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Abstract. The charge radii and quadrupole moments of baryons with nonzero strangeness are calculated
using a parametrization method based on the symmetries of the strong interaction.

PACS. 14.20.Jn Hyperons – 13.40.Gp Electromagnetic form factors – 11.30.Ly Other internal and higher
symmetries

1 Introduction

The discovery of the first strange meson by Rochester and
Butler [1] marked the beginning of a new era in subatomic
physics. Since then a great deal has been learned about
the strong and electroweak interactions of mesons and
baryons. However, our knowledge of their spatial structure
is still rather limited. In contrast to the N and ∆, which
have been investigated with increasing precision [2–4], lit-
tle is known about the spatial structure of their strange
siblings with whom they form the octet and decuplet
baryon families. For example, while proton and neutron
charge radii were already measured half a century ago [5],
a first determination of the Σ− charge radius has only re-
cently become possible [6]. Up until now, there have been
no experiments that pertain to the shape of hyperons [7].
In addition, with respect to theory we are still lacking a
thorough understanding of the structure of most hadrons.
Various model calculations of hyperon charge radii [8] and
quadrupole moments [9] differ considerably in their pre-
dictions. The reasons for these differences are often un-
clear. To gain a better understanding, we investigate to
what extent these structural features are determined by
the symmetries of the strong interaction.

2 Strong interaction symmetries

Invariance of the strong interaction under SU(2) isospin
transformations leads to isospin conservation and the
appearance of degenerate hadron multiplets with fixed
isospin, such as the pion triplet and nucleon doublet. In
the 1950s numereous new meson and baryon isospin mul-
tiplets were discovered [10]. The unusually long lifetime of
these new particles (fast production but slow decay) was
explained by Pais, Gell-Mann, and Nishijima [11] by in-
voking a new symmetry principle and additive quantum
number called ‘strangeness’. The latter was assumed to

Fig. 1. SU(3) flavor octet and decuplet of ground-state
baryons characterized by their strangeness S (vertical axis)
and isospin component T3 (horizontal axis).

be conserved in strong and electromagnetic interactions
(production) but violated in weak interactions (decay),
thus explaining the long lifetimes of strange hadrons.

Further considerations led Gell-Mann to propose that
strong interactions conserve not only isospin and strange-
ness, but are also invariant under the higher SU(3) flavor
symmetry [12] which ties isospin multiplets with different
isospin T and strangeness S to larger degenerate multi-
plets of particles with the same spin J and parity P , e.g.,
to octets and decuplets (see Fig. 1). It was soon recognized
that these higher multiplets emerge because baryons are
composed of the same spin 1/2 flavor triplet quarks, which
are merely coupled to a different total spin and flavor.

An even higher strong interaction symmetry is SU(6)
spin-flavor symmetry, which unites the spin 1/2 flavor
octet baryons (2× 8 states), and the spin 3/2 flavor decu-
plet baryons (4×10 states) into a common 56-dimensional
mass degenerate supermultiplet [13,14]. There are numer-
ous successful predictions based on SU(6) spin-flavor sym-
metry. For example, while SU(3) flavor symmetry alone
does not suffice to uniquely determine the ratio of proton
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and neutron magnetic moments, SU(6) spin-flavor sym-
metry [14] leads to the prediction µp/µn = −3/2, which is
in excellent agreement with the experimental result -1.46.
Another example is the Gürsey-Radicati mass formula [13]
which explains why the Gell-Mann Okubo mass formula
works so well for both octet and decuplet baryons with
the same numerical coefficients. Without an underlying
spin-flavor symmetry this would remain mysterious.

Thus, SU(6) is a good symmetry in baryon physics,
and the question arises whether it is a symmetry of quan-
tum chromodynamics. In an 1/Nc expansion, where Nc de-
notes the number of colors, it has been shown that QCD
possesses a spin-flavor symmetry which is exact in the
large Nc limit [15,16]. For finite Nc, spin-flavor symme-
try breaking operators can be classified according to the
powers of 1/Nc associated with them. It turns out that
higher orders of spin-flavor symmetry breaking are sup-
pressed by correspondingly higher powers of 1/Nc. This
leads to a perturbative expansion scheme for QCD pro-
cesses that works at all energy scales and provides a con-
nection between broken SU(6) spin-flavor symmetry and
the underlying quark-gluon dynamics [17,18].

3 Method

Alternatively, for Nc = 3 we may use a straightforward
model-independent parametrization method developed by
Morpurgo [19], which incorporates SU(6) symmetry and
its breaking similar to the 1/Nc expansion. The basic idea
is to formally define, for the observable at hand, a QCD
operator Ω and QCD eigenstates |B〉 expressed explicitly
in terms of quarks and gluons. The corresponding matrix
element can, with the help of the unitary operator V , be
reduced to an evaluation in the basis of auxiliary three-
quark states |ΦB〉

〈B|Ω|B〉 =
〈
ΦB |V †ΩV |ΦB

〉
= 〈WB |O|WB〉 . (1)

The auxiliary states |ΦB〉 are pure three-quark states with
orbital angular momentum L = 0. The spin-flavor wave
functions [20] contained in |ΦB〉 are denoted by |WB〉. The
operator V dresses the pure three-quark states with qq̄
components and gluons and thereby generates the exact
QCD eigenstates |B〉. Furthermore, it is implied that V
contains a Foldy-Wouthuysen transformation allowing the
auxiliary states to be written in terms of Pauli spinors.

One then writes the most general expression for the
operator O that is compatible with the space-time and
inner QCD symmetries. Generally, this is a sum of one-,
two-, and three-quark operators in spin-flavor space mul-
tiplied by a priori unknown constants which parametrize
the orbital and color space matrix elements. Empirically,
a hierarchy in the importance of one-, two-, and three-
quark operators is found. This fact can be understood in
the 1/Nc expansion where two- and three-quark opera-
tors describing second and third order SU(6) symmetry
breaking are usually suppressed by powers of 1/Nc and
1/N2

c respectively, compared to one-quark operators asso-
ciated with first order symmetry breaking. The method

has been used to calculate various properties of baryons
and mesons [19,21–23]. In the next section, we apply it to
baryon charge radii and quadrupole moments.

4 Observables

Information on baryon structure is contained in the charge
monopole form factor GC0(q2), where q2 is the four-
momentum transfer of the virtual photon. In the Breit
frame, the Fourier transform of GC0(q2) corresponds to
the charge density ρ(r), describing the radial dependence
of the baryon charge distribution. Its lowest radial mo-
ment is the baryon charge radius r2

B .
However, the charge density need not be spherically

symmetric, i.e., in general ρ(r) �= ρ(r). The geometric
shape of a baryon is determined by its intrinsic quadrupole
moment [24], which can be inferred from the observable
spectroscopic quadrupole moment QB . The latter corre-
sponds to the charge quadrupole form factor GC2(q2) at
zero momentum transfer. For spin 1/2 baryons, which
do not have a spectroscopic quadrupole moments due to
angular momentum selection rules, one may still obtain
information on their intrinsic quadrupole moments from
measurements of electric (E2) and Coulomb (C2) quadru-
pole transitions to excited states [3].

The lowest moments of the charge density operator ρ
are obtained from a multipole expansion at low momen-
tum transfers. Up to q2 contributions one has

ρ(q) = e − q2

6
r2 − q2

6
Q + · · · (2)

The first two terms arise from the spherically symmetric
monopole part, while the third term is obtained from the
quadrupole part of ρ. They characterize the total charge
(e), spatial extension (r2), and shape (Q) of the system.

4.1 Charge radii

According to the method outlined in the previous section,
the charge radius operator can be expressed as a sum of
one-, two-, and three-quark terms in spin-flavor space as

r2 = A

3∑

i=1

ei1 + B

3∑

i�=j

ei σi · σj + C

3∑

i�=j �=k

ek σi · σj , (3)

where ei = (1 + 3τi z)/6 and σi are the charge and spin
of the i-th quark. Here, τi z denotes the z component of
the Pauli isospin matrix. These are the only allowed spin
scalars that can be constructed from the generators of
the spin-flavor group [25]. The constants A, B, and C
parametrizing the orbital and color matrix elements are
determined from experiment.

To estimate the degree of SU(3) flavor symmetry
breaking we insert in Eq.(3) a linear and cubic quark mass
dependence as

1 → 1 (mu/ms), σi ·σj → σi ·σj m3
u/(m2

i mj). (4)
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Table 1. Baryon charge radii denoted by the particle symbols
with one-quark (A), two-quark (B), and three-quark (C) con-
tributions. Flavor symmetry breaking is characterized by the
ratio of u-quark and s-quark masses ζ = mu/ms. The flavor
symmetry limit is obtained for ζ = 1.

n − 2B + 4C
p A − 6C
Σ− [A(2 + ζ) + 2(B + C)(1 − 2ζ − 2ζ2)]/3
Σ0 [A(1 − ζ) + B(1 − 2ζ + 4ζ2) − 2C(1 + ζ + ζ2)]/3
Λ0 A(1 − ζ)/3 − B + 2C

ΛΣ −√
3(Bζ − C(ζ + ζ2))

Σ+ [A(4 − ζ) + 4B(1 − 2ζ + ζ2) − 2C(1 + 4ζ + 4ζ2)]/3
Ξ− [A(1 + 2ζ) − 2(B + C)(2ζ + 2ζ2 − ζ3)]/3
Ξ0 [A(2 − 2ζ) − 2B(4ζ − 2ζ2 + ζ3) + 4C(ζ + ζ2 + ζ3)]/3

∆− A + 2B + 2C
∆0 0
∆+ A + 2B + 2C
∆++ A + 2B + 2C
Σ∗− [A(2 + ζ) + 2(B + C)(1 + ζ + ζ2)]/3
Σ∗0 [A(1 − ζ) + B(1 + ζ − 2ζ2) − C(2 − ζ − ζ2)]/3
Σ∗+ [A(4 − ζ) + 2B(2 + 2ζ − ζ2) − 2C(1 − 2ζ − 2ζ2)]/3
Ξ∗− [A(1 + 2ζ) + 2(B + C)(ζ + ζ2 + ζ3)]/3
Ξ∗0 [A(2 − 2ζ) + 2B(2ζ − ζ2 − ζ3) − 2C(ζ + ζ2 − 2ζ3)]/3
Ω− Aζ + 2(B + C)ζ3

These replacements are motivated by the different charge
radii of up- and strange quarks and the flavor dependence
of the gluon exchange current diagram [23]. Flavor symme-
try breaking is then characterized by the ratio ζ = mu/ms

of u and s quark masses. The latter is determined from
the magnetic moment of the Λ hyperon. Our treatment of
flavor symmetry breaking is not exact. Improvements are
possible by introducing additional operators and constants
in Eq.(3). However, there would then be so many unde-
termined constants that the theory can no longer make
predictions. We expect that our approximate treatment
of flavor symmetry breaking captures the most important
physical effects. We use the same mass for u and d quarks
to preserve the SU(2) isospin symmetry of the strong in-
teraction that is known to hold to a very good accuracy.

Baryon charge radii are then calculated by evaluating
matrix elements of the operator in Eq.(3) including the
substitutions in Eq.(4) between three-quark spin-flavor
wave functions |WB〉

r2
B = 〈WB |r2|WB〉. (5)

For charged baryons, r2
B is normalized by dividing by the

baryon charge. The results for octet and decuplet baryons
are summarized in Table 1. The two- and three-quark re-
sults agree with those in Ref. [26] for Nc = 3 after obvious
redefinition of the constants.

From Table 1 one readily observes that in the SU(6)
symmetry limit all ground state baryons have the same
charge radius r2

B = Ae, where e is the baryon charge.
In particular, the charge radii of the neutral baryons are
zero. Inclusion of the spin-dependent two- and three-quark
operators break SU(6) spin-flavor symmetry and split the
charge radii of octet and decuplet baryons by decreasing

the former and increasing the latter, e.g.

r2
Σ∗− − r2

Σ− = r2
Ξ∗− − r2

Ξ− = 2(B + C)(ζ + ζ2) > 0. (6)

Another consequence is that the neutral octet charge radii
are definitely nonzero. If third order SU(6) symmetry
breaking, i.e. the C term, can be neglected, the follow-
ing relation holds [21,29]

r2
∆+ − r2

p = −r2
n, (7)

which shows that the octet-decuplet charge radius split-
ting is of the same order as the neutron charge radius.

Because there are 19 experimental charge radii (8 di-
agonal octet, 1 transition octet, and 10 diagonal decuplet)
and 3 constants, Table 1 contains 16 relations among the
baryon charge radii, some of which are independent of the
SU(3) symmetry breaking parameter ζ and thus hold ir-
respective of how badly SU(3) flavor symmetry is broken.
An example of the latter type is the Σ equal spacing rule,

r2
Σ+ − r2

Σ− = 2 r2
Σ0 , r2

Σ∗+ − r2
Σ∗− = 2 r2

Σ∗0 , (8)

which is already a consequence of the assumed isospin
symmetry. Another example is the equal spacing rule for
decuplet charge radii

3 (r2
Ξ∗− − r2

Σ∗−) = r2
Ω∗− − r2

∆∗− , (9)

which the reader may easily verify using Table 1. Analo-
gous relations hold for baryon quadrupole moments [23].

To make numerical predictions, we express the three
parameters A, B, and C in Eq.(3) in terms of the three
measured charge radii r2

p, r2
n, and r2

Σ− using the results in
Table 1

A(3 − ζ − 2ζ2)=(1−2ζ − 2ζ2)(r2
p−r2

n)+3r2
Σ− ,

−3B(3−ζ−2ζ2)=(2+ζ)r2
p+

1
2
(7 + ζ−2ζ2)r2

n − 3 r2
Σ− ,

−6C(3−ζ − 2ζ2)=(2 + ζ)r2
p − 1

2
(2−4ζ−4ζ2)r2

n − 3r2
Σ− .

With the experimental radii and ζ = 0.613 we obtain
A = 0.723 fm2, B = 0.039 fm2, C = −0.009 fm2 and
the numerical results shown in Table 2 (a). For compar-
ison, we also use r2

Σ− = 0.64(0.67) fm2 as input, which
leads to A = 0.779(0.873) fm2, B = 0.058(0.077) fm2,
C = 0(0.010) fm2, and the results labelled (b) and (c) in
Table 2. Thus, while the constant B > 0 is fixed by the
negative neutron charge radius, the sign of C cannot be
reliably determined. In any case, the C term is definitely
smaller than the B term by at least a factor of 1/Nc.

Table 2 shows that octet baryon charge radii are or-
dered as r2

Σ+ >r2
p >r2

Σ− >r2
Ξ− . For decuplet baryons one

finds r2
Σ∗+ > r2

∆+ > r2
Σ∗− > r2

Ξ∗− > r2
Ω− . In both flavor

multiplets the decrease in each step is of order |r2
n|. Note

that only r2
n and r2

ΛΣ are negative [30]. With respect to
the size of SU(6) symmetry breaking, we obtain for the
parameter sets (a)-(c) a relative charge radius splitting
(r2

∆+ − r2
p)/[(r2

∆+ + r2
p)/2] of 0.5%, 14%, and 26%. For

r2
Σ− = 0.91(36) fm2 [6] (WA89 experiment) the splitting

would be 83%, which is too large, if the relative octet-
decuplet splitting for charge radii and masses is similar,
as we expect.
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Table 2. Numerical charge radii in [fm2] according to Table 1.
We use the measured charge radii r2

n = −0.1161(22) fm2 [27],
r2

p = 0.779(25) fm2 [28], and ζ = 0.613 as input. Three different
values for r2

Σ− are used as input: r2
Σ− = 0.61(21) fm2 [6] (a),

r2
Σ− = 0.64 fm2 (b), and r2

Σ− = 0.67 fm2 (c).

(a) (b) (c)
n -0.116 -0.116 -0.116
p 0.779 0.779 0.779
Σ− 0.610 0.641 0.672
Σ0 0.122 0.125 0.128
Λ0 0.035 0.043 0.050
Λ0Σ0 -0.058 -0.062 -0.066
Σ+ 0.855 0.891 0.928
Ξ− 0.501 0.510 0.520
Ξ0 0.120 0.126 0.132

∆− 0.783 0.895 1.011
∆0 0 0 0
∆+ 0.783 0.895 1.011
∆++ 0.783 0.895 1.011
Σ∗− 0.669 0.756 0.845
Σ∗0 0.108 0.117 0.127
Σ∗+ 0.869 0.988 1.086
Ξ∗− 0.561 0.625 0.692
Ξ∗0 0.206 0.225 0.244
Ω− 0.457 0.504 0.553

Table 3. Transition and diagonal baryon quadrupole moments
denoted by the particle symbols with two-quark (B’) and three-
quark (C’) contributions. From Ref. [23].

n → ∆0 2
√

2(B′ − 2C′)
p → ∆+ 2

√
2(B′ − 2C′)

Σ− → Σ∗− −√
2 (2B′ + 2C′) (2 − ζ − ζ2)/3

Σ0 → Σ∗0 √
2[2B′(2 − ζ + 2ζ2) − 2C′(4 + ζ + ζ2)]/6

Λ0 → Σ∗0 √
6[2B′ζ − 2C′(ζ + ζ2)]/2

Σ+ → Σ∗+ 2
√

2 [B′ (4 − 2ζ + ζ2) − 2C′ (1 + ζ + ζ2)]/3

Ξ− → Ξ∗− −√
2 (2B′ + 2C′) (ζ + ζ2 − 2ζ3)/3

Ξ0 → Ξ∗0 √
2[2B′(2ζ − ζ2 + 2ζ3) − 2C′(ζ + ζ2 + 4ζ3)]/3

∆− −4B′ − 4C′

∆0 0
∆+ 4B′ + 4C′

∆++ 8B′ + 8C′

Σ∗− −(4B′ + 4C′)(1 + ζ + ζ2)/3
Σ∗0 [2B′(1 + ζ − 2ζ2) − 2C′(2 − ζ − ζ2)]/3
Σ∗+ [4B′(2 + 2ζ − ζ2) − 4C′(1 − 2ζ − 2ζ2)]/3
Ξ∗− −(4B′ + 4C′)(ζ + ζ2 + ζ3)/3
Ξ∗0 [4B′(2ζ − ζ2 − ζ3) − 4C′(ζ + ζ2 − 2ζ3)]/3
Ω− −(4B′ + 4C′)ζ3

4.2 Quadrupole moments

The charge quadrupole operator is composed of a two- and
three-body term in spin-flavor space

Q = B′
3∑

i�=j

ei (3σi zσj z − σi · σj)

+ C ′
3∑

i�=j �=k

ek (3σi zσj z − σi · σj) . (10)

Table 4. Numerical quadrupole moments in [fm2] according
to Table 3 using the parameter sets (a)-(c) of sect. 4.1.

(a) (b) (c)

n → ∆0 −0.082 -0.082 -0.082
p → ∆+ −0.082 -0.082 -0.082
Σ− → Σ∗− 0.014 0.028 0.042
Σ0 → Σ∗0 −0.031 -0.029 -0.028
Λ0 → Σ∗0 −0.041 -0.044 -0.046
Σ+ → Σ∗+ −0.076 -0.086 -0.097
Ξ− → Ξ∗− 0.007 0.014 0.022
Ξ0 → Ξ∗0 −0.033 -0.036 -0.039

∆− 0.060 0.116 0.174
∆0 0 0 0
∆+ −0.060 -0.116 -0.174
∆++ −0.120 -0.232 0.348
Σ∗− 0.039 0.077 0.115
Σ∗0 0.014 -0.017 -0.019
Σ∗+ −0.069 -0.110 -0.153
Ξ∗− 0.024 0.047 0.071
Ξ∗0 −0.019 -0.023 -0.029
Ω− 0.014 0.027 0.040

Baryon decuplet quadrupole moments QB∗ and octet-
decuplet transition quadrupole moments QB→B∗ are
obtained by calculating the matrix elements of the
quadrupole operator in Eq.(10) between the three-quark
spin-flavor wave functions |WB〉

QB∗ = 〈WB∗ |Q|WB∗〉 ,

QB→B∗ = 〈WB∗ |Q|WB〉 , (11)

where B denotes a spin 1/2 octet baryon and B∗ a member
of the spin 3/2 baryon decuplet. The ensuing quadrupole
moment relations have been discussed earlier [23]. Table 3
reproduces the main results.

Interestingly, SU(6) symmetry does not only lead to
charge radius and quadrupole moment relations, but also
furnishes relations between both sets of observables [31,
32]. This can be seen from a comparison of Table 1 and Ta-
ble 3 using the relations B′ = −B/2 and C ′ = −C/2 [33].
For example, we find that the N → ∆ quadrupole moment
is related to the neutron charge radius as [29]

Qp→∆+ = Qn→∆0 =
1√
2

r2
n, (12)

which is experimentally well satisfied [34]. This relation
also holds for the corresponding form factors up to mo-
mentum transfers in the GeV region [32]. In the SU(3)
symmetry limit, the transition quadrupole moments of
nonnegative hyperons are proportional to r2

n, as can be
verified from Tables 1 and 3 for ζ = 1. Thus, the neutron
charge radius plays an important role. It sets the scale not
only for the charge radius splitting within and between fla-
vor multiplets but also for the size of quadrupole moments
and the corresponding intrinsic baryon deformation [24,
31,32]. Another example of the predictive power of SU(6)
spin-flavor symmetry is the Ω− quadrupole moment

QΩ− =
1

3 − ζ − 2ζ2

(
3 r2

Σ− − (2 + ζ) (r2
p + r2

n)
)
ζ3, (13)
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which has been expressed here in terms of the three mea-
sured baryon charge radii. Finally, Table 4 provides nu-
merical predictions for baryon quadrupole moments using
parameter sets (a)-(c) of sect. 4.1.

5 Summary

We have calculated baryon charge radii and quadrupole
moments using a parametrization method based on the
symmetries of QCD, and derived a number of charge ra-
dius and quadrupole moment relations. In addition, SU(6)
symmetry leads to interesting relations between these two
sets of observables. Using the three measured radii as in-
put, we have obtained numerical predictions for the re-
maining charge radii and baryon quadrupole moments.
Our results suggest that one can obtain information on
the shape of baryons both from quadrupole moment and
charge radius measurements.
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