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Introduction and Summary

Nambu-Jona-Lasinio (NJL) model with quark content is one of the most successful effective models
of quantum chromodynamics of light hadrons in the non-perturbative region(see review [1]). In
overwhelming majority of the investigations, the NJL model has been considered in the mean-
field approximation or in the leading order of 1/nc−expansion. However, a number of perspective
physical applications of NJL model is connected with multi-quark functions (for example, meson
decays, pion-pion scattering, baryons, pentaquarks etc.). These multi-quark functions arise in higher
orders of the mean-field expansion (MFE) for NJL model.

In present report we review some preliminary results of investigation of higher orders of MFE for
NJL model. To formulate MFE we have used an iteration scheme of solution of Schwinger-Dyson
equation with fermion bilocal source, which has been developed in works [2]. We have considered
equations for Green functions of NJL model in MFE up to third order. The leading approximation
and the first order of MFE maintain equations for the quark propagator and the two-particle function
and also the first-order correction to the quark propagator. A consideration of these equations is
the usual field of investigations of NJL model. The second order of MFE maintains the equations
for four-particle and three-particle functions, and the third order maintains the equations for six-
particle and five-particle functions. (Note, that the construction of the five-particle functions gives
us a possibility to investigate the pentaquark states in NJL model.) Here we discuss first results of
investigation of the second-order equations for four-particle and three-particle Green functions.

1 Mean-field expansion in bilocal-source formalism

We consider NJL model with the Lagrangian

L = ψ̄i∂̂ψ +
g

2

[

(ψ̄ψ)2 + (ψ̄iγ5τ
aψ)2

]

.

The Lagrangian is invariant under transformations of chiral group SUV (2)×SUA(2) and corresponds
to u-d quark sector. A generating functional of Green functions (vacuum expectation values of T -
products of fields) can be represented as the functional integral with bilocal source:

G(η) =

∫
D(ψ, ψ̄) exp i

{∫
dxL −

∫
dxdyψ̄(y)η(y, x)ψ(x)

}
.

Here η(y, x) is the bilocal source of the quark field.

The n-th functional derivative of G over source η is the n-particle (2n-point) Green function:

δnG

δη(y1, x1) ∙ ∙ ∙ δη(yn, xn)

∣
∣
∣
∣
η=0

= in < 0 | T
{
ψ(x1)ψ̄(y1) ∙ ∙ ∙ψ(xn)ψ̄(yn)

}
| 0 >≡ Sn




x1 y1
∙ ∙ ∙ ∙ ∙ ∙
xn yn



 .
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Translational invariance of the functional-integration measure gives us the functional-differential
Schwinger-Dyson equation for generating functional G :

δ(x− y)G+ i∂̂x
δG

δη(y, x)
+ ig

{ δ

δη(y, x)
tr

[
δG

δη(x, x)

]

− γ5τ
a δ

δη(y, x)
tr

[

γ5τ
a δG

δη(x, x)

]}
=

=

∫
dx1η(x, x1)

δG

δη(y, x1)
.

We shall solve this equation employing the method which proposed in work [3]. A leading
approximation is the functional

G(0) = exp
{
Tr
(
S(0) ∗ η

)}
.

The leading approximation generates the linear iteration scheme:

G = G(0) +G(1) + ∙ ∙ ∙+G(n) + ∙ ∙ ∙ ,

Functional G(n) is

G(n) = P (n)G(0),

where P (n) is a polynomial of 2n -th order over the bilocal source η .

The unique connected Green function of the leading approximation is the quark propagator.
Other connected Green functions appear in the following iteration steps. The quark propagator in
the chiral limit is

S(0) = (m− p̂)−1,

where m is the dynamical quark mass, which is a solution of gap equation.

A first-order functional is

G(1) =

{
1

2
Tr
(
S
(1)
2 ∗ η

2
)
+Tr

(
S(1) ∗ η

)}

G(0) .

The iteration-scheme equations give us the equation for first-order two-particle function S
(1)
2 :

S
(1)
2

(
x y

x′ y′

)

= −S0(x− y
′)S0(x

′ − y)+

+ig

∫
dx1

{
(S0(x− x1)S0(x1 − y)) tr

[

S
(1)
2

(
x1 x1
x′ y′

)]

−

−(S0(x− x1)γ5τ
aτa1S0(x1 − y)) tr

[

γ5τ
aτa1S

(1)
2

(
x1 x1
x′ y′

)]}
(1)

and the first-order correction to quark propagator S(1):

S(1)(x− y) = ig
∫
dx1S

(0)(x− x1)
{
S
(1)
2

(
x1 y

x1 x1

)

− γ5τ
aS
(1)
2

(
x1 y

x1 x1

)

γ5τ
a
}
+

+ig

∫
dx1S

(0)(x− x1)S
(0)(x1 − y) trS

(1)(0).

The graphical representations of these equations see on Figs. 1 and 2.
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S
(1)
2 = + S

(1)
2

Fig.1. The equation for first-order two-particle function.

1
iS
(1)

= − S
(1)
2 +

1
iS
(1)

Fig. 2. The of equation for first-order correction to quark mass.

Here the graphical notations of Fig. 3 are used.

1
iS
(0)

ig(1⊗ 1− γ5 τ2 ⊗ γ5
τ
2 )

S
(k)
n S

(k)
n

Fig. 3. Diagram rules.

To describe the solution of the first-order equation for two-particle function and for future pur-
poses we introduce the composite meson propagators by following way:

a) Let us define scalar-scalar function

Sσ(x− x
′) ≡ tr

[

S
(1)
2

(
x x

x′ x′

)]

∼< ψ̄ψ(x)ψ̄ψ(x′) > . (2)

From the equation (1) for two-particle function we obtain (in momentum space)

Sσ(p) =
1

ig
(1− iΔσ(p)). (3)

Here we define the function, which we call the σ−meson propagator

Δσ(p) =
Z(p)

4m2 − p2
, (4)

where Zσ(p) =
I0(4m2)
I0(p2)

and I0(p) =
∫
dq̃ 1
(m2−(p+q)2)(m2−q2) .
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b) Pseudoscalar-pseudoscalar function is defined as

Sabπ (x− x
′) ≡ tr

[

S
(1)
2

(
x x

x′ x′

)

γ5
τa

2
γ5
τ b

2

]

∼< ψ̄γ5
τa

2
ψ(x)ψ̄γ5

τ b

2
ψ(x′) > . (5)

From the equation (1) for two-particle function we obtain (in momentum space):

Sabπ (p) = −
1

ig
(δab − iΔabπ (p)). (6)

Here we define the pion propagator

Δabπ (p) = −
δabZ(p)

p2
, (7)

where Zπ(p) =
I0(0)
I0(p2)

.

2 Second-order equations

Second-order generating functional is

G(2) [η] =

{
1

4!
Tr
(
S
(2)
4 ∗ η

4
)
+
1

3!
Tr
(
S
(2)
3 ∗ η

3
)
+
1

2
Tr
(
S
(2)
2 ∗ η

2
)
+Tr

(
S(2) ∗ η

)}

G(0).

The equations for four-quark and three-quark functions see on Figs. 4 and 5

S
(2)
4 = −3 S

(1)
2 + S

(2)
4

Fig. 4. The equation for four-quark function.

1
iS
(2)
3 = − 2

1
iS
(1)

− 2
S
(1)
2

+ S
(2)
4

+ 1
iS
(2)
3

Fig. 5. The equation for three-quark function.
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The equations for the four-quark function S
(2)
4 and for the three-quark functions S

(2)
3 are new,

and the equations for two-particle function S
(2)
2 and propagator S(2) have the same form as the

corresponding first-order equation except of the inhomogeneous terms. For second-order equations

these terms contain four-quark function S
(2)
4 and three-quark S

(2)
3 function.

The equation for the four-quark function has a simple exact solution which is the product of
first-order two-quark functions (see Fig. 6).

S
(2)
4 = −3

S
(1)
2

S
(1)
2

Fig. 6. The solution of equation for four-quark function.

As it seen from this solution, the ππ−scattering in NJL model is suppressed, i.e. in the second
order of MFE this scattering is absent, and it can arise in the third order only.

3 Vertex σππ

The existence of above exact solution for the four-quark function gives us a possibility to obtain
a closed equation for the three-quark function. As a first step in an investigation of this rather
complicated equation we shall solve a problem of definition of σππ−vertex with composite sigma-
meson and pions. Let us introduce a function

W ab
σππ(xx

′x′′) ≡ tr

[

S
(2)
3




x x

x′ x′

x′′ x′′



 γ5
τa

2
γ5
τ b

2

]

∼< ψ̄ψ(x)ψ̄γ5
τa

2
ψ(x′)ψ̄γ5

τ b

2
ψ(x′′) >

and define:
a) scalar vertex

Vσ(xx
′x′′) ≡ tr

[

S0(x− x
′)S
(1)
2

(
x′ x

x′′ x′′

)]

= 2inc

∫
dx1vS(xx

′x1)Δσ(x1 − x
′′). (8)

Here vS(xx
′x′′) = tr α[S0(x− x′)S0(x′ − x′′)S0(x′′ − x)] is the triangle diagram.

b) pseudoscalar vertex

V abπ (xx
′x′′) ≡ tr

[

S0(x− x
′)γ5

τa

2
S
(1)
2

(
x′ x

x′′ x′′

)

γ5
τ b

2

]

= 2inc

∫
dx1vP (xx

′x1)Δ
ab
π (x1 − x

′′). (9)

Here vP (xx
′x′′) = tr α[S0(x− x′)γ5S0(x′ − x′′)γ5S0(x′′ − x))].

With definitions (2)-(9) we obtain for vertex function W ab the following equation:

W ab
σππ(xx

′x′′) =W ab
0 (xx

′x′′) + 2ignc

∫
dx1lS(x− x1)W

ab
σππ(x1x

′x′′),

where lS(x) ≡ tr α[S0(x)S0(−x)] is the scalar quark loop and inhomogeneous term W ab
0 is

W ab
0 (xx

′x′′) = V abπ (xx
′x′′) + V abπ (xx

′′x′)+
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+4ig

∫
dx1V

a1a
π (xx1x

′)Sa1bπ (x1 − x
′′) + 4ig

∫
dx1V

a1b
π (xx1x

′′)Sa1aπ (x1 − x
′)+

−ig
∫
dx1(Vσ(xx1x1)− 4V

a1a1
π (xx1x1))S

ab
π (x

′ − x′′) .

Using definitions (2)–(9) we have:

[W ab
0 (xx

′x′′)]con = −2nc

∫
dx1dx2vP (xx1x2)[Δ

a1a
π (x2−x

′)Δa1bπ (x1−x
′′)+Δa1abπ (x2−x

′′)Δa1aπ (x1−x
′)].

The equation for W ab can be easy solved in the momentum space and a solution is

W ab
σππ(pp

′p′′) = iΔσ(p)W
ab
0 (pp

′p′′)

where p is σ−meson momentum, and p′, p′′ are pion momenta: p = p′ + p′′.
The connected part of W ab is an amplitude of decay σ → ππ. It has a following form:

[W ab
σππ(pp

′p′′)]con =
2nc
i
Δσ(p)[vP (pp

′p′′) + vP (pp
′′p′)]Δaa1π (p

′)Δa1bπ (p
′′). (10)

(See also Fig 7.)

p

1

γ5

γ5

Δπ

Δπ

= W c
σππ

p′

p′′

Fig. 7. The connected part of sigma-pion-pion-vertex.

4 Third-order equations

The third-order generating functional is

G(3) [η] =

{
1

6!
Tr
(
S
(3)
6 ∗ η

6
)
+
1

5!
Tr
(
S
(3)
5 ∗ η

5
)
+
1

4!
Tr
(
S
(3)
4 ∗ η

4
)
+

+
1

3!
Tr
(
S
(3)
3 ∗ η

3
)
+
1

2
Tr
(
S
(3)
2 ∗ η

2
)
+Tr

(
S(3) ∗ η

)}

G(0).

The equation for six-quark functions and equation for five-quark function see on Figs. 8 and 9.

S
(3)
6 = −5 S

(2)
4 + S

(3)
6

Fig. 8. The equation for six-quark function.
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1
iS
(3)
5 = − 4

1
iS
(2)
3

− 4
S
(2)
4

+ S
(3)
6

+ 1
iS
(3)
5

Fig. 9. The equation for five-quark function.

The equations for the six-quark function and for the five-quark function in our iteration scheme are

new, and the equations for four-quark function S
(3)
4 , three-quark function S

(3)
3 , two-quark function

S
(3)
2 and quark propagator S(3) have the same form as the second-order equations exept of the
inhomogeneous term, which contains the six-quark function and the five-quark function.
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