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Limit of Sensitivity of Low-Background Counting Equipment 
Steven G. Homann 

In most articles on counting statistics 
associated with radiation detectors, the counting 
time is assumed to be sufficiently long to permit 
the probability distribution of the observed 
counts to be adequately approximated by the 
normal distribution.1.2 In such a distribution, the 
mean and variance are equal to the expected 
number of counts. However, as the expected counts 
approach zero, the assumption becomes invalid. 
This problem is significant when determining the 
limit of sensitivity for a counter with a very low 
background, e.g., 0.05 counts/min, and a counting 
time that results in fewer than 30 counts. 

The Hazards Control Department's 
Radiological Measurements Laboratory (RML) 
analyzes many types of sample media in support 
of the Laboratory's health and safety program. 
The Department has determined that the 
equation for the minimum limit of sensitivity, 

(1) 

is also adequate for RML counting systems with 
very-low-background levels. 

This paper reviews the normal distribution 
case and addres~ the special case of 
detennining the limit of sensitivity of a counting 
system when the background count rate is well 
known and small. In the latter case, we must use 
an ex.act test procedure based on the binomial 
distribution. However, the error in using the 
normal distribution for calculating a detection 
system's limit of sensitivity is not significant 
even as the total observed number of counts 
approaches or equals zero. 

Notation 

In this study, we are concerned with two types 
of counting errors. The Type I error occurs when we 
state that the observed count is greater than 
background when, in fact, it is background. The 
Type Il error occurs when we state that the 
observed count is less than background when, in 
fact, it is greater than background. 

In this report, we also use the following 
notation: 

rb = background counting rate (counts/ min: 
r sb = sample plus background counting rate 

(counts/min). 
r5 = net sample counting rate (counts/min) 
tb = background counting time (min). 
15 = sample counting time (min). 

Nb = total background counts 
= rbt5 • 

N5b = total sample plus background counts 
= 'sbt,. 

Case I: Tbt. ~ 30 

In Case I, where rbt• ~ 30, the normal 
distribution is applicable. Thus, the standard 
deviation, sdev, of the background count is: 

sdev(Nb) = (rbt5 )112. 

The standard deviation of the sample plus 
background count is: 

sdev(N sb> = (r sbt.> l /2. 

The net sample count is: 

Ns= N,b-Nb. 

The standard deviation of the net count is: 

sdev(N,) = [sdev(Nsb>2 + sdev(Nb)2jl/2 
= r<r.bt,) + (rbt,;))112. 

Limit of Sensitivity When Background 
Is Well Known 

The statement that the background is "well 
known" implies that the mean of the backgrou 
count rate, rty has been accurately measured, e. 
via a very long background count. Figure 1 sho\ 
an example of a normal distribution, which 
represents the distribution of the expected 



background counts, Nb, in the specified sample 
:ounting period, 15 • In this example, the 
background is 40 counts (rbl5), and the standard 
:ieviation is 6.3 counts. 

If the background count is repeated, Eq. (6) 
:iefines the probability of the repeat count 
exceeding the "well-known" count by a specific 
multiple of the standard deviation: 

P(N'b > [Nb + MSC(a)]} = a, (6) 

where: 
P(x} 

MSC(a) 

Nb 
N'b 

k(a) 

= 
= 
= 
= 
= 

= 

probability of x. 
minimum significant count 
k(a) x sdev(Nb). 
"well-known" background count. 
observed background count for the 
repeat trial. 
abscissa of the standardized normal 
distribution corresponding to the 
probability level 1 - a. 

Values for k(a) are given in tables of the 
normal distribution. For a= 0.05, k(a) = 1.645. 
Consequently, in the example shown in Figure 1, 
the observed background count will be:!: 51 counts 
in less than 5% of the counting trials (a single 
observed count can only be an integer). Table 1 
shows the k(a) values for several other 
probability intervals. 

The MSC(a) can be used to characterize the 
limit of sensitivity for counting equipment. 
However, as shown in Figure 2, if the true net 
count is equal to the MSC(a), the observed net 
count will be less than the MSC(a) 50% of the 
time. That is, 50% of the normal distribution lies 
below Nsb· Thus, if the MSC(a) is used to 
characterize a counter's limit of sensitivity, the 
probability of a Type I error (stating that the 
observed count is greater than background when, 
in fact, it is background) is 5%. The probability of 
a Type II error (stating that the observed count is 
less than background when, in fact, it is greater 
than background) is 50%. As the true count (the 
mean of the distribution) increases, the 
probability of a Type II error is reduced because 
the probability of observed net counts falling 
below the MSC(a) value decreases. 

Just as the probability of a Type I error, a, can 
be selected, the probability of a Type II error, ~' 
can also be selected. In the previous example, a = 
0.05 and ~ = 0.50. Although the 5% probability of 

Table 1. Values of k(a) for several 
probability intervals.• 

a k(a) 

0.005 2.576 
0.010 2.326 
0.025 1.960 
0.050 1.645 
0.100 1.282 

•k(a) = abscissa of the standardized 
normal distribution corresponding to 
the probability level 1 - a. 

a Type I error is acceptable, the 50% probabilit) 
of a Type II error is not. In other words, we want 
to further reduce the probability of stating that 
the observed count is background when, in fact, i 
is greater than background. To do this, we can 
define a new limit, called the minimum detec-
·table count, that is a function of both a and p, 
MDC(a,~), as follows: 

N9b -k(p) x sdev(N5b) =Nb + MSC(a), 

where: 
k(P) = abscissa of the standardized normal 

distribution corresponding to the 
probability level 1 - p. 

Figure 3 shows an example of this new limit. 
Substituting the previously discussed expressior 
into Eq. (2), we obtain: 

r5bt5 -k(~)(r9bt5)l/7 = rbls + k(a)(rbl5 ) 1 12 • 

If we let k(a) = k(Pl = k, then: 

Because rb is well known: 

Therefore: 

rt -k(r bl )1/2 = k(rbt )1/2 5 5 5 5 5 

r t 
(r bt )112 = __!!_! _ (rbt )1 /2 s s k s . 



Squaring both sides, we obtain: 

rl,12, 2r515 112 r,bts = k2 + rbts - k (rbt,) . 

Again, using Eq. (10): 

r,t, = k2 + 2k(rbt,)112 

or 

where: 

(13) 

(14) 

(15) 

MDC(a,13) = the minimum detectable count, 
above background, for the 
counting interval, 15 • 

In Figure 3, the MDC(a,13) for a= 13 = 0.05 
(k = 1.645) is MDC(0.05, 0.05) = 1.6452 + 2 x 
1.645 (40)112 = 23.5 counts above background. Once 
we determine the MDC(a,13) of a particular 
counting system, we can calculate the limit of 
sensitivity as follows: 

LOS_ MDC(a,13) 
(el<tsl ' 

where: 
LOS = limit of sensitivity 

(disintegrations/ min). 

(16) 

MDC(a,13) = minimum significant count, above 
background, for t,. 

e = system counting efficiency 
(counts/ disintegration). 

15 = sample counting time used to 
calculate the MDC(a,13) (min). 

Alternatively: 

MDC(a,@l 
LOS - 2.22(e)(y)(t,l ' 

where: 
LOS = limit of sensitivity (pCil. 

(17) 

2.22 = number of disintegrations per minute 
per pO. 

y = fractional sample yield. 

Figure 4 shows the MDC(a,13) as a function of 
background, rbt,, for a= 13 = 0.05 using Eq. (15). 

In the previous discussion of the MDC(a,13)," 
assumed that the observed counts were ade-
quately represented by the normal distribution. 
Strictly speaking, this is only true when the 
mean of the observed counts is greater than 
approximately 30 counts because the normal 
distribution is merely an approximation of the 
underlying binomial distribution when the 
observed count is large (>30). Therefore, for 
observed counts <30, the binomial distribution 
should be used to determine the limit of sensi-
tivity. Because the probability of detecting an 
individual count is very small and constant, we 
can use the computationally less cumbersome 
Poisson distribution to adequately represent th• 
binomial distribution. 

Figure 4 shows the MDC(a,13) using the Poiss< 
distribution. For example, if a particular alpru 
counter has a well-known background of 0.05 
counts/min, the expected number of counts in a 
20-min counting period is 1.0. From Figure 4, thE 
MDC is 6.4 counts using the Poisson distributio11 
and 6.0 using the normal distribution. Even if a 
counter is blessed with no background, the MIX 
2.9 counts and 2.7, using the Poisson and normal 
distributions, respectively. In other words, if t 
a and 13 errors are both set at 5%, the minimum 
detectable count is approximately 3, even if th 
rounter has "no" background. Then the counting 
system's limit of sensitivity is finally deter-
mined by how long samples are counted, e.g., 
3 counts/20 min, 3 counts/100 min. 

Because the Poisson is a nonsymmetric discr 
distribution, the integral of the curve associat 
with the desired probability interval (a or 13l 
replaced by a summation. In Figure 4, the sum· 
mation area is 0.05, i.e., a= 13 = 0.05, and the 
difference between the Poisson-generated 
MDC(a,13) and the normal-generated MDC(a, 
never exceeds 30%. Consequently, Eq. (15) ism 
than adequate for determining the MDC(a,13) 
Although the Poisson distribution is nonsym-
metric, the error associated with the Type I e! 
(long tail toward the right of the Poisson dis! 
bution) is effectively cancelled by the error 
associated with the Type II error (short tail 
toward the left). 



Limits of Sensitivity for the Radiological 
Measurements Laboratory 

The Hazard's Control Department has deter-
mined that, for counting systems within the 
Radiological Measurements Laboratory (RML), 
the limit of sensitivity will be determined using 
the following equation for the minimum detec-
table count: 

(18) 

where: 
k(a) = abscissa of the standardized normal 

distribution corresponding to the 
probability level 1 - a. 

k(p) = abscissa of the standardized normal 
distribution corresponding to the 
probability level 1 - p. 

For RML reporting, a = p = 0.05. Therefore: 

MDC(a,p) = 2.71 + 3.29 (rbt.)112, (19) 

where: 
rb = well-known background counting rate. 
15 = sample counting time. 

An Example 
Assume that an alpha counter has a well-

known background of 0.05 counts/min. What is the 
MDC(a,p) for samples counted for lOOmin? 

MDC(a,p) = 2.71 + 3.29 (0.05 x 100)1/2 
= 10.0 counts. (20) 

If you observed 15 counts during the lCJO.min 
counting interval, the net count, 10 (15 - 5), is 
exactly at the minimum detectable count. In other 
words, the probability of stating that the 

observect count 15 grearer tnan oacKe;ruu11u vv ilt:11, 
in fact, it is background is 5%. The probability 
of stating that the observed count is less than 
background when, in fact, it is greater than 
background is also 5%. All observed net counts 
that are ~10 should be reported as MDC(a,p), 
which is 10 counts. 

If the efficiency of the alpha counter is 0.3 
counts/ disintegration, the limit of sensitivity fc 
the 100-rnin sample count is: 

lOcounts LOS = ---==-"=--
( 0.3 co;::ts) (100 min) 

= 0.33 disintegrations/ min. (2 · 

The Hazards Control Department has deter-
mined the limit of sensitivity of low-backgroun 
counting equipment used at the Radiological 
Measurements Laboratory. Although the 
nonsymmetric Poisson distribution is more 
appropriate for approximating the observed 
count distribution at low levels, e.g., <20 counts. 
the error in using the normal distribution for 
calculating a system's limit of sensitivity is 
insignificant even as the total observed counts 
approach or equal zero. 
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Figure 1. Example of a normal distribution for the expected background counts, Nty in the specified 
sample counting period, 19 • 
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Figure 2. Example of a normal distribution where the true net count is equal to the MSC(a). In this 
distribution, the observed net count will be Jess than the MSC(a) 50% of the time. That is, 50% of t 
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Figure 3. Example of a new limit that is a function of both a and ~' MOC(a,~). 
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Figure 4. MDC(a,~) as a function of background, rbt., for a= ~ = 0.05 using Eq. (15). 
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