(W+).
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Figure 6.7: Helicity fractions fi after the unconstrained fit to the predicted
distribution of the cos θ∗V distribution of a mixed sample generated with Mad-
Graph5_aMC@NLO are shown in (a), (c), and (e) for the W+ boson and in
(b), (d), and (f) for the Z boson. (a) and (b) show the left-handed helicity fraction
f−1, (c), (d) show f0 and (e) and (f) f+1.
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Figure 6.8: Comparison of the helicity templates generated reweighting a sample
from MadGraph5_aMC@NLO. The normalized distribution of the cosine of decay
angle of W cos θ∗W (left) and Z cos θ∗Z (right) in the total phase space are shown. In
addition to the templates with given helicity (blue and green), the distribution of a
mixed sample (orange) and the theoretical predictions for pure helicity states (black)
are shown. The theoretical prediction for transverse polarization is a mixture of left-
and right-handed helicity. The fractions of this mixture are obtained by fitting to
the WTZT template.

In order to understand this feature the introduction of the predicted distributions
of the bosons’ decay angles has to be considered and transfered from the leptonic decay
to the radiation of a boson by a quark. The decay angle peaks at the same values for
W+ and Z bosons of equal helicity. However, the definition of the decay angle differs.
For the W+ boson the decay angle is defined as the angle to the (positively) charged
lepton. For the Z boson the angle to the negatively charged lepton is used. Applying
this definition on hadronic decays, the angles to quarks resulting from W+ or Z decays
are expected have a maximum at different values for quarks of equal charge. The
distributions of a given helicity for Z decays correspond to the opposite W+ helicity.
Applying the same argument on the radiation process rather than the hadronic decay,
leads to the observed correspondence of the f−1(W+) and f+1(Z) distributions.

Consequently, the distribution of the W− boson’s helicity fractions are expected to
be similar to the distributions of the helicity of the Z boson.

The distributions are in good agreement with the expectations from Subsection 3.2.2.
The longitudinal states were expected to dominate for high rapidities and low transverse
momenta. However, for high energies the longitudinal states are suppressed as dictated
by the equivalence theorem. The region dominated by longitudinal polarization con-
tains only a small fraction of the total events though. Additionally, the region of low
transverse boson momenta is expected to be influenced by the necessary phase space
cuts. This is studied in Section 6.3.

As this study aims at an distinction between longitudinal and transverse polarization
states, the helicities -1 and +1 are not distinguished from here on. The combination
of both states with transverse polarization is studied and compared instead to the
longitudinal polarization.

6.1.2 Angular distributions

The generated samples contain bosons of a given polarization. Consequently, they are
expected to reproduce the predicted distribution of cos θ∗V . The samples which are
produced using MadSpin to simulate the decay of polarized bosons, do not show the
expected behavior. This can be seen in Figure 5.1. As it is discussed in Section 5.4.2
the discrepancies originate from the reweighting procedure used in MadSpin. The
matrix element of each sample is reweighted to the same full matrix element. Thus,
these samples are closer to the mixed sample and differences between each other are
suppressed.

The corresponding distributions for the samples from the reweighting method can be
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Figure 6.9: Comparison of the helicity templates generated using WZdecay with
a MadGraph5_aMC@NLO sample as input. The normalized distribution of the
cosine of decay angle of W cos θ∗W (left) and Z cos θ∗Z (right) in the total phase space
are shown. In addition to the templates with given helicity (blue and green), the dis-
tribution of a mixed sample (orange) and the theoretical predictions for pure helicity
states (black) are shown. The theoretical prediction for transverse polarization is a
mixture of left- and right-handed helicity. The fractions of this mixture are obtained
by fitting to the WTZT template.

seen in Figure 6.8. The distributions of cos θ∗W are in good agreement with the predicted
distributions. For the Z boson’s decay angle cos θ∗Z small discrepancies can be observed.
There discrepancies are assumed to be caused by the choice for the reweighting factor
(see Eq. (5.4)). The denominator is chosen such that only the fit of the predicted dis-
tribution to the mixed sample is taken into account. In order to evaluate the correct
statistical uncertainty non-trivial correlations between the samples, have to be consid-
ered. These correlations are introduced by the correlations of the fit parameters used
for the reweighting.

The samples generated using WZdecay also reproduce the predicted angular dis-
tribution. This can be seen in Figure 6.9. No systematic deviations from the predicted
distribution can be seen.

Compared to the reweighting method the statistical uncertainty of the distributions
especially for the longitudinal polarizations is larger. The numbers of input events are
the same for both methods though. For the reweighting method every event is used
for all helicity combinations with a reduced weight. In WZdecay the mixed sample is
divided according to the given helicity. Thus, each event is considered with full weight.
The shown statistical uncertainties are calculated only from the number of entries in
each bin.

The samples which are generated using the reweighting method and using WZdecay
reproduce the predicted distributions and are studied in more detail in the following.
The approach using MadGraph5_aMC@NLO and MadSpin will not be considered
from here on due to the large deviations from the predicted distributions.

6.2 Influence of approximations

To obtain the samples of pure boson polarization several effects have to be neglected.
The study of the influences of these effects is an important part of polarization studies
as they lead to systematic uncertainties. The stronger the influences of these effects, the
more problematic the interpretation of the results gets. For the reweighting approach a
full sample is in principle allowed as input. However, again the interpretation in terms
of helicity fractions is then questionable. Thus, applying restrictions on the diagrams
is preferred although not necessary from a technical point of view.

The most basic approximation is the negligence of non-resonant channels. This
summarizes the effects of Feynman diagrams contained in the signal where the final
state leptons do not originate directly from an s channel resonance of a boson. This
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approximation is dictated by technical reasons when using the WZdecay approach.
It is also reasonable to neglect these effects, though. In these diagrams the summed
momentum of a lepton pair does not correspond to the boson. A measurement of
the boson polarization is not reasonable, if the influence of these diagrams is large.
These non-resonant diagrams are not gauge invariantly separable from the resonant
diagrams. Nevertheless, the influence of the non-resonant diagrams can be suppressed
using selection criteria. The s channel diagrams contain a Breit-Wigner resonance at the
mass of the propagating particle. For invariant masses close to this mass the resonant
diagrams dominate.

In order to estimate the influence, samples were generated including all diagramms
or only resonant ones respectively using MadGraph5_aMC@NLO. Several kinematic
distributions for these samples are compared for different phase spaces in Figure 6.10.
In the more inclusive phase space there are some differences to be seen. The influence
of the non-resonant diagrams cannot be neglected in this phase space. In Figure 6.10a
it can be seen, that the influence is uniform in cos θ∗W+ . The total cross section is
increased by about 10%. In Figure 6.10c it can be observed, that the impact is not
uniform in m(WZ). For m(WZ) smaller than the sum of the masses of the bosons, the
non-resonant diagrams dominate. Similar behavior occurs for other variables, which
allows to suppress the non-resonant diagrams by choosing a tighter phase space.

This can also be seen in Figure 6.10. The plots shown in 6.10b, 6.10d, and 6.10f show
the corresponding distributions in the vector boson scattering analysis phase space. The
non-resonant diagrams are strongly suppressed in this phase space. Consequently, it is
reasonable to neglect the effects of the non-resonant diagrams.

For the boson decay using WZdecay an additional approximation is necessary. As
the input sample is generated with the bosons in the final state the bosons have to be
on-shell.

To estimate the influence of these approximations again kinematic distributions are
shown in Figure 6.11 in different phase spaces. There Whizard samples simulated
using only resonant diagrams are compared. In one of these samples the bosons are
restricted to be on-shell.

The distributions of kinematic variables of jets differ. The rapidity difference of
the tagging jets is smaller as it can be seen in Figure 6.11d. Furthermore, the leading
jet tends to be more central and the transverse momenta of both tagging jets tend to
larger values if off-shell effects are neglected. These deviations have to be studied and
understood before jet-based observables can be used for a measurement of the boson
polarization. The interpretation of results from these variables can only be valid once
the effects on distributions of these deviations can be corrected for. Nevertheless, these
effects have to be studied in more detail since additional difficulties arise by applying
selection criteria in these variables.

The kinematics of the leptons show smaller deviations in the VBS phase space. If
a global scaling factor is applied deviations only effect suppressed kinematic regions.
Lepton-based variables are more appropriate for later polarization measurements.

An additional approximation is necessary that was not considered before. The
negligence of correlations between the polarization states is an intrinsic approximation
if the helicity fractions are measured. Although this is common to both methods for
the production of templates the effects are treaded differently.

The reweighting method uses a mixed sample as input. In this sample the interfer-
ences are included. It is divided such that the sum of the different templates is equal to
the input sample in each bin. Consequently, the interference effects are also divided and
scattered in the templates. This comparison can be seen in Figure 6.12. The sample
used as input is exactly divided into the different helicity fractions. There are no differ-
ences between the stacked templates and the input sample. However, it is not possible
to estimate the fraction originating from interference effects using this implementation
of the reweighting approach. One can also see the dominance of the template with pure
transverse boson polarization W+

T ZT. The ratios between the different templates are
obtained from the fit necessary for the reweighting method. The fractions as well as
the cross sections in the total phase space can be found in Table 6.1.
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Figure 6.10: Comparison of distributions for samples containing the full WZjj −
EW process (blue) and samples only containing resonant diagrams (green) in dif-
ferent phase spaces of samples generated using MadGraph5_aMC@NLO. On the
left-hand side distributions in the total phase space and on the right-hand side for
the VBS phase space are shown. In the upper row the W+ decay angle θ∗W , the mid-
dle row the di-boson invariant mass m(WZ) and in the bottom row the transverse
momentum of the leading Z-lepton pT(`Z1 ) are shown.
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Figure 6.11: Comparison of distributions for samples only containing resonant
diagrams of theWZjj−EW process and simulated using Whizard. With additional
constraint on the intermediate boson to be on-shell (green) or without constraint
(blue). On the left-hand side distributions in the total phase space and on the right-
hand side for the VBS phase space are shown. In the upper row the W+ decay angle
θ∗W , the middle row the difference between the rapidities of the jets ∆y(jj), and in
the bottom row the transverse momentum of the leading Z-lepton pT(`Z1 ) are shown.
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Figure 6.12: Comparison of stacked templates generated using the reweighting
approach to the mixed sample (orange) used as input for the reweighting procedure
in different variables in the total phase space. The stacked templates are scaled to
the cross section of the mixed sample. Different colors represent the different helicity
combinations. (a) shows the distribution in cos θ∗W+ and (b) for cos θ∗Z . Since each
event is divided to the different templates the sum of the templates reproduces the
input distribution.

Table 6.1: List of fractions for all helicity combinations obtained by different meth-
ods in the total phase space. Additionally, the cross sections for each sample of pure
polarization in the total phase space in fb are listed. The cross section in the bottom
row corresponds to the cross section of a sample with mixed helicities is shown. This
sample was also used as input for the reweighting procedure. For the reweighting
approach in (a) this cross section also corresponds to the sum of the cross sections of
the splitted samples. This is not required in (b) since the samples are independently
of each other in this case. For small interferences they should, however, be consis-
tent. The fractions listed in the bottom row are the sums of the fractions of the
splitted samples. This fraction also corresponds to the ratio of the sum of the cross
sections of the splitted samples over the cross section of the mixed sample given in
the bottom row.

(a) Reweighting method

cross section fraction
in fb in %

W+
T ZT 0.4650± 0.0004 55.50± 0.07

W+
T ZL 0.1706± 0.0001 20.37± 0.02

W+
L ZT 0.1447± 0.0001 17.28± 0.02

W+
L ZL 0.0573± 0.0000 6.85± 0.01

W+
X ZX 0.8376± 0.0004 100.00

(b) WZdecay

cross section fraction
in fb in %

W+
T ZT 0.4872± 0.0006 58.17± 0.13

W+
T ZL 0.1610± 0.0005 19.22± 0.08

W+
L ZT 0.1394± 0.0004 16.64± 0.07

W+
L ZL 0.0483± 0.0003 5.77± 0.04

W+
X ZX 0.8376± 0.0003 99.80± 0.15
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Figure 6.13: Comparison of stacked templates generated using WZdecay to the
mixed sample (orange) in different variables in the total phase space. Different colors
represent the different helicity combinations. The stacked templates are scaled to
the cross section of the mixed sample. (a) shows the distribution in cos θ∗W+ and (b)
for cos θ∗Z . The mixed sample is the sample used as input for the reweighting method
in which the decay of the bosons was simulated by MadGraph5_aMC@NLO.

The method using WZdecay on the other hand uses a sample with stable bosons
in the final state. In this way the helicity states of the bosons are defined and no
interferences are included. The mixed sample with which the templates are compared
is simulated using MadGraph5_aMC@NLO for the production and MadSpin for
the decay of the bosons. Thus, the interference effects are reconstructed as explained
in Subsection 5.3.2. The sum of the templates is therefore allowed to deviate from the
mixed sample. These deviations can be used as a rough estimate of the influence of the
interference effects.

In Figure 6.13 the sum of the templates is compared to the mixed sample. Although
small deviations can be seen, over all the agreement is very good. The dominance
of the purely transversally polarized sample can again be seen. The fractions are ob-
tained from the frequency of the helicity combination in the mixed sample with bosons
in the final state. The fraction obtained after analyzing the samples obtained from
MadGraph5_aMC@NLO are listed in Table 6.1b. Since no phase space cuts were
applied after the generation the rates of the templates conform the frequencies from
the MC generator listed in Table 5.1. The discrepancy of the sum of the fractions to
one is small. In addition to the influence of the correlation between the helicity states,
statistical uncertainties can contribute to this.

The fractions itself are in good agreement between the two methods. The sample
with pure transverse polarization dominates and contributes with about 57 % to the to-
tal cross section. The pure longitudinal sample contributes only with 6 %. The samples
with a longitudinally and a transversally polarized boson contribute approximately to
the same amount. However, the W+

T ZL samples have slightly larger fractions compared
to the W+

L ZT samples. In general the fraction for a transversally polarized boson is
larger than the corresponding sample with longitudinal boson polarization by a fac-
tor of about three. This cannot be explained solely by combinatorics. The transverse
polarization contains two helicity states. As a consequence a factor of two would be
expected if helicity states where distributed uniformly. As explained in Subsection 3.2.2
the CP violation and other effects lead to deviations in the production mechanisms and
kinematics for the different polarization states.

From these comparisons it can be concluded, that the approximations are reason-
able. Consequently, it is valid to deduce the boson’s polarization properties from the
observed particles in a mixed sample in this phase space. The selection criteria sup-
press the influence of other diagrams strong enough to assume the leptons originate
from bosons in the available samples. The effects, which are neglected, influence the
kinematic of the leptons mostly uniformly. However, the jet kinematic seems more diffi-
cult. These distributions are not only scaled but also distorted by the approximations.
Consequently, these jet-based variables seem not appropriate for polarization studies.
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In order to use these variables anyway is only valid if all effects are well understood.
This would allow for a correction of these effects.

A new version of the Whizard generator also allows for studies of the effects of
these correlations in more detail. From version 2.2.4on it is possible to use a set of
approximations of the spin density matrix used to take spin correlations into account.
Using these approximations, mixed samples can be generated with the exact same ap-
proximations necessary for the generation of polarized samples, namely a diagonal spin
density matrix. This sample should then be identical to the sum of the templates within
statistical uncertainties. This allows to generate samples after each used approximation
for a separate comparison of each step of these chain of approximations. This new
version of Whizard was not available in time to generate these samples for this thesis
though.

6.3 Influence of selection criteria
An important disadvantage of the reweighting method is its inability to ensure correct
influence of selection criteria. If the reweighting is only applied in one variable other
variables are not necessarily modeled correctly. Especially variables correlated to the
variable in which the reweighting was applied are expected to behave incorrectly.

Since it is known from theory that the decay angle θ∗V is correlated to the rapidity
y(V ) and pT(V ) of the boson V the reweighting is applied independently in bins of
these variables. Thereby, the dependence of θ∗V on these variables can in principle be
modeled.

The number of events necessary grows rapidly with the number of multidimensional
bins for these variables though. The size of the bins has to be adjusted such that the
number of events in each bin is sufficient for the fit to obtain the helicity fractions.
However, large bins result in unphysical steps in the distributions of these variables.
Consequently, adding another correlated variable would not be feasible as the necessary
number of events would multiply. In Figure 6.14 the sample’s distributions in pT(W+)
and y(W+) can be seen. In the pT(W+) distribution these steps occur at 30 GeV,
60 GeV, and 90 GeV. Those values are the borders of the bins used for the reweighting.
Also in the y(W+) distribution steps can be seen at the values corresponding to the
bin’s borders. These steps indicate that the distribution would not be modeled correctly
without the correction using the fit in different pT(W+)-y(W+) bins. The fits introduce
a correction in each pT(W+)-y(W+) bin. The shape of these distributions corresponds
to the previously determined values for the helicity fraction of each bin. The jumps in
the helicity fractions at the borders introduce incompatibilities in these shapes visible
as steps in the distributions.

These corrections could also be necessary in other variables. However, fitting in
a higher-dimensional space is infeasible due to the necessary large number of events.
These effects are of special importance if selection criteria are introduced on one of the
additional variables, since these possibly distort the angular distributions or distribu-
tions of other variables.

To quantify the influence on the distributions of the helicity samples the effects of
cuts have to be studied and compared to samples generated using WZdecay. For these
samples the dependence is modeled correctly. In Figure 6.15 the distributions are shown
for the different phase space definitions introduced in Section 5.5. In the total phase
space only a cut on the number of leptons2 is applied in the analysis. Since the samples
are generated with three charged leptons in the final state and no parton shower was
applied the found leptons are the three charged leptons originating of the hard process.
In this phase space all events are reconstructed resulting in an acceptance of 100 %.
However, some cuts have to be introduced for the simulation of the events to avoid
divergences and to reduce computing time. In the definition of the detector phase space
some additional cuts are included to model the reconstruction efficiency of the ATLAS
detector on a very basic level. The WZ phase space is defined by additional criteria to

2All electrons and muons on truth level are considered.
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Figure 6.14: Distributions of the helicity templates obtained using the reweighting
approach in the total phase space. (a) shows the transverse momentum of the W+

boson pT(W+) and (b) the rapidity y(W+) distribution. These are the variables in
whose bins the reweighting was applied. The borders of the bins are clearly visible
for both distributions. The orange distributions corresponds to the mixed sample
used as input and the blue and green distributions to the different helicity templates.
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Figure 6.15: Distributions of the sample with purely transverse helicity WTZT

in different phase spaces. On the left-hand side in (a) and (b) the distributions for
cos θ∗W+ and on the right-hand side in (c) and (d) for cos θ∗Z are shown. The templates
in the upper row are generated using WZdecay and in the bottom row using the
reweighting approach. The phase spaces are defined according to the Tables 5.3 and
5.4.
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6.3 Influence of selection criteria

select WZ di-boson events such as tighter pT(`) cuts and a cut on the invariant mass
on the pair of leptons assigned to the Z boson. This assignment is unambiguous for the
process definitions used throughout this thesis since only the channel with an electron,
a muon, and an anti-muon is considered. In the VBS phase space additional cuts are
applied on the jets to select the characteristic signature of two tagging jets of the vector
boson scattering process.

The distributions of the different phase spaces are consistent between the two meth-
ods. Only for |θ∗V | close to one distortions of the shape can be seen. In addition to these
distortions, the influence of the cuts is distributed mainly uniformly in cos θ∗V resulting
in a global scaling according to the total acceptance.

The cos θ∗Z distribution is symmetric around zero. This is expected since the angle
− cos θ∗Z corresponds to the decay angle of the second decay product. As the decay
products of the Z boson only differ in their charge the cuts influence the kinematics of
both decay products equally.

In the W+ boson case the decay products differ though. The neutrino is only
accessible via the missing momentum. Therefore the neutrino’s pseudorapidity cannot
be reconstructed. Since no criteria on the missing momentum was applied in any phase
space the kinematic of the neutrino is not restricted at all. This results in an asymmetry
in cos θ∗W+ as it is observed in Figures 6.15a and 6.15b. The observed distortion is in the
region of cos θ∗W+ ≈ −1. In this case the charged lepton’s momentum is approximately
anti-parallel to the boson’s momentum. Consequently, the charged lepton is expected
to have a small transverse momentum.

This distortion is expected to be caused for both bosons by the pT(`)min cut. This is
consistent with the behavior in the different phase spaces. In the detector phase space
the effect is rather small. The pT(`)min cut is rather small. The effect is much stronger
in the WZ phase space where a harder cut of 30 GeV is applied. As the minimum
transverse momentum is not changed in the VBS phase space compared to the WZ
phase space both show similar shapes.

Another effect can be seen in the cos θ∗W+ distributions. The ratio between the
distributions in the detector phase space and total phase space has a maximum at
cos θ∗W+ ≈ −0.9. This indicates non-uniform influence of another selection criterion
which suppresses cos θ∗W+ > −0.9. Out of the variables in which selection criteria were
applied, the pseudorapidity of the W+-lepton or the transverse mass of the W+ boson,
which can is calculated as

mT(W+) =

√
2 · pT(`W ) · pmiss

T ·
(

1− cos
(

∆φ
(
~̀W , ~pmiss

T

)))
, (6.3)

are assumed to cause this. The dependence of the decay angles θ∗V on these variables
are studied in order to distinguish between the effects of these variables and to validate
the expected influence of the cut on large transverse momenta of the W+-lepton.

Figure 6.16 shows the dependence of the decay angle θ∗Z on the transverse momentum
of the leading lepton pT(`Z1 ) originating from the Z boson. A strong dependence of θ∗Z
on pT(`Z1 ) can be seen, especially for pT(`Z1 ) < 50 GeV. Although not that strong also
for larger pT(`Z1 ) a dependence can be seen. For pT(`Z1 ) < 50 GeV large |θ∗Z | dominate.
This translates into a dominance of transverse fractions. Selecting only events with a
minimal pT(`Z1 ) suppresses |θ∗Z | ≈ 1 as expected.

The corresponding distributions for the W+ boson are shown in Figure 6.17. Again
a clear dependence on the transverse momentum of the charged lepton can be seen.
In contrast to cos θ∗Z , cos θ∗W+ is not symmetrically distributed with respect to zero.
For small transverse momenta of the W+-lepton the cos θ∗W+ distribution peaks at −1.
For higher transverse momenta of the charged lepton the maximum goes to higher
cos θ∗W+ . If events with a small transverse momentum of the W+-lepton are vetoed
cos θ∗W+ ≈ −1 are stronger suppressed. This confirms the assumptions deduced from
the cos θ∗W+ distributions in different phase spaces.

As it can be seen in Figure 6.18 the cos θ∗W+ distribution does not depend at all on
the transverse mass of the W+ boson mT(W+). As a consequence a cut on mT(W+)
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Figure 6.16: Different visualizations of the dependency of the cosine of the decay
angle cos θ∗Z on the transverse momentum of the leading Z-lepton pT(`Z1 ). (a) shows
a 2-dimensional histogram of the distribution in the cos θ∗Z-pT(`Z1 ) plane in arbitrary
units (a. u.). (b) shows a profile plot of the |cos θ∗Z |-pT(`Z1 ) dependency. This profile
is calculated as the mean value of |cos θ∗Z | in each bin of pT(`Z1 ). For this the absolute
value of cos θ∗Z has to be used. Otherwise the mean value would be around zero in
each bin due to the symmetry of cos θ∗Z around zero.
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Figure 6.17: Different visualizations of the dependency of the cosine of the decay
angle cos θ∗W+ on the transverse momentum of the charged W+-lepton pT(`W ). (a)
shows a 2-dimensional histogram of the distribution in the cos θ∗W+ -pT(`W ) plane in
arbitrary units (a. u.). (b) shows a profile plot of the cos θ∗W+ -pT(`W ) dependency.
This profile is calculated as the mean value of cos θ∗W+ in each bin of pT(`W ).
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Figure 6.18: Different visualizations of the dependency of the cosine of the decay
angle cos θ∗W+ on the transverse mass of the W+ boson mT(W+). (a) shows a 2-
dimensional histogram of the distribution in the cos θ∗W+ -mT(W+) plane in arbitrary
units (a. u.). (b) shows a profile plot of the cos θ∗W+ -mT(W+) dependency. This
profile is calculated as the mean value of cos θ∗W+ in each bin of mT(W+).
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Figure 6.19: Different visualizations of the dependency of the cosine of the decay
angle cos θ∗W+ on the pseudorapidity of the charged W+-lepton η(`W ). (a) shows a
2-dimensional histogram of the distribution in the cos θ∗W+ -η(`W ) plane in arbitrary
units (a. u.). (b) shows a profile plot of the cos θ∗W+ -η(`W ) dependency. This profile
is calculated as the mean value of cos θ∗W+ in each bin of η(`W ).

cannot explain the observed maximum in the ratio between the distributions in different
phase spaces in Figure 6.15.

The dependence of cos θ∗W+ on the pseudorapidity of the W+-lepton is shown in
Figure 6.19. It is again not symmetric with respect to cos θ∗W+ = 0 but the dependence
is not as pronounced as for the transverse momentum of the W+-lepton. Nevertheless,
for |η(`)| > 2 angles of cos θ∗W+ < −0.9 are suppressed. This combination would require
a very high boost and a high absolute value of the rapidity of the W+ boson. Only
for these kinematics a decay angle of cos θ∗W+ ≈ −1, for which the charged lepton’s
momentum partly cancels the boson’s momentum, results in a high rapidity lepton.
Selecting only events in which the absolute value of the pseudorapidity of the W+-
lepton is smaller than 2.5 results in the maximum in the ratio of the distributions in
the detector phase space and total phase space.

Thus, the causes of the observed distortions can be explained and are well under-
stood.

6.4 Phenomenology in VBS phase space
Having studied the influence of selection criteria for different phase spaces focus is set
on the VBS phase space from here on. This is the phase space with the most sensitivity
on the scattering process due to its strong background rejection.

The distributions of the decay angles cos θ∗V in this phase space are shown in Fig-
ure 6.20 for samples obtained using the reweighting approach and WZdecay. The
distributions of the samples with longitudinal polarization in the VBS phase space are
still very similar to those in the total phase space. For the samples with transversally
polarized bosons, the cut on the transverse momentum of the charged leptons caused a
large deviation from the inclusive distribution for |cos θ∗V | ≈ 1.

A comparison of the sum of the helicity samples obtained from WZdecay and a
mixed sample is shown in Figure 6.21. The distributions are again in good agreement
for both decay angles cos θ∗V . As it was observed in the total phase space the sum
of the reweighted templates accurately reproduces the input distribution. As this is
dictated by the implementation of the reweighting method this is expected and the
corresponding distributions are not shown here.

The resulting fractions of each helicity combination in the VBS phase space are
listed in Table 6.2. The results are again compatible between the two methods. Taking
into account only the distortions of the distributions caused by the cut on the transverse
momentum of the charged leptons one would assume an enhancement of the fractions.
This can, however, not be observed comparing to the fractions in Table 6.1. There
is a small enhancement to be seen, the assumed effect should be around 5 % though.
The cut on the pseudorapidity of the charged leptons mainly suppresses the leptons
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Figure 6.20: Comparison of helicity templates from different methods of
obtaining purely polarized samples from input sample generated using Mad-
Graph5_aMC@NLO. The samples for the distributions shown in (a) and (b) are
obtained using the reweighting approach, whereas the sample shown in the bottom
row in (c) and (d) are generated using WZdecay. The normalized distributions of
the cosine of the decay angle of W cos θ∗W (left) and Z cos θ∗Z (right) in the total
phase space are shown. In addition to the templates with known helicity (blue and
green), the distribution of a mixed sample (orange) is shown. This mixed sample
was also used as input for the reweighting method.
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Figure 6.21: Comparison of stacked templates generated using WZdecay to the
mixed sample (orange) used as input for the reweighting procedure in different vari-
ables in the VBS phase space. The stacked templates are scaled to the cross section
of the mixed sample. Different colors represent the different helicity combinations.
(a) shows the distribution in cos θ∗W+ and (b) for cos θ∗Z .
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6.4 Phenomenology in VBS phase space

Table 6.2: List of fractions for all helicity combinations obtained by different meth-
ods in the VBS phase space. Additionally, the cross sections for each sample of pure
polarization in the VBS phase space in fb are listed. The cross section in the bottom
row corresponds to the cross section of a sample with mixed helicities is shown. This
sample was also used as input for the reweighting procedure. For the reweighting
approach in (a) this cross section also corresponds to the sum of the cross sections of
the splitted samples. This is not required in (b) since the samples are independently
of each other in this case. For small interferences they should, however, be consis-
tent. The fractions listed in the bottom row are the sums of the fractions of the
splitted samples. This fraction also corresponds to the ratio of the sum of the cross
sections of the splitted samples over the cross section of the mixed sample given in
the bottom row.

(a) Reweighting method

cross section fraction
in fb in %

W+
T ZT 0.1639± 0.0001 53.83± 0.06

W+
T ZL 0.0604± 0.0000 19.83± 0.02

W+
L ZT 0.0578± 0.0000 18.97± 0.02

W+
L ZL 0.0224± 0.0000 7.37± 0.01

W+
X ZX 0.3044± 0.0001 100.00

(b) WZdecay

cross section fraction
in fb in %

W+
T ZT 0.1572± 0.0002 51.64± 0.14

W+
T ZL 0.0516± 0.0002 16.94± 0.08

W+
L ZT 0.0541± 0.0002 17.78± 0.09

W+
L ZL 0.0187± 0.0001 6.13± 0.05

W+
X ZX 0.3044± 0.0009 92.50± 0.40

originating from longitudinally polarized bosons. The combination of both cuts results
in a slight increase of the longitudinal fraction over the transverse fraction.

As a final test of the reweighting method kinematic distributions in other variables
are compared. For the reweighting approach the validity of these distributions cannot
be assured. Discrepancies can arise from a mis-modeling of correlations between the
transverse momentum, rapidity, or the decay angle of the bosons and other variables.
If such correlations with other variables occur deviations from the real distributions are
possible.

The samples simulated using WZdecay are expected to reproduce the actual dis-
tributions in the limits of the used approximations. For these samples the narrow-
width approximation is used and correlations between the helicity states are neglected.
Since the narrow-width approximation was also used for the samples of the reweight-
ing method only the neglected correlations are allowed causes of deviations between
both methods. The effect of these correlations can also be estimated for instance from
Figure 6.13. However, only effects smaller than 5 % have been observed there.

Any discrepancy that is not covered by this 5 % and statistical uncertainties therefore
indicates additional effects. These are assumed to be caused by the wrong modeling of
the reweighting method.

In Figure 6.22 a selection of kinematic variables is shown for the sample where both
bosons are longitudinally polarized. A larger set of distributions for this and other helic-
ity combinations are shown in Chapter B in the Appendix. Especially in the distribution
of the transverse momentum of the W+ boson in Figure 6.22a some large deviations
occur. Again the borders of the bins used for the reweighting at 30 GeV, 60 GeV, and
90 GeV can be seen. The distribution of the sample generated using WZdecay de-
creases more rapidly for higher pT. The steps introduced in the reweighting also occur
in the distribution of the W+ boson rapidity shown in Figure 6.22b. These effects can
be suppressed by optimizing the choice of the borders of the bins. In order to better
describe the transverse momentum distribution a larger number of bins is necessary.
This is not feasible with the available number of events.

In addition to the well known dependency on the bosons transverse momentum
and rapidity, other variables show large deviations. This is shown for the transverse
momenta of both leptons assigned to the Z boson (Fig. 6.22c and 6.22d), the trans-
verse momentum of the leading jet (Fig. 6.22e), and the rapidity of the sub-leading jet
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Figure 6.22: Comparison of kinematic distributions of samples of pure longitudi-
nal polarization obtained with the different methods. Samples generated using the
WZdecay approach are shown in blue and those generated by reweighting a mixed
sample in green. The transverse momentum of the W+ boson pT(W+) is shown in
(a). (b) shows the rapidity of the W+ boson y(W+). In (c) and (d) the transverse
momenta of the leading Z-lepton pT(`Z1 ) and sub-leading Z-lepton pT(`Z2 ) respec-
tively are shown. (e) shows the transverse momentum of the leading jet pT(j1) and
(f) the rapidity of the sub-leading jet.
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6.4 Phenomenology in VBS phase space

(Fig. 6.22f).
In all of the shown distributions deviations of more than 30 % can be seen. All of the

transverse momentum distributions show deviations for high values of the transverse
momentum. For these values the reweighting method overestimates the distribution for
the sample with two longitudinally polarized bosons. In addition to this, the distribu-
tions of the transverse momenta of the leading jet and the leading lepton assigned to
the Z boson are not well described for small values of the transverse momentum by the
reweighting method. Also the rapidity of the sub-leading jet is not well described. This
jet is simulated more central in the reweighting method.

The similar behavior in bins close to each other indicates systematic effects rather
than statistical fluctuations. The effect of the correlations between different helicity
states is estimated to be smaller than 5 %. Therefore at least a part of the deviations
is assumed to arise from a mis-modeling in the reweighting method. As a consequence
the reweighting method cannot be recommended for a study of the helicity fractions.
Some of the discrepancies could be minimized by an optimization of the choice of bins.
This would also require large amounts of statistics.

The approach of a separate boson decay using a narrow-width approximation using
WZdecay or a similar tool offers a more sophisticated method. If the narrow-width
approximation is justified the only additional assumption is a small effect of correlations.
This can be tested and quantified by comparing distributions to a mixed sample. The
reweighting approach on the other hand relies on small dependencies of the variable
which was used for the reweighting, on other variables. This can only be quantified by
implementing an additional method for the simulation of the samples as it was done in
this study.

To conclude the comparison of the different methods of obtaining samples with pure
polarization the distribution of the helicity fractions in the pT(V )-y(V ) plane are shown
in Figure 6.23. A similar plot is shown for the total phase space in Figure 6.7. The
latter values are obtained from the template fit necessary for the reweighting. The
values shown here were calculated from the distributions of the events in samples with
pure polarization in the pT(V )-y(V ) plane. These distributions of events are shown in
Figure D.2 in the Appendix. The fractions were calculated as the ratio of the sum of
the event weights for a given helicity over the sum of weights for all helicity samples.
Consequently, the fractions have to add up to one and correlations are neglected.
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Figure 6.23: Helicity fractions in the pT(V )-y(V ) plane are shown on the left-hand
side in (a) and (c) for the W+ boson and on the right-hand side in (b) and (d) for
the Z boson. The fractions are calculated as the ratio of the sum of weights for the
samples with longitudinal boson over the sum of weights for the sum of all samples.
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Chapter 7

Study of Observables

Most of the studies shown in Chapter 6 are performed on truth level. In particular
the angle θ∗V was calculated on truth level using the momentum information of both
decay products. Since this reconstruction is not possible in an analysis this chapter is
dedicated to study reconstructable observables sensitive to the boson’s polarization.

7.1 Reconstruction of event kinematics

For the calculation of the decay angle θ∗V the four-momenta of both decay products
pµ(`V1 ) and pµ(`V2 ) have to be known. The sum of both momenta is identical to the
four-momentum of the boson pµ(V ). The decay angle θ∗V is then defined in the rest
frame of the boson. Consequently, the boson’s four-momentum pµ(V ) is needed for the
calculation of the transformation to this frame.

In this study only the leptonic decays1 of the bosons are considered offering more
precise momentum measurement and better background suppression. Due to its short
lifetime only the tau lepton’s decay products can be measured. These consist of a
tau-neutrino ντ and the decay products of a W boson. Thus, identification and recon-
struction of tau leptons are more complicated and less accurate. Decays resulting in
final states with tau leptons are not considered here.

7.1.1 The longitudinal momentum of the neutrino

The decay angle of the Z boson θ∗Z can be calculated in analyses for examined decays
into e± or µ± pairs. It can therefore be used for a potential measurement of the Z
boson’s polarization fractions.

The leptonic decays of the W± bosons contain neutrinos in each channel. For this
reason the decay angle θ∗W± cannot be fully reconstructed for any decay channel. Beside
the neutrino originating from the W± boson every particle in the final state is assumed
to be measurable. Following this assumption the missing transverse momentum ~pmiss

T
can be identified as the transverse momentum of the neutrino ~pT(νW ). For instance
for additional neutrinos, other particles escaping the detector untracked or large mis-
measurements of momenta this identification is not valid though. Neglecting these
effects yields additional possibilities to reconstruct the boson’s momentum. Neglecting
the neutrino’s mass (see Table 2.1) its four-momentum pµ(νW ) can be reconstructed
with only one degree of freedom.

Assuming the neutrino originates from aW± boson further restrictions are possible.
In this case the W± boson’s four-momentum pµ(W±) can be calculated as

pµ(W±) = pµ(`±) + pµ(ν) . (7.1)

1The decay of a Z boson to pairs of neutrinos are leptonic decays as well. However, these decays
channels are not considered as both decay products are not measurable at the ATLAS detector.
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7 Study of Observables

The boson’s invariant mass MW is then given by

M2
W = pµ(W±)pµ(W±) = pµ(`±)pµ(`±) + pµ(ν)pµ(ν) + 2pµ(`±)pµ(ν) (7.2)

= M2
`± +M2

ν + 2pµ(`±)pµ(ν) . (7.3)

Subsequently, the masses of the leptons M`± and Mν are neglected which leads to
1

2
M2
W =

(
E(`±)E(ν)− px(`±)px(ν)− py(`±)py(ν)− pz(`±)pz(ν)

)
. (7.4)

Applying the identification of the neutrino’s transverse momentum ~pT(νW ) with ~pmiss
T

and demanding the W boson to be on-shell pz(ν) is the only unknown variable in
Equation (7.4). Solving this equation for pz(ν) leads to the quadratic equation

0 = p2T(`±)p2z(ν)− 2Cpz(`
±)pz(ν)− C2 + E2(`±)

(
pmiss
T

)2
(7.5)

with

C =
1

2
M2
W + px(`±)px(ν) + py(`±)py(ν) . (7.6)

Using the assumptions shown here there are up to two real solutions possible for pz(ν)

pz,±(ν) =
1

pT(`±)

(
Cpz(`

±)

pT(`±)
±
√
C2p2z(`

±)

p2T(`±)
+ C2 − E2(`±)

(
pmiss
T

)2)
. (7.7)

A set of different algorithms is used to determine values for the longitudinal mo-
mentum of the neutrino:

pmin
z (ν): This value represents the solution given in Equation (7.7) with the smaller

absolute value. If no real solution exists the common real part of the complex
solutions is chosen.

pmax
z (ν): For this value the solution with the larger absolute value is chosen. If no real

solution exists the common real part of the complex solutions is chosen. In some
cases this value is unphysically large. A cut-off is introduced to avoid these cases.
Instead of values larger than the total cross section 13 TeV no value is taken. As
a result this value is not available for all events.

pmean
z (ν): In this reconstruction method the average of both solutions is chosen. This

can be calculated directly as pmean
z (ν) = Cpz(`

±)
p2T(`±)

. Similar to pmax
z (ν) this value

can become unphysical. This is prevented using the cut-off introduced above.

pzeroz (ν): This method uses only the missing transverse momentum for the momentum
of the neutrino. The longitudinal component is always zero.

Based on these assumptions for pz(ν) the corresponding decay angles θ∗W and other vari-
ables can be calculated. Different versions of the decay angle θ∗, min

W , θ∗, max
W , θ∗, mean

W ,
and θ∗, zero

W , where the upper index denotes the used reconstruction method of pz(ν),
can be used as reconstructed observable.

In order to estimate the correlation to the decay angle reconstructed using the
true neutrino momentum 2-dimensional histograms of the cosine of the decay angles
are shown in Figure 7.1. It can be seen, that the reconstructed angles cos θ∗, min

W and
cos θ∗, max

W are strongly correlated to the true cos θ∗W . Although the distribution is
much broader the angle cos θ∗, mean

W is also correlated to cos θ∗W . The cos θ∗, zero
W is still

correlated, however, it overestimates cos θ∗W very often. cos θ∗, min
W and cos θ∗, max

W are
also biased to larger or smaller values respectively.

To quantify the validity of the reconstruction methods the fraction of correct re-
constructions in bins of the true cos θ∗W is plotted in Figure 7.3. For this calculation a
reconstruction is counted as correct if the bin containing the reconstructed value directly
adjoins, or corresponds to the bin containing the true value. The integrated ratios are
listed for all reconstructions in Table 7.1. It should be noted that these values are very
sensitive to the acceptance for a correct reconstruction.
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Figure 7.1: Comparison of the 2-dimensional distributions in arbitrary units (a. u.)
of the different reconstructed cos θ∗W+ and its value on truth level. (a) shows the
distribution for the reconstruction using the pmax

z (ν) and (b) for pmin
z (ν). (c) shows

the dependency for cos θ∗, mean
W+ and (d) for cos θ∗, zero

W+ .
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Figure 7.3: Fractions of correct
reconstructions fcorrect for the dif-
ferent reconstruction methods of
the longitudinal momentum of the
neutrino over the true cos θ∗W+ . A
reconstruction is evaluated as cor-
rect is its value corresponds to the
correct or an adjacent bin of the
histogram shown in Figure 7.1.

Table 7.1: List of total fractions
of correct reconstructed events for
different reconstruction methods of
pz(ν). These values correspond to
the mean of the entries in the dis-
tributions shown in Figure 7.3.

Method of Fraction of correct
reconstruction reconstructions

Min 0.555± 0.025
Max 0.461± 0.022
Mean 0.274± 0.015
Zero 0.308± 0.015
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y
p1

p2

z

x

Figure 7.4: Schematic representation of the definition of the axes in the Collins-
Soper frame. The y-axis is defined to be perpendicular to the event plane which is
spanned by the directions of the proton momenta in the rest frame of the boson. The
z-axis bisects the direction of the momentum of one of the protons, denoted with p1,
and the direction of the negative momentum of the other proton, shown as dashed
line. The x-axis is also in the event plane and is perpendicular to the z-axis.

7.1.2 Decay angle in Collins-Soper frame

An alternative approach is offered by a special choice of the reference frame introduced
by Collins and Soper [67]. This frame is defined such that the resulting decay angles
in this frame denoted by θ∗, CS

V and φ∗, CS
V are largely independent of the choice of a

solution of Equation (7.7) for the neutrino’s longitudinal momentum in the laboratory
frame.

This is achieved in a special rest frame of the boson. The x-z plane is spanned by
the beam directions in this frame. The z axis is chosen to bisect the angle between the
positive momentum of the first and the negative momentum of the second beam. The
y axis is perpendicular to the bosons momentum in the laboratory frame. Its positive
direction is given by the cross product of the z axis of the laboratory frame and the
direction of the boson’s transverse momentum ~pT(W ). The definitions of the axes are
shown in Figure 7.4.

Constraining the invariant mass of the lepton-neutrino system to the mass of the W
boson MW the lepton’s momentum in this frame ~p CS(`) is given by [30]

pCS
x (`) =

1

2

MW√
M2
W + pT(W )

(2pT, ||(`)− pT(W )) , (7.8)

pCS
y (`) = pT, ⊥(`) , (7.9)

pCS
z (`) = ±MW

2

√
1− (pCS

x (`))
2

+
(
pCS
y (`)

)2
M2
W /4

. (7.10)

Here pT(W ) denotes the absolute value of the W boson’s transverse momentum in the
laboratory frame. pT, ||(`) is the projection of the lepton’s transverse momentum ~pT(`)
on ~pT(W ) and pT, ⊥(`) denotes the part of ~pT(`) perpendicular to ~pT(W ).

In this frame the leptons transverse momentum is independent of the neutrino’s
longitudinal momentum. The ambiguity of pz(ν) in the laboratory frame is mapped in
an ambiguity of the sign of pCS

z (`). Using the usual definition of θ∗, CS
W of this momentum

~p CS(`)

θ∗, CS
W = arctan

√
(pCS
x (`))

2
+
(
pCS
y (`)

)2
pCS
z (`)

(7.11)

this ambiguity translates directly in an ambiguity of the sign of cos θ∗, CS
W . Consequently,

the variable
∣∣∣cos θ∗, CS

W

∣∣∣ is independent of the chosen solution in Equation (7.7). If
the assumptions made for the derivation of Equation (7.7) are fulfilled, the variable
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Figure 7.5: Distribution of a sample of the full process in arbitrary units (a. u.)
in plane spanned by the decay angle in the Collins-Soper frame calculated using the
true momentum of the neutrino and the observable cos θ∗, CS

W+ . For this reconstruction
the assumption of on-shell W+ bosons is applied.

∣∣∣cos θ∗, CS
W

∣∣∣ takes the same value as if it would be calculated2 using the true neutrino
momentum. Figure 7.5 shows the distribution of a sample of the full process in a plane
spanned by the cosine of the decay angle in the Collins-Soper frame calculated using
the true neutrino momentum and using the reconstruction.

The distributions of samples with pure helicity which is defined in the laboratory
frame in this thesis, in

∣∣∣cos θ∗, CS
W

∣∣∣ differ from the predictions in Equation (2.39) due to
the differently defined z axis. Nevertheless, this observable is assumed to be sensitive
on the W boson’s polarization.

7.1.3 Observables in transverse plane
In previous measurements of the helicity fractions variables in the transverse plane
were used often. For this the longitudinal momenta of all particles are omitted. For
small pT(V ) these variables are less sensitive. Often a high selection criterium for the
transverse momentum of the W boson is applied to improve the correlation to the true
decay angle θ∗V . An increased cut is not expected to be applicable due to the low
statistics in the VBS phase space. Nevertheless, some of these variables are introduced
here for a study of their sensitivity.

Lepton projection LP : This variable was introduced by the CMS Collaboration for
polarization measurements of a W boson [59]. It is defined as the projection of
the scaled transverse momentum of the lepton onto the normalized transverse
momentum of the W boson

LP =
~pT(`)

|~pT(W )| ·
~pT(W )

|~pT(W )| . (7.12)

“Transverse helicity” angle θ∗, 2D
W : The “transverse helicity” angle θ∗, 2D

W was intro-
duced by the ATLAS Collaboration according to the full decay angle θ∗W in the
transverse plane [31]. It is defined as

cos θ∗, 2D
W =

~p∗T(`) · ~pT(W )

|~p∗T(`)| |~pT(W )| , (7.13)

where ~p∗T(`) is the transverse momentum of the lepton in the rest frame of a
hypothetical W boson reconstructed using only the transverse momenta of decay
products.

Ratio of transverse momenta RpT : This variable was introduced by Doroba et al.
in a study of beyond standard model physics models in the scattering of longi-
tudinally polarized W bosons in the `ν`νjj final state [62]. It is defined as the

2The decay angle in this frame can also be calculated without using Equations (7.8) to (7.10), but
reconstructed by applying the boost and the corresponding rotations.
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Figure 7.6: Two-dimensional distributions in arbitrary units (a. u.) for different
combinations of observables of the purely longitudinally polarized sample compared
to the purely transversely polarized samples. The plots on the left-hand side show
the distributions of the sample with two longitudinal bosons and on the right-hand
side of the sample with two transverse bosons. The upper row shows the distribution
in the plane of the transverse momenta of the charged lepton assigned to the W+

boson and the neutrino. The plots in the middle row show the plane of the transverse
momenta of the leptons assigned to the Z boson with the leading Z-lepton on the
x-axis and the plots in the bottom row show the distribution in the plan of the
transverse momenta of the jets.

ratio of the product of the charged leptons’ transverse momenta over the product
of the jets’ transverse momenta

RpT =
pT(`1) · pT(`2)

pT(j1) · pT(j2)
. (7.14)

This variable needs to be adjusted to the WZ scattering as the choice of the used
leptons is not unambiguous. In this study the lepton of negative charge assigned
to the Z boson was used in combination to the lepton assigned to the W boson
since these leptons are also used for the definition of the decay angles θ∗W and θ∗Z .

Other combination of transverse momenta: In order to study whether other com-
binations of transverse momenta are sensitive to the bosons’ helicities the distri-
bution in a two-dimensional histogram of transverse momenta are shown and
compared for different helicities in Figure 7.6.

In the distribution for the transverse momenta of the jets no significant differences
are to be seen. However, the distributions of the transverse momenta of leptons,
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7.2 Quantification of sensitivity to boson polarization

which are assigned to a common boson, differ with the helicity of the boson.
For the longitudinal helicities the distribution is quite narrow around a diagonal
described by pT1+pT2 ≈ 100 GeV. The samples with transverse polarization have
a broader distribution around this diagonal though. In order to quantify these
combinations of the leptons’ transverse momenta are introduced. The scalar sum
SV is given by

SW = pT(`W ) + pmiss
T , SZ = pT(`Z1 ) + pT(`Z2 ) , (7.15)

where `V1 and `V2 denotes the leptons assigned to the boson V . Additionally, the
transverse momentum of the bosons can be reconstructed using

pT(W ) =
∣∣~pT(`W ) + ~pmiss

T
∣∣ , pT(Z) =

∣∣~pT(`Z1 ) + ~pT(`Z2 )
∣∣ . (7.16)

7.2 Quantification of sensitivity to boson polarization
To compare the sensitivity of the introduced variables template fits are performed.
Using Rivet the distributions in these observables in the VBS phase space are de-
termined for different samples. Subsequently, these distributions of the samples with
known boson helicity are used as templates. The sum of these templates is fitted to the
distribution originating from a mixed sample using an extended maximum likelihood
fit (see [68]). Therefor the statistical uncertainties of the MC sample are used, i. e. the
uncertainty is calculated as the square root of the number of MC events per bin. The
applied fitting method does not constraint the integral of the sum to the corresponding
value of the mixed sample. Nevertheless, the fractions are listed with respect to the full
mixed sample. Consequently, the sum of the fractions is allowed to differ from one.

In addition to the observables introduced in Section 7.1, the transverse momentum
and the (pseudo-)rapidity of the jets and leptons, and the decay angles reconstructed
on truth level are studied.

In the first step a sum of the four samples generated with WZdecay and Whizard is
fitted to mixed sample generated using Whizard containing only the resonant channels.
Discrepancies between the sum and the mixed sample are assumed to originate only
from statistical uncertainties and from neglecting correlation effects between the helicity
states. Latter is assumed to be small as discussed in Section 6.4. The sum using the
fitted fractions is expected to be in good agreement with the mixed sample. The results
of these fits are listed in Table 7.2.

The number of events for the different helicity fractions is dictated by the MC
generator used for the simulation of the bosons’ production process. The resulting
fractions are used as an estimate for the fractions in the mixed sample. The fit in a
observable sensitive to the helicity of both bosons is thus expected to reproduce these
fractions. These values are also listed in Table 7.2.

If a variable is only sensitive to the helicity of one of the bosons, the fit is only
expected to reproduce the sum of the fractions with a given helicity of this boson.
For instance the decay angle of the Z boson θ∗Z is not expected to be sensitive to
the helicity of the W boson. The distributions of samples with same Z helicity but
different W helicity are expected to be very similar. The fit will therefore not be able
to determine the helicity fractions of the W boson. However, f(WLZT) + f(WTZT)
should be determined correctly. Again these values are listed in Table 7.2.

To get more accurate results for the sensitivity on the helicity of a single boson
additional fits are done. For each boson the templates only differing in the helicity of
the other boson are combined using the fractions dictated by the MC generator. This
results in smaller statistical uncertainties of the templates and a decreased number of
free parameters. Consequently, this is expected to decrease the uncertainties of the
determined fractions. The results are listed in Table 7.3. The fractions itself are in
good agreement to the sum of the corresponding fractions listed in Table 7.2.

As additional test the same set of fits was applied to a sample with known helicity
rather then a mixed sample. Therefor the sum of the templates was fitted to one of
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the templates itself. In order to exclude influence of statistical fluctuations the sample
was divided using Rivet. This results in two samples whose distributions are identical
besides statistical fluctuations. These fluctuations are independent from each other
by construction. Due to the dominance of MC statistics the sample with transversally
polarizedW and Z is chosen to be divided. The results of these fits are listed in Table 7.4
for the fit of all four templates and in Table 7.5 for the fits with combined templates.
Plots for all of the aforementioned fits are shown in Chapter C in the Appendix.

For a variable to be considered sensitive to the polarization of both bosons the fits
with the full set of templates should reproduce the expected fractions. This should be
reproducible for the fit to the mixed sample and to the sample with pure transverse
polarization.

None of the studied observables fulfills these requirements. Following the argumen-
tation in Subsection 3.2.2 the kinematics of jets was assumed to be sensitive on both
bosons. This is not confirmed by the results of these fits for the studied variables. The
results shown here indicate that these variables are insensitive to the bosons’ helicity
contradicting the assumption.

Since most of the variables introduced in Section 7.1 are assumed to be sensitive to
the helicity of a single boson this sensitivity is studied in more detail below. Sensitive
variables are expected to reproduce the expected fractions in the fits using combined
templates (see Tab. 7.3 and 7.4). In order to compare the sensitivity of different variables
fulfilling these requirements the uncertainties of the fractions obtained in the fit to the
mixed sample can be used. For variables in which the distributions of the different
helicity templates are well distinguishable the uncertainties are expected to be small.

Z helicity The results listed in Table 7.3b indicate a sensitivity to the Z boson’s
helicity of the observables cos θ∗, min

W , cos θ∗, zero
W , cos θ∗Z , SZ , pT(`W ), pT(`Z1 ), and η(`Z2 ).

The obtained fractions for fits in these variables differ from the expected values by less
than 0.01.

This is not expected for the variables based on theW boson’s kinematics cos θ∗, min
W ,

cos θ∗, zero
W , and pT(`W ). The fit results of these observables are reproduced by neither

of the other fits (see Tab. 7.2, 7.4, and 7.5b). This is interpreted as fluctuation and the
observables are not considered as sensitive to the helicity of the Z boson.

The observables based on the leptons assigned to the Z boson cos θ∗Z , SZ , pT(`Z1 ),
and η(`Z2 ) fulfill the requirements in the other fits though. The uncertainties for all of
this observables are about 0.005. The obtained fractions differ between the observables.
Nevertheless, they are compatible with the expected value within the uncertainties.
Since the expected value is also an estimation based on the frequencies with which
the different helicities are simulated in the boson’s production process the variables
have to be considered equally sensitive at this level. Comparisons of the normalized
distributions of the helicity templates and the mixed sample for all of these observables
are shown in Figure 7.7.

The fractions obtained from the fit of the full set of templates to the distribution
with pure transverse polarization in the cos θ∗Z observable have very large uncertainties.
This fit did not converge due to uncertainties during the optimization. This can be fixed
by decreasing the number of bins suppressing the influence of statistical fluctuations.
The results with a smaller number of bins are listed in Table 7.6. The resulting fractions
result in a good agreement of the sum and the template of transverse polarization for
both numbers of bins. This is shown in Figure 7.8. This is considered a technical issue
rather than a disadvantage of this observable.

W helicity Due to the large number of proposed observables and the lack of ability
to reconstruct the true decay angle θ∗W these observables are studies in more detail.

Reconstructed θ∗W using different pz(ν): The different methods of reconstruction
for pz(ν) result in fractions in the order of the expected value. The total range of
the fractions for the different methods is 0.03. Interestingly also the fit in cos θ∗W
on truth level is hardly compatible with the expected value.
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7.2 Quantification of sensitivity to boson polarization
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7 Study of Observables
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7.2 Quantification of sensitivity to boson polarization
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7 Study of Observables
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Figure 7.7: Normalized distributions of the samples of different helicity combina-
tions (blue and green) and a mixed sample (orange) in different observables sensitive
to the Z boson’s polarization. (a) shows the cosine of the decay angle of the Z boson
cos θ∗Z , (b) the scalar sum of the transverse momenta of the leptons assigned to the
Z boson SZ , (c) the transverse momentum of the leading Z-lepton pT(`Z1 ) and (d)
the pseudorapidity of the sub-leading Z-lepton η(`Z2 ).

Table 7.6: Fit result of the fit of the full set of templates to the distribution with
pure transverse polarization of both bosons in the cos θ∗Z observable with decreased
number of bins.

fraction

WLZL 0.006± 0.032
WTZL 0.000± 0.004
WLZT 0.298± 0.946
WTZT 0.697± 0.966
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Figure 7.8: Stacked templates according to the fitted fractions compared to the
distribution of the sample with transverse polarization (orange) in the cos θ∗Z for
different numbers of bins.
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Figure 7.9: Normalized distributions of the samples of different helicity combina-
tions (blue and green) and a mixed sample (orange) in the reconstructed decay angle
cos θ∗, min

W+ in (a) and the true decay angle cos θ∗, min
W+ in (b) are shown.
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Figure 7.10: Normalized distributions of the samples of different helicity combi-
nations (blue and green) and a mixed sample (orange) in the decay angle in the
Collins-Soper frame cos θ∗, CS

W+ in different phase spaces. In (a) the distribution in the
total phase space and in (b) in the VBS phase space are shown.

A comparison of the deviations of the resulting fractions from the value obtained
from the cos θ∗W distribution on truth level with the fractions of correct recon-
structed events shows similar behavior. The pmin

Z (ν) reconstruction is closest to
the true distribution. The pzero

z (ν) reconstruction results in rather large devia-
tions from the expected value and from the value obtained from cos θ∗W . This
method cannot be recommended for measurements. Distinguishing between the
other methods is complicated by the observed deviations between the fraction
obtained from the cos θ∗W distributions and the expected value. This should be
studied in more detail in later studies.

As an example for these reconstruction methods the normalized distributions for
different polarization templates and the mixed sample are shown for cos θ∗, min

W in
comparison to cos θ∗W in Figure 7.9. The distributions of all variables are shown
in Chapter C in the Appendix.

Decay angle in Collins-Soper frame θ∗, CS
W : The observable cos θ∗, CS

W is not sensi-
tive to the bosons polarization in the analysis phase space. The resulting fractions
are not compatible to the expected values in the fits to a mixed sample. This can
also be seen in the distributions of the polarization templates in Figure 7.10. In
addition to the distributions in the VBS phase space, the corresponding distri-
butions in the total phase space are shown. It can be seen, that the values for
cos θ∗, CS

W where the polarizations differ are suppressed by the applied phase space
cuts. The distributions in the VBS phase space are hardly distinguishable from
each other.
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Figure 7.11: Normalized distributions of the samples of different helicity combina-
tions (blue and green) and a mixed sample (orange) in different observables in the
transverse plane sensitive to the W+ boson’s helicity. (a) shows the distribution of
the scalar sum of the transverse momenta of the charged lepton assigned to the W+

boson and the missing momentum SW . (b) shows the distribution of the transverse
momentum of the W+ boson pT(W+).

Observables in transverse plane: The lepton projection variable LP and the cosine
of the transverse helicity angle cos θ∗, 2D

W are sensitive to the polarization of theW
boson. The fractions for both variables show deviations from the expected value
though. The ratio of transverse momenta RpT does not meet the requirements for
sensitive observables. It is not considered suited for a later measurement.

The scalar sum of the transverse momenta SW on the other hand provides a good
framework. The fits in these observable reproduce the expected values. Also the
uncertainties are compelling to the reconstructions of the decay angle and even
to the full decay angle in the Z boson case. This indicates a good discrimination
between the different templates in this observable. The distributions for SV are
shown in Figure 7.11a for both bosons.

The templates corresponding to longitudinally polarized bosons show a significant
peak around the boson mass and high SV are suppressed. The templates with
transverse bosons tend to have larger SV and the peak is much broader.

The transverse momentum of the W boson results in similar uncertainties on
the fitted fractions. The obtained fractions are not in good agreement with the
expected values. The distributions are shown in Figure 7.11b.

Momenta of single reconstructed objects: The transverse momenta of the jets as
well as their rapidities do not show the assumed behaviour. The fitted fractions
for these observables do not agree with the expected values. The assumed effect on
the pT of the jets seems to be suppressed by other effects. For instance polarization
changes of the boson during their interactions (see Subsection 3.2.1) could cause
such a suppression. The distributions of the transverse momenta of both jets are
shown in Figure 7.12.

The kinematic observables of the charged lepton and the missing transverse mo-
mentum pmiss

T are again sensitive to the boson polarization. Similar to other ob-
servables discussed above the uncertainty is very small while the resulting fractions
deviate from the expected value for the transverse momenta. The pseudorapidity
of the charged lepton is in good agreement to the expectations. Both variables
for the charged lepton are shown in Figure 7.13.

As already mentioned in the discussion of the uncertainties in the fit to the purely trans-
verse sample in the cos θ∗Z the quality of the fit depends on the choice of the binning.
In order to study this the fits are redone with different number of bins Nbins. The his-
tograms written in Rivet have Nbins = 60. Bins cannot be divided but only completely
merged by rebinning. Consequently, the available numbers of bins are divisors of the
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Figure 7.12: Normalized distributions of the samples of different helicity combina-
tions (blue and green) and a mixed sample (orange) of the transverse momenta of the
different jets. In (a) the distribution of the transverse momentum of the leading jet
pT(j1) and in (b) the transverse momentum of the sub-leading jet pT(j2) are shown.
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Figure 7.13: Normalized distributions of the samples of different helicity combina-
tions (blue and green) and a mixed sample (orange) of the kinematic variables of the
charged lepton assigned to the W+ boson. In (a) the distribution of the transverse
momentum pT(`W ) and in (b) of the pseudorapidity η(`W ) are shown.
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Figure 7.14: Distribution of the resulting fraction of the combined sample for
the longitudinal boson polarization for fits using different numbers of bins. The
upper row shows different sets of observables sensitive to the W+ boson’s polariza-
tion whereas the bottom row shows a set of observables sensitive to the Z boson’s
polarization. The black lines correspond to the expected value.

input Nbin. In Figure 7.14 the dependency of a resulting fraction on the number of bins
is shown for fits in different observables. It can be seen that the values as well as the
uncertainties are fairly constant for more than 15 bins. However, many of the studied
observables show significant changes if less than about five bins are used. The choice
for the number of bins used for the above fits of 20 or 30 is well justified.

All in all for both bosons a set of observables seems to be sensitive on the helicity.
For the Z boson the decay angle cos θ∗Z is reconstructible and offers a possibility for
a later measurement. Nevertheless, other observables also offer a good sensitivity to
the helicity. For instance the transverse momenta and pseudorapidities of the leptonic
decay products are very sensitive to the boson helicity.

Especially the scalar sum of the transverse momenta of both decay products SV
look promising for a later measurement. Since SV is calculated only using the absolute
values of the transverse momenta of both leptonic decay products it is also expected
to be less distorted by detector effects. However, for the reconstruction of the boson’s
transverse momentum pT(V ) or decay angles θ∗V also a correct measurement of the
direction of the leptons’ momenta is essential.

For several observables the resulting fractions deviated from the expected value
despite a very small uncertainty. This could be studied in further analyses using an
additional set of samples of known boson helicity generated using the same set of pa-
rameters. These samples could be mixed to samples of varying, well-known helicity
fractions. By redoing the above fits to these samples one would obtain more reliable
conclusions about the sensitivity of the different observables.

7.3 Outlook for Run-2 of the LHC

To conclude a rough estimate for the uncertainties of a measurement of the polarization
fractions in the WZjj − EW process using data collected during the second run of
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Figure 7.15: Plots in the upper row show the normalized distributions of the sam-
ples of different helicity combinations (blue and green) and a mixed sample (orange).
In (a) the distribution in the scalar sum of the W -leptons’ transverse momenta SW

and in (b) in the absolute value of the cosine of the Z decay angle |cos θ∗Z | is shown.
The uncertainty of the mixed sample is calculated from the statistical uncertainty of
the expected number of events for 100 fb−1.
The bottom row shows a comparison of the stacked templates according to the fitted
fractions and the distribution of a mixed sample scaled to the integrated luminosity
of Lint = 100 fb−1. (c) shows the comparison in the scalar sum of the W -leptons’
transverse momenta SW and (d) for |cos θ∗Z |.

the LHC scheduled from 2015 to 2018 is given below using the obtained information.
The integrated luminosity is currently estimated to be about Lint ≈ 100 fb−1. For this
study the MC sample is scaled to this integrated luminosity. The used sample does only
include the e+νeµ±µ±jj final state. The sample is additionally scaled by a factor of
four to factor the other allowed lepton combinations in. However, no scale factor was
introduced for the influences of the W− boson. The ratio of W+/W− depends on the
phase space and the exact behavior of the templates corresponding toW− has not been
studied here.

The statistical uncertainties for the mixed sample are set to the statistical uncertain-
ties of the corresponding event numbers assuming a Poisson distribution. The statistical
uncertainties of the templates remain those of the MC sample. Systematic uncertainties
have not been considered here. In a measurement, however, backgrounds have to be sub-
tracted first leading to even larger uncertainties. For the measurement the distributions
of the templates will also be distorted for instance by detector effects. Consequently,
the results shown here have to be treated carefully. They should be interpreted as a
lower limit on the uncertainties rather than an actual estimate. If these uncertainties
are already too large a measurement would be futile.

The fits are applied in the distributions of SW and |cos θ∗Z | for the set of combined
templates to estimate the helicity of the bosons separately. In order to account for
the large statistical uncertainties the number of bins is decreased. The symmetry of
cos θ∗Z is exploited by using |cos θ∗Z | instead. The resulting distributions are shown in
Figure 7.15 and the fitted fractions are listed in Table 7.7.

At this level the templates are still well distinguishable. In both observables the
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Table 7.7: List of resulting fractions for a fit on the polarization of a single boson
considering only the statistical uncertainty of the number of expected events for
100 fb−1. (a) lists the results for a fit to the W+ polarization in the observable SW

and (b) lists the result for a fit of the Z boson’s polarization for a fit in |cos θ∗Z |.

(a)

fraction

WLZX 0.263± 0.128
WTZX 0.737± 0.144

(b)

fraction

WXZL 0.260± 0.159
WXZT 0.739± 0.170

longitudinal template differs significantly from the mixed sample despite the large sta-
tistical uncertainties. As a result the fit still converges. The uncertainties of the frac-
tions are larger by a factor of 30 compared to the MC statistics. Nevertheless, the
uncertainties are still acceptable.
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Chapter 8

Summary

This thesis presents a precursory study of the polarization in the scattering of massive
gauge bosons. A measurement of this polarization poses an important test of the
Standard Model. The scattering process including the four-boson vertex is a prediction
of the Standard Model gauge symmetry. In addition, the longitudinally polarized states
of the massive gauge bosons W± and Z can be identified as the Goldstone bosons
introduced by electroweak symmetry breaking. Consequently, a study of the behavior
of the scattering of longitudinally polarized gauge bosons allows conclusions regarding
the gauge structure of the Standard Model and the mechanism of electroweak symmetry
breaking. Provided the expected integrated luminosity of Lint = 100 fb−1 is achieved,
these studies might be possible with the data collected during the second run of the
LHC.

In this thesis, a set of tools necessary for such studies has been prepared and tested.
In the first part, different approaches to obtain samples of events with known boson
polarization have been introduced. The majority of previous studies of polarization has
reweighted the inclusive reconstructed distribution of the decay angle of the boson to its
prediction for a given polarization. An alternative approach utilizes the narrow-width
approximation, which allows for the interpretation of separate polarization states of
intermediate particles in the first place. Using this approximation, the full matrix ele-
ment can be factorized. If in addition spin correlations are neglected, the simulation of
the production and decay of the bosons can be done independently from each other. In
oder to simulate the boson decays according to their helicity state the tool WZdecay
has been implemented in this thesis. Having studied the effect of the applied approxi-
mations in different phase spaces, both approaches have been validated and compared
for the e+νeµ+µ−jj−EW final state at a center-of-mass energy of

√
s = 13 TeV. Since

the reweighting approach cannot ensure correct behavior of the samples in kinematic
distributions, the approach using WZdecay is favored.

In addition, the sensitivities of different observables have been studied at a center-
of-mass energy of 13 TeV. The superior reconstruction ability of the event kinemat-
ics lead to a choice of the e+νeµ+µ−jj − EW final state rather than the like-sign
`±ν``′

±
ν`jj − EW final state despite the lower signal-to-background ratio. In order

to study the sensitivity, template fits have been employed for distributions of these
variables in the analysis phase space. The templates for the different helicity combina-
tions have been obtained from samples generated using WZdecay at parton level. The
comparison of the resulting fractions and their uncertainties have been used to quantify
the sensitivities of each observable on the polarization of the boson in question. The
transverse momentum as well as the pseudorapidity of the charged lepton assigned to
the W+ boson and the scalar sum of the transverse momentum of the charged lepton
assigned to the W+ boson and the missing transverse momentum, SW , show the high-
est sensitivity to the polarization of the W+ boson. For the Z boson, the cosine of the
decay angle cos θ∗Z and the scalar sum of the transverse momenta of the lepton pair
assigned to the Z boson, SZ , prove to be most sensitive. The distributions scaled to
the integrated luminosity of Lint = 100 fb−1 for two of these observables are shown in
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Figure 8.1: Comparison of stacked templates generated using WZdecay according
to the fractions obtained from generation in Whizard (blue and green) to a mixed
sample (orange) scaled to 100 fb−1. In (a) the distribution of the scalar sum of the
W -leptons’ transverse momenta SW and in (b) of the absolute value of the cosine of
the Z decay angle |cos θ∗Z | are shown.

Figure 8.1. Even for the small number of events, the templates deviate significantly
from the mixed sample allowing for a possible measurement of the fractions for each
template.

For such a measurement, additional effects are to be considered. Subsequent studies
will have to evaluate systematic uncertainties. These arise for instance from subtraction
of backgrounds, theory uncertainties, and detector effects. In addition to this, the full
`±ν``′

±
`′∓jj−EW final state rather than just the e+νeµ+µ−jj−EW final state studied

in this thesis will have to be considered.
The presented results build the groundwork for a future measurement of polariza-

tions of bosons in the V V jj − EW process. A measurement of the cross section in a
phase space enriched with longitudinally polarized bosons or even a measurement of
the helicity fractions in this process will be a powerfull test of the Standard Model.
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Appendix A

Mathematical definitions

Pauli spin matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.1)

γ-matrices (Dirac-Pauli representation):

γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , γ1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 , (A.2)

γ2 =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 , γ3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 . (A.3)

with(
γ0
)2

= 1 ,
(
γk
)2

= −1 , γ0† = γ0 , γk† = −γk , γµγν + γνγµ = 2gµν .
(A.4)

γ5 = iγ0γ1γ2γ3 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 . (A.5)

with (
γ5
)2

= 1 , γ5† = γ5 , γ5γµ = γµγ5 . (A.6)

83



A Mathematical definitions

84



Appendix B

Comparison of Templates
obtained using Different
Methods

The following figures show kinematic distributions of samples of pure longitudinal po-
larization obtained with different methods in the VBS phase space. Samples generated
using the WZdecay approach are shown in blue and those generated by reweighting a
mixed sample in green. In each section shows a given combination of boson polariza-
tions.

B.1 Events with purely longitudinal boson polariza-
tion

The figures in this section show the distributions of the samples of events with purely
longitudinal boson polarization.

(a) pT(W+) (b) y(W+)

For further information see beginning of Chapter B
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B Comparison of Templates obtained using Different Methods

(a) pT(Z) (b) y(Z)

For further information see beginning of Chapter B

(a) cos θ∗W (b) cos θ∗Z

For further information see beginning of Chapter B

(a) pT(`W ) (b) η(`W )

For further information see beginning of Chapter B
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B.1 Events with purely longitudinal boson polarization

(a) pT(`Z1 ) (b) η(`Z1 )

For further information see beginning of Chapter B

(a) pT(`Z2 ) (b) η(`Z2 )

For further information see beginning of Chapter B

(a) pT(j1) (b) y(j1)

For further information see beginning of Chapter B
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B Comparison of Templates obtained using Different Methods

(a) pT(j2) (b) y(j2)

For further information see beginning of Chapter B

(a) pmiss
T (b) ∆y(jj)

For further information see beginning of Chapter B
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B.2 Events with purely transverse boson polarization

B.2 Events with purely transverse boson polarization
The figures in this section show the distributions of the samples of events with purely
transverse boson polarization.

(a) pT(W+) (b) y(W+)

For further information see beginning of Chapter B

(a) pT(Z) (b) y(Z)

For further information see beginning of Chapter B
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B Comparison of Templates obtained using Different Methods

(a) cos θ∗W (b) cos θ∗Z

For further information see beginning of Chapter B

(a) pT(`W ) (b) η(`W )

For further information see beginning of Chapter B

(a) pT(`Z1 ) (b) η(`Z1 )

For further information see beginning of Chapter B

90



B.2 Events with purely transverse boson polarization

(a) pT(`Z2 ) (b) η(`Z2 )

For further information see beginning of Chapter B

(a) pT(j1) (b) y(j1)

For further information see beginning of Chapter B

(a) pT(j2) (b) y(j2)

For further information see beginning of Chapter B
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B Comparison of Templates obtained using Different Methods

(a) pmiss
T (b) ∆y(jj)

For further information see beginning of Chapter B
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Appendix C

Fit results

In this chapter figures of the fit results are shown. For each of the studied observables
the corresponding figure shows four plots. Each plot contains the four templates (green
and blue) and the distribution to which the templates were fitted (orange). The plot
on the upper left-handed side shows a comparison of the normalized distributions. The
other plots show the normalized stacked templates according to the fractions obtained
by the fit, compared to the normalized distribution of the sample to which the fit was
applied. In the plot of the upper right-handed side shows the fractions obtained from
the fit of the full set of templates, while the plots on the bottom show the fraction
from the fits of the combined templates. The plot on the left-handed side shows the
combined templates with known polarization of theW+ boson and on the right-handed
side for known polarization of the Z boson.

C.1 Fit to mixed sample
The figures in this section show the results for the fits to the sample with mixed polar-
ization.
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Fit results for cos θ∗W+ . For more information see beginning of Chapter C on page 93.
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C Fit results
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Fit results for cos θ∗Z . For more information see beginning of Chapter C on page 93.
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Fit results for pT(`Z1 ). For more information see beginning of Chapter C on page 93.
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Fit results for η(`Z1 ). For more information see beginning of Chapter C on page 93.
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C.1 Fit to mixed sample
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Fit results for pT(`Z2 ). For more information see beginning of Chapter C on page 93.
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Fit results for η(`Z2 ). For more information see beginning of Chapter C on page 93.
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C Fit results
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Fit results for η(`W ). For more information see beginning of Chapter C on page 93.
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Fit results for pT(j1). For more information see beginning of Chapter C on page 93.
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Fit results for y(j1). For more information see beginning of Chapter C on page 93.
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C.1 Fit to mixed sample
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Fit results for pT(j2). For more information see beginning of Chapter C on page 93.
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Fit results for y(j2). For more information see beginning of Chapter C on page 93.
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Fit results for ∆yjj . For more information see beginning of Chapter C on page 93.
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C Fit results
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Fit results for pmiss
T . For more information see beginning of Chapter C on page 93.
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Fit results for cos θ∗, min
W+ . For more information see beginning of Chapter C on

page 93.

,max
W*θcos 

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
LZLW LZTW

TZLW TZTW

XZXW

,max
W*θcos 

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

0

0.2

0.4

0.6

0.8

1

1.2

1.4 LZLW LZTW

TZLW TZTW

XZXW

,max
W*θcos 

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

0

0.2

0.4

0.6

0.8

1

1.2

1.4 XZLW XZTW

XZXW

,max
W*θcos 

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

0

0.2

0.4

0.6

0.8

1

1.2

1.4 LZXW TZXW

XZXW

Fit results for cos θ∗, max
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C.1 Fit to mixed sample
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Fit results for cos θ∗, mean
W+ . For more information see beginning of Chapter C on

page 93.
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Fit results for cos θ∗, zero
W+ . For more information see beginning of Chapter C on

page 93.
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Fit results for cos θ∗, CS
W+ . For more information see beginning of Chapter C on page 93.
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C Fit results
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Fit results for cos θ∗, 2D
W+ . For more information see beginning of Chapter C on page 93.
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Fit results for LP . For more information see beginning of Chapter C on page 93.
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Fit results for RpT . For more information see beginning of Chapter C on page 93.
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C.1 Fit to mixed sample
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Fit results for SW . For more information see beginning of Chapter C on page 93.
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Fit results for SZ . For more information see beginning of Chapter C on page 93.
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Fit results for pT(W+). For more information see beginning of Chapter C on page 93.
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C Fit results
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Fit results for pT(Z). For more information see beginning of Chapter C on page 93.
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C.2 Fit to purely transverse sample

C.2 Fit to purely transverse sample
The figures in this section show the results for the fits to the sample with purely trans-
verse boson polarization.
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Fit results for cos θ∗W+ . For more information see beginning of Chapter C.2 on
page 103.
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Fit results for cos θ∗Z . For more information see beginning of Chapter C.2 on page 103.
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C Fit results
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Fit results for pT(`Z1 ). For more information see beginning of Chapter C.2 on
page 103.
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Fit results for η(`Z1 ). For more information see beginning of Chapter C.2 on page 103.
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Fit results for pT(`Z2 ). For more information see beginning of Chapter C.2 on
page 103.
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C.2 Fit to purely transverse sample
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Fit results for η(`Z2 ). For more information see beginning of Chapter C.2 on page 103.
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Fit results for pT(`W ). For more information see beginning of Chapter C.2 on
page 103.
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Fit results for η(`W ). For more information see beginning of Chapter C.2 on page 103.
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C Fit results
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Fit results for pT(j1). For more information see beginning of Chapter C.2 on
page 103.
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Fit results for y(j1). For more information see beginning of Chapter C.2 on page 103.
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Fit results for y(j2). For more information see beginning of Chapter C.2 on page 103.
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Fit results for ∆yjj . For more information see beginning of Chapter C.2 on page 103.
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Fit results for cos θ∗, min
W+ . For more information see beginning of Chapter C.2 on

page 103.
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Fit results for cos θ∗, max
W+ . For more information see beginning of Chapter C.2 on

page 103.
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Fit results for cos θ∗, zero
W+ . For more information see beginning of Chapter C.2 on

page 103.
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Fit results for cos θ∗, CS
W+ . For more information see beginning of Chapter C.2 on

page 103.
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Fit results for cos θ∗, 2D
W+ . For more information see beginning of Chapter C.2 on

page 103.
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Fit results for LP . For more information see beginning of Chapter C.2 on page 103.
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Fit results for RpT . For more information see beginning of Chapter C.2 on page 103.
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Fit results for SW . For more information see beginning of Chapter C.2 on page 103.
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C.2 Fit to purely transverse sample
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Fit results for SZ . For more information see beginning of Chapter C.2 on page 103.
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Fit results for pT(W+). For more information see beginning of Chapter C.2 on
page 103.
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Fit results for pT(Z). For more information see beginning of Chapter C.2 on page 103.
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Appendix D

Additional Plots and Tables

D.1 Polarization changes during scattering
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Figure D.1: The cross section for all helicity combinations in the scattering of
the different boson combinations. On the x- (y)-axis all combinations for the final
(initial) state bosons are plotted. The cross section σ in pb and its uncertainty are
printed in each bin.
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D.2 Distributions in pT-y plane
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Figure D.2: Distribution of differential cross section in bins of transverse mo-
mentum and rapidity of the W+ (left) or Z (right) boson. In the upper row the
distributions of the events with purely longitudinal boson polarization and in the
bottom row of the events with purely transverse polarization are shown.

114



D.2 Distributions in pT-y plane

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
0

10
0

20
0

30
0

40
0

50
0

60
0

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
0

10
0

20
0

30
0

40
0

50
0

60
0

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
05010
0

15
0

20
0

25
0

30
0

35
0

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
02040608010
0

12
0

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
0

20
0

40
0

60
0

80
0

10
00

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
0

10
0

20
0

30
0

40
0

50
0

60
0

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
05010
0

15
0

20
0

25
0

30
0

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
0

20
0

40
0

60
0

80
0

10
00

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
05010
0

15
0

20
0

25
0

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
0

10
00

20
00

30
00

40
00

50
00

60
00

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
05010
0

15
0

20
0

25
0

30
0

F
ig

u
re

D
.3

:
V
is
ua

liz
at
io
n
of

th
e
hi
st
og
ra
m

in
th
e
tr
an

sv
er
se

m
om

en
tu
m
,t
he

ab
so
lu
te

va
lu
e
of

th
e
ra
pi
di
ty
,a

nd
th
e
co
si
ne

of
th
e
de

ca
y
an

gl
e
of

th
e
W

+
bo

so
n
of

th
e
sa
m
pl
e
us
ed

as
in
pu

t
fo
r
th
e
re
w
ei
gh

ti
ng

ap
pr
oa
ch
.
T
he

co
lu
m
ns

co
rr
es
po

nd
to

di
ffe

re
nt

bi
ns

in
th
e
tr
an

sv
er
se

m
om

en
tu
m

(fi
rs
t
co
lu
m
n:
p
T

(W
+

)
<

3
0

G
eV

,
se
co
nd

co
lu
m
n:

3
0

G
eV

<
p
T

(W
+

)
<

6
0

G
eV

,
th
ir
d
co
lu
m
n:

6
0

G
eV

<
p
T

(W
+

)
<

9
0

G
eV

,
fo
ur
th

co
lu
m
n:

p
T

(W
+

)
>

9
0

G
eV

).
T
he

ro
w
s
co
rr
es
po

nd
to

di
ffe

re
nt

bi
ns

of
th
e
ab

so
lu
te

va
lu
e
of

th
e
ra
pi
di
ty

(fi
rs
t
ro
w
:
y
(W

+
)
>

4
,s
ec
on

d
ro
w
:

2
<
y
(W

+
)
<

3
,t
hi
rd

ro
w
:

1
<
y
(W

+
)
<

2
,f
ou

rt
h
ro
w
:
y
(W

+
)
<

1
).

In
ea
ch

pl
ot

th
e
di
st
ri
bu

ti
on

of
th
e
co
si
ne

of
th
e
de

ca
y
an

gl
e
(b
lu
e)

an
d
th
eo
re
ti
ca
lp

re
di
ct
io
n
w
it
h
fit
te
d
he

lic
it
y
fr
ac
ti
on

s
(o
ra
ng

e)
ar
e
sh
ow

n.

115



D Additional Plots and Tables

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
0

10
0

20
0

30
0

40
0

50
0

60
0

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
0

10
0

20
0

30
0

40
0

50
0

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
05010
0

15
0

20
0

25
0

30
0

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
01020304050607080

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
0

20
0

40
0

60
0

80
0

10
00

12
00

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
0

20
0

40
0

60
0

80
0

10
00

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
0

10
0

20
0

30
0

40
0

50
0

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
02040608010
0

12
0

14
0

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
0

20
0

40
0

60
0

80
0

10
00

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
0

10
0

20
0

30
0

40
0

50
0

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
02040608010
0

12
0

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
0

10
00

20
00

30
00

40
00

50
00

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

1−
0.

8
−

0.
6

−
0.

4
−

0.
2

−
0

0.
2

0.
4

0.
6

0.
8

1
02040608010
0

12
0

14
0

16
0

F
ig

u
re

D
.4

:
V
is
ua

liz
at
io
n
of

th
e
hi
st
og
ra
m

in
th
e
tr
an

sv
er
se

m
om

en
tu
m
,t
he

ab
so
lu
te

va
lu
e
of

th
e
ra
pi
di
ty
,a

nd
th
e
co
si
ne

of
th
e
de

ca
y
an

gl
e
of

th
e
Z

bo
so
n
of

th
e
sa
m
pl
e
us
ed

as
in
pu

t
fo
r
th
e
re
w
ei
gh

ti
ng

ap
pr
oa
ch
.
T
he

co
lu
m
ns

co
rr
es
po

nd
to

di
ffe

re
nt

bi
ns

in
th
e
tr
an

sv
er
se

m
om

en
tu
m

(fi
rs
t
co
lu
m
n:
p
T

(Z
)
<

3
0

G
eV

,
se
co
nd

co
lu
m
n:

3
0

G
eV

<
p
T

(Z
)
<

6
0

G
eV

,
th
ir
d
co
lu
m
n:

6
0

G
eV

<
p
T

(Z
)
<

9
0

G
eV

,
fo
ur
th

co
lu
m
n:

p
T

(Z
)
>

9
0

G
eV

).
T
he

ro
w
s
co
rr
es
po

nd
to

di
ffe

re
nt

bi
ns

of
th
e
ab

so
lu
te

va
lu
e
of

th
e
ra
pi
di
ty

(fi
rs
t
ro
w
:
y
(Z

)
>

4
,
se
co
nd

ro
w
:

2
<
y
(Z

)
<

3
,
th
ir
d
ro
w
:

1
<
y
(Z

)
<

2
,
fo
ur
th

ro
w
:
y
(Z

)
<

1
).

In
ea
ch

pl
ot

th
e

di
st
ri
bu

ti
on

of
th
e
co
si
ne

of
th
e
de

ca
y
an

gl
e
(b
lu
e)

an
d
th
eo
re
ti
ca
lp

re
di
ct
io
n
w
it
h
fit
te
d
he

lic
it
y
fr
ac
ti
on

s
(o
ra
ng

e)
ar
e
sh
ow

n.

116



List of Figures

2.1 Visualizations of the leptonic dacey of the W+ boson. . . . . . . . . . . 10
2.2 Visualization of the definition of the decay angle. . . . . . . . . . . . . . 11
2.3 Normalized predicted distributions of the cosine of the decay angle for

given helicity of the bosons. . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Feynman diagrams for the interactions between two bosons. . . . . . . . 13
3.2 Schematic diagram of the vector boson scattering process at the LHC. . 14
3.3 Feynman diagrams for some examples of non-VBS O(α6

EW ) processes. . 15
3.4 Feynman diagrams for some examples of O(α4

EWα
2
s) background processes. 15

3.5 Dependency of the cross section of all polarization combinations of the
scattering WZ →WZ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.6 Dependency of the cross section of all polarization combinations of the
scattering VLVL → VLVL. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.7 The cross section for all helicity combinations in the scattering of different
boson combinations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.8 Feynman diagram for different boson combinations for the u channel
exchange in the scattering process. . . . . . . . . . . . . . . . . . . . . . 18

3.9 Kinematics of radiation process of a W+ boson for an u in the initial state. 19

4.1 Schematic overviews of the LHC acceleration complex. . . . . . . . . . . 22
4.2 Cut-away view of the ATLAS detector [38]. . . . . . . . . . . . . . . . . 23
4.3 Cut-away views of different parts of the ATLAS detector [38]. . . . . . . 26

5.1 Comparison of helicity templates generated using MadSpin. . . . . . . 34
5.2 Visualization of the workflow of WZdecay. . . . . . . . . . . . . . . . . 35

6.1 Distribution of total number of events in the different pT(V ) and y(V )
bins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2 Sum of the helicity fractions in the different pT(V ) and y(V ) bins. . . . 40
6.3 Left-handed helicity fraction after the constrained fit to the predicted

cos θ∗V distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.4 Right-handed helicity fraction after the constrained fit to the predicted

cos θ∗V distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.5 Ratio χ2/n.d.f. in bins of pT(V ) and y(V ) . . . . . . . . . . . . . . . . . 42
6.6 Distribution of the p-value for the unconstrained fit. . . . . . . . . . . . 42
6.7 Helicity fractions fi after the unconstrained fit to the predicted cos θ∗V

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.8 Comparison of the helicity templates generated using the reweighting

approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.9 Comparison of the helicity templates generated using WZdecay. . . . . 45
6.10 Comparison of distributions for samples containing the full WZjj−EW

process and samples only containing resonant diagrams in different phase
spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.11 Comparison of distributions for samples with or without a constraint for
the boson to be on-shell in different phase spaces. . . . . . . . . . . . . . 48

117



LIST OF FIGURES

6.12 Comparison of stacked templates generated using the reweighting approach. 49
6.13 Comparison of stacked templates generated using WZdecay to the mixed

sample in different variables in the total phase space. . . . . . . . . . . . 50
6.14 Distributions of the helicity templates obtained using the reweighting

approach in the total phase space. . . . . . . . . . . . . . . . . . . . . . 52
6.15 Distributions of the sample with purely transverse helicity WTZT in dif-

ferent phase spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.16 Different visualizations of the dependency of the cosine of the decay angle

cos θ∗Z on the transverse momentum of the leading Z-lepton . . . . . . . 54
6.17 Different visualizations of the dependency of the cosine of the decay angle

cos θ∗W+ on the transverse momentum of the charged W+-lepton. . . . . 54
6.18 Different visualizations of the dependency of the cosine of the decay angle

on the transverse mass of the W+ boson. . . . . . . . . . . . . . . . . . 54
6.19 Different visualizations of the dependency of the cosine of the decay angle

cos θ∗W+ on the pseudorapidity of the charged W+-lepton. . . . . . . . . 55
6.20 Comparison of helicity templates from different methods of obtaining

purely polarized samples. . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.21 Comparison of stacked templates generated using WZdecay to the mixed

sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.22 Comparison of kinematic distributions of samples of pure longitudinal

polarization obtained with the different methods. . . . . . . . . . . . . . 58
6.23 Helicity fractions in the pT(V )-y(V ) plane. . . . . . . . . . . . . . . . . 60

7.1 Comparison of the 2-dimensional distributions of the different recon-
structed cos θ∗W+ and its value on truth level. . . . . . . . . . . . . . . . 63

7.3 Fractions of correct reconstructions for the different reconstruction meth-
ods of the longitudinal momentum of the neutrino. . . . . . . . . . . . . 63

7.4 Schematic representation of the definition of the axes in the Collins-Soper
frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.5 Distribution of a sample of the full process in plane spanned by the decay
angle in the Collins-Soper frame calculated using the true momentum of
the neutrino and its reconstruction. . . . . . . . . . . . . . . . . . . . . . 65

7.6 Two-dimensional distributions for different combinations of observables
of two purely polarized samples. . . . . . . . . . . . . . . . . . . . . . . 66

7.7 Normalized distributions of the samples of different helicity combinations
and a mixed sample in different observables sensitive to the Z boson’s
polarization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.8 Stackes templates fitted to the distribution of the sample with transverse
polarization in cosine of the Z boson decay angle for different numbers
of bins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.9 Normalized distributions of the samples of different helicity combinations
and a mixed sample in the reconstructed and true decay angle. . . . . . 74

7.10 Normalized distributions of the samples of different helicity combinations
and a mixed sample in the decay angle in the Collins-Soper frame in
different phase spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.11 Normalized distributions of the samples of different helicity combinations
and a mixed sample in different observables in the transverse plane sen-
sitive to the W+ boson’s helicity. . . . . . . . . . . . . . . . . . . . . . . 75

7.12 Normalized distributions of the samples of different helicity combinations
and a mixed sample of the transverse momenta of the different jets. . . 76

7.13 Normalized distributions of the samples of different helicity combinations
and a mixed sample of the kinematic variables of the charged lepton
assigned to the W+ boson. . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.14 Distribution of the resulting fraction of the combined sample for the
longitudinal boson polarization for fits using different numbers of bins. . 77

7.15 Normalized distribution and stacked templates fitted to a mixed sample
which was scaled to 100 fb−1. . . . . . . . . . . . . . . . . . . . . . . . . 78

118



LIST OF FIGURES

8.1 Comparison of stacked templates generated using WZdecay to a mixed
sample scaled to 100 fb−1 . . . . . . . . . . . . . . . . . . . . . . . . . . 82

D.1 The cross section for all helicity combinations in the different scattering
channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

D.2 Distribution of differential cross section in bins of transverse momentum
and rapidity of the different bosons. . . . . . . . . . . . . . . . . . . . . 114

D.3 Visualization of the histogram in the transverse momentum, the absolute
value of the rapidity, and the cosine of the decay angle of the W+ boson
of the sample used as input for the reweighting approach. . . . . . . . . 115

D.4 Visualization of the histogram in the transverse momentum, the absolute
value of the rapidity, and the cosine of the decay angle of the Z boson of
the sample used as input for the reweighting approach. . . . . . . . . . . 116

119



LIST OF FIGURES

120



List of Tables

2.1 List of fermions in the Standard Model sorted by generations. . . . . . . 4
2.2 List of bosons in the Standard Model. . . . . . . . . . . . . . . . . . . . 5

3.1 Ratio of the sum of cross sections of non-dominant diagrams over the
sum of all cross sections contributing to a given final state. . . . . . . . 19

5.1 List of all datasets generated for this thesis. . . . . . . . . . . . . . . . . 36
5.2 List of parameters necessary for the event simulation and its values used

in this thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Selection criteria for an object to be accepted. . . . . . . . . . . . . . . . 37
5.4 Selection criteria for the event to be accepted . . . . . . . . . . . . . . . 38

6.1 List of fractions for all helicity combinations obtained by different meth-
ods in the total phase space. . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 List of fractions for all helicity combinations obtained by different meth-
ods in the VBS phase space. . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.1 List of total fractions of correct reconstructed events for different recon-
struction methods of pz(ν). . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.2 List of the fractions and their uncertainties for each template obtained
from the fit of the full set of templates to a mixed sample. . . . . . . . . 69

7.3 List of the fractions and their uncertainties for each template obtained
from the fit of the combined templates for the polarization of each boson
to a mixed sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.4 List of the fractions and their uncertainties for each template obtained
from the fit of the full set of templates to a sample of pure transverse
boson polarization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.5 List of the fractions and their uncertainties for each template obtained
from the fit of the combined templates for the polarization of each boson
to a sample of pure transverse boson polarization . . . . . . . . . . . . . 72

7.6 Fit result of the fit of the full set of templates to the distribution with
pure transverse polarization of both bosons in the cos θ∗Z observable with
decreased number of bins. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.7 List of resulting fractions for a fit on the polarization of a single boson
considering only the statistical uncertainty of the number of expected
events for 100 fb−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

121



LIST OF TABLES

122



Bibliography

[1] J. J. Thomson, Cathode rays, Philosophical Magazine Series 5. 44 no. 269, (1897)
293–316.
http://www.tandfonline.com/doi/abs/10.1080/14786449708621070#.

[2] E. Rutherford, Nuclear Constitution of Atoms, Proceedings of the Royal
Society97 374–400.

[3] J. Chadwick, Possible Existence of a Neutron, Nature 129 no. 3252, (1932)
312–312.

[4] ATLAS Collaboration, G. Aad et al, Observation of a new particle in the search
for the Standard Model Higgs boson with the ATLAS detector at the LHC,
Physics Letters B 716 no. 1, (2012) 1 – 29, arXiv:1207.7214 [hep-ex].
http://www.sciencedirect.com/science/article/pii/S037026931200857X.

[5] CMS Collaboration, S. Chatrchyan et al, Observation of a new boson at a mass of
125 GeV with the CMS experiment at the LHC, Physics Letters B 716 no. 1,
(2012) 30 – 61, arXiv:1207.7235 [hep-ex].
http://www.sciencedirect.com/science/article/pii/S0370269312008581.

[6] S. P. Martin, A Supersymmetry Primer, tech. rep., Sept., 1997.

[7] ATLAS Collaboration, G. Aad et al, Evidence for Electroweak Production of
W±W±jj in pp Collisions at

√
s = 8 TeV with the ATLAS Detector, Phys. Rev.

Lett. 113 (2014) 141803, arXiv:1405.6241 [hep-ex].
http://link.aps.org/doi/10.1103/PhysRevLett.113.141803.

[8] D. J. Griffiths, Introduction to elementary particles; 2nd rev. version. Physics
textbook. Wiley, New York, NY, 2008.

[9] M. Thomson, Modern particle physics. Cambridge University Press, 2013.

[10] E. Noether, Invariante Variationsprobleme, Nachrichten von der Gesellschaft der
Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1918 (1918)
235–257. http://eudml.org/doc/59024.

[11] J. Beringer et al (Particle Data Group), The Review of Particle Physics, Physical
Review D 86 (2012) 010001.

[12] ATLAS, CMS Collaboration, Combined Measurement of the Higgs Boson Mass in
pp Collisions at

√
s = 7 and 8 TeV with the ATLAS and CMS Experiments,

arXiv:1503.07589 [hep-ex].

[13] K. Nakamura and P. D. Group, Review of Particle Physics, Journal of Physics G:
Nuclear and Particle Physics 37 no. 7A, (2010) 075021.
http://stacks.iop.org/0954-3899/37/i=7A/a=075021.

[14] H. D. Politzer, Reliable Perturbative Results for Strong Interactions?, Phys. Rev.
Lett. 30 (1973) 1346–1349.
http://link.aps.org/doi/10.1103/PhysRevLett.30.1346.

123

http://dx.doi.org/10.1080/14786449708621070
http://dx.doi.org/10.1080/14786449708621070
http://dx.doi.org/http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7214
http://dx.doi.org/http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/1207.7235
http://dx.doi.org/10.1103/PhysRevLett.113.141803
http://dx.doi.org/10.1103/PhysRevLett.113.141803
http://arxiv.org/abs/1405.6241
http://arxiv.org/abs/1503.07589
http://dx.doi.org/10.1103/PhysRevLett.30.1346
http://dx.doi.org/10.1103/PhysRevLett.30.1346


BIBLIOGRAPHY

[15] H. D. Politzer, Asymptotic freedom: An approach to strong interactions, Physics
Reports 14 no. 4, (1974) 129 – 180.
http://www.sciencedirect.com/science/article/pii/0370157374900143.

[16] D. J. Gross and F. Wilczek, Asymptotically Free Gauge Theories. I, Phys. Rev. D
8 (1973) 3633–3652. http://link.aps.org/doi/10.1103/PhysRevD.8.3633.

[17] S. L. Glashow, Partial-symmetries of weak interactions, Nuclear Physics 22 no. 4,
(1961) 579 – 588.
http://www.sciencedirect.com/science/article/pii/0029558261904692.

[18] A. Salam and J. Ward, Weak and electromagnetic interactions, Il Nuovo Cimento
Series 10 11 no. 4, (1959) 568–577. http://dx.doi.org/10.1007/BF02726525.

[19] S. Weinberg, A Model of Leptons, Phys. Rev. Lett. 19 (1967) 1264–1266.
http://link.aps.org/doi/10.1103/PhysRevLett.19.1264.

[20] F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector
Mesons, Phys. Rev. Lett. 13 (1964) 321–323.
http://link.aps.org/doi/10.1103/PhysRevLett.13.321.

[21] P. Higgs, Broken symmetries, massless particles and gauge fields, Physics Letters
12 no. 2, (1964) 132 – 133.
http://www.sciencedirect.com/science/article/pii/0031916364911369.

[22] P. W. Higgs, Spontaneous Symmetry Breakdown without Massless Bosons, Phys.
Rev. 145 (1966) 1156–1163.
http://link.aps.org/doi/10.1103/PhysRev.145.1156.

[23] P. W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev.
Lett. 13 (1964) 508–509.
http://link.aps.org/doi/10.1103/PhysRevLett.13.508.

[24] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, Global Conservation Laws
and Massless Particles, Phys. Rev. Lett. 13 (1964) 585–587.
http://link.aps.org/doi/10.1103/PhysRevLett.13.585.

[25] Y. Nambu, Quasi-Particles and Gauge Invariance in the Theory of
Superconductivity, Phys. Rev. 117 (1960) 648–663.
http://link.aps.org/doi/10.1103/PhysRev.117.648.

[26] J. Goldstone, A. Salam, and S. Weinberg, Broken Symmetries, Phys. Rev. 127
(1962) 965–970. http://link.aps.org/doi/10.1103/PhysRev.127.965.

[27] A. Pich, Aspects of quantum chromodynamics, arXiv:0001118 [hep-ph].

[28] L. Evans and P. Bryant, LHC Machine, Journal of Instrumentation 3 no. 08,
(2008) S08001. http://stacks.iop.org/1748-0221/3/i=08/a=S08001.

[29] W. Stirling and E. Vryonidou, Electroweak gauge boson polarisation at the LHC,
Journal of High Energy Physics 2012 no. 7, (2012), arXiv:1203.2165v2
[hep-ph]. http://dx.doi.org/10.1007/JHEP07%282012%29124.

[30] E. Mirkes, Angular decay distribution of leptons from W bosons at NLO in
hadronic collisions, Nucl.Phys. B387 no. TTP-92-12, (1992) 3–85.

[31] ATLAS Collaboration, G. Aad et al, Measurement of the polarisation of W
bosons produced with large transverse momentum in pp collisions at

√
s = 7 TeV

with the ATLAS experiment, The European Physical Journal C 72 no. 5, (2012),
arXiv:1203.2165v2 [hep-ex].
http://dx.doi.org/10.1140/epjc/s10052-012-2001-6.

124

http://dx.doi.org/http://dx.doi.org/10.1016/0370-1573(74)90014-3
http://dx.doi.org/http://dx.doi.org/10.1016/0370-1573(74)90014-3
http://dx.doi.org/10.1103/PhysRevD.8.3633
http://dx.doi.org/10.1103/PhysRevD.8.3633
http://dx.doi.org/http://dx.doi.org/10.1016/0029-5582(61)90469-2
http://dx.doi.org/http://dx.doi.org/10.1016/0029-5582(61)90469-2
http://dx.doi.org/10.1007/BF02726525
http://dx.doi.org/10.1007/BF02726525
http://dx.doi.org/10.1103/PhysRevLett.19.1264
http://dx.doi.org/10.1103/PhysRevLett.13.321
http://dx.doi.org/http://dx.doi.org/10.1016/0031-9163(64)91136-9
http://dx.doi.org/http://dx.doi.org/10.1016/0031-9163(64)91136-9
http://dx.doi.org/10.1103/PhysRev.145.1156
http://dx.doi.org/10.1103/PhysRev.145.1156
http://dx.doi.org/10.1103/PhysRevLett.13.508
http://dx.doi.org/10.1103/PhysRevLett.13.508
http://dx.doi.org/10.1103/PhysRevLett.13.585
http://dx.doi.org/10.1103/PhysRev.117.648
http://dx.doi.org/10.1103/PhysRev.127.965
http://dx.doi.org/10.1103/PhysRev.127.965
http://arxiv.org/abs/0001118
http://dx.doi.org/10.1007/JHEP07(2012)124
http://arxiv.org/abs/1203.2165v2
http://arxiv.org/abs/1203.2165v2
http://dx.doi.org/10.1140/epjc/s10052-012-2001-6
http://arxiv.org/abs/1203.2165v2


BIBLIOGRAPHY

[32] P. Anger, M. Kobel, and S. Lammers, Probing Electroweak Gauge Boson
Scattering with the ATLAS Detector at the Large Hadron Collider. PhD thesis,
Dresden, Tech. U., Jun, 2014. https://cds.cern.ch/record/1753849.
Presented 01 Sep 2014.

[33] M. S. Chanowitz and M. K. Gaillard, Multiple production of W and Z as a signal
of new strong interactions, Physics Letters B 142 no. 1–2, (1984) 85 – 90.
http://www.sciencedirect.com/science/article/pii/0370269384911419.

[34] B. W. Lee, C. Quigg, and H. B. Thacker, Weak interactions at very high energies:
The role of the Higgs-boson mass, Phys. Rev. D 16 (1977) 1519–1531.
http://link.aps.org/doi/10.1103/PhysRevD.16.1519.

[35] P. Anger et al, A Measurement of WZ Production in Proton-Proton Collisions at√
s = 8 TeV with the ATLAS Detector, Tech. Rep. ATL-COM-PHYS-2014-144,

CERN, Geneva, Feb, 2014. https://cds.cern.ch/record/1663539. Access
restricted to ATLAS members.

[36] J.-L. Caron, “The LHC injection complex. L’ensemble d’injection du LHC..” AC
Collection. Legacy of AC. Pictures from 1992 to 2002., May, 1993.

[37] Collection of information about LHC, Feb., 2015.
http://www.lhc-facts.ch/index.php?page=home.

[38] ATLAS Collaboration, G. Aad et al, The ATLAS Experiment at the CERN Large
Hadron Collider, Journal of Instrumentation 3 no. 08, (2008) S08003.
http://stacks.iop.org/1748-0221/3/i=08/a=S08003.

[39] CMS Collaboration, S. Chatrchyan et al, The CMS experiment at the CERN
LHC, Journal of Instrumentation 3 no. 08, (2008) S08004.
http://stacks.iop.org/1748-0221/3/i=08/a=S08004.

[40] ALICE Collaboration, K. Aamodt et al, The ALICE experiment at the CERN
LHC, Journal of Instrumentation 3 no. 08, (2008) S08002.
http://stacks.iop.org/1748-0221/3/i=08/a=S08002.

[41] LHCb Collaboration, Augusto Alves Jr et al, A, The LHCb Detector at the LHC,
Journal of Instrumentation 3 no. 08, (2008) S08005.
http://stacks.iop.org/1748-0221/3/i=08/a=S08005.

[42] TOTEM Collaboration, G. Anelli et al, The TOTEM Experiment at the CERN
Large Hadron Collider, Journal of Instrumentation 3 no. 08, (2008) S08007.
http://stacks.iop.org/1748-0221/3/i=08/a=S08007.

[43] LHCf Collaboration, O. Adriani et al, The LHCf detector at the CERN Large
Hadron Collider, Journal of Instrumentation 3 no. 08, (2008) S08006.
http://stacks.iop.org/1748-0221/3/i=08/a=S08006.

[44] MoEDAL Collaboration, J. Pinfold et al, Technical Design Report of the
MoEDAL Experiment, Tech. Rep. CERN-LHCC-2009-006. MoEDAL-TDR-001,
CERN, Geneva, Jun, 2009. https://cds.cern.ch/record/1181486.

[45] C. Pralavorio, LHC restart back on track, 2015.
http://home.web.cern.ch/about/updates/2015/03/
lhc-restart-back-track.

[46] C. O’Luanaigh, Proton beams are back in the LHC, 2015.
http://home.web.cern.ch/about/updates/2015/04/
proton-beams-are-back-lhc.

[47] C. O’Luanaigh, First successful beam at record energy of 6.5 TeV, 2015.
http://home.web.cern.ch/about/updates/2015/04/
first-successful-beam-record-energy-65-tev.

125

http://dx.doi.org/http://dx.doi.org/10.1016/0370-2693(84)91141-9
http://dx.doi.org/10.1103/PhysRevD.16.1519


BIBLIOGRAPHY

[48] D. Berdine, N. Kauer, and D. Rainwater, Breakdown of the Narrow Width
Approximation for New Physics, Phys. Rev. Lett. 99 (2007) 111601,
arXiv:0703058v2 [hep-ph].
http://link.aps.org/doi/10.1103/PhysRevLett.99.111601.

[49] P. Richardson, Spin correlations in Monte Carlo simulations, Journal of High
Energy Physics 2001 no. 11, (2001) 029, arXiv:0110108 [hep-ph].
http://stacks.iop.org/1126-6708/2001/i=11/a=029.

[50] W. Kilian, T. Ohl, and J. Reuter, WHIZARD: Simulating Multi-Particle
Processes at LHC and ILC, Eur.Phys.J. C71 (2011) 1742, arXiv:0708.4233
[hep-ph].

[51] M. Moretti, T. Ohl, and J. Reuter, O’Mega: An Optimizing matrix element
generator, arXiv:0102195 [hep-ph].

[52] M. Dobbs and J. B. Hansen, The HepMC C++ Monte Carlo event record for High
Energy Physics, Computer Physics Communications 134 no. 1, (2001) 41 – 46.
http://www.sciencedirect.com/science/article/pii/S0010465500001892.

[53] J. E. Gerken, “Spin correlations in bsm cascades.”.

[54] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S.
Shao, T. Stelzer, P. Torrielli, and M. Zaro, The automated computation of
tree-level and next-to-leading order differential cross sections, and their matching
to parton shower simulations, Journal of High Energy Physics 2014 no. 7, (2014),
arXiv:1405.0301 [hep-ph].
http://dx.doi.org/10.1007/JHEP07%282014%29079.

[55] J. Alwall et al, A standard format for Les Houches Event Files, Computer
Physics Communications 176 no. 4, (2007) 300 – 304, arXiv:0609017 [hep-ph].
http://www.sciencedirect.com/science/article/pii/S0010465506004164.

[56] O. Mattelaer, How to generate polarized particles, Apr., 2015.
https://answers.launchpad.net/mg5amcnlo/+faq/2243.

[57] P. Artoisenet, R. Frederix, O. Mattelaer, and R. Rietkerk, Automatic
spin-entangled decays of heavy resonances in Monte Carlo simulations, Journal of
High Energy Physics 2013 no. 3, (2013), arXiv:1212.3460 [hep-ph].
http://dx.doi.org/10.1007/JHEP03%282013%29015.

[58] S. Frixione, E. Laenen, P. Motylinski, and B. R. Webber, Angular correlations of
lepton pairs from vector boson and top quark decays in Monte Carlo simulations,
Journal of High Energy Physics 2007 no. 04, (2007) 081, arXiv:0702198
[hep-ph]. http://stacks.iop.org/1126-6708/2007/i=04/a=081.

[59] CMS Collaboration, S. Chatrchyan et al, Measurement of the Polarization of W
Bosons with Large Transverse Momenta in W + jets Events at the LHC, Phys.
Rev. Lett. 107 (2011) 021802, arXiv:1104.3829 [hep-ex].
http://link.aps.org/doi/10.1103/PhysRevLett.107.021802.

[60] A. Buckley, J. Butterworth, D. Grellscheid, H. Hoeth, L. Lönnblad, J. Monk,
H. Schulz, and F. Siegert, Rivet user manual, Computer Physics Communications
184 no. 12, (2013) 2803 – 2819, arXiv:1003.0694 [hep-ph].
http://www.sciencedirect.com/science/article/pii/S0010465513001914.

[61] T. Sjöstrand, S. Mrenna, and P. Skands, PYTHIA 6.4 physics and manual,
Journal of High Energy Physics 2006 no. 05, (2006) 026, arXiv:0603175
[hep-ph]. http://stacks.iop.org/1126-6708/2006/i=05/a=026.

126

http://dx.doi.org/10.1103/PhysRevLett.99.111601
http://arxiv.org/abs/0703058v2
http://arxiv.org/abs/0110108
http://dx.doi.org/10.1140/epjc/s10052-011-1742-y
http://arxiv.org/abs/0708.4233
http://arxiv.org/abs/0708.4233
http://arxiv.org/abs/0102195
http://dx.doi.org/http://dx.doi.org/10.1016/S0010-4655(00)00189-2
http://dx.doi.org/10.1007/JHEP07(2014)079
http://arxiv.org/abs/1405.0301
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2006.11.010
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2006.11.010
http://arxiv.org/abs/0609017
http://dx.doi.org/10.1007/JHEP03(2013)015
http://dx.doi.org/10.1007/JHEP03(2013)015
http://arxiv.org/abs/1212.3460
http://arxiv.org/abs/0702198
http://arxiv.org/abs/0702198
http://dx.doi.org/10.1103/PhysRevLett.107.021802
http://dx.doi.org/10.1103/PhysRevLett.107.021802
http://arxiv.org/abs/1104.3829
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2013.05.021
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2013.05.021
http://arxiv.org/abs/1003.0694
http://arxiv.org/abs/0603175
http://arxiv.org/abs/0603175


BIBLIOGRAPHY

[62] K. Doroba, J. Kalinowski, J. Kuczmarski, S. Pokorski, J. Rosiek, M. Szleper, and
S. Tkaczyk, WLWL scattering at the LHC: Improving the selection criteria, Phys.
Rev. D 86 (2012) 036011, arXiv:1201.2768v2 [hep-ph].
http://link.aps.org/doi/10.1103/PhysRevD.86.036011.

[63] MadSpin Changes the state of polarization only for w-boson, Apr., 2015.
https://answers.launchpad.net/mg5amcnlo/+question/259520.

[64] C. Bittrich, Apr., 2015. https://github.com/carstenbittrich/WZdecay.

[65] C. Bittrich, Apr., 2015.
https://svnweb.cern.ch/cern/wsvn/atlas-cbittric/WZdecay.

[66] I. Antcheva et al, ROOT — A C++ framework for petabyte data storage,
statistical analysis and visualization, Computer Physics Communications 180
no. 12, (2009) 2499 – 2512.
http://www.sciencedirect.com/science/article/pii/S0010465509002550.

[67] J. C. Collins and D. E. Soper, Angular distribution of dileptons in high-energy
hadron collisions, Phys. Rev. D 16 (1977) 2219–2225.
http://link.aps.org/doi/10.1103/PhysRevD.16.2219.

[68] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for
likelihood-based tests of new physics, The Euro-
pean Physical Journal C 71 no. 2, (2011), arXiv:1007.1727 [physics.data-an].
http://link.springer.com/article/10.1140%2Fepjc%2Fs10052-011-1554-0#.

127

http://dx.doi.org/10.1103/PhysRevD.86.036011
http://dx.doi.org/10.1103/PhysRevD.86.036011
http://arxiv.org/abs/1201.2768v2
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2009.08.005
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2009.08.005
http://dx.doi.org/10.1103/PhysRevD.16.2219
http://dx.doi.org/10.1140/epjc/s10052-011-1554-0
http://dx.doi.org/10.1140/epjc/s10052-011-1554-0
http://arxiv.org/abs/1007.1727


BIBLIOGRAPHY

128



Danksagung

An dieser Stelle möchte ich mich bei allen bedanken, die zum Gelingen dieser Arbeit
und meines Studiums beigetragen haben.

Besonders möchte ich mich bei meinem Betreuer Prof.Michael Kobel für die Möglich-
keit bedanken, an diesem interessanten und zukunftsträchtigem Thema arbeiten zu kön-
nen. Sein Engagement in fachlichen, aber auch in außeruniversitären Themen beein-
druckt mich immer wieder und ich bin froh, durch ihn den Weg in die Teilchenphysik
gefunden zu haben.

Außerdem bedanke ich mich bei der gesamten VBS-Arbeitsgruppe. Durch die
gute Arbeitsathmosphäre habe ich mich immer wohlgefühlt und selbst arbeitsreiche
Zeiten haben immer Spaß gemacht. Besonderer Dank geht an Philipp Anger, Christian
Gumpert, Ulrike Schnoor, Felix Socher und Anja Vest, mit denen ich sowohl während
meiner Bachelor- als auch meiner Masterarbeit arbeiten konnte und viel gelernt habe.
Vielen Dank an Stefanie Todt für die vielen Diskussionen und Hinweise, vergangene
wie auch noch vor uns liegende. Aber auch bei Christian Gütschow, Johannes Krause,
Alexander Melzer, Tobias Sandmann, Lukas Schroeder und Frank Siegert bedanke ich
mich für die vielen lustigen Stunden von denen wir vermutlich zu viele am Kicker-
tisch verbracht haben. Bei Philipp Anger, Christian Gumpert, Christian Gütschow,
Alexander Melzer, Ulrike Schnoor, Felix Socher, Ulrike Schnoor, Stefanie Todt und
Anja Vest bedanke ich mich außerdem fürs Korrekturlesen dieser Arbeit.

Bei David Kirchmeier und Theresa Werner bedanke ich mich für die Begleitung
während des Studiums. Dank ihnen haben sogar die üblichen Lernexzesse Spaß gemacht.
Vielen Dank fürs gemeinsame Lernen, vielen Dank für die Motivation, vielen Dank für
die vielen lustigen Stunden, und vor allem vielen Dank für die stetige Erinnerung daran,
dass es auch ein Leben außerhalb des Studiums gibt!

Vielen Dank auch an meine Eltern und Robert für die Unterstützung auch in schw-
eren Zeiten, finanziell und emotional. Sie sind mir stets gute Vorbilder, wofür ich sehr
dankbar bin.

Zu guter Letzt herzlichen Dank an Jane, die mich seit vielen Jahren stets begleitet
und unterstützt. Außerdem gibt sie mir stets Kraft und Motivation an mir und meinen
Zielen zu arbeiten. Vielen Dank für die unzähligen schönen Momente, vielen Dank fürs
aus-dem-Herzen-sprechen, vielen Dank, dass es dich gibt!

129



BIBLIOGRAPHY

130



Erklärung

Hiermit erkläre ich, dass ich diese Arbeit im Rahmen der Betreuung am Institut
für Kern- und Teilchenphysik ohne unzulässige Hilfe Dritter verfasst habe. Die aus
fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich
gemacht. Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder
ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Carsten Bittrich
Dresden, 27.04.2015

131


	Introduction
	Theoretical Foundation
	Standard Model of particle physics
	Electroweak theory
	Electroweak symmetry breaking
	From Lagrangian to event rate

	Polarization
	Angular distributions
	Spin density matrix


	Vector Boson Scattering
	Process definition
	Polarization in vector boson scattering
	Change of the polarization state in vector boson scattering
	Expected influence on kinematics


	Experimental Setup
	The Large Hadron Collider
	The ATLAS detector
	ATLAS coordinate system
	Inner Detector
	Calorimeter System
	Muon System
	Trigger System


	Data Processing
	Simulation of events
	Narrow-width approximation
	Monte Carlo generators
	Whizard
	MadGraph5_aMC@NLO

	Methodology for simulation of events with known boson polarization
	Reweighting method
	MadGraph5_aMC@NLO and MadSpin
	WZdecay

	Settings and simulated samples

	Study of Templates
	Closure tests
	Fits in reweighting method
	Angular distributions

	Influence of approximations
	Influence of selection criteria
	Phenomenology in VBS phase space

	Study of Observables
	Reconstruction of event kinematics
	The longitudinal momentum of the neutrino
	Decay angle in Collins-Soper frame
	Observables in transverse plane

	Quantification of sensitivity to boson polarization
	Outlook for Run-2 of the LHC

	Summary
	Mathematical definitions
	Comparison of Templates obtained using Different Methods
	Events with purely longitudinal boson polarization
	Events with purely transverse boson polarization

	Fit results
	Fit to mixed sample
	Fit to purely transverse sample

	Additional Plots and Tables
	Polarization changes during scattering
	Distributions in pT-y plane


