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1. INTRODUCTION 

Since the discovery of the J/~ and~' in November 1974 1) we 
all witnessed a dramatic revival of the quark model 2). A new 
quark flavour, c = charm 3), was added to the hadron s~ectrocopy, 
interpreting the J/~ and ~, as cc bound states. This new system 
promised to be describable as nonrelativistic bound states of c 
and c: Charmonium 4). While the quark model for old mesons suf­
fered from the fact that the quarks move relativistically (mass 
differences of old mesons are of the order of the masses themsel­
ves), in charmonium the relatively heavy ('" 1.5 GeV) c-quarks 
should move relatively slowly, S2 = (v/c)2 '" 0.2. A perturbation 
expansion in S2 then converges rapidly and the well known power­
ful tools of exploring a nonrelativistic bound system could be 
used. This was the source of real excitement. 

Meanwhile we learned about the existence of a still heavier 
meson family, the T, "T' and T" 5), and interpret it as bound 
states of the b quark and b, b being the fifth quark flavour 6) 
much more massive than charm. We further hope to dis~over the 
sixth quark flavour, t maybe, and its bound states tt in the new 
e+e- machines PETRA anQ PEP. The larger masses of the b and t 
quark guarantee that their bound systems bb and tt are nonrelati­
vistic to a much higher degree than ce. In this lecture we will 
discuss the dynamics of a nonrelativistic QQ bound system, 
Q = c,b,t. As a title for this lecture we chose the ~neric name 
for a nonrelativistic QQ system, QUARKONIUM. 
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On the field theory side, Quantumchromodynamics 7), QCD, 
turned out to be the most promising key to an understanding of 
quark dynamics. QCD is a nonabelian gauge field theory of the in­
teractions of quarks and eight massless vector gauge bosons, the 
gluons. The couplin~ constant as, renormalized at the relevant 
momentum transfer q or the corresponding distance R, turns out to 
be a monotonously falling function of q2 (or rising function of R). 
It tends logarithmiCallB to zero as q2 + 00 or R + 0, this is cal­
led asymptotic freedom ). as becomes large for some large R of 
the order of one fm, the typical hadron size. Up to today this re­
gime is subject to speculations only, we believe that the rising 
coupling provides for the permanent confinement of quarks. Pertur­
bation theory is useless in this case, but lattice gauge theo­
ries 9) or the string model 10) suggest that the interquark force 
for large separations might be independent of the distance, thus 
giving rise to a linearly rising static potential between quarks. 
At short distances physics is much more pleasant because as be­
comes small. Then perturbation theory is fine and in Born approxi­
mation the quark interaction is just one gluon exchan~. The non­
abelian self-interaction of the colour-charged gluons plays no 
role in lowest order graphs, and in this approximation gluons are 
just analogous to photons. The short distance behaviour of QCD is 
thus very similar to QED, the static potential for short distances 
being of the Coulomb type. 

When QCD is in fact the underlying theory for the Quarkonium 
systems, we should be able to probe some QCD features by stUdying 
these systems. What can we probe? First we should be able to probe 
the short distance behaviour. The one gluon exchange at short di­
stances leads to a static potential of the form VAF(R) = -4as /3R. 
The subscript AF denotes the origin of this potential 'Asymptotic 
Freedom'. -4/3 is a group factor from SU3 (colour) and as is the 
effective coupling. One can take two points of view regarding as. 
Either as is really R-dependent 11) but independent of the quark 
flavour. Or one defines an effective as as a constant, different 
for each quark flavour mass 8). For siffi£licity we take the second 
point of view. Then the as in a heavy QQ bound state M2 is related 
to that of a lighter one M1 by the approximate formula 

( 1.1) 

(N is the number of 'light' (= lighter than Q) quarks). The noten­
tial VAF(R) with as given by (1.1) should be correct for very 
short distances. It further gives rise to the spin-spin and spin­
orbit interactions known from positronium, because the quark gluon 
vertex has the same Dirac structure as the electron photon vertex 
('Y]J-coupling) . 
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The second feature of QCD we might be able to probe is the 
lar~ distance behaviour, R + 00. The linear potential as sug~sted 
by lattice gauge theory or string models should dominate for very 
lar~ distances R: VC(R) = aeRo The subscript C stands for 'Con­
finement'. The slope a should be flavour independent and also 
somehow related to the inverse Regge slope of the low mass mesons 
(ref. 12). F~thermore this potential should be essentially spin 
independent 9). 

We now have guesses for the static potential at very short 
distances, VAF(R) = -4as/3R, and very long distances VC(R) = aR. 
We have no guess for intermediate distances. The simplest assump­
tion is to write the complete potential as a superposition of 
these two extremes (E. Eichten et al., ref. 4): 

V(R) = ( 1 .2) 

We further assume that all the spin dependence (except the kinema­
tic Thomas precession) has its origin in VAF(R) and can be calcu­
lated via the Fermi-Breit Hamiltonian 13). Altough these Ansatze 
have their ciriticism they have worked out to be very useful as a 
first attempt to the problem. The first part of this lecture will 
try to show how far these Ansatze reach. In the second part we 
will discuss decays of Quarkonium and a third test of QCD, namely 
of gluon helicities and the gluon self coupling. With the experi­
mentally accessible regime of c.m. energies of 10 GeV or more, the 
gluons which govern annihilations in QCD, might show up as hadron 
jets 14). These jets should carry the directed momentum of the 
initial gluon. In angular distributions of these jets one should 
then be able to measure gluon helicities 14,15). One can further 
speculate on the existence of glueballs 16) to be found in quarko­
nium decays and on measuring the nonabelian gluon self coupling 
by comparing the angular distribution of a 3 gluon dec~y versus a 
y + 2 gluon decay. The latter two things, however, go beyond the 
Born approximation. 

2. The Spectrum_ 

Throughout the discussion we will assume that the Quarkonium 
(QQ) system is essentially nonrelativistic. The perturbative 
Hamiltonian can then be obtained by solving the Bethe Salpeter 
equation in nonrelativistic approximation or by expanding the 
exact relativistic scattering amplitude (Born graph only). One ob­
tains the Schrodinger equation in zeroth order of 82 and the well 
known Fermi-Breit Hamiltonian terms up to order 82 • In Oth order 
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2 
= 2 + E- + V(R) + const. mQ mQ 

(2.1) 

and all states which only differ In their quark spln configura­
tions are degenerate. 

Here we can study the rough structure of the spectrum and try 
to justify the choice (1.2) for the potential V(R. )-. In fig. 2.1 
it is demonstrated that the center of gravity of the P waves 
(which is object of 2.1) can be well described if the potential 
lies between a Coulombic and a linear potential. Also a logarith-

1.0 E [GeV] h" armonlc 
lin~ar 

log 

4>'- --
0.5 

c.o.g.IPc/X} 

o 

-0.5 
R 

1.0 1.5 [fm] 
Fig. 2.1 Four different potentials for charmonium, normalized to 

the J/~ and ~' binding energies. The solid horizontal 
lines indicate the P wave of each potential, the expe­
rimental c.o.g. (p) is given for comparison. 
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mic potential is not bad. This may serve to justifY the Ansatz 
(1.2). We note, however, that doing this comparison we assume that 
splittings due to spin-spin interactions are either small or of 
the same magnitude in the P and S waves. Calculations of the s~ec­
trum of equ. (2.1) have to be done numerically because of the com­
plicated nature of the potential VCR). There are three parameters, 
mQ, K = 4/3 as and a. The level splitting of the radial excitation 
and the ground state (~'(3.7) and J/~(3.1) in Charmonium) deter­
mines one of the potential parameters, say a, if the other, say K, 

is given. We then can try to determine K from two independent sour­
ces, namely the ratio of the S wave functions at the origin 

1~~,(0)12 

I~JN(O) 12 
= = 

(3.7)2 • 2.2 keV 

(3.1)2 • 4.8 keV 
(2.2) 

and the relative placement of the center of gravity of the P waves. 
Both procedures are almost independent of the third parameter, mq, 
and in Charmonium they give 

K = 0.4 0.5 

a = 0.9 GeV/fuJ. 

One remark on equ. (2.2) is ln order. It is derived from the Van 
Royen-Weisskopf formula 

= (2.4) 

This equation is subject to lar~ corrections ln the charmonium 
system as we will discuss later but in ratios of fee's these cor­
rections cancel. Therefore (2.2) seems to be quite reliable. 

Is the large value of K reasonable? From the beginning K is 
just a free parameter. But with K = 4/3 as we find as of the mag­
nitude 0.3 .•• 0.4. Is this as related to the strong coupling con­
stant in annihilation processes? Or is it related to the strong 
coupling constant in deep inelastic lepton scatterin~? From the 
decay formulae as described in the second lecture one can derive 
as (annihilation at 3 GeV) ~ 0.2. But this as refers to annihila-
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Fig. 2.2 The shape of the standard potential, equ. (1.2). VAF do­
minates below, Vc above R = 0.3 rm. 

tion distances which are shorter than the average interquark di­
stances. From deep inelastic lenton scattering we find as(3 r~v) ~ 
as(0.07 rm) ~ 0.4 taking the renormalization point A = 0.5 r~v, as 
you have learned in this school 17). From fig. 2.2 we see that 
0.07 fm are just in the middle of the range where the asymptotic 
freedom potential VAF dominates, between 0 and 0.3 rm. The as as 
determined from the spectrum with the simple Ansatz (1.2) for VCR) 
agrees roughly with the as as measured in scaling violations of 
deep inelastic lepton scattering. This result encourages us to ask 
the next question: Is the parameter a in Vc(R) = aR unique for all 
flavours (quark masses) as QCD suggests? The first estimates of 
the V'-V splittings in QQ systems heavier than Charmonium predic­
ted a decrease of this splitting with ffiQ 18). At 10 Ge V the mas.s 
splitting should be 450 MeV only (compared to 590 MeV in Charmo­
nium). As soon as the next Quarkonium system, T and T', was found, 
this prediction was destroyed. The T'-T mass splitting was around 
600 MeV again as in Charmonium. The ~otential to describe this 
fact is the logarithmic potential 19). Here mass snlittings are 
completely independent of the quark mass. But an overall lo~ po­
tential has no justification within QCD. For intermediate distan-
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ces, on the other hand, it is not worse than the simule su~erposi­
tion (1.2). An interesting - and phenomenologically successful An­
satz was then proposed with the log potential for intermediate di­
stances only 20): 

VCR) = 

- K!R 

bolog R/R 
o for 

"Ii < R1 

R1 :: R < R2 

R > R2 

The ambiguities coming in by 6 parameters, K, a, R1, R2, Ro , b in 
this potential are removed by demanding VCR) to be continuously 
differentiable at R1 and R2. These are four conditions which re­
move 4 parameters and for comparison one chooses K and a to be the 
only independent potential parameters. The Charmonium system has 
been solved with this potential and one finds a very good fit to 
all available data with 

lK 
4 

a 

= 
(2.6) 

= 

Applying the potential (2.5) - with the uni~ue a = 0.115 C~V/fm 
to the T system gives the mass difference T' - T to 560 MeV. 

Very recently a precise measurement of the T and T' masses at 
DORIS gave us the experimental value: 560 MeV 5). This coincidence 
is of course no prove for the correctness of the potential (2.5) 
but it shows that - with a more sophisticated potential - the as­
sumption of a flavour independent constant force between ~uarks at 
long distances is not in contradiction with what we observe. It is 
amusing to note that this value of a = 0.115 GeV/fm is even in 
agreement with what one would exoect from the old meson suectros-
copy 12). --

We want to add a remark on ~uark masses. Quark masses only 
slightly influence the two inputs we used, the ratio of wave func­
tions at the origin and the P wave location. What they mainly in­
fluence is the wave functions themselves, the dipole matrix ele­
ments and the velocity of the ~uarks. But here is some ambiguity. 
Fitting ~(O) to the naive Van Royen-Weisskopf formula (2.4) gives 
a rather small value, mc ~ 1.1 GeV. For the dipole matrix elements 
on the other hand one would like a large ~uark mass, mc ~ 2 GeV. In 
the best known studies at Cornell 21) the re~uirement of small 
~uark velocities restricts mc to be mc ~ 1.6 GeV. To fix mc or IDQ 

resp. is not as easy as to fix as and a, because the decay formulae 
(2.4) and the dipole formula are subject to lar~ corrections as 



168 M. KRAMMER AND H. KRASEMANN 

we will discuss in the second lecture. We will use scalin~ argu­
ments for scale variations of the Quark mass. To overcome the am­
biguities of determining the Quark masses we will set Quark mass 
ratios eQual to the corresponding bound states mass ratios. We em­
phasize that smaller Quark masses like mc = 1.1 C~V do not destroy 
the nonrelativistic approximation. We have calculated S2 = (v/c)2 
and find that S2 < 0.3 in J/~ and S2 < 0.4 in ~I for mc = 1.16 r~v 
and K < 0.55. We feel that this justifies to leave the Quark mas­
ses themselves an open Question. 

3. Spin Interactions 

In the physical charmonium spectrum the Schrodinger states are 
split up due to spin interactions. In this chapter we want to com­
pare the magnitude of these splittings with the simplest Ansatz we 
can imagine, the Fermi Breit Hamiltonian 13). These higher order 
corrections to (2.1) are relativistic kinematic corrections and 
spin corrections: 

H = + + 

The spin corrections have three contributions. 

spin orbit: HLS 2 
los [i~] (VAF(R) - ~ VCR)) = 2 

mQ 

HT -1 + .~ ~ + + [2 1 J (3.2) tensor: --2(30"1oRCY2oR-CY1°CY2) CIR-~ VAF(R) 
12mQ 

spin-spin: HSS 1 + + 
L'lVAF(R) = --2 CY1°CY2 

6mQ 

Here 6i/2 is the Quark spin, S = 112(61+62) the meson spin, L its 
angular momentum, R the interquark distance. For the potential V(R) 
we again take the simplest Ansatz (1.2) with only VAF(R) being spin­
dependent. As mentioned in the introduction lattice gauge theories 
suggest that the confinement part Vc(R) of the potential is spin­
independent. Nevertheless it contributes to the spin orbit interac­
tion due to the relativistic kinematic effect of the Thomas preces­
sion 22), -1/4v(R) in HLS. In Quarkonia the Thomas precessio~ leads 
to a decrease of the 3P2 - 3P1 splitting relative t~ the 3P1 - 3PO 
splitting. While in Positronium, where VCR) - -1/R - VAF(R) 
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M( 3p 2) - M( 3p 1 ) 

M( 3p 1) - M( 3p 0) 

169 

= 0.8 

the additional Vc(R) in the interquark potential (1.2) leads to a 
decrease of (3.3), which experimentally is found to be 0.5 in 
Charmonium. 

We are confident that the Fermi Breit Hamiltonian (3.2) is not 
a too bad approximation. As an example let us consider the part of 
the relativistic corrections due to the kinetic ener?: of the 
quarks. This correction is «p2)2/4mq> ~ Ekin <1/4 S >. Up to S2 of 
0.4 the relativistic kinetic energy correction is less than 10%. 
The 82 one obtains in the Charmonium calculations are 0.2 to 0.3 
for J/~ and 0.27 to 0.4 for ~, varying mc from 1.6 to 1.16 r~v. 

Let us now compare experiment with the predictions from (3.2). 
We start considering the experimental states as discussed at this 
school 23). The three P waves are quite well established, the 
X(3.55) as jPC = 2++ state, the Pc!x(3.51) as jPC = 1++ state and 
the X(3.41) as jPC = 0++ state. For the pseudoscalar partners of 
J/~ and ~, the experimental situation is not so clear. Candidates 
for the pseudoscalars are X(2.83), X(3.45) and X(3.59 or 3.18). 

The P wave splittings can be parametrized as 

<HLS> = A <toS> 

<HT> 
(3.4 ) 

= B <T> 

-+"-+,, -+-+ 
where the tensor operator T - 301°R 020R - °1°°2. The expectation 
values of LoS and T can be found in textbooks on Quantum mechanics 
(ref. 24). For P wave they are displayed in table 3.1. A Charmo­
nium analysis with the experimental masses of table 3.2 yields 

Table 3.1 

j <toS> <T> 

2 + 1 -2/5 

- 1 +2 

0 - 2 -4 
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Table 3.2 

State center of gravity 

mass IGevl 3.552 3.508 3.415 3.522 

for A and B 

A '" 34 MeV , B '" 10 MeV (3.5) 

On the theoretical side we read off (3.2) 

B = .:.1- «~ - .! <L) VAF(R» 
12in2 ~ R·1{ 

Q 

(3.6) 

including the Thomas precession. With our standard potential (1.2) 
this gives 

A 
2 <a R-3 - ~ a R- 1> = 2 s 
mQ 

(3.7) 

B 
1 <a R-3> = 2 s 
3mQ 

We see that the spin dependence from the one gluon exchange (VAF) 
is governe~ by <R-3> while th~ Thomas precessio~ is governed by 
<R-1>. Taklng our as = 0.4, mc 1<R-3> '" 0.07 GeV and <R-1> '" 
0.4 GeV from numerical fits yields the values of A and B given in 

Table 3.3 A and B from numerical fits. In row A the second number 
is the contribution from the Thomas precession 

m IGevl 1.6 1.1 c 

A IMeVI 35-12 56-32 

B IMevl 6 9 
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table 3.3 for two different values of IDe +). By comparison of 
table 3.3 with equ. (3.5) we see that we are in the right ball 
park. We could not have expected a better agreement from our crude 
approximation! 

Let us now try the spin-spin interaction. According to our 
philosophy it arises from the short ran~ one gluon exchange (VAF) 
alone. The relevant term in the Fermi-Breit-Hamiltonian (3.2) was 

= (3.8) 

Th . + + 2+8 2 .. e elgenvalues of the operator 01·02 = -3 are +1 In a spln 
triplet state and -3 in a spin singlet state. Because ~VAF(R) -
~(-1/R) = 4no(R) the integral over the wave functions becomes tri­
vial and we have 

4 - a • 4n • 
3s 

Taking 1'1'(0) 12 from fee via equ. (2.4) and as from equ. (2.3) 
gives us for the splittings 

M( 1381 ) - M( 1 180 ) 

M( 2s 8 1) - M( 2 1 80 ) 

70 MeV 

35 MeV 

(3.10) 

Trying to identify nc(118o ) = x(2.83) means 70 MeV = 250 MeV, 
n~(218o) = X(3.45) means 35 MeV = 230 MeV, or n~(218o) = X(3.59) 
means 35 MeV = 80 MeV. Many solutions have been proposed to solve 
this puzzle, among these are instanton effects 25) and an anomalous 
colour magnetic moment of the c-quark 26). The simulest solution 
might be that the 1'1'(0)1 2 in equ. (2.4) and in (3.9) are different 
objects. The next order correction to 1'1'(0)1 2 in (2.4) comes in 
through a transverse gluon exchange between the two quark lines 

+) ( 4) . . The tensor operator T of equ. 3. possesses off dlagonal matrlx 
elements, too. They lead to an 8-D m~xing. Two physical Charmo­
nium states would e.g. be '1"(3.7) = 1-E 2 2381 + E 13D1 and 
'1'''(3.7/) = -E 2381 + I1=E"2 13D1 with 
E = (2/2 as/3~)«2381IR-3113D1> !M(D)-M(8)).32) With 
<2381 IR-3113D1> ~ <1 3p R-3 13p>!7 we can evaluate E ~ 0.04 lea­
ding to a ree ('I"(3.77)) of 0.16% of that of '1"(3.7). Experimen­
tally it is 17%. 
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before annihilation. It has a large factor in front and the total 
correction is a factor (1 - 16as/3~) 27), which in no case is small. 
But before continuing this discussion let us wait for estimates of 
some decay rates involving the pseudoscalars. Then we will find 
that we have much more severe problems which question the identifi­
cations above. 

4. Scaling the Schrodinger Equation 

The radial form of the Schrodinger equation reads 

= o (4.1) 

For all potentials of the form 

VCR) = e: > -2 (4.2) 

we can bring it into the dimensionless form 

[_d2
p + I ( I + 1 ) e: t"} R ( ) + p - <, P 

p2 
= o 

with the substitutions 

t,; = E • (2m)(2ma)-2/(2+e:) 

(2ma)+1/(2+e:) 
(4.4) 

p = R • 

One can now immediately read off the scaling laws for E and R: 

E 
-e:/ (2+e:) 

m 

-1/(2+e:) (4.5) 
R m 

(4.5) is also applicable for e: = 0, in which case the potential 1S 
VCR) = a log R/Ro. We leave the derivation to the reader. 

Let us now consider some aspects of scaling for Quarkonia. We 
begin with the level spacing. In a potential like VAF(R) = -4as/3R 
alone level spacings scale like ~E - a~mQ in a linear potential 
lik: Vc(R) =.aR they ~cale.like ~E - ~1i3. To e~timate the inter­
med1ate scal1ng behav10ur 1n the standard potent1al we try a very 
crude approximation: Let us consider the level spacings given by 
the linear potential with the Coulombic part VAF(R) as a first or­
der perturbation. Then 
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= 
4 a.s 

E (v ) + <nl - --- In> n c 3 R 
(4.6) 

and ~E scales like mQ1/3 with a first order correctian - a.s~1/3. 
Because af the mass dependence of a.s ' equ. (1.1), this perturba­
tion procedure starts to break dawn not before IDQ ~ 100 GeV. The 
curve is shown in fig. 4.1 (dashed line). Asymptotically the states 
fall intO' the Coulambic patential VAF and the scaling law becomes 
~E - a.~mQ. If a.s would be a universal canstant, this wauld hapuen 
much earlier (dotted line in fig. 4.1). From the T'-T mass diffe­
rence we knaw that the simple standard potential is not adopted by 
nature. Using the ~'-J/~ mass difference as in~ut, the standard 
madel predictian for the T'-T mass difference is much lawer than 
the experimental one (fig. 4.1). The predictian can be raised to 
the experimental value by fixing a.s to its Charmonium value every­
where, but this seems nat appealing theoretically. In Chapter 2 
we saw that a reasonable description of the T'-T mass difference 
was passible by introducing a logarithmic potential far intermedi-

600 

300 

~ 

=MIz3~)-M (1351) 
[MeV] 

---- ... ._._._ .... 

0.3 

, 

... rno. 
J 

I , ._._.--._._._._._. 
,--- I 

\ I , / , / , / 
..... // 

'...... ".----
rna. [GeV] 

300 

Fig. 4.1 The scaling behaviour of ~E in different potentials. 
-- ---- standard patential with a.s (M2) via equ. (1.1) 
- - - - - standard potential with fixed a.s 
--,--.--. lagarithmic patential 

our guess 
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ate distances. In the log potential ~E = constant (s= 0), and an 
intermediate part in the potential would tend to fill up the valley 
of the dashed curve in fig. 4.1. We show a guess for the result, 
the solid line in fig. 4.1. This result means, that we expect no 
dramatic change of ~E for the next Quarkonium. Only for quark mas­
ses well above 100 GeV the states would sit deeper and deeper In 
the VAF singularity and ~E starts to increase. Asymptotically the 
scaling behaviour of ~E is a~illQ - illQ/log2(mQ). 

We now turn to level splittings and begin with the P waves. 
We have shown that the Fermi-Breit Hamiltonian (equ. 3.2) gives a 
reasonable description. From there we have 

(4.7) 

where H~~ is the spin orbit term without the Thomas nrecession. In 
contrast the Thomas precession term behaves like 

(4.8) 

The scaling behaviour of R (equ. 4.5) is somewhere between that in 
a log and in a linear potential, R - illQ1/2 ... mQ1/3, and we can 
estimate the 3P2 - 3PO splitting of more massive Quarkonium P waves 
shown in table 4.1. A comparison of (4.8) with (4.7) shows one more 
important fact. The ratio of equ. (3.3) which is 0.5 in Charmonium 
should increase with illQ and approach 0.8 asymptotically! 

The spin spin splittings go essentially as as·ree , which can 
be seen by combining equ. (3.9) with equ. (2.4). Experimentally 
ree' normalized to the quark charge, is remarkably constant, fig. 
4.2. In the frame of nonrelativistic potential models there is no 
way to explain this for p, w, ¢. From J/~ to T, however, we can use 
the scaling arguments. Table 4.2 shows the scalin~ behaviour of 
11f'(0) 12 and ree via equ. (2.4). 11f'(0) 12 and therefore ree should 
feel more of the short distance potential than e.g. the level split­
tings. Numerical calculations indeed show almost mQ-independenceof 

Table 4.1 P wave splittings In Quarkonia 

Quarkonium: 30 r,eV 

150 (input) 50-70 20-40 
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re'Ue 2 3 
0. .... rn 0. ..... as rno. 

[keY] 
~ 

20 I 
/ 

w / 

------1--i-----J-r/~ 
)' 

10 rno. [6eV] 

0.5 5 50 

Fig. 4.2 Scaling behaviour of fee/e~ 
- - - - Experimental evidence below mQ = 5 GeV 
-- ----in a pure Coulomb potential 

in VAF with as (M2) via eQu. ( 1.1) 

fee in the range from Charmonium T 28). In the asymptotic limit 
ffiQ + 00, fee - agffiQ - ffiQ log-3(~), which also gives no net ffiQ de­
pendence from Charmonium to T. We are therefore led to plot this 
asymptotic ffiQ dependence for fee starting with J/~. This is done 
in fig. 4.2 also. 

The constancy of fe~/eQ below J/~ (fig. 4.2), however, cannot 
be understood with our methods and we want to point out that it is 
a challenge to explain this fact together with the seemingly con­
stancy of level spacings below 3 GeV, e.~., 
M(A2) - M(p) ~ M(X3.55) - M(J/~). 

Table 4.2 Scaling behaviour of I~(o) 12 and fee ln different ~oten-
tials 

a 
Scaling of ln VAF(R) --~ V(R) - lo~ R V (R) - R R c 

1~(o)12 - -3 a 3m3 3/2 
R s Q mQ mQ 

f _ -3 -2 a,3m -1/2 -1 
- R m mQ mQ ee Q s Q 
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The last aspect of scaling we discuss concerns the number of 
narrow QQ states below the QqQq threshold. The condition for a QQ 
state to lie below the threshold for strong decays, can be written 
as 

< 2 m + 
q 2EQ_ .q 

w~th the binding energy EQq = MQq - ~ - m-. The binding energy of 
QQ states depends on the reduced mass of Q8. and therefore on the 
mass of the heavy quark Q. The states fall deeper in the potential 
well with increasing~. The binding energy of Qq, however, is in 
the first approximation independent of mQ because the system is 
determined by the mass of the light quark q. This is of course an 
idealization, to be more sophisticated one would have to treat the 
relativistic binding problem of Qq, or at least take into account 
the slight changes of the reduced mass ~ = mQ'mq/~+mq with mQ and 
effects of the spin-spin interaction which depend stron~r on mQ 
(but are small). Taking EQq to be constant fixes the threshold for 
the bi~ding energy EQQ' The question one may pose then is: How 
many QQ S wave states have a binding energy EQq below this thres­
hold? This question can be answered by semiclassical methods inde­
pendent of the particular potential. The number n of bound S states 
below a given energy (r.h.s of equ. (4.9) in this case is given by 
the Bohr-Sommerfeld condition 

- VCR)) = 1T (n - 1/4) (4.10) 

where Ro is the classical turning point, V(Ro ) = Ethr' 29). For 
low numbers n (4.10) is only approximately valid (but maybe not 
worse than our other approximations) and we find 

n const. + J ~. 
o 

(4.11) 

Quigg and Rosner fixed the constant of (4.11) in the Charmonium 
system (me = mc) and their result is displayed in fig. 4.3. We can 
read off fig. 4.3 that in the T system 3 S waves will be below the 
threshold of strong decays, the fourth, T'" , may be even below 
Qq(Qq)¥ threshold. In any case T'" will decay into BE or BB* -+- BEy, 
B = Qq. The question for the actual threshold energy is not jet 
answered, to do that we would need calculations of the B masses, 
e.g. in a potential model. Unfortunately a potential model for the 
B mesons suffers from the relativistic motion of the light quark q 
inside the B. However, applying our knowledge about the number of 
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Fig. 4.3 Number of bound states below the strong decay threshold 
(re f. 29). The T ,,, will be above the thre shold. 

bound T S waves, it is sufficient for us to know the masses of T" 
and T"~ since we already know the threshold relative to these. The 
latter masses are calculable much more reliably. In table 4.3 the 
results of two orthogonal approaches are shown. 

Table 4.3 Masses and ree of T radial excitations in the two ortho-
gonal models of a) ref. 30) and b) ref. 20). 

T T' T" T'" 

Mass a) 
IGevl 9.46 (input) 10.09 10.45 10.72 

Mass b) 
IGevl 9.46 (input) 10.02 10.34 10.60 

re~ 
b) 

IkeVI 1.1 0.5 0.35 0.3 
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The model of ref. 30) directly integrates the Bethe Salpeter 
equation for a QQ system with a distant-dependent as(R). The second 
model, ref. 20), is the phenomenologically successful modification 
of the standard model as discussed in chapter 2. A look at fig. and 
tabke 4.3, and slightly rescaling the first model, convinces us 
that the BB threshold will be around 10.4 to 10.5 C£V. 

Irtdependently of the exact location of the threshold and the 
exact validity of fig. 4.3 we expect that the first radial T exci­
tation above BB threshold is a "B-factory". (We think that this 
will be T I ", of course.) The reason is simply that in the decay of 
TI" to BB or BB'" the large number of radial nodes in the TI" wave 
function will suppress its decay width into two slowly moving ground 
state S waves like B or B"'. The width of TI" may therefore be well 
below the resonance machine width in e+e- production but, on the 
other hand, the branching fraction into BB (or BB"') should be sub­
stantial. 

One comment on our saying "BB or BB"''' is in order: Either the 
B-B'" splitting is as large (or larger) as the DD'" splittinp" then", 
B'" could decay in 7TB. But in this case TI" would lie below the BE 
threshold, as can",be seen from fig. 4.3. Or the B-B'" splitting is 
less than the D-D splittinp, (in nonrelativistic potential models 
this splitting goes like",1/~ - but neither the D nor the Bare 
nonrelativistic), then B d~cays to yB, which experimentally is 
almost as clean as a pure BB decay. 
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2nd LECTURE 

The second lecture covers Quarkonium decays. We will first 
discuss the radiative photon transitions in E1 and M1 approximation 
and gluon transitions. These decays have in common that they depend 
on the medium and long distance behaviour of the wave function. We 
then (Chapter 6) turn to annihilations which are governed by the 
short distance behaviour of the wave functions. The annihilation 
can take place into photons and/or gluons. The gluons may form ha­
dron jets. This is dealt with in Chapter 7. 

5 • Radiat ion 

a) Electric Dipole Radiation 

For photon or gluon wave lengths long against the bound state 
dimensions of Quarkonium one can try a multipole exoansion. The 
widths of different multipole orders are typically 31) 

r 

up to numerical factors. k is the photon (gluon) wave number, R 
the bound state radius in the reduced system (R/2 is the true bound 
state radius). We see that the expansion parameter in (5.1) is 
(k 0 R/2)2 which is roughly 1/4 •.. 3/100 in Charmonium and smaller 
in heavier Quarkonia. This justifies a multipole expansion and we 
will therefore confine ourselves to the lowest order transitions, 
E1 and M1. 

In hydrogen the formula for an electric dipole transition (E1) 
lS 31) 

= 

-+-.. • 
where xfi lS the matrlx element of the dlpole operator. In Quarko-
nia we now have three modifications to the case of equ. (5.2). 
First, both quarks can radiate, not only just one like the electron 
in hydrogen. Second, the relevant mass is the reduced mass of the 
quark, illQ/2, not just the particle mass like me in hydrogen. Third, 
the charge of the quark is only eQoe. The first two modifications 
cancel each other, so that we are left with 
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in Quarkonium. 

Of course, there are corrections to this naive formula. The 
first one are higher multipoles. In ~I decays they amount to at 
most 5% if present (compare equ. (5.1)). The second one is an in­
terference of the finite wave length of the photon field e+ikoR 
with the bound state wave function. In atomic and nuclear transi­
tions this interference is negligible, koR « 1 => e ikoR ~ 1. But 
in Quarkonium transitions higher terms of the expansion of eikoR/~ 
will partly contribute to dipole transitions and tend to reduce 
the transition rate. However, Okum and Voloshin 32) have shown 
that this interference correction amounts to at most 5% in Charmo­
nium. The third but most important corrections are of relativistic 
nature. They consist of a) recoil corrections, b) relativistic cor­
rections to the wave functions and c) the interaction of the quark 
magnetic moments with the electric vector of the photon field. ~e 
corrections of type c) have been studied by Okun and Voloshin 32 ). 
They find correction factors between essentially 1.0 and 0.6. 

The radiative widths of the standard model without corrections 
of the last type are given in fig. 5.1 and table 5.2. An examule 
for the corrections of this type is shown in table 5.1. The remai­
ning discrepancy between theory (table 5.1) and experiment (fig. 
5.1) might be due to relativistic corrections of type a) and b). 
The recoil corrections have been found to be ~ +20% in a relativi­
stic model 33). In any case this indicates that also the model 
numbers for r(pc/X + yJ/~) are only good within a factor 2. 

b) E1 Sum Rules 

A very powerful tool for the discussion of electric dipole 
transitions has been rediscovered for Charmonium, namely the di~ole 
sum rules 34). We know two kinds of di~ole sum rules, the so called 
Thomas-Reiche-Kuhn (RTK) sum rule and the Wigner (W) sum rule. Both 
apply to the dipole matrix element (equ. (5.3)) and any corrections 
like those discussed have to be done afterwards. The starting ~oint 
for the dipole sum rules is Heisenberg's uncertainty relation 

Table 5.1 Example for the magnitude of relativistic corrections 
to the naive dipole widths 32 ). 

r (~I + y3p .) 3p 3 3p 
model J 2 P1 0 

without corr. IkeVI 36 50 58 

with corr. type c) 36 40 41 



Fig. 5.1 E1 transitions in Charmonium. Modelwidths are calculated 
via equs. (5.8) and (5.9) and do not include corrections. 

= 3i 

(we set ~ = c = 1). In a static potential for QQ without velocity 
dependent terms, e.g. no spin-orbit interaction, we can replace p 
via the equation of motion 

+ 
p = 

where HO is the Hamilton ioperator of the static potential. equ. 
(2.1). After taking the expectation value in a state Ii> and inser­
ting a complete set of states If> this replacement of p leads to 
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Here EO are energy ei~nvalues of HO. The number of final states 
If> is restricted by selection rules. In an arbitrary static poten­
tial ~l = ±1 for dipole transitions. In a harmonic oscillator po­
tential, however, the number of final states is further restricted 
by the oscillator selection rule: The change of the number of ra­
dial modes ~r is either a or -~l. It follows that from the S wave 
ground state one can only reach the P wave ground state, from this 
1 P wave one can reach the radially excited S wave, 2 S, the ground 
state, 1 S, and the D wave 1 D. These are all possible final states. 
We call this fact the saturation of the sum rule by the harmonic 
oscillator. To write down the first sum rules it is convenient to 
express the dipole operator ~fi through the radial operator Rfi 35) 

L ,I <r' , l± 1 ,m' I ~ I r, I,m> 12 
m 

= {l+1} I<r' ,1±1IR!r,1>1 2 
1 21+1 

where m lS the magnetic quantum number. We can now write some rates 
(5.3) as 

r(lP -+ ylS) = 4 2 3 "9 Ct eQ k IRfi l2 (5.8 ) 

and 

r(2 1So -+ y11P1) 4 2 3 
IRfi l2 = "3 Ct e Q k (5 .9a) 

r(23S1 -+ Y1 3Pj ) = 4 2j+l 2 
"3 9 Ct ea k 3 IRfi l2 (5 .9b) 

The TRK sum rule (5.6) gives us a bound 

(E~p - E~S) 
2 ~ 

IR1P , lS I < 
mQ 

(5.10) 

which implies an upper bound on lP -+ lS 

r ( 1 P -+ yl S ) < 

We can obtain more bounds with the help of the Wigner sum rule. 
Recall equ. (5.4). As an expectation value in state Ii> it can be 
written as 

= 3i (5.12) 



QUARKONIUM 183 

The angular selection rule now enables us to project out the final 
states with ~l = +1 and those with ~l = -1. We thus arrive at two 
sum rules after some elaborate algebra 35) 

Lf 1-1 (E~-E~) I~fi 12 = -1(21-1) 
, 21+1 mQ 

Lf ,1+1 (E~-E~) l;tfi 12 = (1+1 )(21+3) 
21+1 mQ 

which of course add up to (5.6). We have gained two things: first, 
the number of final states on the l.h.s. of (5.13) and (5.14) is 
smaller than in the TRK sum rule, and second, (5.13) is negative, 
which is very helpful. For 1=1 in the initial state the first two 
terms of (5.13) give (using (5.7)) 

< 

An upper bound for the second term on the l.h.s. lS known from 
(5.10). This leaves us with 

< 

and we can deduce an upper bound on transition (5.9): 

< 

Next we will make use of the negative si~ in equ. (5.13) with 
1=1, the initial state being the 1P wave. The only contribution to 
(5.13) or (5.15) which is indeed negative is the transition to the 
18 ground state. Its magnitude must be larger than the sum of all 
others!· Therefore the knowledge of one of the other transitions, 
e.g. 28 -+ y1P, gives us a lower limit on 1P -+ y18! T;fe write (5.15) 
as 

and obtain by "inverting" (5.17) 
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The W sum rule gave us an upper bound on 2S + y1P and a lower bound 
on 1P + y1S. The TRK sum rule gave us an upper limit on the latter 
transition. We combine all our information in table 5.2. Combininp, 
the bounds of table 5.2 and the experimentally measured BRs for 
pc/x + yJ/~ one can deduce bounds for the total widths of the P 
states in Charmonium. This is shown in table. 5.3 

Table 5.2 Upper and lower limits on E1 transitions from the Thomas­
Reiche-Kuhn (TRK) and Wigner (W) sum rules (SR). All 
widths in keY. The second numbers in the lower half of 
the W SR column arise from the second term r.h.s of 
(5.19). The quark mass is taken to be mc = 1.6 GeV. 

transition 

23S + y1 3p 
1 2 

23S, + y,3P1 

23S + y1 3p 
1 0 

13P2 + Y1 3S1 

13p + y1 3S 
1 1 

13p + y1 3S o 1 

TRK SR 

< 490· 

< 370 

< 180 

W SR model 

< 40 36 

< 56 50 

< 64 58 

>160 + 140 460 

>125 + 75 350 

> 60 + 30 170 

Table 5.3 Bounds on ftot(pc/x) derived from the sum rules, table 
5.2, and the experimental BRs of pc/x + yJ/~. The sum 
rules correspond to an uncorrected E1 transition, this 
gives an additional theoretical uncertainty of a factor 
2. 

++ P IX(3.51)=1++ X(3.55)=2++ P states X(3·41)=0 c 

BR(yJN) , expo 1%1 3 ± 3 35 ± 7 14 ± 6 

r tot(p /X), bounds IMeVI 3 •.• 6 0.57 ••• ! 1.05 2.15 ..• 3.5 
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The total widths of the pc/X states should be calculable as the 
sum of the radiative widths plus the gluon annihilation widths. 

185 

A comparison of these total widths with the bounds of table 5.3 
will be a comparison of theory with "experiment". We will do that 
in a forthcoming chapter. 

c) Magnetic Dipole Transitions 

M1 decay~ arise !rom an interaction of the magnetic photon 
field vector m = k x E and the 'quark magnetic moment ~Q = e o eQ/2mo. 
The matrix element therefore reads - • " 

<fl ~Q a 0 (k: x~) Ii> 

and acts on the spin part of the states Ii> and If> only. A~ain we 
have two graphs for the emission of a photon and therefore 4 times 
the rate as in atomic M1 transitions 31) 

= 16 2 k3 .1'rr' r(v ~ yPS) :3 ~Q u 

r(ps~ yV) = 3r (V ~ yPS) 

An Ml transition requires ~l=O and the spatial overlap between the 
two states Ii> and If> with number of radial nodes rand r' is 
either l(r = r') or O(r ~ r', forbidden M1) in this approximation. 
Relativistic corrections of course modify the rate (5.21) and lead 
to small transitions also between orthogonal (r ~ r') states. In 
allowed M1 transitions (r = r') the spatial overlan of 1 cannot be 
changed much by relativistic corrections. 

d) Scaling of E1 and M1 

Before we now discuss the M1 transitions in charmonium, let us 
look at the scaling behaviour of both kinds of di~ole transitions. 
For E1 transitions the scaling behaviour is most easily obtained 
from the sum rules. 

r 

M1 transitions, on the other hand, scale like 
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r 

i.e. r(Ml) - r(El)ok!mQ' Since in the next heavy Quarkonia k does 
not increase with illQ the relative magnitude of Ml compared to El 
goes down at least like l!mQ. A comparison of related radiative 
transitions in different Quarkonia can thus help to distinguish 
El from Ml transitions! 

e) Problems with Ml in Charmoniwn 

In fig. 5.2 possible candidates for the nseudoscalars and the 
corresponding Ml transitions are shown. If the second X is not at 

8, .82 

(O.3!O.1)% 

(0.6:0.4)% 

q,1 (3.7) 
7 

X(3.59):lJ~ lkev~ 8,< 2,,{, 
20keV / r; < 5 keV 

/ 
X ? I / 

(3.45) =lJ c / 

~I 
/ ~OkeV 

2g0~eV "8\ 
113J.81_.L 2 ----- J/tV (3.1) 

8,<1.7% 
fl'< 1 keV 

Fig. 5.2 Ml transitions in Charmoniwn. Theoretical widths, equ. 
(5.21) are indicated at the transition lines. B1(r 1 ) and 
B,oB2 are from experiment, ref. 1) and 36). 
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Table 5.4 Experimental upper bounds on B1 and lower bounds on B2 
via B1"B2, and comparison with theory. The kind of tran­
sition for B1, B2 is indicated in fig. 5.2. The theore­
tical numbers arise from allowed and "forbidden" M1 
transitions and the ratio of 2y versus 2 gluon annhihi­
lation. For the latter see chapter 6. The forbidden M1 
transition should lead to a B2 not big~r than a few 
10 keV/a few MeV ~ 10-2 

State X(3.59) X(3.45) x(2.83) 

B1 " B 2 (Exp. ) 1% 1 o. 3±0. 1 0.8±0.4 0.014±0.004 

B1 (Exp. ) 1% 1 < 2 < 2 < 1.7 

B1 (Theory) 1%1 '" 0.5 '" 9 '" 45 

B2 (Exp. ) 1%1 > 10 > 20 > 0.7 

B2 (Theory) 1% 1 < 1 < 1 ::: 0.1 

3.59 GeV but at 3.18 GeV (second experimental solution) it can 
hardly be explained as a pseudoscalar. In fig. 5.2 the calculated 
M1 widths are shown. They have at first to be contrasted with the 
experimental bound on these transitions as indicated. Together 
with the experimental product of branching ratios these bounds al­
low to derive lower limits on the decay branching fractions of 
these states. This is shown in table 5.4. There is no way of assig­
ning one of the experimental states to a pseudoscalar state with­
out coming in trouble with a) absolute M1 widths, b) branching 
fractions for the decay of this state. Considering nc and n~ in 
context leads to even larger discrepancies, e.g. take X(3.59) as 
n~ and x(2.83) as nco Then the M1 transition J!~ + Ync is down by 
a factor of 30 compared to the naive theory. The same factor must 
work in ~, + Yn~ leading to n1 = 1/30 keV and consequently to B2 > 
30! For M1 widths only one unpleasant way out seems possible: to 
give the quarks a vanishing magnetic moment ~Q in this limit of a 
static interaction 37). 

A much more pleasant way out would be finding the true pseudo­
scalars much nearer to J/~ and ~' respectively. Experimentally this 
is in no way ruled out. Then the X and X states are either not real 
or at least no simple QQ states 38). Remember that QCD is consis­
tent with a possible ex~st9~ce of multiquark or multiquark-gluon 
states different from QQ 3 . However, their properties are not 
accessible in our simple Quarkonium model. 
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f) Gluon Radiation 

Radiative gluon transitions can be subject to a similar multi­
pole expansion as electromagnetic radiation. While the expansion in 
(k R/2)2 might converge, the expansion in as/~ needs not, The dis­
tances involved in the process are of the order of the wave func­
tion radius and as will be large. This is the essential reason why 
we do not expect to be able to calculate rates for gluon radiation. 
But we might be able to estimate the scaling behaviour of such ra­
diation. The processes which are described as gluon radiation in 
QCD are typically 

(5.24) 

The emitted states must be Isosinglets, because gluo~s carry no 
Isospin. For the radiation of an £(~~ 8 wave) from 2 Sj C~ttfried 
(ref. 40)) estimates an l/m~ behaviour of the matrix element 

1 2 . phase space 
mQ 

If this scaling law is already valid in the Charmonium system, 
~, + ~~ J/~ ~ 100 keV implies T' + ~~T ~ 10 keV. In a 30 GeV QQ 
system this width would be no more than 1 keV. Transitions via 
gluon radiation will be important for a search for QQ states which 
are not accessible directly or via photon transitions, like the 
11P1 state. In the T or nigher QQ systems the 3381 state (T" e.g.) 
will be narrow and undergo such a transition to the l1p1 state. 

3 
3 8 1--

The finding of a 11Pl state via (5.26) would be very interesting be­
cause the knowledge of the llpl mass allows to determine whether 
there are long range spin spin correlations or not. In our Ansatz 
for the Hamiltonian and potential we only had short range spin spin 
forces. They do not act on P waves and therefore the l 1Pl state is 
degenerate with the c.o.g. of the 13p states. A long range spin­
spin force, however, would act on the P waves and would lift this 
degeneracy. 

6. Annihilation 

Quarkonium states may annihilate into photons and/or gluons. 
8ince annihilation is a pointlike process (the quarks must come to­
gether) not only the annihilation into photons is governed by a 
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0. 

Fig. 6.1 Leptonic decay of 3S 1(QQ). The electrons may be replaced 
by VS, Ts or ~uarks lighter than Q. 

a small coupling a = 1/1.37, but hopefully also that into gluons by 
as (small R). We can apply the 'minimal gluon scheme'~ i.e. apuro­
ximate the decay by the lowest order (Born-) graph 41 '. This will 
be justified by finding that indeed the as (annihilation) is small, 
even in Charmonium it is much smaller than the effective as for 
the bound state description (see chapter 2). We proceed in the 
following way. First we collect well known formulae for annihila­
tions in Born approximation. In this approximation there is no 
gluon selfinteraction yet, so that the conversion from photon anni­
hilations to gluon annihilations is just done by redefining the 
charge. We will then discuss ratios of these widths as anapplica­
tion in Quarkonia. Our results will also be fundamental for the 
next chapter on jets. 

a) Annihilation Formulae 

The vector 3S1 ground state can decay via one photon into lep­
ton or ~uark pairs (hadrons). The corresponding graph is displayed 
in fig. 6.1 and the formula is known as Van Royen-Weisskopf formula 
(ref. 42)) (including colour and for 4m~ « M~): 

Fig. 6.2 3y decay of 3S1 (QQ). When the photons are replaced by 
gluons, this denotes the "direct" hadronic decay. 
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= 16 1T (/ e~ ljO)1 2 
(6.1) 

v 

where My is the V = 381 bound state mass and ffiQ ~ 1/2 Mv the quark 
mass. ~(O) is the spatial and R(O the radial wave function at the 
origin. Quarks couple in the same way to the photon as leptons, so 
that (6.1) is understood for each lepton or quark flavour separa­
tely: fqq = 3e~ fee. 

The decay of 381 into two photons as well as two gluons 1S 

impossible. In the two photon case this is just the photon C pari­
ty. Also two gluons, as long as they are in a colour singlet state 
(which is symmetric), have even C. But the 38 1 can decay into three 
photons as well as three gluons, fig. 6.2. The three photon decay 
has been calculated by Ore and Powell 43) (here including the sta­
tistical colour factor) 

= 4 3 
3"0. 

6 1T2.-9 
e -­Q 1T 

The conversion factor to the three gluon decay is 44) 

0.3 1 
=_s __ I 

3 6 9 a,b,c a eQ 

so that we have 

= 10 
81 

2 3 1T -9 
s 1T 

(6.2) 

(6.3) 

(6.4) 

The parts of (6.3) have the following origin. a~/a3ea just converts 
the charges together with TR(\a/2 \b/2 \C/2)sym .. The Labc counts 
the number of coloured graphs in the 3g case, while the 3-2 counts 
the number of coloured graphs in the 3Y case. \-Ie do not consider 
decays of the 381 into more (~ 5) photons or (~ 4) ~luons. 

The pseudoscalar 180 ground state can decay into two photons 
or two gluons, fig. 6.3. The two photon decay was first calculated 
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Fig. 6.3 2y decay of QQ. For the hadronic decay the photons are 
replaced by gluons. 

by Pomeranchuk 45) and lS (including colour) 

= 

With the conversion factor 

191 

(6.6) 

whose components are described In the case of equ. (6.3) one ob­
tains 

= 
2 
3 

2 
a. 

s 
(6.7) 

We do not discuss the decay of 180 in more (~ 4) photons or (~ 3) 
gluons. Assuming, that the 2g decay is the basic process for the 
dominant hadronic decay of the pseuodscalar, allows to derive the 
branching fraction for the 2y decay (table 5.4) from equ. (6.6). 

We now turn to P wave annihilation, fig. 6.3 and 6.4. Here 
life is more complicated because the wave function of a P wave at 
the origin is zero. That means that the quarks do not like to come 
together to annihilate: The annihilation widths of P waves will be 
smaller than that of the 180 wave! The P waves, however, can anni­
hilate when the two quarks come near each other and simultaneously 
have a relative velocity ~ o. This is a higher order process in 
terms of an expansion in 82 = (v/c)2. It is ~overned by the spa­
tial derivative of the wave function. Tn this approximation the 
widths of the spin 0 and spin 2 P waves of Positronium have first 
been calculated by Alekseev 46). The same calculation for Charmo-
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Fig. 6.4 The gluonic decay diagrams of spln 1 P waves 

ni um has been done by Barbieri, Gatto and Kogerler 47), They yield 

r2 (3p ) 6 2 IR'(0)1 2 
= a 4 g 0 s 

mQ 
(6.8) 

3 8 2 IR' (0) 12 r2g( P2) = -a 4 5 s 
mQ 

(6.9) 

The 2y widths of 3po 2 can be obtained from (6.8) and (6.9) by the 
conversion factor gi~en in equ. (6.6). 

The decays of the j = 1 P waves are more complicated. A spin 
state cannot decay into two massless vector bosons, either pho­

tons or gluons in a colour singlet 48). We therefore have to con­
sider the next order (in as) diagrams, which for gluon annihila­
tion are shown in fig. 6.4. They bring up another complication. 
We now have a three body phase space and have to inte.p';rate over 
all possible energies of, say, gluon 1. Gluon 1 is allowed to be 
soft. It further is allowed to carry away the angular momentum of 
the P wave. So it has all characteristics of a bremsstrahlungs 
gluons. The same is true for photon annihilation, except that in 
this case diagram b) of fig. 6.4 is absent. A bremsstrahlungs gluon 
or photon in the annihilation of a free QQ nair with 1 = 1 leads 
to the typical bremsstrahlungs singularity. -- The cross section fac-
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torizes into the bremsstrahlungs part and the annihilation of an 
I = 0 QQ pair into two photons or gluons. For a bound state, how­
ever, the annihilation amplitude cannot be singular, because the 
quarks are not on shell. Their virtuality is of the order of the 
bound state dimensions. For a bound state annihilation we there­
fore may cut the amplitude at momenta of the soft (bremsstrahlungs) 
photon or gluon which correspond to the bound state radius. In 
diagram language, the singularity will be cancelled by higher or­
der graphs like vertex corrections. For QED this procedure is well 
defined 49). We hope that it will work parallel for QCD. As a cut­
off momentum for QCD annihilation we take the typical momentum for 
a soft "confinement" gluon, 400 MeV, since in a QCD process higher 
order graphs will involve such "confinement" gluons. \ve will ex­
press the cutoff in terms of a parameter fj, = 2M ·400 MeV 50), M 
being the Quarkonium bound state mass. Let us first discuss 1P1 
decay. This state has jPC = 1+- and therefore only diagram a) of 
fig. 6.4 can contribute, in either photon or gluon annihilation. 
Its decay has been calculated by Barbieri, Gatto and Remiddi 49) 
They find 

20 a.3 
9 s 

~ log -
fj, 

(6. 10) 

where the log arises from the bremsstrahlungs singularity of the 
diagram. For the decay of the 3P1 state, jPC = 1++, only diagram 
c) can contribute to the photon annihilation while in princi~le all 
three diagrams can c~ntribute to the gluon annihilation. Barbieri, 
Gatto and Remiddi 49) found that the singular parts of the diagrams 
a) and b) cancel each other. Okun and Voloshin 32) gave the general 
argument for this: The amplitudes a) and b) interfere, since they 
lead to the same final state. Since they can both be factorized 
into the bremsstrahlungs part times the corresTIonding annihilation 
diagram for the 2 gluon annihilation of a coloured 381 state, also 
their sum can be factori,zed in this way. This sum, however, con­
tains all 8raphs to this order for 3S 1 (coloured) + 2g, which must 
be zero 32). Neglecting the non-singular parts of amplitudes a~ 
and b) against the singular c) means that also for the gluon anni­
hilation the calculation of graph c) is sufficient. It gives 49,50) 

N 
3 

M2 1 
(log - - -) 

fj, 2 ((6.11) 

where N is the number of light flavours q. The photon versions of 
( 6. 10) and (6. 11) can be found in re f. 32). 
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For completeness we note the formula for the decay of the spin 
2 D wave into 2 gluons which is given by the second derivative of 
the wave function, this is the second order in an expansion of 
62 = (v/c)2 and therefore even less reliable. Okun and Voloshin 32) 
calculated 

2 
3 

2 a 
s 

b) Ratios and Applications 

The ratio of equs. (6.4) and (6.1) gives 

10 
= 81 

2 
.'!!:.....:,g 

'IT 

(6.12 ) 

(6.13) 

If we interpret as usual the 3g annihilation as the total direct 
hadronic annihilation then this is a measurable quantity and we 
have e.g. in Charmonium 

r ( J /'1' + hadr) d. lr. 
10 (6.14) 

from which follows that the as at annihilation distances is as ~ 
0.19. Because of the third power of as in (6.13) this value is 
quite stable even against large corrections on the widths. The 
kinds of corrections we have discussed to equ. (6.1) at the end 
of chapter 3 and different ones for r3 will not be able to achieve 
an agreement between as(spectrum) ~ O.~ and as(annihilation) ~ 0.2 
in the Charmonium system. But this discrepancy does not surprise, 
as we have discussed in chapter 1. 

A very interesting ratio is that of equ. (6.8) to equ. (6.10) 
to equ. (6.9): 

(6.15) 

= 15 
20 N a M2 1 
-----=-s(log - --) 

9 'IT /::, 2 
4 

It leads to ratios of 
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Table 6.1 Comparison of "experiment" and theory for the P wave 
total widths, including the radiative transitions. The 
"experinent" line is taken from table s 5.2 and 5.3. 
The prospects of the T system are also given. 

cc 

bb 

theory 

"quasiexp. " 

a. s 

a. s 

15 

15 

15 

= 

= 

0.15 

0.2 

2.1 a. 
s 

5.7 a. s 

11 

r tot ( 3p 0 ) I Me V I 

4. 

6 ± 6 

0.35 

0.6 

4 

4 ln the 

4 

ftotC3P1) IMeVI f tot C 3p 2) I Me V I 

0.5 1.5 

± 0.2 3.2 ± 1.6 

0.05 0.15 

0.08 0.2 

T system (6.16) 

30 GeV QQ 

We can of course calculate more than these ratios, namely the to­
tal widths of the P waves, assuming that these are given by the 
gluon annihilation width and radiative transition width essential­
ly. The result is shown in table. 6.1 for charmoniun and the T sy­
stem, and compared to the quasiexperimental bounds of table 5.3. 
For.the calculat~on of.equs. (6.8) - (6.10) we need iRICO)12. ~~­
merlcal calculatlons glve IR~c(0)12mc4 ~ 15 MeV and RbD(0)12~ 
~ 2.5 MeV. These quantities are relatively quark mass independent. 
We conclude that although the widths of table 6.1 are very model 
dependent, the pattern of (6.16) agrees very well with the obser­
ved branching ratios of the Charmonium P waves. This is one of the 
successful predictions of QCD within Charmonium. 

We complete our discussion of ratios of widths with a discus­
sion of the 381 decays. The decay channels of the vector ground 
state are: i) into lepton pairs, ee, ~p, TT, ii) into hadrons, 
L qq, the ratio of ii) against i) is essentially given by the fa­
mous R, iii) the three gluon annihilation, and iv) the annihila­
tion into one photon and two gluons. The only ratio missing so far 
is that of iv) to iii). We can estimate it by cOmoaring the elec­
tromagnetic and strong coupling for one fermion-boson vertex and 
by taking into account the different coupling of the colours of 
two versus three gluons 
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Table 6.2 Ratios of the ground state decay channels a) in Charmo­
nium, b) in the T system, c) in a 30 GeV tt system. 
For Charmonium as = 0.19 agrees with exneriment (lowest 
order formulae). For T decays the value of as best com­
patible with experiment, B~U 52), seems to be 0.18 at 
present. 

cc decay channel: 

a) as = 0.19 

bb decay channel: 

b) a = 0.15 s 

a 
s 

0.18 

tt (30 GeV) 

c) 

decay channel: 

e = 2/3 
Q 

a = 0.12 s 

a = 0.15 s 

-
ee+~~ L: qq 

2 R 

2 2.5 

- - -
ee+~~ L qq+TT 

2 R 

2 5 

2 5 

- - -
ee+~~ : L: qq+TT: 

2 

2 

2 

= 

R 

5 

5 

2 
36 a eQ 
5 a s 

3g 

2 a3 
5 7[ -9 s 

18 -7[-2 
a 

10 

3g 

2 a3 
20 7[ -9 s 
1"8-7[-2 

a 

20 

34 

3g 

2 a3 
5 7[ -9 s 

18 -7[- 2 
a 

2.5 

5 

y2g 

1.2 

y2g 

2 
.§. 7[2-9 as 
9 7[ a 

0.8 

1.1 

y2g 

0.5 

0.8 

(6.17) 
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For Charmonium three exclusive contributions to 381 ~ ygg have been 
seen so far, namely J/~ ~ yn, yn', yf 51 J. Together with eQu. 
(6.13) this is all we need to put up table 6.2. 

7. Jets 

The exploration of QCD suffers from the fact that its consti­
tuents, the Quark and gluons, cannot exist as free particles be­
cause of the confinement. Their properties cannot be investigated 
directly. But here is a surrogate for the observation of the free 
constituents, that are the jets. Experimentally jets are observed 
not only in deep inelastic hadron-hadron and lepton-hadron scatte­
ring but especially in e+e- annihilation, once the c.m. energy of 
5 GeV is exceeded. The angular distribution of these jets is com­
pletely consistent with the production of two spin 1/2 (almost) 
massless particles 53), the Quarks, via photon vacuum polarisation. 
The fragmentation of Quarks into hadrons is imagined as a nonner­
turbative confinement effect, which conserves the original direc­
ted momenta. 

At present there is no way of calculatin~ this process, but 
there exists a very suggestive picture: Inside a small space re­
gion of ~ 1/2 fm colour can exist and within this region the Qq 
pair (or gluon) production is a short distance effect (see fig. 
7.1). When hard coloured Quanta (Quarks or gluons) with momenta 
Pi reach the confinement sphere they must fragment into white ha­
drons since colour fields cannot exist outside this sphere. The 
coloured Quanta break up into hadrons with a finite perpendicular 
momentum p~. This breaking up is energetically much favoured over 
a further existence as coloured Quanta. When the perpendicular mo­
menta are small compared to the longitudinal hadron moment, which 

Fig. 7.1 Quark jets 
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jet 2 

jet 1 ~ 
Fig. 7.2 

QQ + 3 gluon jets. 

add up to the momentum of the original quantum, we see hadron jets. 
The confinement effects, however, are assumed to be soft, carried 
by long wavelength quarks and/or gluons. The wavelength corresponds 
to the colour bag of 1/2 fm. Therefore the jet momenta equal the 
original quantum momenta up to the order of 400 MeV. This picture 
demands the production of the original jet quanta to be a short 
distance effect «< 1/2 fm). This is certainly true for the (elec­
tromagnetic) quark pair production in e+e-. It is also true for a 
hard gluon bremsstrahlung process 54). Resonance decays, however, 
are not pointlike but involve propagators (fig. 7.2 and 6.2). Here 
it is not so clear, how well the jet picture will work. However, 
because the propagators are mass dependent the picture will work 
the better the higher mass of the decaying QQ resonance is. For a 
Q-mass of 5 GeV the propagator length in fig. 7.2 is probably al­
ready short enough_ to apply the jet picture and for the next new 
flavour (higher) QQ resonance it will definitely be so. 

The quark jets in e+e- annihilation became visible above 
s = (P1+P2)2 ~ (5 GeV)2, i.e. a massless quark needs ~ 2.5 C£Vof 
energy against the c.m. to be able to form a jet. For gluons the 
jet threshold certainly is not lower. But a gluon carries the co­
lour indices of a quark antiquark pair and each index may fragment 
separately. Then the multiplicity of the jet may be hi~her and the 

.longitudinal hadron momenta may be lower. In the limit of asympto­
tic energies the gluon may just fragment like a qq pair, each 
quark carrying half the gluon momentum 55). From this picture fol­
lows that a gluon jet of a certain longitudinal momentum will have 
a higher multiplicity and a lar~r opening angle than a quark jet 
of the same momentum. The threshold for gluon jet production will 
be higher than that for quark jet production with an upper bound 
of two times the quark threshold+). 
+). . . 

Speaklng of a Jet threshold we refer to the energy of a slngle 
quark or gluon versus the center of mass of the colour bag. 
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9 9 gory 

Fig. 7.3 Possible sources of gluon jets ln heavy Quarkonia 

Some possible sources of gluon jets are shown in fi~. 7.3, 
the pseudoscalars are omitted, they may also form 2 jets out of 
the 2 decay gluons. We begin with the 381 decay into 3 gluons. The 
three gluons of this decay will form a plane. The angular distri­
bution of the normal n of this plane against the beam is 

d r 
d cos 8 .... ne 

3 
2 

cos 8 .... ne 

For these decays one defines a variable T "Thrust", which is just 
the s~aled.energy of th~ most energetic g~uon, T =.X1 = 2pg1/MQQ. 
The dlrectlon of g1 deflnes the Thrust aX1S. The dlfferentlal rate 
of the 3 gluon decay together with the angular distribution of this 
Thrust axis is shown in fig. 7.4. While off resonance the coeffi­
cient of the cos 2 term, a, is uniquely 1, it shows a T dependence 



200 M.KRAMMERANDH.KRASEMANN 

1 dO" 
6 () dT 

4 

2 

0 

d( T) 

as 

0.6 

0.4 

02 

0 

Fig. 7.4 

T=2pg(M QQ 

2;3 0.7 o.s 09 

The differential ~te of 3S 1(QQ) ~ 3g and the thrust an­
gular distribution W - 1+a(T) COS 2Te as fUnctions of T. 
8Te is the angle between the thrust axis and the beam. 

for QQ decays. The average of a(T) for QQ + 3g lS 0.39. A much more 
detailed discussion is given in ref. 56). 

Once the 3 gluon jet decay and the y+2 gluon jet decay is 
found, we can start to compare deviations from the lowest order 
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b) 

Fig. 7.5 Possible next order (as!~) interactions between gluon 
jets. 
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angular distributions, which arise through different interactions 
between two gluon jets, fig. 7.5. The lowest order (Born-approxima­
tion) graph gives for the opening angle of the second and third 
ener~tic gluon 823 (compare fig. 7.6) the distribution djsulayed 
in fig. 7.7. The deviations from this distribution will be diffe­
rent in case a) and b) of fig. 7.5 because in case a) the interac­
tion',between the two gluon jets happens in a colour octet (they 
should repel) whereas in case b) it is in a colour singlet (they 
should attract). 

We will remain at the y2g decay for another while. The kinema­
tics of this process differ from the 3g decay because the Y can be 
identified for all photon momenta between 0 and MQQ!2. The distri­
butions corresponding to fig. 7.4 are given in fig: 7.8. One noti­
ces that the angular correlation drops very fast to a minimum if 
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Fig. /.6 Definition of 823 , 

one goes away from the kinematical limit Ey = MQQ/2. For the limit 
Ey = 1/2 MQQ the coefficient a in front of the cos28 term is +1. 
This is easy to understand. In this limit the two p,luons have to 
go parallel. Their helicities (transverse polarisation) have to 
add up to either 0 or ±2 (for scalar gluons it is 0). Since the 
photon on the other side is also transverse, the decayin~ helicity 

1.0 
as 
0.6 
0.4 
0.2 
o 

-Q2 
- 0.4 
- 0.6 
- 0.8 

1.0 
2/3 Q7 

--- -- ---..-
--- -- -- --- --

T 

0.8 Q9 1 

Fig. /./ The mean value of 823' as defined in fig. /.6 as a func­
tion of T. The dashed lines show the kinematic bounda­
rles. 
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Fig. 7.8 
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Differential rate F(xy) = df/dxy and angular distribution 
1+a.(xy) cos2eye as a function of x = 2E /HQQ " y y , 

state is the A = ±1 state. This leads to 1 + cos 2e. One can show 
further, that the helicities of the parallel gluons are opposite. 
If we give the gluon pair a small angle, the net helicity remains 
zero most of the time. But now we can Lorentz transform to the 
c.m.s. of the gluon pair and find Acms = ±2! This means: If'low 
mass hadrons are produced in the process QQ + y + 2~ + Y + hadron, 
the gluon mechanism favours spin ~ 2 hadrons over spin 1 or spin 0 
hadrons. By this spin argument we can understand the rate for 
J/~ + yf, which is of the same magnitude as J/~ + Yn and Yn' al­
though the n and n' should couple to two gluons much stronger be­
cause of their large violation of the Zweig rule. The whole argu­
ment can of course be made quantitative. The ratios of the helici­
ty amplitudes for 1--(381) + y + gg + y + 2++( 3P2) will depend on 
the two gluon (or hadron) mass. This is shown in fig. 7.0 57). At 
the point, J/~ + yf, these ratios have been measured and agree 
with this QeD estimate, see fig. 7.10. They also agree with the 
tensor meson dominance (TMD) model studied here at Karlsruhe 58) 
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y 

E1 

2 

x 

.M2 
Helicity amplitude~ in 3S 1(QQ) + y + 3P2(QQ) as a func­
tion of M(3P2)!M(QQ). The.Alil are ~elicity ~l~tudes. 
E1, M2, E3 denote the famlllar multlpole transltlons, 
the (x,y) pair for J!~ + yf is indicated. x = A1!Aa, 
y = A2!Aa· 

From our short excursion we now return to two jets from P 
wave decays. The first P wave of Quarkonium can be reached from 
the first radially excited S wave, e.g. T', via an E1 transition. 
Experimentally it will be. necessary to trig~r on this monochroma­
tic photon to identify the P wave. The P state then can decay into 
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Fig. 7.10 A measurement of the predicted (x,y) ~air of· fig. 7.9 
for J/~ + yf by the PLUTO collaboration. The cross is 
the central value of exoeriment, the lines indicate 
standard deviations. 
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2 gluons in case of the 3po and 3P2 states. We will discuss the jet 
decay of the 3P1 state later. These two gluons have a distinct 
energy of half the P state mass. This is the essential difference 
to the 3 jet decay of Quarkonium. Here we have monochromatic jets. 
In T' the jet energy is almost 5 GeV, this should be sufficient to 
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determine the original gluon direction via the jet direction. A 
measurement of the gluon angular distributions becomes feasible! 
For the decay of the 3po state this angular distribution is tri­
vial: no matter, what the dynamics are, there is only one helicity 
amplitude which can contribute. But in the 3P2 decays there are two 
two independent helicity amplitudes for massless gluons. The QeD 
matrix element for the 3P2 + gg decay reads with q = k1-k2 

and it turns out that the decay is in the helicity A = ±2 state. 
Equ. (7.2) with E~V(O) just vanishes for transverse E1,E2' The for­
mula for the kinematics gives us, integrated, the distribution 

1 + cos2 8 . 
YJ 

where 8yj is the angle between the trigger photon and one of the 
jets, measured in the c.m.s. of the jets (fig. 7.11). If the 3P2 

Fig. 7.11 
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...... ,,/ '- _/ ---
k( y) 

23S1(QQ) + y + 13Po 2(QQ) + y + 2g jets, as imagined 
within the colour b~g. 
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would decay into two quark jets by some arbitrary mechanism, the 
helicity of the two quarks can at most add up to A = ±1. The kine­
matic formula then gives 

2++ 
W _ (8 .) 

qq YJ 
6 + 3A2 2 

2 cos 8 . 
10 + 9A YJ 

where A gives the weight of helicities A = ±1 over helicity o. The 
sign difference between (7.4) and (7.3) allows a clear test of the 
QeD meChanisj. The rate for this process will be around 5% of all 
T' decays 15 . 

As we have discussed in chapter 6) the 3P1 decay proceeds via 
the complicated graph c) in fig. 6.4. The decay is disnlayed again 
in fig. 7.12. We will see two quark jets and a hadron cloud from 
the soft gluon from this decay. The quark jets should be easy to 
detect. Their angular distribution is given by 

jet 2 ----

k( y) 

Fig. 7.12 23S1(QQ) + Y + 13p1(QQ) + Y + 2 quark jets. Here a soft 
gluon recoils against the two quark jets. 
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2 2 - cos 8 + cos 8 ye ye cos e . 
YJ 

cos 8. 
Je 

already smeared over the important kinematic regime of small gluon 
momenta 50,59). 8y j is the same angle as before, 8ye is the angle 
between the trigger photon and the beam, say e -, and 8 je is the 
angle between the same jet arm as for 8y j and e-. 8y j 1S measured 
in the lab frame, but 8je as well as 8y j are in the c.m.s. of the 
jets. As an atternative process, the decay into two massless quarks 
would give 59) 

1 - cos 8 cos 8 . cos 8. 
ye YJ Je 

(7.6) 

Here the cos28ye term is missing and the term linear in the COS1nes 
has a different sign. But the most important difference between the 
two alternatives (7.5) and (7.6) is the recoil of the soft gluon in 
the gqq decay of the 3Pl state. This recoil will be much lar~r 
than the recoil of the trigger photon alone which of course is al­
ways present. But with the recoil of the trig~r .photon alone, the 
2 jets would be collinear up to a 100 deviation at most. From the 
recoil of the soft gluon in the decay of the 3Pl state, however, 
the angle between the two quark jets may be as small as 1100 . This 
is true for the Tsystem. For a heavier Quarkonium the "soft" gluon 
may even form a third jet in a small subset of all events. 

8. Conclusion 

The simplest ansatz for the QQ potential, which is possible 
using the hints from QCD, works astonishingly well. The short di­
stance spin dependent part of the potential describes the spin or­
bit splittings reasonably well'! If it is correct, heavier Quarkonia 
should show i) a decrease of the LS snlittings - l/ffiQ roughly, 
ii) a tendency of R = (M(2++)-M(1+~/(M(1++)-M(0++)) + 0.8 from 0.5 
in ce. The confinement part of the potential may be spin-indepen­
dent, as suggested by lattice gauge theories. Its strength depends 
on the ansatz for the potential at intermediate distances, it is, 
however, very close to the value suggested by the higher orbital 
excitations of light mesons (Regge slope). Many details denend on 
the proper choice for the intermediate distance potential. QCD 
gives us no hint here. To speculate a little, level spacin~s might 
remain almost the same for the next Quarkonium while ree/eQ might 
increase very slightly. The number of narrow (= bound) states below 
the new flavour threshold will increase for the next Quarkonia. T'" 
might turn out as a perfect B Ireson factory (M(T'" '" 10.6 (',eV). 
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We seem to understand parity changing ~hoton transitions in 
terms of E1 radiation. This means that we understand the "size" of 
Charmonium. We also seem to understand the branching fractions of 
P wave decays via the special QCD annihilation mechanism into 
gluons. This is a short distance phenomenon. We further seem to 
understand the relative magnitUde of J/'I' -+ yf and yn via a siIIIPle 
gluon spin argument. 

Up to now we do not know any Quarkonium pseudoscalar state de­
finetely. The experimental candidates X(2.83), X(3.45), X(~:18) 
cannot be understood in terms of QCD. Especially their M1 transi­
tions und gluon annihilation properties should be much different 
from what is observed for these states. 

Our hopes for the future are that gluon jets show un. Then we 
can measure the gluon spin and verify certain QCD processes like 
3P1 -+ gqq. In the 381 decay we can study the gluon selfinteraction 
by comparing ygg vs. 3g decays. Finding the gluons is most intere­
sting and important, since they are the gau~ bosons of the supno­
sed nonabelian gauge theory of strong interactions, QCD, as the 
wi, Z, and y in weak and electromagnetic interactions. 
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