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One of the most dynamic directions in ultracold atomic gas research is the study of low-dimensional
physics in quasi-low-dimensional geometries, where atoms are confined in strongly anisotropic traps.
Recently, interest has significantly intensified with the realization of synthetic spin–orbit coupling
(SOC). As a first step toward understanding the SOC effect in quasi-low-dimensional systems, the
solution of two-body problems in different trapping geometries and different types of SOC has
attracted great attention in the past few years. In this review, we discuss both the scattering-state
and the bound-state solutions of two-body problems in quasi-one and quasi-two dimensions. We
show that the degrees of freedom in tightly confined dimensions, in particular with the presence of
SOC, may significantly affect system properties. Specifically, in a quasi-one-dimensional atomic gas,
a one-dimensional SOC can shift the positions of confinement-induced resonances whereas, in quasi-
two-dimensional gases, a Rashba-type SOC tends to increase the two-body binding energy, such that
more excited states in the tightly confined direction are occupied and the system is driven further
away from a purely two-dimensional gas. The effects of the excited states can be incorporated by
adopting an effective low-dimensional Hamiltonian having the form of a two-channel model. With
the bare parameters fixed by two-body solutions, this effective Hamiltonian leads to qualitatively
different many-body properties compared to a purely low-dimensional model.
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1 Introduction

Synthetic spin–orbit coupling (SOC) in ultracold atomic
gases has stimulated much interest following its experi-
mental realization [1–9]. Recent theoretical studies have
revealed the existence of various exotic many-body states
in ultracold atoms with SOC [10–17]. These interesting
many-body states typically do not have direct counter-
parts in condensed-matter systems, although they of-
ten share similarities with relevant phases in condensed-
matter systems such as topological superconductors or
Weyl semimetals [15–17]. A key advantage of study-
ing novel many-body states with cold atomic gases is
their highly tunable parameters, such as the interaction
strength, form and strength of the synthetic SOC, and
system geometry. While the flexible control greatly ex-
tends the horizon of quantum simulation in cold atomic
gases, fresh questions and challenges arise over properties
of the system within new parameter regimes.

A particularly important case is the understanding of
few-body physics in spin–orbit coupled atomic gases. Be-
cause few-body processes constitute the basic building
blocks of an interacting many-body system, important
physical insights can be gleaned by careful examinations
of few-body problems. While previous studies entailed
investigation of the effects of SOC on two-body scat-
tering processes with short-range potentials in various
spatial dimensions [18–21], interesting SOC-induced two-
and three-body bound states have also been reported re-
cently [22–24]. Furthermore, because SOC is expected to
induce topologically nontrivial phases in spatial dimen-
sions lower than three [25], the study of few-body prob-
lems in quasi-low spatial dimensions may shed light on
the possibility of generating topological matter. In cold
atomic gases, quasi-low-dimensional geometry is typi-
cally achieved by strongly anisotropic confinements. In
tightly confined spatial dimensions, atomic motion is ex-
pected to be discretized. In principle, these discrete de-
grees of freedom can be integrated out, which leaves the
resulting system effectively low dimensional. However,
recent studies have revealed that it is difficult to do so
when the two-body binding energy becomes large [26,
27]. In this case, a spectrum of low-lying discrete states
in the tightly confined directions can be populated, which
makes a direct integration intractable. Although this can
be the case for strongly interacting atomic gases in gen-

eral, the situation can be even worse in the presence of
synthetic SOC, which typically enhances the two-body
binding energy [28, 29]. The observations above necessi-
tate a better understanding of the quasi-low-dimensional
condition in cold atomic gases under synthetic SOC, as
well as a more careful treatment of these systems. This
can be done by a systematic investigation of the proper-
ties of two-body bound states in a cold atomic gas with
quasi-low-dimensional geometry.

In this paper, we review recent progresses on the study
of two-body physics in a quasi-low-dimensional cold
atomic gas under synthetic SOC. Our goal is twofold.
First, by presenting and comparing two-body physics
both with and without SOC, we reveal the key impacts of
SOC on quasi-low-dimensional atomic gases. In particu-
lar, we discuss the effects of SOC on physical processes of
two-body binding and scattering and on the confinement-
induced resonance (CIR) in these systems. We argue that
the population of the discrete states in the tightly con-
fined directions raises the important question as to the
appropriate low-dimensional model one must adopt to
characterize quasi-low-dimensional systems. Second, we
review a practical solution in which the system can be
modeled using an effective low-energy Hamiltonian in
low spatial dimensions. The effective Hamiltonian takes
the form of a two-channel model, where population in
the tightly confined directions are bundled with the
two-body bound states and modeled by a structureless
dressed molecular mode. We first review the derivation
and application of the effective two-channel Hamiltonian
in the absence of SOC and then focus on its application
in quasi-low dimensions in the presence of SOC.

The paper is organized as the follows: In Section 2,
we review two-body physics in quasi-one and quasi-two
dimensions without SOC, focusing on CIR and the pop-
ulation of the excited states in the tightly confined di-
rections. In Section 3, we present two-body physics in
quasi-one and quasi-two dimensions in the presence of
SOC. We then discuss a practical way to introduce an
effective two-channel model for the characterization of
these quasi-low-dimensional systems. In Section 4, we
review the derivation of the effective two-channel model
both without and with SOC. In this section, we also dis-
cuss the application of the effective two-channel model,
where we find that, fortunately, the inclusion of excited
modes in the tightly confined direction actually helps
to stabilize the topological superfluid state in a quasi-
two-dimensional Fermi gas under Rashba SOC and an
effective Zeeman field. Finally, we summarize our work
in Section 5.
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2 Two-body physics in quasi-low dimensions
without SOC

In this section, we will review two-body problems in
quasi-one and quasi-two dimensions in the absence of
SOC. Discussions on both the bound states and the
scattering states will be included in this section [30–
42]. Specifically, we will introduce the exact solutions of
the two-body bound states and calculate the zero-energy
scattering amplitude of the scattering state around the
continuum threshold. Furthermore, we will also investi-
gate CIR [37] in these quasi-low-dimensional systems. Al-
though the main purpose of the paper is to discuss effects
induced by SOC, we believe that it would be beneficial to
include a reasonable amount of details for the case with-
out SOC. These details not only provide a proper context
for the ensuing discussions on systems with SOC but also
help to clarify the role of SOC in the two-body problems
under review.

2.1 Quasi-one dimension

2.1.1 Bound states

First, we introduce a general formalism to solve for the
two-body bound state of two interacting atoms within
a quasi-d-dimensional trapping potential with d = 1
or 2 [27]. Within the standard two-channel model, the
short-range interaction between Feshbach molecules in
the closed channel and atoms in the open channel can
be modeled by a delta function. The Hamiltonian thus
takes the form of H = H0 +HI , with [43]

H0 =
∑

σ=↑,↓

∫
d3rΨ†

σ

(
−�

2∇2

2m
+

1
2
mω2

3−d∑

i=1

x2
i

)
Ψσ

+
∫

d3rΦ†
(
−�

2∇2

4m
+mω2

3−d∑

i=1

x2
i + ν̄b

)
Φ

and

HI = ḡb

∫
d3r

(
Ψ †

↑Ψ
†
↓Φ + h.c.

)

+Ūb

∫
d3rΨ †

↑Ψ
†
↓Ψ↓Ψ↑. (1)

Here, Ψσ(r) is the fermionic field operator for atoms at
position r, with atomic massm and spin σ = (↑, ↓), Φ(r)
is the bosonic operator associated with the molecule, ν̄b is
the bare detuning, ḡb is the bare atom-molecule coupling
constant, and Ūb is the bare background atomic scat-
tering amplitude, and h.c. stands for Hermitian conju-

gate [44]. For quasi-one-dimensional systems, the trans-
verse trapping potential with frequencies ω = ωx = ωy

corresponds to a two-dimensional (2D) harmonic trap
within the x-y plane. For the case of quasi-two dimen-
sions, which will be discussed later, the trap is a one-
dimensional (1D) harmonic trap with frequency ω.

The bare scattering parameters are related to the
physical ones (with subscript p) via the standard renor-
malization relations [45, 46]

Ū−1
c = −

∫
d3k

(2π)3
1

2εk
, Γ−1 = 1 +

Ūp

Uc
,

Ūb = Γ Ūp , ḡb = Γ ḡp , ν̄p = ν̄b + Γ
ḡ2

p

Ūc
. (2)

Here, εk = �
2k2/(2m) is the dispersion relation with

three-dimensional (3D) momentum k, and the integral
is taken in three dimensions with an explicit 2D en-
ergy cutoff Ec. Hence, Ū−1

c = m3/2
√
Ec/23/2π�

3. The
physical parameters ḡp, Ūp, and ν̄p can be obtained
from the scattering measurements as Ūp = 4π�

2abg/m,
ḡp =

√
4π�2μcoW |abg|/m, and ν̄p = μco(B − B0),

where μco is the difference in magnetic moments be-
tween the two channels [47]. Here we have assumed
that the s-wave scattering length can be written as
as = abg [1−W/(B −B0)] near a Feshbach resonance,
where abg is the background scattering length, W is the
resonance width, and B0 is the resonance position.

Since the trapping potential is harmonic in nature, the
center-of-mass and the relative degrees of freedom can be
separated. By assuming that the center-of-mass degrees
of freedom are in the ground mode of the transverse trap,
which has zero momentum along the free direction(s), we
can rewrite the noninteracting Hamiltonian (in units of
�ω) as

H0 =
∑

mkσ

εmka
†
mkσamkσ + νbb

†b, (3)

where m represents the harmonic eigenmodes {mi},
i = 1, . . . , 3 − d, and k is the plane-wave vector in the
untrapped dimensions {kj}, j = 1, . . . , d. The operators
amkσ and b annihilate the atomic and the molecular
modes, respectively. The index of b can be dropped as
there is only one molecular mode in the center-of-mass
frame. The dimensionless energy εmk is then given by

εmk =
3− d

4
+

3−d∑

i=1

mi +
a2

t

2

d∑

j=1

k2
j , (4)

where at =
√

�/mω is the trap length scale. Similarly,
the interaction Hamiltonian HI (also in units of �ω)
takes the form
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HI =
gb

a
(3−d)/2
t Ld/2

∑

mnk

γmn

(
a†mk↑a

†
n−k↓b+ h.c.

)
+

Ub

a
(3−d)
t Ld

∑

mnk

m′n′k′

γmnγm′n′a†mk↑a
†
n−k↓an′−k′↓am′k′↑, (5)

where the coefficients are given by

γmn =
3−d∏

j=1

⎧
⎨

⎩

(−1)(mj−nj)/2

(2π3)1/4
√
mj !nj !

Γ
(
mj + nj + 1

2

)
, mj + nj even,

0, mj + nj odd.
(6)

Note that, in the expressions above, we use νb, gb, and Ub

to denote the corresponding dimensionless parameters in
the original Hamiltonian.

A general two-body state of the system can be ex-
pressed as [48]

|Ψ〉 =
(
βb† +

∑

mnk

ηmnka
†
mk↑a

†
n−k↓

)
|0〉. (7)

By solving the Schrödinger equation H |Ψ〉 = E|Ψ〉, we
can get the coefficients in the above two-body state:

1
U eff

b (E)
= S(E), (8)

β−2 = 1− Z2
b (E)

∂S(E)
∂E

, (9)

ηmnk = βγmn (at/L)d/2 Zb(E)
E − εmk − εnk

, (10)

where the parameters take the following forms:

U eff
b (E) ≡ Ub −

g2
b

νb − E
,

Zb(E) ≡ gb −
Ub

gb
(νb − E) ,

S(E) ≡
(at

L

)d ∑

mnk

γ2
mn

E − εmk − εnk
.

By employing the renormalization relation given by
Eq. (2), the parameters listed above can be related to
the physical parameters by

Zp(E) ≡ gp −
Up

gp
(νp − E) = Zb (E) ,

[
U eff

p (E)
]−1 ≡

(
Up −

g2
p

νp − E

)−1

=
[
U eff

b (E)
]−1 − Ū−1

c a3
t �ω. (11)

Notice that the divergence of Ū−1
c exactly cancels the

divergence in S(E). Thus, we can rewrite Eq. (8) as

1
U eff

p (E)
= Sp(E), (12)

where Sp(E) ≡ S(E)− Ū−1
c takes the following form:

Sp(E) =
−1

25/2π

×

⎧
⎪⎨

⎪⎩

ζ (1/2, 1/2− E/2) , d = 1,
∫ ∞

0

ds

(
Γ
(
s+ 1

4 −
E
2

)

Γ
(
s+ 3

4 −
E
2

) − 1√
s

)
, d = 2.

(13)

In the expression above,

ζ (s, x) = lim
N→∞

N∑

n=0

(n+ x)−s − (N + x)−s+1

−s+ 1
(14)

is the Hurwitz zeta function.
The two-body bound-state energy E can then be de-

termined by solving Eq. (12), while the correspond-
ing wave function can be obtained from Eqs. (9) and
(10). In Fig. 1, we show the fractions of the molec-
ular state |β|2 and the atomic harmonic eigenstates
Pmn =

∑
k |ηmnk|2 for the two-body bound state across

a wide Feshbach resonance. In this plot, we consider as
an example the case of 40K, where the parameters are
taken as W � 8 G, abg � 174aB, and μco � 1.68μB

with aB the Bohr radius and μB the Bohr magneton
[49]. It can be clearly seen that, as the magnetic field
is tuned around the resonance point and on the Bose–
Einstein condensate (BEC) side of the resonance, the
atoms significantly populate the higher harmonic eigen-
modes. This can be understood by noticing that, within
these regimes, the binding energy of the two-body bound
state becomes comparable or even exceeds the transverse

Fig. 1 Population fraction of the two-body bound state in differ-
ent transverse harmonic levels for 40K in a quasi-1D confinement.
Reproduced from Ref. [26].
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harmonic trapping frequency, and therefore it can ex-
cite the relative motion within the dimer state to higher
harmonic levels.

2.1.2 Scattering states

The low-energy scattering processes of two colliding
atoms trapped in a quasi-one-dimensional potential were
first discussed by Olshanii [37]. In this seminal paper,
Olshanii considered the problem in which two atoms are
confined in the x-y plane within an axially symmetric
2D harmonic potential of frequency ω⊥ = ωx = ωy.
Along the z direction, the atoms can move freely. The
interaction between the two atoms is modeled by the 3D
Huang-Yang pseudopotential [50]

U(r) = g′δ(r)
∂

∂r
(r · ), (15)

where g′ = 2π�
2as/μ is the interaction strength, and

μ = m/2 is the reduced mass.
By separating the center-of-mass and the relative

motions in the harmonic potential, we obtain the
Schrödinger equation associated with the relative degrees
of freedom,

[
p̂2

z

2μ
+ g′δ(r)

∂

∂r
(r · ) + Ĥ⊥(p̂x, p̂y, x, y)

]
Ψ = EΨ ,

(16)

where r = r2− r1 is the relative coordinate between the
two atoms and

Ĥ⊥ =
p̂2

x + p̂2
y

2μ
+
μω2

⊥(x2 + y2)
2

(17)

is the 2D harmonic oscillator Hamiltonian.
Since the interaction is of short range, the asymptotic

form of the scattering wave function Ψ can be obtained
by solving the noninteracting Hamiltonian, leading to

Ψ(z, ρ)
|z|→∞−→ [eikzz + feveneikz|z|

+fodd sign(z)eikz|z|]φ0,0(ρ), (18)

where ρ =
√
x2 + y2. The first term on the right-hand

side of Eq. (18) corresponds to the incident wave, and
the second and third terms are, respectively, the even
and odd scattered waves with corresponding 1D scatter-
ing amplitudes feven(kz) and fodd(kz). Notice that, by
writing Eq. (18), we assume a priori that the incident
energy is much lower than the transverse trapping fre-
quency with

E ≡ �
2k2

z

2μ
< En=2,mz=0 − En=0,mz=0 = 2�ω⊥, (19)

so that the incident state and the asymptotic scat-
tered state are frozen at the 2D harmonic ground state
φn=0,mz=0(ρ). Here, En,mz = �ω⊥(n + 1) is the en-
ergy spectrum of the 2D harmonic oscillator, n =
0, 1, 2, . . . ,∞ is the principal quantum number, and
mz = 0, 2, 4, . . . , n (1, 3, 5, . . . , n) is the magnetic quan-
tum number with respect to the z axis for n even (odd).

By substituting the ansatz wave function Eq. (18) into
Eq. (16) and applying the continuity conditions at r = 0,
we obtain the following results for the scattering ampli-
tudes:

feven = − iμ
�2kz

φ∗0,0(0)g′η′, (20)

fodd = 0, (21)

where

η′ =
∂

∂r
[rΨ(r)]

∣∣∣
r→0

=
∂

∂z
[zΨ(z, ρ = 0)]

∣∣∣
z→0+

. (22)

The expression for the wave function reads

Ψ(z, ρ = 0) =
1√
πa⊥

exp(ikzz)

− ig′μη′

π�2kza2
⊥

exp(ikz|z|)

− g′μη′

2π�2a⊥
Λ

[
2|z|
a⊥

, −
(
kza⊥

2

)2
]
, (23)

where Λ[ξ, ε] =
∑∞

s′=1 exp(−
√
s′ + ε ξ)/

√
s′ + ε and

a⊥ = [�/(μω⊥)]1/2 is the characteristic length of the
ground state of transverse Hamiltonian Eq. (17). To ob-
tain the expression above, we have used the relation
|φn,mz=0(ρ = 0)|2 = 1/πa2

⊥ for the wave functions of
the 2D harmonic oscillator and assumed the value of
φ0,0(ρ = 0) to be real and positive without loss of gener-
ality.

The parameter η′ can be determined from Eq. (22)
by using the expansion form of the function Λ[ξ, ε] =
2/ξ + L(ε) +L1(ε)ξ + . . . , where L(ε) = −C + L̄(ε) and

C = lim
s→∞

(∫ s

0

d s′√
s′
−

s∑

s′=1

1√
s′

)
≈ 1.4603, (24)

L̄(ε) =
∞∑

n=1

(−1)n ζ[(1 + 2n)/2](2n− 1)!! εn

2nn!
, (25)

with ζ[ξ] the Riemann zeta function. Here, we have em-
ployed the identity

∞∑

s′=1

∫ s′

s′−1

ds′′ exp(−
√
s′′ξ)/

√
s′′ = 2/ξ. (26)

The final expression for the 1D scattering amplitude
is
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feven(kz)

= − 1
1 + ikza1D − (ikza⊥/2) L̄(−k2

za
2
⊥/4)︸ ︷︷ ︸

O((kza⊥)3)

(27)

with the 1D scattering length

a1D = − a
2
⊥

2as

(
1− C as

a⊥

)
. (28)

In the low-energy limit, the scattering amplitude of Eq.
(27) can be well approximated as f δ

even(kz) = −1/(1 +
ikza1D), which is the scattering amplitude associated
with a 1D contact potential

U1D(z) = g1Dδ(z), (29)

where

g1D = − �
2

μa1D
= g′ |φ0,0(0)|2

(
1− C as

a⊥

)−1

(30)

with |φ0,0(0)|2 = 1/πa2
⊥. In Fig. 2, we show the transmis-

sion coefficient T = |1 + feven + fodd|2 calculated using
the exact result, Eq. (27), and the 1D δ-potential ap-
proximation feven ≈ f δ

even. Note that fodd = f δ
odd = 0.

This figure shows that the 1D effective potential given by
Eqs. (29) and (30) can reproduce the low-energy scatter-
ing properties in the presence of a transverse trap.

2.1.3 Confinement-induced resonance

From the results of Eqs. (28) and (30), one can see
clearly that, as the 3D s-wave scattering length satisfies
as/a⊥ = 1/C, the 1D scattering length a1D approaches
zero and the system becomes a strongly interacting gas
with g1D → ∞. This regime is of particular interest as
it corresponds to a Tonks–Girardeau (TG) gas [51] of

Fig. 2 Transmission coefficient as a function of the incident mo-
mentum kz for different a⊥/as. Solid lines correspond to the exact
1D scattering amplitude calculated from Eq. (27). Dashed lines
correspond to the 1D δ-potential approximation feven ≈ fδ

even.
Reproduced from Ref. [37].

impenetrable bosons with g1D → +∞. In this case, as
can be seen from Fig. 2, the collision of two atoms leads
to total reflection with vanishing transmission coefficient.
This scheme is known as confinement-induced resonance
[37], where the effective 1D coupling constant can be var-
ied from −∞ to +∞ by changing either the 3D s-wave
scattering length or the transverse trapping potential.

The underlying physics of CIR can be understood
from the perspective of a Feshbach resonance [31, 52–54],
where the binding energy of a bound state in the closed
channel becomes degenerate with the threshold of the
open channel [38]. In the presence of transverse confine-
ment, the scattering of atoms in the transverse ground
state assumes the role of an open channel, whereas the
transverse excited states serve as the closed channel,
which can support a bound state [55].

2.2 Quasi-two dimensions

2.2.1 Bound states

Now we proceed to the discussion of two-body physics in
a quasi-two-dimensional system. In experiments, a quasi-
2D gas can be achieved by applying a strong confinement
along the axial (z) direction and a weak harmonic trap-
ping potential in the transverse (x–y) plane [56]. The
formalism for the bound state in this system has been
introduced in Section 2.1.1; here we should set d = 2
and ω = ωz.

In Fig. 3, we show as an example the population distri-
bution in transverse levels as functions of the magnetic-
field detuning for 40K in a quasi-2D trap. The popula-
tion fraction in the transverse states (m; n) is Pmn =∑

k |ηmnk|2. The fraction of the excited states in the
transverse direction is Pex ≡ 1 − β2 −

∑
k η

2
00k. Notice

from the results that atoms trapped in quasi-two dimen-
sions cannot be considered to only occupy the transverse

Fig. 3 Population fraction of the two-body bound state in dif-
ferent axial harmonic levels for 40K in a quasi-2D confinement.
Reproduced from Ref. [26].
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ground level, since a significant fraction of the atomic
population resides in the excited transverse levels in the
crossover region. This observation is qualitatively consis-
tent with the outcome from the quasi-1D case.

2.2.2 Scattering states

We now turn to the two-body scattering states in quasi-
two dimensions. By separating the center-of-mass and
relative degrees of freedom, the relative motion is deter-
mined by the interatomic interaction potential V (r) and
the trapping potential VH(z) = mω2

zz
2/4, which comes

from the tight harmonic confinement along the z axis.
By using zeroth-order perturbation theory as in the 3D
case [57], the 2D effective coupling constant is given by
[58]

g = f(E) =
∫

drψ(r)V (r)ψ∗
f (r). (31)

The wave function ψ(r) of the relative motion of two
atoms satisfies the Schrödinger equation

[
−�

2

m
Δ + V (r) + VH(z)− �ωz

2

]
ψ(r) = Eψ(r). (32)

The wave function ψf (r) = ϕ0(z) exp(iq·ρ) describes the
free motion in the x–y plane, where ϕ0(z) is the ground-
state wave function of the potential VH(z), ρ = {x, y}
and q = {qx, qy} label 2D coordinates and momentum,
respectively, and q = (2mE/�2)1/2. In the weakly inter-
acting regime of [mg/(2π�

2)] � 1, it is possible to use
perturbation theory to higher orders [59].

We focus on the case of short-range interaction with
Re � az, where Re is the characteristic radius of the
interaction potential V (r) and az =

√
�/mωz. In this

limit, the relative motion of atoms is not influenced by
the tight confinement, and ψ(r) in Eq. (31) can be writ-
ten as

ψ(r) = η′′ϕ0(0)ψ3D(r) (33)

with ψ3D(r) the 3D wave function. In the short-distance
regime where Re � r � az, Eq. (33) takes the asymp-
totic form ψ = ψas(r) = η′′ϕ0(0)(1− as/r). This expres-
sion sets the Bethe-Peierls boundary condition at r → 0
for the solution of Eq. (32) with V (r) = 0. Thus, the wave
function ψ(r) can be obtained with the aid of Green’s
function G(r, r′) as

ψ(r) = ϕ0(z) exp(iq · ρ) +AG(r, 0). (34)

The coefficients A and η′′ can be determined by compar-
ing the solution of Eq. (34) at r→ 0 with ψas(r).

Using a similar treatment as in the discussion of a
purely 1D harmonic oscillator [60], we obtain the Green’s

function

G(r, 0) =
1
az

∫ ∞

0

dt

×
exp

[
i
(

z2 cot t
4a2

z
− q2a2

zt− t
2 + ρ2

4ta2
z

)]

t
√

(4πi)3 sin t
. (35)

By considering the low-energy condition qaz � 1, the
expression above can then be reduced to the following
form in the limit of r � az:

G ≈ 1
4πr

+
1

2(2π)3/2az

[
log

(
1

πq2a2
z

)
+ iπ

]
. (36)

By omitting the imaginary part of G, we obtain the re-
sult for η′′ as

η′′ = − A

4πasϕ0(0)
=

(
1 +

as√
2πaz

log
1

πq2a2
z

)−1

.

(37)

Here, we have used the result ψf = ϕ0(0) = (1/2πa2
z)

1/4

for the ground harmonic oscillator. By employing the
relation

∫
drψ3D(r)V (r) = 4π�

2as/m along with Eqs.
(31), (33), and (37), we find the coupling constant

g =
2
√

2π�
2

m

1
az/as + (1/

√
2π) log (1/πq2a2

z)
. (38)

Equation (38) shows that the 2D effective coupling
constant g depends on the incident momentum q =
(2mE/�2)1/2 and the axial trapping potential in quasi-
two dimensions. In the limiting case of az 
 as, the
logarithmic term in Eq. (38) can be neglected, and g re-
covers the 3D form, which is proportional to as. Hence,
the quasi-2D gas behaves like a 3D system, as one should
naturally expect. Another important observation one
can extract from Eq. (38) is that the 2D effective cou-
pling constant will diverge as the denominator becomes
zero. In the low-energy limit with qaz � 1, this quasi-
2D confinement-induced resonance takes place on the
Bardeen–Cooper–Schrieffer (BCS) side of the Feshbach
resonance with as < 0. This is in clear contrast to the
quasi-1D case as discussed in Section 2.1.3, where CIR
takes place on the BEC side of the Feshbach resonance.

2.2.3 Confinement-induced resonance

In this subsection, we investigate CIR in the presence of
an anisotropic transverse confinement ωx �= ωy with the
parameter η ≡ ωx/ωy. With continuously increasing η,
the quasi-1D geometry should eventually cross over to a
quasi-2D system [61].

When considering the transverse anisotropy, the
Hamiltonian in Eq. (16) introduced in Section 2.1.2 can
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be rewritten as

Ĥrel = −1
2
∇2

r +
1
2
(η2x2 + y2) + 2πasδ(r)

∂

∂r
(r·). (39)

where we set the unit of length as ay =
√

�/(μωy) and
the unit of energy as �ωy. In Section 2.1.3, we showed
that CIR can be regarded as a Feshbach resonance, where
the scattering of atoms in the transverse ground state
acts as the open channel and the transverse excited states
serve as the closed channel. CIR takes place when bound
states in the closed channel become degenerate with the
continuum threshold of the open channel. We now adopt
this picture and study the bound states of the closed
channel and examine the CIR condition from the bind-
ing energy.

To facilitate derivation, we impose a very shallow har-
monic potential along the z direction with a trapping fre-
quency ωz = εωy, so that we always have a well-defined
two-body bound state. The case of free-collision along
the z direction hence corresponds to the limiting case of
ε→ 0. The dimensionless relative Hamiltonian takes the
following form:

Ĥ ′
rel = −1

2
∇2

r +
1
2
(η2x2 +y2 + ε2z2)+2πasδ(r)

∂

∂r
(r·).

(40)

Then we split the Hamiltonian into “ground” (g), “ex-
cited” (e), and “ground-excited coupling” (ge) parts:

Ĥ ′
rel = Ĥg + Ĥe + Ĥge

= P̂gĤP̂g + P̂eĤP̂e + (P̂gĤP̂e + P̂eĤP̂g), (41)

where P̂g = |00〉⊥〈00|, P̂e =
∑

(nx,ny)′ |nxny〉⊥〈nxny| are
the projection operators, |nxny〉⊥ is the eigenstate of the
transverse harmonic oscillators with quantum numbers
nx and ny, and the summation (nx, ny)′ runs over all
possible combinations except the ground mode |00〉⊥.

In the limit of ε→ 0, the spectrum of Ĥg is continuous
for energies above the threshold energy Eg0 = (η+ 1)/2,
which is also the zero-point energy of the transverse
mode. The spectrum of Ĥe is also continuous for energies
higher than Ee0 = 3(η+1)/2. However, as we will become
evident below, Ĥe supports a bound state with energy
Eeb < Ee0 for all values of the 3D scattering length as.
Hence, CIR would take place when the bound-state en-
ergy of Ĥe is degenerate with the continuum threshold
of Ĥg, leading to the resonance condition

Eeb = Eg0 =
η + 1

2
. (42)

To find Eeb, we project the total wave function Ψ onto
the excited Hilbert space Ψe = P̂eΨ , and rewrite the

Fig. 4 Bound-state energy Eeb within the closed-channel and the bound-state energy Eb of the full Hamiltonian. The
solid lines are calculated with the limit ε = ωz/ωy → 0, and the dashed lines correspond to the results for ε = 0.1. The
crossing point between Eeb and Eg0 indicates the position of CIR. Reproduced from Ref. [61].
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wave function as [39]

Ψe(r) =
∑

(nx,ny)′

∑

nz

cnxnynzΦnx(
√
ηx)Φny (y)Φnz (

√
εz),

(43)

where

Φn(t) =
e−t2/2

π1/4
√

2nn!
Hn(t). (44)

Here, Hn(t) is the Hermite polynomial. Substituting
the expansion of Eq. (43) into the Schrödinger equation
ĤΨe = EΨe, we have

0 =
∑

(nx,ny)′

∑

nz

cn(En − E)Pn(x, y, z)

+2πasδ(r)
∂

∂r
r

∑

(nx,ny)′

∑

nz

cnPn(x, y, z), (45)

with

Pn(x, y, z) ≡ Φnx(
√
ηx)Φny (y)Φnz (

√
εz). (46)

Here, n represents (nx, ny, nz), and En = (nx + 1/2)η+
(ny+1/2)+(nz+1/2)ε is the eigenenergy of 3D harmonic
oscillator. Projecting Eq. (45) onto state Φn′

x
Φn′

y
Φn′

z

with arbitrary n′
x, n′

y, and n′
z, we obtain

cn =
2πas

√
ηεPn(0, 0, 0)C
E − En

. (47)

Here the value of C is related to

C =
[
∂

∂r
rΨe(r)

]

r→0

. (48)

Substituting Eq. (47) into (48), we can get the equation
for the the eigenenergy E,

− 1
2πas

=
[
∂

∂r
rΨe(E , r)

]

r→0

, (49)

where

Ψe(E , r) =
∑

(nx,ny)′

∑

nz

√
ηεPn(0, 0, 0)Pn(x, y, z)
nxη + ny + nzε− E

, (50)

and E = E − E0 is the energy shifted by the zero-point
energy E0 = (η + 1 + ε)/2.

By applying the generating function for the products
of Hermite polynomials [62],

∞∑

n=0

σn

2nn!
Hn(x)Hn(y) =

e(2σxy−σ2x2−σ2y2)/(1−σ2)

√
1− σ2

,(51)

and the identity [63]

1
nxη + ny + nzε− E

=
∫ ∞

0

dte−t(nxη+ny+nzε−E), (52)

we can get the wave function

Ψe(E , r) = ψI
e(E , r) + ψII

e (E , r), (53)

where

ψI
e(E , r) =

√
ηε

(2π)3/2

∫ ∞

0

dt
et(E+E0)

√
sinh(ηt) sinh(t) sinh(εt)

× exp
[
−ηx

2

2
coth(ηt) − y2

2
coth(t)− εz2

2
coth(εt)

]
,

ψII
e (E , r) =

−2
√
ηε

(2π)3/2

∫ ∞

0

dt
1√

sinh(t)

× exp
[
t
(
E +

ε

2

)
− ηx2 + y2

2
− εz2

2
coth(εt)

]
.

(54)

Note that the integral of ψII
e is well behaved at r = 0:

ψII
e (E , r = 0) = −

√
ηε

π3/2

∫ ∞

0

dt
etE

√
1− e−2εt

= −
√
η

2π
√
ε

Γ (−E/2ε)
Γ (−E/2ε+ 1/2)

, (55)

while ψI
e is divergent in the limit of r → 0, where the

main contribution to the integral comes from the region
of small t:

ψI
e(E , r) ≈ 1

(2π)3/2

∫ ∞

0

dt
e−r2/(2t)

t3/2
=

1
2πr

. (56)

Substituting the expression of Eq. (53) for the wave
function Ψe into Eq. (49), we may regularize the diver-
gent behavior with the operator ∂r(r·). Therefore, we
can subtract the right-hand side of Eq. (56) from Ψe and
obtain a simpler expression for the bound-state energy:

−
√
π

as
= F(E), (57)

where

F(E) =
∫ ∞

0

dt
[ √

ηεetE/2

√
(1 − e−ηt)(1− e−t)(1 − e−εt)

−
√
ηεetE/2

√
1− e−εt

− 1
t3/2

]
. (58)

We can use this equation for all values of E � 0. When
E = 0, the second and third terms eliminate the di-
vergence for t → ∞ and t → 0, respectively, lead-
ing to a convergent result of F(0). By considering the
condition that CIR takes place when the eigenenergy
Eeb = E + E0 = Eg0, we can arrive at the equation
for the CIR condition (in physical units):

as

ay
= −

√
π

F(0)
. (59)
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Fig. 5 Locations of CIR versus the parameter η = ωx/ωy de-
scribing the transverse anisotropy. Reproduced from Ref. [61].

In Fig. 4, we show that the bound-state energy Eeb in
the closed channel changes with the 3D scattering length
as/ay for several different values of η. In each plot, the lo-
cation of CIR is found when the energy Eeb goes across
the open-channel threshold Eg0. When considering the
quasi-1D system, we should set ε = ωz/ωy as an in-
finitesimally small value. However, from our calculation,
we find that the quasi-1D regime is already realized for
ε ∼ 0.1, which is shown as the dashed lines in Fig. 4.

The locations of CIR for a wide range of η are shown
in Fig. 5. Notice that the resonance position of as/ay

changes nonmonotonically with η and diverges at ηc ≈
18.0, where the 3D scattering length goes through the
Feshbach resonance toward the BCS side. As mentioned
above, by continuously increasing η, the quasi-1D ge-
ometry will eventually cross over to a quasi-2D system,
where the s-wave CIR takes place on the BCS side of the
Feshbach resonance.

3 Two-body physics in quasi-low dimensions
with SOC

In the previous section, we have discussed two-body
problems in quasi-one and quasi-two dimensions in the
absence of SOC. The analysis therein not only gives a
general understanding of the bound and the scattering
states in quasi-low-dimensional confinement but also in-
troduces some useful methods to tackle two-body prob-
lems. We now turn to the effects caused by SOC.

3.1 Quasi-one dimension

We first investigate two-body problems in a quasi-1D
geometry in the presence of the 1D SOC that has been
realized at the National Institute of Standards and Tech-
nology (NIST) [2]. In the experiment, while the center-of-
mass motions of the atoms along a given spatial direction

are coupled to the internal spin degrees of freedom, an ef-
fective Zeeman field is also implemented simultaneously.
For the regime where the energy is close to the thresh-
old, we analyze the effect of SOC and the Zeeman field on
the position of CIRs. For energies below the threshold,
we give solutions of two-body bound states and confirm
that the crossover point of the two-body bound-state en-
ergy and the open-channel threshold exactly indicates
the position of CIR.

The Hamiltonian for two spin–1/2 atoms with 1D SOC
in a quasi-1D configuration is

Ĥ0 = − �
2

2m
(
∇2

r1
+∇2

r2

)
+ U(r1) + U(r2)

+Ĥ1
SOC + Ĥ2

SOC, (60)

where m is the atomic mass, rj=1,2 ≡ (xj , yj , zj) de-
notes the spatial position of the jth atom, and U(rj) ≡
mω2(y2

j + z2
j )/2 is the quasi-1D confinement within the

radial y-z plane with trapping frequency ω = ωy = ωz.
The SOC terms take the form

Ĥj
SOC = λp(j)

x σ(j)
x + hσ(j)

z + hxσ
(j)
x , (61)

where p(j)
x is the linear momentum along the x axis of

the jth atom, σ(j)
i are Pauli matrices, λ is the intensity

of in-line SOC, and h and hx are the effective Zeeman
fields along the transverse and axial directions, respec-
tively. Since the in-line field hx is not the key to the
topological superfluid phases [64], here we consider the
situation where hx = 0 for simplicity. However, we note
that all our calculations can be easily expanded to cases
with finite hx.

Because of SOC, we cannot separate the center-of-
mass and the relative degrees of freedom along the SOC
direction in the two-particle system. Rewriting the quan-
tum state of relative degrees of freedom with a spinor
wave function

|ψ(r)〉 = ψ↑↑(r)| ↑〉1| ↑〉2 + ψ↑↓(r)| ↑〉1| ↓〉2
+ψ↓↑(r)| ↓〉1| ↑〉2 + ψ↓↓(r)| ↓〉1| ↓〉2, (62)

we can arrange the Hamiltonian of the relative motion
along the x axis into the following form:

Ĥrel = −
∑

s=x,y,z

∂2

∂s2
+

1
4

∑

s=y,z

(s2 − 1)

+λ
∑

j=1,2

[
Qx

2
+ (−1)jkx

]
σ(j)

x + h
∑

j=1,2

σ(j)
z ,(63)

where kx is the relative momentum along the x axis.
Here, we use the natural units with � = m = 1, and
set ω = 1 as the energy unit. We also neglect the zero-
point energy of the transverse motion along the y and z
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directions for simplicity.
To investigate the two-body scattering process in this

system, we first define the single-particle spin state of
the jth atom as

(λkxσ
(j)
x + hσ(j)

z )|αj , (λkx, h)〉
≡ αj

√
λ2k2

x + h2|αj , (λkx, h)〉, (64)

where αj = ±1 denotes the helicity index. Then the two-
particle spin state can be defined as

|α(kx)〉 = |α1, (λkx, h)〉1|α2, (−λkx, h)〉2 (65)

with α ≡ (α1, α2) used as shorthand notation. The inci-
dent wave function can thus be written in the following
form with the proper symmetry:

|ψ(0)
c (r)〉 =

eikxx

2
√
π

[|α(kx)〉 − |α′(−kx)〉]φ0(y)φ0(z),

(66)

where φ0 is the ground state of a 1D harmonic oscillator,
and α′ ≡ (α2, α1). We denote the scattering channel by
c = (α, kx). We can directly calculate the eigenenergy
corresponding to Eq. (66), which leads to

ε = εc + (m+ n), (67)

where εc = k2
x+(α1 + α2)

√
λ2k2

x + h2. We note that the
threshold energy is shifted from zero to a nonzero value
because of SOC:

εth =
{−2h, λ2 < h,

−λ2 − h2/λ2, λ2 � h.
(68)

Since the scattering energy is within the low-energy
regime with εc − εth � 1/R2

e, where Re is the length
scale associated with the interparticle interacting poten-
tial, the wave function of the scattering state can be
expressed as [41, 65, 66]

|ψc(r)〉 ≈ |ψ(0)
c (r)〉+ A(c)

φ0(0)2
G0(εc; r,0)|0, 0〉 (69)

in the asymptotic region of r � Re. Here, A(c) is a co-
efficient that needs to be determined, G0(εb; r, r′) is the
Green’s function related to the free Hamiltonian that de-
scribes the relative motion of the two interacting atoms,

G0(�; r, r′) =
1

�+ i0+ − Ĥrel

δ(r − r′), (70)

and |0, 0〉 represents a spin singlet state.
Similar to the scattering state, when the energy εb of

the bound state satisfies the relation εth − εb � 1/R2
e,

i.e., εb lies close enough to the threshold, the wave func-
tion |ψb(r)〉 of the two-body bound state can be approx-
imated as

|ψb(r)〉 ≈ BG0(εb; r,0)|0, 0〉 (71)

in the region of r � Re, where B is the normalization
constant. We can get the coefficients A(c) and B in Eqs.
(69) and (71) by implementing the Bethe-Peierls bound-
ary condition:

ψ ∝ (1/r − 1/as), r→ 0. (72)

Specifically, using the identity

δ(r − r′) =
∫ ∞

−∞
dkx

eikx(x−x′)

2π

(
∑

α

|α(kx)〉〈α(kx)|
)

×
(
∑

m,n

φ∗m(y′)φm(y)φ∗n(z′)φn(z)

)
(73)

and the relation

Ĥreleikxxφm(y)φn(z)|α(kx)〉
= (εc +m+ n)eikxxφm(y)φn(z)|α(kx)〉, (74)

where φm is the mth eigenstate of a one-dimensional
harmonic oscillator, we can obtain the behavior of the
Green’s function G0(�; r,0) at r → 0:

〈0, 0|G0(�; r,0)|0, 0〉 = 〈0, 0|g(�; r,0)|0, 0〉+ S(�, r).

(75)

The terms in the equation above are defined as

〈0, 0|g(�; r,0)|0, 0〉 =
∑

m,n

∫
dkx

eikxx

2π
1

�+ i0+ − (k2
x +m+ n)

φ∗m(0)φm(y)φ∗n(0)φn(z), (76)

S(�, r) =
∑

α′,m,n

∫ ∞

−∞
dk′x

eik′
xx

2π
|〈0, 0|α′(k′x)〉|2φ∗m(0)φm(y)φ∗n(0)φn(z)

×
[

1
�+ i0+ − (εc′ +m+ n)

− 1
�+ i0+ − (k′2x +m+ n)

]
. (77)

The first term of Eq. (75) is the Green’s function associ-
ated with the relative Hamiltonian without SOC, while
the second term is the contribution from SOC. By sub-

stituting Eqs. (75)–(77) into Eqs. (69) and (71), we can
solve the scattering and bound states under the Bethe-
Peierls boundary condition Eq. (72).
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Following the procedure outlined above, we can deter-
mine the 1D scattering length (in physical units) as

a1D = −a
2
t

as

{
1− as

at

[
2πSs(εc)−

ζ (1/2, 1− εc/2)√
2

]}
,

(78)

where at =
√

�/mω and ζ(s, a) is the Hurwitz zeta func-
tion.

The CIR indicates complete reflection with a1D = 0.
Thus, the position of the resonance can be derived from
Eq. (78), which leads to [67]

at

as
= 2πSs(εth)− ζ [1/2, 1− εth/2]√

2
. (79)

In Fig. 6, we show the position of CIR by varying the am-
plitudes of the effective Zeeman field h and SOC strength
λ. As shown in Fig. 6(a), at/as increases monotonically
with the effective Zeeman field when the SOC strength
is fixed. In the zero-field limit, as the SOC can then be
gauged away via a unitary transformation, the position
of the CIR is reduced to at/as = ζ(1/2, 1) ≈ 1.0326
for the case without SOC [37]. From Fig. 6(b), we find
that at/as decreases monotonically with increasing SOC
intensity when the effective Zeeman field is fixed. We
also note that, in the large-SOC limit, the effect of the

Fig. 6 Position of CIR at/as versus different (a) Zeeman field
intensities h and (b) SOC strengths λ. Reproduced from Ref. [68].

Zeeman field becomes negligible, so the position of CIR
takes the same value at/as = ζ(1/2, 1) as in the zero-field
limit. However, when the strength of SOC tends to zero,
the position of CIR approaches a limiting value, and this
phenomenon is different from the case without SOC. In
fact, because SOC can mix the two spin states, the two-
body threshold energy acquires a significant change even
if the SOC is infinitesimally small. As a consequence,
SOC will lead to a finite shift of the position of CIR.

Similar to the case without SOC, it is also illuminating
to consider CIR under SOC as a Feshbach resonance. In
the presence of SOC, the two-body bound-state energy
εe within the closed channel can be calculated via an
approach similar to that introduced before, which leads
to

1
as

= 2πSe(εe)−
ζ [1/2, 1− εe/2]√

2
, (80)

where the function Se takes the form

Se(εe) =
1
2π

∞∑

s=1

b

Esb+ d

×
{√

2γ − 2Es − b [2d− b (γ − Es)]
4Esb+ b2 + 4d

−
√
−Es

}
.

(81)

Here, γ =
√
E2

s − d, Es = εe−2s, b = 4λ2, and d = 4h2.
In Fig. 7, we show εe as a function of at/as for various
SOC intensities and effective Zeeman field values. From
this figure, we confirm once again that the position of
CIR exactly corresponds to the crossing point of εe and
the open-channel threshold εth (denoted by dotted lines
in Fig. 7).

3.2 Quasi-two dimensions

Now we turn to a quasi-2D configuration with a har-
monic trap with frequency ωz applied along the z di-
rection, while the atomic motion in the x-y plane is free.
The system is subjected to a Rashba-type SOC, with the
Hamiltonian describing the atomic relative motion of

H = H
(2D)
0 +Hz + V3D(r), (82)

where H(2D)
0 is the 2D free Hamiltonian given by

H
(2D)
0 = −

∑

ϑ=x,y

∂2

∂ϑ2
+
λ

2

∑

j=1,2

[qx
2

+ (−1)jpx

]
σ̂(j)

x

+
λ

2

∑

j=1,2

[qy
2

+ (−1)jpy

]
σ̂(j)

y (83)

with q = (qx, qy) the 2D center-of-mass momentum,
p = (px, py) the 2D relative momentum, and λ the
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Fig. 7 Two-body bound-state energies εb and εe versus at/as

for various (a) effective Zeeman fields with a given SOC inten-
sity and (b) SOC intensities with a given effective Zeeman field.
Reproduced from Ref. [68].

SOC intensity. We can define the spin operator σ̂(j)
x,y for

the jth atom as σ̂(j)
x = | ↑〉j〈↓ | + | ↑〉j〈↓ | and σ̂

(j)
y =

−i|↑〉j〈↓| + i|↓〉j〈↑|. We also set the SOC intensity λ in
Eq. (83) as a real positive number without loss of gener-
ality.

In Eq. (82), the second term on the right-hand side,

Hz = − ∂2

∂z2
+
ω2

zz
2

4
− ωz

2
, (84)

is the Hamiltonian describing the relative motion of the
atoms in the z direction, where z labels the relative co-
ordinate of the two atoms in this direction. The atom-
atom interaction potential V3D(r) in Eq. (82) changes as
a function of the 3D relative coordinate r = (ρ, z) =
(x, y, z). Here, we set r = |r| and the effective range of
V3D(r) as r∗. In the region r � r∗, we can neglect the
potential V3D(r).

First, we consider the scattering state of two atoms
residing in the ground state of Hz. The incident wave
function can be written as

|Ψ (0)
c (r)〉 = ϕ0 (z) |ψ(0)

c (ρ)〉, (85)

where |ψ(0)
c (ρ)〉 is an incident wave function in a purely

2D geometry given by

|ψ(0)
c (ρ)〉 =

eik·ρ

23/2π
|α (q,k)〉 − e−ik·ρ

23/2π
|ᾱ (q,−k)〉. (86)

Here, k = (kx, ky) is the incident momentum, ρ = (x, y)
is the 2D relative coordinate of the two atoms, and
|α(q,k)〉 is the two-atom spin state defined as

|α (q,k)〉 = |α1,
q

2
+ k〉1|α2,

q

2
− k〉2 (87)

with α = (α1, α2) and ᾱ = (α2, α1). To simplify no-
tations, we denote c = (α, q,k) as the set of all three
quantum numbers in the following discussion.

With respect to the incident state |Ψ (0)
c (r)〉, the scat-

tering state |Ψ (+)
c (r)〉 in the region of r � r∗ takes the

form

|Ψ (+)
c (r)〉 ≈ |Ψ (0)

c (r)〉+ Aeff (c)
ϕ0(0)

G(εc; r,0)|0, 0〉, (88)

where the quasi-2D free Green’s function G (�; r, r′) is
given by

G (�; r, r′) =
1

�+ i0+ −
[
H

(2D)
0 +Hz

]δ (r − r′) . (89)

Under a procedure similar to that used in Section 3.1,
the function |Ψ (+)

c (r)〉 can be approximated as

〈0, 0|Ψ (+)
c (r)〉 ∝

(
1
r
− 1
as

)
(90)

in the small-distance region r∗ � r � 1/k. Thus, we can
obtain the result of Aeff(c) and determine the quasi-2D
scattering amplitude, which is defined as

f (Q2D) (c′ ← c) =

−2π2

∫
dr′〈Ψ (0)

c′ (r′) | V3D (r′) |Ψ (+)
c (r′)〉. (91)

To understand the behavior of the effective quasi-2D
scattering amplitude f (Q2D), we calculate the variation
of the mode square of the function

Feff ≡
f (Q2D) (c′ ← c)

〈ψ(0)
c′ (0)|0, 0〉〈0, 0|ψ(0)

c (0)〉
. (92)

In Fig. 8, we show the behavior of |Feff |2 changing with
the scattering length when different values of εc − εth(q)
are taken. Note that, when the value of εc−εth(q) is fixed,
|Feff |2 reveals a significant resonance behavior with as.
Both the resonance point and the maximal amplitude of
|Feff |2 are influenced by the presence of SOC.

Now we consider the two-body bound state in this
quasi-2D configuration. In the region r � r∗, the wave
function |Ψb(r)〉 can be expressed as

|Ψb(r)〉 = B′G (Eb; r,0) |0, 0〉, (93)

where B′ is the normalization factor. The state Ψb(r)
with energy Eb of the quasi-2D bound state in the small-
distance region also satisfies the Bethe-Peierls boundary
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Fig. 8 The behavior of |Feff |2 versus 3D scattering length and
l0 = 1/

√
ωz . The results are obtained with zero center-of-mass mo-

mentum (q = 0), SOC intensities of (a) λ = 0, (b) λ = 0.3/l0, (c)
λ = 1/l0, and (d) λ = 3/l0, and quasi-2D scattering energies of
εc = −λ2/4 + 0.006ωz [solid (red) line], −λ2/4 + 0.02ωz [dashed
(black) line], and −λ2/4 + 0.2ωz [dashed-dotted (blue) line]. Re-
produced from Ref. [66].

condition

〈0, 0|Ψb(r)〉 ∝ 1
r
− 1
as
. (94)

We can easily prove that this boundary condition is
equivalent to the equation

− lndeff (Eb, q) = C + ln
(
− i
√
Eb

2

)
+ 2πλ(Eb, q).(95)

Here, C = 0.5772 . . . is the Euler gamma number.
In Fig. 9, we show the behavior of binding energy

Ebinding = εth(q)− Eb (96)

by varying the s-wave scattering length as and SOC
intensity for q = 0. Notice that the value of Ebinding

is increased with SOC intensity λ, indicating that the

Fig. 9 Binding energy Ebinding = εth(q) − Eb of the quasi-2D
two-atom bound state versus the 3D scattering length. In this plot,
the center-of-mass momentum q = 0 and the SOC intensities are
different, as shown in the inset. From Ref. [66].

presence of a Rashba SOC tends to enhance the two-
body binding energy. We can qualitatively understand
this phenomenon by noting that the density of states
in the low-energy limit is increased because the ground
state becomes degenerate under SOC.

3.3 Effective Hamiltonian without SOC

In Section 2.1.1, we have introduced a two-channel
Hamiltonian to describe a strongly interacting ultracold
atomic gas in a transverse trapping potential near a wide
Feshbach resonance. Here, we derive an effective low-
energy formalism in the form of an effective two-channel
model. In the following, for concreteness, we concentrate
on a quasi-2D system where the trap frequency ωz along
the z axis is sufficiently strong.

In the dilute-gas limit, one assumes that a quasi-2D
atomic density ρ′ � 1 in units of a−2

t and that the situ-
ation where three or more atoms are close to each other
is rare [26]. Under this condition, the properties of the
system are determined by two-body physics and we can
neglect three-body collisions. Within the energy regime
around the two-body bound-state energy, we know that
the occupation of the axially excited state is significant.
These modes can be effectively taken into account by
introducing the dressed molecular modes in the closed
channel, which include the Feshbach molecules as well
as atoms in the axially excited states. The short-range
interaction between dressed molecules and atoms in the
open channel can be modeled by a delta function. The
effective low-energy Hamiltonian takes the form

Heff =
∑

kσ

εka
†
kσakσ +

∑

q

(εq/2 + δb) d†qdq

+
αb

L

∑

kq

(
a†

k+ q
2 ,↑a

†
−k+ q

2 ,↑dq + h.c.
)

+
Vb

L2

∑

kk′q

a†
k+ q

2 ,↑a
†
−k+ q

2 ,↓a−k′+ q
2 ,↓ak′+ q

2 ,↑. (97)

Here, d†q (dq) represents the creation (annihilation) op-
erator of the dressed molecule, a†kσ (akσ) is the cre-
ation (annihilation) operator for the atoms, and εk =
�

2k2/2m. Similar to Eq. (2), we may write a set of renor-
malization relations for the bare parameters δb, αb, and
Vb:

V −1
c =

∫
d2k

(2π)2
1

2εk + 1
, Ω−1 = 1− VpV

−1
c ,

Vp = Ω−1Vb , αp = Ω−1αb , δp = δb −Ωα2
pV

−1
c .

(98)

Importantly, the parameters δp, αp, and Vp should be
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chosen such that the effective Hamiltonian Heff should
reproduce the same physics as the exact Hamiltonian H
at low energies. As we will see in the following, this re-
quirement would allow us to relate the parameters δp, αp,
and Vp to the physical parameters in three dimensions.

3.4 Effective Hamiltonian with SOC

Based on Section 3.3, we consider a Rashba-type SOC
[69]. The exact Hamiltonian can be written as H =
H0 + HI + HSOC, where H0 and HI are the same as
those in Section 3.3. The third term, HSOC, represents
the Rashba-type SOC and takes the form

HSOC = −i�λ̄
∫
d3rψ̄† (σx∂x + σy∂y) ψ̄. (99)

Here, λ̄ is the SOC intensity, σi=x,y are the Pauli matri-
ces, and ψ̄ = (ψ↑, ψ↓)T . In momentum space, we have

H ′
SOC = λ′

∑

k

[
(kx − iky)a†k,↑ak,↓ + h.c.

]
, (100)

where λ′ is the coupling constant of the Rashba SOC.

3.5 Fixing the bare parameters

To relate the parameters δp, αp, Vp, and λ′ with the phys-
ical parameters in three dimensions, we take into account
the following considerations. First, in the low-energy
limit, the effective model should reproduce the single-
particle dispersion. In other words, we need this Hamilto-
nian to give the corrent open-channel threshold. Second,
when the system is deep in the weak-interaction regime,
we should be able to neglect the dressed molecules, as all
the atoms should populate the axial ground state. In this
situation, the background interaction Vb in the effective
model should be related to its three-dimensional coun-
terpart Ub by integrating out the harmonic ground-state
degrees of freedom in the axial direction. Finally, when
tuning through the Feshbach resonance, we also need the
effective Hamiltonian to reproduce the correct two-body
physics. As mentioned above, the two-body physics dom-
inates in the dilute-gas limit. The effective theory should
produce the same two-body binding energy as the exact
one. Furthermore, according to particle conservation, we
need the population of dressed molecules to be equal to
the population of Feshbach molecules plus that of atoms
in the transverse excited states.

To study the two-body problem using the effective the-
ory, we write the general two-body state as

|Φ〉q =
(
βd†q +

∑

k

′ ∑

σ,σ′
ησσ′

k a†k+q/2,σa
†
−k+q/2,σ′

)
|0〉.

(101)

Here the summation in
∑′

k is taken in the 2D momen-
tum space with ky > 0. Numerically, we find that q = 0
for the ground state of a quasi-2D system in the two-
body sector. We therefore only discuss the case with
q = 0 in the following. Solving the Schrödinger equation
Heff |Φ〉q=0 = Eb|Φ〉q=0, we have

(
Vp −

α2
p

δp − Eb

)−1

=
√

2πσp(Eb), (102)

where Eb is the two-body binding energy and the func-
tion σp is defined as

σp(Eb)=
∫

d2k

(2π)5/2

[
1

Eb − 2εk −
4(λ′)2k2

Eb − 2εk

+
1

1 + 2εk

]

−b
π+2arctan

b+ 2Eb√
−b(4Eb+b)

8π
√

2π
√
−b(4Eb + b)

+
ln(−Eb)
4π
√

2π
(103)

with b ≡ 4(λ′)2.
We may now fix the parameters in the effective model

by matching single- and two-body physics as discussed
above:

λ′ = λ,

V −1
p =

√
2π

(
U−1

p − Cp

)
,

δp = Eb −
σp(Eb)

∂P(Eb)/∂Eb

(
1− σp(Eb)

U−1
p − Cp

)
,

α2
p =

1√
2π∂P(Eb)/∂Eb

(
1− σp(Eb)

U−1
p − Cp

)2

. (104)

Here, the parameters are defined as

Cp = Sp(Einf
b + 1/2)− σp(Einf

b ),

P(Eb) =
[
1/U eff

p − Sp(Eb + 1/2) + σp(Eb)
]
,

U eff
p = Up − g2

p/(νp − Eb), (105)

where Einf
b is the two-body binding energy in quasi-two

dimensions for νp → ∞. Using Eqs. (98) and (104), we
can fix the parameters as functions of the two-body bind-
ing energy Eb, which can be tuned via the Feshbach res-
onance.

Figure 10 shows the parameters δp and αP and the ef-
fective interaction V eff

p ≡ Vp − α2
p/(δp −Eb) for 40K and

6Li as functions of as for different SOC intensities λ. The
different behaviors for 40K and 6Li are mainly due to the
sign difference in their background scattering length.

4 Mean-field study on the effective Hamilto-
nian

In this section, we demonstrate the utility of the effec-
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Fig. 10 Parameters in the effective 2D Hamiltonian as functions
of at/aa. Reproduced from Ref. [29].

tive two-channel Hamiltonian in dealing with quasi-two-
dimensional systems. From these calculations, we show
that the population of high-lying states in the tightly
confined direction can significantly affect the many-body
properties of the system.

4.1 Results in the absence of SOC

In the absence of SOC, the effects of dressed molecules
can be seen clearly by comparing results from Eq. (97)
(model 2) with those from a simple effective model with a
renormalized atom-atom interaction but without dressed
molecules (model 1) [70–72].

We first write the effective Hamiltonian for model 1
only in terms of 2D operators ak,σ and a†k,σ with pseudo
spin σ and transverse momentum k = (kx, ky) [40]:

H1 =
∑

k,σ

(εk − μρ) a
†
k,σak,σ

+
V eff

1

L2

∑

k,k′,q

a†k,↑a
†
−k+q,↓ak′,↓a−k′+q,↑, (106)

where εk = �
2k2/(2m) is the 2D dispersion relation

for fermions with mass m, μρ is the chemical poten-
tial, and L2 is the quantization area. The bare pa-
rameter V eff

1 is subject to the 2D renormalization rela-
tion

[
V eff

1

]−1 =
[
V eff

1p

]−1 − L−2
∑

k (2εk + �ωz)
−1. Here

V eff
1p = V eff

1p (as, az) is a function of the 3D scattering

length as and the characteristic length scale for axial
motion az ≡

√
�/(mωz) [40]. Under the local density ap-

proximation (LDA), the chemical potential μρ depends
on the radial coordinate r = (x, y). Here, we choose �ωz

as the energy unit.
The zero-temperature thermodynamic potential is

Ω = − Δ2

V eff
1

+
1
L2

∑

k

(εk − μρ − Ek) , (107)

where Δ ≡ (V eff
1 /L2)

∑
k 〈ak,↓a−k,↑〉 is the BCS order

parameter and Ek =
√

(εk − μρ)2 + Δ2 is the quasi-
particle excitation spectrum. Then, from the relation
∂Ω/∂Δ = 0 and n = −∂Ω/∂μ, we can obtain the gap
and number equations

1
V eff

1p (as, az)
=

ln
(
−μρ +

√
μ2

ρ + Δ2
)

4πa2
z

, (108)

n =
μρ +

√
μ2

ρ + Δ2

2πa2
z

. (109)

We may then write the chemical potential μρ(r) =
μ0 − V (r), where the harmonic trapping potential
is V (r) = (ω⊥/ωz)2r2/(2a2

z) and μ0 is the chemi-
cal potential at the center of the trap. We can eas-
ily show that the spatial density profile is a parabola,
n(r) = (ω⊥/ωz)2(R2

TF − r2)/(2πa4
z), where RTF =√

2μ0az(ωz/ω⊥) is the Thomas-Fermi cloud size. Tak-
ing into account total particle number conservation,
we have a constant cloud size RTF = RBCS ≡√

2ωz/ω⊥(N)1/4az, where N =
∫
n(r)d2r is the total

number of particles in the trap. We find that the size
RBCS is independent of the 3D scattering length as. This
result is obviously inconsistent with the physical picture
of the BCS-BEC crossover in a quasi-2D system. On the
BEC side of the Feshbach resonance, fermions will form
tightly bound pairs, and the pair size apair � az and
binding energy |Eb| 
 �ωz. In this situation, the cloud
size is expected to be small.

Then we adopt model 2 to characterize the system.
The Hamiltonian of model 2 is shown in Eq. (97). We
introduce a new order parameter Δ ≡ αb 〈d0〉 /L +
(Vb/L

2)
∑

k 〈ak,↓a−k,↑〉. Using the same means, we can
obtain the mean-field gap and number equations

1
V eff

2p (2μρ)
=

ln
(
−μρ +

√
μ2

ρ + Δ2
)

4πa2
z

, (110)

n =
μρ +

√
μ2

ρ + Δ2

2πa2
z

+ 2Δ2
∂[V eff

2,p(x)]−1

∂x

∣∣∣∣∣
x=2μρ

, (111)

where the inverse of the effective interaction can be re-
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lated to the 3D physical parameters through the relation
[27]

[
V eff

2p (x)
]−1

=
[
Vb +

α2
b

x− δb

]−1

+
1
L2

∑

k

1
2εk + �ωz

=
√

2π
a2

z

⎡

⎣
(
Up +

g2
p

x− γp

)−1

− Sp(x) + σ′
p(x)

⎤

⎦ . (112)

The functions in Eq. (112) take the form

Sp(x) =
−1

4
√

2π

∫ ∞

0

ds
[

Γ (s− x/2)
Γ (s+ 1/2− x/2)

− 1√
s

]
,

σ′
p(x) =

ln |x|
4π
√

2π
, (113)

where Γ (x) is the gamma function.
We then solve the mean-field gap and number equa-

tions under model 1 and model 2, respectively. In our
calculation, we use the parameters that have been intro-
duced in Section 2.1.1 for 40K and 6Li. Figure 11 shows a
series of results for both 40K and 6Li. A smooth crossover
from the BCS (right) to the BEC (left) regimes is shown.
We find that the results for 40K (dashed) and 6Li (solid)
are very similar near the resonance. The results of model
1 and model 2 are significantly different in this figure, es-
pecially on the BEC side. From these results, we can con-
clude that we cannot directly apply model 1 to describe
the BCS-BEC crossover in a quasi-2D system where the
dressed molecules have been neglected.

Fig. 11 BCS-BEC crossover behavior of a uniform quasi-2D
Fermi gas at zero temperature, showing (a) the chemical potential
μ, (b) the gap Δ, both in units of �ωz , and (c) the dressed-
molecule fraction nb/n. Significant differences between model 1
(gray) and model 2 (black) are present for both 40K (dashed) and
6Li (solid). Parameters used in these plots are ωz = 2π × 62 kHz
and na2

z = 0.001. Reproduced from Ref. [55].

Fig. 12 Thomas-Fermi cloud size of 6Li in the quasi-2D system
within the BCS-BEC crossover. The results of RTF are normal-
ized to RBCS, which is the cloud size of the noninteracting Fermi
gas. The results of both model 1 (dashed) and model 2 (solid) are
shown. Reproduced from Ref. [55].

Figure 12 shows the Thomas-Fermi cloud size under
the total particle conservation condition. We can clearly
see that for model 2 (solid curve) the cloud size is no
longer a constant, whereas model 1 predicts a constant
one (dashed curve). In model 2, when the Feshbach reso-
nance is crossed, the cloud size decreases from the value
RBCS, which is the size of a noninteracting Fermi gas in
the BCS limit, to the 3D results (dotted curve) in the
BEC limit. This result successfully recovers the physics
on both the BCS and BEC sides of the Feshbach reso-
nance.

4.2 Dressed molecules under SOC

Under SOC, the impacts of the dressed molecules can
be more significant. Here, we consider a quasi-2D Fermi
gas with Rashba SOC and an effective Zeeman field,
where a topological superfluid (TSF) can be stabilized.
Assuming a slow-varying harmonic potential in the x-y
plane, we apply the LDA μρ(r̃) = μρ(0) − V (r̃), where
r̃ =

∑
i r

2
i /R

2
i , Ri = atωz/ωi is the unit of length along

the ith (i = x, y) direction, and V (r̃) = r̃2/2.
The zero-temperature thermodynamic potential can

be written at the mean-field level [73] as

Ω = −|Δ|
2

V eff
p

+
1
2

∑

k,s=±
(ξs − Ek,s) , (114)

where the order parameter of the two-channel model has
been defined in Section 4.1 and V eff

p ≡ Vp−α2
p/(δp−Eb).

The dispersion relations for quasiparticles with SOC are
given by [73]

Ek,± =
√
ξ2k + λ2k2 + |Δ|2 + h2 ± 2E0, (115)
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where E0 =
√
h2 (ξ2k + |Δ|2) + λ2ξ2kk

2 and ξk = εk −
μρ(r̃).

We can obtain the local chemical potentials form the
dimensionless number equations

Ñ =
∫

d2r̃[ñ↑(r̃) + ñ↓(r̃)], (116)

P =
1
Ñ

∫
d2r̃[ñ↑(r̃)− ñ↓(r̃)], (117)

where ñ↑ = −(∂Ω/∂μρ + ∂Ω/∂h)/2, ñ↓ = −(∂Ω/∂μρ −
∂Ω/∂h)/2, and Ñ = Nωxωy/ω

2
z , with N the total parti-

cle number in the trap. By solving these equations while
minimizing the local thermodynamic potential, we can
obtain the density distribution. The population of the
dressed molecules has the form [74]

ñb(r̃) = 〈d†0d0〉 = |Δ(r̃)|2
[
αp −

Up(δp − 2μρ(r̃))
αp

]−2

.

(118)

Importantly, when the Zeeman field h crosses
√
μ2

ρ + Δ2

from below, the system can undergo a phase transition
from the superfluid (SF) state to the TSF state [73].
Hence, we can define the TSF phase in the trap where
h >

√
μ2

ρ(r̃) + |Δ(r̃)|2. The order parameter of the TSF
state is the same as the one of the SF state, because
these two states have the same symmetry and cannot be
separated by spontaneous symmetry breaking.

In Fig. 13, we plot the density distributions with
different SOC intensities λ, 3D scattering lengths as

and polarizations P . Both the results from the two-
channel model and those from the single-channel model
are shown. We find that the density distribution can be
significantly changed by the dressed molecules. In the
presence of dressed molecules, there is a difference in the
in-trap phase structure where the phase boundaries be-
tween the SF phase at the center and the TSF phase at
the edge are shifted.

Although the difference in density distributions of
the two models is more significant on the BEC side,
the dressed molecules also have significant effects near
the resonance point or even on the BCS side, in con-
trast to the case without SOC [55]. We can understand
this phenomenon by combining the effects of SOC and
population imbalance. In a polarized Fermi gas, the pop-
ulation imbalance is usually accounted for by the normal
phase toward the trap edge or by exotic superfluid phases
that support polarization, e.g., the Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) phase [75, 76], the breached pair
(BP) phase [77], or the TSF phase with SOC [25, 78].
As discussed above in the two-body physics, SOC will
increase the two-body binding energy and, hence, more

Fig. 13 Density distribution for different interaction strengths
with fixed SOC and polarization: (a)–(c) λ ∼ 0.14, P ∼ 0.20;
(d)–(f) λ ∼ 0.22, P ∼ 0.27. In all cases, ωx/ωz = 10−3

and N ∼ 104, with (a) at/as ∼ −0.36, (b) at/as ∼ 0.04, (c)
at/as ∼ 0.34, (d) at/as ∼ −1, (e) at/as ∼ −0.5, and (f) at/as ∼ 0;
The bold red (thin black) dotted curves are the density distribution
of spin–up (spin–down) atoms in the single-channel model, and the
solid curves are the density distribution in the effective two-channel
model. The distributions for atoms in the closed channel are shown
with the dash-dotted (green) lines. Reproduced from Ref. [29].

atoms will populate the axial harmonic excited states.
In other words, SOC will enhance the effects of dressed
molecules. However, the dressed molecules do not sup-
port polarization. Therefore, the density distribution of
the system with dressed molecules has to be modified to
accommodate the total polarization.

5 Conclusions

As we have demonstrated in this review, few-body
physics in quasi-low-dimensional atomic gases can be
quite different from the physics in a purely low di-
mensional system. The extra degrees of freedom in the
tightly confined dimensions may significantly affect var-
ious properties of the system once they are occupied.
The occupation of these states occur, when, for example,
the two-body binding energy becomes comparable to the
trapping frequency of the tight confinement. Therefore,
one must be careful in treating quasi-low-dimensional
atomic gases, particularly when they are close to the Fes-
hbach resonance or on the BEC side.

These considerations become even more relevant when
the atoms are subject to a synthetic SOC. By modifying
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the single-particle dispersion spectra, SOC affects both
the two-body bound states and the scattering states.
In a quasi-1D atomic gas, parameters of a NIST-type
SOC can shift the positions of the CIR and have sig-
nificant impact on the two-body bound-state energy,
whereas in a quasi-2D atomic gas, a Rashba-type SOC
increases the two-body bound-state energy, enhances the
occupation of the excited states in the tightly confined
dimension, and thus drives the system further away from
a purely low dimensional atomic gas. By adopting an ef-
fective low-energy two-channel Hamiltonian, one may
capture the effects of the excited-state occupation in
the tightly confined dimensions by modeling them with
dressed molecules in the closed channel. With the bare
parameters of the two-channel model fixed by two-body
calculations, one may then apply the effective low-energy
theory to characterize many-body properties. While we
see that the inclusion of the extra degrees of freedom in
a quasi-2D Fermi gas under Rashba SOC and an effec-
tive out-of-plane Zeeman field can lead to an enhanced
stability of the topological superfluid state, application
of the two-channel model may reveal more interesting
many-body properties of quasi-low-dimensional atomic
gases.
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