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ABSTRACT

A general class of cosmological models driven by a nonlocal scalar
field is studied. We show that the considering linear cosmogical model
with a nonlocal field can be transformed to models with local scalar
fields. This transformation allows to find exact special solutions of
the nonlocal Einstein equations. The exact solution in the Friedman—
Robertson—Walker and Bianchi I metrics are presented.

1. Introduction

Present cosmological observations [1] do not exclude an evolving dark en-
ergy (DE) state parameter w, whose current value is less than —1, which
leads to violation of the NEC (see [2, 3] for a review of DE problems).

The purpose of this paper is to present recent results concerning studies of
the string field theory (SFT) inspired nonlocal cosmological models (about
string cosmology see review [4]). A Distinguished feature of these mod-
els [5]-[17] is the presence of an infinite number of higher derivative terms
(note also nonlocal models in the Minkowski space-time [18]-[23]). For spe-
cial values of the parameters these models describe linear approximations
to the cubic bosonic or nonBPS fermionic SFT nonlocal tachyon models,
or p-adic string models.

Field theories, which violate the NEC, are of interest not only for the
construction of cosmological dark energy models with the state parameter
w < —1, but also for the solution of the cosmological singularity problem. A
simple possibility to violate the NEC is just to deal with a phantom field.
In the present paper we consider nonlocal linear models with solutions,
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which are linear combinations of local fields. Some of these local fields
are phantoms. Namely due to the presence of these ghost excitations such
nonlocal models present an interest for cosmology.

The question of stability has to be consider in the full SFT framework
and demands further investigations. We believe that due to these string
theory origin the corresponding nonlocal cosmological models, which are
nonlinear in matter fields, have no problem with instability both in classical
and quantum cases. In this paper we consider only the classical case and
models, which are linear in the Minkowski space-time.

In [11, 12, 13, 16, 17] nonlocal linear cosmological models have been stud-
ied. In paper [16] a systematic method that permits us to transform the
initial nonlocal system into infinity set of local systems has been proposed
for the SFT inspired nonlocal actions. In this paper we generalize this
method on nonlocal action with an arbitrary analytic function F (—O,),
using formulas for nonlocal energy density and pressure proposed in [12].
The choice of a local system is equivalent to the choice of a special solution
of the nonlocal system. We demonstrate that it is possible to find exact
special solutions to nonlocal equations in the Friedmann—Robertson—Walker
(FRW) and Bianchi I metrics.

2. Nonlocal linear models

In this paper we consider a model of gravity coupling with a nonlocal scalar
field, which induced by string field theory

2 2
s= [dovma (R4 5t @F(0)o-N). )

where g, is the metric tensor (we use the signature (—,+,+,4) ), Oy =
ﬁ@uw/—gg“l’@,,, Mp is a mass Planck, M is a characteristic string scale

related with the string tension o/: My =1/ V!, ¢ is a dimensionless scalar
field, g4 is a dimensionless four dimensional effective coupling constant re-
lated with the ten dimensional string coupling constant g, and the com-
pactification scale. We use dimensionless coordinates, which are initial

coordinate, multiplied on M. The cosmological constant is AM?2/(2gy).
The string field theory inspired form of the function F:

F(z) = —2+1—ce (2)

where ¢ and ¢ are positive constants, has been considered in [11, 16]. In
this paper we consider the case of arbitrary analytic function F, namely,

[o.¢]
F(Oy) = > culdy, where c,, are constants. The Einstein equations are
n=0

1
Gl“/ = m_}%TMV’ (3)
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where G, is the Einstein tensor. The energy-momentum tensor

2 08
T, = — — 22 4
K /_g (5ng ( )

Note that the energy-momentum tensor 7}, includes the nonlocal terms,
so the Einstein equations are nonlocal ones.

From action (1) we also obtain the following equation of motion
F(=Ug)o =0 ()

Classical solutions to the above equations in the FRW metric were studied
and analyzed in [11, 12, 16, 17]. In this paper we consider solutions, which
depend only on time, in the FRW and Bianchi I metrics. So, for our propose
it is sufficient to consider the energy-momentum tensor in the form of a
perfect fluid

T;w = Guv diag(& —D, —D, _p)v (6)
where
1 00 n—1
9252(_1)11710" <Zat([:|g)l¢ n 1— l¢ Z n l¢))
n=0
1 — n n
ng; <Zat R (m “¢>+Z z¢)

(7)

In the FRW metric the Einstein equations have the following form:

1
2 _
" 3m2g
q (8)
H= = galetn)

where H = a/a and dot denotes the time derivative. Hereafter we use the
dimensionless parameter m2 = g4Mp/MZ. The consequence of (8) is the
following equation:

0+3H(o+p)=0. 9)
The main idea of finding a solution to the equations of motion is start with
equation (5) and try to find a function ¢, which is an eigenfunction of the

box operator. If Oy¢ = — a?¢, then such a function ¢ is a solution to (5)
if and only if

F(a?) =0. (10)

Note that values of roots do not depend on H(t) and, therefore, coincide
with roots in the Minkowski space-time. The analysis is more complicated
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in the case, when the function F(a?) has multiple roots. We skip this
possibility for simplicity. Since equation (5) is linear one can take the
following function as a solution

N
6= o, (11)
k=1

where Og¢, = — iy and F(a?) = 0 for any k. Without loss of generality
we assume that for any ki and ko # ki the conditions a%l #* a%Z are
satisfied. The straightforward calculations allows to get from (7):

Zf/ (¢k - ak¢k>
Zf/ (¢k + k@f)k)

where F'(a?) = ar(a?),

da?
System (8) is a nonlocal and nonlinear system of equation. At the same
time using formulas (12) for the energy density and pressure it is possible
to generate from (8) local systems, which correspond to particular solu-
tions of the initial nonlocal system. Note that this method allows to find
only solutions, which correspond to simple roots, because multiple roots

correspond to F'(a2) = 0, so the these energy density and pressure are not
including in (12). If F(a?) are simple real roots, then positive and negative
values of F'(a?) alternate, so we can obtain phantom fields.

Let us assume that the field ¢ has the form (11), in other words we assume

that equations:
Dg¢k = - aiﬁbk (13)

are satisfied. Therefore, we can rewrite system (8) in the following form:
1 al :
P (A -3 (i - ai¢%)> ,
!
2m2 Z ‘7:

P k=1

(14)

It is easy to check that equations (13) and (14) coincide with the Einstein
equation for the following action:

m2R

N
S = [t (M ) S o) (v ot ).
k=1
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Therefore, we can state that if the function F' has a finite number of roots
(denote this number as N) then in such way we can transform it in a local
system with N local scalar or phantom scalar fields. In the opposite case,
when the function F' has an infinite number of roots, we obtain that our
model with one nonlocal scalar fields generate an infinity number of local
models.

3. Exact solutions in the FRW and Bianchi I metrics

3.1. A simple root at the zero root

Let us assume that F'(0) = 0 and the zero point is a simple root. In this case
the simplest solutions of nonlocal equations are solutions of the Einstein
equations for the following local action:

m2R 1
Slocal = /d4$v -9 ( ; - §ff(o)gNVa“¢8y¢ - A> . (15)

In dependence of form of the function F(a?) the constant B = F'(0) maybe
either less or more than zero. Here we present exact solutions, which cor-
respond to this root in the FRW and Bianchi I metrics. Note that a type
of solutions essentially depends on signs of B and A. Some of solutions in
the FRW metric have been found in [13, 16].

3.2. Solutions in the FRW metric

The Friedmann equations are as follows:

B A
3H? = —¢? ,
2m}27 mg
5 (16)
i
2m120¢

At A=0and B>0

m2
qb(t):i\/é—;ln(S(t—to))—i—Cg, H(t) ﬁ (17)

where tg and Cy are arbitrary constants.

If A > 0, then we obtain a real solution:

Ho(t) = ‘/%tanh <\/%(t - to)) , (18)
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where ?( is an arbitrary complex number. Note that there exist such com-
plex to that Ho(t) is real. For example, at to = to + 5, where tg is a real
number, we obtain the following real solutions

Ho(t) = /% coth (\/%(t - t}))> . (19)

It is easy to see that Hy(t) > 0 for any real t (if t is real), hence, from the
second equation of (16) we obtain that ¢(¢) can be real field only if it is a
phantom one, namely, at B < 0. The explicit form of ¢(t) is as follows:

oo(t) = :I:\/ —23—77;}27 arctan (sinh <\/%(t — to)>> + Co, (20)

where (5 is an arbitrary constant.

The function Hy(t) corresponds to the solution

: 2m?2
do(t) = + % (1n (V335 1) —m (VBN 1)) + 0, (21)
which is real at B > 0.

Note that we have found two-parameter set of exact solutions at any A > 0.
In other words, at any A > 0 we have found the general solution of (16),
which correspond to o = 0.

It is interesting that the type of solutions essentially depends on sign of A.
In the case A < 0 the following real solutions have been obtained [16]:

~ [ —A 3A = [ —A 3A
H= 3—mgtan( —m—%(t—t0)>7H— S—Tn%COt( —m—%(t—t0)>

3.3. Solutions in Bianchi I metric
In Bianchi I metric with the interval

ds® = — dt* + a}(t)dx? + a3(t)dz3 + a3(t)dx3, (22)

the Einstein equations has the following form:

1 1 (B.
H\Hy + HiH3 + HyHy = —0=— <—¢2 +A> ) (23)
my my \ 2
Hy + H2 + Hy + H? _ L (Bp_,
o+ Hy + H3+ H3 + HoHz = 5P = 3 2¢ . (24)
m32 m2
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H1+H12—|-H2+H22+H1H2=——229:——2<—¢2—A>> (25)

mg mg 2

h 2 ) 2 1 ]. B'2

H1+H1+H3+H3+H1H3:——2p=——2 —gf) —A s (26)
my mg 2

where Hy, = a/a, k= 1,2,3.

Our goal is to present exact solutions to system (23)—(26). Of course, there
exist isotropic solutions, which coincide with exact solutions in the FRW
metric. For those solutions Hy(t) = Ho(t) = H3(t). At the same time exact
anisotropic solutions do exist.

For A = 0 we obtain the following solution:

O+ 01 +1 Cy 1

1®) Cot + (s 2(t) Cot + C3’ 3(t) Csot + Cs (27)
\/—23(0102 +C2+Cy + Oy + 1)m?
o(t) = B0, In(Cat + C3) + Cy. (28)

Let us consider the case of positive A = mg. There exist not only isotropic
solution

Hi(f) = Hat) = Hy(t) = % tanh (V3(t — to) ) (29)

but also an anisotropic one

Hq(t) = L tanh <§(t — t0)> ,

IRVE
H(t) = % coth (?(t - t0)> , (30)

Hj(t) = 2—\1/3 <tanh (?(t - t0)> + coth (?(t - t0)>> .

The corresponding scalar field is real at B > 0

V3

Bt = 2 (In(eV3=19) 1) ~ (eSO 1) ~n(eF (¢~ 1)) + 1))

4. Conclusions

We have studied the SFT inspired linear nonlocal model. This model has
an infinite number of higher derivative terms. Roots of the characteristic
equation do not depend on the form of the metric and this property allows
us to study properties of energy density and pressure. We have found that in
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an arbitrary metric the energy-momentum tensor for an arbitrary N-mode
solution is a sum of the energy-momentum tensors for the corresponding
one-mode solutions.

The investigation performed in this paper shows that the general field equa-
tions in linear nonlocal models admit an equivalent description in terms of
local theory and as a consequences we have representation (12) for the en-
ergy density and pressure. This calculation also supports the use of the
Ostrogradski representation for our system in the case of arbitrary metric.

We have shown that our linear model with one nonlocal scalar field gen-
erates an infinite number of local models. Special exact solutions for the
nonlocal model in the FRW and Bianchi I metrics have been obtained.
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