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Abstract

We construct a holographic model with Weyl corrections in five dimensional spacetime. In particular, 
we introduce a coupling term between the axion fields and the Maxwell field such that the momentum is 
relaxed even in the probe limit in this model. We investigate the Drude behavior of the optical conductivity 
in low frequency region. It is interesting to find that the incoherent part of the conductivity is suppressed 
with the increase of the axion parameter k/T , which is in contrast to other holographic axionic models at 
finite density. Furthermore, we study the superconductivity associated with the condensation of a complex 
scalar field and evaluate the critical temperature for condensation in both analytical and numerical manner. 
It turns out that the critical temperature decreases with k̃, indicating that the condensation becomes harder in 
the presence of the axions, while it increases with Weyl parameter γ . We also discuss the change of the gap 
in optical conductivity with coupling parameters. Finally, we evaluate the charge density of the superfluid 
in zero temperature limit, and find that it exhibits a linear relation with σ̃DC(T̃c)T̃c, such that a modified 
version of Homes’ law is testified.
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1. Introduction

The high Tc superconductivity in some novel materials such as Cuprates and heavy Fermion 
compounds involves the strong couplings of electrons, thus beyond the traditional BCS theory 
which describes the electron–phonon interaction very well. Recent progress in the AdS/CMT 
duality has provided powerful tools for understanding novel phenomena in strongly coupled 
system [1–8]. Especially, a holographic description of the condensation was originally proposed 
in [1] by Gubser and a holographic model for the superconductor was firstly constructed in [2,3]
by Hartnoll, Herzog and Horowitz. One key ingredient in this holographic model is introducing 
the spontaneous breaking of U(1) gauge symmetry in the bulk geometry, which is analogous to 
the mechanism of s-wave superconductors. We refer to Refs. [4,7,9] for a comprehensive review 
on holographic superconductors.

It is very interesting to enrich the holographic setup to investigate various novel phenomena 
observed in condensed matter experiments. For instance, a Weyl term composed of the couplings 
of the Weyl tensor and the Maxwell field was introduced in [10,11] and then has extensively 
been investigated in holographic literature [12–21]. Since the self-duality of the Maxwell field is 
violated due to the presence of the Weyl term, it provides a novel mechanism for understanding 
the condensed matter phenomena with the breakdown of the electromagnetic self-duality from a 
holographic perspective. Historically, this model also provides a way of turning on a nontrivial 
frequency dependence for the optical conductivity of the dual QFT, which has been studied with 
small parameter perturbation theory as well as the variational method in [11–15]. However, to ob-
tain a finite DC conductivity over a charged black bole background, one essential step is to break 
the translational invariance such that the momentum is not conserved. Until now there are many 
ways to introduce the momentum relaxation or momentum dissipation in holographic approach. 
It can be implemented by spatially periodic sources [22–27], helical and Q-lattices [28–32], spa-
tially linear dependent axions [33–38], or massive gravitons [39–44] (for a brief review we refer 
to Ref. [45]). In the presence of slow momentum relaxation, it is found that the optical conduc-
tivity exhibits a Drude behavior in the low frequency region, which has become a widespread 
phenomenon in holographic models. However, when the momentum relaxation becomes strong, 
the discrepancy from the Drude formula can be observed even in the low frequency region, lead-
ing to the incoherence of the conductivity. Currently, it is still a crucial issue to understand the 
coherent/incoherent behavior of metal in both condensed matter physics and holographic gravity 
[35,37,46–50].

In this paper we intend to construct a holographic model with momentum relaxation in the 
presence of the Weyl term. Moreover, inspired by recent work in [51], we intend to provide a 
novel scheme to introduce the momentum relaxation by considering the coupling between the 
axions and the Maxwell field. In this way we could consider the coherence/incoherence of the 
metal even in the probe limit where the charge density is vanishing in the background. In contrast 
to usual holographic models with axions where the incoherence of the conductivity becomes 
manifest when the momentum relaxation becomes strong, we find in our model the portion of 
incoherent conductivity is suppressed with the increase of the axion parameter k/T .

In the second part of this paper we will construct a holographic model for s-wave superconduc-
tor by the spontaneous breaking of U(1) gauge symmetry. We will investigate the condensation 
of the complex scalar field and evaluate the critical temperature as well as the energy gap which 
may vary with the strength of the momentum relaxation. Another motivation of our current work 
is to testify the Homes’ law in the holographic perspective. In condensed matter literature [52,53], 
it has been shown by experiments that for a large class of superconductivity materials there ex-
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ists an elegant empirical law linking the charge density of superfluid at zero temperature to the 
DC conductivity near the critical temperature, which now is dubbed as Homes’ law. This law 
discloses that regardless of the structure of materials, the superconductivity always exhibits a 
universal behavior as

ρs(T = 0) = CσDC(Tc)Tc, (1)

where the constant C is found to be about 4.4 for in-plane high-Tc superconductors and clean 
BCS superconductors, while for c-axis high-Tc materials and BCS superconductors in dirty limit 
C = 8.1. For organic superconductors the C = 4 ±2.1 [54]. On the theoretical side, a preliminary 
understanding on the Homes’ law of high-Tc superconductors was proposed with the use of the 
notion of Planckian dissipator in [55]. However, for the conventional superconductors which 
are subject to the Homes’ law as well, a corresponding interpretation in theory is still missing. 
An alternative mechanism with double timescales proposed to understand Homes’ law can also 
be found in [56]. Nevertheless, people believe that the present stage is still far from a complete 
understanding on the Homes’ law in theory. In particular, for high temperature superconductivity, 
it is believed that the BCS theory breaks down and some novel techniques should be developed 
to treat the many-body system which is strongly coupled. Holography has rendered us a powerful 
tool to address such an open problem. Therefore, recently it has been becoming very intriguing 
to testify if the Homes’ law would be observed in holographic approach. Earlier attempts in this 
route can be found in [57–60]. In this paper we intend to demonstrate that a modified Homes’ 
law can be observed in our model as well.

This paper is organized as follows. The holographic setup of our model is given in section 2. 
Then we investigate the electric transport properties of the dual field theory in section 3, focus-
ing on the coherent–incoherent transition with the strength of axions. In section 4 we turn to the 
superconductivity of this model. The critical temperature for condensation and the energy gap 
are evaluated. Particularly, we will focus on the test of Homes’ law based on the transport prop-
erties of the superconductivity. Some open questions and possible development are discussed in 
section 5. As a byproduct, we present an efficient way to get rid of the effects due to the presence 
of non-analytic terms in numerical simulation in the Appendix.

2. Holographic setup

The holographic superconductors with momentum relaxation and dissipation have been in-
vestigated in various models, such as [24,32,58–63]. Here we consider a holographic model in 
Einstein–Maxwell–Axion theory with a Weyl correction in five dimensional spacetime. The total 
Lagrangian is given by [51,64]

L = R + 12

L2
− 1

4
(1 +KT r[X])F 2 − |∇ψ − ieAψ |2 − m2|ψ |2 + γL2Cμνρσ FμνFρσ ,

(2)

where Xμ
ν = 1

3gμτ ∂τX
I ∂νX

I with XI being axion fields, which constitute massive term of gravi-
ton. Cμνρσ is the Weyl tensor which is coupled to the Maxwell field with a coupling parameter γ . 
In this action we have also introduced a coupling term between the axions and Maxwell fields 
as proposed in [51]. Following the analysis in [51], we will set the coupling constant K = 1

7
throughout this paper. In addition, from [10] we know the value of γ has to obey the following 
constraint for the sake of causality and stability of the system
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−L2

16
< γ <

L2

24
. (3)

Furthermore, for simplicity we set m2 = − 3
L2 and L = 1.

In the presence of the Weyl correction, usually it is very hard to obtain the analytical solu-
tions with backreaction, although the approximate solution could be obtained when the Weyl 
parameter is very small [20]. In current paper we will only consider the probe limit of the sys-
tem. That is to say, the gravity is decoupled from the matter fields. We fix the background as an 
AdS–Schwarzschild black brane whose metric reads as

ds2 = rH
2

z2

(
−f (z)dt2 + dx2 + dy2 + dw2

)
+ dz2

z2f (z)
, (4)

where f (z) = 1 − z4 with 0 < z < 1. rH is the position of the black hole horizon and we will set 
it as unit in numerics throughout this paper. The Hawking temperature of the black hole is given 
as T = rH

π
.

3. Conductivity in normal phase

In this section we will investigate the electrical transport behavior of the dual field theory 
without condensation, namely ψ = 0. Firstly, it is easy to see that XI = kδI

i xi , with i running 
over boundary space indices, is a solution to the equations of motion for axion fields. We will 
consider the conductivity of the gauge field in one spatial direction, say x-direction, over such a 
background with momentum relaxation. In the absence of the condensation, the x-component of 
the gauge field is decoupled from other fields except axions XI and thus we can only turn on the 
electric field in this direction. Consider a perturbation with a form Ax(z)e

iωt in linear response 
theory, we have a single perturbation equation as

A′′
x(z) +

(
3

z
+ g′(z)

g(z)
+ 2

(
γ z5g(3)(z) + 6γ z4g′′(z) + 6γ z3g′(z) + 3

)
zh(z)

)
A′

x(z)

+ ω2

z4g(z)2
Ax(z) = 0

(5)

where h(z) = 2γ z4g′′(z) + 8γ z3g′(z) + 4γ z2g(z) − 3Kk2z2 − 3. Notice that in five dimensional 
space time, Ax(z) has the following asymptotical behavior at spatial infinity z = 0

Ax(z) = A0
x + A2

xz
2 −

(
ω2A0

x

)
log

(
z
�

)
z2

2
, (6)

where � is an arbitrary constant. The logarithmic divergency can be removed by introducing a 
counterterm, which is [23,65]

Sct = L log(νz)

4

∫ √−γF 2 dx4. (7)

Then following the standard holographic dictionary, we may obtain the optical conductivity for 
the dual field theory as

σ(ω) = 1
3

(
2A2

x

0
+ ω2

(
log

(
�

)
− 1

))
. (8)
iL ω Ax ν 2
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Fig. 1. The real part of the conductivity for different values of γ with k = 0.

Usually, the non-analytic behavior caused by the logarithmic term brings some difficulties 
to guarantee the convergency in numerical calculation and it becomes harder for one to extract 
the data for the coefficients in the expansion (6) with enough accuracy. Alternatively, we find 

that it is more numerically efficient to replace Ax(z) by (1 − z)
−iω

4

(
ax(z) − 1

2ω2A0
x

log(z)z2

2

)
in 

perturbation equation (5), then the equation for ax(z) is analytic everywhere and the conductivity 
can be reexpressed in terms of ax(z) as

σ(ω) = 1

iL3ω

(
a′′
x (z → 0)

ax(z → 0)
+ ω2

(
log

(
�

ν

)
− 1

2

)
+ ω2

16
+ iω

4

)
. (9)

The derivation from (8) to (9) is presented in Appendix.
Next we intend to demonstrate our numerical results for the optical conductivity based on 

Eq. (9) in the case of log
(

�
ν

) = 0.

• k = 0, γ �= 0. It is very interesting to notice that both the axion parameter k and Weyl param-
eter γ appear in the same term in the perturbation equation, as shown in (5), implying that the 
momentum relaxation and the Weyl correction play a similar role in influencing the optical 
conductivity. Firstly, we illustrate the frequency behavior of the real part of the conductivity 
for various values of γ with k = 0, as plotted in Fig. 1. It is nothing but the extension of the 
results in four dimensions presented in [11] to five dimensions. For zero frequency region, 
we observe the similar phenomena as disclosed in [11]. Namely, the DC conductivity in-
creases with γ . Quantitatively, our numerical result of σDC agrees with the analytical result 
which is σDC/T = (1 + 8γ )/T = π(1 + 8γ ) [10]. While for large frequency region, the 
conductivity becomes independent of the value of γ , and always has a linear relation with 
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Fig. 2. The frequency dependence of conductivity for k/T = 30, 40, 50, and 80 respectively with γ = 0. Dotted lines are 
numerical data, while solid lines are fit with the modified Drude formula σ(ω) = Kτ

1−iωτ
+ σQ .

the frequency rather than a constant as in four-dimensional case. This is a reflection of the 
different dimensions of the boundary geometry [11,13,21]. Furthermore, if one subtracts the 
conductivity with γ = 0, a peak (for γ > 0) or a dip (for γ < 0) can obviously be observed 
near the zero frequency region, as illustrated in the bottom plot of Fig. 1, which is similar to 
the phenomenon in four dimensions. Interestingly, for small γ region, it seems there exists 
a mirror symmetry around the horizontal axis if one changes γ to −γ , which has previ-
ously been discussed in [11,13,16–18,20]. Furthermore, since the value of γ is subject to the 
constraint in (3), we find the Weyl term has limited impact on the conductivity. Specially, 
a Drude behavior in low frequency region can not be observed. However, if one ignores the 
restriction in (3), a Drude peak would emerge when γ � 1, as discussed in [21]. This is not 
surprising as we have pointed out that the axion parameter k and Weyl parameter γ do play 
similar roles in the perturbation equation. Finally, we remark that if one introduces some 
other Weyl terms with higher derivatives, then the additional coefficients involved may not 
be bounded as γ such that a substantial Drude-like peak at small frequencies can be achieved 
as well by adjusting these coefficients, as discussed in [18].

• k �= 0, γ = 0. In this case the Weyl curvature term is vanished while the momentum is re-
laxed. Firstly, for ω = 0, the real part of numerical conductivity is increasing with k/T , 
which is consistent with the analytical result in [51]. Secondly, we find a prominent Drude-
like peak in low frequency region of the optical conductivity, as shown in Fig. 2. Numerically, 
we also find that when k/T becomes large, the σDC is increasing and the numerical data can 
be fit well with a modified Drude formula, namely, σ(ω) = Kτ

1−iωτ
+ σQ, where σQ is a 

real constant signalizing the incoherent contribution to the conductivity. To quantitatively 
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Fig. 3. The ratio of incoherent part to the coherent part in DC conductivity. The left plot is for varying k/T with γ = 0, 
while the right plot is for varying γ with k/T = 25.

measure the incoherent contribution to the total conductivity, we intend to define a quantity 
σQ/(Kτ) and plot its variation with the momentum relaxation k/T , which is shown in the 
left plot of Fig. 3. Interestingly enough, we find the portion of incoherent contribution is 
decreasing with the increase of k/T . It indicates that the metallic phase of the dual system 
looks more coherent in large k/T region indeed.1 Such behavior is in contrast to the phe-
nomenon observed in most previous holographic models with axions, where a Drude-like 
peak can be observed even with small k/T and the incoherence of the metal becomes ev-
ident in large k/T region [21,35,37]. First of all. In usual lattice models or axion models, 
the backreaction of lattice to the background is taken into account such that the translational 
invariance is broken already prior to the linear perturbations. Technically, the chemical po-
tential μ contributes a term μ2/k2 in the usual expression for the DC conductivity, leading 
to a prominent Drude peak even if the lattice effect is weak (with tiny k/T ). However, in 
our paper, only the neutral background is taken into account under the probe limit such that 
the effect of this term is absent. More importantly, the difference results from the different 
coupling manner of axion and Maxwell field. In our model the axion fields do not contribute 
any independent terms such as the kinematic term or potential term in the Lagrangian (2). 
It only appears as a term coupled to Maxwell field such that it induces the momentum re-
laxation only at the linear response level. In hence, the Drude behavior would not become 
manifest until the momentum relaxation becomes strong with the axion parameter k/T . 
Moreover, the coupling term plays a double role in influencing the transport behavior. One 
is to control the generation of electron–hole pairs which roughly speaking is responsible 
for the incoherent part of conductivity, reflected by the quantity σQ. The other one is to 
induce the momentum relaxation, leading to coherent conductivity, reflected by the quan-
tity Kτ [51]. With the increase of k/T both quantities σQ and Kτ increase, while as a result 
of competition, the ratio σQ/(Kτ) becomes smaller with larger k/T . As a matter of fact, the 
enhancement of the coherence can also be perceived if one evaluates the relaxation time for 
different k/T . Our results indicate that it increases with k/T , as shown in the left plot of 
Fig. 4.

1 Strictly speaking, we need consider their contributions to conductivity within a frequency region by considering the 
ratio 

∫ ωc
0 σQdω/ 

∫ ωc
0 (σQ +Kτ/(1 − iωτ))dω. But when we choose the cutoff ωc as the same order as 1/τ , we find the 

same behavior can be observed as for the quantity σQ/(Kτ).
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Fig. 4. The relation between the relaxation time τT and the system parameters k/T and γ . The left plot is for varying 
k/T with γ = 0, while the right plot is for varying γ with k/T = 25.

• k �= 0, γ �= 0. In this case the translational invariance is broken. The optical conductivity 
has a similar behavior as in above case when changing k/T with γ fixed, since the Weyl 
parameter is constrained to take values in a small region. On the other hand, if we change 
γ with k/T fixed, we find that the ratio of the incoherent conductivity to the coherent part 
increases with γ , as illustrated in the right plot of Fig. 3. In addition, our data indicate that 
the relaxation time is linear with γ , and our fitted result is τT = 0.463γ + 0.238, which is 
shown in the right plot of Fig. 4.

4. Conductivity in superconducting phase

In the remainder of this paper we turn to investigate the transport properties of the super-
conducting phase in this model. We will turn on the complex scalar field and introduce the 
spontaneous breaking of U(1) gauge symmetry. In probe limit, the system becomes simple and 
we intend to firstly evaluate the critical temperature for the condensate in an analytical way, and 
then compute the frequency behavior of the conductivity with numerical analysis, focusing on 
the evaluation of the energy gap and the test of Homes’ law.

4.1. Analytical part

In this subsection we will evaluate the critical temperature for condensation closely following 
the procedures of matching method as given in literature [66–68]. The basic idea is to find an 
approximate solution to the equations of condensate by virtue of series expansion. We expand all 
the variables near the boundary z = 0 and the horizon z = 1 separately which are subject to the 
equations of motion, then require these series expansion of the same variable is matched at some 
intermediate location, for instance z = 1

2 .

4.1.1. Expansion near the boundary and horizon
After turning on the complex scalar field, the Lagrangian of the matter part is given by

L2 = −1

4
(1 +KT r[X])F 2 − |∇ψ − ieAψ |2 − m2|ψ |2 + γL2Cμνρσ FμνFρσ . (10)

With the ansatz Aμ = (a(z), 0, 0, 0, 0), we derive the equations of motion as follows
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a′′(z) +
(

2
(
γ z5g(3)(z) + 6γ z4g′′(z) + 6γ z3g′(z) − rH

2
)

ze(z)
+ 1

z

)
a′(z)

− 2rH
4ψ(z)2

z4e(z)g(z)
a(z) = 0, (11)

ψ ′′(z) + ψ ′(z)
(
z4g(z)g′(z) − z3g(z)2

)
z4g(z)2

+ ψ(z)
(
a(z)2 + 3g(z)

)
z4g(z)2

= 0, (12)

∇μ

[(
∇μXI

)
F 2

]
= 0, (13)

where g(z) = rH
2

z2

(
1 − z4

)
, e(z) = 2γ z4g′′(z) +8γ z3g′(z) +4γ z2g(z) +Kk2z2 + rH

2. It is easy 

to figure out that XI = kδI
i xi is a solution of the last equation of (13), where i runs over boundary 

space indices. With the use of EOM, we find the asymptotical behavior of fields at z = 0, which 
are

a(z) = μ − qz2 + · · · ψ(z) = ψ−zλ− + · · · + ψ+zλ+ + · · · , (14)

where λ+ = 3, λ− = 1. On the other hand, with the use of EOM we find a(1) = 0 on the horizon. 
We require that the Maxwell field and scalar field are regular at horizon, such that we expand 
a(z) and ψ(z) near horizon as follows

a(z) ≈ a′(1)(z − 1) + 1

2
a′′(1)(z − 1)2 + · · · , (15)

ψ(z) ≈ ψ(1) + ψ ′(1)(z − 1) + 1

2
ψ ′′(1)(z − 1)2 + · · · . (16)

Next we intend to solve for a′′(1) and ψ ′′(1) by series expansion of the equations of motion. 
Substituting g(z) = rH

2

z2

(
1 − z4

)
into the EOM, we obtain

a′′(1) = −−144rH
2γ + 2Kk2 + rH

2ψ ′(1)2 − 2rH
2

2
(−24rH 2γ +Kk2 + rH 2

) a′(1), (17)

ψ ′(1) = 3

4
ψ(1), (18)

and

ψ ′′(1) = −21

16
ψ(1) − a′(1)2ψ(1)

32rH 2
+ 9

8
ψ ′(1). (19)

Combining (18) and (19), we have

ψ ′′(1) = −15

32
ψ(1) − a′(1)2ψ(1)

32rH 2
. (20)

Finally, inserting (17), (18) and (20) into (15) and (16), we obtain the series expansion of the 
fields as

a(z) ≈ a′(1)(z − 1) − −144rH
2γ + 2Kk2 + rH

2ψ ′(1)2 − 2rH
2

2
(−24rH 2γ +Kk2 + rH 2

) a′(1)(z − 1)2 + · · · ,

(21)

and
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ψ(z) ≈ ψ(1) + 3

4
ψ(1)(z − 1) − 1

2

(
15

32
ψ(1) + a′(1)2ψ(1)

32rH 2

)
(z − 1)2 + · · · . (22)

4.1.2. Matching at z = 1
2

Matching (14) with (21) and (22) at z = 1
2 , we obtain

ψ(1)2 = −2
(
a′(1)

(−120rH
2γ + 3Kk2 + rH

2
) + 2q

(−24rH
2γ +Kk2 + rH

2
))

rH 2a′(1)
, (23)

and

a′(1) = − rH
√

145λ+ − 126√
λ+ + 2

. (24)

Furthermore, inserting (24) into (23), we have

ψ(1)2 = 240γ − 6Kk2

rH 2
− 2 + 4

√
λ + 2q

(
Kk2 + (1 − 24γ )rH

2
)

√
145λ+ − 126r3

H

. (25)

After replacing q by ρ

rH
2 and rH by πL2T respectively, we set ψ(1)2 = 0, then the critical 

temperature for condensation can be estimated by finding the root of the following polynomial 
equation

T 5 − 3Kk2T 3

π2b
+ 2(1 − 24γ )

√
λ+ + 2ρ

π3bc
T 2 + 2Kk2√λ+ + 2ρ

π5bc
= 0, (26)

where b = 120γ − 1 and c = √
145λ+ − 126. For instance, if we set γ = 0, K = 1

7 while 
change k/ρ1/3 = 0, 1, 2, we obtain the values of the critical temperature T/ρ1/3 as 0.20170, 
0.17011, 0.14979, respectively, implying that the condensation becomes harder with the increase 
of momentum relaxation k. Moreover, if we fix for instance ρ = 1, K = 1

7 , k = 1 but change 
γ = − 1

96 , 0, 1
124 , the corresponding values for the critical temperature T/ρ1/3 are 0.15534, 

0.17011, 0.20854, implying that the increase of the Weyl parameter makes the condensation 
easier. In next part we will see soon that this trend can be justified by explicitly solving the 
equations of motion with numerical method.

4.2. Numerical part

In this part we will explicitly solve the condensation equations with numerical method and 
demonstrate the parameter dependence of the critical temperature, then we will numerically solve 
the perturbation equations to compute the optical conductivity along x-direction below the criti-
cal temperature. In the remainder of this paper, we will take the charge density as the unit such 
that all the dimensionless quantities will be denoted with a tilde, namely as Õ. Thus T̃ is the 
dimensionless temperature T/ρ1/3 while T̃c is T/ρ

1/3
c and so forth.

• Condensation of the scalar field. First we numerically determine the critical temperature by 
solving EMO (11) and (12), at which the scalar hair starts to condensate, leading to nontrivial 
solutions. We solve these equations with the use of the spectral method. As a result, the pa-
rameter dependence of the critical temperature is shown in Fig. 5. From the left plot we learn 
that the critical temperature becomes lower with the increase of k̃, but becomes higher with 
the increase of γ , which is consistent with Fig. 6. These numerical results verify our analyt-
ical approximation through the matching method in previous subsection. In the presence of 
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Fig. 5. The variation of the critical temperature with the system parameters. The left plot is T̃c versus k̃ for various γ , 
while the right plot is T̃c versus γ for k̃ = 1.

Fig. 6. The condensation of the scalar field below the critical temperature for various k̃ with γ = 0.

axions, as k̃ becomes larger, the momentum dissipation becomes stronger such that the con-
densation becomes harder, which is similar to the effects of the Q-lattices as demonstrated 
in [32] but in contrast to the scalar lattices as found in [24]. Our result here is also different 
from the previous superconductor models with axions where the critical temperature may 
have non-monotonic relation with k̃, for instance in [61–63]. This is simply because only the 
probe limit is taken into account in our paper. On the other hand, when the Weyl correction is 
taken into account, as γ becomes larger, the generation of electron-like excitations exceeds 
that of vortex-like excitations such that the condensation of s-wave becomes easier. What 
we have found for changing γ is consistent with the previous results as discussed in [13,14]. 
However, it is worthwhile to point out that in p-wave model the presence of Weyl term may 
make the phase transition harder [69].

• The frequency behavior of the optical conductivity and energy gap. Now we consider the 
transport behavior of the dual system by linear response theory. We first derive the linear 
perturbation equation for Ax(z, t) = Ax(z)e

iωt , which reads as

A′′
x(z) +

(
3

z
+ g′(z)

g(z)
+ 2

(
γ z5g(3)(z) + 6γ z4g′′(z) + 6γ z3g′(z) + 3

)
zh(z)

)
A′

x(z)

+
(

6ψ(z)2

4
+ ω2

4 2

)
Ax(z) = 0,

(27)
z g(z)h(z) z g(z)
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Fig. 7. The frequency behavior of the optical conductivity for various values of k̃, with γ = 0 and T̃ /T̃c = 0.1 fixed.

where h(z) = 2γ z4g′′(z) + 8γ z3g′(z) + 4γ z2g(z) − 3Kk2z2 − 3. Next we turn on the ex-
ternal electric field along x-direction by imposing appropriate boundary condition at z = 0. 
As usual, the ingoing boundary condition is imposed on the horizon. We demonstrate the 
frequency behavior of the conductivity in Fig. 7 and Fig. 8 for different values of parame-
ters. First of all, we notice that the imaginary part of the conductivity is divergent in zero 
frequency limit, indicating a superconducting phase for the dual system. Secondly, we ob-
serve that the energy gap shifts with the change of the parameters in our model. Specifically, 
the energy gap becomes small with the increase of k̃, as illustrated in Fig. 7. By locating the 
minimal value of the imaginary part of the conductivity, we find that the energy gap ω̃/T̃c is 
8.26, 8.13, 7.88, 7.63 corresponding to k̃ = 1

8 , 14 , 12 , 34 , respectively. On the other hand, the 
energy gap decreases with γ , as illustrated in Fig. 8, where the value of energy gap runs from 
7.51, 7.26, 7.00 to 6.26, corresponding to γ = − 1

96 , 0, 1
96 , 1

32 , respectively.
What we have observed above are consistent with the results in [14], but have an opposite 
tendency in comparison with the results in Gauss–Bonnet gravity and quasi-topological grav-
ity in which the energy gap becomes larger than 8 with the increase of system parameters 
[67,70].

• A modified Homes’ law. In the presence of the axions, the dual system is a two-fluid system 
below the critical temperature, composed of the normal fluid and the superfluid. The density 
of superfluid can be evaluated by Im(σ̃ ) ∼ 2πρ̃s/ω̃ with extremely low temperature. As 
a consequence, we may investigate the relation between this quantity and σ̃DC(T̃c)T̃c by 
changing system parameters. Some examples have been illustrated by changing k̃ in Fig. 9, 
with γ = − 1 , 0, 1 , respectively. From right to left, k̃ runs from 0 to 5 for each value of γ . 
24 30
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Fig. 8. The frequency behavior of the optical conductivity for various values of γ , with k̃ = 1 and T̃ /T̃c = 0.1 fixed.

Fig. 9. The plot is for ρ̃s (T̃ = 0.1T̃c) versus σ̃DC(T̃c)T̃c . A linear relation is observed with a fixed γ and our fitting gives 
rise to a modified Home’s law ρ̃s = Cσ̃DC(T̃c)T̃c + a. (For interpretation of the references to color in this figure, the 
reader is referred to the web version of this article.)

We remark that here both ρ̃s and σ̃DC(T̃c)T̃c are scaleless quantities. Interestingly enough, a 
manifest linear relation has been observed for these two quantities, signalizing a Homes’ law 
for this model. However, our data fitting tells us that the intercept at the vertical axis might 
not be zero if extending the straight line to σ̃DC(T̃c)T̃c = 0. Instead, a modified version of 
Homes’ law is the best fitting, which is ρ̃s = Cσ̃DC(T̃c)T̃c + a. In this figure for different γ , 
we have ρ̃s = 0.90σ̃DC(T̃c)T̃c + 1.26, ρ̃s = 0.94σ̃DC(T̃c)T̃c + 1.23, ρ̃s = 0.96σ̃DC(T̃c)T̃c +
1.20, respectively. It is worthwhile to point out that we are not able to evaluate ρ̃s at absolute 
zero temperature numerically. Instead we obtain its value at T̃ = 0.1T̃c. This identification 



14 Y. Ling, X. Zheng / Nuclear Physics B 917 (2017) 1–18
should be fine since ρ̃s ∼
˜〈O〉 [2,71] and from Fig. 6 we know ρ̃s is almost saturated to a 

constant below the critical temperature. In comparison with the results presented in [58], 
we find the dimensionless constant C in our model is about one and much smaller than 
those observed in laboratory. We propose that different values for C could be obtained by 
introducing more general coupling terms or potentials of axions into this simple model. 
Numerically we are not able to touch lower temperature region for more data. But from this 
figure we also notice that the data have tendency to go down quickly and then would deviate 
from a linear relation in low temperature region, in particular, for those dots in red. We also 
conjecture that perhaps a more cautious consideration, for instance with full backreactions 
to the background, is needed in this low temperature limit.
Finally, we present our preliminary understanding on the non-vanishing constant a as fol-
lows. Assume that the density of superfluid is a function of temperature as well as k̃, i.e., 
ρ̃s(T̃ , k̃). a �= 0 implies that ρ̃s would be ρ̃s = a for some k̃ at T̃ = 0 when T̃c → 0 such that 
ρ̃s as a function of T̃ would be discontinuous at T̃ = 0, i.e.,

ρ̃s
T̃c→0=====

{
a, T̃ = 0
0, T̃ �= 0

. (28)

Interestingly enough, this implies that ρ̃s ∼
˜〈O〉 [2,71] would be discontinuous at T̃ = 0, 

which signalize the derivative of free energy ˜〈O〉∼ δS
δφ0

|φ0=0 is discontinuous at T̃ = T̃c = 0. 

It implies that superconducting transition would be the first order phase transition at T̃c = 0
rather than the second order one (but it is the second order phase transition whenever T̃c �= 0). 
Furthermore, the non-vanishing signature of the density of superfluid for a �= 0 might reflect 
the property of quantum critical phenomenon. In fact, one can fix T̃ = 0, then ρ̃s would 
simply be a function of k̃ ranging from k̃ = −∞ to k̃ = ∞. Then ρ̃s(T̃ = 0, k̃) would be 
discontinuous at some point k̃c corresponding to T̃c = 0. Anyway, we intend to stress that 
the non-vanishing a would be an artifact of the probe limit. Since the backreaction is very 
complicated in particular in the presence of the Weyl term, we would like to leave this issue 
for future investigation.

5. Discussion

In this paper we have constructed a holographic model with Weyl corrections in five dimen-
sional spacetime. Momentum relaxation is introduced by the coupling term between the axions 
and the Maxwell field. For the normal state of the conductivity we find the portion of inco-
herence is suppressed with the increase of the strength of axions, which is in contrast to the 
previous holographic models with momentum relaxation induced by axions. For the supercon-
ducting phase we have found that the critical temperature decreases with k̃, indicating that the 
condensation becomes harder in the presence of the axions, while it increases with Weyl pa-
rameter. More importantly we find the density of superfluid at zero temperature has a linear 
relation with the quantity σ̃DC(T̃c)T̃c which can be described by a modified formula of Homes’ 
law. Moreover, constant a �= 0 implies superconducting transition would be the first order phase 
transition at T̃c = 0 rather than the second order one and would reflect the property of quantum 
critical phenomenon.

Some crucial issues are worth for further investigation. First of all, due to the presence of the 
Weyl correction, we have only investigated the conductivity of the dual system in the probe limit. 
It is very interesting to take the backreactions of matter fields to the background into account, 
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which leads to higher order differential equations of motion [11,20]. In this situation we expect 
that more abundant phenomena could be observed for the transport behavior of the dual system. 
In particular, some quantum critical phenomenon such as metal–insulator transition can be im-
plemented and its relation with the holographic entanglement entropy could be investigated as 
explored in [20]. Secondly, we have only considered a special coupling term between the axion 
fields and Maxwell field, it is quite intriguing to construct more realistic models which could be 
described by the Homes’ law with a constant compatible with the experimental data. Finally, the 
incoherent part of the conductivity can approximately be described by a constant σ̃Q only in low 
frequency region under the condition that the coherent contribution is dominant. It is very worthy 
of investigating its frequency dependent behavior in a generic situation.
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Appendix A

In this appendix we present the detailed derivation from (8) to (9). Without loss of generality, 
we may start from the perturbation equation (27) with γ = k = 0, then we have

A′′
x(z) + A′

x(z)
(
z4g(z)g′(z) + z3g(z)2

)
z4g(z)2

+ Ax(z)
(
ω2 − 2g(z)ψ(z)2

)
z4g(z)2

= 0. (29)

Since the bulk geometry is asymptotically AdS, the field Ax(z) has the following expansion near 
the boundary z = 0.

Ax(z) = A0
x + A2

xz
2 − 1

2
A0

xω
2z2 log(�z) + · · · . (30)

For convenience, we set A0
x = 1, then obtain

Ax(z) = 1 + A2
xz

2 − 1

2
ω2z2 log(�z) + · · · . (31)

Taking the ingoing boundary condition at z = 1 into account, one usually defines Ax(z) =
(1 − z)

−iω
4 bx(z). Then inserting it into (29), we have the equation for bx(z) as following

bx
′′(z) + c(z)bx

′(z) + d(z)bx(z) = 0, (32)

where

c(z) = 2(z − 1)zg′(z) + g(z)(2(z − 1) − iωz)

2(z − 1)zg(z)
(33)

and
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d(z) =16ω2(z − 1)2 + ωz3g(z)2(−ωz + 4i)

16(z − 1)2z4g(z)2

− 4(z − 1)g(z)
(
8(z − 1)ψ(z)2 + iωz4g′(z)

)
16(z − 1)2z4g(z)2

.

(34)

Correspondingly, we find the asymptotic expansion of bx(z) near the boundary to be

bx(z) = 1 − iωz

4
+ z2

(
A2

x − ω2

32
− iω

8

)
− 1

2
ω2z2 log(�z) + · · · . (35)

Due to the presence of the logarithmic term which is non-analytical, it is not quite efficient to 
numerically solve the ODE with Chebyshev polynomials. In particular, it is not quite convenient 
to extract the coefficients in (31) to calculate the Green’s function for conductivity. Thus, to 
improve the efficiency in numerics, we find it is convenient to introduce a new variable ax(z) by 
setting bx(z) = − 1

2ω2z2 log(�z) + ax(z), then we find the asymptotic behavior of ax(z) is

ax(z) = 1 − iωz

4
+ z2

(
A2

x − ω2

32
− iω

8

)
+ · · · , (36)

then we get

2A2
x

A0
x

= a′′
x (0) + ω2

16
+ iω

4
. (37)

Substituting (37) into (8), the formula of conductivity can be expressed in terms of the derivatives 
of the new variable ax(z) as

σ(ω) = − i
(
16a′′

x (0) + 16ω2 log
(

�
ν

) − 7ω2 + 4iω
)

16ω
. (38)

We would like to remark that ax(0) = 1, otherwise ax(z) would also have non-analytic terms 
between the source term and the response term. Similarly, if the expansion of fields have other 
non-analytic terms such as zk with non-integer k between source and response, we can get rid of 
these non-analytic terms in a parallel way. Finally, this method can be straightforwardly general-
ized to solve equation group with multiple variables.
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