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The question of smoothness at the ergosurface of the space-time metric
constructed out of solutions (E , ϕ) of the Ernst electro-vacuum equations
is considered. We prove smoothness of those ergosurfaces at which ℜE

provides the dominant contribution to f = −(ℜE + |ϕ|2) at the zero-level-
set of f . Some partial results are obtained in the remaining cases: in
particular we give examples of leading-order solutions with singular isolated
“ergocircles”.

PACS numbers: 04.20.Cv, 04.20.Dw

1. Introduction

In recent work [1] we have shown that a vacuum space-time metric is
smooth near a “Ernst ergosurface” EE = {ℜE = 0, ρ 6= 0} if and only if
the Ernst potential E is smooth near EE and does not have zeros of infinite
order there. It is of interest to enquire whether a similar property holds for
electro-vacuum metrics. While we have not been able to obtain a complete
answer to this question, in this note we present a series of partial results,
amongst which:
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Theorem 1.1 Consider a smooth solution (E , ϕ) of the electro-vacuum Ernst
equations (2.2)–(2.3) below, and let the Ernst ergosurface EE ,ϕ be defined as
the set

EE ,ϕ := {E + E + 2ϕϕ = 0 , ρ 6= 0} . (1.1)

Suppose that E + E has a zero of finite order at EE ,ϕ. If the ϕ terms con-

tribute subleading terms to E +E +2ϕϕ at EE ,ϕ, then there exists a neighbor-
hood of EE ,ϕ on which the tensor field (2.1) obtained by solving (2.5)–(2.6)
is smooth and has Lorentzian signature.

Theorem 1.1 is proved in Section 3.
To make things clear, consider a point p at which

f := −
1

2
(E + E + 2ϕϕ)

vanishes. Expanding E and ϕ in a Taylor series at p, let m be the order of the
leading Taylor polynomial of ℜE − ℜE (p), and let k be the corresponding
order for ϕ − ϕ(p). Then we say that the ϕ terms contribute subleading
terms to f if 2k > m.

Under the remaining conditions of Theorem 1.1, the condition of a zero
of finite order is necessary and sufficient, as smoothness of the metric near
EE ,ϕ implies analyticity of E and ϕ.

It follows from the analysis in [1] that, in vacuum, a generic point on
EE ,ϕ will be a zero of E of order one. One expects this result to remain true
in electro-vacuum, so that Theorem 1.1 should cover generic situations.

A significant application of Theorem 1.1, to solutions obtained by ap-
plying a Harrison transformation to a vacuum solution, is given in Section 4
below.

Some partial results, presented in Section 5, are obtained in the cases not
covered by Theorem 1.1: We describe completely the leading-order behavior
of ϕ at those ergosurfaces at which ϕ provides the dominant contribution
to f . We show that there exist Taylor polynomials solving the Ernst equa-
tion at leading order which result in singularities of the space-time metric
on EE ,ϕ. This result does not, however, prove that there exist smooth solu-
tions of the electro-vacuum Ernst equations which lead to metrics which are
singular at the ergosurface because it is not clear that the “leading-order so-
lutions” that we construct correspond to solutions of the full, non-truncated
equations.

2. Preliminaries

We use the same parameterisation of the metric as in [1]:

ds2 = f−1
[
h
(
dρ2 + dζ2

)
+ ρ2dφ2

]
− f (dt + adφ)2 , (2.1)
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with all functions depending only upon ρ and ζ. In electro-vacuum the Ernst
equations form a system of two coupled partial differential equations for two
complex valued functions E and ϕ [5], which we assume to be smooth:

(
E + E + 2ϕϕ

)
LE =

(
∂E

∂z̄
+ 2ϕ

∂ϕ

∂z̄

)
∂E

∂z
+

(
∂E

∂z
+ 2ϕ

∂ϕ

∂z

)
∂E

∂z̄
, (2.2)

(
E + E + 2ϕϕ

)
Lϕ =

(∂E

∂z̄
+ 2ϕ

∂ϕ

∂z̄

)∂ϕ

∂z
+
(∂E

∂z
+ 2ϕ

∂ϕ

∂z

)∂ϕ

∂z̄
, (2.3)

where

L =
∂2

∂z∂z
+

1

2(z + z̄)

( ∂

∂z
+

∂

∂z̄

)

,

with z = ρ + iζ. The metric functions are determined from1

f = −
1

2
(E + E + 2ϕϕ) , (2.4)

∂h

∂z
= (z+z̄)h

(
1

2

(
∂E

∂z
+2ϕ

∂ϕ

∂z

)(
∂E

∂z
+2ϕ

∂ϕ

∂z

)

f−2+2
∂ϕ

∂z

∂ϕ

∂z
f−1

)

, (2.5)

∂a

∂z
=

1

4
(z + z)

(
∂E

∂z
+ 2ϕ

∂ϕ

∂z
−

∂E

∂z
− 2ϕ

∂ϕ

∂z

)

f−2 . (2.6)

The equations are singular at the Ernst ergosurface EE ,ϕ defined by (1.1).
Let λ ∈ C, µ ∈ R, then the following transformation maps solutions of

(2.2)–(2.3) into solutions,without changing the right-hand sides of (2.4)–(2.6)

E → E + 2λ̄ϕ − |λ|2 + iµ , ϕ → ϕ − λ . (2.7)

This is easiest seen by noting, first, that both f and dE + 2ϕ̄dϕ are left
unchanged by (2.7).

3. E -dominated ergosurfaces

Suppose that EE ,ϕ 6= ∅ and that E and ϕ are smooth in a neighborhood
of EE ,ϕ. Let z0 = ρ0 + iζ0 ∈ EE ,ϕ, we can choose µ and λ so that the
potentials transformed as in (2.7) satisfy

E (z0) = 0 , ϕ(z0) = 0 . (3.1)

Assume first,
Df(z0) 6= 0 .

1 Note that E here is minus E in [1].



62 P.T. Chruściel, S.J. Szybka

Performing a Taylor expansion of E and ϕ at z0 and inserting into (2.2)–
(2.3), a Singular [2] calculation (and, as a cross-check, a Maple one)
shows2 that either

∂zϕ(z0) = ∂zE (z0) = 0 , (3.2)

0 6= ∂z̄E (z0) = 4ρ0∂z∂z̄E (z0) = 4ρ0∂2
zE (z0) , (3.3)

∂2
zE (z0)∂z∂z̄ϕ(z0) = ∂2

zϕ(z0)∂z∂z̄E (z0) , (3.4)

∂2
zE (z0)∂2

zϕ(z0) = ∂z∂z̄ϕ(z0)∂z∂z̄E (z0) , (3.5)

or that (3.2)–(3.5) is satisfied by the complex conjugates of (E , ϕ). In the
latter case the linear part of the Taylor expansion of (E , ϕ) is a holomorphic
function of z, while it is anti-holomorphic in the former. In the calculations
proving smoothness across EE ,ϕ∩{df 6= 0} the equations (3.4)–(3.5) are not
used.

Using (3.3) in (2.6) one finds

lim
z→z0

f2∂z

(

a+
ρ

f

)

= lim
z→z0

∂z

[

f2∂z(a+
ρ

f
)

]

= lim
z→z0

∂z̄

[

f2∂z(a+
ρ

f
)

]

=0 . (3.6)

It follows as in the proof of Theorem 4.1 of [1] that the function a + ρ/f is
smooth across EE ,ϕ ∩ {df 6= 0}.

The same argument with a−ρ/f instead of a+ρ/f applies if the complex
conjugate solution is used.

A similar calculation with (2.5) shows that

lim
z→z0

f2∂z ln(|h/f |) = lim
z→z0

∂z(f
2∂z ln(|h/f |)) = lim

z→z0

∂z̄(f
2∂z ln(|h/f |)) = 0 .

(3.7)
The remaining arguments of the proof of Theorem 4.1 of [1] apply and we
conclude that the metric (2.1) extends smoothly across EE ,ϕ ∩ {df 6= 0},
and has Lorentzian signature in a neighborhood of this set.

Suppose, next, that f has a zero of higher order at z0 ∈ EE ,ϕ. Since
ϕ enters quadratically in f and in the right-hand sides of (2.5)–(2.6), and
through cubic terms in the right-hand sides of (2.2)–(2.3), one would hope
that ϕ will only contribute to subleading terms in Taylor expansions of those
equations. But then the analysis of the leading-order behavior of f near EE ,ϕ

is reduced to the analysis already done in [1], which would prove smoothness
of the space-time metric at the Ernst ergosurface without any provisons.

2 See theSingular file em1.in and theMaple file em1.mw at http://th.if.uj.edu.pl/
∼szybka/CS/
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It turns out that this is not the case: we shall see in the next section
that there exist leading-order Taylor polynomials satisfying the leading-order
equations for which the ϕ terms are not dominated by E . Nevertheless, the
argument just given establishes that if the ϕ terms are dominated by E ,
then the analysis of [1] proves smoothness of the metric across EE ,ϕ, and
Theorem 1.1 is proved.

Remark 3.1 Consider a E -dominated zero z0 of f , after shifting ℑE by
a real constant we can assume that E (z0) = 0. It then follows from
[1, Proposition 5.1] that the order of the zero of E at z0 coincides with
the order of the zero of ℜE .

4. Harrison–Neugebauer–Kramer transformations

It is of interest to enquire what happens with Ernst ergosurfaces under
Neugebauer–Kramer transformations [5, Equation (34.8e)] (see also [4]) of
(E , ϕ):

E
′ = E (1 − 2γ̄ϕ − γγ̄E )−1 ,

ϕ′ = (ϕ + γE )(1 − 2γ̄ϕ − γγ̄E )−1 . (4.1)

Under (4.1) f is transformed to

f ′ =
f

|1 − 2γ̄ϕ − γγ̄E |2
, (4.2)

so that EE ,ϕ is mapped into itself. The same remains of course true under
Harrison [3] transformations [5, Equation (34.12)], which are a special case
of (4.1) when the initial ϕ vanishes:

E
′ = E (1 − γγ̄E )−1 , ϕ′ = γE (1 − γγ̄E )−1 . (4.3)

As a significant corollary of Theorem 1.1, we obtain

Corollary 4.1 Let (E ′, ϕ′) be obtained by a Harrison transformation from
a smooth solution (M , g) of the vacuum equations with a non-empty ergo-
surface, then the conclusion of Theorem 1.1 holds.

Proof: As discussed in [1], the Ernst potential E is analytic near EE ,ϕ,
hence has a zero of finite order. Clearly, the order of zero of |ϕ′|2 as defined
by (4.3) is higher than the order of zero of E ′; the latter is the same as the
order of zero of ℜE ′ by the results in [1]. 2

Somewhat more generally, consider p ∈ EE ,ϕ, as explained above we can
always introduce a gauge so that ϕ(p) = 0. In this gauge, let (E ′, ϕ′) be
obtained by a Neugebauer–Kramer transformation from a solution satisfying
the hypotheses of Theorem 1.1 near p, then the conclusion of Theorem 1.1
holds near p for the metric constructed by using (E ′, ϕ′). This follows im-
mediately from (4.1).
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5. Some remaining possibilities

It remains to consider the case where the ϕ terms dominate in f , and the
case where all terms are of the same order. The latter case will be referred
to as balanced.

5.1. Balanced leading-order solutions with singular ergocircles

The simplest such possibility is Df(z0) = 0, DDf(z0) 6= 0 and E (z0) =
ϕ(z0) = 0. It is easy to completely analyze the first few leading-order equa-
tions with the ansatz

∂zE (z0) = ∂z̄E (z0) = ∂2
zE (z0) = ∂2

z̄E (z0) = 0 . (5.1)

A Maple–assisted calculation3 then shows that the leading-order equations
do not introduce any constraints on ∂zϕ(z0), and that if we set

α := ∂zϕ(z0) 6= 0 ,

then one has

|∂z̄ϕ(z0)|
2 = |α|2 , (5.2)

∂z∂z̄E (z0) = −4|α|2 .

Recall that (2.5)–(2.6) leads to the following equations for the metric
function a

f2

ρ
∂z

(

a +
ρ

f

)

=

(
∂E

∂z
+ 2ϕ

∂ϕ

∂z
+

f

z + z̄

)

︸ ︷︷ ︸

=:̊σ1

, (5.3)

f2

ρ
∂z

(

a −
ρ

f

)

= −

(
∂E

∂z
+ 2ϕ

∂ϕ

∂z
+

f

z + z̄

)

︸ ︷︷ ︸

=:̊σ2

. (5.4)

In the vacuum case it was shown that one out of σ̊1/f
2 and σ̊2/f

2 is smooth
near {f = 0, ρ 6= 0}, which then implies smoothness of the ergosurface. (An
identical analysis applies to E -dominated ergosurfaces.) So one can attempt
to repeat the argument here. Letting

r0 :=
√

(ρ − ρ0)2 + (ζ − ζ0)2 ,

3 See the Maple file em2.mw at http://th.if.uj.edu.pl/∼szybka/CS/



On the Ernst Electro-Vacuum Equations and Ergosurfaces 65

the leading terms of f , σ̊1, σ̊2 read

E = −4|αz|2 + O(r3
0) ,

ϕ = αz + γ̄z̄ + O(r2
0) ,

f = −αγz2 + 2|α|2zz̄ − γ̄ᾱz̄2 + O(r3
0) , (5.5)

σ̊1 = 2α(γz − ᾱz̄) + O(r2
0) ,

σ̊2 = −2α(γz − ᾱz̄) + O(r2
0) ,

where γ = ∂z̄ϕ(z0). Here, for the typesetting convenience, we used the
symbol z for z − z0. Those examples clearly lead to a singularity both in
σ̊1/f

2 and in σ̊2/f
2, therefore a different strategy is needed.

Now,
f = |αz − γ̄z̄|2 + (|α|2 − |γ|2)|z|2 + O(r3

0) ,

so that if |α| > |γ| we obtain an isolated zero of f , an “ergocircle”. More
precisely, the intersection of the set where f vanishes with a neighborhood
of z0 will be {z0}. This, at any given value of t, corresponds to an isolated
null orbit of the isometry group of the metric generated by ∂φ provided that
the metric is non-singular there.

Still assuming |α| > |γ|, we claim that the metric will be singular at z0.
Indeed, adding (5.3) and (5.4) one finds that ∂a is uniformly bounded near
z0, hence a can be extended by continuity to a Lipschitz continuous function
defined on a neighborhood of z0. But then g(∂φ, ∂φ) blows up as ρ2

0/f at z0.

5.2. Balanced solutions with radial E2k

The solutions of Section 5.1 are a special case of a family of solutions in
which the leading terms in E take the form

E2k = µ1e
iµ0(z − z0)

k(z̄ − z̄0)
k , µ0 ∈ R , µ1 ∈ R

∗ . (5.6)

Let us write

ϕk =

k∑

m=0

αm(z − z0)
m(z̄ − z̄0)

k−m , (5.7)

where all the αm’s do not vanish simultaneously. Inserting (5.6)–(5.7) into
(2.2)–(2.3) one obtains

(E2k+E 2k)
∂2E2k

∂z̄∂z
−2

∂E2k

∂z̄

∂E2k

∂z
=2ϕk

(
∂ϕk

∂z̄

∂E2k

∂z
+

∂ϕk

∂z

∂E2k

∂z̄

)

−2ϕkϕk

∂2E2k

∂z̄∂z
,

(5.8)

(E2k +E 2k)
∂2ϕk

∂z̄∂z
−

(
∂ϕk

∂z̄

∂E2k

∂z
+

∂ϕk

∂z

∂E2k

∂z̄

)

= 4ϕk

∂ϕk

∂z̄

∂ϕk

∂z
−2ϕkϕk

∂2ϕk

∂z̄∂z
.

(5.9)
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The right-hand side of (5.8) vanishes, and the vanishing of the left-hand
side implies sin µ0 = 0 =⇒ µ0 = jπ, where j ∈ N. Changing µ1 to −µ1

if necessary we can without loss of generality assume µ0 = 0. Setting
αi = 0 for i < 0 or i > k, and working out the coefficients of the terms
(z − z0)

k−1+l(z̄ − z̄0)
2k−1−l in (5.9) we obtain for −k + 1 ≤ l ≤ 2k − 1

µ1αl

(
(k − l)2 + l2

)
=−

∑

−m+n+i=l

0≤m,n,i≤k

2ᾱmαnαi(k − i)(2n − i) . (5.10)

We expect that a complete description of such solutions should be possi-
ble (for example, it immediately follows for 2k − 1 > k (i.e., k > 1) that
ᾱ0αkαk−1 = 0), but we have not attempted to do that. Instead we list here
all such leading-order solutions for k = 2 and k = 3, as calculated4 using
Maple:

k = 2 , E4 = −|α|2|z|4 : ϕ2 = α|z|2 , α ∈ C
∗ ,

E4 = −4|α|2|z|4 : ϕ=αz2 + γ̄z̄2 , α, γ ∈ C
∗ , |α| = |γ| ,

k = 3 , E6 = −
4

5
|α|2|z|6 : ϕ3 = αz|z|2 or ϕ3 = αz̄|z|2 , α ∈ C

∗,

E6 = −4|α|2|z|6 : ϕ3 = αz3 + γ̄z̄3 , α, γ ∈ C
∗ , |α| = |γ| .

As before, for typesetting convenience, we used the symbol z for z − z0.
(We have not included the solutions with ϕk = 0, as they are not balanced.)

The above suggests the following solutions, for all k ≥ 1,

E2k = −4|α|2|z|2k : ϕk = αzk + γ̄z̄k , α, γ ∈ C
∗ , |α| = |γ| , (5.11)

E4k = −|α|2|z|4k : ϕ2k = α|z|2k , α ∈ C
∗ , (5.12)

E4k+2 = −
2 k (k + 1) |α|2

2 k2 + 2 k + 1
|z|4k+2 :

ϕ2k+1 = αz|z|2k or ϕ2k+1 = αz̄|z|2k , α ∈ C
∗ . (5.13)

Those can be verified by a direct calculation.
Regularity of the metric can be established by showing that gφt = −af ,

ln gζζ = ln gρρ = ln(hf−1), gφφ =
(
ρ2 − (af)2

)
/f are smooth across {f = 0,

ρ > 0} and that af does not vanish whenever f does. All solutions with
leading-order behavior (5.12), if any, have a zero of f which is of order
higher than 4k. Thus f vanishes to higher order there, and any analysis
of the metric near {f = 0} requires knowledge of the higher-order Taylor
coefficients of E and ϕ there.

4 See the Maple file em3.mw at http://th.if.uj.edu.pl/∼szybka/CS/
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On the other hand, the solution E6 = −4/5|α|2|z|6, ϕ3 = αz|z|2 leads to
a singularity in the metric. (The same is true for its conjugate pair, namely
E , ϕ̄.) For this solution we have, using (2.4)–(2.6),

f = −
1

5
|α|2z3z̄3 + . . . , (5.14)

1

h

∂h

∂z
= −56

ρ0

z2
+ . . . , (5.15)

∂a

∂z
= 25

ρ0

|α|2z4z̄3
+ . . . . (5.16)

(Eq. (5.14) shows that f vanishes at an isolated point in the (ρ, ζ) plane,
leading again to an ergocircle.) Integrating we obtain

ln(−h) = 112ρ0

ρ − ρ0

(ρ − ρ0)2 + (ζ − ζ0)2
+ . . . , (5.17)

a =
−25

3|α|2
ρ0

((ρ − ρ0)2 + (ζ − ζ0)2)3
+ . . . , (5.18)

hence

af =
5

3
ρ0 + . . . , (5.19)

ln(hf−1) = 112ρ0

ρ − ρ0

(ρ − ρ0)2 + (ζ − ζ0)2

− ln

(
1

5
|α|2

(
(ρ − ρ0)

2 + (ζ − ζ0)
2
)3
)

+ . . . , (5.20)

gφφ =
80

9|α|2
ρ2
0

((ρ − ρ0)2 + (ζ − ζ0)2)3
+ . . . . (5.21)

Even though af is regular at leading order, the metric is singular at the
point (ρ0, ζ0). This is not merely a coordinate singularity, since (5.21) shows
that the norm gφφ = g(∂φ, ∂φ) of the Killing vector ∂φ is unbounded.

5.3. ϕ-dominated ergocircles

We consider now those solutions where ϕ dominates in f . It follows
immediately from Theorem 5.2 below that such solutions correspond to iso-
lated points of {f = 0}, hence to ergocircles within the level sets of the
coordinate t.

The simplest solutions in this class would have E vanishing altogether, or
vanishing to very high order. In this context, symbolic algebra calculations5

show that there are no non-trivial solutions such that
5 See theSingular files em4a.in, em4b.in at http://th.if.uj.edu.pl/∼szybka/CS/
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• ϕ = O(|z − z0|) with non-zero gradient at z0, and E = O(|z − z0|
4),

• ϕ = O(|z − z0|
2) with non-zero Hessian at z0, and E = O(|z − z0|

9).

In other words the assumption that ϕ = O(|z − z0|) and E = O(|z − z0|
4)

implies ϕ = O(|z − z0|
2); similarly ϕ = O(|z − z0|

2) and E = O(|z − z0|
9)

implies ϕ = O(|z − z0|
3). Those results require the analysis of the Taylor

series of ϕ to higher order.
More systematically, let us assume that the leading-order Taylor poly-

nomial ϕk of ϕ is of order k, with the corresponding Taylor polynomial for
E is of order ℓ, while ℜE = O(|z − z0|

m). The following shows that both,
for balanced and for ϕ-dominated solutions the order of E cannot be smaller
than that of |ϕ|2 (compare Remark 3.1):

Proposition 5.1 Suppose that E = O(|z − z0|
ℓ), ϕ = O(|z − z0|

k), and
ℜE = O(|z − z0|

m) with m ≥ 2k, then

ℓ ≥ 2k . (5.22)

Proof: Assume that ℓ < 2k, then inspection of (2.2) gives

∂zEℓ∂z̄Eℓ = 0 .

Since Eℓ is purely imaginary this reads |dEℓ|
2 = 0, and the result follows. 2

Clearly m ≥ ℓ under the hypotheses of Proposition 5.1, so (5.22) implies
m ≥ ℓ ≥ 2k. We conclude that at a zero which is balanced we must have
m = ℓ; equivalently the order of E equals that of ℜE . The same is true for
E -dominated solutions by Remark 3.1. It follows that the hypothesis that
ϕ dominates in f is equivalent to

2k < ℓ . (5.23)

Supposing that f vanishes at (ρ0 , ζ0) = z0, (2.3) becomes

ϕkϕkLϕk = 2ϕk

∂ϕk

∂z̄

∂ϕk

∂z
+ O(rk+ℓ−2

0 ) + O(r3k−3
0 ) . (5.24)

By (5.23) the second term can be absorbed into the first one. Since the first
derivatives part of L contributes terms which vanish faster than the second
derivative ones, inspection of the leading-order terms leads to the equation

ϕk∆2ϕk = 2|dϕk|
2 ⇐⇒ ∆2ϕ

−1
k = 0 , (5.25)

on the set {ϕk 6= 0}, where ∆2 is the Laplace operator of the metric dρ2+dζ2.
(Similarly, (E ≡ 0 , ϕ) is a solution of (2.2)-(2.3) if and only if ∆3ϕ

−1 = 0,
where ∆3 is the Laplace operator of the metric dρ2 + dζ2 + ρ2dφ2.)
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We have the following:

Theorem 5.2 Homogeneous polynomial solutions of (5.25) are either holo-
morphic or anti-holomorphic.

Proof: Let ϕk be a homogeneous polynomial of order k solving (5.25),
conveniently parameterized as

ϕk =
k∑

m=0

αm(z − z0)
m(z̄ − z̄0)

k−m . (5.26)

In complex notation the truncated Ernst–Maxwell equation (5.25) reads

ϕk
∂2ϕk

∂z∂z̄
= 2

∂ϕk

∂z

∂ϕk

∂z̄
. (5.27)

Inserting (5.26) into (5.27) we obtain

∑

1≤m+j≤2k−1

(k−m)(m−2j)αmαj(z−z0)
m+j−1(z̄−z̄0)

2k−m−j−1 = 0 . (5.28)

Hence, for 1 ≤ ℓ ≤ 2k − 1:

∑

m+j=ℓ, m≤k

(k − m)(m − 2j)αmαj = 0 . (5.29)

For ℓ ≤ k this equation can be written in the form

ℓ∑

m=0

(k − m)(3m − 2ℓ)αmαℓ−m = 0 . (5.30)

We consider ℓ ≤ k. For ℓ = 1 we have

(k + 1)α0α1 = 0 .

Assume, first, that α0 6= 0. Then α1 = 0, and for ℓ = 2 we obtain

2(k + 2)α0α2 = 0 ,

thus α2 = 0. More generally, if we assume for some ℓ0 that αm = 0 for
0 < m < ℓ0 we have from (5.30)

ℓ0(k + ℓ0)α0αℓ0 = 0 =⇒ αℓ0 = 0 .
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We can repeat this argument for ℓ = ℓ0 + 1 and continue up to ℓ = k.
Therefore, assumption α0 6= 0 leads to αm = 0 for 0 < m ≤ k and ϕk

is holomorphic. Similarly, replacing above ϕk with its complex conjugate
reveals that αk 6= 0 implies anti-holomorphicity of ϕk. Note that for k = 1
we are done.

Next, we assume k ≥ 2 and we turn to the case α0 = 0, αk = 0. Again,
we consider ℓ ≤ k. The equation with ℓ = 1 has already been shown to be
satisfied, but for ℓ = 2 we have

(k − 1)α2
1 = 0 ,

thus α1 = 0 since k 6= 1. The value of ℓ = 3 gives no new conditions but for
ℓ = 4

(k − 2)α2
2 = 0 ,

thus α2 = 0.
More generally, let us assume that αm = 0 for 0 ≤ m < m0 ≤ k/2, then

(5.30) for ℓ = 2m0 implies

(k − m0)α
2
m0

= 0 ,

hence we have a contradiction. We conclude that α0 = 0 implies αm = 0 for
0 ≤ m ≤ k/2.

The above result applied to the complex conjugate of ϕk shows that
αk = 0 implies αm = 0 for k/2 ≤ m < k, as desired. 2

5.3.1. ϕ-dominated leading-order solutions with singular ergocircles

We continue our analysis of ϕ of order k ≥ 1, with the leading term of
E of order 2k + 1 or higher, so that f is O(r2k

0 ). (Note that some possibil-
ities for k = 1 and k = 2 have already been eliminated at the beginning of
Section 5.3.) Since the Ernst–Maxwell equations are invariant under trans-
formation ϕ → cϕ, E → c̄cE , where c is a complex constant, we can without
loss of generality assume that the Taylor development ϕ̃ of ϕ, as truncated
at order k + 1, takes the form

ϕ̃ = (z − z0)
k +

k+1∑

m=0

αm(z − z0)
m(z̄ − z̄0)

k+1−m . (5.31)

Similarly, we have

E2k+1 =
2k+1∑

m=0

ιm(z − z0)
m(z̄ − z̄0)

2k+1−m . (5.32)
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The function f takes the form

f = −(z − z0)
k(z̄ − z̄0)

k + O
(

r2k+1
0

)

. (5.33)

The leading terms in the Ernst–Maxwell equations appear in order 4k − 1
and 3k − 1, respectively

ϕ̃
∂2E2k+1

∂z∂z̄
=

∂ϕ̃

∂z

∂E2k+1

∂z̄
, (5.34)

2ϕ̃

{

ϕ̃

(
∂2ϕ̃

∂z∂z̄
+

1

2(z + z̄)

∂ϕ̃

∂z

)

− 2
∂ϕ̃

∂z

∂ϕ̃

∂z̄

}

=
∂E2k+1

∂z̄

∂ϕ̃

∂z
. (5.35)

It follows from (5.34) that

∂E2k+1

∂z̄
= Ĉ(z̄)ϕ̃ , (5.36)

where Ĉ(z̄) is arbitrary function of z̄. However, we have assumed that E

has leading term of order 2k +1. The comparison of (5.36) with (5.32) gives

∂E2k+1

∂z̄
= (k + 1)ιk(z − z0)

k(z̄ − z̄0)
k , (5.37)

thus, ιm = 0 for m 6= k and m 6= 2k + 1.
(Somewhat more generally, an identical argument proves that if E =

O(|z − z0|
ℓ) and ϕ = O(|z − z0|

k), with 2k < ℓ, ϕ holomorphic to leading
order, then there exists c ∈ C such that Eℓ takes the form Eℓ = c(z − z0)

k

(z̄ − z̄0)
ℓ−k.)

The field equations imply

f2

ρ
∂z ln

(∣
∣
∣
∣

h

f

∣
∣
∣
∣

)

= κ̂ , (5.38)

where

κ̂ :=
1

2

((
∂E

∂z
+ 2ϕ

∂ϕ

∂z
+

2f

z + z̄

)(
∂E

∂z
+ 2ϕ

∂ϕ

∂z

)

+

(
∂E

∂z
+ 2ϕ

∂ϕ

∂z
+

2f

z + z̄

)(
∂E

∂z
+ 2ϕ

∂ϕ

∂z

)

− 4
∂ϕ

∂z

∂ϕ

∂z

(
E + E + 2ϕϕ

)
)

, (5.39)
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and recall that the functions σ̊1 and σ̊2 have been defined in (5.3)–(5.4). We
are going to show that if the conditions mentioned at the beginning of this
section hold, then (5.35), (5.34) imply that

σ̊2 = dσ̊2 = . . . = d2kσ̊2 = 0

and
κ̂ = dκ̂ = . . . = d4k−2κ̂ = 0

on EE ,ϕ but d4k−1κ̂ = 0 only for special solutions.
Inserting (5.31) and (5.37) into (5.35) gives

k−1∑

m=0

(k + 1 − m)(m − 2k)αm(z − z0)
k+m−1(z̄ − z̄0)

k−m

− k

(

αk +
k + 1

2
ιk −

1

4ρ0

)

(z − z0)
2k−1 = 0 . (5.40)

The comparison of the coefficients in front of powers of (z− z0) and (z̄− z̄0)
allows us to read off that αm = 0 for m = 0, . . . , k − 1. Moreover,

αk + ιk(k + 1)/2 =
1

4ρ0

and there are no restrictions in the leading order on αk+1, ι2k+1. Hence

ϕ̃ = (z − z0)
k + αk(z − z0)

k(z̄ − z̄0) + αk+1(z − z0)
k+1 ,

E2k+1 = ιk(z − z0)
k(z̄ − z̄0)

k+1 .

Keeping this result in mind, we write down the leading terms of σ̊2:

σ̊2 = −
∂E 2k+1

∂z
− 2ϕ̃

(
∂ϕ̃

∂z
−

1

2

ϕ̃

z + z̄

)

+ O(r2k+1
0 )

= −2

(
k∑

m=0

(k + 1 − m)ᾱm(z̄ − z̄0)
m(z − z0)

2k−m

+

(
k + 1

2
ῑk −

1

4ρ0

)

(z̄ − z̄0)
k(z − z0)

k

)

+ O(r2k+1
0 )

= O
(

r2k+1
0

)

. (5.41)

Therefore, σ̊2 is at least O(r2k+1
0 ). Moreover, it follows from the identity

−2
∂f

∂z
= σ̊1 − σ̊2 −

2f

z + z̄
, (5.42)
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that σ̊1 is O(r2k−1
0 ) but not better, because it has to compensate for the

lowest terms of ∂zf , see (5.33).
Now, we turn to κ̂. Firstly, we rewrite (5.39) in terms of σ̊1, σ̊2

κ̂ = −σ̊1σ̊2 −
f2

(z + z̄)2
+ 4

∂ϕ̄

∂z

∂ϕ

∂z
f . (5.43)

It follows from our previous results and (5.33) that

κ̂ = −

(
1

ρ0

− 2(k + 1)ῑk

)

k(z − z0)
2k−1(z̄ − z̄0)

2k + O(r4k
0 ) . (5.44)

Therefore, κ̂ is only O(r4k−1
0 ) for any

ιk 6= (2(k + 1)ρ0)
−1

and any solution with the above leading-order behavior, if it exists, will lead
to a singular space-time metric (note, however, that this could be a coordi-
nate singularity).

On the other hand if ιk = (2(k + 1)ρ0)
−1 then αk = 0 and ϕ is holomor-

phic also in the order k + 1. For such solutions κ̂ is at least O(r4k
0 ), which

is not incompatible in an obvious way with smoothness of the space-time
metric at the ergosurface.

6. Concluding remarks

Our results are far from satisfactory, with the following questions open:

1. Which “solutions at leading order”, as constructed above using Tay-
lor series expansions (whether balanced, ϕ- or E -dominated), do arise
from real solutions of the Ernst–Maxwell equations which are smooth
across the zero-level set of f? Here we mean that the associated har-
monic map is smooth, without (in a first step) requesting that the
associated space-time metric be smooth as well. The non-existence re-
sults mentioned at the beginning of Section 5.3 are instructive: there
do exist Taylor polynomials solving the leading-order equations with
ϕ = O(|z−z0|) with non-zero gradient at z0 and with, say, E = 0, and
one has to go a few orders more in the Taylor series to show that the co-
efficients of the leading-order Taylor polynomial are all zero. The same
mechanism applies to leading-order solutions with ϕ = O(|z − z0|

2)
with non-zero Hessian at z0.

2. Can one exhaustively describe the balanced leading-order solutions?
The question seems hard. There does not seem, however, to be any
good reason to invest a lot of energy therein as long as the previous
question remains open.



74 P.T. Chruściel, S.J. Szybka

Part of this work was done when the first authorwas visiting the Albert
Einstein Institute, Golm. We are also grateful to Jena University for hospi-
tality. Useful conversations with Laurent Véron are acknowledged.

REFERENCES

[1] P.T. Chruściel, G.-M. Greuel, R. Meinel, S.J. Szybka, Class. Quantum Grav.
23, 4399 (2006) [gr-qc/0603041].

[2] G.-M. Greuel, G. Pfister, H. Schönemann, Singular, a computer algebra sys-
tem for polynomial computations, see http://www.singular.uni-kl.de

[3] B.K. Harrison, J. Math. Phys. 9, 1744 (1968).

[4] G. Neugebauer, D. Kramer, Ann. Phys. 24, 62 (1969).

[5] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact Solu-
tions of Einstein’s Field Equations, Cambridge Monographs on Mathematical
Physics, Cambridge University Press, Cambridge 2003 (2nd ed.).


